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Abstract 
 

Deep Fakes Generation LSTM based Generative 

Adversarial Networks 

 

Saba Elgammudi 

MA, Department of Computer Engineering 

December, 2021, 60 pages 

 

 

Deep learning has shown promising outcomes in a variety of difficult task categories. Recent advances 

in deep learning, on the other hand, have been used to develop Software that puts people's privacy and 

national security at risk. One of these is deep fakes, which makes phony images and videos that are 

undetectable as forgeries. Humans. Fake speeches by international leaders can put the world's stability 

and peace in jeopardy. Apart from dangerous applications, deep fakes is used also for good, its used in 

ex: post production and in translating in films. The scenario was employed in the most recent elections 

in India, allowing politicians' statements to be translated into a variety of Indian languages. 

Traditionally, this job was done with computer graphics and 3D models. However, developments of AI 

and ML and computer vision, particularly the GAN, are displacing early method in favor of DL methods. 

This study aims to use deep neural networks to create modified faces in photos and videos. 

 

This thesis for master’s degree is proposes for generating a full complete video sequence from a source 

image and a destination video. NVIDIA's work on vidTOvid few shots vidTOvid, so they map video 

from source domains to target domains by learning, encouraged us. This paper, I offer a united models 

based on long short term memory on GA networks, as well as a movement module that generates dense 

motion using a keypoint detector. 

 

To be able to create a real looking video, the network that generates uses a cover to mix the way it 

appears retrieved taking from video source also includes the movement from the video target. The 

instruction is completed from beginning to end, and the main concepts are learned independently. The 

recently released FaceForensics++ and VoxCeleb datasets are used to demonstrate the evaluation. 



Our work's key contribution is the development of innovative neural networks for creating deepfake 

images and movies. In addition, our primary goal is to provide datasets for deepfake detection problems. 

Key Words: gan, deep fakes, ml, ai, lstm, deep learning 
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CHAPTER 1  

INTRODUCTION 

DL (deep learning) and computer vision in the recent years have progressed. It has 

become an inextricable everyone’s life and is utilized practically all around the world, 

in cell phones and computers. In medicine deep learning technologies and dependencies 

will be used and installed in the coming decade. Toolkits and software’s have standard 

components. Self-driving cars, for example, are a result of recent technological 

advancements. Detecting objects, face recognitions and character recognition is not 

possible without automobiles. DL (deep learning) is not possible without it. The goal of 

deep learning approaches is to learn high-level features from the data. Without relying 

on human-crafted data and mapping inputs to appropriate outputs features. The 

methods or processes used to extract the features might differ. DL (deep learning) 

techniques are examples of this type of technology. Emerged in the last ten years. 

CNNs and long short term memory on GA networks aid extracted features and were 

shown to solve real-world issues. Such as video and image classification, recognizing 

objects and attitude analysis, as well as segmentation empirically. Deep learning 

includes two important tasks: image categorization and recognition. Classification is 

the process of categorizing items into different groups, whereas recognition is the 

process of accurately identifying an object in an image. Object detection is a relatively 

new advancement that employs to recognize instances of items such as faces, cars, and 



Roads, image analysis, machine learning, and machine vision algorithms are used. 

Deep fake operations now include a significant amount of face detection and 

recognition. 

Face detection locates a face in an image, whereas facial recognition establishes the 

face's identity. Because of the differences in the features, such as facial hair, 

orientation, and location of a face these operations can be rather difficult. Hence, In the 

realm of deep learning, it is a major topic of study. Face detection and recognition are 

also employed in a variety of real-world applications, including Identity verification 

and cell phones are two examples. Methods for detecting faces include feature based, 

probabilistic, probabilistic methods [47]. Template matching and based on look. Deep 

learning technologies such as OpenCV are now widely used. Among the most 

prominent approaches for achieving these duties are the Dlib networks. These networks 

have been trained on millions of faces, resulting in improved results. CNNs are used in 

deep learning take information from photos and mapped to words. Corresponding 

outputs. The receptive field is sized of the convolution filters, and the filter taps are 

parameters acquired by a backpropagation procedure [46]. CNNs can include millions 

of parameters and are interspersed with nonlinear activation functions and 

normalization procedures. CNNs are used as a backbone in face detection and 

identification systems. An example of a CNN network for face recognition shown is 

Figure 1. 



 
 

 

Figure 1: Example of CNN used for facial recognition 

[53]. 

 

 

 

 

1.2 Types of Deepfakes: 

 

The creation of software that constitutes a public threat has been helped by 

technological advancements in DL (deep learning). Deep fake is one of the newest 

dangerous threats they've faced [23]. The algorithms of DL can make fake faces of 

people that are difficult to distinguish from the real ones it also can make videos and 

images. Deep fake first video led to the moniker deepfakes. Deepfakes can be made in 

a variety of ways. Deepfakes were first created using computer graphics techniques, 

but deep learning approaches have recently taken over [24]. 

GANs were used to construct the first deep fake video, used a decoding and encoding 

networks. There are many methods for creating altered photos and films have since 



Emerged [18]. Face manipulations are divided into two categories: face swap and 

recreation of facial expressions. Face swap is the process of moving the source person 

facial details and expression to a target person, whereas facial reenactment is the 

process of moving just the emotions and pose from the source person to the target 

person. Figure 2 is an example of Face swap, while Figure 3 is an example of facial 

reenactment. 

 
 

 

Figure 2: Face swap example [52]. 
 

 

 
 

Figure 3: Facial reenactment example [51]. 



Both sorts of fakes are depicted in Figures 2 and 3. Face swap is seen in Figure 2. To 

make a fake, the target people’s face is changed with the source person’s face, as shown 

in Figure 2. Figure 3 is a scenario of facial reenactment. The emotion of the source 

video is swapped with the emotion of the target image to create a fake image, as seen in 

Figure 3. 

As a result, various deep learning approaches to detect the presence of these 

technologies have evolved to fix the issue of deep fake. 

Facebook and Microsoft recently established a competition to detect deep fake to boost 

the detecting and addressing deep fake’s research, citing worries that these films could 

endanger the public by distributing false information or assertions [48]. 

