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ABSTRACT

QUADRATIC MODEL FOR PREDICTING KINEMATIC VISCOSITY AND

DENSITY OF PURE BIODIESEL AND THEIR MIXTURES

ADIVHAHO FRENE NETSHIMBUPFE

MSc, Department of Mechanical Engineering

January, 2022, 60 pages

Machine learning in recent years has found applications in a number of fields. Its

ability to make automate procedures and make well informed predictions based on a

knowledge base developed with preexisting data is greatly advantageous to a lot of

application processes.

The field of Biodiesel production and study has also seen its fair share of machine

leaning applications. This is especially so because the biggest deterrent to mass

adoption of biodiesel fuels is its cost of production, and uncertainty that still

surrounds its behaviour under different situations. For this reason, Machine learning

has been applied at different levels in study and production of biodiesels to reduce the

cost of production, time spent and to help us better understand their properties and

how they behave under different situations.

In this study, we use Response Surface Methodology (RSM) to predict the properties

of Sunflower oil, Corn oil and Canola oil. We then analyse my results to see if these

model is feasible for this application and to see what other Machine learning

techniques might also work for this application. The results show that the RSM model

is very effective for this problem and would generate accurate predictions with

reasonable precision. We also suggest other models to be studied to see their level of

effectiveness for this application.

Keywords: Biodiesel, Biofuel properties, Machine Learning, RSM, Neural Networks
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CHAPTER 1

INTRODUCTION

1.1 Historical Background of Biodiesel Technology

Today, more than 80% of the world's energy demand is met by fossil fuels such as oil, coal and

natural gas, and human society is heavily dependent on these non-renewable energy resources.

(Hosseini et al., 2015; Mandegari et al., 2016, 2017). Also, large scale use of these fossil fuels

has created a lot of adverse effects for humans, such as the slow but irreversible deterioration of

the environment as well as a lot of health problems (Farzad et al., 2020; Prakash Maran & Priya,

2015; Schalkwyk, 2020). It has in fact become the leading cause of pollution, environmental

challenges and climate change globally (Tag & X, 2017). Among all the fossil fuels, diesel is

undoubtedly the most used fossil fuel by-product, primarily because of the efficiency of diesel

engines compared to petrol engines (Tabatabaei et al., 2019). This has led to it being the prefered

engine type for heavy vehicles that are used in the transportation and industrial sectors (Hajjari et

al., 2017). Consequently, diesel engines some of the biggest contributors to environmental

problems as combustion of diesel produces gases that deplete the ozone layer and contribute to

global warming (Hosseinzadeh-bandbafha et al., 2018). Issues like this have caused concern in

the international community and have necessitated the improvement of engine technologies and

the migration to the use of cleaner and safer alternative fuels for combustion engines (Khounani

et al., 2019).

Nowadays, society is working to boost the use of renewable and alternative energy sources in

order to minimize reliance on fossil fuels and reduce carbon dioxide emissions. Biomass is
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regarded as the sole carbon-based, long-term answer for replacing fossil fuels. Unfortunately, the

variability of its properties (both physical and chemical), make it difficult to use for energy.

Because energy biomass conversion systems are susceptible to significant variability in

feedstock material properties and need continuous management, a new approach for measuring

biomass parameters in real-time is necessary if biomass should be used as a replacement to fossil

fuels. (Ahmed et al., 2019). As an example, some of the best alternatives to petrol and diesel that

have been researched are vegetable oils and animal fats (Ali et al., 1995). Unfortunately, they are

plagued with issues that have reduced their acceptance for use in ignition diesel engines (Kumar

& Singh, 2019). Some of these issues include:

 High viscosity

 Low energy output

 High cloud and pour points

 Difficulty in pumping

 High copper strip corrosion levels, etc.

Nevertheless, various strategies have been looked into (like micro emulsion and

transesterification) to solve this problem (Kumar & Singh, 2019).

A number of these strategies however have some bottlenecks. For example, dilution of these

biomasses with pure diesel for use in diesel engines can sometimes lead to the formation of gum,

partial combustion, high exhaust emissions, engine wear, among others (Aghbashlo, Tabatabaei,

Hosseinpour, et al., 2018). Micro emulsion fuels for diesel engines have also been known to lead

to a number of problems like heavy deposition of carbon residue, inferior combustion, and the

thickening of lubricating oil (Sharma et al., 2008). The adoption of pyrolysis to alter the
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chemical composition of the vegetable oils and animal fats also requires very expensive

machinery that can be quite difficult to operate and manage. It also leads to the production of

deoxygenated short-chain molecules just like we have with gasoline (Aghbashlo, Tabatabaei,

Hosseinpour, et al., 2018).

While most of these other strategies to help aid the use of biomass as a fossil fuel alternative are

plagued with issues, the process of transesterification where biomass is converted into a diesel-

like fuel called “biodiesel” appears to solve most, if not all of these problems effectively

(Aghbashlo, Tabatabaei, Hosseinpour, et al., 2018). The efficient conversion rate coupled with

the low cost of the process makes transesterification probably the best approach to aid the

adoption of biomass for use in diesel engines (Lin et al., 2011).

