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ABSTRACT

Pre-Processed And Combined EEG Data For Epileptic Seizure Classification Using

Deep Learning

Zaid, Yazan

M.Sc., Department of Computer Engineering

January, 2022, 111 Pages

Epilepsy is a neurological disease that affects nearly 60 million people

around the world. It manifests as a loss of consciousness for different periods of time

due to a sudden rush in the electrical fields of the brain. Electroencephalography (EEG) is

the measurement of the brain’s electrical potentials which can be used to detect epileptic

seizures’ sudden electrical rushes. Experts struggle to diagnose seizure activities by visual

inspection since it requires long periods of examination and years of experience. With

the assistance of machine learning based technologies, the diagnosis of seizure activities

became more accurate and fast. However, many machine learning algorithms still depend

on hand crafted features that is input to classifiers for training and testing. On the other

hand, deep learning methods eliminate the feature engineering process and replace it with

feature learning and classification. Deep learning methods provide a robust performance

for medical aid systems. The most of the research in the field of epileptic seizure detec-

tion focus on testing different deep learning architectures on datasets, but none of them

experiments modified EEG input signals. In this thesis, we study and experiment mod-

ified, pre-processed and combined EEG signals as an input to deep neural networks for

epilepsy seizure classification. A variety of preprocessing and combinations of EEG sig-

nals have been proposed and evaluated on three different deep learning architectures. We

study 2-class and 3-class epileptic seizure classification problems on UCI-Bonn dataset.

In particular, a Deep Neural Network (DNN) and two different 1D-Convolutional Neural

Networks (CNN) are implemented with the proposed input EEG signals. We tested the



5

following input EEG signals with the deep learning methods mentioned above: The orig-

inal EEG data of UCI-Bonn dataset, standardized EEG signal, squared signal combined

with the original EEG, differentiated signal combined with the original EEG, and the Fast

Fourier Transform (FFT) signal combined with the original EEG signal. Various metrics

are employed to evaluate the performance of the models. The best results are achieved with

the input signal created with the combination of FFT and original EEG signal. Among the

three different deep learning architectures, 1D-CNNs perform better than DNN. Extensive

evaluations and comparisons are conducted and presented.

Keywords: deep neural networks, preprocessing, EEG combinations, epileptic seizure,

classification.
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CHAPTER I

Introduction

This chapter presents the research problem. The aim of the study is explained that

describes the proposed work. Then, we discuss the significance of the study to explain the

novelty and why our work is important. The limitations of the study are also discussed,

then the problem statement, the methodology and an overview of the thesis are given.

Introduction

There are several serious diseases that afflict humans, and medical spe-cialties

seek to diagnose and attempt to treat them. However, the seriousness of diagnosing of

these diseases requires the intervention of other disciplines such as artificial intelligence

to find ways, programs and devices that help diagnose and treat diseases. One of these

challenging diseases for diagnosis is epilepsy. Epilepsy is a disease prevalent in humans

regardless of their age and gender. Epilepsy is classified as a neurological disorder in

the brain, usually in the form of sudden seizures for the patient and this disease is not

contagious (Ghassemi et al., 2019)(Shoeibi, Khodatars, et al., 2021). There are different

types of these seizures, affecting a large number of people, estimated at 60 million people

around the world (Shoeibi, Ghassemi, Alizadehsani, et al., 2021). To diagnose epileptic

seizures, several methods have been used over time, one of which is evaluated based on the

Electroencephalography (EEG). Electroencephalography is defined as “the non-invasive

measurement of the brain’s electric fields” (Biasiucci et al., 2019, p1), however, there is an

invasive method for EEG that can give better performance (Ball et al., 2009). The current

flow in and around neurons generates voltage potential that can be recorded by electrodes

placed on the scalp (Biasiucci et al., 2019). The EEG method is distinguished from the

rest of the tests in that it is clearer in rhythms, in addition to being economical in general

(Subasi et al., 2019)(Acharya, Oh, Hagiwara, Tan, Adeli, & Subha, 2018). Diagnosis of

these seizures began by reading the EEG by doctors, manually using the eye, but this is

not accurate as it requires great experience and a long time (Boonyakitanont et al., 2020).

With the era of ML and DL, new methods started to prove their reliability, high perfor-
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mance and rapidness. The ML learning approaches depend on the feature extraction phase

followed by a classification phase. Feature extractions remain human-dependent since they

must be engineered by experts either manually or by algorithms that select some charac-

terized features which yielded non-optimal performance or accuracies despite being better

than the bare-eye detection.

DL introduced the solution of feature engineering deficiency. The features are rather

learned by the model not engineered, this method proved higher performance and much

more accurate classifications, in general. The superiority and novelty of the DL approach

motivated us to evaluate our method by DL architectures(Shoeibi, Khodatars, et al., 2021).

We proposed the preprocessed and combined EEG data as an input to DL architectures. We

concentrated on the data inputs as there was no other research, as far as we know, that did it

similar to our way. Basically, we proposed three operations to modify datasets then com-

bine them with the original EEG dataset of UCI-Bonn. The evaluations were done with

many variations of inputs and models and they were tested with a reproduced state-of-art

model of (Abiyev et al., 2020) to assess the validity and efficiency of our method. We

observed strong indications of improvements on the evaluated architectures.

Aim of the Study

The aim of this work is to evaluate the preprocessed and combined EEG signals

as an input to deep learning models, which can assist to aid clinical experts with seizure

diagnosis, especially in tough cases. In particular, this work reaches these diagnoses aid

situations through the classifications of 2-class and 3-class brain activities related to epilep-

tic seizure categories in EEG recordings based on the UCI-Bonn dataset. Identifying brain

activity is a challenging task that takes time and experience, our purpose is to classify

epileptic brain activity with high confidence to reduce the load on clinical experts, leaving

them with the most complex diagnoses and rare types of seizures. We used deep CNN

and deep NN architectures with different EEG signal cases, namely, raw (original EEG)

and preprocessed and combined to learn the chaotic features of EEG and classify some

types of epileptic brain activity. The suggested methods were evaluated and compared

against some known methods of classification and with some high-performance proposed
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architectures as in (Abiyev et al., 2020) model which guaranteed accuracy with relative

simplicity. It was observed that preprocessing and combinations of EEG data can give

enhancement effects, especially in simple models.

Significance of the study

Because of deep learning, major improvements have been achieved in the medical

sector and neuroscience over the last decade. Epileptic seizure detection and classification

aid systems can give a leap in the early diagnoses of seizures and real-time observation of

the disease which helped increase reaction speed and prevent severe harm. Seizure detec-

tion was time-consuming before the introduction of these techniques and highly dependent

on clinical expert opinions that can be subjective and error-prone. Computer-aided tech-

nology is therefore much needed to overcome such constraints because the health sector

needs accurate, fast and reliable methods to diagnose complicated issues such as epilepsy.

Thus, we provide a method for the detection and classification of different types of brain

activities using deep learning architectures based on various signal shapes appears after

combinations and preprocessing in our study with the aid of EEG data.

Limitations of the Study

There are some limitations that need to be considered while dealing with epileptic

seizure classification.

The first limitation is datasets, finding a dataset with enough samples, labels and open ac-

cess is quite problematic which can be reasonable since the data is actually collected from

real patients who do not prefer to share their medical records, however, this will be on the

expense of the development of the field due to its vast reliance on human patients. One of

the most famous datasets in this field is the Bonn dataset which comprises 500 samples of

different categories of EEG signals, it was an open-access one until its shutdown by the

original team. Many other datasets were also shut down over the years and replaced by

closed access datasets such as the European Epilepsy Database EPILEPSIAE.

Also, another dataset related limitation is mapping the various labels of a dataset to another
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dataset, especially in the Bonn dataset with its various labeling systems such as the UCI

version of labeling or others.

Another limitation is the multiclass classification, the brain activity is non-stationary, dy-

namic and non-linear which makes it rich with signals, data and hard to detect phenomena.

In epilepsy, as far as we know, it is still impossible to implement a system that covers all

types of seizures and their sub-types or rare variations. Even the prediction of a seizure

from a healthy or preictal case recording is still problematic and uncertain whether by deep

learning or human experts.

At last, real-time detection and diagnosis are crucially needed for patients to assess their

environment carefully and find a safe way on preictal phases or seizure episodes to pass

the seizure or report it to others in case of urgent need of help. Although there are some

suggestions for real-time systems now, they are far from enough and further from perfec-

tion.

Problem Statement

Epilepsy is a hard-to-diagnose disease in the medical field, due to the harsh nature

of EEG recordings of brain activity, its seizure classification is difficult, in general, and

the more difficult thing is its preictal state.

The classification of epileptic seizures can be divided into two categories, the binary 2-class

classification of seizure and non-seizure classes and the multiclass 3-class classification of

seizure, preictal and normal classes although there are other types of multiclass classifi-

cations the normal, preictal and seizure 3-class category is almost the most confusing and

many research studies are directed towards it.

Automatic seizure detection and classification into different kinds of brain activity is a

hard issue that gained a lot of attention. In this thesis, we use deep learning models with

preprocessed and combined EEG data signals to tackle the epileptic seizure classification

problem from a unique view.
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Methodology

The purpose of this thesis is to evaluate the effects of the preprocessed and com-

bined EEG signals of epileptic nature by applying deep learning. Here, we review the

various distinctive models such as deep CNN and deep NN with the modified EEG sig-

nals using the UCI-Bonn epilepsy dataset. The proposed strategy involves the following

stages, preprocessing and combination operations which were applied on the EEG dataset

before feeding them to the deep learning algorithms. The evaluated operations are stan-

dardization and combination. combinations include combining a preprocessed dataset with

a specific operation, namely, the squared dataset, the discretely differentiated dataset and

the absolute fast Fourier transformed dataset with the original dataset. standardization,

which is normalizing the datasets to have zero mean and one standard deviation, including

standardizing the original EEG data and the combined EEG data. Also, the raw original

dataset was tested along with the standardized versions of the original EEG dataset and

other combinations.

Finally, using the deep learning architectures, the classification of various input cases was

done by repeating each test five times with recording the averages of the five tests and

in different train/test splitting ratios, namely, 50/50, 60/40, 70/30 and 80/20. One of the

evaluated architectures was (Abiyev et al., 2020) 1D-CNN model to widen our testings on

state-of-art methods that are effective yet, simple and reproducible.

Overview of the Study

The thesis includes the following chapters to achieve the epileptic seizure classifi-

cation systematic study.

The first chapter includes an introduction to the topic of the thesis with a summary describ-

ing the purposes, significances, limitations, problem statement and methodology.

The second chapter presents a literature review on the field with comparative studies that

were evaluated against our methods. In this chapter, some of the most used architectures

of deep learning for seizure detection and classification will be presented. we will give a

review of the related work focusing on high-achieving methods and try to compare them
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to show the advancement of the field.

The third chapter discusses the EEG data in general and presents some samples of EEG

signals for different brain activity.

The fourth chapter discusses the details of deep deep learning architectures in a compre-

hensive view.

The fifth chapter specifies the exact ways of operations and preprocessings.

The sixth chapter explains the runtime environment in which the coding, training and eval-

uations took place. The dataset is also viewed in detail along with the metrics and scores,

architectures and signal samples.

The seventh chapter represents the experimental result analysis of the models and input

cases, with discussions and comparisons.

The eighth chapter highlights the conclusions and suggests some future works.
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CHAPTER II

Literature Review

This chapter presents the theory and related works in the field of epileptic seizure

detection. The research problem is explained. Traditional methods, ML methods and DL

based methods are reviewed. The plentifulness of the research is justified due to the diffi-

culty of the problem at hand which is discussed in detail.

Theoretical Framework

The need for automized recognition of epileptic seizures was seen by researchers

and (Gotman et al., 1979) suggested the first efficient method “the spike and sharp wave

recognition” which had good accuracy and provided a shred of evidence on one of the

most reliable features of a seizure which is a spike in the EEG recording that has a huge

amplitude and lasts for almost 70 milliseconds. An EEG recording is chaotic by its na-

ture and defining robust features of any abnormal behavior could be challenging with the

need for well-trained experts and feature engineers. With the advancement of technologies,

new methods appeared with machine learning algorithms then deep learning architectures.

Both methods mainly rely on two key components for automized seizure detection and

classification which are feature extraction or learning phase followed by a classification

phase.

At this point, there is a wide variety of ML algorithms and DL architectures with

many ways of training and evaluation methods based on different metrics. Some of the

conventional ML algorithms for feature extractions include PCA and LDA while SVMs,

logistic regression, K-nearest neighbors and decision tree algorithms are used for the clas-

sification. DL architectures include NN, CNN and RNN which are used for the feature

learning and classification processes with high accuracies and an intensive focus is di-

rected on them by researchers to test their capabilities on divergent types of problems. In

the field of epileptic seizure recognition, many ML algorithms and DL architectures have

been tested over the years.

The team of (Nandy et al., 2019) has tested their approach on the CHB-MIT database.



24

They used MOEA as a feature selection algorithm after the EEG averaging extraction al-

gorithm to choose the optimal features then they tested three classifiers. LDA, QLDA and

SVM as classifiers, the accuracies were 76.41%, 80.79% and 97.05% respectively.

The problem with the machine learning approach was with the feature extraction

and selection phase since they were handcrafted either with human experts or algorithms

and that was a crucial limitation for this approach which compromised reliability and op-

timal classification accuracy.

In the deep learning approach, the features are not extracted or selected, they are

learned by the model which eliminated the previous limitations. Many research teams

tested deep learning architectures as artificial neural networks ANNs and their variations

and convolutional neural networks CNNs and their variations, the most successful archi-

tecture, arguably, in the field is 2D-CNN since it was tested many times and gave the

highest accuracies. Also, many pre-trained architectures are used in the field as AlexNet,

VGGNET and DenseNet (Shoeibi, Khodatars, et al., 2021).

