
NEAR EAST UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

DEPARTMENT OF COMPUTER ENGINEERING

Deep Fakes Generation Using LSTM based

Generative Adversarial Networks

M.Sc. THESIS

SABA ELGAMMUDI

Supervisor

Assist. Prof. Dr. Elbrus Imanov

Nicosia

September, 2021

Approval

We certify that we have read the thesis submitted by Saba Abdulbaset Elgammudi titled “Deep

Fakes Generation LSTM based Generative Adversarial Networks” and that in our combined

opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of

Educational Sciences.

Examining Committee Name-Surname Signature

Head of the Committee: Pro. Dr. Rahib H. Abiyev

Committee Member*: Assoc. Prof. Dr. Kamil Dimililer

Supervisor: Assist. Prof. Dr. Elbrus Imanov

Approved by the Head of the Department

…../…../20…

Pro. Dr. Rahib H. Abiyev

Head of Department

Approved by the Institute of Graduate Studies

…../…../20…

Prof. Dr. Kemal Hüsnü Can Başer

Head of the Institute

Declaration

I hereby declare that all information, documents, analysis and results in this thesis have

been collected and presented according to the academic rules and ethical guidelines of

Institute of Graduate Studies, Near East University. I also declare that as required by

these rules and conduct, I have fully cited and referenced information and data that are

not original to this study.

Saba Elgammudi

17/12/2021

ACKNOWLEDGEMENTS

I'd want to convey our heartfelt gratitude to Dr. ELBRUS IMANOV, my project

guide, for his unwavering support and encouragement during this endeavor. I am

grateful to him for being present at every stage of the project, sharing his technical

skills and providing crucial input and suggestions that helped make it a success. I'd

also like to express my gratitude to the officials and employees of the Computer

Engineering department who assisted me during that time. Last but not least, I want to

express my gratitude to my family for their unwavering support and confidence in

me throughout our master's degree journey.

Saba Elgammudi

I certify that this research work entitled “Deep fakes Generation Using LSTM based Generative Adversarial
Networks” is my own work. No portion of the work presented in this research report has been submitted in

support of another award or qualification either at this institution or elsewhere. Where material has been used

from other sources it has been properly acknowledged / referred. If any part of this project is proved to be

copied or found to be a report of some other, I will stand by the consequences.

Name, Last Name Saba Elgammudi

Signature

Date 1/19/2022

ETHICAL APPROVAL DOCUMENT

Date: 05/01/2022

To the Institute of Graduate Studies

For the thesis project entitled as “Deep fakes Generation Using LSTM based Generative Adversarial

Networks”, the researchers declare that they did not collect any data from human/animal or any other

subjects. Therefore, this project does not need to go through the ethics committee evaluation.

Title: Assist. Prof. Dr

Name Surname: Elbrus Imanov

Signature:

Role in the Research Project: Supervisor

ACKNOWLEDGEMENTS

I'd want to convey our heartfelt gratitude to Dr. ELBRUS IMANOV, my project guide, for his

unwavering support and encouragement during this endeavor. I am grateful to him for being present at

every stage of the project, sharing his technical skills and providing crucial input and suggestions that

helped make it a success. I'd also like to express my gratitude to the officials and employees of the

Computer Engineering department who assisted me during that time. Last but not least, I want to express

my gratitude to my family for their unwavering support and confidence in me throughout our master's

degree journey.

Abstract

Deep Fakes Generation LSTM based Generative

Adversarial Networks

Saba Elgammudi

MA, Department of Computer Engineering

December, 2021, 60 pages

Deep learning has shown promising outcomes in a variety of difficult task categories. Recent advances

in deep learning, on the other hand, have been used to develop Software that puts people's privacy and

national security at risk. One of these is deep fakes, which makes phony images and videos that are

undetectable as forgeries. Humans. Fake speeches by international leaders can put the world's stability

and peace in jeopardy. Apart from dangerous applications, deep fakes is used also for good, its used in

ex: post production and in translating in films. The scenario was employed in the most recent elections

in India, allowing politicians' statements to be translated into a variety of Indian languages.

Traditionally, this job was done with computer graphics and 3D models. However, developments of AI

and ML and computer vision, particularly the GAN, are displacing early method in favor of DL methods.

This study aims to use deep neural networks to create modified faces in photos and videos.

This thesis for master’s degree is proposes for generating a full complete video sequence from a source

image and a destination video. NVIDIA's work on vidTOvid few shots vidTOvid, so they map video

from source domains to target domains by learning, encouraged us. This paper, I offer a united models

based on long short term memory on GA networks, as well as a movement module that generates dense

motion using a keypoint detector.

To be able to create a real looking video, the network that generates uses a cover to mix the way it

appears retrieved taking from video source also includes the movement from the video target. The

instruction is completed from beginning to end, and the main concepts are learned independently. The

recently released FaceForensics++ and VoxCeleb datasets are used to demonstrate the evaluation.

Our work's key contribution is the development of innovative neural networks for creating deepfake

images and movies. In addition, our primary goal is to provide datasets for deepfake detection problems.

Key Words: gan, deep fakes, ml, ai, lstm, deep learning

Table of Contents

Approval ..

Declaration ..

Acknowledgements ..

Abstract ...

Summary ...

Table of Contents ..

List of Tables/ List of Figures………………………………………………………..

List of Abbreviations…………………………………………………………………

CHAPTER I

Introduction…………………………………………………………………………

Types of Deep fakes …………….………………………………………………..

CHAPTER II

(CNNs) Convolutional Neural Networks ..

(GANs) Generative Adversarial Networks ..

(LSTM) Long short term memory...………………………………………………

Flow net and Optical Flow...………………………………………………………

CHAPTER III

Face swap ……………………………………………………………………….

Video2Video Synthesis ……………………………………………………….

Few shot Video2Video Synthesis ...…………………………………………...

Image Animation First order model ……………………………………………

CHAPTER IV

Face Forensics++: Learning to discover Manipulated Fake Facial Images ……

Face Swap …………………………………………………………………….

Deep Fakes...…………………………………………………………………...

Face-to-Face ……………………………………………………………………

Neural Textures …………………………………..…………………………….

Post processing of videos...……………………………………………………..

Model ……………………………………………………..……………………

Training …………………………………………………………………………

Compare and Contrast………………………………………………………………..

CHAPTER V

Discussion ……………………………………………..……………………………..

 Future work …………………………………………………………………………

REFERENCES ………………………………………………………………………..

APPENDICES ………………………………………………………………………...

CHAPTER 1

INTRODUCTION

DL (deep learning) and computer vision in the recent years have progressed. It has

become an inextricable everyone’s life and is utilized practically all around the world,

in cell phones and computers. In medicine deep learning technologies and dependencies

will be used and installed in the coming decade. Toolkits and software’s have standard

components. Self-driving cars, for example, are a result of recent technological

advancements. Detecting objects, face recognitions and character recognition is not

possible without automobiles. DL (deep learning) is not possible without it. The goal of

deep learning approaches is to learn high-level features from the data. Without relying

on human-crafted data and mapping inputs to appropriate outputs features. The

methods or processes used to extract the features might differ. DL (deep learning)

techniques are examples of this type of technology. Emerged in the last ten years.

