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Abstract 

Dynamical Model to Optimize Student’s Academic Performance Using System of 

ODEs 

Alzadjali, Amna Hashim 

PhD, Department of Mathematics 

February, 2022, 68 pages 

Excellent student’s academic performance is the uppermost priority and goal of educators 

and facilitators. The dubious marginal rate between admission and graduation rates 

unveils the rates of dropout and withdrawal from school. To improve the academic 

performance of students, we optimize the performance indices to the dynamics describing 

the academic performance in the form of nonlinear system ordinary differential equations 

(ODE). We established the uniform boundedness of the model and the existence and 

uniqueness result. The independence and interdependence equilibria were found to be both 

locally and globally asymptotically stable. Subsequently, the basic reproduction number 

𝑅0 describing the progress from one academic categorical performance to another was 

obtained.  𝑅0 < 1 implies an unprogressive, while 𝑅0 > 1 implies the progressive. The 

optimal control analysis was carried out, and lastly, numerical method and numerical 

simulation was run to visualize the impact of performance index in optimizing the 

academic performance. 

Key Words: Optimization, academic performance, education, ODEs 
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Özet 

ODE Sistemini Kullanarak Öğrencinin Akademik Performansını Optimize Etmek 

İçin Dinamik Model 

Alzadjali, Amna Hashim 

PhD, Department of Mathematics 

February, 2022, 68 pages 

      Mükemmel öğrencinin akademik performansı, eğitimcilerin ve kolaylaştırıcıların en 

yüksek önceliği ve hedefidir. Kabul ve mezuniyet oranları arasındaki şüpheli marjinal 

oran, okulu bırakma ve okulu bırakma oranlarını ortaya çıkarmaktadır. Öğrencilerin 

akademik performansını iyileştirmek için, performans endekslerini, doğrusal olmayan 

sistem adi diferansiyel denklemler (ODE) biçiminde akademik performansı 

tanımlayan dinamiklere göre optimize ediyoruz. Modelin tekdüze sınırlılığını varlık 

ve teklik sonucunu belirledik. Bağımsızlık ve karşılıklı bağımlılık dengesinin hem 

yerel hem de küresel olarak asimptotik olarak kararlı olduğu bulundu. Bunun 

neticesinde , bir akademik kategorik performanstan diğerine ilerlemeyi tanımlayan 

temel yeniden üretim sayısı R_0 elde edildi. R_0<1 ilerleyici olmayan anlamına 

gelirken, R_0>1 ilerleyici anlamına gelir. Optimal kontrol analizi yapılmış ve son 

olarak, akademik performansı optimize etmede performans indeksinin etkisini 

görselleştirmek için sayısal yöntem ve sayısal simülasyon çalıştırılmıştır. 

      Keywords: Optimizasyon, akademik performans, eğitim, ODE'ler. 
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CHAPTER I 

Introduction  

The human capital theory perceives education and learning activities as an 

investment in people to increase the productivity of goods and services (Marginson, S. ., 

2017). The industrial and technological development of a country depends on literacy as 

a requirement for its success, especially when a literate member of society engages in an 

active and effective role in the development process. There is no doubt that combining the 

skills of improving income generation with knowledge of sustainable development will 

assist mankind to improve his material condition of living through the use of resources 

available to him. 

In fact, it was asserted that financial literacy that is blended with knowledge, skill 

and sound moral values is essential for individual to attain financial well-being. Hence, 

building the financial literacy of citizens will reduce poverty and improve personal 

financial management and welfare of the adult learner and the community (Matewos, K. 

R. , et al., 2016). 

Academic performance of student is very crucial that makes a student improve 

himself intellectually, and admitted him into scientific and technological professions. 

Thus, it should be seen as a continuous process that requires regular study and sustained 

life-long learning. Poor academic performance steadies the scientific research and 

technological development which further result an underdeveloped economy. 

Incentive theory was established in the 1940s and 1950s, by psychologists such as 

Clark Hull, who upheld the views that, the anticipation of reward by learners can influence 

positive performance which can lead to persistence in learning and achieving a high-grade 

score. While, the anticipation for punishment may result to withdrawal, less participation 

and less success reckoned in learning by the same learner who is disposed to two different 

situations of reward and punishment (Kendra, C. ., 2018). It is on the basis of the Incentive 

Theory, that the study was set to explore and optimize measures leading to effective 

academic performance of student. 

The thesis outline to start with the introduction, definitions and theorems in chapter 

one, followed by the literature review in chapter two. Chapter three is the model 
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formulation with uniform boundedness, existence and uniqueness inclusively, while 

chapter four gives stability analysis. Chapter five is the detail formation and analysis of 

optimal control and lastly, chapter six gives numerical method and numerical simulation, 

result discussion and conclusion. 

 

Definition of Terms 

Definition 1 (Contraction)  

Let (𝑋, 𝑑) be a complete metric space, an operator 𝐹: 𝑋 → 𝑋 is said to be contractive if 

there is 𝛼 ∈ (0, 1) such that (Nemer, M., 2015)  

𝑑(𝐹𝑥, 𝐹𝑦) ≤ 𝛼 𝑑(𝑥, 𝑦),          ∀𝑥, 𝑦 ∈ 𝑋                                      (1.1) 

Definition 2 (Lipschitz Continuity)  

A function𝑓: 𝑋 ⊆ ℝ →  ℝ is said to be Lipschitz continuous if ∃! 𝐿 > 0 such that (Nemer, 

M., 2015) 

𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝐿 𝑑(𝑥, 𝑦),          ∀𝑥, 𝑦 ∈ 𝑋                                  (1.2) 

Remark 1: one can observe that: 

i. Every contractive operator is Lipschitz continuous 

ii. Every Lipschitz is uniformly continuous. i.e 

given𝜖 > 0, ∃ 𝛿 <
𝜖

𝐿
:  with 𝑑(𝑥, 𝑦) < 𝛿 such that 

𝑑(𝐹𝑥, 𝐹𝑦) ≤ 𝐿𝛿 < 𝜖                                                                     (1.3) 

Definition 3 (Equilibrium)  

let 

{
𝑥′ = 𝑓(𝑡, 𝑥),                                                              (1.4)

 𝑓: ℝ × ℝ𝑛  → ℝ𝑛  

be a non-autonomous dynamical system.𝑥𝑒 ∈ ℝ𝑛is said to be the equilibrium of (1.4) if 

𝑓(𝑡, 𝑥𝑒) = 0                                                                (1.5) 
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Meanwhile the equilibrium (or synonymously fixed point, steady state, stationary point, 

resting point) is the constant solution of the dynamical system (Dahleh, M. , et al., 

2004). 

Definition 4 (Stability)  

The equilibrium solution𝑥𝑒 of (1.4) is said to be (Dahleh, M. , et al., 2004) 

i. Stable:if given 𝜖 > 0, there is a 𝛿 > 0such that every solution that start 𝑥(0) =

𝑥0 satisfies 

||𝑥0 − 𝑥𝑒|| < 𝛿                                                                    (1.6) 

Exist for all 𝑡 > 0 and satisfies 

||𝑥(𝑡) − 𝑥𝑒|| < 𝜖,        ∀  𝑡 ≥ 0                                        (1.7) 

 

ii. Asymptotically Stable:if it is stable and if ∃! 𝛿0 > 0 satisfies 

||𝑥0 − 𝑥𝑒|| < 𝛿0                                                                    (1.8) 

Then  

lim
𝑡→∞

𝑥(𝑡) = 𝑥𝑒                                                                         (1.9) 

Remark 2: above statements means that all the solutions that starts sufficiently close 

(within the distance 𝛿) to 𝑥𝑒 stay close (within the distance 𝜖) to 𝑥𝑒. The trajectories that 

start sufficiently close to 𝑥𝑒 must not only stay close, but must eventually converge to 

𝑥𝑒as 𝑡 → ∞.  

Definition 5 (Optimal Control) 

A fairly general continuous time optimal control problem can be defined as follows 

(Becerra, V. M. ., 2008): 

Problem i: To find the control vector trajectory 𝑢 ∶ [𝑡0, 𝑡𝑓] ∈ ℝ → ℝ𝑛 minimize the 

performance index: 

𝐽(𝒖) = 𝜑 (𝒙(𝑡𝑓)) + ∫ 𝐿(𝒙(𝑡),   𝒖(𝑡),   𝑡)𝑑𝑡

𝑡𝑓

𝑡0

                   (1.10)   
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Subject to: 

�̇�(𝑡) = 𝒇(𝒙(𝑡),   𝒖(𝑡),   𝑡) ,         𝒙(𝑡0) = 𝒙0               (1.11)  

Where 

𝒙 = (𝑥𝟏, 𝑥𝟐, 𝑥𝟑, … , 𝑥𝒏)𝑻,   𝒇 = (𝑓𝟏, 𝑓𝟐, 𝑓𝟑, … , 𝑓𝒏)𝑻 

And 

𝜑 ∶  ℝ𝑛 × ℝ → ℝ is a terminal cost function. 

Problem ii: find𝑡𝑓 and 𝒖(𝑡) to minimize: 

𝐽 = ∫ 1𝑑𝑡

𝑡𝑓

𝑡0

= 𝑡𝑓 − 𝑡0                                                                   (1.12) 

Subject to:  

�̇�(𝑡) = 𝒇(𝒙(𝑡),   𝒖(𝑡),   𝑡) ,         𝒙(𝑡0) = 𝒙0                       (1.13)  

This special type of optimal control problem is called the minimum time Problem. 

Remark 3: It is often assumed that 𝑥(𝑡) and𝑢(𝑡) are piecewise continuous and that the 

functions 𝒇 meet certain differentiability conditions. These conditions are required to 

implement certain solution algorithms. 

Definition 6 (Hamiltonian) 

With a time varying Largrange’s multiplier function𝜆 ∶  [𝑡0, 𝑡𝑓] → ℝ, also known as the 

co-state define Hamiltonian function 𝐻 as (Becerra, V. M. ., 2008): 

𝐻(𝒙(𝑡), 𝒖(𝑡), 𝜆(𝑡), 𝑡) = 𝐿(𝒙(𝑡),   𝒖(𝑡),   𝑡) + 𝜆(𝑡)𝑇𝒇(𝒙(𝑡),   𝒖(𝑡),   𝑡)            (1.14)  

Such that  

𝐽(𝒖) = 𝜑 (𝒙(𝑡𝑓)) + ∫{𝐻(𝒙(𝑡), 𝒖(𝑡), 𝜆(𝑡), 𝑡) − 𝜆𝑇(𝑡)𝒙}𝑑𝑡

𝑡𝑓

𝑡0

                    (1.15)  
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Theorem 1 (Banach’s Fixed Point Theorem) (Banach, S. ., 1922): 

Let (𝑋, 𝑑) be a complete metric space and let 𝑇: 𝑋 → 𝑋 be contractive operator. i.e there 

is a constant 𝛼 ∈ (0, 1) such that  

||𝑇𝑥 − 𝑇𝑦|| ≤ 𝛼||𝑥 − 𝑦||, ∀ 𝑥, 𝑦 ∈ 𝑋                                         (1.16) 

Then there exist a unique fixed point 𝑥 ∈ 𝑋 such that𝑇𝑥 = 𝑥. 

Theorem 2 (Local Stability) ((Dahleh, M. , et al., 2004): 

The equilibrium solution𝑥𝑒 of non-autonomous system is locally asymptotically stable if 

all the eigenvalues of Jacobian matrix
𝜕𝑓

𝜕𝑥
 at equilibrium satisfy 

𝑅𝑒(𝜆𝑖) < 0,    𝑖 = 1,2, … , 𝑛 

Theorem 3 (Lyapunov, A. M. ., 1892): (Lyapunov Function Theorem) 

Let 𝑥∗ be an equilibrium point and 𝐷 ⊆ ℝ𝑛 be a neighborhood of 𝑥∗. Let 𝑉:𝐷 ⊆ ℝ𝑛 →

ℝ be continuously differentiable function such that 

i- 𝑉(𝑥∗) = 0  𝑎𝑛𝑑 𝑉(𝑥) > 0  𝑓𝑜𝑟 𝑥 ∈ 𝐷 − {𝑥∗} 

ii- 
𝑑𝑉(𝑥(𝑡))

𝑑𝑡
≤ 0,   𝑥 ∈ 𝐷then the equilibrium point 𝑥∗ is stable. 