As a general view on the theoretical frameworks that were used for epileptic seizure

detection, a divergent set of DL methods will be presented. In (Hossain et al., 2019), a

CNN with AE, a semi-supervised method, model was used to learn the general structure

of a seizure from Boston Children’s Hospital epilepsy dataset then it was evaluated for

cross-patient EEG data and it gave an average accuracy of 99.46%. In another study, the

team in (A. Abdelhameed & Bayoumi, 2021) suggested a novel method of supervised deep

convolutional autoencoder (SDCAE), they evaluated some variations of it giving an av-

erage accuracy of 98.79% for the best one. For the same purpose, (A. M. Abdelhameed

et al., 2018) based on the Bonn dataset, evaluated Bidirectional Long Short-Term Mem-

ory (Bi-LSTM) which is a variation of recurrent neural networks (RNNs) on two classes,

normal and ictal (seizure) states, and three classes, normal, inter-ictal and ictal states. The

average accuracies were 100% and 99.33% respectively. Other research teams focused on

recurrent neural networks and their variations other than LSTM like Gated Recurrent Unit

(GRU), for example, (Talathi, 2017) evaluated the previous method which resulted in an

overall accuracy close to 100%. While most of the previously mentioned methods were

supervised or semi-supervised models, the team in (Zhou et al., 2018) used an unsuper-
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vised deep belief network (DBN) which gave an accuracy of 96.87% and promising use

for unsupervised methods.

The overall view on the field suggests that automatically extracted features and

classifications out-perform the human-engineered ones andwith the technological advances,

seizure detection can be less costly, more accurate, easier and reliable.

Related Work

Next, the papers which were shown in the comparison tables will be presented as

the related work.

First, the binary classifications on theBonn dataset were presented by (Nagabushanam

et al., 2020), they proposed a NN, two-layers LSTM and four-layers improved neural net-

work and their results on Adam optimizer, binary cross-entropy loss function, Relu acti-

vation within the layers and sigmoid activation for the output layer are recorded. they got

accuracies of 61.43%, 71.38% and 78.92%, precisions of 62.72%, 71.66% and 72.98%,

sensitivities of 61.65%, 73.38% and 93.70% and F1-scores of 62.18%, 72.51% and 82.05%

for the NN, LSTM and the improved NN respectively.

For the same purpose, the team in (S.-H. Lee et al., 2014) proposed a combined

method that uses wavelet transform, phase-space reconstruction and Euclidean distance

built on a NN with fuzzy membership functions and reported a 96.33%, 100% and 98.17%

for sensitivity, specificity and accuracy respectively.

In another study, (Wang et al., 2019) did many tests and evaluated with Symlets

wavelets, statistical mean energy std and PCA, GBM, RF, SVM techniques on 10-fold-

cross validation, the evaluation on the Bonn dataset that regarded a seizure and non-seizure

(all other labels) scenario gave an accuracy of 98.4% as an SVM –GSO binary classifier.

Türk and Özerdem (2019) used CNN with scalogram technique, they applied Con-

tinuous Wavelet Transform to EEG records to get the 2D frequency-time scalograms then

the images were given as an input into two convolutional layers then to a 1000-neurons

dense layer. the team reported many binary classification cases depending on the input

dataset, the closest results for the comparisons with our scenario (ABCD-E equivalent)

were the ones with the E (seizure) subset as one of them. the accuracy, sensitivity, speci-
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ficity and f- Score were, for A-E input 99.50%, 99.00%, 100% and 99.50%, for B-E input

99.50%, 100%, 100% and 99.50%, for C-E input 98.50%, 98.01%, 98.98% and 98.50%

and for D-E input 98.50, 98.01%, 98.98% and 98.50% all respectively.

In some older studies, (Polat & Güneş, 2007) used a hybrid classifier based on

fast Fourier transform (FFT) and decision tree and they recorded an accuracy, specificity

and sensitivity of 98.72%, 99.31% and 99.40% for 10-fold-cv and 98.68%, 98.50% and

98.87% for 5-fold-cv, they evaluated their classifier on the Bonn dataset.

Authors in (Abiyev et al., 2020) used a deep CNN architecture with four double

convolutional layers, three max-pooling layers one after each double convolutional layer,

global average pooling layer after the last convolutional layer for the feature learning and

four dense layers for the classification with rmsprop optimizer, Relu activation within the

network and softmax activation for the output layer and 10-fold-cv which gave testing

loss, sensitivity, specificity and accuracy of 0.013878, 96.67%, 98.33% and 96.67% re-

spectively and the model was reproduced and tested for our input cases.

Also, the stacking ensemble-based deep neural network model (SEA-DNN) gave

a high performance that qualifies it to be a decision support system for clinical diagno-

sis according to (Akyol, 2020) which reported an accuracy, sensitivity and specificity of

97.17%, 93.11% and 98.18% respectively.

The paper (Hassan et al., 2020) proposed the complete ensemble empirical mode

decomposition with adaptive noise (CEEMDAN) which was employed on many cases of

the Bonn dataset, the one of interest is the A-D-E case which gave an accuracy, sensitivity

and specificity of 98.67%, 98.67% and 98.72% respectively.

In (Thara et al., 2019), four different feature scaling techniques were evaluated

using a deep neural network of four dense layers, Relu activation within the layers and sig-

moid output activation for the binary classification. The StandardScaler with mean square

error loss scenario achieved an accuracy of 97.21%, Sensitivity of 98.17% and Specificity

of 94.93%.

In another binary classification method, (Ullah et al., 2018) suggested pyramidal

1D-CNN (P-1D-CNN) which was evaluated on the Bonn dataset with 10-fold-cv. In the

BD-E case, it reached an accuracy of 99.6%.
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For the same problem of binary classification, (Vipani et al., 2017) proposed a

scheme of Hilbert transform with learning vector quantization based classifier, its average

accuracy found to be 89.31%.

Another binary classification method used by (Gupta & Pachori, 2019) included

noise addition to the EEG recordings of the Bonn dataset and evaluating different classi-

fiers, the one of interest is the ABCD vs E case with FBSE based rhythms of EEG signals,

WMRPE and regression classifier with 10-fold-cv which yielded an accuracy of 98.6% on

the noiseless input.

A genetic algorithm approach was implemented and evaluated on the UCI version

of the Bonn dataset for binary classification of seizure vs non-seizure classes and achieved

an accuracy of 98.01%, a sensitivity of 94.99% and specificity of 98.65% based on 10-

fold-cv by (Al-Sharhan & Bimba, 2019).

In another case of interest on multiclass classification with the Bonn dataset, sub-

sets B, D and E were used for healthy, preictal and seizure classes respectively. Using a

13-layered CNN proposed by (Acharya, Oh, Hagiwara, Tan, & Adeli, 2018), an accuracy

of 88.7%, a specificity of 90% and a sensitivity of 95% were reported.

The orthogonal wavelet filter banks method was suggested for epileptic seizure de-

tection by (M. Sharma et al., 2017) which was evaluated on the Bonn dataset for seizure vs

seizure-free classes, corresponding to CD vs E subsets, and seizure vs non-seizure classes

as ABCD vs E. the first evaluation reached an accuracy of 99%, a sensitivity of 98% and

a specificity of 99%. while the second evaluation reported 99.2%, 98% and 99.75% for

accuracy, sensitivity and specificity respectively.

The authors in (Bhattacharyya et al., 2017) developed a system with tunable-Q

wavelet transform to decompose EEG signals to sub-bands, then use K-NN to select the op-

timal features from the sub-bands, then feed the features to SVM classifier which obtained

an accuracy of 98.6% for three-class classification on the Bonn dataset subsets equivalent

to AB-CD-E case.

Reference (Bhattacharyya & Pachori, 2017) evaluated a random forest classifier

fed by multivariate extension of EWT as a feature extraction method which used CHB-

MIT dataset EEG inputs that have a seizure and non-seizure labels (binary) and obtained
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an accuracy, specificity and sensitivity of 99.41%, 97.91% and 99.57% respectively.

In (Martis et al., 2012), researchers suggested deploying their method on large scale

clinical validation, which consists of empirical mode decomposition features fed to C4.5

random forest classifier tested on the three classes in the Bonn dataset, namely, normal,

inter-ictal and ictal activity. their method yielded 95.33% average accuracy, 98% average

sensitivity and 97% average specificity.

In (Acharya et al., 2012), the authors decomposed the EEG signals of the three

categories in the Bonn dataset namely, ictal, inter-ictal and healthy, by wavelet packet de-

composition (WPD) then used a Sugeno fuzzy classifier to get 99%, 96%, 95% and 96.7%

for specificity, inter-ictal sensitivity, ictal sensitivity and accuracy respectively.

Recurrence quantification analysis (RQA) parameters were used to quantify the im-

portance of the features of the EEG signals categories of normal, inter-ictal and ictal from

the Bonn dataset then feed the features to the SVM classifier which reached 95.6% accu-

racy, sensitivity and specificity of 98.9% and 97.8%, respectively according to (Acharya,

Sree, Chattopadhyay, et al., 2011).

In another multiclass study, the equivalents of the A-D-E subsets of the Bonn

dataset were evaluated by (Guo et al., 2011) with genetic programming (GP) feature ex-

traction approach and K-NN classifier which obtained an accuracy of 93.5%.

The authors in (Acharya, Sree, & Suri, 2011) tested the SVM classifier based on

radial basis function (RBF) kernel withWPD as an extension on the discrete wavelet trans-

form (DWT) for feature extraction using 3-fold-cv which gave an accuracy of 96.3%, sen-

sitivity of 100 and specificity of 97.9%, note that the authors considered the ictal and inter-

ictal cases as one class of positive test (C, D and E) and the other healthy categories as a

negative test (A and B), from the Bonn dataset.

In (Faust et al., 2010), the authors used one subset from the healthy class (A or B),

one subset from the preictal class (C or D) and the seizure subset (E) of the Bonn dataset

to evaluate many models, the best was the SVM classifier which reached an accuracy of

93.3%, a sensitivity of 98.3% and a specificity of 96.7% and it outperformed the evaluated

ANN 4-layered architecture.

The research in (Chua et al., 2011) did another multiclass evaluation on the ictal,
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preictal and normal classes of the Bonn dataset with higher-order spectra (HOS) features

and GMM classifier which achieved 93.11% average accuracy, 89.67% preictal sensitivity

and 94.83% preictal specificity.

The research team in (Ghosh-Dastidar et al., 2008) presented the PCA-enhanced

cosine radial basis function neural network classifier which achieved the highest accuracy

on the binary classification of a subset of the inter-ictal(C or D) and a subset of the normal

categories (A or B), as the most difficult ones to be distinguished by clinical experts, of

the Bonn dataset reaching 99.3%. In (Ghosh-Dastidar et al., 2007), using the mixed-band

feature space with the LMBPNN method on one of the normal, one of the preictal and the

ictal classes of the Bonn dataset, the authors achieved 96.7% accuracy as the best method

in the study. For the same purpose and with the same dataset settings, (Ghosh-Dastidar &

Adeli, 2007) developed and evaluated another model, SNNwith RProb learning algorithm,

an accuracy of 92.5% was achieved.

Finally, (Shoeibi et al., 2022) presented many works and useful summaries are shown in

(Shoeibi et al., 2022, fig.9).
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CHAPTER III

EEG and Epileptic Seizures

This chapter presents the EEG data, epilepsy, seizures with some discussions on

the collection methods of EEG data and sample figures of different brain activities.

EEG and Epileptic Seizures

Electroencephalography is the measurement of electrical brain activities

that represents the various states of modality.

An EEG can be acquired in twomainways, generally, an invasivemethod or a non-invasive

method. The non-invasive method is the one used in the Bonn dataset recordings and it is

the easier way but at the expense of performance. Usually, a matrix of electrodes is put

on the scalp surface area to collect the EEG signals which make it a safe method. Inva-

sive method, on the contrary, the electrodes are put inside the scalp within the brain which

needs surgery and makes it risky although it can give better performance compared to the

non-invasive methods.

EEG signals can be captured with devices as the brain-computer interfaces that vary de-

pending on the application in sampling rates, filtering or other factors. Some open source

hardware for EEG recordings are available as openBCI, then further processing can be done

with any software designated for EEG analysis, a free software example is EEGLAB that

works with MatLAB or other tools. The devices usually have the electrodes arranged in a

specific placement as the 10/20 standard. Each electrode is oftenly called an EEG channel,

in the Bonn dataset there are 500 channels representing the whole dataset (McGill, 2021)

(Jebelli et al., 2018). Next in figure 1 the 10/20 electrode placement is shown and figure 2

presents a brain-computer interface device as a cap of EEG recording electrodes.
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Figure 1
McGill (2021, 10/20 System of electrode placement)

Figure 2
McGill (2021, EEG electrodes)

The neuronal signals are extracted from the raw EEG signal after removing the

noise, muscle and eye movements and other unwanted artifacts which generates the final

EEG that can be used for further analysis with DL, ML or any other operations (Waldert,

2016).

Some applications and fields that rely upon EEG data include sleep studies, cognitive

performance measurements, emotional state measurements, cognitive behavioral therapy,
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stroke rehabilitation, neuroscience, brainwave gaming and many others. It can be noticed

that EEG data can be used in a wide range of applications from health care to entertainment

(Emotiv, 2021).

Epilepsy is a neurological disorder that presents itself as periods of consciousness loss due

to a sudden rush of electrical signals in the brain. The sudden electrical rushes are called

seizures and they can vary in their effects from undetectable brief periods to vicious shak-

ing and loss of awareness.

Epileptic seizures are mostly recognized by abnormal electrical brain activity and EEG is

the measurement of that, so EEG is considered one of the best ways to detect and classify

the seizures or the abnormalities of the brain activity, in general (WHO, 2022).

The old method of epileptic seizure detection was manual detection by eye which was done

by clinical experts who look to screens presenting EEG recording and decide if there is a

seizure or not. That method is exhausting, takes long time and is subjective depending on

the expert opinion.