CNNs and long short term memory on GA networks aid extracted features and were

shown to solve real-world issues. Such as video and image classification, recognizing

objects and attitude analysis, as well as segmentation empirically. Deep learning

includes two important tasks: image categorization and recognition. Classification is

the process of categorizing items into different groups, whereas recognition is the

process of accurately identifying an object in an image. Object detection is a relatively

new advancement that employs to recognize instances of items such as faces, cars, and

Roads, image analysis, machine learning, and machine vision algorithms are used.

Deep fake operations now include a significant amount of face detection and

recognition.

Face detection locates a face in an image, whereas facial recognition establishes the

face's identity. Because of the differences in the features, such as facial hair,

orientation, and location of a face these operations can be rather difficult. Hence, In the

realm of deep learning, it is a major topic of study. Face detection and recognition are

also employed in a variety of real-world applications, including Identity verification

and cell phones are two examples. Methods for detecting faces include feature based,

probabilistic, probabilistic methods [47]. Template matching and based on look. Deep

learning technologies such as OpenCV are now widely used. Among the most

prominent approaches for achieving these duties are the Dlib networks. These networks

have been trained on millions of faces, resulting in improved results. CNNs are used in

deep learning take information from photos and mapped to words. Corresponding

outputs. The receptive field is sized of the convolution filters, and the filter taps are

parameters acquired by a backpropagation procedure [46]. CNNs can include millions

of parameters and are interspersed with nonlinear activation functions and

normalization procedures. CNNs are used as a backbone in face detection and

identification systems. An example of a CNN network for face recognition shown is

Figure 1.

Figure 1: Example of CNN used for facial recognition

[53].

1.2 Types of Deepfakes:

The creation of software that constitutes a public threat has been helped by

technological advancements in DL (deep learning). Deep fake is one of the newest

dangerous threats they've faced [23]. The algorithms of DL can make fake faces of

people that are difficult to distinguish from the real ones it also can make videos and

images. Deep fake first video led to the moniker deepfakes. Deepfakes can be made in

a variety of ways. Deepfakes were first created using computer graphics techniques,

but deep learning approaches have recently taken over [24].

GANs were used to construct the first deep fake video, used a decoding and encoding

networks. There are many methods for creating altered photos and films have since

Emerged [18]. Face manipulations are divided into two categories: face swap and

recreation of facial expressions. Face swap is the process of moving the source person

facial details and expression to a target person, whereas facial reenactment is the

process of moving just the emotions and pose from the source person to the target

person. Figure 2 is an example of Face swap, while Figure 3 is an example of facial

reenactment.

Figure 2: Face swap example [52].

Figure 3: Facial reenactment example [51].

Both sorts of fakes are depicted in Figures 2 and 3. Face swap is seen in Figure 2. To

make a fake, the target people’s face is changed with the source person’s face, as shown

in Figure 2. Figure 3 is a scenario of facial reenactment. The emotion of the source

video is swapped with the emotion of the target image to create a fake image, as seen in

Figure 3.

As a result, various deep learning approaches to detect the presence of these

technologies have evolved to fix the issue of deep fake.

Facebook and Microsoft recently established a competition to detect deep fake to boost

the detecting and addressing deep fake’s research, citing worries that these films could

endanger the public by distributing false information or assertions [48].

Deep Learning networks needs a lot of data to detect deep fakes. A lot of datasets are

available for the public, including Facebook's Face Forensics++ and Deep Fake

Detection Challenge datasets. However, fakes were constructed for all of those datasets

using the Face2Face [41], Face swap, Neural Textures [42] and Deep Fakes

approaches. Deep Fakes [7] and Face swap [8] are ways that swap the source image

face with the target image face. Face swapping is based on graphics, whereas Deep

Fakes is based on GANs [15].

The Neural Textures and Face2face methods copy the target image's facial expressions

to the source picture [2]. The FacetoFace approach uses blend shape coefficients to

transfer source expression to the target video, whereas GANs is used by the Neural

Textures

Which uses to learn the facials of the target person [5]. The techniques described above

do not have generalization capacity, which means they cannot be used to previously

unseen photos or videos. With a source image and a target video, our model attempts to

transfer the source person's facial expressions to the target person's image. The major

goal of this thesis is to create datasets that will be used to build robust detection models

[19].

CHAPTER 2

BACKGROUND

2.1 (CNNs) Convolutional Neural Networks:

One algorithm of deep learning algorithms is convolutional Neural Networks (CNNs)

they accept visual inputs and learn for the best output learning tasks utilizing various

operations.

Multiple filters move over the image and apply convolution neural network to each part

of the image in a convolution layer. Each filter extracts distinct aspects of the image,

such as corners, color, and pixels data. The receptive field is the size of the filter,

Training algorithm is used to learn the filter values, which are referred to as parameters.

The spatial size of the maps output from the CNN layer output is reduced by a pooling

layer.

For obtaining the dominating characteristics from the convolved output, pooling layers

can be effective. There is two most common pooling which are max pooling and

average pooling. The outputs of the average pooling are average of all the values under

That window, whereas the outputs of the max pooling are maximum pixel values from

the section of the image beneath that window. Introducing non-linearity in the output,

an activation layer is usually added after the convolution layer. Tanh, sigmoid, ReLU

[49], and other general activation functions are utilized. The activation functions aid in

the learning of the input image's high-level representations [19].

In many activities, the ultimate layer is a fully connected layer. It reduces a multi-

dimensional representation to an n-dimensional representation.

During training, the masses of the filter values and fully connected layer are updated by

maximizing the loss between the ground truth and predicted values [36]. Figure 4

depicts a typical CNN.

Figure 4: Convolutional Neural Network example [50].

2.2 (GANs)Generative Adversarial Networks:

Goodfellow et al [38]. defined GANs as a type of CNN. The network functions in a

similar way to CNNs, it does, however, have mainly two sub-networks: a generator

generates new other examples and a discriminator that determines whether input data is

real or fake. GANs are classified as unsupervised learning algorithms since they do not

require humans to manually identify training images [40].

GANs are generative models that produce new data instances which is similar to the

input. GANs, an example of that is, can generate lifelike faces that is imaginary and do

not represent any living person. Both the generator and discriminator are trained in an

adversarial manner up to the time the discriminator is deceived, indicating that the

generator can generate data that appears realistic. The generator generates an image

from random noise, which is subsequently sent to the discriminator. Then the

discriminator accepts all the real and false images (produced by the generator) as input

and outputs a probability is always between 0 and 1, with 0 indicating the fake false and

1 indicating the real true. As a result, generative models attempt to learn the allocation

of classes in the GNA, whereas discriminative models attempt to learn the distinctions

between actual and fake images [39]. Figure 5 depicts a normal GAN network.