Further, 𝑥∗ is asymptotically stable if   

𝑑𝑉(𝑥(𝑡))

𝑑𝑡
< 0,   𝑥 ∈ 𝐷 − {𝑥∗} 

Remark 4: The idea behind Lyapunov's theorem is to establish properties of the 

equilibrium point (or, more generally, of the nonlinear system) by studying how certain 

carefully selected scalar functions of the state evolve as the system state evolves. This 

approach contrasts from theorem 2, which attempts to establish properties of the 

equilibrium point by studying the behavior of the linearized system at that point. 

The continuous scalar positive definite function 𝑉(𝑥)may be thought of as an energy 

function. If the time derivative of 𝑉(𝑥) along any trajectory of the system (1.4) is negative 

throughout the region (except at the origin), then this implies that the energy is strictly 
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decreasing over time. In this case, because the energy is lower bounded by 0, the energy 

must go to 0, which implies that all trajectories converge to the zero state.  

Lemma 1 (Arithmetic-Geometric Inequality) (Carlson, B. C. ., 1966): 

If 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛is a sequence of non-negative real numbers, then 

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
≥ √𝑥1 . 𝑥2.  𝑥3, … , 𝑥𝑛                                              (1.17) 

Proof  

By applying the Jensen’s inequality which states that value of a concave function of an 

arithmetic mean is greater than or equal to the arithmetic mean of the function values.  

Since the logarithm function is concave, we have 

log (
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
) ≥ ∑

1

𝑛

𝑛

𝑖=1

log 𝑥𝑖 

= ∑log 𝑥𝑖

1

𝑛

𝑛

𝑖=1

 

= log∏𝑥𝑖

1

𝑛

𝑛

𝑖=1

 

log (
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
) ≥ log∏𝑥𝑖

1

𝑛

𝑛

𝑖=1

                                            (1.18) 

Taking the antilog of (1.18) gives the required (1.17) 

 

Theorem 4 (Pontryagin Maximum Principle) (Abaidoo, A. ., 2018): 

If 𝒖∗(𝑡), 𝒙∗(𝑡)(𝑡 ∈ [𝑡0, 𝑡𝑓]) is a solution of the optimal control problem (1.10), (1.11) 

then there exist a non-zero absolutely continuous function 𝜆(𝑡) such that 

𝜆(𝑡), 𝒙∗(𝑡), 𝒖∗(𝑡) satisfy the system 
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𝑑𝑥

𝑑𝑡
=

𝜕𝐻

𝜕𝜆
,            

𝑑𝜆

𝑑𝑡
= −

𝜕𝐻

𝜕𝒙
                                                (1.19)  

Such that, for almost all 𝑡 ∈ [𝑡0, 𝑡𝑓] the function in equation (2.4) attains its maximum: 

𝐻(𝜆(𝑡), 𝒙∗(𝑡), 𝒖∗(𝑡)) = 𝑀(𝜆, 𝑥), 

𝑀 (𝜆(𝑡𝑓), 𝒙
∗(𝑡𝑓)) = sup{𝐻(𝜆, 𝑥, 𝑢): 𝑢 ∈ 𝒰}                        (1.20) 

And such that at terminal time 𝑡𝑓 the conditions 

𝑀 (𝜆(𝑡𝑓), 𝒙
∗(𝑡𝑓)) = 0,         𝜆0(𝑡𝑓) ≤ 0 are satisfied. 

If the functions 𝜆(𝑡), 𝑥(𝑡), 𝑢(𝑡) satisfy the relation (1.19), (1.20) (i.e𝑥(𝑡), 𝑢(𝑡) are 

Portryagin extremals), then the condition 

ℳ(𝑡) = 𝑀(𝜆(𝑡), 𝑥(𝑡)) = 𝑐𝑜𝑛𝑠𝑡. ,        𝜆0(𝑡) = 𝑐𝑜𝑛𝑠𝑡 hold. 

Remark 5 (Crosnoe, et al., 2004): for a minimum, it is necessary for the stationary 

(optimality) condition to give: 

𝜕𝐻𝑇

𝜕𝒖
= 0                                                                        (1.21) 

 

Aims and Objectives 

This research is aimed at optimizing the academic performance of the student through 

the following objectives: 

i- To construct mathematical model for the dynamics of categorical performance of 

student. 

ii- To establish the existence, uniqueness and stability results. 

iii- To formulate optimal control problem that optimize the academic performance of 

students. 

iv- To carryout control analysis 

v- To perform numerical simulation results. 
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Scope and Limitation 

Although there is impediment to academic performance of student, but they are not of 

main interest of this research. This research only focuses on optimizing the academic 

performance of student. 

 

Methodology 

In this research: 

i- We use information and assumptions to construct mathematical model 

ii-  We apply Banach’s fixed point theorem and Picard-Lindelop theorem to establish 

the existence and uniqueness results. 

iii- We carryout stability analysis (local and global) using both the linearization and 

Lyapunov theorems. 

iv- With the use of Hamiltonian and the Pontryaging maximum principle we carryout 

control analysis. 

v- Using Matlab software the numerical result will be performed. 
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CHAPTER II 

Literature Review 

Research related conceptual definitions, descriptions and information related to the 

subject that already exists in the literature are given in this chapter. 

Mathematical Model 

Models of systems have become part of our everyday lives: In particular, many 

processes can be described with mathematical equations, that is, by mathematical models. 

Such models have use in a diverse range of disciplines. 

According to Encyclopedia Britannica, a mathematical model is defined as ‘‘either a 

physical representation of mathematical concepts or a mathematical representation of 

reality.’’ Physical mathematical models, such as graphs of curves or surfaces defined by 

analytic equations or three-dimensional replicas of cylinders, pyramids, and spheres, are 

used to visualize mathematical terms and concepts. Such models present realistic 

depictions of abstract mathematical definitions. In contrast, a mathematical representation 

of reality uses mathematics to describe a phenomenon of nature. There are many 

mathematical tools that can be used in this process, including statistics, calculus, 

probability, and differential equations. Different methods may provide insights to 

different aspects of the problem, and there is often much debate about what approach is 

preferable (Robeva, R. S. , et al., 2008). 

Mathematical modeling occurs in many natural phenomena and has a diversity of 

applications and thus a range of possible approaches. In a more practical and analytical 

mode there is a plethora of applications. Mathematical models are used extensively in 

biology and ecology to examine population fluctuations, water catchments, erosion and 

the spread of pollutants, to name just a few. Fluid mechanics is another extensive area of 

research, with applications ranging from the modelling of evolving tsunamis across the 

ocean, to the flow of lolly mixture into moulds (Robeva, R. S. , et al., 2008). 

Modeling is an extremely powerful tool, a framework for research, debate and 

planning, which provides a valuable source of information for decision-making. The use 

of information from modeling process to reach decisions is now very much in the public 

view, this trend is likely to continue, as such modeling results in an efficient and 
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economical way of understanding, analyzing and designing processes. Currently, 

mathematical modeling provides a means by which many political and management 

planning decisions are made, both locally and globally.  

There are many modelling approaches that can be taken when formulating a 

mathematical model. The empirical approach is the most basic, but also the least useful. 

The idea is to fit a curve through a set of data and then to use this curve in order to predict 

outcomes where there are no data. The stochastic approach is the probabilistic that try to 

estimate the probability of certain outcomes based on the available data. These models 

can by extremely complicated, although this is not necessarily the case. They do have the 

advantage of incorporating a degree of uncertainty within them and ideally should be used 

when there is a high degree of variability in the problem. This method is typically used 

for models of small populations when reproduction rates need to be predicted over a time 

interval. They also have valuable application in many other areas such as economic 

fluctuations, insurance problems, telecommunications and traffic theory, and biological 

models (Barnes, B. , & Fulford, G. ., 2011). 

In a simulation model one writes a computer program that applies a set of rules, or 

possibly even physically builds a scale model. It is intended to produce a set of data that 

mimic a real outcome including extreme events. Typically, such models are used in 

engineering applications as an aid to identifying problems that may arise during use or 

construction. Statistical models concern the testing (referred to as hypothesis testing) of 

whether a set of empirical data is from one or another category. Statistical testing is used 

widely in psychology, paleontology and the biological sciences (Barnes, B. , & Fulford, 

G. ., 2011). The deterministic approach formulates mathematical equations describing the 

basic fundamental relationships between the variables of the problem. This process is 

widely used and can be extremely accurate (Barnes, B. ., & Fulford, G. ., 2011). 

With the emergence of communicable diseases and the pioneer work of Kermack 

and McKendrick (Kermack, W O, & McKendrick, A. G. ., 1926a; Kermack, W O, & 

McKendrick, A. G. ., 1932b; Kermack et al., 1933), Epidemiological model continue to 

receive significant attention. In the difficult moment of disease outbreaks and in particular 

the current global pandemic COVID-19, epidemiologist use mathematical model to 

understand the causes of a disease, then to predict its course, and finally to develop ways 
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of controlling it, including comparisons of different possible approaches. The first step is 

obtaining and analyzing observed data. 

The analytic approaches to models for endemic diseases and epidemics are quite 

different. The analysis of a model for an endemic disease begins with the search for 

equilibria, which are constant solutions of the model. Usually there is a disease free 

equilibrium and there are one or more endemic equilibria, with a positive number of 

infected individuals (Brauer, F. ., 2017). 

The next step is to linearize about each equilibrium and determine its stability. The 

basic reproduction 𝑅0 number is a sensitive parameter describing the number of secondary 

infected generated by the single infected pathogen in a susceptible population (McDonald, 

G. ., 1957).  Usually, if 𝑅0 < 1 the only equilibrium is the disease-free equilibrium and 

this equilibrium is asymptotically stable. If𝑅0 > 1, the usual situation is that the disease-

free equilibrium is unstable and there is a unique endemic equilibrium which is 

asymptotically stable (Brauer, F. ., 2017). 

 

Academic Performance of Student 

Academic performance of a student serve as bedrock for knowledge acquisition 

and the development of skills which have direct impact on socio-economic development 

of a country (Farooq, M. , et al., 2011), it determines the success or failure of any academic 

institution (Blevins, B. ., 2009). There are many factors enhance and impede student’s 

academic performance as attributed to students, parents, teachers and environments. The 

student’s factors include self- motivation, interest in a subject, punctuality in class, regular 

studying and access to learning materials. Class attendance and students attitudes toward 

their learning have impact on academic performance (Ma, X. ., & Klinger, D. ., 2000). 

Peng, S. S., and Hall, S. T. (1995) Confirmed that in the case of mathematics, student’s 

attitude towards the subject has a direct impact on their academic performance. 

Qualified teachers and facilitators render effective facilitation which enhances academic 

performance. However, performance target, completion of syllabus, paying attention to 

weak students, assignment and student evaluation have significant impact too (Abubakar, 

A. , et al., 2018). 
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Parental background and status have significant impact on student’s academic 

performance. Educated parent provide home school tutorial to their ward and are more 

encouraging. Jeynes, W. H. (2002) Found that students with high level of parental 

involvement in their academic excel their counterparts with no such involvement.   

Environmental factors are schools factors involve the enabling environment, 

infrastructure, adequate facilities and learning materials, well-equipped laboratories.  

Crosnoe, R. et al. (2004) Revealed that the availability of physical resources such as 

library, textbooks, adequacy of classroom and spacious playing ground affect the 

performance of the students. Mccoy, L. P. (2005) Emphasized the use of instructional 

equipment facilitates effective service delivery and enhances teaching and learning. 

Distanced school also affects student’s performance; Baliyan, S. P., and Khama, D. 

(2020), Eamon, M. K. (2005) opined that the more school distance the more tire students 

become. Also fairly disciplined schools perform better than the less or no disciplined 

school. Effective disciplined is used to control student’s behavior, which has direct impact 

to their academic performance (Ehiane, S. ., 2014). Furthermore, student to teacher ratio 

or class size also affects the performance. Effective teaching in a moderate class ratio 

enhances the performance (Lopez, O. S. ., 1995). 

Age has significant impact on academic performance. Older students are likely to 

dropout than the younger ones (Marginson, S. ., 2017). Found that there is a significant 

positive impact of age on academic performance in mathematics and science but the 

degree of the association is weak. However, mathematical model is an important tool used 

to optimize a real life problem for quickest and effective resolution. With regards to the 

subject matter we proposed dynamical model to optimize student’s academic 

performance. 
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CHAPTER III 

Model Formulation 

The model is constructed based on the assumption that the newly intake are admitted 

into average class at the rate  𝜆. The average student 𝐴 may then become weak, excellent 

or graduate at the rates 𝜙, 𝛽 and 𝜃2 respectively. Below average student𝐵 may become 

weak, average or graduate at the rates 𝛾, 𝛼  and 𝜃1 respectively. Excellent student 𝐸 

graduate at rate 𝜃3. But Upon mingling with weak student 𝑊, the excellent student 𝐸 may 

be influenced to become weak at the rate𝜂.  