With the advent of renewable diesel fuels developed to date, biodiesel is now the best known

alternative to petrodiesel (Aghbashlo et al., 2016). It is more environmentally friendly and has a

number of social security benefits (Aghbashlo, Tabatabaei, Hosseinpour, et al., 2018). Looking

from the perspective of regulated emissions exhausted (like carbon monoxide (CO), smoke and

particulate matter) , biodiesel performs way better than petrodiesel, with the single exception of

nitrogen oxides emmision (NOx) (Aghbashlo et al., 2017). Apart from the environmental and

health benefits, Biofuels are also economically viable, because because they are easily

reproducible, biodegradable, and less toxic. They also free of sulphur and benzene, have better

lubricity, and are less flammable than petrodiesel (Aghbashlo, Tabatabaei, Rastegari, et al., 2018;

Hosseinpour et al., 2016).
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Tests and studies have shown that even with the issues that plague Biofuel use (Hoang et al.,

2019; Saxena et al., 2013), already existing diesel engines can be reasonably powered with

biofuels. This is possible even with little to no changes being made to the diesel engines

(Aghbashlo, Tabatabaei, Khalife, et al., 2018; Amid et al., 2020). The issues that are faced in the

use and production of biofuels are mostly related to the many physical and chemical similarities

between biodiesel and petrodiesel (Aghbashlo, Tabatabaei, Jazini, et al., 2018).

Transesterifying triglycerides or esterifying free fatty acids (FFAs) with light alcohol in the

presence of a catalyst produces long-chain fatty acid alkyl esters, which are used to make

biodiesel fuel. (Reza et al., 2019). Under supercritical conditions the two methods of biodiesel

production can be carried out without the presence of a catalyst.

1.2 Problem statement

Biodiesel has a higher combustion efficiency, a higher cetane number, is more biodegradable,

and emits less carbon monoxide than diesel fuel. In addition to the inherent benefits of Biodiesel,

the drawbacks of utilizing Biodiesel are worth considering. Biodiesel has a few drawbacks,

including slightly higher NOx emissions, cold start issues, decreased energy content, increased

copper strip corrosion, and fuel pumping trouble due to higher viscosity.

Biodiesel is now more expensive to generate than diesel, which appears to be the biggest barrier

to its wider adoption. The current global production of vegetable oil and animal fat is insufficient

to replace the consumption of liquid fossil fuels. Because of these factors, biodiesel blends with

other fuels such as diesel, bioethanol, and other biofuels are becoming increasingly popular.
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There is a lot of work done in the process design and manufacturing of Biodiesel from Biomass,

but there is still a lack of data and studies for thermodynamic properties of Biomass and other

important Biodiesel properties, according to the literature. The simulation tools

requires thermodynamic data required for a thorough characterisation of Biomass.

These modeling tools, in reality, rely on correlations derived from a small number of data points.

There is a scarcity of experimental data in the literature. There is a lot of potential in developing

accurate models to anticipate the qualities of Biodiesel and, more crucially, their blends, as they

are becoming more significant as the need for Diesel fuel grows.

1.3 Aim and objectives

My aim and objectives are as follows.

1.3.1 Aim

The aim of this thesis is to apply and analyse some machine learning techniques in order

to predict certain biodiesel property (viscosity). The results would be analysed to see if

the machine learning models are viable methods for the prediction of biodiesel properties.

I would compare my results with other available results from machine learning

application for biodiesel properties prediction.

1.3.2 Objectives

The objective of my research is to study the feasibility of the machine learning models

for biodiesel properties prediction. Research into the field of machine learning has led to

the development of many machine learning methodologies, and techniques. However, all

this methods are not one-size-fits-all. Some methods work better for different problems.
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In this study, I would develop a system to predict the state values for Viscosity and

analyse the effectiveness of this method for this purpose. I would also compare it to other

applications developed for the same purpose.

1.4 Significance

The negative environmental consequences of fossil fuel use, as well as the diminishing stocks

of these fuels, necessitated and sparked a huge interest in alternative energy sources. Many

governments have implemented policies such as stricter emission standards and tariffs to

stimulate the use of renewable energy, with the goal of increasing the substitution of fossil

fuels with biodegradable and environmentally friendly alternatives. Biodiesel is one of the

alternatives for the transportation sector because it can be utilized in diesel engines without

any modifications to the engine design.

1.5 Limitations of the study

The study was done with limited data in an idealistic scenario. Noise was not taken into

consideration. This could create vague results or implications in the results. The hypothesis in

this case is that the general trajectory of results would be maintained.
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CHAPTER 2

EMPIRICAL MODELS

2.1 Machine Learning Models

Machine learning is one of the fastest growing fields of study in the world now, as it is the

biggest topic now in the worls of technology. Machine learning provides the advantage of

automating most of the tasks we do now as humans with even higher accuracy than can be

achieved by humans in most cases. This increases convenience while also increasing efficiency

and productivity, which is often not a small feat.

Machine learning is a subset of Artificial Intelligence based on the premise that computers can

learn from data, detect and understand patterns and make predictions of conclusions based on

what they’ve learned with little to no human help. There are numerous methods for Artificial

Intelligence that have been developed. The methods are chosen based on the problem to be

solved.

As an example Heuristic algorithms are used in problems where a quick approximate solution

with a decent level of accuracy is needed. This can be considered as a simple “common sense”

solution to a problem that saves time.

Fuzzy Logic is used in cases where a knowledge base for a specific field or topic is needed. Like

an inference engine for medical diagnosis that has a knowledge base of diseases and can make a

diagnosis based on detected symptoms.
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Machine learning is used in cases where an outcome should be predicted on new data or input,

based on patterns or trends that have been detected by previous analysis of large amounts of data.

The machine learning model can be told what trends to look for (supervised machine learning) or

It might be left to figure that out on its own (unsupervised learning).