Modern methods are mainly characterized by automatic detection of seizures and classifi-

cation. ML methods still rely on the human factor to construct the features that need to be

fed to the classifiers which was a liability. DL methods are the most common now since

they eliminate the human factor almost entirely, a feature learning process takes the place

of feature engineering in ML.

The previously discussed reasons encouraged us to pursue the thesis work based on DL

methods and propose the preprocessing and combinations of EEG data since it is never

tested in the way we did it.

Another related class of brain activity is the preictal category which is usually the phase in

between seizures (inter-ictal) or directly before a seizure as an indicator of its forthcoming.

EEG recordings have many ways of presentation like time domain, frequency domain or

others. The Bonn dataset is a time series in time domain presentation. Also, EEG signals

have different ranges of values, but on average it is between 0.05 to 0.1 millivolts for the

normal activity while seizure activity ranges between -0.5 to 1.0 millivolts. The toughness

of the problem manifests as the abnormal ranges of EEG signals do not necessarily mean

a seizure is happening, there might be other factors to cause it (Das et al., 2020). Figure 3
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shows an EEG sample with time and frequency rhythms.

Figure 3
Roman-Gonzalez (2010, Fig 2.) EEG Rhythms In Time And Frequency Domain.

Another way to look into the different brain activities is frequencies as it was no-

ticed in figure 3. The commonly studied average range of a normal EEG recording is

between 0.5 to 30 hertz, divided into five bands known as delta from 0.5 to 4 hertz, theta

from 4 to 7 hertz, alpha from 8 to 12 hertz, sigma from 12 to 16 hertz and beta from 13 to 30

hertz (Nayak & Anilkumar, 2021). Higher frequencies might still be considered normal.

After entering the range of 80 to 100 hertz, preictal activity indications have been reported

and seizure activity is associated with frequencies higher than 100 hertz (Stamoulis et al.,

2012).

EEG Data Samples

Some samples of EEG signals will be presented. A seizure form, a healthy/normal

form and a preictal brain activity are also presented in 4, all the samples of it are from

the UCI-Bonn dataset. In figure 5, all the samples are from another dataset presented by

(Swami et al., 2016) shown to give clearer visualizations of the EEG data. Note that the

x-axis data are time series points and y-axis data are amplitudes in microvolts, in the UCI-

Bonn dataset each 178 points of time series represent 1 second and in the dataset of (Swami

et al., 2016) each 1024 points represent 5.12 seconds.
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Figure 4
EEG Signals Of Various Brain Activity
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Figure 5
EEG Signals Of Various Brain Activity, Additional Samples
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CHAPTER IV

Deep Learning

This chapter discusses the concepts of deep learning and presents the different parts

that were used in the thesis. The first section goes through the various neural network types

and their related components. In the second section, the activation functions applied in the

thesis are discussed, then in the third section the loss functions, then the optimizers in the

fourth section and lastly the various metrics and scores used in the thesis.

Deep Neural Networks

Neural networkswere built tomimic the organic neural networks of humansmainly.

They consist of units called neurons arranged in layers. Usually, any network that has more

than three layers between the input and output is considered deep. The next section will

go through the different types of layers and present their functionality.

Learning Types Of Deep Learning

ML is a subset of artificial intelligence (AI), it is basically a system that can

learn from an input dataset and get smarter over time, in terms of accuracy and prediction

for instance, based on an algorithm and it usually learns from small datasets. While DL,

which can be seen as a subset of ML, relies on big datasets for its learning process, it is

conceptually equivalent to ML, but its algorithms are different. The learning process is

usually called training and it could take a long time depending on the dataset size, data

type and algorithms. it is mainly done on specific types of hardware different from regu-

lar processors, there are many cloud services dedicated to training DL or ML algorithms

since its needed hardware and processing power are difficult to acquire, costly and might

be unnecessary or useless for other tasks.

Starting with Learning, it has three main types in both ML and DL which are supervised

learning, unsupervised learning and reinforcement learning. In supervised learning the al-

gorithm is given a target or outcome variable that must be predicted from labeled input

datasets by generating a mapping function and the training will be kept going until a cer-
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tain accuracy level is reached. Unsupervised learning on the other hand does not have a

given target for prediction and it deals with unlabeled datasets, it is widely used for image

segmentation and clustering as it has the capability to uncover hidden patterns and group-

ings, from the human perspective, on its own. Reinforcement learning is the training of

a model or algorithm for consequence decision-making processes by setting rewards and

penalties on its decisions and the model has to come up with a way, sequential decisions,

that maximizes the reward.

Neural Networks

They are the core of DL algorithms that were built to simulate the natu-

ral/organic neural networks as layers of connected neurons. NN consist of multiple serial

algorithms that takes input datasets, analyze them to find underlying relationships and give

the output. The basic functionality of the neuron is multiplying its input with weight then

adding a bias value. The weights are assigned randomly at first then the model keeps

changing them to obtain the best results. The layers that do the processing are the hidden

layers or dense layers which are between the input and output layers. The consequently

connected dense layers with the input and output layers can be then considered as a clas-

sifier or a neural network. Next, in figure 6 a general diagram represents the NN.

Figure 6
Karadurmuş et al. (2019, fig.2), NN Diagram.
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One Dimensional Convolutional Neural Networks

Convolutional neural networks usually have convolutional layers before the

dense layers that do the classification. CNN is another class of networks that was built

mainly to analyze pixel data, so it is themost used architecture of DL in image segmentation

and processing. It takes relatively less pre-processing compared to traditional methods

of image analysis and with unsupervised learning it could be independent of any expert

intervenes whichmakes it a simple yet powerful method especially for image segmentation

and feature extraction which then are fed to the dense layers for classifications. Although

CNNswere built for images (2D) they are also usedwith one dimensional (1D) data as EEG

signals. In python TensorFlow, the 1D-CNN takes an input matrix of three dimensions (x,

y, z), for signal input, the z dimension can be added as one to keep the data the same.

Convolutional layers can be seen as filters enforced on the input data to extract features by

doing element-wise product and sum up the results in a feature map. Next, in figure 7 a

general diagram represents the 1D-CNN.

Figure 7
Mozaffari and Tay (2020, fig.1), 1D-CNN Diagram.

The next figure represents the convolutional operation that takes place in the con-

volutional layers.



39

Figure 8
Mujeeb et al. (2019, fig 3.), Convolutional Operation In Convolutional Layers.

Layer Types

Fully Connected and Dropout Layers

The layers of any neural network can be either fully connected or partially

connected. The partially connected ones must have randomly assigned units of zero value

to prevent them from passing their output. A dropout layer does the previous operation.

They are applied during the training phase of the model. The primary benefit of dropout

layers is to help models avoid overfitting. The position of the dropout layer, among other

layers, might be crucial in some networks, however, in our thesis the position was irrele-

vant as it was tested in many positions and nothing changed.

Maxpooling Layers

Maxpooling layers are usually used within the convolutional layers to re-

duce vector sizes. This is done because of the selection operation which chooses the max-

imum values of the feature map within a region matching the layer size which was 2*2 in

(Abiyev et al., 2020) model. The output of the maxpooling layer contains the most out-

standing features of the feature map input. Next, in figure 9 the maxpooling operation is

shown.
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Figure 9
Ragab et al. (2020, Fig 3.), Maxpooling.

Global Average Pooling Layers

Unlike maxpooling, the average pooling chooses the average of the region

of the layer in the feature map. The global operation means that the average pooling is

done by reducing the feature map to a single value. So, the output of the global average

pooling layer has one dimension less than the input. Next, in figure 10 the global average

pooling operation is shown.

Figure 10
Peltarion (2022), Global Average Pooling 1D.

Activation Functions

The neurons that build the neural networks generally have one simple operation

which is to multiply the input values with weights and add a random value of bias and be-

cause of that, it can have an infinitely vast variety of values without any decision-making

system, so here activation functions come to help in making the decision based on a spe-
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cific function. There are many activation functions within neural networks, the ones used

in the thesis will be explained.

Relu

Relu activation function is a basic one used within the hidden layers usu-

ally, it prevents any negative values from passing to other neurons and layers. because

of its simplicity, it shows excellent performance and reduction training time compared to

some other activations as the hyperbolic tangent or sigmoid activation function, also Relu

function rectification helps resolve the vanishing gradient issue. The mathematical form

of the rectified linear unit Relu is shown in equation 1, in (O. Sharma, 2019) more details

might be seen. Also, figure 11 shows the Relu function.

Relu(x) = max(0, x) (1)

Figure 11
O. Sharma (2019, fig 1.), Relu Function.

LeakyRelu

LeakyRelu is an activation function based on Relu, however, instead of a

zero slope coefficient on the negative domain, it has a small value. In python Keras doc-

umentation, the negative domain slope coefficient by default is 0.3, since EEG data have

negative values that are permitted to pass by LeakyRelu it was preferred in two models.
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The mathematical form for LeakyRelu is in equation 2, (O. Sharma, 2019) explained this

activation function deeply among other ones. A visual representation of the LeakyRelu

function is shown in 12.

LeakyRelu(x) =
x, if x >= 0

α ∗ x, otherwise
(2)

where α, is the negative slope coefficient.

Figure 12
vidyasheela (2022), LeakyRelu Function.

Sigmoid

Sigmoid activation is usually used in the output layer to give a probability

between zero and one for the output values, it was merely used for the binary classification

which is the popular use of this type of activation. The mathematical form can be found in

3, also (O. Sharma, 2019) presented it. A visual representation of the sigmoid function is

shown in 13

Y =
1

1 + e−x
(3)
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Figure 13
O. Sharma (2019, fig 2.), Sigmoid Function.

Softmax

Softmax activation, On the other hand, is more popular for multiclass clas-

sification problems and claims more effective results, its output is a set of probabilities,

presenting each class, that sum up to one. The highest probability value can be considered

as the output prediction label. In figure 14, the softmax function is presented as a graph

and in (Chen et al., 2017) more information can be found.

Figure 14
Chen et al. (2017), Softmax Activation.

Loss Functions

Loss function or cost function can be considered as a method of quantifying the

goodness of the model and its performance, this is done by computing the difference be-

tween the current output and the true expected one. They mainly have two types, a re-

gression type that deals with continuous values of predictions and a classification type that

deals with binary and multiclass situations.
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binary crossentropy loss function was the one used for all the binary models. It

gives a probability between zero and one as a classification result, then it calculates the

average difference between the output probabilities and the ground truth labels.

sparse categorical crossentropy was the loss function for the multiclass problem

in all models. It has a similar function to the binary crossentropy, but it deals with three

classes, in our case, labeled as 0, 1 and 2. Since the classes in our problem are mutually

exclusive, sparse categorical crossentropy was the preferred function. Another alternative

is the categorical crossentropy loss function which is usually preferred for multilabel tasks

when outputs can have many labels, however, it requires one-hot encoding (T.-H. Lee,

2008). Note that the loss functions names are put as they were named in Keras.

Optimizers

Optimizers or learning algorithms are crucial hyperparameters. They update the

model parameters in the backpropagation process to reduce the loss function values and

increase the efficiency, choosing a bad optimizer may lead to longer training times or over-

fitting due to the difficulty of model updates.

The only applied optimizer was the root mean square propagation (rmsprop), which

is a gradient-dependent technique that helped give a high-performance training with rel-

atively medium training times. It is one of the most used optimizers in DL field (Postal-

cıoğlu, 2020).
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CHAPTER V

Proposed Pre-Processed and Combined EEG Signals Using Deep Neural Networks

This chapter presents the novel proposed method of EEG preprocessing and com-

binations. It will discuss the various operations of interest with their outputs that are fed

to deep neural networks for training and evaluation.

Preprocessing and EEG Signal Combinations

The preprocessing that was used in this work is divided into standardization and

combination. The standardization is also called Z-score normalization which makes the

data of zero mean and one standard deviation. The combination process is done by a few

steps, namely, doing the operation of interest on the original dataset, concatenating the

output dataset of the previous step with the original dataset on its last column which gives

double-sized signals of 178∗2 then standardizing the resultant dataset. The operations that

were tested are squaring the signals, differentiating the dataset (discrete differentiation) and

the absolute fast Fourier transform operation (FFT). Note that we took in consideration

the three dataset combination , we tested original-square-FFT combination but the results

were swinging between the only original and the FFT combination with the original most

of the time, but more intensive evaluations should be done by other teams. Therefore, we

focused on combination of 2 types of signals. Equation 4 shows the mathematical form of

the standardization, equation 5 shows squaring operation, equation 6 shows differentiation

operation and equation 7 presents the FFT operation formula.

standardvalue =
value− µ

σ
(4)

where value is the non-standard data, µ is the average and σ is the standard deviation. note

that standardization operation is done on the data column by column.

squared = value ∗ value (5)
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note that this operation was done on the whole dataset directly so value represents a dataset.

differentiated =
x2 − x1 x3 − x2 ... xm − xm−1

h
(6)

where h represents the step size that was assumed to be one to prevent scaling the values.

This operation is done row by row, so each x in the equation is a row, the operation output

will have one row less (rows− 1, the first one) than the input.

absolute FFT = | FFT (x) | (7)

where x represents the original dataset, this operation and the differentiation in equation

6 were done by MATLAB, the FFT operation is by default done on the columns (assumes

the signals as columns) which corrupted the waveforms so the dataset input was transposed

the re-transposed after the output, the accurate FFT waveforms were achieved by this. The

absolute value was used to get rid of the negative complex parts of the FFT output. Note

that the FFT is an algorithm implemented on the discrete Fourier transform in equation 8

to give faster results.

Xk =
N−1∑
n=0

xne
−2πikn/N (8)

The resultant waveforms after the operations are presented for the same signal in themiddle

of figure 4 as examples (seizure activity). in figure 15 the standard original signal, in

figure 16 the squared signal, in figure 17 the differentiated signal and in figure 18 the FFT

waveform.
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Figure 15
Standardized Wave Form.

It can be noticed that range values are different now.
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Figure 16
Squared Wave Form.
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Figure 17
Differentiated Wave Form.
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It can be seen that this waveform is slightly similar to the original wave but with

sharper spikes.