The rate at which student leaves school either through death or expelled is assumed to be 

the same in all the compartments. 

 

                                                                                   𝜇 

 

 

                                                      𝜃1                𝜇       𝜃2                       𝜃3 

                                                               𝛼                              𝛽 

                   𝜙                 𝜆 

                                            𝜇                   𝛾                                𝜂                𝜇 

 

 

𝜇 

 

Figure 1. Schematic Diagram describing the Dynamics of Student Academic 

Performance 

𝐺 

𝐴 

𝑊 

𝐵 𝐸 
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The performance dynamics is described by the nonlinear system of ODEs  

𝑑𝐵

𝑑𝑡
= 𝑝𝜂𝑊𝐸 − 𝜃1𝐵 − 𝛼𝐵𝐴 − 𝜇𝐵 − 𝛾𝐵𝑊                                                         (3.1) 

𝑑𝐴

𝑑𝑡
= 𝛼𝐵𝐴 + 𝜆 − 𝜃2𝐴 − 𝜇𝐴 + (1 − 𝑝)𝑊𝐸 − 𝜙𝑊𝐴 − 𝛽𝐴𝐸                          (3.2) 

𝑑𝐸

𝑑𝑡
= 𝛽𝐴𝐸 − 𝜂𝑊𝐸 − 𝜃3𝐸 − 𝜇𝐸                                                                           (3.3) 

𝑑𝑊

𝑑𝑡
= 𝛾𝐵𝑊 + 𝜙𝑊𝐴 − 𝜇𝑊                                                                                    (3.4) 

𝑑𝐺

𝑑𝑡
= 𝜃1𝐵 + 𝜃2𝐴 + 𝜃3𝐸 − 𝜇𝐺                                                                                (3.5) 

 

Uniform Boundedness 

Theorem 5: all the solutions of model are confined within bounded subset of ℝ5 

Ψ = {(B, A, E,W, G ) ∈ ℝ5: B, A, E,W, G ≤
𝜆

𝜇
} 

Proof 

Let the population size be 

𝑁 = 𝐵 + 𝐴 + 𝐸 + 𝑊 + 𝐺                                                    (3.6) 

Then  

𝑑𝑁

𝑑𝑡
=

𝑑𝐵

𝑑𝑡
+

𝑑𝐴

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝑊

𝑑𝑡
+

𝑑𝐺

𝑑𝑡
 

Substituting (3.1) – (3.5) gives 

𝑑𝑁

𝑑𝑡
= 𝜆 − 𝜇𝑁                                                                    (3.7) 

Solving the first order linear ODE (3.7) using integration factor method 
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Define the integration factor  

𝐼 = 𝑒∫𝜇𝑑𝑡 = 𝑒𝜇𝑡 

𝐼−1 = 𝑒−𝜇𝑡 

The solution to (3.7) takes the form 

𝑁(𝑡) = 𝐼−1 ∫𝜆 𝐼 𝑑𝑡 + 𝑘𝐼−1 

= 𝑒−𝜇𝑡 ∫𝜆 𝑒𝜇𝑡 𝑑𝑡 + 𝑘𝑒−𝜇𝑡 

∴ 𝑁(𝑡) =
𝜆

𝜇
+ 𝑘𝑒−𝜇𝑡                                                                                       (3.8) 

The long-term behavior of the solution (3.8) yield 

lim
𝑡→∞

𝑁(𝑡) =
𝜆

𝜇
                                                                                  (3.9) 

Meanwhile, as time increases without bound all the solutions converge to the equilibrium 

𝑁𝑒 =
𝜆

𝜇
 of (3.7), hence the equilibrium𝑁𝑒is globally asymptotically stable. 

Existence and Uniqueness 

Theorem 6: the system (3.1) – (3.5) is Lipschitz continuous 

Proof 

Let the system (3.1) - (3.5) be of the form 

𝑓1(𝑡, 𝐵) = 𝑝𝜂𝑊𝐸 − 𝜃1𝐵 − 𝛼𝐵𝐴 − 𝜇𝐵 − 𝛾𝐵𝑊                                              (3.1 ∗) 

𝑓2(𝑡, 𝐴) = 𝛼𝐵𝐴 + 𝜆 − 𝜃2𝐴 − 𝜇𝐴 + (1 − 𝑝)𝑊𝐸 − 𝜙𝑊𝐴 − 𝛽𝐴𝐸               (3.2 ∗) 

𝑓3(𝑡, 𝐸) = 𝛽𝐴𝐸 − 𝜂𝑊𝐸 − 𝜃3𝐸 − 𝜇𝐸                                                                 (3.3 ∗) 

𝑓4(𝑡,𝑊) = 𝛾𝐵𝑊 + 𝜙𝑊𝐴 − 𝜇𝑊                                                                          (3.4 ∗) 
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𝑓5(𝑡, 𝐺) = 𝜃1𝐵 + 𝜃2𝐴 + 𝜃3𝐸 − 𝜇𝐺                                                                    (3.5 ∗) 

 

|𝑓1(𝑡, 𝐵) − 𝑓1(𝑡, 𝐵
∗)| = |𝜃1 + 𝛼𝐴 + 𝜇 + 𝛾𝑊|||𝐵 − 𝐵∗|| 

≤ (|𝜃1| + |𝛼| max
𝑡∈[0,𝑇]

||𝐴|| + |𝜇| + |𝛾| max
𝑡∈[0,𝑇]

||𝑊||) ||𝐵 − 𝐵∗|| 

∴ ||𝑓1(𝑡, 𝐵) − 𝑓1(𝑡, 𝐵
∗)|| ≤ 𝐿1||𝐵 − 𝐵∗||,         𝐿1

= |𝜃1| + |𝛼| max
𝑡∈[0,𝑇]

||𝐴|| + |𝜇| + |𝛾| max
𝑡∈[0,𝑇]

||𝑊||   (3.10) 

Analogously,  

|𝑓2(𝑡, 𝐴) − 𝑓2(𝑡, 𝐴
∗)|

= |(𝛼𝐵 − 𝜃2 − 𝜇 + −𝜙𝑊 − 𝛽𝐸)𝐴 − (𝛼𝐵 − 𝜃2 − 𝜇 + −𝜙𝑊 − 𝛽𝐸)𝐴∗| 

= |𝛼𝐵 − 𝜃2 − 𝜇 + −𝜙𝑊 − 𝛽𝐸|||𝐴 − 𝐴∗|| 

≤ (|𝛼| max
𝑡∈[0,𝑇]

||𝐵|| + |𝜃2| + |𝜇| + |𝜙| max
𝑡∈[0,𝑇]

||𝑊|| + |𝛽| max
𝑡∈[0,𝑇]

||𝐸||) ||𝐴 − 𝐴∗|| 

∴ ||𝑓2(𝑡, 𝐴) − 𝑓2(𝑡, 𝐴
∗)|| ≤ 𝐿2||𝐴 − 𝐴∗||,                                       (3.11)  

𝐿2 = |𝛼| max
𝑡∈[0,𝑇]

||𝐵|| + |𝜃2| + |𝜇| + |𝜙| max
𝑡∈[0,𝑇]

||𝑊|| + |𝛽| max
𝑡∈[0,𝑇]

||𝐸|| < ∞ 

|𝑓3(𝑡, 𝐸) − 𝑓3(𝑡, 𝐸
∗)| = |(𝛽𝐴 − 𝜂𝑊 − 𝜃3 − 𝜇)𝐸 − (𝛽𝐴 − 𝜂𝑊 − 𝜃3 − 𝜇)𝐸∗| 

= |𝛽𝐴 − 𝜂𝑊 − 𝜃3 − 𝜇|||𝐸 − 𝐸∗|| 

≤ (|𝛽| max
𝑡∈[0,𝑇]

||𝐴|| + |𝜂| max
𝑡∈[0,𝑇]

||𝑊|| + |𝜃3| + |𝜇|) ||𝐸 − 𝐸∗|| 

∴ ||𝑓3(𝑡, 𝐸) − 𝑓3(𝑡, 𝐸
∗)|| ≤ 𝐿3||𝐸 − 𝐸∗||                                 (3.12)  

𝐿3 = |𝛽| max
𝑡∈[0,𝑇]

||𝐴|| + |𝜂| max
𝑡∈[0,𝑇]

||𝑊|| + |𝜃3| + |𝜇| < ∞, 

|𝑓4(𝑡,𝑊) − 𝑓4(𝑡,𝑊
∗)| = |(𝛾𝐵 + 𝜙𝐴 − 𝜇)𝑊 − (𝛾𝐵 + 𝜙𝐴 − 𝜇)𝑊∗| 
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= |𝛾𝐵 + 𝜙𝐴 − 𝜇|||𝑊 − 𝑊∗|| 

≤ (|𝛾| max
𝑡∈[0,𝑇]

||𝐵|| + |𝜙| max
𝑡∈[0,𝑇]

||𝐴|| + |𝜇|) ||𝑊 − 𝑊∗|| 

∴ ||𝑓4(𝑡,𝑊) − 𝑓4(𝑡,𝑊
∗)|| ≤ 𝐿4||𝑊 − 𝑊∗||(3.13) 

𝐿4 = |𝛾| max
𝑡∈[0,𝑇]

||𝐵|| + |𝜙| max
𝑡∈[0,𝑇]

||𝐴|| + |𝜇| < ∞ 

|𝑓5(𝑡, 𝐺) − 𝑓5(𝑡, 𝐺
∗)| = |−𝜇𝐺 + 𝜇𝐺∗| 

= |𝜇|||𝐺 − 𝐺∗|| 

∴ ||𝑓5(𝑡, 𝐺) − 𝑓5(𝑡, 𝐺
∗)|| ≤ 𝐿5||𝐺 − 𝐺∗||                                      (3.14)  

𝐿5 = |𝜇| < ∞ 

To rewrite the system (3.1) – (3.5) in compact form, let the system be written in matrix 

form as 

[
 
 
 
 
𝐵′
𝐴′
𝐸′
𝑊′
𝐺′ ]

 
 
 
 

=

[
 
 
 
 
−𝜃1 − 𝜇

0
0
0
𝜃1

0
−𝜃2 − 𝜇

0
0
𝜃2

0
0

−𝜃3 − 𝜇
0
𝜃3

0
0
0

−𝜇
0

0
0
0
0

−𝜇]
 
 
 
 

[
 
 
 
 
𝐵
𝐴
𝐸
𝑊
𝐺 ]

 
 
 
 

+

[
 
 
 
 

𝑝𝜂𝑊𝐸 − 𝛼𝐵𝐴 − 𝛾𝐵𝑊

𝛼𝐵𝐴 + (1 − 𝑝)𝜂𝑊𝐸 − 𝜙𝑊𝐴 − 𝛽𝐴𝐸
𝛽𝐴𝐸 − 𝜂𝑊𝐸
𝛾𝐵𝑊 + 𝜙𝑊𝐴

0 ]
 
 
 
 

+

[
 
 
 
 
𝜆
0
0
0
0]
 
 
 
 

 

Equivalently, 

𝑥′ = 𝑓(𝑡, 𝑥),           𝑥(𝑡0) = 𝑥0                                                                ( 3.15) 

𝑓(𝑡, 𝑥) = 𝑃𝑥 + 𝑔(𝑥) + Λ,       

𝑥 = (𝐵, 𝐴, 𝐸,𝑊, 𝐺)𝑇 , Λ = (𝜆, 0, 0, 0, 0)𝑇 , 
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𝑃 =

[
 
 
 
 
−𝜃1 − 𝜇

0
0
0
𝜃1

0
−𝜃2 − 𝜇

0
0
𝜃2

0
0

−𝜃3 − 𝜇
0
𝜃3

0
0
0

−𝜇
0

0
0
0
0

−𝜇]
 
 
 
 

,       

𝑔(𝑥) =

[
 
 
 
 

𝑝𝜂𝑊𝐸 − 𝛼𝐵𝐴 − 𝛾𝐵𝑊

𝛼𝐵𝐴 + (1 − 𝑝)𝜂𝑊𝐸 − 𝜙𝑊𝐴 − 𝛽𝐴𝐸
𝛽𝐴𝐸 − 𝜂𝑊𝐸
𝛾𝐵𝑊 + 𝜙𝑊𝐴

0 ]
 
 
 
 

 

 

Since𝑓 ∈ 𝐶([𝑡0 − 𝜖, 𝑡0 + 𝜖] × 𝑈 ⊆ ℝ5), then (3.15) has the equivalent integral equation 