Before any machine learning model is used for any application, its very important to investigate

the problem, and understand the nature of the input, as well as the nature of the output to

expected. This helps to determine the best machine learning model to be used. This is important

because different machine learning models might handle the same problem differently. Some

giving better results, solving the problem faster than others, or requesting more resources than

others.

As an example, the table below shows preferred machine learning approaches for certain

applications in biodiesel production, along with the input variables and expected output.

Table 2.1: Purposes, Recommended Machine learning models and the suggested input variables
to solve those problems

Purpose Recommended ML

Method/Model

Possible Input variables

Quality Estimation ANN, Least Squares Boosting

(LSBoost), Regression models

Reaction temperature, reaction

Time, Metal ratio, Calcination

temperature, flow rate,

pressure, reactor residence
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time, reflux rate, oil fraction,

methanol-to-oil molar ratio,

catalyst concentration

Yield Estimation ANN, ANFIS, Linear

Regression (LR)

Temperature, methanol-to-oil

molar ratio, catalyst

concentration, reaction time,

organic loading rate, influent-

effluent pH, pressure, reactor

diameter, liquid height,

ultrasound intensity

Quality and yield optimization ANN-GA, SVM(Support

vector machine) based on

genetic algorithm,ANFIS-GA,

multi-objective genetic

algorithm

Methanol-tooil molar ratio,

reaction temperature, reaction

time, stirring speed,catalyst

concentration, catalyst

weight,humidity, impurities,

mixing time, Free Fatty Acid

(FFA) content

2.2 Biodiesel Properties

2.2.1 Viscosity

Viscosity is a measure of resistance to flow of a liquid due to internal friction of one part of a

fluid moving over another. This is a critical property because it affects the behaviour of fuel
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injection. In general, higher viscosity leads to poorer fuel atomization. High viscosity can cause

larger droplet sizes, poorer vaporization, narrower injection spray angle, and greater in-cylinder

penetration of the fuel spray. This can lead to overall poorer combustion, higher emissions, and

increased oil dilution. The viscosity of Biodiesel is typically higher than that of petroleum diesel

often by a factor of two. Viscosity is a quantitative indicator of fluid flow resistance. On the

other hand, it is known as internal fluid friction, there are normally two types of viscosity

measurements:

kinematic viscosity and dynamic viscosity.

2.2.2 Dynamic viscosity

Defined as the measurement of fluid resistance to flow when applying external force, the

constant proportionality between shear stress and velocity gradient is also defined in the other

hand. The shear stress ratio with the fluid's velocity gradient is also known as absolute velocity.

If two layers of fluid, the distance dy apart, travel at different speeds one over the other, the top

layer causes shear stress on the adjacent lower layer while the lower layer causes shear stress on

the adjacent op layer. The shear stress (ÿ) is proportional to the y-respect rate of change.

2.2.3 Kinematic viscosity

Is the measure of fluid resistance intrinsic to flow when there is no external force, except that

gravity acts upon it. On the other hand, under the weight of gravity it is calculation of the

resistive flow of air. It's expressed by the complex viscosity ratio to a substance's density at the

same temperature.
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2.2.4 Density

This means that the density of a substance should be the same regardless of how much of the

material is present. The density of different materials is also different combustion and

performance.

2.2.5 Cetane Number

Cetane number is an indicator of diesel and biodiesel combustion efficiency. This is a significant

expression of diesel fuel efficiency, a variety of other overall diesel fuel quality. These other

diesel fuel quality metrics include pressure, lubricity, cold flow and sulphur content. Higher

numbers of cetanes result in more efficient combustion. In comparison, cetane is the amount in

volume of cetane in the mixture having the same value as the fuel being measured. It is also the

measurement of the delay in the ignition of the fuel, the time period between the start of the

injection and the first identifiable increase in the fuel pressure. Often essential biodiesel

properties, it is useful to examine the fuel quality during the combustion process. It is

dimensionless and a cetane number of 45 has been suggested by most automakers

2.3 Applications Of Machine Learning In Modelling Biodiesel Properties

Despite biodiesel's positive attributes such as renewability, biodegradability and nontoxicity

(Shamshirband et al., 2015), researchers and investors still often worry about some of its

unfavorable physical and chemical features. (Hosseinzadeh-bandbafha et al., 2020). It is

important to remember that biodiesel's production, storage, handling and combustion are all

influenced by it's physical and chemical properties. Therefore, there are a number of

international standards, such as ASTM D6751 and EN 14214 that it must adhere to that certifies



12

its quality before it can be sold on the international market (Al-shanableh et al., 2016). However,

determining the physical and chemical parameters of biodiesel using the experimental

methodologies outlined in these standards is time-consuming, requires expert experience,

is costly, and error-prone. Furthermore, using physical simulations to characterize biodiesel fuel

is significantly more difficult than modeling the manufacturing process. This is due to the fact

that the ester content of biodiesel fuel varies significantly depending on the origin feedstock. As

a result, the scientific community will benefit greatly from establishing reliable models and

simulations for determining biodiesel physical and chemical qualities from chemical and

physical characteristics. The key structural aspects of a particular fatty ester molecule that

determine its physical and chemical properties are chain length, unsaturation degree, chain

branching, double bond number, and double bond configuration. (Aghbashlo et al., 2017; Jahirul

et al., n.d.; Knothe, 2005).