Deep Learning networks needs a lot of data to detect deep fakes. A lot of datasets are 

available for the public, including Facebook's Face Forensics++ and Deep Fake 

Detection Challenge datasets. However, fakes were constructed for all of those datasets 

using the Face2Face [41], Face swap, Neural Textures [42] and Deep Fakes 

approaches. Deep Fakes [7] and Face swap [8] are ways that swap the source image 

face with the target image face. Face swapping is based on graphics, whereas Deep 

Fakes is based on GANs [15]. 

The Neural Textures and Face2face methods copy the target image's facial expressions 

to the source picture [2]. The FacetoFace approach uses blend shape coefficients to 

transfer source expression to the target video, whereas GANs is used by the Neural 

Textures 



Which uses to learn the facials of the target person [5]. The techniques described above 

do not have generalization capacity, which means they cannot be used to previously 

unseen photos or videos. With a source image and a target video, our model attempts to 

transfer the source person's facial expressions to the target person's image. The major 

goal of this thesis is to create datasets that will be used to build robust detection models 

[19]. 



CHAPTER 2 

BACKGROUND 

 

 

2.1 (CNNs) Convolutional Neural Networks: 

 

One algorithm of deep learning algorithms is convolutional Neural Networks (CNNs) 

they accept visual inputs and learn for the best output learning tasks utilizing various 

operations. 

Multiple filters move over the image and apply convolution neural network to each part 

of the image in a convolution layer. Each filter extracts distinct aspects of the image, 

such as corners, color, and pixels data. The receptive field is the size of the filter, 

Training algorithm is used to learn the filter values, which are referred to as parameters. 

The spatial size of the maps output from the CNN layer output is reduced by a pooling 

layer. 

 

 

 
For obtaining the dominating characteristics from the convolved output, pooling layers 

can be effective. There is two most common pooling which are max pooling and 

average pooling. The outputs of the average pooling are average of all the values under 



That window, whereas the outputs of the max pooling are maximum pixel values from 

the section of the image beneath that window. Introducing non-linearity in the output, 

an activation layer is usually added after the convolution layer. Tanh, sigmoid, ReLU 

[49], and other general activation functions are utilized. The activation functions aid in 

the learning of the input image's high-level representations [19]. 

In many activities, the ultimate layer is a fully connected layer. It reduces a multi- 

dimensional representation to an n-dimensional representation. 

During training, the masses of the filter values and fully connected layer are updated by 

maximizing the loss between the ground truth and predicted values [36]. Figure 4 

depicts a typical CNN. 

 

 

 
Figure 4: Convolutional Neural Network example [50]. 

 

2.2 (GANs)Generative Adversarial Networks: 



 

 

 

Goodfellow et al [38]. defined GANs as a type of CNN. The network functions in a 

similar way to CNNs, it does, however, have mainly two sub-networks: a generator 

generates new other examples and a discriminator that determines whether input data is 

real or fake. GANs are classified as unsupervised learning algorithms since they do not 

require humans to manually identify training images [40]. 

GANs are generative models that produce new data instances which is similar to the 

input. GANs, an example of that is, can generate lifelike faces that is imaginary and do 

not represent any living person. Both the generator and discriminator are trained in an 

adversarial manner up to the time the discriminator is deceived, indicating that the 

generator can generate data that appears realistic. The generator generates an image 

from random noise, which is subsequently sent to the discriminator. Then the 

discriminator accepts all the real and false images (produced by the generator) as input 

and outputs a probability is always between 0 and 1, with 0 indicating the fake false and 

1 indicating the real true. As a result, generative models attempt to learn the allocation 

of classes in the GNA, whereas discriminative models attempt to learn the distinctions 

between actual and fake images [39]. Figure 5 depicts a normal GAN network. 



 
 

 
 

Figure 5: A normal example of Generative Adversarial Network [45] 

 

2.3 (LSTM) Long short term memory: 

 

Recurrent neural networks are different from feed forward neural networks in that they 

are artificial neural networks. Recurrent neural networks can receive one or more inputs 

and produce outputs that are influenced by both current and previous inputs and 

outputs. As a result, even if the inputs are same, the output may alter due to differences 

in the old inputs that effects output all time. The (LSTM) is a one of RNN forms that 

can render long sequences. When time lags exceed 5-10 steps [25], standard RNNs 

sometimes fail to remember so it wasn’t affective in long sequences, however LSTMs 

have been found to be effective in long sequences even longer than 100 steps. RNNs 

have two major flaws: vanishing gradients and ballooning gradients. The uniquely 

developed architecture of LSTMs overcomes these problems. The LSTM layer is made 



Up of memory blocks stacks that are coupled in a recursively [26]. Each memory stack 

consists of a recursively connected memory cell and contains three more gates: an 

input, an output, and a forget gates, all of which provide the cell with write operation, 

read operation, and reset operation. These gates allow each net to interact with the cells. 

Speech recognition, video captioning, and machine translation are some of the uses of 

LSTMs. Figures 6 and 7 depict a typical RNN [22] and LSTM [20]. 

 

 

 
Figure 6: A simple example of Recurrent Neural Networks [44]. 



 

 
 

 
 

Figure 7: Long Short Term Memory Network Example 

[14]. 

 

 

 

 

2.4 Flow net and Optical Flow: 

 

Optical flow is a technique for calculating picture intensity motion. It essentially 

mentions the pattern of motion of picture objects between successive frames. Images 

simply have spatial organization, whereas videos have both temporal and spatial 

structure. As a result, visual flow aids in temporal comprehension. CNNs has been 

proved to be effective in a multiple application, including optical flow estimates 

[26]. 

Optical flow aids video production using GANs and increases classification 



Performance in video classification applications. Smoothing is used in GANs to make 

realistic videos so that they can produce cohesive outputs. Philipp Fischer has provided 

Figure 8 as an example of Flow net [16] [43]. 

 

 

 

Figure 8: Optical flow network example [43]. 



CHAPTER 3 

 

Other work 
 

 

3.1 Face swap: 

 

Face swap is a technique in which the target face of a person is superimposed on the 

source face of a person to generate a video of the target person performing or speaking 

in a manner as close to the source person’s face as feasible [12]. 