Time Series Points
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Figure 18
Absolute FFT Wave Form.

The combinations then are the exact figure 15 with the other operations outputs in

a different range of values because of the standardization phase that is done at last. those

combinations might be referred to as squared combined with original, differentiated com-

bined with original and FFT combined with original along with the only original referring

to the raw input as in the middle of figure 4 and standard original as in figure 15. Figure

19 visually represents the combined standardized inputs, which are referred as modified

inputs in the next section as architecture inputs, for seizure activity, figure 20 presents the

combined EEG signals for normal activity and figure 21 for preictal activity samples.
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(b) The FFT signal combined
with the original EEG

M
ic
ro
vo
lts

Time Series Points

(c) The differentiated signal combined
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Figure 19
Combined And Standardized EEG Signals Of Seizure Activity
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(b) The FFT signal combined
with the original EEG
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(c) The differentiated signal combined
with the original EEG
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Figure 20
Combined And Standardized EEG Signals Of Normal Activity
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(a) The Squared signal combined
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(b) The FFT signal combined
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Figure 21
Combined And Standardized EEG Signals Of Preictal Activity

Deep Learning Architectures

There are three different architectures evaluated with the same input data, splitting

ratios and number of repetitions which will be detailed in the next subsection. One deep

neural network and two 1D-CNNs were tested, while the DNN and one of the CNNs were

implemented by us for the sake of evaluations the other CNN was a reproduction of the

model proposed by (Abiyev et al., 2020) which was chosen for its deepness (complex-

ity), recent testing and validation with high performance and was published in a reputable

journal with its specific details that allowed reproduction. Since the only original and

the standard original cases have different sizes of the signals (178) than the combinations

which had a 356 (178*2), the input layer sizes differ with them and some other values

of the vectors within the architectures, especially in the 1D-CNN models, also, the binary

classification models have some differences from the multiclass ones. So, the architectures

will be shown to comprise the various cases as a model summary. In figure 22, the DNN

model is presented for the only original and standard original cases (non-combined) and

modified input (combined) cases, but the detailed view is in table 1. Note that the modified

inputs are like the ones represented in figure 19 (combined) and all the input data were the

1D values of the signals not images.
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Figure 22
DNN Model

Table 1.
DNN Model Architectures Summary, Non-combined (NC) And Combined CB Inputs

Layer Type Output Shape Number Of Parameters

Dense 1 (input) 64
NC, 11456

CB, 22848

Dropout (0.5) 64 0

Dense 2 64 4160

continue on the next page
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Table 1. (continued).

Dense 3 64 4160

Dense 4 64 4160

Dense 5 64 4160

Dense 6 64 4160

Dense 7 (output)
1, (2-class)

3, (3-class)

65, (2-class)

195, (3-class)

The proposed 1D-CNNmodel for the original and standard EEG inputs (non-combined)

is next in figure 23 with the modified (combined) inputs model visualization, while in table

2 the details of the model are presented. Note that there was no feature extraction process in

the DNN model because there were no convolutional layers, unlike the 1D-CNN models.
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Figure 23
1D-CNN Model

Table 2.
1D-CNN Model Architectures Summary, Non-combined (NC) And Combined CB Inputs

Layer Type Output Shape Number Of Parameters

Conv1D 1 (input)
NC, (172, 64)

CB, (350, 64)
512

Dropout (0.5)
NC, (172, 64)

CB, (350, 64)
0

continue on the next page
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Table 2. (continued).

Conv1D 2
NC, (172, 32)

CB, (348, 32)
6176

Conv1D 3
NC, (169, 16)

CB, (347, 16)
1040

Flatten
NC, 2704

CB, 5552
0

Dense 1 64
NC, 173120

CB, 355392

Dense 2 64 4160

Dense 3 (output)
1, (2-class)

3, (3-class)

65, (2-class)

195, (3-class)

The evaluated 1D-CNN model of (Abiyev et al., 2020) for the original and prepro-

cessed and combined EEG inputs is next in figure 24. The modified waveforms inputs and

original ones shape details in the model are shown in table 3, note that these details are

different than the original model since it was tested with our inputs.

Figure 24
Abiyev et al. (2020, Fig. 1) 1D CNN Model
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Table 3.
Abiyev et al. (2020) 1D-CNN Reproduced Model Architectures Summary, Non-combined
(NC) And Combined CB Inputs

Layer Type Output Shape Number Of Parameters

Conv1D 1 (input)
NC, (172, 32)

CB, (350, 32)
256

Conv1D 2
NC, (170, 32)

CB, (348, 32)
3104

Maxpooling1D 1
NC, (85, 32)

CB, (174, 32)
0

Conv1D 3
NC, (84, 64)

CB, (173, 64)
4160

Conv1D 4
NC, (83, 64)

CB, (172, 64)
8256

Maxpooling1D 2
NC, (41, 64)

CB, (86, 64)
0

Conv1D 5
NC, (40, 128)

CB, (85, 128)
16512

Conv1D 6
NC, (39, 128)

CB, (84, 128)
32896

Maxpooling1D 3
NC, (19, 128)

CB, (42, 128)
0

continue on the next page
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Table 3. (continued).

Conv1D 7
NC, (18, 256)

CB, (41, 256)
65792

Conv1D 8
NC, (17, 256)

CB, (40, 256)
131328

Global Average Pooling 1D 256 0

Dropout (0.5) 256 0

Dense 1 32 8224

Dense 2 64 2112

Dense 3 (output)
1, (2-class)

3, (3-class)

65, (2-class)

195, (3-class)

Note that the multiclass classification models have the same structures, vectors

have the same sizes even if the total number of signals is less which does not affect the

shapes of the outputs, only the last layer is different since it has three outputs instead of

one, which increases its number of parameters a little and all the parameters are learnable.
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CHAPTER VI

Evaluation Settings And Runtime Environment

In this chapter, the details of the training and evaluation processes will be discussed

with the various metrics and scores of the 2-class and 3-class. The first section explains the

runtime environment, the second section discusses the dataset, the third section presents

different data distributions and labeling, the fourth section presents signal samples of dif-

ferent EEG cases, section five goes thoroughly into the preprocessing and modifications,

the sixth section presents the architectures, in section seven models training setups are

shown, the eighth section explains the evaluation process and training method and the last

section shows the recorded metrics and scores.

Runtime Environment

Almost all of the coding was done on the google colaboratory (colab), only the

FFT and differentiation operations of the datasets were done by MATLAB. The free ver-

sion of google colab operates with jupyter notebooks and python programming language

which was the only used language in colab. The dominant libraries that were used are

TensorFlow, Keras, sklearn, pandas and NumPy. TensorFlow and Keras are mostly used

for building the models, fitting the data to the models for training and evaluating the mod-

els’ accuracies while sklearn is used for splitting the data into training and testing splits

and getting the used scores as sensitivity, precision, confusion matrix and F1-scores. the

specificity score was got by manually building a code to calculate it since it does not exist

in the sklearn. Google colab runtime was set to TPU runtime which gives an accelerator

hardware resource of TPU V2 and model (10.50.201.250:8470). Since the resources are

dynamic sometimes it provides different models of TPU but they generally have the same

processing power, with 8 cores each 8GB for v2 TPUs. The RAM given is 13GB and the

CPU is Intel(R) Xeon(R) CPU@ 2.20GHz or an equivalent model with relatively the same

speed. These high resources and free environment encouraged us to do all the work on the

colab. Note that, although google colab is a dynamic environment with many complicated

operations behind the scene to guarantee stability for all users their VMs resets the run-
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times if they were not active after 90 minutes and the quota is restricted for 12 hours of

work within one day for the free user account, so knowing the exact resources in colab is

virtually impossible but their administrators say the resources are almost the same for the

same type of an account and runtime (Google, 2022).

Dataset

The main dataset is the EEG dataset of the University of California Irvine (UCI)

which is a restructured form of the infamous Bonn university EEG dataset that is unfor-

tunately no longer available on the official website (Uni-Bonn, 2022)(Qiuyi, 2022). The

UCI published the restructured version, done by a research team at Rochester Institute of

technology, that has one file instead of five folders of 100 files each, 11,500 rows (signals)

instead of 500 rows combined from five files, 178 segmented amplitudes of time series

points instead of 4097 in the Bonn dataset to represent the data in one-second chunks,

a label column was added instead of considering the file name as the label in the Bonn

dataset and the research team shuffled the segmented rows. The dataset has EEG record-

ings from 500 people, each one has 23.5 seconds of recording as 4097-time series points

converted by the research team related to UCI into 23 ∗ 178 points segments. The Bonn

labels were filenames A, B, C, D and E which were converted into 1, 2, 3, 4 and 5. each

label represents a class, A is equivalent to 5 which illustrates the eyes open category, B

is equivalent to 4 which illustrates the eyes closed category and both represent the nor-

mal/healthy group. C is equivalent to 3 which illustrates inter-ictal seizure-free activity

recorded from the healthy area category, D is equivalent to 4 which illustrates the inter-ictal

seizure-free activity recorded from the seizure activity area category and both represent the

inter-ictal/preictal group. E is equivalent to 1 which illustrates the seizure activity category

or ictal group. Since label 1 categorizes recordings of seizure activity while other labels

categorize non-seizure activity, this labeling was made the basis of the binary classification

in the evaluated architectures. multiclass classification considered the three categories of

B, D and E or 4, 2 and 1 labels representing normal, preictal and seizure classes. Together

with the original dataset, some variations were done for model testing and comparisons,

seeking if the variations or combinations of the original dataset with other forms of it will
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affect the model accuracy, scores and training and evaluation times.

Data Visualization

The UCI version of the Bonn dataset (UCI-Bonn) is a balanced set, it contains 2300

signals of each label. Figure 25 presents the overall distribution of the dataset.

Figure 25
Overall Distribution Of The Labels.

For the binary classification problem of seizure vs non-seizure classes, the labels

were modified to zero and one illustrating non-seizure and seizure activity, consequently.

Labels 2, 3, 4 and 5 were placed as zero and label one is the same (seizure), with this

modification, 2300 signals of seizure activity and 10200 signals of non-seizure activity.

The next figure shows the modified binary distribution.

Figure 26
Modified Labels For The 2-Class Classification.
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The multiclass classification problem was evaluated on three classes only by drop-

ping the other two ones. Labels 1, 2 and 4 were kept representing seizure, normal and

preictal categories respectively, then they were modified to zero, one and two for the train-

ing and evaluation. In figure 27, the 3-class labels balanced distribution is shown.

Figure 27
Three Labels Of The 3-Class Classification.

Models Settings

Settings include the activation functions, loss functions, optimizers, batch sizes,

number of training epochs, splitting ratios and shuffling states. The binary models of

DNN and 1D-CNN that were built for the evaluations other than (Abiyev et al., 2020)

model had LeakyRelu activation within the network and sigmoid activation on the output

layer, binary-crossentropy loss function, rmsprop optimizer, 128 batch size, 100 epochs,

50/50, 60/40, 70/30 and 80/20 splittings of train/test and random state (42) to make sure

the random shuffling stays the same with each repetition. While (Abiyev et al., 2020) im-

plemented 1D-CNN model had Relu activation within the network and sigmoid activation

for the output layer, 100 batch size, 150 epochs and the rest of the settings are the same.

For the multiclass settings, our DNN and 1D-CNN had softmax activation on the output

layer, sparse-categorical-crossentropy loss function and the rest of the settings are the same

as the previous equivalent binary models. In the implemented 1D-CNN of (Abiyev et al.,

2020) multiclass case, the model had Relu activation as the binary equivalent one but with

softmax output layer activation and sparse-categorical-crossentropy loss function as our

DNN and 1D-CNN, the rest of the settings are the same as the binary equivalent model.
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Note that the activation function LeakyRelu in python TensorFlow and Keras has 0.3 fac-

tor for the negative values instead of zero in the Relu activation function or 0.01 factor in

MATLAB. Lastly, the dropout rate in all models is 0.5.

Evaluations and Training

The evaluation process was mostly the same for all cases, with 128 batch sizes for

our DNN and 1D-CNN and 100 batch sizes for the implemented 1D-CNN of (Abiyev et

al., 2020), in the 2-class and 3-class classifications. The binary predictions were done on a

0.5 threshold while the 3-class predictions were got by the highest probability class as the

accepted prediction. Each training and testing was repeated five times for the same case

and all the results are the averages of that 5 runs.

Metrics and Scores

The metrics and scores are values that represent the model behavior in terms of

efficiency, classification and others. The recorded metrics and scores were accuracy, loss,

sensitivity/recall, specificity, F1-score, precision and the area under curve (AUC). All met-

rics rely , generally, on four values which are TN, TP, FN and FP. TN and TP present the

correctly classified classes of positive and negative while FP and FN present the misclas-

sified classes. so, a good model will have higher TN and TP and lower FN and FP.

Accuracy

Accuracy is the percentage of the true predictions of the evaluated data

which can be got by dividing the true predictions by the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)
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Precision

Precision is the ratio of true positive classifications to the total positive pre-

dictions. It is a measure of the model’s ability to detect positive classes.

Precision =
TP

TP + FP
(10)

Sensitivity

Sensitivity or recall is calculated by dividing the true positive predictions

by all positive samples whether correctly predicted or not. so, this measure focuses on the

ability to classify positive samples.

Sensitivity =
TP

TP + FN
(11)

F1-score

F1-score is one of the F-measures which is represented as the harmonic

mean of the recall and precision, it is useful to show the average rate of both the recall and

precision. A high F1-score suggests high recall and precision while a moderate F1-score

suggests that one of the measures is lower.

F1− score = 2 ∗ Recall ∗ Precision

Recall + Precision
(12)

Specificity

Specificity is defined as the proportion of the true negative predictions to

the total negatives. Ideally, it should be a high value indicating a good ability of negative
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class detection by the model.