2.3.1 Literature Review of Related Works

Various approaches for forecasting density, kinematic viscosity, cetane number etc, have been

established by researchers. Nonetheless, biodiesel properties (density, viscosity, and cetane

number) are increasingly used in engine design and parameter control during operation due to

their vital role in the concept of fuel during the combustion process, their importance for engine

design, and their implications for parameter control during operation. (L. F. Ramirez–Verduzco,

2013). The viscosity and density determine the size required for proper engine operation

(combustion), whereas the cetane number determines the efficiency of combustion. As a result,

numerous stages and methods are available for measuring biodiesel characteristics with great
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precision (Geacai et al, 2015; EbnaAlam Fahd et al., 2014; Gülüm&Bilgin, 2016). (Freitas et al.

S.V.D. Freitas, M.J. Pratas, 2011) The viscosity of biodiesel may now be estimated using a

variety of models at various temperatures. To estimate the density of 10 samples, the Kay

approach based on mixing and group contribution was proposed. (Pratas et al. M.J. Pratas, S.V.D.

Freitas, 201). The models described were used to estimate the attributes of biodiesel using the

hourly and monetary costs, the results and graphical interpretations, and the models mentioned.

(Betiku et al., 2014); (Wakil et al., 2015) delsPrieto et al., 2015); (Barabás&Todoruţ, 2011);

(Barabás, 2013); (neuro fuzy, Mostafaei et al., 2016); (Hosoz et al., 2013); and artificial neural

network (Barabás, 2013).

With 10 FAMEs as inputs, (Piloto-Rodriguez et al. 2013) successfully applied the ANNs to

forecast the biodiesel Cetane number, and the multiple linear regression model gave less

accuracy than the ANNs method. (Yuan et al. 1949) devised a method for calculating the

kinematic viscosity of biodiesel using a mixing topological index. Cheenkachorn did a similar

study that focused on assessing biodiesel fuel qualities only based on the fatty acid composition.

However, other chemical compositions found in biodiesel, such as the amount of free glycerol,

free fatty acid, methanol, and contaminants, were not considered through model input in these

research, which could have an impact on the biodiesel's physical qualities.

In calculating the flash point, fire point, density, and viscosity of diesel and biodiesel blends,

Kumar and Bansal examined the applicability of the standard technique of linear regression and

ANN techniques. They used three training algorithms and ten different combinations of weights

and biases to optimize the network. The findings of this study reveal that neural networks

outperform the Linear Regression models in predicting the fuel qualities of various diesel and
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biodiesel blends. However, other training parameters such as objective, epochs, learning rate,

gradient magnitude, and so on can boost the performance of a neural network even further.

The findings of previous studies, which also used explicit ML classifiers, differed from the test

data, according to a review of relevant work. The Multilayer Perceptron (MLP) outperforms

other classifiers, such as gullible Bayes and Forests, in assessing the number, with a score of 92.5

percent. More research using five different classifiers reveals that utilitarian trees (FT) have the

highest dependability (95%) and genuine positive worth (TRP) (96.7 percent).

Using a similar Fisher test and the wellness test in the past, the potential risk of using the test was

that the information used should be the recurrence or tally rather than the next kind. Meanwhile,

regardless of whether the data is in recurrence or checks, the multilayer perceptron is capable of

examining and testing it. The NVivo application, on the other hand, is straightforward and

efficient to use. It also enhances the precision of subjective investigations.

Using the Multilayer Perceptron in the Adaboost algorithm, the cross-validation test is a

reasonable strategy for recognizing the exhibition of understudy. Cross-validation is a technique

for overlaying data numerous times and preparing it for precise accuracy. The accuracy of the

Adaboost calculation is 92.23 percent based on the preparation dataset verification. It was

formerly used to solve the issue of over-fitting and to broaden projections.
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CHAPTER 3

METHODOLOGY

3.1 Data

As presented in table 3.1 below, a total of 5 properties were studied. Each property would be

used as data points in the code. Temperature, w1 and w2 were the input variables used to predict

the density(ρ) and viscosity(ν) of the biofuels. The data presented in the tables show the

thermophysical properties of the biodiesel gotten from sunflower oil, corn oil, soy oil and canola

oil.

Table 3.1 Table of Parameters for Sunflower Oil

Temperature w1 w2 ρ ν
10.15 0.25 0.75 829.772 3.248
20.15 0.25 0.75 828.535 2.563
30.15 0.25 0.75 825.134 2.074
40.15 0.25 0.75 820.126 1.701
50.15 0.25 0.75 816.655 1.484
10.15 0.5 0.5 847.247 4.711
20.15 0.5 0.5 845.777 3.566
30.15 0.5 0.5 842.213 2.875
40.15 0.5 0.5 837.374 2.333
50.15 0.5 0.5 833.995 1.926
10.15 0.75 0.25 868.402 6.471
20.15 0.75 0.25 864.902 4.857
30.15 0.75 0.25 860.647 3.815
40.15 0.75 0.25 858.004 3.161
50.15 0.75 0.25 853.172 2.586
10.15 1 0 887.599 9.926
20.15 1 0 883.41 7.441
30.15 1 0 879.324 5.546
40.15 1 0 874.962 4.571
50.15 1 0 871.035 3.827
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Table 3.2 Table of Parameters for Corn Oil