𝑥(𝑡) = 𝑥0 + ∫𝑓(𝜏, 𝑥(𝜏))

𝑡

𝑡0

𝑑𝜏                                                (3.16) 

Also,  

𝑦(𝑡) = 𝑥0 + ∫𝑓(𝜏, 𝑦(𝜏))

𝑡

𝑡0

𝑑𝜏                                                    (3.17) 

Theorem 7: let 𝑓: [𝑡0 − 𝑎, 𝑡0 + 𝑎] × 𝑈 ⊆ ℝ5 → ℝ5 be uniformly continuous in 𝑡 and 

Lipschitz in the second variable. Suppose 𝑓 is bounded, i.e𝑀 = max
𝑡∈[𝑡0−𝑎,𝑡0+𝑎]

||𝑓(𝑡, 𝑥)|| 

such that ||𝑓(𝑡, 𝑥)|| ≤ 𝑀. If 𝐿0𝑎 < 1 then there exist unique 𝑥 that solves (3.15).𝛿 <

min (
𝑟

𝑀
,

1

𝐿0
) 

Proof 

Let 𝑋 = {𝑥 ∈ 𝐶[𝑡0 − 𝑎, 𝑡0 + 𝑎] ∶  ||𝑥(𝑡) − 𝑥0|| ≤ 𝑟} 
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Define 

𝑑: 𝑑(𝑥, 𝑦) = max
𝑡∈[𝑡0−𝑎,𝑡0+𝑎]

||𝑥(𝑡) − 𝑦(𝑡)|| 

Given 𝜖 > 0, ∃!  𝑛 ≡ 𝑛(𝜖) ∈  ℕ: 

𝑑(𝑥𝑛, 𝑥𝑚) < 𝜖 

⟹ max
𝑡∈[𝑡0−𝑎,𝑡0+𝑎]

||𝑥𝑛(𝑡) − 𝑥𝑚(𝑡)|| < 𝜖 

⇔ ||𝑥𝑛(𝑡) − 𝑥𝑚(𝑡)|| < 𝜖,                   ∀ 𝑡 ∈ [𝑡0 − 𝑎, 𝑡0 + 𝑎]                       (3.18) 

Hence (𝑥𝑛)𝑛≥1 is Cauchy sequence in ℝ5 (with respect to ||. || ). 

Since (ℝ5, ||. ||) is complete, then ∃!  𝑥∗ ∈ ℝ5 ∶  𝑥𝑛 → 𝑥∗as 𝑛 → ∞. 

Fix 𝑛 and allow 𝑚 → ∞ in (3.17) to get 

||𝑥𝑛(𝑡) − 𝑥∗(𝑡)|| ≤ 𝜖               ∀ 𝑡 ∈ [𝑡0 − 𝑎, 𝑡0 + 𝑎] 

So, 

𝑆𝑢𝑝𝑡∈[𝑡0−𝑎,𝑡0+𝑎]||𝑥𝑛(𝑡) − 𝑥∗(𝑡)|| ≤ 𝜖  

⟹ 𝑥𝑛 → 𝑥∗  𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 

Since, 𝑥𝑛 is continuous, 𝑥∗ is also continuous 

𝑑(𝑥𝑛, 𝑥∗) < 𝜖 

Hence 𝑋 is complete metric space induced by norm. 

Define the fixed point operator 𝑇:  𝑋 → 𝑋  by 

𝑇𝑥(𝑡) = 𝑥0 + ∫𝑓(𝜏, 𝑥(𝜏))

𝑡

𝑡0

𝑑𝜏                                                         (3.19) 
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𝑇𝑦(𝑡) = 𝑥0 + ∫𝑓(𝜏, 𝑦(𝜏))

𝑡

𝑡0

𝑑𝜏                                                         (3.20) 

To show that 𝑇 is well defined 

||𝑇𝑥(𝑡) − 𝑥0|| = ||∫ 𝑓(𝜏, 𝑥(𝜏))

𝑡

𝑡0

𝑑𝜏|| 

≤ ∫ ||𝑓(𝜏, 𝑥(𝜏))||

𝑡

𝑡0

𝑑𝜏 

≤ 𝑀 ∫𝑑𝜏

𝑡

𝑡0

 

= 𝑀|𝑡 − 𝑡0| 

≤ 𝑀𝑎 

||𝑇𝑥(𝑡) − 𝑥0|| ≤ 𝑟,                 𝑎 ≤
𝑟

𝑀
                                                            (3.21) 

So, 

𝑇𝑥(𝑡) ∈ 𝐵𝑟
̅̅ ̅(𝑥0)   ∀ 𝑡 ∈  [𝑡0 − 𝑎, 𝑡0 + 𝑎]. 

To show contraction 

||𝑇𝑥(𝑡) − 𝑇𝑦(𝑡)||=||∫ [𝑓(𝜏, 𝑥(𝜏)) − 𝑓(𝜏, 𝑦(𝜏))]
𝑡

𝑡0
𝑑𝜏|| 

≤ ∫ ||𝑓(𝜏, 𝑥(𝜏)) − 𝑓(𝜏, 𝑦(𝜏))||

𝑡

𝑡0

𝑑𝜏 
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≤ ∫𝐿(𝜏)||𝑥(𝜏) − 𝑦(𝜏)||

𝑡

𝑡0

𝑑𝜏 

≤ ∫𝐿(𝜏) max
𝑠∈[𝑡0−𝑎,𝑡0+𝑎]

||𝑥(𝑠) − 𝑦(𝑠)||

𝑡

𝑡0

𝑑𝜏 

≤ 𝐿0||𝑥 − 𝑦|||𝑡 − 𝑡0| 

||𝑇𝑥(𝑡) − 𝑇𝑦(𝑡)|| ≤ 𝐿0𝑎||𝑥 − 𝑦||                                                         (3.22) 

Since 𝐿0𝑎 < 1 then 𝑇 is contraction. 
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CHAPTER IV 

Stability Analysis 

Since the state equation (3.5) depends on the previous states, it suffices to analyze (3.1) 

– (3.4). 

Existence of Equilibria 

To find the equilibria, let the system (3.1) – (3.4) be 

𝑓1(𝑡, 𝐵) = 𝑝𝜂𝑊𝐸 − 𝜃1𝐵 − 𝛼𝐵𝐴 − 𝜇𝐵 − 𝛾𝐵𝑊 = 0                                              (4.1) 

𝑓2(𝑡, 𝐴) = 𝛼𝐵𝐴 + 𝜆 − 𝜃2𝐴 − 𝜇𝐴 + (1 − 𝑝)𝑊𝐸 − 𝜙𝑊𝐴 − 𝛽𝐴𝐸 = 0               (4.2) 

𝑓3(𝑡, 𝐸) = 𝛽𝐴𝐸 − 𝜂𝑊𝐸 − 𝜃3𝐸 − 𝜇𝐸 = 0                                                                 (4.3) 

𝑓4(𝑡,𝑊) = 𝛾𝐵𝑊 + 𝜙𝑊𝐴 − 𝜇𝑊 = 0                                                                         (4.4) 

On solving (4.1) – (4.4), the independence equilibrium is found to be 

𝐸∗ = (𝐵0, 𝐴0, 𝐸0,𝑊0) = (0,
𝜆

𝜇 + 𝜃2
, 0, 0) 

And the interdependence equilibrium𝐸∗∗ = (𝐵∗, 𝐴∗, 𝐸∗,𝑊∗) 

𝐵∗ =
𝜇 − 𝜙𝐴∗

𝛾
                                                                        (4.5) 

𝑊∗ =
𝛽𝐴∗ − 𝜃3 − 𝜇

𝜂
                                                                 (4.6) 

𝐸∗ =
[𝜂(𝜃1 + 𝜇) − 𝛾(𝜃3 + 𝜇) + (𝜂𝛼 + 𝛾𝛽)𝐴∗](𝜇 − 𝜙𝐴∗)

𝛾𝑝𝜂(𝛽𝐴∗ − 𝜃3 − 𝜇)
                      (4.7) 

Which𝐴∗ depend on 

𝑎0𝐴
3 + 𝑎1𝐴

2 + 𝑎2𝐴 + 𝑎3 = 0                                                 (4.8) 

Where, 
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𝑎0 = 𝑝𝛽𝜙(𝜂𝛼 + 𝛾𝛽) 

𝑎1 = 𝑝𝜙𝛽(𝛾𝛽 − 𝜂𝛼) − (𝜂𝛼 + 𝛾𝛽)[𝑝𝛽𝜇 − 𝜙(1 − 𝑝)(𝜃3 + 𝜇)] + 𝑝𝛽𝜙[𝜂(𝜃1 + 𝜇)

− 𝛾(𝜃3 + 𝜇)] 

𝑎2 = 𝑝𝜂𝛼[𝜇𝛽 + 𝜙(𝜙𝛽 + 𝜇)] + 𝑝𝛾𝛽[𝜂(𝜆 − 𝜃2 − 𝜇) − 2𝜙(𝜃3 + 𝜇)]

− 𝜇(1 − 𝑝)(𝜃3 + 𝜇)(𝜂𝛼 + 𝛾𝛽) − [𝑝𝛽𝜇 − 𝜙(1 − 𝑝)(𝜃3 + 𝜇)][𝜂(𝜃1 + 𝜇)

− 𝛾(𝜃3 + 𝜇)] 

𝑎3 = −𝑝𝜂[𝛼𝜇(𝜙𝛽 + 𝜇) + 𝛾(𝜃3 + 𝜇)(𝜆 − 𝜃2 − 𝜇)] + 𝑝𝜙𝛾(𝜃3 + 𝜇)2

− 𝜇(1 − 𝑝)(𝜃3 + 𝜇)[𝜂(𝜃1 + 𝜇) − 𝛾(𝜃3 + 𝜇)] 

 

Reproduction Number 

A parameter describing the progressive student performance in the dynamics can be obtain 

using the Next generation matrix (NGM) approach introduced by (Diekmann, O. , et al., 

2009) 

As in the literature, the system (3.1) – (3.4) can be split into  

Transition part 

𝑉 = [

−𝜃1 − 𝜇
0
0
0

0
−𝜃2 − 𝜇

0
0

0
0

−𝜃3 − 𝜇
0

0
0
0

−𝜇

] 

And intermingling part 

𝑔 =

[
 
 
 
 

𝑝𝜂𝑊𝐸 − 𝛼𝐵𝐴 − 𝛾𝐵𝑊

𝛼𝐵𝐴 + (1 − 𝑝)𝜂𝑊𝐸 − 𝜙𝑊𝐴 − 𝛽𝐴𝐸
𝛽𝐴𝐸 − 𝜂𝑊𝐸
𝛾𝐵𝑊 + 𝜙𝑊𝐴

0 ]
 
 
 
 

 

Linearizing 𝑔 around the independence equilibrium 
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𝐹 =

[
 
 
 
 
 
 
 
 
𝜕𝑔1

𝜕𝐵
𝜕𝑔2

𝜕𝐵
𝜕𝑔3

𝜕𝐵
𝜕𝑔4

𝜕𝐵

𝜕𝑔1

𝜕𝐴
𝜕𝑔2

𝜕𝐴
𝜕𝑔3

𝜕𝐴
𝜕𝑔4

𝜕𝐴

𝜕𝑔1

𝜕𝐸
𝜕𝑔2

𝜕𝐸
𝜕𝑔3

𝜕𝐸
𝜕𝑔4

𝜕𝐸

𝜕𝑔1

𝜕𝐺
𝜕𝑔2

𝜕𝐺
𝜕𝑔3

𝜕𝐺
𝜕𝑔4

𝜕𝐺 ]
 
 
 
 
 
 
 
 

 

= [

−𝛼𝐴 − 𝛾𝑊
𝛼𝐴
0

𝛾𝑊

−𝛼𝐵
𝛼𝐵 − 𝜙𝑊 − 𝛽𝐸

𝛽𝐸
𝜙𝑊

𝑝𝜂𝑊
(1 − 𝑝)𝜂𝑊 − 𝛽𝐴

𝛽𝐴 − 𝜂𝑊
0

𝑝𝜂𝐸
(1 − 𝑝)𝜂𝐸 − 𝜙𝐴

−𝜂𝐸
𝜙𝐴 + 𝛾𝐵

] 

𝐹0 =

[
 
 
 
 
 −

𝛼𝜆

𝜃2 + 𝜇
𝛼𝜆

𝜃2 + 𝜇
0
0

0
0
0
0

0

−
𝛽𝜆

𝜃2 + 𝜇
𝛽𝜆

𝜃2 + 𝜇
0

0

−
𝜙𝜆

𝜃2 + 𝜇
0
𝜙𝜆

𝜃2 + 𝜇 ]
 