Because of their high quality, they have grown in popularity. The majority of them 

were created utilizing deep learning techniques such as GANs. Deep fake first video 

was created by a user on internet who went by the handle deep fakes [9], hence the 

name. Nguyen et al [1]. describe different generation and detection strategies that 

have been proposed. To make deep fakes, two encoder and decoder pairs are 

required, with each picture pair being trained separately using the same encoder and 

different decoder networks. To create a fake, it is separated to different class’s class 

A uses a normal encoder and decoded with a class B decoder during testing. Many 

Face swap GANs appeared later [18], however they always utilized extra inputs like 

dual face masks and facial landmark heat maps. Figure 9 is a common Face swap 

GAN. 



 
 

 

Figure 9: a common Face swap GAN [1]. 

 

3.2 Video2Video Synthesis: 

 

Wang et al [27] proposed a video-to-video synthesis approach in which an adversarial 

learning framework is used to learn a mapping between the input video and the output 

realistic fake video. Their model is an outgrowth of their prior image-to-image [27] 

translation work, in which they generated high-resolution images using local and global 

generators [37]. They employ the pix2pixHD [37] generating network in the vid2vid 

network. 

For generating high-resolution realistic movies, they divide the generator into two main 

sub networks: some global and local generators. They first train the global generator, 

then the local generator, and eventually all of the networks are fine-tuned. They employ 

this method to gather both global and local data. Multiscale discriminators are also used 



To distinguish between high resolution actual and synthetic images. They employ 

three separate discriminators, each with a different receptive field. In the vid2vid 

network, Wang et al used two types of discriminators, an image and video 

discriminator. The image discriminator's goal is to ensure that the generated frame 

looks like a ground truth frame, whereas the video discriminator's goal is to make sure 

that output generated frames seem like solid truth frames. However, this network has a 

restriction in that we cannot define the target images and it consumes a lot of data. It 

also lacks generalization capabilities. The pix2pixHD [21] network is vid2vid's 

backbone network, an example in Figure 10. 

 

 

Figure 10: an example of network architecture of pix2pixHD [37]. 

 

3.3 Few shot Video2Video Synthesis: 

 

To solve the constraints of vid2vid, the creator of vid2vid synthesis advised a few shot 

vid2vid architecture. The model, for starters, is data-hungry. For training, a large 

number of target photos are necessary. Second, the vid2vid network's generalization 



Power is limited, as it haves a hard time to generalize to unanticipated images. The 

main difference between vid2vid and few shot vid2vid is shown in Figure 11. The few 

shot vid2vid network accepts a target images together with the input video as input, 

whereas the vid2vid [13] network only accepts one. The few shot vid2vid network uses 

a weight generation technique to dynamically customize the vid2vid mechanism based 

on the few target images [17]. 

 
 

 

 
Figure 11: Main difference between vid2vid and few shot vid2vid [29]. 

 

Park et al [30]. Presented an adaptive spade network, which is shown in Figure 12, 

to achieve a few-shot [31] generalization capacity in their model. The goal of the 

vid2vid synthesis is to discover a scanning that can convert input videos into 

realistic output videos. Few shot vid2vid, on the other hand, has not been trained to 

generate videos from unknown domains [5]. Unlike vid2vid, it requires two inputs 

to create a video. 



It accepts a second input in addition to the input video, which contains of a few images 

of the target image that are made available at test time. For the weight generalization 

mechanism, these examples are taken dynamically. When the example and target 

photos are comparable in most locations, they used warping as well. The Face 

Forensics++ dataset [10] is used to train both vid2vid and few shot vid2vid [11]. 

 

 
 

 

 
Figure 12: The network consist SPADE [30]. 

 

3.4 Image Animation First order model: 

 

By decoupling the existing and movement information via self-controlled training, 

Siarohin et al [33]. developed a unique architecture. Their method is based on picture 

animation, which is the process of creating a video sequence from a source image and a 

driving video. Their study is motivated by the desire to avoid employing pre-trained 

models for exact point estimate, such as facial structure identification. As a result, 



Monkey net [32] uses a movement estimation module to recognize key points based on 

a self-controlled training strategy to alleviate the above restriction. Figure 13 depicts 

the monkey net network architecture, which established a framework for movement-

driven picture animation by integrating the movement of a playing video with the 

appearance of a source image to make videos. An exact point detector network for 

removing object key points, a dense movement network for creating heavy heat maps, 

and a movement transfer network for integrating the showing of the source image with 

the motion of a moving video are the three primary networks in their model. Because 

of the large pose variations, monkey net has a severe flaw: poor generation quality [6]. 

They employ the same monkey network for motion estimation in the first order model 

study, but they add an additional local harmonic transformation to overcome the 

restrictions of the net [3]. 

An image as the source and frame from a moving video are also used as input in the 

first order model. 



 

 
 

 

 

Figure: 13 A monkey net example [32] 

 

Based on the heavy migration of faces from the driving frame to the source image, the 

key point detector determines sparse key points. The generator takes input which is the 

source image and generates the target image based on driving frame expressions using 

heavy motion and the clogging map as conditional input. They use a reconstruction loss 

and an equivariance loss to train their network from start to finish. [4] The equivariance 

constraint is used to accurately locate sparse key points. 

The VoxCeleb [34] dataset is used to train and assess their network. The following 

are the loss functions: 

 



Where gt is ground truth image and G(x) is generated image 
 

 

 

 

 
Where g(xk,yk) is a thin walled linear distortion vector transformation, (xk,yk) 

are monuments, and K is the total number of monuments. 

 

 
 

Figure 14: General idea of first order model for image animation approach [35]. 



CHAPTER 4 

 

Algorithms  

 

4.1 Uploading the dataset: 

 

By making edited movies of politicians and actors/actresses, recent advances in 

generating of fake image and video have raised worries in society. Since a result, if the 

current trend continues, it may become increasingly difficult to trust digital content, as 

the transmission of misleading information and fake news may become routine. Faces, 

as we all know, play a crucial role in communicating a message. As a result, deep fakes 

are becoming a major source of concern today's society. 

Face manipulation can be divided into two types, as stated in Section 2, face expression 

manipulation and face identity modification. Face2Face, Deep fakes, Face swap, and 

Neural Textures are among the face alteration methods used in the FaceForesiscs++ 

dataset. 