Temperature w1 w2 ρ ν
10.15 0.25 0.75 829.391 3.264
20.15 0.25 0.75 827.96 2.598
30.15 0.25 0.75 826.171 2.077
40.15 0.25 0.75 821.161 1.715
50.15 0.25 0.75 817.566 1.437
10.15 0.5 0.5 850.079 4.751
20.15 0.5 0.5 846.229 3.575
30.15 0.5 0.5 842.385 2.911
40.15 0.5 0.5 837.412 2.379
50.15 0.5 0.5 834.579 1.936
10.15 0.75 0.25 866.85 6.406
20.15 0.75 0.25 864.811 4.806
30.15 0.75 0.25 860.124 3.793
40.15 0.75 0.25 856.715 3.163
50.15 0.75 0.25 853.437 2.595
10.15 1 0 885.86 9.542
20.15 1 0 880.947 7.162
30.15 1 0 877.259 5.58
40.15 1 0 873.728 4.329
50.15 1 0 869.248 3.674

Table 3.3 Table of Parameters for Soy Oil

Temperature w1 w2 ρ ν
10.15 0.25 0.75 832.996 3.422
20.15 0.25 0.75 831.477 2.678
30.15 0.25 0.75 829.256 2.115
40.15 0.25 0.75 824.848 1.763
50.15 0.25 0.75 823.573 1.499
10.15 0.5 0.5 847.067 4.507
20.15 0.5 0.5 844.68 3.43
30.15 0.5 0.5 840.803 2.732
40.15 0.5 0.5 836.604 2.209
50.15 0.5 0.5 833.107 1.83
10.15 0.75 0.25 866.688 6.163
20.15 0.75 0.25 863.352 4.658
30.15 0.75 0.25 860.324 3.66
40.15 0.75 0.25 856.162 2.998
50.15 0.75 0.25 853.202 2.477
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10.15 1 0 886.327 9.315
20.15 1 0 882.993 6.997
30.15 1 0 877.678 5.651
40.15 1 0 873.945 4.44
50.15 1 0 868.716 3.655

Table 3.4 Table of Parameters for Canola Oil

Temperature w1 w2 ρ ν
10.15 0.25 0.75 833.458 3.462
20.15 0.25 0.75 832.249 2.678
30.15 0.25 0.75 828.011 2.136
40.15 0.25 0.75 823.277 1.747
50.15 0.25 0.75 819.552 1.49
10.15 0.5 0.5 847.431 4.768
20.15 0.5 0.5 845.047 3.608
30.15 0.5 0.5 841.294 2.945
40.15 0.5 0.5 836.685 2.358
50.15 0.5 0.5 833.835 1.968
10.15 0.75 0.25 868.717 6.564
20.15 0.75 0.25 866.209 4.983
30.15 0.75 0.25 863.269 3.927
40.15 0.75 0.25 859.241 3.188
50.15 0.75 0.25 855.067 2.634
10.15 1 0 886.431 10.317
20.15 1 0 882.418 7.699
30.15 1 0 878.945 5.835
40.15 1 0 874.511 4.679
50.15 1 0 871.732 3.89

For the development of the models, a data division of 15% for validation, 15% for testing, and

70% for training was selected. Input refers to data obtained from a third-party source entered into

the model. Data is moved from the input layer to invisible layers made up of neurons. The

weights are the values of cell connections. Data from neurons in the input and hidden layers, as

well as the bias and activation functions, are used to generate the output information.
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3.2 Response Surface Methodology (RSM)

Response Surface Methodology is a method that is used to investigate and explore the

relationship between several causative variables and a response variable. The main aim of the

model is to find the optimal resultant value of the response variable. RSM creates an emperical

model to analyze or establish relationships between these variables using mathematical and

statistical methods. It can also be used to analyze and understand the level of influence or effect

of the causative variables on the response variables.

Another capability of RSM is that having established the relationship between the variables, it

can now be used to predict values for its response variable outside of the domain experimented

on. RSM has found a lot of application and use in the industrial sector due to its ability to make

precise decisions in uncertain conditions (Sarabia & Ortiz, 2009).

Within this work, RSM is used because it is a statistical approach that can be used to maximize

one factor by adjusting other factors. In history, RSM has been used to improve products and

services. The model does this by making experimental changes to the causative or independent

variables and analysing the response or dependent variables to choose the best response.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

The Results of my experiments with the dataset using RSM are discussed in this section. I used

RSM to first predict the density of Sunflower oil, Corn oil and Canola oil, Then I did the same

again, predicting the viscosity for each of them.

4.1.1 Density Results

The Regression equation used to establish the relationship between the emperature, w1, w2 and

density is as follows:

ρ = 753,5 + 0,674 T(K) + 90,7 w1 - 0,00160 T(K)*T(K) + 9,02 w1*w1 - 0,1032 T(K)*w1

The results are as follows:

Table 4.1: Actual and predicted values for density of sunflower oil

T(K) w1 w2
ρ
(Actual) ρ (Predict)

283.15 0.25 0.75 829.772 831.8375189
293.15 0.25 0.75 828.535 829.0925055
303.15 0.25 0.75 825.134 826.0273761
313.15 0.25 0.75 820.126 822.6421305
323.15 0.25 0.75 816.655 818.9367689
283.15 0.5 0.5 847.247 848.8916539
293.15 0.5 0.5 845.777 845.888728
303.15 0.5 0.5 842.213 842.5656861
313.15 0.5 0.5 837.374 838.922528
323.15 0.5 0.5 833.995 834.9592539
283.15 0.75 0.25 868.402 867.0732389
293.15 0.75 0.25 864.902 863.8124005
303.15 0.75 0.25 860.647 860.2314461
313.15 0.75 0.25 858.004 856.3303755
323.15 0.75 0.25 853.172 852.1091889
283.15 1 0 887.599 886.3822739
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293.15 1 0 883.41 882.863523
303.15 1 0 879.324 879.0246561
313.15 1 0 874.962 874.865673
323.15 1 0 871.035 870.3865739