Figure 5: A normal example of Generative Adversarial Network [45]

2.3 (LSTM) Long short term memory:

Recurrent neural networks are different from feed forward neural networks in that they

are artificial neural networks. Recurrent neural networks can receive one or more inputs

and produce outputs that are influenced by both current and previous inputs and

outputs. As a result, even if the inputs are same, the output may alter due to differences

in the old inputs that effects output all time. The (LSTM) is a one of RNN forms that

can render long sequences. When time lags exceed 5-10 steps [25], standard RNNs

sometimes fail to remember so it wasn’t affective in long sequences, however LSTMs

have been found to be effective in long sequences even longer than 100 steps. RNNs

have two major flaws: vanishing gradients and ballooning gradients. The uniquely

developed architecture of LSTMs overcomes these problems. The LSTM layer is made

Up of memory blocks stacks that are coupled in a recursively [26]. Each memory stack

consists of a recursively connected memory cell and contains three more gates: an

input, an output, and a forget gates, all of which provide the cell with write operation,

read operation, and reset operation. These gates allow each net to interact with the cells.

Speech recognition, video captioning, and machine translation are some of the uses of

LSTMs. Figures 6 and 7 depict a typical RNN [22] and LSTM [20].

Figure 6: A simple example of Recurrent Neural Networks [44].

Figure 7: Long Short Term Memory Network Example

[14].

2.4 Flow net and Optical Flow:

Optical flow is a technique for calculating picture intensity motion. It essentially

mentions the pattern of motion of picture objects between successive frames. Images

simply have spatial organization, whereas videos have both temporal and spatial

structure. As a result, visual flow aids in temporal comprehension. CNNs has been

proved to be effective in a multiple application, including optical flow estimates

[26].

Optical flow aids video production using GANs and increases classification

Performance in video classification applications. Smoothing is used in GANs to make

realistic videos so that they can produce cohesive outputs. Philipp Fischer has provided

Figure 8 as an example of Flow net [16] [43].

Figure 8: Optical flow network example [43].

CHAPTER 3

Other work

3.1 Face swap:

Face swap is a technique in which the target face of a person is superimposed on the

source face of a person to generate a video of the target person performing or speaking

in a manner as close to the source person’s face as feasible [12].

Because of their high quality, they have grown in popularity. The majority of them

were created utilizing deep learning techniques such as GANs. Deep fake first video

was created by a user on internet who went by the handle deep fakes [9], hence the

name. Nguyen et al [1]. describe different generation and detection strategies that

have been proposed. To make deep fakes, two encoder and decoder pairs are

required, with each picture pair being trained separately using the same encoder and

different decoder networks. To create a fake, it is separated to different class’s class

A uses a normal encoder and decoded with a class B decoder during testing. Many

Face swap GANs appeared later [18], however they always utilized extra inputs like

dual face masks and facial landmark heat maps. Figure 9 is a common Face swap

GAN.

Figure 9: a common Face swap GAN [1].

3.2 Video2Video Synthesis:

Wang et al [27] proposed a video-to-video synthesis approach in which an adversarial

learning framework is used to learn a mapping between the input video and the output

realistic fake video. Their model is an outgrowth of their prior image-to-image [27]

translation work, in which they generated high-resolution images using local and global

generators [37]. They employ the pix2pixHD [37] generating network in the vid2vid

network.

For generating high-resolution realistic movies, they divide the generator into two main

sub networks: some global and local generators. They first train the global generator,

then the local generator, and eventually all of the networks are fine-tuned. They employ

this method to gather both global and local data. Multiscale discriminators are also used

To distinguish between high resolution actual and synthetic images. They employ

three separate discriminators, each with a different receptive field. In the vid2vid

network, Wang et al used two types of discriminators, an image and video

discriminator. The image discriminator's goal is to ensure that the generated frame

looks like a ground truth frame, whereas the video discriminator's goal is to make sure

that output generated frames seem like solid truth frames. However, this network has a

restriction in that we cannot define the target images and it consumes a lot of data. It

also lacks generalization capabilities. The pix2pixHD [21] network is vid2vid's

backbone network, an example in Figure 10.

Figure 10: an example of network architecture of pix2pixHD [37].

3.3 Few shot Video2Video Synthesis:

To solve the constraints of vid2vid, the creator of vid2vid synthesis advised a few shot

vid2vid architecture. The model, for starters, is data-hungry. For training, a large

number of target photos are necessary. Second, the vid2vid network's generalization

Power is limited, as it haves a hard time to generalize to unanticipated images. The

main difference between vid2vid and few shot vid2vid is shown in Figure 11. The few

shot vid2vid network accepts a target images together with the input video as input,

whereas the vid2vid [13] network only accepts one. The few shot vid2vid network uses

a weight generation technique to dynamically customize the vid2vid mechanism based

on the few target images [17].

Figure 11: Main difference between vid2vid and few shot vid2vid [29].

Park et al [30]. Presented an adaptive spade network, which is shown in Figure 12,

to achieve a few-shot [31] generalization capacity in their model. The goal of the

vid2vid synthesis is to discover a scanning that can convert input videos into

realistic output videos. Few shot vid2vid, on the other hand, has not been trained to

generate videos from unknown domains [5]. Unlike vid2vid, it requires two inputs

to create a video.

It accepts a second input in addition to the input video, which contains of a few images

of the target image that are made available at test time. For the weight generalization

mechanism, these examples are taken dynamically. When the example and target

photos are comparable in most locations, they used warping as well. The Face

Forensics++ dataset [10] is used to train both vid2vid and few shot vid2vid [11].

Figure 12: The network consist SPADE [30].

3.4 Image Animation First order model:

By decoupling the existing and movement information via self-controlled training,

Siarohin et al [33]. developed a unique architecture. Their method is based on picture

animation, which is the process of creating a video sequence from a source image and a

driving video. Their study is motivated by the desire to avoid employing pre-trained

models for exact point estimate, such as facial structure identification. As a result,

Monkey net [32] uses a movement estimation module to recognize key points based on

a self-controlled training strategy to alleviate the above restriction. Figure 13 depicts

the monkey net network architecture, which established a framework for movement-

driven picture animation by integrating the movement of a playing video with the

appearance of a source image to make videos. An exact point detector network for

removing object key points, a dense movement network for creating heavy heat maps,

and a movement transfer network for integrating the showing of the source image with

the motion of a moving video are the three primary networks in their model. Because

of the large pose variations, monkey net has a severe flaw: poor generation quality [6].

They employ the same monkey network for motion estimation in the first order model

study, but they add an additional local harmonic transformation to overcome the

restrictions of the net [3].

An image as the source and frame from a moving video are also used as input in the

first order model.