ALL_DATASETS = ['original', 'DeepFakeDetection_original', 

'Deepfakes','DeepFakeDetection','Face2Face', 'FaceSwap','NeuralTextures'] 

 

 
 



There are 6 types of methods which are used for creating face forensics datasets: 

 

4.1.1 Face swap: 

 

It's a graphics based method for transferring the source image's face to the target video. 

This is accomplished by extracting facial features from the source image, fitting the 3D 

model with blend shapes, and projecting the result on the target image. To create a 

realistic-looking false image, image and color correction are done to integrate the 

morphing face into the source image. This method is performed for each frame in order 

to create a video. 

4.1.2 Deep Fakes: 

 

Redditor used an encoder-decoder network to generate the first deep fake video. Face 

swap’s GitHub and Fakeapp's implementations are both available. Two encoder- 

decoder networks are used in the process. In the phase of training, the two networks use 

the same encoder but distinct decoders. Figure 16 shows how the face of class A 

employs encoder from A and decoder from B weights to construct fakes during the 

testing process. 



 
 

 

 

 

4.1.3 Face-to-face: 

 

The Face2Face approach is part of the facial renewal category, and it seeks to transfer 

the source image's facial expressions to the target image. They employ a 3D model with 

blend shape coefficients to transfer face features and details from one image to another 

in this method. They use the first frame to create a fake emotion and the other frame 

key points to create a temporary facial identity. 

4.1.4 Neural Texture: 

 

This textures are also part of the face renewal category, as it is based on the Neural 

Textures recall approach described in the work. Using reconstruction loss and 

adversarial loss, they use GANs to generate fakes. 

4.1.5 Post the process of videos: 

 

The videos after the normal process are post processed to improve video quality by 

compressing them, which is commonly used by social media sites. In this study, a 

quantization is used to create high quality videos and a rate of 40 is used to create low- 

quality videos. 



 

 

 

4.2 Model: 
 

After uploading the dataset the training model comes in using torch as a CNN method 

and using torchvision.models as models after importing we start with checking the 

models block then printing the models parameters and getting the trained parameters 

finishing with creating the model when creating the model we use resnet18 as the 

model then going to the hidden layer the used model will have torch.Sequential, 

torch.Dropout, torch.Linear, torch.ReLU and torch.BatchNorm1d 

 

4.3 Training:  

 

In the training process numpy, tourch, apex, tqdm is required a Records class was 

created having attributes writing and returning and getting in the training function 

the loss and accs of the training is calculated. For full code check Appendix1. 



  

   As showing in the matlab diagram the loss function for the generator and 

discriminator 

                   
 

  In this chart it is showing the accuracy of detecting the fake and real images  

 

  Once the generator gets better the discriminator preform worse because of the  

 

  similarity that the discriminator is not able to detect it. 

                
 



4.4 Compare and Contrast 

 

   

The results of this study demonstrate that VGG-19 can be a suitable choice not only for 

partial face images, but also for full-face images confirming the findings of [57]. The better 

performance of VGG-19 is because it is pretrained on a wide variety of objects. AP was used 

as an aggregation function to summarize the precision–recall curve into a single value that 

represents the average of all precisions. VGG-19, even though it had the highest accuracy, 

had the lowest AP of 95% in comparison to all other analyzed models. The DenseNet 

architecture on the original dataset and grayscale dataset had a closer performance to VGG-

19, with 94% accuracy. Results from DenseNET architecture demonstrates that gray 

channel-based analysis does not have a huge impact on model accuracy level in classifying 

images into the two categories of real and fake. The DenseNet architecture, even though was 

second best in terms of performance, achieved an AP of 99% on both augmented and 

grayscale datasets, which is slightly in contrast to the results found in [59] in terms of 

precision rate; however, it aligns with claims regarding detection time. Custom CNN 

architecture had the lowest accuracy level (89%). The second-highest AP score after 

DenseNet was the Custom CNN model. Augmented input reduced model performance and 

accuracy level on both DenseNET and Custom CNN by 5–22%. However, the Custom CNN 

had a better performance on augmented data in comparison to the DenseNet architecture. 

 
 



CHAPTER 5 

 

Conclusion 
 

 

5.1 Discussion: 

 

For generative models, creating video sequences has proven to be a difficult task. 

 

Many previous works produced realistic videos, but they lacked generalization to 

unanticipated domains and were not temporally coherent. A unique architecture 

consisting of an LSTM-based generator, a discriminator, and a dense motion network 

was proposed. By merging the appearance of the source picture with the motion of the 

driving video, we show that our model can generate realistic films given a single image 

and a target video. We also demonstrated that our methodology applies to previously 

unknown videos. 

5.2 Future work: 

 

This thesis' main focus is on creating datasets for deepfake detection issues. Our 

algorithm creates realistic videos using a face source image and target video frame 

facial emotions. 

 Train and test the network on other domains. These are some prospective 

extensions of our study. Some previous video generating works, such as vid2vid, 

few-show vid2vid, and first order model for picture animation, produced films in 



a variety of domains, including faces, human poses, and semantic segmentation 

tasks. For making realistic films, we can extend our network to train and test on 

human pose data. 

 Utilizing the generator network proposed by pix2pixHD, we can make high- 

resolution videos using local and global generators. They used both local and 

global generators to create graphics with a resolution of 2K. 

 Assess created videos by submitting both original and generated videos to 

Amazon Mechanical Turk, where human reviewers will assess them. 