Figure 4.1: Graphical Representation of the Measured and Predicted values of the Density of

Sunflower oil

Table 4.2: Actual and predicted values for density of corn oil

T(K) w1 w2
ρ
(Actual) ρ (Predict)

283.15 0.25 0.75 829.391 831.8375189
293.15 0.25 0.75 827.96 829.0925055
303.15 0.25 0.75 826.171 826.0273761
313.15 0.25 0.75 821.161 822.6421305
323.15 0.25 0.75 817.566 818.9367689
283.15 0.5 0.5 850.079 848.8916539
293.15 0.5 0.5 846.229 845.888728
303.15 0.5 0.5 842.385 842.5656861
313.15 0.5 0.5 837.412 838.922528
323.15 0.5 0.5 834.579 834.9592539
283.15 0.75 0.25 866.85 867.0732389
293.15 0.75 0.25 864.811 863.8124005
303.15 0.75 0.25 860.124 860.2314461
313.15 0.75 0.25 856.715 856.3303755
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323.15 0.75 0.25 853.437 852.1091889
283.15 1 0 885.86 886.3822739
293.15 1 0 880.947 882.863523
303.15 1 0 877.259 879.0246561
313.15 1 0 873.728 874.865673
323.15 1 0 869.248 870.3865739

Figure 4.2: Graphical Representation of the Measured and Predicted values of the Density of

Corn oil

Table 4.3: Actual and predicted values for density of canola oil

T(K) w1 w2
ρ
(Actual) ρ (Predict)

283.15 0.25 0.75 832.996 831.8375189
293.15 0.25 0.75 831.477 829.0925055
303.15 0.25 0.75 829.256 826.0273761
313.15 0.25 0.75 824.848 822.6421305
323.15 0.25 0.75 823.573 818.9367689
283.15 0.5 0.5 847.067 848.8916539
293.15 0.5 0.5 844.68 845.888728
303.15 0.5 0.5 840.803 842.5656861
313.15 0.5 0.5 836.604 838.922528
323.15 0.5 0.5 833.107 834.9592539
283.15 0.75 0.25 866.688 867.0732389
293.15 0.75 0.25 863.352 863.8124005
303.15 0.75 0.25 860.324 860.2314461
313.15 0.75 0.25 856.162 856.3303755
323.15 0.75 0.25 853.202 852.1091889
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283.15 1 0 886.327 886.3822739
293.15 1 0 882.993 882.863523
303.15 1 0 877.678 879.0246561
313.15 1 0 873.945 874.865673
323.15 1 0 868.716 870.3865739
283.15 0.25 0.75 833.458 831.8375189
293.15 0.25 0.75 832.249 829.0925055
303.15 0.25 0.75 828.011 826.0273761
313.15 0.25 0.75 823.277 822.6421305
323.15 0.25 0.75 819.552 818.9367689
283.15 0.5 0.5 847.431 848.8916539
293.15 0.5 0.5 845.047 845.888728
303.15 0.5 0.5 841.294 842.5656861
313.15 0.5 0.5 836.685 838.922528
323.15 0.5 0.5 833.835 834.9592539
283.15 0.75 0.25 868.717 867.0732389
293.15 0.75 0.25 866.209 863.8124005
303.15 0.75 0.25 863.269 860.2314461
313.15 0.75 0.25 859.241 856.3303755
323.15 0.75 0.25 855.067 852.1091889
283.15 1 0 886.431 886.3822739
293.15 1 0 882.418 882.863523
303.15 1 0 878.945 879.0246561
313.15 1 0 874.511 874.865673
323.15 1 0 871.732 870.3865739
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Figure 4.3: Graphical Representation of the Measured and Predicted values of the Density of

Canola oil

The main effects plot, showing the effects of the causative variables Temperature, w1 and w2 at

different levels on Density is shown below

Figure 4.4:Main effect plots for Temperature, w1 and w2 on density

The steeper w1 and w2 plots in contrast to the Temperature plot shows that the w1 and w2 values

had more effect on the density values.
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Figure 4.5: Contour plot of density and w1

4.1.2 Viscosity Predictions

The regression equation used tto establish the relationship between Temperature, w1, w2, and

viscosity is as follows:

v = 151,9 - 0,983 T(K) + 39,19 w1 + 0,001612 T(K)*T(K) + 5,001 w1*w1

- 0,13284 T(K)*w1

The results for my viscosity experiments are as follows:

Table 4.4: Actual and predicted values for viscosity of sunflower oil

T(K) w1 w2
v
(actual) v (predict)
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283.15 0.25 0.75 3.248 3.3993925
293.15 0.25 0.75 2.563 2.52373875
303.15 0.25 0.75 2.074 1.9705225
313.15 0.25 0.75 1.701 1.73974375
323.15 0.25 0.75 1.484 1.8314025
283.15 0.5 0.5 4.711 4.7302975
293.15 0.5 0.5 3.566 3.52254625
303.15 0.5 0.5 2.875 2.6372325
313.15 0.5 0.5 2.333 2.07435625
323.15 0.5 0.5 1.926 1.8339175
283.15 0.75 0.25 6.471 6.6863025
293.15 0.75 0.25 4.857 5.14645375
303.15 0.75 0.25 3.815 3.9290425
313.15 0.75 0.25 3.161 3.03406875
323.15 0.75 0.25 2.586 2.4615325
283.15 1 0 9.926 9.2674075
293.15 1 0 7.441 7.39546125
303.15 1 0 5.546 5.8459525
313.15 1 0 4.571 4.61888125
323.15 1 0 3.827 3.7142475