 
 
 
 

 

𝑉−1 =

[
 
 
 
 −

1

𝜃1 + 𝜇
0
0
0

0

−
1

𝜃2 + 𝜇
0
0

0
0

−
1

𝜃3 + 𝜇
0

0
0
0

−
1

𝜇]
 
 
 
 

 

−𝐹0𝑉
−1 =

[
 
 
 
 
 

−

𝛼𝜆

(𝜃2 + 𝜇)(𝜃1 + 𝜇)
𝛼𝜆

(𝜃2 + 𝜇)(𝜃1 + 𝜇)
0
0

0
0
0
0

0
𝛽𝜆

(𝜃2 + 𝜇)(𝜃3 + 𝜇)

−
𝛽𝜆

(𝜃2 + 𝜇)(𝜃3 + 𝜇)
0

0

−
𝜙𝜆

𝜇(𝜃2 + 𝜇)
0
𝜙𝜆

𝜇(𝜃2 + 𝜇) ]
 
 
 
 
 

 

The characteristics equation 

|−𝐹0𝑉
−1 − 𝐾𝐼| = 0                                                           (4.9) 

The eigenvalues  

𝐾1 = −
𝛼𝜆

(𝜃2 + 𝜇)(𝜃1 + 𝜇)
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𝐾2 = 0 

𝐾3 =
𝛽𝜆

(𝜃2 + 𝜇)(𝜃3 + 𝜇)
 

𝐾4 =
𝜙𝜆

𝜇(𝜃2 + 𝜇)
 

By (Diekmann, O, et al., 2009), the dominant eigenvalue is the reproduction number, 

hence  

𝑅0 =
𝜙𝜆

𝜇(𝜃2 + 𝜇)
                                                       (4.10 )      

Provided, 

𝜙 >
𝛽𝜇

(𝜃3 + 𝜇)
                                                             (4.11) 

 

Local Stability 

We formed the Jacobian matrix 

𝐽 =

[
 
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝐵
𝜕𝑓2
𝜕𝐵
𝜕𝑓3
𝜕𝐵
𝜕𝑓4
𝜕𝐵

𝜕𝑓1
𝜕𝐴
𝜕𝑓2
𝜕𝐴
𝜕𝑓3
𝜕𝐴
𝜕𝑓4
𝜕𝐴

𝜕𝑓1
𝜕𝐸
𝜕𝑓2
𝜕𝐸
𝜕𝑓3
𝜕𝐸
𝜕𝑓4
𝜕𝐸

𝜕𝑓1
𝜕𝐺
𝜕𝑓2
𝜕𝐺
𝜕𝑓3
𝜕𝐺
𝜕𝑓4
𝜕𝐺]

 
 
 
 
 
 
 
 

 

𝐽

= [

𝜃1 − 𝛼𝐴 − 𝜇 − 𝛾𝑊
𝛼𝐴
0

𝛾𝑊

−𝛼𝐵
𝛼𝐵 − 𝜃2 − 𝜇 − 𝜙𝑊 − 𝛽𝐸

𝛽𝐸
𝜙𝑊

𝑝𝜂𝑊
(1 − 𝑝)𝜂𝑊 − 𝛽𝐴

𝛽𝐴 − 𝜂𝑊 − 𝜃3 − 𝜇
0

𝑝𝜂𝐸
(1 − 𝑝)𝜂𝐸 − 𝜙𝐴

−𝜂𝐸
𝜙𝐴 + 𝛾𝐵 − 𝜇

] 
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Theorem 8: the independence𝐸0 equilibrium is locally asymptotically stable 

Proof  

The Jacobian matrix at 𝐸∗ = (0,
𝜆

𝜇+𝜃2
, 0, 0)gives 

𝐽𝐸∗
=

[
 
 
 
 
 −𝜃1 −

𝛼𝜆

𝜃2 + 𝜇
− 𝜇

𝛼𝜆

𝜃2 + 𝜇
0
0

0
−𝜃2 − 𝜇

0
0

0

−
𝛽𝜆

𝜃2 + 𝜇
𝛽𝜆

𝜃2 + 𝜇
− 𝜃3 − 𝜇

0

0

−
𝜙𝜆

𝜃2 + 𝜇
0

𝜙𝜆

𝜃2 + 𝜇
− 𝜇

]
 
 
 
 
 

 

The characteristic polynomial 

|𝐽𝐸∗
− 𝐾𝐼| = 0                                                             (4.12) 

Where 

𝐼 = [

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

] 

Hence 

𝑑𝑒𝑡
|

|
−𝜃1 −

𝛼𝜆

𝜃2 + 𝜇
− 𝜇 − 𝐾

𝛼𝜆

𝜃2 + 𝜇
0
0

0
−𝜃2 − 𝜇 − 𝐾

0
0

0

−
𝛽𝜆

𝜃2 + 𝜇
𝛽𝜆

𝜃2 + 𝜇
− 𝜃3 − 𝜇 − 𝐾

0

0

−
𝜙𝜆

𝜃2 + 𝜇
0

𝜙𝜆

𝜃2 + 𝜇
− 𝜇 − 𝐾

|

|
= 0 

 

The eigenvalues obtained are 

𝐾1 = −𝜃1 −
𝛼𝜆

𝜃2 + 𝜇
− 𝜇                                              (4.13) 
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𝐾2 = −𝜃2 − 𝜇                                                         (4.14) 

𝐾3 =
𝛽𝜆

𝜃2 + 𝜇
− 𝜃3 − 𝜇 

=
𝛽𝜇𝑅0

𝜙
− (𝜃3 + 𝜇) 

Since from (4.11) 

𝜃3 + 𝜇 >
𝛽𝜇

𝜙
 

𝐾3 =
𝛽𝜇

𝜙
(𝑅0 − 1)                                              (4.15)   

𝐾4 =
𝜙𝜆

𝜃2 + 𝜇
− 𝜇 

= 𝜇(𝑅0 − 1)                                                    (4.16) 

For 𝐸∗ to be stable we require𝐾3, 𝐾4 < 0, which implies that𝑅0 < 1. 

 

Global Stability 

Theorem 9: the independence equilibrium 𝐸∗ is globally asymptotically stable in the 

interior of Ψ 

Proof 

Define 𝐿: {(𝐵, 𝐴, 𝐸,𝑊) ∈ Ψ ∶  A > 0} →  ℝ by 

𝐿 =
1

2
[𝐵 + 𝐴 − 𝐴0 + 𝐸 + 𝑊]2                                                        (4.17) 

Since, 

𝐿(𝐵0, 𝐴0, 𝐸0,𝑊0) = 0 
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𝐿(𝐵, 𝐴, 𝐸,𝑊) > 0, 𝐵 ≠ 𝐵0, 𝐴 ≠ 𝐴0, 𝐸 ≠ 𝐸0, 𝑊 ≠ 𝑊0 

Then 𝐿 is positive definite. 

The time derivative of 𝐿 ∈ 𝐶′ 

𝑑𝐿

𝑑𝑡
= [𝐵 + 𝐴 − 𝐴0 + 𝐸 + 𝑊] [

𝑑𝐵

𝑑𝑡
+

𝑑𝐴

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝑊

𝑑𝑡
]                       (4.18) 

Substituting (3.1) – (3.4) into (4.18) gives 

𝑑𝐿

𝑑𝑡
= [𝐵 + 𝐴 − 𝐴0 + 𝐸 + 𝑊][−(𝜃1 + 𝜇)𝐵 + (𝜃2 + 𝜇)𝐴 − (𝜃3 + 𝜇)𝐸 − 𝜇𝑊 + 𝜆] 

= −(𝜃1 + 𝜇)𝐵2 − (𝜃3 + 𝜇)𝐸2 − 𝜇𝑊2 − (𝜃2 + 𝜇)𝐴𝐵 − (𝜃3 + 𝜇)𝐵𝐸 − 𝜇𝑊𝐸

− (𝜃1 + 𝜇)(𝐴 − 𝐴0)𝐵 − (𝜃2 + 𝜇)(𝐴 − 𝐴0)𝐴 − (𝜃3 + 𝜇)(𝐴 − 𝐴0)𝐸

− 𝜇𝑊(𝐴 − 𝐴0) − (𝜃1 + 𝜇)𝐵𝐸 − (𝜃2 + 𝜇)𝐴𝐸 − 𝜇𝑊𝐸 − (𝜃1 + 𝜇)𝐵𝑊

− (𝜃2 + 𝜇)𝐴𝑊 − (𝜃3 + 𝜇)𝐸𝑊

+ 𝜆(𝐵 + 𝐴 − 𝐴0 + 𝐸 + 𝑊)                                                                   (4.19) 

Applying the relation between arithmetic and geometric means: ∀ 𝑥, 𝑦 ∈ ℝ, 𝑥𝑦 ≤

1

2
𝑥2 +

1

2
𝑦2, (4.19) becomes 

 

 

 



40 
 

𝑑𝐿

𝑑𝑡
≤ −(𝜃1 + 𝜇)𝐵2 − (𝜃3 + 𝜇)𝐸2 − 𝜇𝑊2 − (𝜃2 + 𝜇) (

1

2
𝐴2 +

1

2
𝐵2)

− (𝜃3 + 𝜇) (
1

2
𝐵2 +

1

2
𝐸2) − 𝜇 (

1

2
𝑊2 +

1

2
𝐵2)

− (𝜃1 + 𝜇) (
1

2
(𝐴 − 𝐴0)2 +

1

2
𝐵2) − (𝜃2 + 𝜇) (

1

2
𝐴2 +

1

2
(𝐴 − 𝐴0)2)

− (𝜃3 + 𝜇) (
1

2
(𝐴 − 𝐴0)2 +

1

2
𝐸2) − 𝜇 (

1

2
𝑊2 +

1

2
(𝐴 − 𝐴0)2)

− (𝜃1 + 𝜇) (
1

2
𝐵2 +

1

2
𝐸2) − (𝜃2 + 𝜇) (

1

2
𝐴2 +

1

2
𝐸2) − 𝜇 (

1

2
𝑊2 +

1

2
𝐸2)

− (𝜃1 + 𝜇) (
1

2
𝐵2 +

1

2
𝑊2) − (𝜃2 + 𝜇) (

1

2
𝐴2 +

1

2
𝑊2)

− (𝜃3 + 𝜇) (
1

2
𝐸2 +

1

2
𝑊2) + 𝜆(𝐵 + 𝐴 − 𝐴0 + 𝐸 + 𝑊) 

= − [(4𝜇 +
5

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3)𝐵2 + (4𝜇 +

1

2
𝜃1 +

1

2
𝜃2 +

5

2
𝜃3)𝐸2 + 2(𝜃2 + 𝜇)𝐴2

+ (4𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3)𝑊2

+ (2𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3) (𝐴 − 𝐴0)2

− 𝜆(𝐵 + 𝐴 − 𝐴0 + 𝐸 + 𝑊)]                                                              (4.20) 

Since  

(4𝜇 +
5

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3)𝐵2 + (4𝜇 +

1

2
𝜃1 +

1

2
𝜃2 +

5

2
𝜃3)𝐸2 + 2(𝜃2 + 𝜇)𝐴2

+ (4𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3)𝑊2

+ (2𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3) (𝐴 − 𝐴0)2 > 𝜆(𝐵 + 𝐴 − 𝐴0 + 𝐸 + 𝑊) 

Then 

𝑑𝐿

𝑑𝑡
< 0                                                                      (4.21) 

Hence 𝐸∗ is globally asymptotically stable. 
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Theorem 10: the interdependence equilibrium 𝐸∗∗ is globally asymptotically stable in 

the interior of Ψ 

Proof 

Define 𝐿: {(𝐵, 𝐴, 𝐸,𝑊) ∈ Ψ ∶ B, A, E, W > 0} →  ℝ by 

𝐿 =
1

2
[𝐵 − 𝐵∗ + 𝐴 − 𝐴∗ + 𝐸 − 𝐸∗ + 𝑊 − 𝑊∗]2                                       (4.22) 

Since, 

𝐿(𝐵∗, 𝐴∗, 𝐸∗,𝑊∗) = 0 

𝐿(𝐵, 𝐴, 𝐸, 𝑅) > 0, 𝐵 ≠ 𝐵∗, 𝐴 ≠ 𝐴∗, 𝐸 ≠ 𝐸∗, 𝑊 ≠ 𝑊∗ 

𝐿is positive definite. 