 We'd like to lay out a psychophysical study that evaluates the fairness of various 

deep fake techniques for evaluation. Using our model, first order model, and few 

shot vid2vid model, we would choose 50 original videos and their generated 

videos at random. 
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Appendix1 

 

train.py 
 

import 

torch 

from  tqdm  import  tqdm 

from  apex  import  amp 

import numpy as np 

import os 

 

from  utils  import  visualize_metrics,  display_predictions_on_image 

from  sklearn.metrics  import  roc_auc_score  as  extra_metric 

 

import foundations 

 

class Records: 

def     init   (self): 

self.train_losses,  self.train_losses_wo_dropout,  self.base_val_losses, 

self.augment_val_losses  =  [],  [],  [],  [] 

self.train_accs,  self.train_accs_wo_dropout,  self.base_val_accs,  self.augment_val_accs 

= [], [], [], [] 

self.train_custom_metrics,  self.train_custom_metrics_wo_dropout, 

self.base_val_custom_metrics,  self.augment_val_custom_metrics  =  [],  [],  [],  [] 

self.lrs = [] 

 

def  write_to_records(self,  **kwargs): 

assert  len(set(kwargs.keys())  -  set(self.   dir   ()))  ==  0,  'invalid  arguments!' 

for  k,  v  in  kwargs.items(): 

setattr(self, k, v) 

 

def  return_attributes(self): 

attributes  =  [i  for  i  in  self.   dir   ()  if  not  (i.startswith('   ')  and 

i.endswith('   ')  or  i  in  ('write_to_records',  'return_attributes', 

 

'get_metrics'))] 

return  attributes 

 

def  get_metrics(self): 



 

return  ['train_accs_wo_dropout',  'base_val_accs',  'augment_val_accs', 

'base_val_custom_metrics',  'augment_val_custom_metrics'] 

 

def  train_one_epoch(epoch,  model,  train_dl,  max_lr,  optimizer,  criterion,  scheduler,  records): 

model.train() 

train_loss  =  0 

train_loss_eval  =  0 

train_tk  =  tqdm(train_dl,  total=int(len(train_dl)),  desc='Train  Epoch') 

 

optimizer.zero_grad() 

total  =  0 

correct_count  =  0 

correct_count_eval  =  0 

 

for  step,  data  in  enumerate(train_tk): 

model.train() 

inputs  =  data['image'] 

labels  =  data['label'].view(-1) 

 

inputs  =  inputs.cuda(device=0) 

labels  =  labels.cuda(device=0) 

 

optimizer.zero_grad() 

with  torch.set_grad_enabled(True): 

outputs  =  model(inputs) 

 

_,  predicted  =  torch.max(outputs.data,  1) 

 

total += labels.size(0) 

 

correct_count  +=  (predicted  ==  labels).sum().item() 

 

loss  =  criterion(outputs,  labels) 

with  amp.scale_loss(loss,  optimizer)  as  scaled_loss: 

scaled_loss.backward() 

# loss.backward() 

optimizer.step() 

if  scheduler  is  not  None: 

records.lrs  +=  scheduler.get_lr() 

scheduler.step() 

else: 

records.lrs.append(max_lr) 



 
 

train_loss  +=  loss.item() 

train_tk.set_postfix(loss=train_loss  /  (step  +  1),  acc=correct_count  /  total) 

 

#  eval  with  dropout  turned  off 

model.eval() 

with  torch.no_grad(): 

outputs_eval  =  model(inputs) 

 

_,  predicted_eval  =  torch.max(outputs_eval.data,  1) 

 

correct_count_eval  +=  (predicted_eval  ==  labels).sum().item() 

 

loss_eval  =  criterion(outputs_eval,  labels) 

 

train_loss_eval  +=  loss_eval.item() 

 

records.train_losses_wo_dropout.append(train_loss_eval  /  (step  +  1)) 

records.train_accs_wo_dropout.append(correct_count_eval  /  total) 

 

records.train_losses.append(train_loss  /  (step  +  1)) 

records.train_accs.append(correct_count  /  total) 

 

print(f'Epoch  {epoch}:  train  loss={records.train_losses[-1]:.4f}  |  train 

acc={records.train_accs[-1]:.4f}') 

 

print(f'Epoch  {epoch}:  eval_  loss={records.train_losses_wo_dropout[-1]:.4f}  |  train 

acc={records.train_accs_wo_dropout[-1]:.4f}') 

 

def  validate(model,  val_dl,  criterion,  records,  data_name): 

#  val 

model.eval() 

val_loss  =  0 

correct_count  =  0 

total  =  0 

 

all_labels  =  [] 

all_predictions  =  [] 

 

for  data  in  val_dl: 

inputs  =  data['image'] 

labels  =  data['label'].view(-1) 



 
 

inputs  =  inputs.cuda(device=0)    #  .type() 

labels  =  labels.cuda(device=0) 

 

with  torch.no_grad(): 

outputs  =  model(inputs) 

_,  predicted  =  torch.max(outputs.data,  1) 

 

total += labels.size(0) 

correct_count  +=  (predicted  ==  labels).sum().item() 

val_loss  +=  criterion(outputs,  labels) 

 

all_labels.append(labels.cpu().numpy()) 

all_predictions.append(predicted.cpu().numpy()) 

 

all_labels  =  np.concatenate(all_labels,  axis=0) 

all_predictions  =  np.concatenate(all_predictions,  axis=0) 

extra_score  =  extra_metric(all_labels,  all_predictions) 

 

if  data_name  ==  'base': 

records.base_val_losses.append(val_loss  /  len(val_dl)) 

records.base_val_accs.append(correct_count  /  total) 

records.base_val_custom_metrics.append(extra_score) 

print(f'\t  base  val  loss={records.base_val_losses[-1]:.4f}  |  base  val 

acc={records.base_val_accs[-1]:.4f}  |  ' 

f'base  val  {extra_metric.   name   }={records.base_val_custom_metrics[-1]:.4f}') 

 

else: 

assert  data_name  ==  'augment',  f'specified  data  type  is  unknown  {data_name}' 

records.augment_val_losses.append(val_loss  /  len(val_dl)) 

records.augment_val_accs.append(correct_count  /  total) 

records.augment_val_custom_metrics.append(extra_score) 

print(f'\t  augment  val  loss={records.augment_val_losses[-1]:.4f}  |    augment  val 

acc={records.augment_val_accs[-1]:.4f}  |  ' 

f'augment  val  {extra_metric.   name   }={records.augment_val_custom_metrics[- 

1]:.4f}\n') 

 

def  train(train_dl,  val_base_dl,  val_augment_dl,  display_dl_iter,  model,  optimizer,  n_epochs, 

max_lr,  scheduler,  criterion,  train_source): 

records  =  Records() 

best_metric  =  0. 