Figure: 13 A monkey net example [32]

Based on the heavy migration of faces from the driving frame to the source image, the

key point detector determines sparse key points. The generator takes input which is the

source image and generates the target image based on driving frame expressions using

heavy motion and the clogging map as conditional input. They use a reconstruction loss

and an equivariance loss to train their network from start to finish. [4] The equivariance

constraint is used to accurately locate sparse key points.

The VoxCeleb [34] dataset is used to train and assess their network. The following

are the loss functions:

Where gt is ground truth image and G(x) is generated image

Where g(xk,yk) is a thin walled linear distortion vector transformation, (xk,yk)

are monuments, and K is the total number of monuments.

Figure 14: General idea of first order model for image animation approach [35].

CHAPTER 4

Algorithms

4.1 Uploading the dataset:

By making edited movies of politicians and actors/actresses, recent advances in

generating of fake image and video have raised worries in society. Since a result, if the

current trend continues, it may become increasingly difficult to trust digital content, as

the transmission of misleading information and fake news may become routine. Faces,

as we all know, play a crucial role in communicating a message. As a result, deep fakes

are becoming a major source of concern today's society.

Face manipulation can be divided into two types, as stated in Section 2, face expression

manipulation and face identity modification. Face2Face, Deep fakes, Face swap, and

Neural Textures are among the face alteration methods used in the FaceForesiscs++

dataset.

ALL_DATASETS = ['original', 'DeepFakeDetection_original',

'Deepfakes','DeepFakeDetection','Face2Face', 'FaceSwap','NeuralTextures']

There are 6 types of methods which are used for creating face forensics datasets:

4.1.1 Face swap:

It's a graphics based method for transferring the source image's face to the target video.

This is accomplished by extracting facial features from the source image, fitting the 3D

model with blend shapes, and projecting the result on the target image. To create a

realistic-looking false image, image and color correction are done to integrate the

morphing face into the source image. This method is performed for each frame in order

to create a video.

4.1.2 Deep Fakes:

Redditor used an encoder-decoder network to generate the first deep fake video. Face

swap’s GitHub and Fakeapp's implementations are both available. Two encoder-

decoder networks are used in the process. In the phase of training, the two networks use

the same encoder but distinct decoders. Figure 16 shows how the face of class A

employs encoder from A and decoder from B weights to construct fakes during the

testing process.

4.1.3 Face-to-face:

The Face2Face approach is part of the facial renewal category, and it seeks to transfer

the source image's facial expressions to the target image. They employ a 3D model with

blend shape coefficients to transfer face features and details from one image to another

in this method. They use the first frame to create a fake emotion and the other frame

key points to create a temporary facial identity.

4.1.4 Neural Texture:

This textures are also part of the face renewal category, as it is based on the Neural

Textures recall approach described in the work. Using reconstruction loss and

adversarial loss, they use GANs to generate fakes.

4.1.5 Post the process of videos:

The videos after the normal process are post processed to improve video quality by

compressing them, which is commonly used by social media sites. In this study, a

quantization is used to create high quality videos and a rate of 40 is used to create low-

quality videos.

4.2 Model:

After uploading the dataset the training model comes in using torch as a CNN method

and using torchvision.models as models after importing we start with checking the

models block then printing the models parameters and getting the trained parameters

finishing with creating the model when creating the model we use resnet18 as the

model then going to the hidden layer the used model will have torch.Sequential,

torch.Dropout, torch.Linear, torch.ReLU and torch.BatchNorm1d

4.3 Training:

In the training process numpy, tourch, apex, tqdm is required a Records class was

created having attributes writing and returning and getting in the training function

the loss and accs of the training is calculated. For full code check Appendix1.

 As showing in the matlab diagram the loss function for the generator and

discriminator

 In this chart it is showing the accuracy of detecting the fake and real images

 Once the generator gets better the discriminator preform worse because of the

 similarity that the discriminator is not able to detect it.

4.4 Compare and Contrast

The results of this study demonstrate that VGG-19 can be a suitable choice not only for

partial face images, but also for full-face images confirming the findings of [57]. The better

performance of VGG-19 is because it is pretrained on a wide variety of objects. AP was used

as an aggregation function to summarize the precision–recall curve into a single value that

represents the average of all precisions. VGG-19, even though it had the highest accuracy,

had the lowest AP of 95% in comparison to all other analyzed models. The DenseNet

architecture on the original dataset and grayscale dataset had a closer performance to VGG-

19, with 94% accuracy. Results from DenseNET architecture demonstrates that gray

channel-based analysis does not have a huge impact on model accuracy level in classifying

images into the two categories of real and fake. The DenseNet architecture, even though was

second best in terms of performance, achieved an AP of 99% on both augmented and

grayscale datasets, which is slightly in contrast to the results found in [59] in terms of

precision rate; however, it aligns with claims regarding detection time. Custom CNN

architecture had the lowest accuracy level (89%). The second-highest AP score after

DenseNet was the Custom CNN model. Augmented input reduced model performance and

accuracy level on both DenseNET and Custom CNN by 5–22%. However, the Custom CNN

had a better performance on augmented data in comparison to the DenseNet architecture.

CHAPTER 5

Conclusion

5.1 Discussion:

For generative models, creating video sequences has proven to be a difficult task.

Many previous works produced realistic videos, but they lacked generalization to

unanticipated domains and were not temporally coherent. A unique architecture

consisting of an LSTM-based generator, a discriminator, and a dense motion network

was proposed. By merging the appearance of the source picture with the motion of the

driving video, we show that our model can generate realistic films given a single image

and a target video. We also demonstrated that our methodology applies to previously

unknown videos.

5.2 Future work:

This thesis' main focus is on creating datasets for deepfake detection issues. Our

algorithm creates realistic videos using a face source image and target video frame

facial emotions.

 Train and test the network on other domains. These are some prospective

extensions of our study. Some previous video generating works, such as vid2vid,

few-show vid2vid, and first order model for picture animation, produced films in

a variety of domains, including faces, human poses, and semantic segmentation

tasks. For making realistic films, we can extend our network to train and test on

human pose data.

 Utilizing the generator network proposed by pix2pixHD, we can make high-

resolution videos using local and global generators. They used both local and

global generators to create graphics with a resolution of 2K.

 Assess created videos by submitting both original and generated videos to

Amazon Mechanical Turk, where human reviewers will assess them.

 We'd like to lay out a psychophysical study that evaluates the fairness of various

deep fake techniques for evaluation. Using our model, first order model, and few

shot vid2vid model, we would choose 50 original videos and their generated

videos at random.

Refrences:

[1] - Thanh Thi Nguyen, Cuong M. Nguyen, Dung Tien Nguyen, Duc Thanh Nguyen. Deep Learning for

Deepfakes Creation and Detection. Institute for Intelligent Systems Research and Innovation, Deakin

University, Australia.