The time derivative of 𝐿 ∈ 𝐶′ 

𝑑𝐿

𝑑𝑡
= [𝐵 − 𝐵∗ + 𝐴 − 𝐴∗ + 𝐸 − 𝐸∗ + 𝑊 − 𝑊∗] [

𝑑𝐵

𝑑𝑡
+

𝑑𝐴

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝑊

𝑑𝑡
]              (4.23) 

Substituting (3.1) – (3.4) into (4.23) gives 

𝑑𝐿

𝑑𝑡
= −(𝜃1 + 𝜇)(𝐵 − 𝐵∗)𝐵 − (𝜃2 + 𝜇)(𝐵 − 𝐵∗)𝐴 − (𝜃3 + 𝜇)(𝐵 − 𝐵∗)𝐸

− 𝜇𝑊(𝐵 − 𝐵∗) − (𝜃1 + 𝜇)(𝐴 − 𝐴∗)𝐵 − (𝜃2 + 𝜇)(𝐴 − 𝐴∗)𝐴

− (𝜃3 + 𝜇)(𝐴 − 𝐴∗)𝐸 − 𝜇𝑊(𝐴 − 𝐴∗) − (𝜃1 + 𝜇)(𝐸 − 𝐸∗)𝐵

− (𝜃2 + 𝜇)(𝐸 − 𝐸∗)𝐴 − (𝜃3 + 𝜇)(𝐸 − 𝐸∗)𝐸 − 𝜇𝑊(𝐸 − 𝐸∗)

− (𝜃1 + 𝜇)(𝑊 − 𝑊∗)𝐵 − (𝜃2 + 𝜇)(𝑊 − 𝑊∗)𝐴 − (𝜃3 + 𝜇)(𝑊 − 𝑊∗)𝐸

− 𝜇(𝑊 − 𝑊∗)𝑊

+ 𝜆(𝐵 − 𝐵∗ + 𝐴 − 𝐴∗ + 𝐸 − 𝐸∗ + 𝑊 − 𝑊∗)                                       (4.25) 

Applying the relation between arithmetic and geometric means: ∀ 𝑥, 𝑦 ∈ ℝ, 𝑥𝑦 ≤

1

2
𝑥2 +

1

2
𝑦2, (4.25) becomes 
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𝑑𝐿

𝑑𝑡
≤ −(𝜃1 + 𝜇) (

1

2
𝐵2 +

1

2
(𝐵 − 𝐵∗)2) − (𝜃2 + 𝜇) (

1

2
𝐴2 +

1

2
(𝐵 − 𝐵∗)2)

− (𝜃3 + 𝜇) (
1

2
𝐸2 +

1

2
(𝐵 − 𝐵∗)2) − 𝜇 (

1

2
𝑊2 +

1

2
(𝐵 − 𝐵∗)2)

− (𝜃1 + 𝜇) (
1

2
𝐵2 +

1

2
(𝐴 − 𝐴∗)2) − (𝜃2 + 𝜇) (

1

2
𝐴2 +

1

2
(𝐴 − 𝐴∗)2)

− (𝜃3 + 𝜇) (
1

2
𝐸2 +

1

2
(𝐴 − 𝐴∗)2) − 𝜇 (

1

2
𝑊2 +

1

2
(𝐴 − 𝐴∗)2)

− (𝜃1 + 𝜇) (
1

2
𝐵2 +

1

2
(𝐸 − 𝐸∗)2) − (𝜃2 + 𝜇) (

1

2
𝐴2 +

1

2
(𝐸 − 𝐸∗)2)

− (𝜃3 + 𝜇) (
1

2
𝐸2 +

1

2
(𝐸 − 𝐸∗)2) − 𝜇 (

1

2
𝑊2 +

1

2
(𝐸 − 𝐸∗)2)

− (𝜃1 + 𝜇) (
1

2
𝐵2 +

1

2
(𝑊 − 𝑊∗)2) − (𝜃2 + 𝜇) (

1

2
𝐴2 +

1

2
(𝑊 − 𝑊∗)2)

− (𝜃3 + 𝜇) (
1

2
𝐸2 +

1

2
(𝑊 − 𝑊∗)2) − 𝜇 (

1

2
𝑊2 +

1

2
(𝑊 − 𝑊∗)2)

+ 𝜆(𝐵 − 𝐵∗ + 𝐴 − 𝐴∗ + 𝐸 − 𝐸∗ + 𝑊 − 𝑊∗) 

= −[2(𝜃1 + 𝜇)𝐵2 + 2(𝜃2 + 𝜇)𝐴2 + 2(𝜃3 + 𝜇)𝐸2 + 2𝜇𝑊2

+ (2𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3) (𝐵 − 𝐵∗)2

+ (2𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3) (𝐴 − 𝐴∗)2

+ (2𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3) (𝐸 − 𝐸∗)2

+ (2𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3) (𝑊 − 𝑊∗)2

− 𝜆(𝐵 − 𝐵∗ + 𝐴 − 𝐴∗ + 𝐸 − 𝐸∗ + 𝑊 − 𝑊∗)] 
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Since 

2(𝜃1 + 𝜇)𝐵2 + 2(𝜃2 + 𝜇)𝐴2 + 2(𝜃3 + 𝜇)𝐸2 + 2𝜇𝑊2

+ (2𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3) (𝐵 − 𝐵∗)2

+ (2𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3) (𝐴 − 𝐴∗)2

+ (2𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3) (𝐸 − 𝐸∗)2

+ (2𝜇 +
1

2
𝜃1 +

1

2
𝜃2 +

1

2
𝜃3) (𝑊 − 𝑊∗)2

> 𝜆(𝐵 − 𝐵∗ + 𝐴 − 𝐴∗ + 𝐸 − 𝐸∗ + 𝑊 − 𝑊∗) 

Then  

𝑑𝐿

𝑑𝑡
< 0                                                                     (4.26) 

Hence 𝐸∗∗ is globally asymptotically stable. 
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CHAPTER V 

Formulation of Optimal Control 

The optimal control strategy is aimed at optimizing student’s academic performance 

which reflects in the increase of number of graduating students.   

Let the control rates: 

𝑢1(𝑡) ∈ [0, 𝑢1(𝑡)𝑚𝑎𝑥] be the self-motivation that makes weak student to become below 

average student. 

𝑢2(𝑡) ∈ [0, 𝑢2(𝑡)𝑚𝑎𝑥] be punctuality in class that makes weak student to become 

average. 

𝑢3(𝑡) ∈ [0, 𝑢3(𝑡)𝑚𝑎𝑥] be the interest in the subject that makes below average student to 

become average. 

𝑢4(𝑡) ∈ [0, 𝑢4(𝑡)𝑚𝑎𝑥] be regular studying that makes average student to become 

excellent. 

𝑢5(𝑡) ∈ [0, 𝑢5(𝑡)𝑚𝑎𝑥] be examination performance and character that make below 

average, average and excellent students to graduate. 

Then the control dynamics is described by the nonlinear system of ODEs below 

𝑑𝐵

𝑑𝑡
= 𝑝𝜂𝑊𝐸 − (𝜃1 + 𝑢5)𝐵 − (𝛼 + 𝑢3)𝐵𝐴 − 𝜇𝐵

− (𝛾 + 𝑢1)𝐵𝑊                                                                                     (5.1) 

𝑑𝐴

𝑑𝑡
= (𝛼 + 𝑢3)𝐵𝐴 + 𝜆 − (𝜃2 + 𝑢5)𝐴 − 𝜇𝐴 + (1 − 𝑝)𝑊𝐸 − (𝜙 + 𝑢2)𝑊𝐴

− (𝛽 + 𝑢4)𝐴𝐸   (5.2) 

𝑑𝐸

𝑑𝑡
= (𝛽 + 𝑢4)𝐴𝐸 − 𝜂𝑊𝐸 − (𝜃3 + 𝑢5)𝐸

− 𝜇𝐸                                                                                                       (5.3) 



45 
 

𝑑𝑊

𝑑𝑡
= (𝛾 + 𝑢1)𝐵𝑊 + (𝜙 + 𝑢2)𝑊𝐴

− 𝜇𝑊                                                                                                     (5.4) 

𝑑𝐺

𝑑𝑡
= (𝜃1 + 𝑢5)𝐵 + (𝜃2 + 𝑢5)𝐴 + (𝜃3 + 𝑢5)𝐸

− 𝜇𝐺                                                                                                       (5.5) 

Subject to the objective functional 

𝐽(𝑢(𝑡)) = ∫[𝑐1𝑊 + 𝑐2𝑊 + 𝑐3𝐵 + 𝑐4𝐴 + 𝑐5(𝐵 + 𝐴 + 𝐸) +

𝑡

𝑡0

𝑐6

2
𝑢1

2(𝑡) +
𝑐7

2
𝑢2

2(𝑡)

+
𝑐8

2
𝑢3

2(𝑡) +
𝑐9

2
𝑢4

2(𝑡) +
𝑐10

2
𝑢5

2(𝑡)]𝑑𝑡                                        (5.6) 

Where 𝑐𝑖 ≥ 0, 𝑖 = 1,2, … ,10 are the weights parameters that balanced the size of the 

terms. 

As in (Fleming, W. & Rishel, R., 1975) we seek for optimal control 𝑢∗ such that  

𝐽(𝑢∗) = min{ 𝐽(𝑢) ∶ 𝑢 ∈ 𝓤}                                     (5.7) 

Where  

𝓤is the set of admissible controls defined by 

𝓤 = {𝑢𝑖(𝑡)  ∶ 0 ≤ 𝑢𝑖(𝑡) ≤ 1, 𝑖 = 1,2, … 10, 𝑢𝑖(𝑡) 𝑖𝑠 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒} 

 

Characterization of Optimal Control 

To derive the optimal academic performance of student, define Hamiltonian  

𝐻 = 𝑐1𝑊 + 𝑐2𝑊 + 𝑐3𝐵 + 𝑐4𝐴 + 𝑐5(𝐵 + 𝐴 + 𝐸) +
𝑐6

2
𝑢1

2(𝑡) +
𝑐7

2
𝑢2

2(𝑡) +
𝑐8

2
𝑢3

2(𝑡)

+
𝑐9

2
𝑢4

2(𝑡) +
𝑐10

2
𝑢5

2(𝑡) + ∑Λ𝑖𝑓𝑖

5

𝑖=1
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= 𝑐1𝑊 + 𝑐2𝑊 + 𝑐3𝐵 + 𝑐4𝐴 + 𝑐5(𝐵 + 𝐴 + 𝐸) +
𝑐6

2
𝑢1

2(𝑡) +
𝑐7

2
𝑢2

2(𝑡) +
𝑐8

2
𝑢3

2(𝑡)

+
𝑐9

2
𝑢4

2(𝑡) +
𝑐10

2
𝑢5

2(𝑡)

+ Λ1[𝑝𝜂𝑊𝐸 − (𝜃1 + 𝑢5)𝐵 − (𝛼 + 𝑢3)𝐵𝐴 − 𝜇𝐵 − (𝛾 + 𝑢1)𝐵𝑊]

+ Λ2[(𝛼 + 𝑢3)𝐵𝐴 + 𝜆 − (𝜃2 + 𝑢5)𝐴 − 𝜇𝐴 + (1 − 𝑝)𝑊𝐸

− (𝜙 + 𝑢2)𝑊𝐴 − (𝛽 + 𝑢4)𝐴𝐸]

+ Λ3[(𝛽 + 𝑢4)𝐴𝐸 − 𝜂𝑊𝐸 − (𝜃3 + 𝑢5)𝐸 − 𝜇𝐸]

+ Λ4[(𝛾 + 𝑢1)𝐵𝑊 + (𝜙 + 𝑢2)𝑊𝐴 − 𝜇𝑊]

+ Λ5[(𝜃1 + 𝑢5)𝐵 + (𝜃2 + 𝑢5)𝐴 + (𝜃3 + 𝑢5)𝐸

− 𝜇𝐺]                                                                                                         (5.8) 

 

Theorem 11: let 𝒙 = (𝐵, 𝐴, 𝐸, 𝑊, 𝐺) with associated optimal control variales 

𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5 then there exist a co-state variable satisfying  

𝑑Λ𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝒙
,     𝑖 = 1,2,3,4,5                                             (5.9) 

Proof  

Applying (2.7) 

𝑑Λ1

𝑑𝑡
= −

𝜕𝐻

𝜕𝐵
 

𝑑Λ1

𝑑𝑡
= 𝑐3 + 𝑐5 − [𝜃1 + 𝑢5 + (𝛼 + 𝑢3)𝐴 + 𝜇 + (𝛾 + 𝑢1)𝑊]Λ1 + (𝛼 + 𝑢3)𝐴Λ2

+ (𝛾 + 𝑢1)𝑊Λ4 + (𝜃1 + 𝑢5)Λ5                                                   (5.10) 