Specificity =
TN

TN + FP
(13)

AUC

Area under curve is usually used for binary classification problems. The

curve of interest is the receiver operator characteristic (ROC)which is the probability curve

of true positive rate (TPR) against the false positive rate (FPR). AUC measure points to

the model’s capability to distinguish between classes. Ideally, AUC equals one implying

that all samples were classified accurately.

Loss

Loss is the metric reported by the loss function applied in the model which

is the base of the optimizing process in the backward propagation. It suggests how well

the model is performing given the data.

In the 2-class classification cases, the evaluation and training time was recorded,

the evaluation loss and accuracy, sensitivity (recall), specificity, F1-score, precision and

the area under curve (AUC). For the 3-class classification, evaluation and training time,

evaluation loss and accuracy, sensitivity (recall), specificity, F1-score and precision for

each class and the average of the 3 classes was recorded as well.
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CHAPTER VII

Results, Comparisons and Discussions

This section discusses the evaluations and results that are carried out to assess the

performance of the proposed 1D-CNN and DNNmethods with various modified EEG sig-

nals. In this way, the performance of the modified EEG signals with the proposed 1D-CNN

andDNNmodels can be compared. In addition, we tested the efficacy of the modified EEG

signals using a recent 1D-CNN model that gives very promising results. Therefore, exten-

sive evaluations are performed including, time evaluations, accuracy, sensitivity, speci-

ficity, precision, recall, F-measure and others. First section discusses various evaluations

using two-class classifications. Second section discusses various evaluations using three-

class classifications. The third section presents related methods as comparative results.

Evaluation and Results for 2-Class Classification on UCI-Bonn Dataset

Training And Evaluation Time

This section discusses training and evaluation times of the proposed 1D-

CNN (moderate) and DNN and compares this with the method of (Abiyev et al., 2020)

named 1D-CNN (complex) which might be referred to as 1D-CNN complex or (Abiyev

et al., 2020) model interchangeably in discussions. Note that the 1D-CNN complex model

is a reproduction of the (Abiyev et al., 2020) model with our inputs. All of the methods

are implemented on the same platform for fair a comparison.

Table 4.
Comparing Training (T) and Evaluation (E) Time of the Methods (Results are average of
5 runs and in seconds).

EEG Signal
Splitting%

Training/Test

DNN

(Simple)

T E

1D-CNN

(Moderate)

T E

1D-CNN

(Complex)

T E

continue on the next page
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Table 4. (continued).

Original EEG

Signal Only

50/50

60/40

70/30

80/20

18.3 0.34

22.4 0.34

32.4 0.31

33.36 0.29

396.51 1.31

434.72 1.12

471.79 0.82

613.1 0.59

1501.49 1.52

1608.22 1.35

1743.79 1.06

1992.83 0.87

Standard

Original

EEG Signal

50/50

60/40

70/30

80/20

21.98 0.36

28.54 0.33

29.86 0.31

36.32 0.3

525.45 1.8

457.63 1.26

540.66 0.73

600.2 0.65

1562.14 1.7

1641.47 1.96

1798.2 1.93

1937.38 1.91

Squared Signal

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

22.46 0.36

26.47 0.34

28.60 0.30

35.32 0.28

694.97 2.22

857.35 1.82

920.36 1.31

1151.42 1.05

2911.21 6.22

2782.4 3.82

3203.58 3.49

4099.61 7.4

Differentiated

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

26.09 0.36

32.67 0.37

33.09 0.41

33.31 0.29

679.39 2.24

852.93 2.06

857.27 0.93

1114.23 0.94

2481.89 4.14

3175.83 6.07

3679.54 3.1

4106.35 2.43

FFT

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

24.94 0.35

25.64 0.34

29.47 0.37

34.3 0.28

708.35 2.08

851.42 1.81

974.1 1.22

1104.12 1.03

2532.13 4.67

2771.05 3.65

3011.59 2.9

3759.8 2.46

From table 4., DNN overall training periods are increasing with the splitting ratio,

since training sets are getting bigger, it is noticed that only original case has the lowest

training time for all splitting cases. The differentiated combined with original case have,

on average, the highest training times. evaluation times seem to change insignificantly
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among the cases.

In 1D-CNN moderate, training and evaluation times are significantly higher compared

to the DNN. the overall period behavior of training times seems to be the same as DNN

cases. However, FFT combined with original case seems to have the highest training times,

on average. evaluation times are changing significantly between only original, standard

original cases and other cases. Also, evaluation times are seemingly higher for 50/50 and

60/40 splits which are expected as the testing sets are larger.

In 1D-CNN complex model, the training times are 4 to 5 times longer than the proposed

1D-CNN cases and the overall training and evaluation time behavior is almost the same as

in the proposed 1D-CNN moderate, but the differentiated case appears to have the longest

training times for 60/40, 70/30 and 80/20 splittings.

Evaluation Loss and Accuracy

Table 5 shows loss and accuracy results are for 2-class classification using

the UCI-Bonn dataset.

Table 5.
Comparing Evaluation Loss (L) and Accuracy (ACC) of the Methods (Results are
average of 5 runs).

EEG Signal
Splitting%

Training/Test

DNN

(Simple)

L ACC

1D-CNN

(Moderate)

L ACC

1D-CNN

(Complex)

L ACC

Original EEG

Signal Only

50/50

60/40

70/30

80/20

0.2317 95.21

0.2418 94.66

0.2376 94.72

0.2253 95.08

0.2662 97.08

0.2078 97.36

0.1818 97.42

0.2829 97.48

0.1217 98.81

0.0926 98.78

0.1100 98.81

0.0411 99.23

Standard

Original

EEG Signal

50/50

60/40

70/30

80/20

0.2051 96.68

0.2019 96.66

0.1924 96.61

0.192 96.83

0.4877 97.48

0.3047 97.5

0.2597 97.68

0.2439 97.87

0.1956 98.79

0.2545 98.73

0.1326 98.93

0.0936 99.37

continue on the next page
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Table 5. (continued).

Squared Signal

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

0.1899 96.54

0.1871 96.46

0.1809 96.40

0.1769 96.81

0.4644 97.21

0.4069 97.3

0.3553 97.45

0.4382 97.76

0.2675 97.82

0.1397 98.54

0.0983 98.67

0.1838 98.82

Differentiated

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

0.2356 96.63

0.2259 96.51

0.2098 96.93

0.2108 96.98

0.5234 96.81

0.4557 97.14

0.4131 97.27

0.4723 97.29

0.1622 98.32

0.1496 98.41

0.0683 98.72

0.0988 98.9

FFT

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

0.1295 97.84

0.128 97.86

0.1179 98.06

0.1155 98.23

0.2542 98.51

0.2197 98.6

0.2415 98.81

0.1651 98.91

0.1239 98.72

0.159 98.73

0.0911 98.96

0.0599 99.13

In table 5., all cases, other than the only original 60/40 and 70/30 cases, have accu-

racy values higher than 95% which is a good indication. it is observed that FFT combined

with original cases have the highest accuracies and lowest loss among all with an accuracy

of 98.23% for the 80/20 splitting as the highest value. In principle, the global trend in

the table is accuracy increase and loss decrease from only original to FFT combined with

original cases and from 50/50 to 80/20 splittings. which is an indicator of combinations

enhancement effects and standardization on the raw dataset of the only original.

The overall trends in the 1D-CNN moderate model look more complicated than the DNN

ones. while accuracies are relatively higher than DNN accuracies, the loss is higher, in

general. the FFT combined with original cases has the lowest loss and highest accuracy

with 98.91% accuracy and 0.1651 loss for 80/20 splitting. Other combined cases and stan-

dard original cases have roughly 2 times more loss than others and the DNN values. The

FFT combined with original and only original cases have slightly higher losses than DNN

cases. Also, the differentiated combined with original case has the lowest accuracy and
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the highest loss.

1D-CNN complex model seem to have almost the exact behavior of the proposed 1D-CNN

moderate, but, it has a significantly lower loss compared to the proposed DNN and 1D-

CNN. the highest accuracy and lowest loss here is for the standard original case then the

only original case and FFT combined with original, all three are above 99% accuracy and

less than 0.06 loss. Notice that this model values are for 150 epochs of training, unlike the

previous ones which had only 100 epochs.

Confusion Matrix for 2-Class Classification Results

The confusion matrix for each case and architecture will be shown, then the

binary classification model’s scores of specificity, sensitivity, precision, F1 and AUC. note

that the confusion matrix is in the shape of [TN, FP] as the first row and the second row is

[FN, TP], respectively. the confusion matrix classes here are zero and one. zero represents

the non-seizure which are labels two, three, four and five in the UCI version of the Bonn

dataset and one represents the seizure which is label one in the UCI version of the Bonn

dataset. Next in figure 28, the DNN confusion matrices are presented.
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(a) DNN with Original EEG Signal (left 50/50, middle 60/40 then 70/30 and right 80/20)

(b) DNN with Standard Original EEG Signal (left 50/50, middle 60/40 then 70/30 and right 80/20)

(c) DNN With Squared Signal Combined With Original EEG Signal (left 50/50, middle 60/40
then 70/30 and right 80/20)

(d) DNN With Differentiated Combined With Original EEG Signal (left 50/50, middle 60/40 then
70/30 and right 80/20)

(e) DNNWith FFT Combined With Original EEG Signal (left 50/50, middle 60/40 then 70/30 and
right 80/20)

Figure 28
Confusion Matrix for 2-Class Classification on Bonn Dataset using the Proposed DNN
with Modified EEG Signals
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It can be seen that the TN and TP values are the highest which is the expected

outcome of any good architecture in DL. it is seen that the numbers are decreasing with

splitting changes which is reasonable as the testing sets decrease with splittings changes

from 50/50 to 80/20. The differentiated combined with original case has the highest TN

values which suggest it is the best in classifying negatives (non-seizure). FFT combined

with original case has the highest TP values, implying it is the best in classifying positives

(seizure). the only original cases have the lowest FP values indicating lowmisclassification

of positives, but they also have the highest FN values indicating high misclassification of

negatives.

Next, figure 29 will represent the confusion matrices of the 1D-CNN (moderate) model.
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(a) 1D CNN (moderate) with Original EEG Signal (left 50/50, middle 60/40 and right 80/20

(b) 1D CNN (moderate) with Standard Original EEG Signal (left 50/50, middle 60/40 then 70/30
and right 80/20)

(c) 1D CNN (moderate) With Squared Signal Combined With Original EEG Signal (left 50/50,
middle 60/40 then 70/30 and right 80/20)

(d) 1D CNN (moderate) With Differentiated Combined With Original EEG Signal (left 50/50,
middle 60/40 then 70/30 and right 80/20)

(e) 1D CNN (moderate) With FFT Combined With Original EEG Signal (left 50/50, middle 60/40
then 70/30 and right 80/20)

Figure 29
Confusion Matrix for 2-Class Classification on Bonn Dataset using the Proposed
1D-CNN with Modified EEG Signals
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The behavior of the 1D-CNN moderate model seem to be almost the same as the

DNN. However, the lowest FP and FN are for the FFT combined with original cases which

makes them the best cases, in general. Also, there is no significant change in values com-

pared with the DNN cases.

Figure 30 presents the confusion matrices for the implemented 1D-CNN (complex) of

(Abiyev et al., 2020), evaluated for the binary classification scenario which was not tested

by the original team.
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(a) 1D CNN (complex) with Original EEG Signal (left 50/50, middle 60/40 then 70/30 and right
80/20

(b) 1D CNN (complex) with Standard Original EEG Signal (left 50/50, middle 60/40 then 70/30
and right 80/20)

(c) 1D CNN (complex) With Squared Signal Combined With Original EEG Signal (left 50/50,
middle 60/40 then 70/30 and right 80/20)

(d) 1D CNN (complex) With differentiated Combined With Original EEG Signal (left 50/50,
middle 60/40 then 70/30 and right 80/20)

(e) 1D CNN (complex) With FFT Combined With Original EEG Signal (left 50/50, middle 60/40
then 70/30 and right 80/20)

Figure 30
Confusion Matrix for 2-Class Classification on Bonn Dataset using the 1D-CNN
(complex) Model with Modified EEG Signals
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For the previous figure, the model have similar behavior to the previous cases.

standard original cases have the lowest FP here.

In the next section tables, the scores that will be shown are dependant on the TP, TN, FP

and FN values so, the overall behavior of the scores is expected to be similar to the last

three figures.

Comparing Specificity, Sensitivity, Precision, F1-Score and AUC Scores

of the Methods

This section discusses the various scores recorded for the architectures. In

table 6, the specificity, sensitivity and precision are shown.

Table 6.
Comparing Specificity (SP), Sensitivity (SN) and Precision (P) of the Methods (Results
are average of 5 runs).

EEG Signal
Splitting%

Training/Test

DNN

(Simple)

SP SN P

1D-CNN

(Moderate)

SP SN P

1D-CNN

(Complex)

SP SN P

Original EEG

Signal Only

50/50

60/40

70/30

80/20

99.39 78.78 97.06

99.34 76.62 96.79

99.67 75.21 98.31

99.57 77.33 97.88

98.57 91.2 94.21

98.73 92.07 94.99

98.29 93.98 93.31

98.79 92.3 95.12

99.62 97.04 97.1

99.27 96.9 97.21

99.75 95.13 98.96

99.42 98.49 97.76

Standard

Original

EEG Signal

50/50

60/40

70/30

80/20

98.54 89.35 93.96

98.65 88.99 94.51

98.55 88.97 93.95

98.8 89.03 94.97

98.88 91.96 95.49

99.05 91.54 96.17

98.80 93.27 95.18

99.15 92.82 96.54

99.37 96.51 97.48

99.35 96.33 97.49

99.13 98.14 96.61

99.63 98.37 98.54

Squared Signal

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

97.64 92.22 90.86

97.5 92.45 90.6

97.82 90.83 91.35

97.98 92.17 92.06

99.07 89.86 96.1

98.92 91.08 95.64

98.91 91.69 95.52

99.1 92.47 96.3

98.24 96.15 93.92

98.83 97.45 95.59

98.87 97.85 95.66

99.5 96.13 98.05

continue on the next page
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Table 6. (continued).