[2] - Schroepfer, M. (2019, September 5). Creating a data set and a challenge for deepfakes. Retrieved from

https://ai.facebook.com/blog/deepfake-detection-challenge.

[3] - Guera, D., and Delp, E. J. (2018, November). Deepfake video detection using recurrent neural networks.

In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)

(pp. 1-6). IEEE.

[4] - Large-scale CelebFaces Attributes (CelebA) Dataset. Database retrieved from

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

[5] - Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess. FaceForensics++: Learning to

Detect Manipulated Facial Images. 26 August, 2019.

[6] - Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess. FaceForensics: A Large-scale

Video Dataset for Forgery Detection in Human Faces. 24 march, 2018.

[7] - DeepFaceLab for generating deepfake videos. Retrieved from https://github.com/iperov/DeepFaceLab.

[8] - Face swap. Retrieved from https://github.com/deepfakes/faceswap. Department of Computer

Engineering 58

[9] - Few shot face translation. Retrieved from https://github.com/shaoanlu/fewshot-facetranslation-GAN.

[10] - FakeApp 2.2.0. Retrieved from https://www.malavida.com/en/soft/fakeapp/

[11] - Faceswap-GAN. Retrieved from https://github.com/shaoanlu/faceswap-GAN.

[12] - VidTIMIT database. Retrieved from http://conradsanderson.id.au/vidtimit/

[13] - Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for face

recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (pp. 815-823).

[14] - Nguyen, H. H., Yamagishi, J., and Echizen, I. (2019, May). Capsule-forensics: Using capsule networks

to detect forged images and videos. In 2019 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (pp. 2307-2311). IEEE.

[15] - Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., and Niener, M. (2018). FaceForensics: A

large-scale video dataset for forgery detection in human faces. arXiv preprint arXiv:1803.09179.

[16] - Pavel Korshunov and Sebastien Marcel Idiap Research Institute, Martigny, Switzerland. Vulnerability

assessment and detection of Deepfake videos.

[17] - Yuezun Li, Siwei Lyu. Exposing DeepFake Videos By Detecting Face Warping Artifacts. University at

Albany, State University of New York, USA. CVPR. Department of Computer Engineering 59

[18] - Shruti Agarwal and Hany Farid. Protecting World Leaders Against Deepfakes. University of California,

Berkeley Berkeley CA, USA.

[19] - Darius Afchar ; Vincent Nozick ; Junichi Yamagishi. MesoNet: a Compact Facial Video Forgery

Detection Network. IEEE Xplore.

[20] - Marissa Koopman, Andrea Macarulla Rodriguez, Zeno Geradts. Detection of Deepfake Video

Manipulation. University of Amsterdam & Netherlands Forensic Institute. IMVIP 2018.

[21] - Ian J. Goodfellow, Jean Pouget-Abadie , Mehdi Mirza, Bing Xu, David Warde-Farley. Generative

Adversarial Nets.

[22] - Karen Simonyan & Andrew Zisserman. VERY DEEP CONVOLUTIONAL NETWORKS FOR

LARGE-SCALE IMAGE RECOGNITION. University of Oxford.

[23] - Brian Dolhansky, Russ Howes, Ben Pflaum, Nicole Baram, Cristian Canton Ferrer. The Deepfake

Detection Challenge (DFDC) Preview Dataset. AI Red Team, Facebook AI.

[24] - Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton. Imagenet classification with deep convolutional

neural networks. Advances in neural information processing systems, 2012.

[25] - Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet. Going deeper with convolutions.

https://ai.facebook.com/blog/deepfake-detection-challenge
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/iperov/DeepFaceLab
https://github.com/shaoanlu/fewshot-facetranslation-GAN
https://www.malavida.com/en/soft/fakeapp/
https://github.com/shaoanlu/faceswap-GAN
http://conradsanderson.id.au/vidtimit/

[26] - Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition.

Microsoft Research.

[27] - Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao. Video-to-Video Synthesis.

NVIDIA, MIT CSAIL Research. Department of Computer Engineering 60

[28] - Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao. High-Resolution Image

Synthesis and Semantic Manipulation with Conditional GANs. NVIDIA UC Berkeley Research.

[29] - Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao. Few-shot Videoto-Video

Synthesis. NVIDIA Corporation.

[30] - Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. Image-to-Image Translation with

Conditional Adversarial Nets. University of California, Berkeley, CVPR, 2017.

[31] - Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Jun-Yan Zhu. Semantic Image Synthesis with

Spatially-Adaptive Normalization. NVIDIA UC Berkeley Research.

[32] - Aliaksandr Siarohin, Stephane Lathuiliere, Sergey Tulyakov, Elisa Ricci. Animating Arbitrary Objects

via Deep Motion Transfer. University of Trento, Italy.

[33] - Aliaksandr Siarohin, Stephane Lathuiliere, Sergey Tulyakov, Elisa Ricci. First Order Motion Model for

Image Animation. University of Trento, Italy.

[34] - Arsha Nagrani, Joon Son Chung, Andrew Zisserman. VoxCeleb: a large-scale speaker identification

dataset. University of Oxford, UK.

[35] - http://www.robots.ox.ac.uk/~vgg/data/voxceleb/ . VoxCeleb dataset download blog.

[36] - Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, Jaegul Choo. StarGAN:

Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. Department of

Computer Engineering 61

[37] - Phillip Isola, Jun-Yan Zhu, Alexei A.Efros. Image-to-Image Translation with Conditional Adversarial

Networks

[38] - Ian J. Goodfellow, Jean Pouget-Abadie† , Mehdi Mirza, Bing Xu, David Warde-Farley. Generative

Adversarial Nets. [39] - Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg , Philip Hausser, Caner Hazırbas,

Vladimir Golkov. FlowNet: Learning Optical Flow with Convolutional Networks.

[40] - Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, Thomas Brox.

FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. University of Freiburg,

Germany.

[41] - Justus Thies1 Michael Zollhofer, Marc Stamminger, Christian Theobalt, Matthias Nießner. Face2Face:

Real-time Face Capture and Reenactment of RGB Videos.

[42] - Justus Thies, Michael Zollhofer, and Matthias Nießner. De- ¨ ferred neural rendering: Image synthesis

using neural textures. ACM Transactions on Graphics 2019 (TOG), 2019.

[43] - Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Hausser. FlowNet: Learning Optical Flow with

Convolutional Networks.

[44] - https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/. Facial landmark

detection methods. [45] - Vahid Kazemi and Josephine Sullivan. One Millisecond Face Alignment with an

Ensemble of Regression Trees. KTH, Royal Institute of Technology.

[46] - Mamata S. Kalas. REAL TIME FACE DETECTION AND TRACKING USING OPENCV.

Department of Computer Engineering 62

[47] - https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/

[48] - https://deepfakedetectionchallenge.ai/

[49] - https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activationfunctions-right/

[50] - Justus Thies, Michael Zollhofer, Marc Stamminger. Face2Face: Real-time face capture and reenactment

of RGB videos. [51] - Justus Thies, Matthias Nießner, Michael Zollhofer. Deferred Neural Rendering:

Image Synthesis using Neural Textures. [52] - Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros.