Analogously,  
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𝑑Λ2

𝑑𝑡
= 𝑐4 + 𝑐5 − (𝛼 + 𝑢3)𝐵Λ1

+ [(𝛼 + 𝑢3)𝐵 − 𝜃2 − 𝑢5 − 𝜇 − (𝜙 + 𝑢2)𝑊 − (𝛽 + 𝑢4)𝐸]Λ2

+ (𝛽 + 𝑢4)𝐸Λ3 + (𝜙 + 𝑢2)𝑊Λ4

+ (𝜃2 + 𝑢5)Λ5                                      (5.11) 

𝑑Λ3

𝑑𝑡
= 𝑐5 + 𝑝𝜂𝑊Λ1 + [(1 − 𝑃)𝑊 − (𝛽 + 𝑢4)𝐴]Λ2

+ [(𝛽 + 𝑢4)𝐴 − 𝜂𝑊 − 𝜃3 − 𝑢5 − 𝜇]Λ3

+ (𝜃3

+ 𝑢5)Λ5                                                                                                          (5.12) 

𝑑Λ4

𝑑𝑡
= 𝑐1 + 𝑐2 + [𝑝𝜂𝐸 − (𝛾 + 𝑢1)𝐵]Λ1 + [(1 − 𝑃)𝐸 − (𝜙 + 𝑢2)𝐴]Λ2 − 𝜂𝐸Λ3

+ [(𝛾 + 𝑢1)𝐵 + (𝜙 + 𝑢2)𝐴 − 𝜇]Λ4                                                        (5.13) 

𝑑Λ5

𝑑𝑡
= −𝜇Λ5                                                       (5.14) 

Subject to transversality condition as in (Mccoy, L. P. ., 2005; McDonald, G. .,  1957) 

Λ1(𝑡) = Λ2(𝑡) = Λ3(𝑡) = Λ4(𝑡) = Λ5(𝑡) = 0                        (5.15) 

Applying the optimality condition 
𝜕𝐻

𝜕𝑢𝑖
= 0,   𝑖 = 1,2,3,4,5 implies that 

𝑢1 =
𝐵𝑊(Λ1 − Λ4)

𝑐6
                                                      (5.16) 

𝑢2 =
𝐴𝑊(Λ2 − Λ4)

𝑐7
                                                     (5.17) 

𝑢3 =
𝐵𝐴(Λ1 − Λ2)

𝑐8
                                                    (5.18) 

𝑢4 =
𝐴𝐸(Λ2 − Λ3)

𝑐9
                                                      (5.19) 
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𝑢5 =
𝐵Λ1 + 𝐴Λ2 + 𝐸Λ3 − (𝐵 + 𝐴 + 𝐸)Λ5

𝑐10
                         (5.20) 

Hence 

𝑢1
∗(𝑡) = min {1, 𝑚𝑎𝑥 (0,

𝐵𝑊(Λ1 − Λ4)

𝑐6
)}                                                     (5.21) 

𝑢2
∗(𝑡) = min {1, 𝑚𝑎𝑥 (0,

𝐴𝑊(Λ2 − Λ4)

𝑐7
)}                                                     (5.22) 

𝑢3
∗(𝑡) = min {1, 𝑚𝑎𝑥 (0,

𝐵𝐴(Λ1 − Λ2)

𝑐8
)}                                                      (5.23) 

𝑢4
∗(𝑡) = min {1, 𝑚𝑎𝑥 (0,

𝐴𝐸(Λ2 − Λ3)

𝑐9
)}                                                      (5.24) 

𝑢5
∗(𝑡) = min {1, 𝑚𝑎𝑥 (0,

𝐵Λ1 + 𝐴Λ2 + 𝐸Λ3 − (𝐵 + 𝐴 + 𝐸)Λ5

𝑐10
)}           (5.25) 

By substituting values 𝑢1
∗, 𝑢2

∗, 𝑢3
∗, 𝑢4

∗ and 𝑢5
∗ into the ontrol system (5.1) – (5.5) we 

obtained  

𝑑𝐵

𝑑𝑡
= 𝑝𝜂𝑊𝐸 − (𝜃1

+ min {1, 𝑚𝑎𝑥 (0,
𝐵Λ1 + 𝐴Λ2 + 𝐸Λ3 − (𝐵 + 𝐴 + 𝐸)Λ5

𝑐10
)})𝐵

− (𝛼 + min {1, 𝑚𝑎𝑥 (0,
𝐵𝐴(Λ1 − Λ2)

𝑐8
)})𝐵𝐴 − 𝜇𝐵

− (𝛾 + min {1, 𝑚𝑎𝑥 (0,
𝐵𝑊(Λ1 − Λ4)

𝑐6
)})𝐵𝑊                 (5.26) 
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𝑑𝐴

𝑑𝑡
= (𝛼 + min {1, 𝑚𝑎𝑥 (0,

𝐵𝐴(Λ1 − Λ2)

𝑐8
)})𝐵𝐴 + 𝜆

− (𝜃2

+ 𝑚𝑖𝑛 {1, 𝑚𝑎𝑥 (0,
𝐵Λ1 + 𝐴Λ2 + 𝐸Λ3 − (𝐵 + 𝐴 + 𝐸)Λ5

𝑐10
)})𝐴

− 𝜇𝐴 + (1 − 𝑝)𝑊𝐸

− (𝜙 + {1, 𝑚𝑎𝑥 (0,
𝐴𝑊(Λ2 − Λ4)

𝑐7
)})𝑊𝐴

− (𝛽 + min {1, 𝑚𝑎𝑥 (0,
𝐴𝐸(Λ2 − Λ3)

𝑐9
)})𝐴𝐸                    (5.27) 

𝑑𝐸

𝑑𝑡
= (𝛽 + min {1, 𝑚𝑎𝑥 (0,

𝐴𝐸(Λ2 − Λ3)

𝑐9
)})𝐴𝐸 − 𝜂𝑊𝐸

− (𝜃3

+ min {1, 𝑚𝑎𝑥 (0,
𝐵Λ1 + 𝐴Λ2 + 𝐸Λ3 − (𝐵 + 𝐴 + 𝐸)Λ5

𝑐10
)})𝐸

− 𝜇𝐸                                                                                                            (5.28) 

𝑑𝑊

𝑑𝑡
= (𝛾 + min {1, 𝑚𝑎𝑥 (0,

𝐵𝑊(Λ1 − Λ4)

𝑐6
)})𝐵𝑊

+ (𝜙 + min {1, 𝑚𝑎𝑥 (0,
𝐴𝑊(Λ2 − Λ4)

𝑐7
)})𝑊𝐴

− 𝜇𝑊                                                                                                        (5.29) 



50 
 

𝑑𝐺

𝑑𝑡
= (𝜃1 + min {1, 𝑚𝑎𝑥 (0,

𝐵Λ1 + 𝐴Λ2 + 𝐸Λ3 − (𝐵 + 𝐴 + 𝐸)Λ5

𝑐10
)})𝐵

+ (𝜃2

+ min {1, 𝑚𝑎𝑥 (0,
𝐵Λ1 + 𝐴Λ2 + 𝐸Λ3 − (𝐵 + 𝐴 + 𝐸)Λ5

𝑐10
)})𝐴

+ (𝜃3

+ min {1, 𝑚𝑎𝑥 (0,
𝐵Λ1 + 𝐴Λ2 + 𝐸Λ3 − (𝐵 + 𝐴 + 𝐸)Λ5

𝑐10
)})𝐸

− 𝜇𝐺                                                                                                                (5.30) 
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CHAPTER VI 

Numerical Method and Simulation 

In order to solve the system (3.1) – (3.5) numerically, here we recalled the ODE 45 

algorithm which is based on an explicit Runge – Kutta (4, 5) formula, the Dormand – 

Prince pair (Baliyan, S. P., & Khama, D. ., 2020).  

Consider the problem of solving numerically the system of first order ODEs 

{
𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

𝑥(𝑡0) = 𝑥0

                                                       (6.1)  

Under suitable continuity and differentiability conditions approximation 𝑥𝑛 to the true 

solution of 𝑥(𝑡𝑛) at point 𝑡𝑛, 

Where 

𝑡𝑛+1 = 𝑡𝑛 + ℎ𝑛,    

ℎ𝑛 = 𝜃(𝑡𝑛)ℎ,      0 < 𝜃(𝑡𝑛) ≤ 1,       𝑛 = 0,1,2,… 

Can be obtained using an explicit Runge – Kutta (RK) formula given by 

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑛Φ(𝑥𝑛, 𝑡𝑛) 

𝑥𝑛+1 = 𝑥𝑛 + ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

                                                      (6.2) 

Where 

𝑘1 = ℎ𝑛𝑓(𝑥𝑛) 

𝑘𝑖 = ℎ𝑛𝑓 (𝑥𝑛 + ∑𝑎𝑖𝑗𝑘𝑗

𝑖−1

𝑗=1

) ,               𝑖 = 2,3, … . , 𝑠 

And usually 𝑥(𝑡0) = 𝑥0. 
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The local truncation error 𝜏𝑛+1, of this method at 𝑡𝑛+1 is given by 

𝜏𝑛+1 = 𝑥(𝑡𝑛) + ℎ𝑛Φ(𝑥(𝑡𝑛), ℎ𝑛) − 𝑥(𝑡𝑛+1)  

= ℎ𝑛Φ(𝑥(𝑡𝑛), ℎ𝑛) − [𝑥(𝑡𝑛+1) − 𝑥(𝑡𝑛)] 

Which using Taylor series expansion about 𝑡𝑛 gives 

𝜏𝑛+1 = ℎ𝑛Φ(𝑥(𝑡𝑛), ℎ𝑛) − ℎ𝑛∆[𝑥(𝑡𝑛), ℎ𝑛]                                    (6.3) 

Where 

∆[𝑥(𝑡), ℎ] = ∑
ℎ𝑟−1

𝑟!

∞

𝑟=1

𝑥𝑟(𝑡) 

If 𝜙 and ∆ agree to 𝑂(ℎ𝑝) then the process is said to be a 𝑝𝑡ℎ order RK formula (RKP) 

and 𝜏𝑛+1 can then be written  

𝜏𝑛+1 = ∑ℎ𝑛
𝑝+𝑗

𝜙𝑝+𝑗−1[𝑥(𝑡𝑛)],   

∞

𝑗=1

                                         (6.4) 

Where 

𝜙𝑟[𝑥(𝑡𝑛)] = ∑ 𝑎𝑖
(𝑟+1)

𝐹𝑖
(𝑟+1)[𝑥(𝑡𝑛)],   

𝑛𝑟+1

𝑖=1

         𝑟 = 1,2, … . ., 

Are termed error functions, 𝐹𝑖
(𝑟+1)

, 𝑖 = 1,2, … . , 𝑛𝑟+1. Being elementary differentials of 

order 𝑟 + 1of 𝑓. 

Note that if the formula is of order 𝑝then 𝜙𝑟 ≡ 0,   𝑟 = 1,2, … , 𝑝 − 1. This implies that 

𝑎𝑖
(𝑟+1)

= 0,    𝑖 = 1,2, … , 𝑛𝑟+1,    𝑟 = 1,2, … , 𝑝 − 1                       (6.5)  

For consistency (Kendra, C. ., 2018) the following equation must be satisfied: 
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𝑎1
(1)

= ∑𝑏𝑖 − 1

𝑠

𝑖=1

= 0,     (𝑛1 = 1). 

These equations together with (6.5) are termed equations of conditions for the RKP 

formula. 

Applying (6.2), the system (3.1) – (3.5) can be discretized as 

𝐵𝑛+1 = 𝐵𝑛 + ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

                                                                   (6.6) 

𝐴𝑛+1 = 𝐴𝑛 + ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

                                                                   (6.7) 

𝐸𝑛+1 = 𝐸𝑛 + ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

                                                                   (6.8) 

𝑊𝑛+1 = 𝑊𝑛 + ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

                                                                  (6.9) 

𝐺𝑛+1 = 𝐺𝑛 + ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

                                                                 (6.10) 

Subject to: 

𝑎𝑖
(𝑟+1)

= 0,    𝑖 = 1,2, … , 𝑛𝑟+1,    𝑟 = 1,2, … , 𝑝 − 1                         

𝑎1
(1)

= ∑𝑏𝑖 − 1

𝑠

𝑖=1

= 0,     (𝑛1 = 1). 