 

os.makedirs('checkpoints',  exist_ok=True) 

 

for  epoch  in  range(n_epochs): 

train_one_epoch(epoch,  model,  train_dl,  max_lr,  optimizer,  criterion,  scheduler, 

records) 

validate(model,  val_base_dl,  criterion,  records,  data_name='base') 

validate(model,  val_augment_dl,  criterion,  records,  data_name='augment') 

 

if  train_source  ==  'both': 

selection_metric  =  [getattr(records,  'base_val_accs')[-1],  getattr(records, 

'augment_val_accs')[-1]] 

selection_metric  =  np.mean(selection_metric) 

 

else: 

selection_metric  =  getattr(records,  f"{train_source}_val_accs")[-1] 

 

if  selection_metric  >=  best_metric: 

print(f'>>>  Saving  best  model  metric={selection_metric:.4f}  compared  to  previous 

best  {best_metric:.4f}') 

checkpoint  =  {'model':  model, 

'state_dict':  model.state_dict(), 

'optimizer':  optimizer.state_dict()} 

 

torch.save(checkpoint,  'checkpoints/best_model.pth') 

foundations.save_artifact('checkpoints/best_model.pth', 

key='pretrained_model_checkpoint') 

 

display_filename  =  f'{epoch}_display.png' 

display_predictions_on_image(model,  val_base_dl.dataset.cached_path,  display_dl_iter, 

name=display_filename) 

 

#  Save  eyeball  plot  to  Atlas  GUI 

foundations.save_artifact(display_filename,  key=f'{epoch}_display') 

 

#  Save  metrics  plot 

visualize_metrics(records,  extra_metric=extra_metric,  name='metrics.png') 

 

#  Save  metrics  plot  to  Atlas  GUI 

foundations.save_artifact('metrics.png',  key='metrics_plot') 

 

#  Log  metrics  to  GUI 

if  train_source  ==  'both': 

avg_metric  =  [getattr(records,  'base_val_accs'),  getattr(records,  'augment_val_accs')] 



 

avg_metric  =  np.mean(avg_metric,  axis=0) 

max_index  =  np.argmax(avg_metric) 

 

else: 

max_index  =  np.argmax(getattr(records,  f'{train_source}_val_accs')) 

 

useful_metrics  =  records.get_metrics() 

for  metric  in  useful_metrics: 

foundations.log_metric(metric,  float(getattr(records,  metric)[max_index])) 

 

 

 

model.py 
 

 

 
import 

torchvision.models 

as models 

import torch.nn as nn 

 

def  check_model_block(model): 

for  name,  child  in  model.named_children(): 

print(name) 

 

def  print_model_params(model): 

pytorch_total_params  =  sum(p.numel()  for  p  in  model.parameters()) 

print(f'total  number  of  params:  {pytorch_total_params:,}') 

return  pytorch_total_params 

 

def  get_trainable_params(model): 

print("Params  to  learn:") 

params_to_update  =  [] 

for  name,  param  in  model.named_parameters(): 

if  param.requires_grad: 

print("\t",  repr(name)) 

params_to_update.append(param) 

 

return params_to_update 



 

def  create_model(use_hidden_layer,  dropout): 

model  =  models.resnet18(pretrained=True) 

 

#  Uncomment  to  freeze  pre-trained  layers 

#  for  param  in  model.parameters(): 

# param.requires_grad  =  False 

 

in_features  =  model.fc.in_features 

print(f'Input  feature  dim:  {in_features}') 

 

if  use_hidden_layer: 

model.fc  =  nn.Sequential( 

nn.Dropout(dropout), 

nn.Linear(in_features,  in_features  //  2), 

nn.ReLU(), 

nn.BatchNorm1d(in_features  //  2), 

nn.Dropout(dropout), 

nn.Linear(in_features  //  2,  2) 

) 

 

else: 

model.fc  =  nn.Sequential( 

nn.Dropout(dropout), 

nn.Linear(in_features,  2) 

) 

 

print(model) 

 

model  =  model.cuda() 

return  model 

 

 

 

main.py 
 

 

 
import 

numpy 

as np 

import torch 

import torch.nn as nn 

import  torch.optim  as  optim 

from  torch.optim  import  lr_scheduler 



 

from  apex  import  amp 

 

from  data_loader  import  create_dataloaders 

from  model  import  get_trainable_params,  create_model,  print_model_params 

from  train  import  train 

from  utils  import  parse_and_override_params 

 

import foundations 

 

#  Fix  random  seed 

torch.manual_seed(0) 

np.random.seed(0) 

torch.backends.cudnn.deterministic  =  True 

torch.backends.cudnn.benchmark  =  False 

 

params  =  foundations.load_parameters() 

 

data_dict  =  parse_and_override_params(params) 

 

#  Set  job  tags  to  easily  spot  data  in  use 

foundations.set_tag(f'{data_dict[params["train_data"]]}:  {params["train_data"]}') 

#  foundations.set_tag(f'big  {params["train_data"]}') 

 

print('Creating  datasets') 

# Get dataloaders 

train_dl,  val_base_dl,  val_augment_dl,  display_dl_iter  =  create_dataloaders(params) 

 

print('Creating  loss  function') 

# Loss function 

criterion  =  nn.CrossEntropyLoss() 

 

print('Creating  model') 

#  Create  model,  freeze  layers  and  change  last  layer 

model  =  create_model(bool(params['use_hidden_layer']),  params['dropout']) 

_  =  print_model_params(model) 

params_to_update  =  get_trainable_params(model) 

 

print('Creating  optimizer') 

#  Create  optimizer  and  learning  rate  schedules 

optimizer  =  optim.Adam(params_to_update,  lr=params['max_lr'], 

weight_decay=params['weight_decay']) 

model,  optimizer  =  amp.initialize(model,  optimizer,  opt_level='O1',  verbosity=0) 



 
 

# Learning rate scheme 

if  bool(params['use_lr_scheduler']): 

step_size_up  =  int(params['n_epochs']  *  len(train_dl)  *  0.3) 

step_size_down  =  params['n_epochs']  *  len(train_dl)  -  step_size_up 

scheduler  =  lr_scheduler.OneCycleLR(optimizer,  params['max_lr'],  total_steps=None, 

epochs=params['n_epochs'], 

steps_per_epoch=len(train_dl), 

pct_start=params['pct_start'],  anneal_strategy='cos', 

cycle_momentum=False) 

else: 

scheduler  =  None 

 

print('Training  start..') 