Figure 4.6: Graphical Representation of the Measured and Predicted values of the Viscosity of

Sunflower oil
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Table 4.5: Actual and predicted values for viscosity of corn oil

T(K) w1 w2
v
(actual) v (predict)

283.15 0.25 0.75 3.264 3.3993925
293.15 0.25 0.75 2.598 2.52373875
303.15 0.25 0.75 2.077 1.9705225
313.15 0.25 0.75 1.715 1.73974375
323.15 0.25 0.75 1.437 1.8314025
283.15 0.5 0.5 4.751 4.7302975
293.15 0.5 0.5 3.575 3.52254625
303.15 0.5 0.5 2.911 2.6372325
313.15 0.5 0.5 2.379 2.07435625
323.15 0.5 0.5 1.936 1.8339175
283.15 0.75 0.25 6.406 6.6863025
293.15 0.75 0.25 4.806 5.14645375
303.15 0.75 0.25 3.793 3.9290425
313.15 0.75 0.25 3.163 3.03406875
323.15 0.75 0.25 2.595 2.4615325
283.15 1 0 9.542 9.2674075
293.15 1 0 7.162 7.39546125
303.15 1 0 5.58 5.8459525
313.15 1 0 4.329 4.61888125
323.15 1 0 3.674 3.7142475

Figure 4.7: Graphical Representation of the Measured and Predicted values of the Viscosity of

Corn oil
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Table 4.6: Actual and predicted values for viscosity of canola oil

T(K) w1 w2
v
(actual) v (predict)

283.15 0.25 0.75 3.422 3.3993925
293.15 0.25 0.75 2.678 2.52373875
303.15 0.25 0.75 2.115 1.9705225
313.15 0.25 0.75 1.763 1.73974375
323.15 0.25 0.75 1.499 1.8314025
283.15 0.5 0.5 4.507 4.7302975
293.15 0.5 0.5 3.43 3.52254625
303.15 0.5 0.5 2.732 2.6372325
313.15 0.5 0.5 2.209 2.07435625
323.15 0.5 0.5 1.83 1.8339175
283.15 0.75 0.25 6.163 6.6863025
293.15 0.75 0.25 4.658 5.14645375
303.15 0.75 0.25 3.66 3.9290425
313.15 0.75 0.25 2.998 3.03406875
323.15 0.75 0.25 2.477 2.4615325
283.15 1 0 9.315 9.2674075
293.15 1 0 6.997 7.39546125
303.15 1 0 5.651 5.8459525
313.15 1 0 4.44 4.61888125
323.15 1 0 3.655 3.7142475
283.15 0.25 0.75 3.462 3.3993925
293.15 0.25 0.75 2.678 2.52373875
303.15 0.25 0.75 2.136 1.9705225
313.15 0.25 0.75 1.747 1.73974375
323.15 0.25 0.75 1.49 1.8314025
283.15 0.5 0.5 4.768 4.7302975
293.15 0.5 0.5 3.608 3.52254625
303.15 0.5 0.5 2.945 2.6372325
313.15 0.5 0.5 2.358 2.07435625
323.15 0.5 0.5 1.968 1.8339175
283.15 0.75 0.25 6.564 6.6863025
293.15 0.75 0.25 4.983 5.14645375
303.15 0.75 0.25 3.927 3.9290425
313.15 0.75 0.25 3.188 3.03406875
323.15 0.75 0.25 2.634 2.4615325
283.15 1 0 10.317 9.2674075
293.15 1 0 7.699 7.39546125
303.15 1 0 5.835 5.8459525
313.15 1 0 4.679 4.61888125
323.15 1 0 3.89 3.7142475
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Figure 4.8: Graphical Representation of the Measured and Predicted values of the Viscosity of

Canola oil

The main effects plot, showing the effects of the causative variables Temperature, w1 and w2 at

different levels on Viscosity is shown below.
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Figure 4.9:Main effect plots for Temperature, w1 and w2 on density

The steep Temperature, w1 and w2 plots show these causative or independent variables all have

considerable effects on the response or dependent variable, viscosity.
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Figure 4.10: Contour plot of Viscosity and w1

4.2 Discussion

The results obtained are clearly satisfactory. R2 Values of 0.9986, 0.9974, and 0.9927 were

obtained for the density predictions for Sunflower oil, Corn oil and Canola oil respectively. Also,

R2 Values of 0.9887, 0.9895, and 0.9837 were obtained for the viscosity predictions for

Sunflower oil, Corn oil and Canola oil.
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Other properties can also be predicted using the same methodology. For example, Cetane

number, as shown in Appendix A can also be predicted using a different set of input values. The

results obtained shows that the model can adequately map the resultant attributes (Viscosity and

Density) to the input attributes (Temperature, W1 and W2).
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, the effectiveness of of Response Surface Methodology (RSM) was investigated.

The model was developed and tested with the dataset to see how well it handled the data and was

able to map the input to the target output.

The results obtained from this study are satisfactory and encouraging. They imply that with RSM,

we can adequately predict the density and viscosity of Biodiesel. The accuracy of the model

implies that the results are reliable enough and can be used to guide decision making in

production of Biodiesel.