Where 

𝑘1 = ℎ𝑛𝑓(𝑥𝑛) 
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𝑘𝑖 = ℎ𝑛𝑓 (𝑥𝑛 + ∑𝑎𝑖𝑗𝑘𝑗

𝑖−1

𝑗=1

) ,               𝑖 = 2,3, … . , 𝑠 

Numerical Simulation 

Here we used the following values of variables and parameters 

Table 1.  

Model Variables and their Values 

Variable Initial Value 

𝐵 = 𝐵(𝑡) 𝐵(0) =1000 

𝐴 = 𝐴(𝑡) 𝐴(0) =5000 

𝐸 = 𝐸(𝑡) 𝐸(0) =50 

𝑊 = 𝑊(𝑡) 𝑊(0) =2000 

𝐺 = 𝐺(𝑡) 𝐺(0) =5000 

𝑁 = 𝑁(𝑡) 𝑁(0) =13050 

 

Table 2.  

Model Parameters and their Interpretation 

Parameter Interpretation Value 

𝜶 Rate at which below average becomes average 0.71 

𝜷 Rate at which average becomes excellent 0.3 

𝜸 Rate at which weak becomes below average 0.51 

𝜽𝟏   Rate at which below average graduates 0.15 

𝜽𝟐 Rate at which average graduates 0.25 

𝜽𝟑 Rate at which excellent graduates 0.6 
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𝝁 Rate at which student leave school either 

through death or expelled 

0.7 

𝝀 Admission rate 0.7 

𝝓 Rate at whichaverage becomes weak 0.55 

𝜼 Rate at which excellent becomes weak 0.2 

 

Figure 2. Dynamics of Different Populations in the Model 
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Figure 3. Comparison between Dynamics of Weak and Graduate Students 

 

 

Figure 4. Comparison between Dynamics of Weak and Excellent Students 
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Figure 5.  Comparison between Dynamics of Weak Students with and without 

Control 

 

 

Figure 6. Comparison between Dynamics of Excellent Students with and without 

Control 
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Figure 7. Comparison between Dynamics of Average Students with and without 

Control 

 

 

Figure 8. Comparison between Dynamics of below Average Students with and 

without Control 
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Figure 9. Comparison between Dynamics of Graduating Students with and 

without Control 
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CHAPTER VII 

Conclusions and Recommendations 

This chapter presents conclusions based on the research findings according to the 

objective and sub objective(s) of the research and gives recommendations accordingly. 

To improve the academic performance of students, we optimize the performance 

indices to the dynamics describing the academic performance in the form of nonlinear 

system ODEs. We established the uniform boundedness of the model and the existence 

and uniqueness result. The independence and interdependence equilibria were found to be 

locally and globally asymptotically stable. The optimal control analysis was carried out, 

and lastly, numerical simulation was run to visualize the impact of performance index in 

optimizing the academic performance. 

From the numerical simulation result, it can be observed that Weak students’ 

population dominates other populations. This shows that when there is too much 

intermingling between Weak students and the other categories of students, it will be to the 

disadvantage of the other students. The weak students’ population can be reduced i.e. the 

student’s level of understanding can be enhanced by incorporating various measures that 

increase students’ abilities. This can go hand in hand with increasing the level of 

motivation conferred on the Week students. 

The significance of the optimal control is also clearly shown. There is drastic increase 

in the populations of Average, Below – Average, Excellent and Graduating students’ 

population after the application of the control. On the other hand, there is drastic decrease 

in the population of the Weak students after the application of the control. 

 

 

 

 



61 
 

References 

 

Abaidoo, A. (2018). Factors contributing to academic performance of students in a 

Junior High School. University of Education, Winneba-Ghana. 

Abubakar, A., Abdullah, H. hilman, & Kaliappen, N. (2018). Abubakar, A., Hilman, H., 

& Kaliappen, N. (2018). New Tools for Measuring Global Academic Performance. 

SAGE Open, 8(3), 1-10. 

Area, I., Ndaïrou, F., Nieto, J. J., Silva, C. J., & Torres, D. F. M. (2018). Ebola model 

and optimal control with vaccination constraints. Journal of Industrial and 

Management Optimization, 14(2), 427–446. https://doi.org/10.3934/jimo.2017054. 

Baliyan, S. P., & Khama, D. (2020). How distance to school and study hours after 

school influence students’ performance in mathematics and English: A comparative 

analysis. Journal of Education and E-Learning Research, 7(2), 209–217. 

https://doi.org/10.20448/JOURNAL.509.2020.72.209.217 

Banach, S. (1922). Sur les operations dans les ensembles abstraits et leur applications 

aux equations integrals. Fundamenta Mathematicae, 3, 133–181. 

Barnes, B., & Fulford, G. . (2011). Mathematical Modelling with Case Studies (2nd ed.). 

Taylor & Francis. 

Becerra, V. M. (2008). Optimal control. Scolarpedia, 2(1), 5334. 

Blevins, B. (2009). Effects of socioeconomic status on academic performance in 

Missouri public schools. 

Brauer, F. (2017). Mathematical Epidemiology: Past, Present, and Future. Infectious 

Disease Modelling, 2, 113–127. 

Carlson, B. C. (1966). Some Inequalities for Hypergeometric Functions. Proceedings of 

the American Mathematical Society, 17(1), 32. https://doi.org/10.2307/2035056. 

Crosnoe, R., Johnson, M. K., & Elder Jr., G. H. (2004). School Size and the 

Interpersonal Side of Education: An Examination of Race/Ethnicity and 

Organizational Context*. Social Science Quarterly, 85(5), 1259–1274. 

https://doi.org/https://doi.org/10.1111/j.0038-4941.2004.00275.x. 

Dahleh, M., Dahleh, M. A., & Verghese, G. C. (2004). Lectures on Dynamic Systems 

and Control. 



62 
 

Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2009). The construction of next-

generation matrices for compartmental epidemic models. Journal of The Royal 

Society Interface, 7, 873–885. 

Dormand, J. R., & Prince, P. J. (1980). A family of embedded Runge-Kutta formulae. 

Journal of Computational and Applied Mathematics, 6(1), 19–26. 

https://doi.org/https://doi.org/10.1016/0771-050X(80)90013-3. 

Eamon, M. K. (2005). Social-Demographic, School, Neighborhood, and Parenting 

Influences on the Academic Achievement of Latino Young Adolescents. Journal of 

Youth and Adolescence, 34(2), 163–174. https://doi.org/10.1007/s10964-005-3214-

x. 

Ehiane, S. (2014). Discipline and Academic Performance (A Study of Selected 

secondary Schools in Lagos, Nigeria). International Journal of Academic Research 

in Progressive Education and Development, 3. 

https://doi.org/10.6007/IJARPED/v3-i1/758. 

Elhia, M., Rachik, M., & Benlahmar, E. L. H. (2013). Optimal Control of an SIR Model 

with Delay in State and Control Variables. ISRN Biomathematics, 2013, 7 pages. 

https://doi.org/10.1155/2013/403549. 

Farooq, M., Chaudhry, A. H., Shafiq, M., & Berhanu, G. (2011). Factors affecting 

students’ quality of academic performance: A case of secondary school level. 

Journal of Quality and Technology Management, 7, 1–14. 

Fleming, W. ., & Rishel, R. . (1975). Deterministic and stochastic optimal control. 

Springer. 

Jeynes, W. H. (2002). Examining the Effects of Parental Absence on the Academic 

Achievement of Adolescents: The Challenge of Controlling for Family Income. 

Journal of Family and Economic Issues, 23, 189–210. 

Kendra, C. (2018). Development of Incentive Theory to Explain Human Behavior. 

Kermack, W O, & McKendrick, A. G. (1926a). Contributions to the mathematical 

theory of epidemics—I. Bulletin of Mathematical Biology, 53(1), 33–55. 

https://doi.org/https://doi.org/10.1016/S0092-8240(05)80040-0. 

Kermack, W O, & McKendrick, A. G. (1932b). Contributions to the mathematical 

theory of epidemics—II. the problem of endemicity. Bulletin of Mathematical 



63 
 

Biology, 53(1), 57–87. https://doi.org/https://doi.org/10.1016/S0092-

8240(05)80041-2. 

Kermack, William Ogilvy, McKendrick, A. G., & Walker, G. T. (1933). Contributions 

to the mathematical theory of epidemics. III.—Further studies of the problem of 

endemicity. Proceedings of the Royal Society of London. Series A, Containing 

Papers of a Mathematical and Physical Character, 141(843), 94–122. 

https://doi.org/10.1098/rspa.1933.0106. 

Keys, P. (1980). The solution and sensitivity of a general optimal control problem. 

Topics in Catalysis, 4(4), 287–294. https://doi.org/10.1016/0307-904X(80)90197-3 

Lambert, J. D. (1973). Computational method in ordinary differential equations. John 

Wiley. 

Lopez, O. S. (1995). The effect of the relationship between classroom student diversity 

and teacher capacity on student performance: Conclusions and recommendations 

for educational policy and practice. 

Lyapunov, A. M. (1892). The General Problem of Stability of Motion. Univ. Kharkov. 

Ma, X., & Klinger, D. (2000). Hierarchical Linear Modelling of Student and School 

Effects on Academic Achievement. Canadian Journal of Education / Revue 

Canadienne de l’éducation, 25. https://doi.org/10.2307/1585867. 

Marginson, S. (2017). Limitations of human capital theory. Studies in Higher Education, 

44, 1–15. https://doi.org/10.1080/03075079.2017.1359823. 

Matewos, K. R., Navkiranjit, K. D., & Jasmindeep, K. (2016). Financial literacy for 

developing countries in Africa: A review of concept, significance and research 

opportunities. Journal of African Studies and Development, 8(1), 1–12. 

https://doi.org/10.5897/jasd2015.0331. 

Mccoy, L. P. (2005). Effect of Demographic and Personal Variables on Achievement in 

Eighth-Grade Algebra. The Journal of Educational Research, 98(3), 131–135. 

https://doi.org/10.3200/JOER.98.3.131-135. 

McDonald, G. (1957). The Epidemiology and Control of Malaria. Oxford University 

Press. 

Nemer, M. (2015). Picard-Lindelof Theorem. 7, 1–5. 

Peng, S. S., & Hall, S. T. (1995). Understanding racial-ethnic differences in secondary 



64 
 

school science and mathematics achievement. 

Robeva, R. S., Kirkwood, J. R., Davies, R. L., Farhy, L. S., Johnson, M. L., Kovatchev, 

B. P., & Straume, M. (2008). An Invitation to Biomathematics. Academic Press 

(Elsevier). 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

CURRICULUM VITAE 
  

Personal Information: 
Surname, Name                  :Alzadjali, Amna  

Nationality                            : Omani 

Gender                                 : Female 

Email                                    : gtr-y2006@hotmail.com              
 

Summary of Educational Qualification: 
  

2007 – 2010 Mutah University, Sultanate of Oman, Sohar 

Master's Degree (by thesis) in curricula and methods of teaching 

mathematics 

  

2002 – 2006 Ajman University, UAE, AL-Fujairah 

BEd Degree in Mathematics and Sciences 

  

2001 - 2002 Nafisa Secondary school, Sultanate of Oman, Saham 

3rd Secondary Certificate 

   

Skills 

-          Communication skills. 

-          Computer Skills: 

o   Programming: 

o   MS Office applications: (Word, Excel, and PowerPoint) beside using the 

Internet skillfully. 

-         Report writing skills: (English and Arabic). 

-          Researching skills: (English and Arabic): 

o Doing researches and thesis. 

 

Languages: 
Arabic: Fluent (reading, written and spoken)  

English: Fluent (reading, written and spoken) 

    

 Achievements and Social Activities:   
-          Achievement Certificates from Saham Vocational Center. 

-          Achievement Certificate from L&T Company. 

-     Achievement Certificate from Global Net Company. 

-          Achievement certificate as Mathematics Senior Teacher. 

-          English at the Work Place Course certificate. 

-          Participation Certificate from Shinas Technical College. 

-          Participation Certificate in a media workshop. 

mailto:gtr-y2006@hotmail.com


66 
 

-     Participation Certificate ITP-Workshop on Work-Process Research and 

Curriculum Development. 
 

General Interests  
-       doing multi-works 

-      Problems-solving. 

-      Using the technology in work. 

-       Reading. 

-       Doing Researches and thesis. 

-        Participating in the activities. 

-       Meeting new people. 

-        Traveling. 

  

 References 

1. Prof. Dr. Evren Hincal, Head, Department of Mathematics, Faculty of 

Science and Arts, Near East University, Nicosia – TRNC, Mersin 10, 

Turkey. +905338581715, evren.hincal@neu.edu.tr 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:evren.hincal@neu.edu.tr


67 
 

Appendices 

 

 
 

 