# Train 

train(train_dl,  val_base_dl,  val_augment_dl,  display_dl_iter,  model,  optimizer, 

params['n_epochs'],  params['max_lr'],  scheduler,  criterion, 

train_source=params["train_data"]) 

 

 

 

data_loader.py 
 

 

 
from 

pathlib 

import 

Path 

import numpy as np 

 

import dlib 

import torch 

from  PIL  import  Image 

from  torch.utils.data  import  Dataset 

from  torchvision  import  transforms 

from  torch.utils.data  import  DataLoader 

 

from  utils  import  load_and_preprocess_image 

 

def  collate_fn(batch): 

imgs  =  [item['image']  for  item  in  batch  if  item['image']  is  not  None] 



 

targets  =  [item['label']  for  item  in  batch  if  item['image']  is  not  None] 

filenames  =  [item['filename']  for  item  in  batch  if  item['image']  is  not  None] 

imgs  =  torch.stack(imgs) 

targets  =  torch.stack(targets) 

return  {'image':  imgs,  'label':  targets,  'filename':  filenames} 

 

def get_transforms(): 

pre_trained_mean,  pre_trained_std  =  [0.485,  0.456,  0.406],  [0.229,  0.224,  0.225] 

 

train_transforms  =  transforms.Compose([ 

transforms.RandomHorizontalFlip(), 

transforms.RandomAffine(degrees=40,  scale=(.9,  1.1),  shear=0), 

transforms.RandomPerspective(distortion_scale=0.2), 

transforms.ColorJitter(brightness=0.5,  contrast=0.5,  saturation=0.5), 

transforms.ToTensor(), 

transforms.RandomErasing(scale=(0.02,  0.16),  ratio=(0.3,  1.6)), 

transforms.Normalize(mean=pre_trained_mean,  std=pre_trained_std), 

]) 

 

val_transforms  =  transforms.Compose([ 

transforms.ToTensor(), 

transforms.Normalize(mean=pre_trained_mean,  std=pre_trained_std) 

]) 

return  train_transforms,  val_transforms 

 

class  FFDataset(Dataset): 

def     init   (self,  filenames,  filepath,  transform,  output_image_size=224, 

recompute=False): 

self.filenames  =  filenames 

self.transform  =  transform 

self.image_size  =  output_image_size 

self.recompute  =  recompute 

 

self.cached_path  =  Path(filepath) 

self.cached_path.mkdir(exist_ok=True) 

self.face_detector  =  dlib.get_frontal_face_detector() 

 

def     len   (self): 

return  len(self.filenames) 

 

def     getitem   (self,  idx:  int): 



 

filename  =  self.filenames[idx] 

image_id  =  filename.stem 

filename  =  str(filename) 

label  =  1  if  'fake'  in  filename.split('/')  else  0 

 

preprocessed_filename  =  self.cached_path  /  f'processed_{image_id}.npy' 

 

if  preprocessed_filename.is_file()  and  not  self.recompute: 

image  =  np.load(preprocessed_filename) 

else: 

image  =  load_and_preprocess_image(filename,  self.image_size,  self.face_detector) 

if image is None: 

image  =  [] 

np.save(preprocessed_filename,  image) 

 

if  len(image)  ==  0: 

return  {'image':  None,  'label':  None  ,'filename':  filename} 

 

image  =  Image.fromarray(image) 

image  =  self.transform(image) 

label  =  torch.tensor(label) 

 

return  {'image':  image,  'label':  label,  'filename':  filename} 

 

def  create_dataloaders(params): 

train_transforms,  val_transforms  =  get_transforms() 

train_dl  =  _create_dataloader(f'/datasets/{params["train_data"]}_deepfake',  mode='train', 

batch_size=params['batch_size'], 

transformations=train_transforms, 

sample_ratio=params['sample_ratio']) 

val_base_dl  =  _create_dataloader(f'/datasets/base_deepfake/val',  mode='val', 

batch_size=params['batch_size'],  transformations=val_transforms, 

sample_ratio=params['sample_ratio']) 

val_augment_dl  =  _create_dataloader(f'/datasets/augment_deepfake/val',  mode='val', 

batch_size=params['batch_size'],  transformations=val_transforms, 

sample_ratio=params['sample_ratio']) 

display_file_paths  =  [f'/datasets/{i}_deepfake/val'  for  i  in  ['base',  'augment']] 

display_dl_iter  =  iter(_create_dataloader(display_file_paths,  mode='val',  batch_size=32, 

transformations=val_transforms, 

sample_ratio=params['sample_ratio'])) 

 

return  train_dl,  val_base_dl,  val_augment_dl,  display_dl_iter 



 
 
 

def  _create_dataloader(file_paths,  mode,  batch_size,  transformations,  sample_ratio, 

num_workers=80): 

if  not  isinstance(file_paths,  list): 

file_paths  =  [file_paths] 

 

filenames  =  [] 

for  file_path  in  file_paths: 

data_path  =  Path(file_path) 

 

real_frame_filenames  =  _find_filenames(data_path  /  'real/frames/',  '*.png') 

fake_frame_filenames  =  _find_filenames(data_path  /  'fake/frames/',  '*.png') 

 

filenames  +=  real_frame_filenames 

filenames  +=  fake_frame_filenames 

 

assert  len(filenames)  !=  0,  f'filenames  are  empty  {filenames}' 

np.random.shuffle(filenames) 

 

if mode == 'train': 

filenames  =  filenames[:int(sample_ratio  *  len(filenames))] 

ds  =  FFDataset(filenames,  filepath=f'/datasets/precomputed/',  transform=transformations, 

recompute=False) 

dl  =  DataLoader(ds,  batch_size=batch_size,  num_workers=num_workers,  shuffle=True, 

collate_fn=collate_fn) 

 

print(f"{mode}  data:  {len(ds)}") 

 

return  dl 

 

def  _find_filenames(file_dir_path,  file_pattern):  return 

list(file_dir_path.glob(file_pattern)) 

 

 