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.

[53] - Yunjey Choi, Minje Choi, Shungun Kin. StarGAN: Unified Generative Adversarial Networks for

Multi-Domain Image-to-Image Translation.

https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/
https://deepfakedetectionchallenge.ai/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activationfunctions-right/

Appendix1

train.py

import

torch

from tqdm import tqdm

from apex import amp

import numpy as np

import os

from utils import visualize_metrics, display_predictions_on_image

from sklearn.metrics import roc_auc_score as extra_metric

import foundations

class Records:

def init (self):

self.train_losses, self.train_losses_wo_dropout, self.base_val_losses,

self.augment_val_losses = [], [], [], []

self.train_accs, self.train_accs_wo_dropout, self.base_val_accs, self.augment_val_accs

= [], [], [], []

self.train_custom_metrics, self.train_custom_metrics_wo_dropout,

self.base_val_custom_metrics, self.augment_val_custom_metrics = [], [], [], []

self.lrs = []

def write_to_records(self, **kwargs):

assert len(set(kwargs.keys()) - set(self. dir ())) == 0, 'invalid arguments!'

for k, v in kwargs.items():

setattr(self, k, v)

def return_attributes(self):

attributes = [i for i in self. dir () if not (i.startswith(' ') and

i.endswith(' ') or i in ('write_to_records', 'return_attributes',

'get_metrics'))]

return attributes

def get_metrics(self):

return ['train_accs_wo_dropout', 'base_val_accs', 'augment_val_accs',

'base_val_custom_metrics', 'augment_val_custom_metrics']

def train_one_epoch(epoch, model, train_dl, max_lr, optimizer, criterion, scheduler, records):

model.train()

train_loss = 0

train_loss_eval = 0

train_tk = tqdm(train_dl, total=int(len(train_dl)), desc='Train Epoch')

optimizer.zero_grad()

total = 0

correct_count = 0

correct_count_eval = 0

for step, data in enumerate(train_tk):

model.train()

inputs = data['image']

labels = data['label'].view(-1)

inputs = inputs.cuda(device=0)

labels = labels.cuda(device=0)

optimizer.zero_grad()

with torch.set_grad_enabled(True):

outputs = model(inputs)

_, predicted = torch.max(outputs.data, 1)

total += labels.size(0)

correct_count += (predicted == labels).sum().item()

loss = criterion(outputs, labels)

with amp.scale_loss(loss, optimizer) as scaled_loss:

scaled_loss.backward()

loss.backward()

optimizer.step()

if scheduler is not None:

records.lrs += scheduler.get_lr()

scheduler.step()

else:

records.lrs.append(max_lr)

train_loss += loss.item()

train_tk.set_postfix(loss=train_loss / (step + 1), acc=correct_count / total)

eval with dropout turned off

model.eval()

with torch.no_grad():

outputs_eval = model(inputs)

_, predicted_eval = torch.max(outputs_eval.data, 1)

correct_count_eval += (predicted_eval == labels).sum().item()

loss_eval = criterion(outputs_eval, labels)

train_loss_eval += loss_eval.item()

records.train_losses_wo_dropout.append(train_loss_eval / (step + 1))

records.train_accs_wo_dropout.append(correct_count_eval / total)

records.train_losses.append(train_loss / (step + 1))

records.train_accs.append(correct_count / total)

print(f'Epoch {epoch}: train loss={records.train_losses[-1]:.4f} | train

acc={records.train_accs[-1]:.4f}')

print(f'Epoch {epoch}: eval_ loss={records.train_losses_wo_dropout[-1]:.4f} | train

acc={records.train_accs_wo_dropout[-1]:.4f}')

def validate(model, val_dl, criterion, records, data_name):

val

model.eval()

val_loss = 0

correct_count = 0

total = 0

all_labels = []

all_predictions = []

for data in val_dl:

inputs = data['image']

labels = data['label'].view(-1)

inputs = inputs.cuda(device=0) # .type()

labels = labels.cuda(device=0)

with torch.no_grad():

outputs = model(inputs)

_, predicted = torch.max(outputs.data, 1)

total += labels.size(0)

correct_count += (predicted == labels).sum().item()

val_loss += criterion(outputs, labels)

all_labels.append(labels.cpu().numpy())

all_predictions.append(predicted.cpu().numpy())

all_labels = np.concatenate(all_labels, axis=0)

all_predictions = np.concatenate(all_predictions, axis=0)

extra_score = extra_metric(all_labels, all_predictions)

if data_name == 'base':

records.base_val_losses.append(val_loss / len(val_dl))

records.base_val_accs.append(correct_count / total)

records.base_val_custom_metrics.append(extra_score)

print(f'\t base val loss={records.base_val_losses[-1]:.4f} | base val

acc={records.base_val_accs[-1]:.4f} | '

f'base val {extra_metric. name }={records.base_val_custom_metrics[-1]:.4f}')

else:

assert data_name == 'augment', f'specified data type is unknown {data_name}'

records.augment_val_losses.append(val_loss / len(val_dl))

records.augment_val_accs.append(correct_count / total)

records.augment_val_custom_metrics.append(extra_score)

print(f'\t augment val loss={records.augment_val_losses[-1]:.4f} | augment val

acc={records.augment_val_accs[-1]:.4f} | '

f'augment val {extra_metric. name }={records.augment_val_custom_metrics[-

1]:.4f}\n')

def train(train_dl, val_base_dl, val_augment_dl, display_dl_iter, model, optimizer, n_epochs,

max_lr, scheduler, criterion, train_source):

records = Records()

best_metric = 0.

os.makedirs('checkpoints', exist_ok=True)

for epoch in range(n_epochs):

train_one_epoch(epoch, model, train_dl, max_lr, optimizer, criterion, scheduler,

records)

validate(model, val_base_dl, criterion, records, data_name='base')

validate(model, val_augment_dl, criterion, records, data_name='augment')

if train_source == 'both':

selection_metric = [getattr(records, 'base_val_accs')[-1], getattr(records,

'augment_val_accs')[-1]]

selection_metric = np.mean(selection_metric)

else:

selection_metric = getattr(records, f"{train_source}_val_accs")[-1]

if selection_metric >= best_metric:

print(f'>>> Saving best model metric={selection_metric:.4f} compared to previous

best {best_metric:.4f}')

checkpoint = {'model': model,

'state_dict': model.state_dict(),

'optimizer': optimizer.state_dict()}

torch.save(checkpoint, 'checkpoints/best_model.pth')

foundations.save_artifact('checkpoints/best_model.pth',

key='pretrained_model_checkpoint')

display_filename = f'{epoch}_display.png'

display_predictions_on_image(model, val_base_dl.dataset.cached_path, display_dl_iter,

name=display_filename)