Differentiated

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

99.1 86.4 95.88

98.86 86.72 94.88

99.18 87.31 96.13

98.98 88.55 95.38

98.68 89.03 94.23

98.49 91.53 93.67

98.61 91.95 93.89

98.68 91.41 94.29

99.03 95.46 95.96

99.17 95.24 96.54

99.61 94.95 98.26

99.61 95.86 98.34

FFT

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

98.65 94.66 94.7

98.81 94.2 95.35

98.76 95.27 95.14

99.12 94.71 96.47

99.18 95.88 96.73

99.15 96.48 96.73

99.31 96.85 97.27

99.54 96.43 98.17

98.94 97.85 95.91

99.28 96.6 97.24

99.06 98.57 96.36

99.34 98.32 97.45

Next, table 7 show the F1-score and AUC of the 2-class models.

Table 7.
Comparing F1-Score (F1) and AUC of the Methods (Results are average of 5 runs).

EEG Signal
Splitting%

Training/Test

DNN

(Simple)

F1 AUC

1D-CNN

(Moderate)

F1 AUC

1D-CNN

(Complex)

F1 AUC

Original EEG

Signal Only

50/50

60/40

70/30

80/20

86.93 99.04

85.49 98.96

85.23 99.16

86.85 99.2

92.67 98.93

93.49 99.24

93.65 99.28

93.66 99.08

97.07 99.72

97.04 99.78

97.01 99.63

98.12 99.93

Standard

Original

EEG Signal

50/50

60/40

70/30

80/20

91.59 99.05

91.66 99.08

91.39 99.37

91.88 99.3

93.66 99.14

93.79 99.27

94.21 99.33

94.63 99.34

97 99.27

96.9 99.38

97.37 99.76

98.45 99.86

continue on the next page
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Table 7. (continued).

Squared Signal

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

91.52 99.08

91.5 99.07

91.10 99.08

92.11 99.12

92.86 99.01

93.29 99.16

93.57 98.92

94.34 98.82

94.8 99.1

96.5 99.55

96.74 99.72

97.02 99.67

Differentiated

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

90.85 99.08

90.57 99.16

91.50 99.42

91.81 99.3

91.55 98.09

92.53 98.6

92.72 99.02

92.8 98.62

95.7 99.56

95.86 99.65

96.58 99.81

97.07 99.82

FFT

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

94.67 99.72

94.77 99.7

95.20 99.80

95.57 99.82

96.3 99.64

96.6 99.69

97.06 99.53

97.29 99.82

96.87 99.63

96.91 99.56

97.45 99.85

97.87 99.89

From tables 6 and 7, DNN case of FFT combined with original have the best scores

on 80/20 among all, considering all of the cases together. The combination and standard-

ization of the original case seem to enhance the values, in general.

For the proposed 1D-CNN moderate, the overall observation is similar to the DNN cases

with slightly higher values and there are virtually no scores less than 80% which indicates

it is a better model.

In 1D-CNN complex model, approximately all scores are higher than 95% implying signif-

icant improvements on the DNN and the proposed 1D-CNNmodels. The standard original

case appears to have higher scores, in general, unlike the last two models where the FFT

combination was the best.

As an overall observation on the last three models, for simple models like the proposed

DNN and 1D-CNN moderate model, combinations enhance the scores, but for more com-

plicated models like the implemented 1D-CNN complex, the scores are decreased to some

degree, in general. The best case is the non-combined standardization of the EEG signal
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which implies that changing the model architecture is more effective as was noticed among

the last three models.

Evaluation and Results for 3-Class Classification on Bonn Dataset

This section discusses various evaluations of the 3-class cases of the proposed 1D-

CNN and DNN, and compares this with the reproduced method of (Abiyev et al., 2020)

named as 1D-CNN complex. All of the methods are implemented on the same platform

for a fair comparison.

Training and Evaluation Time

This section will talk about the training and evaluation time of the evaluated

1D-CNN, DNN and the implemented 1D-CNN model of (Abiyev et al., 2020) in table 8.

Table 8.
Comparing Training (T) and Evaluation (E) Time of the Methods (Results are average of
5 runs and in seconds).

EEG Signal
Splitting%

Training/Test

DNN

(Simple)

T E

1D-CNN

(Moderate)

T E

1D-CNN

(Complex)

T E

Original EEG

Signal Only

50/50

60/40

70/30

80/20

15.03 0.33

18.09 0.32

19.46 0.29

21.27 0.28

244.42 0.75

275.29 0.75

302.49 0.74

353.01 0.45

1041.51 1.39

989.41 1.22

1034.64 0.97

1337.75 1.79

Standard

Original

EEG Signal

50/50

60/40

70/30

80/20

18.56 0.32

25.13 0.34

27.77 0.29

33.86 0.35

253.27 0.75

261.12 0.74

294.15 0.66

354.66 0.47

1036.62 1.71

1010 1.64

1034.93 1.3

1412.48 1.34

continue on the next page
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Table 8. (continued).

Squared Signal

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

15.5 0.32

17.65 0.31

21.70 0.28

24.93 0.29

422.44 1.34

512.45 1.12

589.07 0.84

671.67 0.82

1513.61 1.75

2035.95 2.72

1904.1 1.06

2358.74 1.17

Differentiated

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

19.28 0.33

23.75 0.31

21.57 0.30

29.31 0.3

428.33 1.41

501.5 1.03

594.01 0.96

674.66 0.79

1566.52 1.54

2031.99 1.23

2240.59 1.08

2395.18 1.64

FFT

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

16.61 0.35

19.13 0.29

19.91 0.28

21.58 0.3

443 1.38

512.44 1.13

593.09 0.95

673.75 0.8

1540.31 1.44

2023.51 1.13

2078.12 1.15

2374.94 1.01

In table 8, the DNN training and evaluation periods are close to the 2-class DNN

with the exact behavior.

For the prposed 1D-CNN moderate, the last observation on DNN is valid, but the peri-

ods are mainly shorter than the binary equivalent model, which might be odd since the

multiclass classification is expected to be harder and more complex computation-wise.

However, different loss functions and optimizers were used for the 3-class classification

which plays a dominant role in periods and since they are different than the binary models,

the differences are justifiable, observation-based and hard to predict.

There seems to be a strange deviation at 60/40 splittings for the only original and standard

original cases in 1D-CNN complex model as they are less than the 50/50 splitting for the

same cases, this might refer to some changes in the runtime environment (temporary re-

source shortage) which affects processing speeds or time miscalculation (by code) because

this deviation is inconsistent with the rest of the results. Also, the periods are less than the

binary equivalent model with a behavior trend similar to the previous ones.
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Evaluation Loss and Accuracy

Table 9 shows loss and accuracy results are for 3-class classification using

the UCI-Bonn dataset.

Table 9.
Comparing Evaluation Loss (L) and Accuracy (ACC) of the Methods (Results are
average of 5 runs).

EEG Signal
Splitting%

Training/Test

DNN

(Simple)

L ACC

1D-CNN

(Moderate)

L ACC

1D-CNN

(Complex)

L ACC

Original EEG

Signal Only

50/50

60/40

70/30

80/20

0.76 87.51

0.665 87.89

0.6605 85.31

0.6245 86.9

0.5464 92.42

0.4877 93.34

0.3868 94.11

0.4559 94.06

0.2058 96.58

0.1857 95.74

0.2821 96.04

0.169 96.32

Standard

Original

EEG Signal

50/50

60/40

70/30

80/20

0.7175 69.57

0.6938 70.09

0.7121 68.99

0.7028 69.87

0.5312 93.77

0.5169 93.9

0.4544 94.64

0.4916 94.39

0.2338 96.54

0.1906 96.4

0.1906 96.81

0.2278 96.65

Squared Signal

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

0.7321 67.84

0.7235 67.54

0.7036 69.57

0.7416 65.78

0.6938 93.6

0.6107 94.03

0.9528 93.62

0.9429 93.23

0.2126 96.48

0.234 96.46

0.2623 96.18

0.3535 96.28

Differentiated

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

0.7775 67.73

0.7539 68.62

0.7629 66.96

0.7576 67.43

0.9421 90.52

0.8984 90.9

0.7775 91.88

0.8085 91.99

0.3159 93.76

0.4077 92.38

0.3247 93.82

0.3006 94.7

continue on the next page
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Table 9. (continued).

FFT

Combined

With Original

EEG Signal

50/50

60/40

70/30

80/20

0.3223 95.34

0.2797 96.33

0.2634 95.99

0.3289 93.8

0.2959 97.06

0.2278 97.67

0.2497 97.68

0.2432 97.83

0.1587 97.01

0.1455 97.51

0.1531 96.86

0.2821 96.06

At the first glance on table 9, in the DNN model a recognizable drop of accuracies

and prevail of loss is noticed compared with the binary equivalent model or other binary

ones, Although The overall trend is similar to the binary DNN. The best case is still the

FFT combined with the original which has 93.8% accuracy here after it was 98.23% in the

2-class equivalent but the worst one is the squared combined with original case which is a

first since this case was moderate in all of the previous evaluations.

For the proposed 1D-CNNmoderate, the global trend is kept the same as the binary equiv-

alent model with the loss being less than the 3-class DNN. There is an improvement leap

in the values compared to the 3-class DNN model. The highest loss is in the squared com-

bined with original case, although it does not have the lowest accuracy.

1D-CNN complex model, shows an excellent improvement on the last two models, espe-

cially regarding the loss. Accuracies of its cases appear close to each other values which

is a new observation in 3-class classifications, but a consistent one for binary models. In

(Abiyev et al., 2020) paper which has the same architecture for multiclass classification

as our reproduction, the testing accuracy and loss for a standardized original input were

96.67% and 0.013878. Comparing the results with them, the standard original case has al-

most identical accuracy on 80/20 splitting but a much higher loss which might be related to

the different vector input, or the researchers’ 90/10 splitting and 10-fold-cross-validation.

the next most close value is the only original case then the squared combined with original

case. The differentiated combined with original case seems to negatively affect the values.

But, if we consider the 50/50, 60/40 and 70/30 cases, the FFT combined with original has

the highest accuracy. In principle, the combinations do not have a significant effect on this

architecture while they can be good for other architectures especially the FFT combined
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with original case that dominantly showed enhancements in the proposed models and a

vital improvement role in 50/50, 60/40 and 70/30 splittings in (Abiyev et al., 2020) repro-

duced model.

Confusion Matrix for 3-Class Classification Results

The confusion matrices will be shown for multiclass classification models

as figures, then the specificity, sensitivity, precision and f1 scores as tables. The 3-class

confusion matrix is a 3*3 shaped one, its diagonal represents the true values (predictions

with the ground truth). class zero represents the seizure, class one represents the preictal

and class two represents the normal case which will be referred to as class one, two and

three, respectively, in the scores tables. Remember that the original labels in the UCI

version of the Bonn dataset are label one for seizure, label two for preictal and label four

for normal cases. Figure 31 will represent the DNN 3-class confusion matrices. It can

be observed that the FFT combined with the original case has the least confusion among

all which is an indicator of excellence. the only original cases also seem to have lower

confusion than others, but it is not the best case. Also, since the confusion matrices depend

on the predictions (test splits) it is noticed that from 50/50 splits to 80/20 splits, in general,

the values decrease in all cases which are expected. Figure 32 represent the confusion

matrices for the proposed 1D-CNN moderate model. As an overall observation, the 1D-

CNN cases have lower confusion than the DNN cases which suggests that more complex

architectures play a significant role in confusion matrices. Also, as the DNN cases, the

FFT combined with the original cases have the lowest confusion which confirms that the

combinations also play a sufficient role in confusion enhancement. Next, the figure 33, will

represent the confusion matrices of the 1D-CNN (complex) suggested by (Abiyev et al.,

2020). The observation of figure 33 strengthens the last observation. However, the overall

trends suggest slightly less confusion from the last 1D-CNNmoderate case. Generally, the

FFT combined with the original still has the lowest confusion among all but the deviation

from other cases is less than other models.
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(a) DNN with Original EEG Signal (left 50/50, middle 60/40 then 70/30 and right 80/20

(b) DNN with Standard Original EEG Signal (left 50/50, middle 60/40 then 70/30 and right 80/20)

(c) DNN With Squared Signal Combined With Original EEG Signal (left 50/50, middle 60/40
then 70/30 and right 80/20)

(d) DNN With Differentiated Combined With Original EEG Signal (left 50/50, middle 60/40 then
70/30 and right 80/20)

(e) DNNWith FFT Combined With Original EEG Signal (left 50/50, middle 60/40 then 70/30 and
right 80/20)

Figure 31
Confusion Matrix for 3-Class Classification on Bonn Dataset using the Proposed DNN
with Modified EEG Signals
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(a) 1D CNN (moderate) with Original EEG Signal (left 50/50, middle 60/40 then 70/30 and right
80/20

(b) 1D CNN (moderate) with Standard Original EEG Signal (left 50/50, middle 60/40 then 70/30
and right 80/20)

(c) 1D CNN (moderate) With Squared Signal Combined With Original EEG Signal (left 50/50,
middle 60/40 then 70/30 and right 80/20)

(d) 1D CNN (moderate) With Differentiated Combined With Original EEG Signal (left 50/50,
middle 60/40 then 70/30 and right 80/20)

(e) 1D CNN (moderate) With FFT Combined With Original EEG Signal (left 50/50, middle 60/40
then 70/30 and right 80/20)

Figure 32
Confusion Matrix for 3-Class Classification on Bonn Dataset using the Proposed
1D-CNN (moderate) with Modified EEG Signals
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(a) 1D CNN (complex) with Original EEG Signal (left 50/50, middle 60/40 then 70/30 and right
80/20

(b) 1D CNN (complex) with Standard Original EEG Signal (left 50/50, middle 60/40 then 70/30
and right 80/20)

(c) 1D CNN (complex) With Squared Signal Combined With Original EEG Signal (left 50/50,
middle 60/40 then 70/30 and right 80/20)

(d) 1D CNN (complex) With Differentiated Combined With Original EEG Signal (left 50/50,
middle 60/40 then 70/30 and right 80/20)

(e) 1D CNN (complex) With FFT Combined With Original EEG Signal (left 50/50, middle 60/40
then 70/30 and right 80/20)

Figure 33
Confusion Matrix for 3-Class Classification on Bonn Dataset using the 1D-CNN
(complex) Model With Modified EEG Signals
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Comparing Specificity, Sensitivity, Precision and F1-Score Scores of the

Methods

In table 10, the 3-class classification result of the evaluated methods will

be presented. The scores for each class will be presented as class 1, 2 and 3 representing

seizure, preictal and normal classes respectively then the average of the three class on each

splitting ratio will be presented.