 

utils.py 



 

impo 

rt 

cv2 

import torch 

import numpy as np 

from  pathlib  import  Path 

 

import  matplotlib.pyplot  as  plt 

 

import foundations 

 

def  get_boundingbox(face,  width,  height,  scale=1.3,  minsize=None): 

x1 = face.left() 

y1 = face.top() 

x2 = face.right() 

y2 = face.bottom() 

size_bb  =  int(max(x2  -  x1,  y2  -  y1)  *  scale) 

if  minsize: 

if size_bb < minsize: 

size_bb  =  minsize 

center_x,  center_y  =  (x1  +  x2)  //  2,  (y1  +  y2)  //  2 

 

#  Check  for  out  of  bounds,  x-y  top  left  corner 

x1  =  max(int(center_x  -  size_bb  //  2),  0) 

y1  =  max(int(center_y  -  size_bb  //  2),  0) 

#  Check  for  too  big  bb  size  for  given  x,  y 

size_bb  =  min(width  -  x1,  size_bb) 

size_bb  =  min(height  -  y1,  size_bb) 

 

return x1, y1, size_bb 

 

def  load_and_preprocess_image(image_filename,  output_image_size,  face_detector): 

image  =  cv2.imread(image_filename) 

image  =  cv2.cvtColor(image,  cv2.COLOR_BGR2RGB) 

 

cropped_image  =  get_face_crop(face_detector,  image) 

if cropped_image is None: 

return None 

 

resized_image  =  cv2.resize(cropped_image,  (output_image_size,  output_image_size)) 

return resized_image 



 
 
 

def  get_face_crop(face_detector,  image): 

gray  =  cv2.cvtColor(image,  cv2.COLOR_RGB2GRAY) 

faces  =  face_detector(gray,  1) 

 

height,  width  =  image.shape[:2] 

 

if len(faces) == 0: 

return None 

else: 

face  =  faces[0] 

x,  y,  size  =  get_boundingbox(face,  width,  height) 

cropped_face  =  image[y:y  +  size,  x:x  +  size] 

return  cropped_face 

 

def  visualize_metrics(records,  extra_metric,  name): 

fig,  axes  =  plt.subplots(nrows=1,  ncols=4,  figsize=(15,  6)) 

axes[0].plot(list(range(len(records.train_losses))),  records.train_losses,  label='train') 

axes[0].plot(list(range(len(records.train_losses_wo_dropout))), 

records.train_losses_wo_dropout,  label='train  w/o  dropout') 

axes[0].plot(list(range(len(records.base_val_losses))),  records.base_val_losses, 

label='base_val') 

axes[0].plot(list(range(len(records.augment_val_losses))),  records.augment_val_losses, 

label='augment_val') 

axes[0].set_title('loss') 

axes[0].legend() 

 

axes[1].plot(list(range(len(records.train_accs))),  records.train_accs,  label='train') 

axes[1].plot(list(range(len(records.train_accs_wo_dropout))), 

records.train_accs_wo_dropout,  label='train  w/o  dropout') 

axes[1].plot(list(range(len(records.base_val_accs))),  records.base_val_accs, 

label='base_val') 

axes[1].plot(list(range(len(records.augment_val_accs))),  records.augment_val_accs, 

label='augment_val') 

axes[1].axhline(y=0.5,  color='g',  ls='--') 

axes[1].axhline(y=0.667,  color='r',  ls='--') 

axes[1].set_title('acc') 

axes[1].legend() 

axes[2].plot(list(range(len(records.train_custom_metrics))),  records.train_custom_metrics, 

label='train') 



 

axes[2].plot(list(range(len(records.train_custom_metrics_wo_dropout))), 

records.train_custom_metrics_wo_dropout,  label='train  w/o  dropout') 

axes[2].plot(list(range(len(records.base_val_custom_metrics))), 

records.base_val_custom_metrics,  label='base_val') 

axes[2].plot(list(range(len(records.augment_val_custom_metrics))), 

records.augment_val_custom_metrics,  label='augment_val') 

axes[2].axhline(y=0.5,  color='g',  ls='--') 

axes[2].axhline(y=0.5,  color='r',  ls='--') 

axes[2].set_title(f'{extra_metric.   name   }') 

axes[2].legend() 

 

axes[3].plot(list(range(len(records.lrs))),  records.lrs) 

_  =  axes[3].set_title('lr') 

plt.tight_layout() 

plt.savefig(name,  format='png') 

 

def  display_predictions_on_image(model,  precomputed_cached_path,  val_iter,  name): 

#  val 

model.eval() 

 

data = next(val_iter) 

 

inputs  =  data['image'] 

labels  =  data['label'].view(-1) 

filenames  =  data['filename'] 

 

inputs  =  inputs.cuda(device=0) 

labels  =  labels.cuda(device=0) 

 

with  torch.no_grad(): 

outputs  =  model(inputs) 

outputs_predicbilty  =  torch.nn.functional.softmax(outputs,  dim=1) 

assert  len(outputs_predicbilty)  ==  len(outputs),  f'proba  shape: 

{len(outputs_predicbilty)}' 

 

_,  predicted  =  torch.max(outputs.data,  1) 

 

nrows  =  int(len(inputs)  **  0.5) 

ncols  =  int(np.ceil(len(inputs)  /  nrows)) 

 

fig,  axes  =  plt.subplots(nrows=nrows,  ncols=ncols,  figsize=(30,  40)) 

step = 0 



 

for  i  in  range(nrows): 

for  j  in  range(ncols): 

image_id  =  Path(filenames[step]).stem 

face_crop  =  precomputed_cached_path  /  f'processed_{image_id}.npy' 

face_crop = np.load(face_crop) 

axes[i, 

j].set_title(f'{outputs_predicbilty[step][0]:.2f},{outputs_predicbilty[step][1]:.2f}|{predicted 

[step]}|{labels[step]}') 

axes[i,  j].imshow(face_crop) 

step += 1 

if  step  ==  len(inputs): 

break 

plt.title('predicted_proba  real,  fake  |  prediction  |  label  (0:  real  1:  fake)') 

plt.tight_layout() 

plt.savefig(name,  format='png') 

 

def  parse_and_override_params(params): 

data_dict  =  {'base':  0,  'augment':  1,  'both':  2} 

 

parsed_params  =  params.copy() 

parsed_params['train_data']  =  data_dict[params['train_data']] 

foundations.log_params(parsed_params) 

return  data_dict 
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