Save eyeball plot to Atlas GUI

foundations.save_artifact(display_filename, key=f'{epoch}_display')

Save metrics plot

visualize_metrics(records, extra_metric=extra_metric, name='metrics.png')

Save metrics plot to Atlas GUI

foundations.save_artifact('metrics.png', key='metrics_plot')

Log metrics to GUI

if train_source == 'both':

avg_metric = [getattr(records, 'base_val_accs'), getattr(records, 'augment_val_accs')]

avg_metric = np.mean(avg_metric, axis=0)

max_index = np.argmax(avg_metric)

else:

max_index = np.argmax(getattr(records, f'{train_source}_val_accs'))

useful_metrics = records.get_metrics()

for metric in useful_metrics:

foundations.log_metric(metric, float(getattr(records, metric)[max_index]))

model.py

import

torchvision.models

as models

import torch.nn as nn

def check_model_block(model):

for name, child in model.named_children():

print(name)

def print_model_params(model):

pytorch_total_params = sum(p.numel() for p in model.parameters())

print(f'total number of params: {pytorch_total_params:,}')

return pytorch_total_params

def get_trainable_params(model):

print("Params to learn:")

params_to_update = []

for name, param in model.named_parameters():

if param.requires_grad:

print("\t", repr(name))

params_to_update.append(param)

return params_to_update

def create_model(use_hidden_layer, dropout):

model = models.resnet18(pretrained=True)

Uncomment to freeze pre-trained layers

for param in model.parameters():

param.requires_grad = False

in_features = model.fc.in_features

print(f'Input feature dim: {in_features}')

if use_hidden_layer:

model.fc = nn.Sequential(

nn.Dropout(dropout),

nn.Linear(in_features, in_features // 2),

nn.ReLU(),

nn.BatchNorm1d(in_features // 2),

nn.Dropout(dropout),

nn.Linear(in_features // 2, 2)

)

else:

model.fc = nn.Sequential(

nn.Dropout(dropout),

nn.Linear(in_features, 2)

)

print(model)

model = model.cuda()

return model

main.py

import

numpy

as np

import torch

import torch.nn as nn

import torch.optim as optim

from torch.optim import lr_scheduler

from apex import amp

from data_loader import create_dataloaders

from model import get_trainable_params, create_model, print_model_params

from train import train

from utils import parse_and_override_params

import foundations

Fix random seed

torch.manual_seed(0)

np.random.seed(0)

torch.backends.cudnn.deterministic = True

torch.backends.cudnn.benchmark = False

params = foundations.load_parameters()

data_dict = parse_and_override_params(params)

Set job tags to easily spot data in use

foundations.set_tag(f'{data_dict[params["train_data"]]}: {params["train_data"]}')

foundations.set_tag(f'big {params["train_data"]}')

print('Creating datasets')

Get dataloaders

train_dl, val_base_dl, val_augment_dl, display_dl_iter = create_dataloaders(params)

print('Creating loss function')

Loss function

criterion = nn.CrossEntropyLoss()

print('Creating model')

Create model, freeze layers and change last layer

model = create_model(bool(params['use_hidden_layer']), params['dropout'])

_ = print_model_params(model)

params_to_update = get_trainable_params(model)

print('Creating optimizer')

Create optimizer and learning rate schedules

optimizer = optim.Adam(params_to_update, lr=params['max_lr'],

weight_decay=params['weight_decay'])

model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)

Learning rate scheme

if bool(params['use_lr_scheduler']):

step_size_up = int(params['n_epochs'] * len(train_dl) * 0.3)

step_size_down = params['n_epochs'] * len(train_dl) - step_size_up

scheduler = lr_scheduler.OneCycleLR(optimizer, params['max_lr'], total_steps=None,

epochs=params['n_epochs'],

steps_per_epoch=len(train_dl),

pct_start=params['pct_start'], anneal_strategy='cos',

cycle_momentum=False)

else:

scheduler = None

print('Training start..')

Train

train(train_dl, val_base_dl, val_augment_dl, display_dl_iter, model, optimizer,

params['n_epochs'], params['max_lr'], scheduler, criterion,

train_source=params["train_data"])

data_loader.py

from

pathlib

import

Path

import numpy as np

import dlib

import torch

from PIL import Image

from torch.utils.data import Dataset

from torchvision import transforms

from torch.utils.data import DataLoader

from utils import load_and_preprocess_image

def collate_fn(batch):

imgs = [item['image'] for item in batch if item['image'] is not None]

targets = [item['label'] for item in batch if item['image'] is not None]

filenames = [item['filename'] for item in batch if item['image'] is not None]

imgs = torch.stack(imgs)

targets = torch.stack(targets)

return {'image': imgs, 'label': targets, 'filename': filenames}

def get_transforms():

pre_trained_mean, pre_trained_std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]

train_transforms = transforms.Compose([

transforms.RandomHorizontalFlip(),

transforms.RandomAffine(degrees=40, scale=(.9, 1.1), shear=0),

transforms.RandomPerspective(distortion_scale=0.2),

transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),

transforms.ToTensor(),

transforms.RandomErasing(scale=(0.02, 0.16), ratio=(0.3, 1.6)),

transforms.Normalize(mean=pre_trained_mean, std=pre_trained_std),

])

val_transforms = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize(mean=pre_trained_mean, std=pre_trained_std)

])

return train_transforms, val_transforms

class FFDataset(Dataset):

def init (self, filenames, filepath, transform, output_image_size=224,

recompute=False):

self.filenames = filenames

self.transform = transform

self.image_size = output_image_size

self.recompute = recompute

self.cached_path = Path(filepath)

self.cached_path.mkdir(exist_ok=True)

self.face_detector = dlib.get_frontal_face_detector()

def len (self):

return len(self.filenames)

def getitem (self, idx: int):

filename = self.filenames[idx]

image_id = filename.stem

filename = str(filename)

label = 1 if 'fake' in filename.split('/') else 0

preprocessed_filename = self.cached_path / f'processed_{image_id}.npy'

if preprocessed_filename.is_file() and not self.recompute:

image = np.load(preprocessed_filename)

else:

image = load_and_preprocess_image(filename, self.image_size, self.face_detector)

if image is None:

image = []

np.save(preprocessed_filename, image)

if len(image) == 0:

return {'image': None, 'label': None ,'filename': filename}

image = Image.fromarray(image)

image = self.transform(image)

label = torch.tensor(label)

return {'image': image, 'label': label, 'filename': filename}

def create_dataloaders(params):

train_transforms, val_transforms = get_transforms()

train_dl = _create_dataloader(f'/datasets/{params["train_data"]}_deepfake', mode='train',

batch_size=params['batch_size'],

transformations=train_transforms,

sample_ratio=params['sample_ratio'])

val_base_dl = _create_dataloader(f'/datasets/base_deepfake/val', mode='val',

batch_size=params['batch_size'], transformations=val_transforms,

sample_ratio=params['sample_ratio'])