Table 10.
Comparing Specificity (SP), Sensitivity (SN)and Precision (P) of the Methods (Results
are average of 5 runs).

EEG Signal Class
Splitting

%

DNN

(Simple)

SP SN P F1

1D-CNN

(Moderate)

SP SN P F1

1D-CNN

(Complex)

SP SN P F1

Original EEG

Signal Only

Class 1

50/50

60/40

70/30

80/20

Class 2

50/50

60/40

70/30

80/20

Class 3

50/50

60/40

70/30

80/20

Average

50/50

60/40

70/30

80/20

98.97 84.66 97.6 90.65

98.72 85.22 97.11 90.73

99.35 82.53 98.42 89.78

98.62 83.29 96.77 89.44

86.16 94.71 77.53 85.24

88.67 92.47 80.56 85.96

80.85 98.08 71.29 82.57

88.46 91.45 80.14 85.19

96.1 83.12 91.64 87.11

94.44 85.98 88.87 87.27

97.94 75.88 95.08 84.4

93.22 85.95 87.4 86.44

93.74 87.5 88.92 87.67

93.94 87.89 88.85 87.99

92.71 85.5 88.26 85.58

93.43 86.9 88.1 87.02

97.14 92.07 94.09 93.05

96.83 93.62 93.66 93.62

98.2 93.1 96.21 94.63

97.72 93.47 95.22 94.33

94.43 94.51 89.54 91.94

95.82 93.51 91.84 92.64

94.98 95.56 90.22 92.82

95.69 95 91.64 93.27

97.07 90.7 94.08 92.29

97.36 92.89 94.71 93.77

98.01 93.69 96.12 94.89

97.68 93.71 95.52 94.58

96.21 92.43 92.57 92.43

96.67 93.34 93.4 93.34

97.06 94.12 94.18 94.11

97.03 94.06 94.13 94.06

98.95 97.4 97.85 97.62

98.76 97.62 97.52 97.57

98.99 97.36 97.93 97.64

99.08 96.84 98.08 97.45

97.48 95.44 95.01 95.22

97.84 92.67 95.62 94.02

98.42 92.16 96.59 94.32

97.66 94.3 95.22 94.74

98.44 96.91 96.91 96.91

97 96.93 94.39 95.59

96.61 98.46 93.85 96.1

97.73 97.76 95.81 96.76

98.29 96.58 96.59 96.58

97.87 95.74 95.84 95.73

98.01 95.99 96.12 96.02

98.16 96.3 96.37 96.32

continue on the next page
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Table 10. (continued).

Standard

Original

EEG Signal

Class 1

50/50

60/40

70/30

80/20

Class 2

50/50

60/40

70/30

80/20

Class 3

50/50

60/40

70/30

80/20

Average

50/50

60/40

70/30

80/20

96.96 91.38 93.67 92.51

96.99 92.46 93.85 93.13

97.91 88.25 95.4 91.69

97.51 89.82 94.59 92.13

91.07 27.44 60.77 37.52

89.44 31.64 60.28 40.92

92.25 22.04 57.98 31.94

92.12 25.53 60.3 35.34

66.18 90.11 57.46 70.1

68.62 86.13 58.21 69.29

62.79 95.09 57.31 71.52

64.7 93.59 58.29 71.72

84.74 69.64 70.63 66.71

85.02 70.08 70.78 67.78

84.32 68.46 70.23 65.05

84.78 69.65 71.06 66.4

98.2 92.91 96.24 94.52

98.05 93.81 96 94.89

98.85 92.95 97.53 95.19

98.47 93.16 96.72 94.9

95.27 94.37 90.95 92.62

94.69 95.36 90 92.59

95.34 96.01 90.9 93.38

95.17 95.57 90.75 93.09

97.17 94.01 94.43 94.2

98.11 92.53 96.15 94.27

97.79 94.95 95.76 95.35

97.95 94.43 96.02 95.21

96.88 93.76 93.87 93.78

96.95 93.9 94.05 93.92

97.33 94.64 94.73 94.64

97.2 94.39 94.5 94.4

99.33 97.24 98.62 97.92

99.33 97.25 98.63 97.93

99.42 96.77 98.8 97.77

99.03 97.11 97.98 97.54

97.2 95.94 94.53 95.22

96.99 96.08 94.16 95.07

97.13 97.19 94.26 95.7

97.51 95.79 95 95.39

98.27 96.45 96.59 96.51

98.28 95.87 96.64 96.22

98.67 96.49 97.45 96.97

98.43 97.05 97.02 97.03

98.27 96.54 96.58 96.55

98.2 96.4 96.48 96.41

98.41 96.82 96.84 96.81

98.32 96.65 96.67 96.65

continue on the next page
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Table 10. (continued).

Squared Signal

Combined

With Original

EEG Signal

Class 1

50/50

60/40

70/30

80/20

Class 2

50/50

60/40

70/30

80/20

Class 3

50/50

60/40

70/30

80/20

Average

50/50

60/40

70/30

80/20

96.44 91.57 92.68 92.11

95.86 93.38 91.87 92.58

96.76 92.51 93.33 92.92

95.68 93.6 91.38 92.43

90.49 23.69 55.68 33.07

83.8 35.47 54.17 40.72

94.69 18.49 62.81 28.57

74.2 49.69 50.62 45.27

64.71 88.52 55.94 68.52

71.58 73.84 56.69 62.23

62.34 96.07 57.27 71.77

78.63 54.85 57.75 49.99

83.88 67.93 68.1 64.57

83.75 67.56 67.58 65.18

84.6 69.02 71.14 64.42

82.84 66.05 66.58 62.56

97.84 93.33 95.51 94.4

98.2 93.9 96.29 95.08

98.2 92.22 96.17 94.15

98.95 91.78 97.69 94.63

95.17 93.54 90.74 92.1

95.33 94.17 90.97 92.54

94.19 95.71 88.87 92.17

93.29 95.83 97.94 91.6

97.38 93.93 94.79 94.34

97.51 94.02 95.04 94.52

98.08 92.99 96.23 94.58

97.62 92.11 95.32 93.56

96.8 93.6 93.68 93.61

97.01 94.03 94.1 94.05

96.82 93.64 93.76 93.63

96.62 93.24 93.65 93.26

98.81 97.73 97.58 97.65

98.78 97.75 97.57 97.64

98.92 97.5 97.79 97.65

99.4 95.96 98.75 97.3

97.62 94.87 95.26 95.06

97.58 94.82 95.15 94.97

96.92 95.27 93.74 94.5

96.88 95.83 93.97 94.83

98.29 96.86 96.63 96.74

98.33 96.8 96.7 96.75

98.45 95.79 97.02 96.4

98.12 97 96.46 96.72

98.24 96.49 96.49 96.48

98.23 96.46 96.47 96.45

98.1 96.19 96.18 96.18

98.13 96.26 96.39 96.28

continue on the next page
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Table 10. (continued).

Differentiated

Combined

With Original

EEG Signal

Class 1

50/50

60/40

70/30

80/20

Class 2

50/50

60/40

70/30

80/20

Class 3

50/50

60/40

70/30

80/20

Average

50/50

60/40

70/30

80/20

97.49 86.75 94.43 90.41

97 89.58 93.52 91.5

96.48 86.54 92.27 89.31

98.45 87.04 96.45 91.49

86.51 30.85 53.2 38.9

89.59 27.07 56.34 36.53

90.69 19.88 51.32 28.66

91.34 19.51 51.88 28.25

67.37 85.46 57.31 68.55

65.92 88.96 57.66 69.96

62.79 93.66 56.79 70.71

60.64 94.28 56.05 70.28

83.79 67.69 68.31 65.95

84.17 68.54 69.17 66

83.32 66.69 66.79 62.89

83.48 66.94 68.13 63.34

97.81 91.59 95.38 93.44

97.59 92.47 94.92 93.66

98.13 92.16 95.99 94.04

97.72 92.74 95.22 93.92

94.82 87.29 89.47 88.3

94.11 89.72 88.36 89.01

94.95 90.94 89.88 90.41

94.25 92.21 88.77 90.4

93.1 92.64 87.35 89.89

94.61 90.55 89.8 90.16

94.71 92.54 90.12 91.31

96 91.06 92.41 91.72

95.24 90.51 90.73 90.54

95.44 90.91 91.03 90.94

95.93 91.88 92 91.92

95.99 92 92.13 92.01

97.81 96.51 95.6 96.04

95.97 97.26 92.86 94.8

97.78 96.45 95.46 95.95

98.97 95.5 97.84 96.64

96.4 90.1 92.73 91.28

95.3 91.62 90.84 91.17

97.11 89.33 93.86 91.54

95.88 94.03 91.92 92.87

96.42 94.67 93.22 93.9

97.32 88.5 94.79 90.91

95.81 95.63 92.26 93.91

97.18 94.57 94.76 94.63

96.88 93.76 93.85 93.74

96.2 92.46 92.83 92.29

96.9 93.8 93.86 93.8

97.34 94.7 94.84 94.71

continue on the next page
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Table 10. (continued).

FFT

Combined

With Original

EEG Signal

Class 1

50/50

60/40

70/30

80/20

Class 2

50/50

60/40

70/30

80/20

Class 3

50/50

60/40

70/30

80/20

Average

50/50

60/40

70/30

80/20

98.33 95.29 96.57 95.92

98.27 95.43 96.49 95.94

97.98 95.45 95.87 95.66

98.37 95.51 96.6 96.04

95.82 95.04 92.2 93.52

97.13 95.28 94.32 94.79

96.56 95.12 93.05 94.07

97.06 87.68 93.68 89.92

98.87 95.7 97.78 96.62

99.09 98.25 98.21 98.23

99.48 97.34 99 98.16

95.23 98.06 92.84 95.03

97.67 95.34 95.52 95.35

98.16 96.32 96.34 96.32

98.01 95.97 95.97 95.96

96.89 93.75 94.37 93.66

98.71 96.39 97.36 96.87

98.85 96.85 97.67 97.26

98.99 96.62 97.92 97.27

99.1 96.84 98.11 97.47

97.48 96.85 95.1 95.96

98.1 97.3 96.24 96.77

98.06 97.63 96.07 96.85

98.07 97.68 96.16 96.91

99.39 97.91 98.78 98.34

99.55 98.83 99.12 98.97

99.48 98.74 99.02 98.88

99.58 98.9 99.2 99.05

98.53 97.05 97.08 97.06

98.83 97.66 97.68 97.67

98.84 97.66 97.67 97.67

98.92 97.81 97.82 97.81

99.19 97.47 98.34 97.9

99.05 98.45 98.09 98.26

98.63 98.24 97.24 97.74

99.14 96.76 98.23 97.45

97.76 96.17 95.58 95.87

98.24 96.56 96.49 96.52

98.13 94.97 96.11 95.54

96.73 95.13 94.01 94.32

98.56 97.39 97.16 97.28

98.99 97.54 97.99 97.76

98.53 97.34 97.2 97.27

98.21 96.29 96.8 96.43

98.5 97.01 97.03 97.02

98.76 97.52 97.52 97.51

98.43 96.85 96.85 96.85

98.03 96.06 96.35 96.07

It can be observed that the per class results are severely fluctuating, so, the discus-

sions will focus on the averaged values. Table 10, shows that DNN 3-class classification

has a harsh effect on the scores compared with the binary equivalent case in tables 6 and 7.

Although the combinations do not seem to suggest any enhancement, the FFT combined

with the original cases present a significant superiority for per class and averaged behavior.

The only competitor is the only original cases and both of the mentioned cases are much

better than others. This observation may hint at a hidden relation or features that were kept

and enhanced from the only original cases to the FFT combined with the original.

A noticeable stride in scores is observed in the proposed 1D-CNNmoderate model. Show-

ing that more complicated models can enhance the behavior which is a consistent obser-

vation in all our evaluations. The other important thing to see is that the FFT combined

with the original is still the best case with relatively higher scores than the DNN equivalent
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and any other value of the same model although the other combinations are doing slightly

less than the only original and standard original cases which leads us to another consistent

observation, that the FFT combination usually improves any model.

In the reproduced 1D-CNN complex model suggested by (Abiyev et al., 2020), the original

team did only one case which is the standard original case as was explained before in the

table 9 discussion. The original team recorded the results of the average test specificity and

sensitivity of the standard original case as 98.33% and 96.67%, respectively. Comparing

their results with our 80/20 standard original case which is the closest case to theirs, we

got 98.32% and 96.65% for specificity and sensitivity, respectively. our results are quite

close, suggesting an accurate reproduction. Also, the standard original case averages are

seen as the best values, although the combinations are mainly good competitors especially

considering their enhancement effects on the DNN and the proposed 1D-CNN moderate

cases. In addition, the best scores from the proposed 1D-CNN moderate model are a little

better than the best scores in this model since the FFT combined with the original 80/20

case averages gave 98.92%, 97.81%, 97.82%, and 97.81% for the same arrangement of

the scores in the table, respectively compared with the best case here, the standard orig-

inal 80/20 averages 98.32%, 96.65%, 96.67% and 96.65% for the same arrangement of

the scores in the table, respectively. the last observation empowers the consistent claim

and observations of the positive effect of the FFT combination on the original signal, in all

3-class models which can point to some hidden features in the discrete frequency domain

revealed by the FFT.