val_augment_dl = _create_dataloader(f'/datasets/augment_deepfake/val', mode='val',

batch_size=params['batch_size'], transformations=val_transforms,

sample_ratio=params['sample_ratio'])

display_file_paths = [f'/datasets/{i}_deepfake/val' for i in ['base', 'augment']]

display_dl_iter = iter(_create_dataloader(display_file_paths, mode='val', batch_size=32,

transformations=val_transforms,

sample_ratio=params['sample_ratio']))

return train_dl, val_base_dl, val_augment_dl, display_dl_iter

def _create_dataloader(file_paths, mode, batch_size, transformations, sample_ratio,

num_workers=80):

if not isinstance(file_paths, list):

file_paths = [file_paths]

filenames = []

for file_path in file_paths:

data_path = Path(file_path)

real_frame_filenames = _find_filenames(data_path / 'real/frames/', '*.png')

fake_frame_filenames = _find_filenames(data_path / 'fake/frames/', '*.png')

filenames += real_frame_filenames

filenames += fake_frame_filenames

assert len(filenames) != 0, f'filenames are empty {filenames}'

np.random.shuffle(filenames)

if mode == 'train':

filenames = filenames[:int(sample_ratio * len(filenames))]

ds = FFDataset(filenames, filepath=f'/datasets/precomputed/', transform=transformations,

recompute=False)

dl = DataLoader(ds, batch_size=batch_size, num_workers=num_workers, shuffle=True,

collate_fn=collate_fn)

print(f"{mode} data: {len(ds)}")

return dl

def _find_filenames(file_dir_path, file_pattern): return

list(file_dir_path.glob(file_pattern))

utils.py

impo

rt

cv2

import torch

import numpy as np

from pathlib import Path

import matplotlib.pyplot as plt

import foundations

def get_boundingbox(face, width, height, scale=1.3, minsize=None):

x1 = face.left()

y1 = face.top()

x2 = face.right()

y2 = face.bottom()

size_bb = int(max(x2 - x1, y2 - y1) * scale)

if minsize:

if size_bb < minsize:

size_bb = minsize

center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2

Check for out of bounds, x-y top left corner

x1 = max(int(center_x - size_bb // 2), 0)

y1 = max(int(center_y - size_bb // 2), 0)

Check for too big bb size for given x, y

size_bb = min(width - x1, size_bb)

size_bb = min(height - y1, size_bb)

return x1, y1, size_bb

def load_and_preprocess_image(image_filename, output_image_size, face_detector):

image = cv2.imread(image_filename)

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

cropped_image = get_face_crop(face_detector, image)

if cropped_image is None:

return None

resized_image = cv2.resize(cropped_image, (output_image_size, output_image_size))

return resized_image

def get_face_crop(face_detector, image):

gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

faces = face_detector(gray, 1)

height, width = image.shape[:2]

if len(faces) == 0:

return None

else:

face = faces[0]

x, y, size = get_boundingbox(face, width, height)

cropped_face = image[y:y + size, x:x + size]

return cropped_face

def visualize_metrics(records, extra_metric, name):

fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(15, 6))

axes[0].plot(list(range(len(records.train_losses))), records.train_losses, label='train')

axes[0].plot(list(range(len(records.train_losses_wo_dropout))),

records.train_losses_wo_dropout, label='train w/o dropout')

axes[0].plot(list(range(len(records.base_val_losses))), records.base_val_losses,

label='base_val')

axes[0].plot(list(range(len(records.augment_val_losses))), records.augment_val_losses,

label='augment_val')

axes[0].set_title('loss')

axes[0].legend()

axes[1].plot(list(range(len(records.train_accs))), records.train_accs, label='train')

axes[1].plot(list(range(len(records.train_accs_wo_dropout))),

records.train_accs_wo_dropout, label='train w/o dropout')

axes[1].plot(list(range(len(records.base_val_accs))), records.base_val_accs,

label='base_val')

axes[1].plot(list(range(len(records.augment_val_accs))), records.augment_val_accs,

label='augment_val')

axes[1].axhline(y=0.5, color='g', ls='--')

axes[1].axhline(y=0.667, color='r', ls='--')

axes[1].set_title('acc')

axes[1].legend()

axes[2].plot(list(range(len(records.train_custom_metrics))), records.train_custom_metrics,

label='train')

axes[2].plot(list(range(len(records.train_custom_metrics_wo_dropout))),

records.train_custom_metrics_wo_dropout, label='train w/o dropout')

axes[2].plot(list(range(len(records.base_val_custom_metrics))),

records.base_val_custom_metrics, label='base_val')

axes[2].plot(list(range(len(records.augment_val_custom_metrics))),

records.augment_val_custom_metrics, label='augment_val')

axes[2].axhline(y=0.5, color='g', ls='--')

axes[2].axhline(y=0.5, color='r', ls='--')

axes[2].set_title(f'{extra_metric. name }')

axes[2].legend()

axes[3].plot(list(range(len(records.lrs))), records.lrs)

_ = axes[3].set_title('lr')

plt.tight_layout()

plt.savefig(name, format='png')

def display_predictions_on_image(model, precomputed_cached_path, val_iter, name):

val

model.eval()

data = next(val_iter)

inputs = data['image']

labels = data['label'].view(-1)

filenames = data['filename']

inputs = inputs.cuda(device=0)

labels = labels.cuda(device=0)

with torch.no_grad():

outputs = model(inputs)

outputs_predicbilty = torch.nn.functional.softmax(outputs, dim=1)

assert len(outputs_predicbilty) == len(outputs), f'proba shape:

{len(outputs_predicbilty)}'

_, predicted = torch.max(outputs.data, 1)

nrows = int(len(inputs) ** 0.5)

ncols = int(np.ceil(len(inputs) / nrows))

fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(30, 40))

step = 0

for i in range(nrows):

for j in range(ncols):

image_id = Path(filenames[step]).stem

face_crop = precomputed_cached_path / f'processed_{image_id}.npy'

face_crop = np.load(face_crop)

axes[i,

j].set_title(f'{outputs_predicbilty[step][0]:.2f},{outputs_predicbilty[step][1]:.2f}|{predicted

[step]}|{labels[step]}')

axes[i, j].imshow(face_crop)

step += 1

if step == len(inputs):

break

plt.title('predicted_proba real, fake | prediction | label (0: real 1: fake)')

plt.tight_layout()

plt.savefig(name, format='png')

def parse_and_override_params(params):

data_dict = {'base': 0, 'augment': 1, 'both': 2}

parsed_params = params.copy()

parsed_params['train_data'] = data_dict[params['train_data']]

foundations.log_params(parsed_params)

return data_dict

Thesis Title: Deep fakes Generation Using LSTM based Generative Adversarial Networks.

Asst.Prof.Dr. Elbrus Imanov