The overall observations are that the more deep and complex architectures give improved

scores and the combinations can give good improvements and approximations of complex

architectures on simpler ones, especially.

Comparison of the Proposed Work with Other Related Methods

In this section, some comparisons from research teams that applied the same or

close setting to our evaluations will be presented. The next table show 3-class and binary

classification results that used the same dataset we used (Bonn dataset). Note that some

of the research teams did not report all the metrics and scores that we recorded, also all
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of them who evaluated multiclass cases used the averaged metrics and scores for the three

classes which are equivalent to the average results in our 3-class tables. Figure 34 shows

summarized evaluations of many cases and table 12 puts focus on the 2-class classification

only.

Table 11.
Comparative Results, Accuracy (ACC), Sensitivity (SN) and Specificity (SP)

Author Model
Train/Test

And Validation%
ACC% SN% SP%

Abiyev et al. (2020) Deep CNN

90/10 and

30 from the training

for validation

98.67 97.67 98.83

Akyol (2020) SEA-DNN

90/10 and

10 from the training

for validation

97.17 93.11 98.18

Hassan et al. (2020) CEEMDAN No splits 98.67 98.67 98.72

Thara et al. (2019) DNN 80/20 97.21 98.59 91.47

Ullah et al. (2018) P-1D-CNN 90/10 99.6 - -

Vipani et al. (2017) HT and LVQ 20/80 89.31 - -

Gupta and Pachori (2019) FBSE, WMRPE and Regression - 98.6 - -

Al-Sharhan and Bimba (2019) MPC-GA 80/20 98.01 94.99 98.65

Acharya, Oh, Hagiwara, Tan, and Adeli (2018) Deep CNN

90/10 and

30 from the training

for validation

88.7 95 90

M. Sharma et al. (2017) OWFB 90/10 99.2 98 99.75

continue on the next page
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Table 11. (continued).

Bhattacharyya et al. (2017) TQWT-SVM - 98.6 - -

Bhattacharyya and Pachori (2017) Random forest - 99.4 97.9 99.5

Martis et al. (2012) C4.5 decision tree - 95.33 98 97

Acharya et al. (2012) WPD-Fuzzy Sugeno 90/10 96.7 95 99

Acharya, Sree, Chattopadhyay, et al. (2011) SVM 67/33 95.6 98.9 97.8

Guo et al. (2011) GP-KNN 40/60 93.5 - -

Acharya, Sree, and Suri (2011) DWT(WPD)-SVM 67/33 96.3 100 97.9

Faust et al. (2010) SVM 70/30 93.3 98.3 96.7

Chua et al. (2011) HOS-GMM 70/30 93.11 89.67 94.83

Ghosh-Dastidar et al. (2008)
PCA-enhanced

cosine RBFNN
- 99.3 - -

Ghosh-Dastidar et al. (2007) LMBPNN 20/80 96.7 - -

Ghosh-Dastidar and Adeli (2007) SNN 80/20 92.5 - -

Proposed
3-Class DNN (simple)

(FFT combination)
80/20 93.8 93.75 96.89

Proposed
3-Class 1D-CNN (moderate)

(FFT combination)
80/20 97.83 97.81 98.92

Proposed
3-Class 1D-CNN (complex)

(FFT combination)
60/40 97.51 92.46 96.2

continue on the next page
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Table 11. (continued).

Next in figure 34, a summary based on the Bonn dataset will present many cases.

The binary classification that was done in this thesis is equivalent to the ABCD-E case.

Other 2-class classifications are also close as all of them regarded the E label which repre-

sents the seizure class in the Bonn dataset. The presented 3-class case of AB-CD-E is not

the same as the one used in the thesis, which is equivalent to B-D-E, however, it is still a

close and valid comparison. It can be observed that the results are above 95%, which is

the same range that our FFT combination results fall into, in general.



94

Figure 34
(Shoeibi et al., 2022, Fig. 9)

The next table will further focus on binary classification comparisons.
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Table 12.
Additional 2-Class Only Comparative Results, Accuracy (ACC), Sensitivity (SN),
Specificity (SP), F1-score (F1) and Precision (P)

Author Model
Train/Test

And validation%
ACC% SN% SP% F1% P %

Nagabushanam et al. (2020) NN No splits 61.43 61.65 - 62.18 62.72

Nagabushanam et al. (2020) LSTM No splits 71.38 73.38 - 72.51 71.66

Nagabushanam et al. (2020) INN No splits 78.92 93.70 - 82.05 72.98

S.-H. Lee et al. (2014) WT, PSR, ED 62.5/37.5 98.17 96.33 100 - -

Polat and Güneş (2007) FFT and Decision Tree 90/10 98.72 99.40 99.31 - -

Wang et al. (2019) GSO-SVM - 98.4 - - - -

Türk and Özerdem (2019) CNN with Scalogram (A-E)
72/10 and

18 validation
99.50 99.00 100 99.50 -

Türk and Özerdem (2019) CNN with Scalogram (B-E)
72/10 and

18 validation
99.50 100 100 99.50 -

Türk and Özerdem (2019) CNN with Scalogram (C-E)
72/10 and

18 validation
98.50 98.01 98.98 98.50 -

Türk and Özerdem (2019) CNN with Scalogram (D-E)
72/10 and

18 validation
98.01 98.98 98.50 -

Proposed
2-Class DNN (simple)

(FFT combination)
80/20 98.23 94.71 99.12 95.57 96.47

Proposed
2-Class 1D-CNN (moderate)

(FFT combination)
80/20 98.91 96.43 99.54 97.29 98.17

continue on the next page
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Table 12. (continued).

Proposed
2-Class 1D-CNN (complex)

(FFT combination)
80/20 99.13 98.32 99.34 97.87 97.45

As it was noticed from the previous tables, our contribution is a good competitor

with any work in binary or 3-class classification cases and it is superior sometimes con-

sidering the simplicity of the evaluated architectures and the low training times.



97

CHAPTER VIII

Conclusions And Future Work

This chapter highlights the conclusions that were observed in the discussions of the

previous chapter, then some suggestions for the future work are discussed.

Conclusions

In this thesis, we successfully evaluated three different architectures of deep learn-

ing, namely, DNN, 1D-CNN, and (Abiyev et al., 2020) 1D-CNN. The evaluation was

conducted based on forming various input data to these architectures. Our contribution

is about using preprocessed and combined EEG signals as an input. The combined EEG

signals after the following pre-processing stages: the squaring of the original EEG, the dis-

crete differentiation, and FFT. Also, we evaluated the raw EEG signal and the standardized

version of it. Four different splitting ratios were tested, the 50/50, 60/40, 70/30 and 80/20,

and each test was repeated five times.

Our Our work was also compared to many other state-of-art papers other than the compar-

isons among the thesis evaluations themselves as comparing the only original andmodified

inputs against each other and against (Abiyev et al., 2020) model. We have seen consistent

observations in favor of our proposed method. Our proposed method achieved the highest

performance in DNN, 1DCNN, and (Abiyev et al., 2020) models for 2-class classification

and they showed a vast stride of performance in the 3-class classifications with the DNN.

Also, with the proposed 1D-CNN which were superior to the (Abiyev et al., 2020) 1D-

CNN 3-class results, in general, and the FFT combination was superior in the 50/50, 60/40

and 70/30 cases to all others of the same model. Our proposed FFT combination was the

best among all, generally, which might be an indication of some hidden features in the

discrete frequency domain that were revealed and combined with time-series samples.

Another consistent observation is that the proposed modified inputs can have better en-

hancement effects on simple models and can increase their performance drastically close

to deeper and more complex architectures with much lower training times which is a huge

advantage for practical availability of simple deep learning models.



98

Some of our highest achieving results are 99.13%, 98.32%, 99.34%, 97.87% and 97.45%

for accuracy, sensitivity, specificity, f1-score and precision respectively with (Abiyev et

al., 2020) reproduced 1D-CNN in 2-class classification with FFT combination and 97.83%

accuracy 97.81% sensitivity and 98.92% specificity with the proposed 1D-CNN moderate

model in 3-class classification with FFT combination.

The promise of our proposal is those input modifications, which can be crucial as the ar-

chitecture types, that can simulate the behavior of deeper and more complex models with

virtually the same performance.

Future Work

The proposed work is based on preprocessed and combined EEG signals input to

deep learning models. In our study, we combined two set inputs such as original EEG data

combined with the FFT of the data. In future, combination of three sets of data can be

considered.

Also, more operations can be tested on the datasets as combinations other than the FFT,

discrete differentiation and squaring. Wavelet transform is a recommended operation.

Another suggestion is evaluating the proposed method on other datasets, the CHB-MIT

dataset is recommended for 2-class cases, and with other classes of brain activity such as

the available non-tested ones in the Bonn dataset. In addition, the proposed input EEG

signals can be evaluated with other architectures in the state-of-art.

Trying other preprocessing and scalars of the EEG data also should be taken into consid-

eration since our method relayed on standardization.

Finally, interpolation operations can be applied to our input signals for size adjustment.
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APPENDECIES  

 

Appendix A 

Python Code 

sample_size = x_train.shape[0]  

time_steps  = x_train.shape[1]  

input_dimension = 1                

sample_sizet = x_test.shape[0]  

time_stepst  = x_test.shape[1]  

x_train_reshaped = x_train.reshape(sample_size,time_steps,input_dimension) 

x_test_reshaped = x_test.reshape(sample_sizet,time_stepst,input_dimension) 

# implementing Proposed DNN model for 2-class 

from keras.models import Sequential 

from keras import layers 

model = Sequential() 

model.add(layers.Dense(64, activation="LeakyReLU", input_shape  =( x_train.shape[2],)) 

model.add(layers.Dropout(0.5)) 

model.add(layers.Dense(64, activation="LeakyReLU")) 

model.add(layers.Dense(64, activation="LeakyReLU")) 

model.add(layers.Dense(64, activation="LeakyReLU")) 

model.add(layers.Dense(64, activation="LeakyReLU")) 

model.add(layers.Dense(64, activation="LeakyReLU")) 

model.add(layers.Dense(1, activation="sigmoid")) 

model.summary() 

 

# implementing Proposed 1D-CNN model for 2-class 
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from tensorflow import keras 

from tensorflow.keras import datasets, layers, models, Sequential 

import time 

model =keras.Sequential(name="model_conv1D") 

model.add(keras.layers.Input(shape=( x_train_reshaped.shape[1],x_train_reshaped.shape[2]))) 

model.add(keras.layers.Conv1D(filters=64, kernel_size=7, activation='LeakyReLU', name="C
onv1D_1")) 

model.add(keras.layers.Dropout(0.5)) 

model.add(keras.layers.Conv1D(filters=32, kernel_size=3, activation='LeakyReLU', name="C
onv1D_2")) 

model.add(keras.layers.Conv1D(filters=16, kernel_size=2, activation='LeakyReLU', name="C
onv1D_3")) 

model.add(keras.layers.Flatten()) 

model.add(keras.layers.Dense(64, activation='LeakyReLU', name="Dense_1")) 

model.add(keras.layers.Dense(64, activation='LeakyReLU', name="Dense_2")) 

model.add(keras.layers.Dense(x_train_reshaped.shape[2], activation="sigmoid", name="Dens
e_3")) 

model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["acc"]) 

model.summary() 

start_time = time.time() 

history = model.fit(x_train_reshaped, y_train, verbose=1, epochs=100, batch_size=128 

                    ) 

train_time = (time.time() - start_time) 

print("--- %s seconds ---" % train_time) 

#implementing State-of-art 1D-CNN for 2-class 

from tensorflow import keras 

from tensorflow.keras import datasets, layers, models, Sequential 

import time 
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model =keras.Sequential(name="model_conv1D") 

model.add(keras.layers.Input(shape=( x_train_reshaped.shape[1],x_train_reshaped.shape[2]))) 

model.add(keras.layers.Conv1D(filters=32, kernel_size=7, activation='ReLU', name="Conv1

D_1")) 

model.add(keras.layers.Conv1D(filters=32, kernel_size=3, activation='ReLU', name="Conv1
D_2")) 

model.add(keras.layers.MaxPooling1D(pool_size=2, name="MaxPooling1D_1")) 

model.add(keras.layers.Conv1D(filters=64, kernel_size=2, activation='ReLU', name="Conv1

D_3")) 

model.add(keras.layers.Conv1D(filters=64, kernel_size=2, activation='ReLU', name="Conv1
D_4")) 

model.add(keras.layers.MaxPooling1D(pool_size=2, name="MaxPooling1D_2")) 

model.add(keras.layers.Conv1D(filters=128, kernel_size=2, activation='ReLU', name="Conv1
D_5")) 

model.add(keras.layers.Conv1D(filters=128, kernel_size=2, activation='ReLU', name="Conv1
D_6")) 

model.add(keras.layers.MaxPooling1D(pool_size=2, name="MaxPooling1D_3")) 

model.add(keras.layers.Conv1D(filters=256, kernel_size=2, activation='ReLU', name="Conv1
D_7")) 

model.add(keras.layers.Conv1D(filters=256, kernel_size=2, activation='ReLU', name="Conv1
D_8")) 

model.add(keras.layers.GlobalAveragePooling1D()) 

model.add(keras.layers.Dropout(0.5)) 

model.add(keras.layers.Dense(32, activation='ReLU', name="Dense_1")) 

model.add(keras.layers.Dense(64, activation='ReLU', name="Dense_2")) 

model.add(keras.layers.Dense(1, activation="sigmoid", name="Dense_3")) 

model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["acc"]) 

model.summary() 

start_time = time.time() 
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history = model.fit(x_train_reshaped, y_train, verbose=1, epochs=150, batch_size=100 

                    ) 

train_time = (time.time() - start_time) 

print("--- %s seconds ---" % train_time) 
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