I also obtained results that were better than those shown for other models like Multilayer

Perceptrons (MLP) as seen in other studies.

5.1 Future Work

Neural Network based Methodologies like adaptive neuro-fuzzy inference system (ANFIS),

artificial neural network (ANN), radial basis function neural network (RBFNN) and response

surface methodology (RSM) should also be studied to see how they measure up. Because these

other models have different functioning principles, they could give better or worse results.

Appendices B, C and D show the results obtained from predicting the Cetane number of other

biofuels using one, two and three inputs attributes respectively on a number of machine learning
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models. This also goes to show that the number of independent variables used to predict the

dependent variables also affects the obtained results.

ANFIS models for example are much more sophisticated Neural Networks and have an inference

system that already does half of the work before the model even starts training. It is a hybrid

between Neural networks and fuzzy systems (as the name implies) which means it would

probably handle the data differently and might be faster.
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Appendix A

Cetane Numbers of Some Biofuels

Biodiesel name ∑MUFAMs ∑PUFAMs ∑SFAMs CN

Capric acid ester 0 0 100 47.2
Lauric acid ester 0 0 100 60.8
Myristic acid ester 0 0 100 66.2
Palmitic acid ester 0 0 100 74.3

Palmitoleic acid ester 100 0 0 51
Stearic acid ester 0 0 100 75.6
Oleic acid ester 100 0 0 56.5

Linoleic acid ester 0 100 0 38.2
Linolenic acid ester 0 100 0 22.7
Arachidic acid ester 0 0 100 100
Paullinic acid ester 100 0 0 64.8
Behenic acid ester 0 0 100 79.49
Erucic acid ester 100 0 0 76

Lignoceric acid ester 0 0 100 82.23
Anacardiaceae Rhus succedanea Linn 46.8 27.8 25.4 52.22
Annonaceae Annona reticulata Linn 52.6 21.7 25.7 53.47

Thevetia peruviana Merrill 60.9 12.6 26.5 57.48
Vallaris solanacea Kuntze 35.3 40.4 24.3 50.26

Balanitaceae Balanites roxburghii
Planch

36.7 38.5 24.8 50.46

Burseraceae Canarium commune Linn 38.3 23 38.7 55.58
Terminalia chebula Retz 37.3 39.8 22.9 49.6

Compositaceae Vernonia cinerea Less 32 22 46 57.51
Croton tiglium Linn 56 29 15 49.9
Jatropa curcas Linn 40.8 32.1 27.1 52.31

Joannesia princeps Vell 45.8 46.4 7.8 45.2
Putranjiva roxburghii 33 3 118.99

Sapium sebiferum Roxb Flacourtiaceae 27.4 0 72.6 30.72
Guttiferae Calophyllum apetalum Wild 48 30 22 51.57

Calophyllum inophyllum Linn 45.2 15.8 39 57.3
Garcinia combogia Desr 57.9 1.2 40.9 61.5
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Garcinia indica Choisy 39.4 1.7 58.9 65.16
Garcinia echinocarpa Thw 52.6 0 47.4 63.1
Garcinia morella Desr 49.5 0.9 49.6 63.52
Mesua ferrea Linn 60 15 25 55.1

Icacinaceae Mappia foetida Milers 38.4 36.8 24.8 50.7
Illiciceae Illicium verum Hook 63.24 24.4 12.36 50.71
Labiatae Saturega hortensis Linn 12 80 8 25.46

Lauraceae Actinodaphne angustifolia 5.4 0 94.6 63.2
Neolitsea cassia Linn 4 3.3 92.7 64.05

Neolitsea umbrosa Gamble 21 6.7 72.3 60.77
Meliaceae Aphanamixis polystachya

Park
21.5 42.6 35.9 48.52

Azadirachta indica 61.9 7.5 30.6 57.83
Melia azadirach Linn 22.3 67.7 9.4 41.37

Swietenia mahagoni Jacq 56 16.1 24.5 52.26
Menispermaceae Anamirta cocculus

Wight & Hrn
46.4 0 53.6 64.26

Moraceae Broussonetia papyrifera Vent 14.8 72 13.1 41.25
Moringaceae Moringa concanensis

Nimmo
83.8 0.8 15.4 56.32

Moringa oleifera Lam 81.5 0.9 17.6 56.66
Myristicaceae Myristica malabarica

Lam
44.1 1 54.9 61.81

Papaveraceae Argemone mexicana 18.5 61.4 20.1 44.45
Papilionaceae Pongamia pinnata Pierre 51.8 19 29.2 55.84
Rhamnaceae Ziziphus mauritiana Lam 68.7 12.4 18.9 55.37
Rubiaceae Meyna laxiflora Robyns 32.5 39.7 27.8 50.42

Rutaceae Aegle marmelos correa Roxb 30.5 44.1 25.4 48.3
Salvadoraceae Salvadora oleoides

Decne
8.3 0.1 91.6 66.13

Salvadora persica Linn 5.4 0 94.6 67.47
Sapindaceae Nephelium lappaceum

Linn
49.5 0 50.5 64.86

Sapindus trifoliatus Linn 55.1 8.2 36.7 59.77
Sapotaceae Madhuca butyracea Mac 27.5 3 69.5 65.27

Madhuca indica JF Gmel 46.3 17.9 35.8 56.61
Mimusops hexendra Roxb 63 3 34 59.32

Urticaceae Urtica dioica Linn 14.6 76.4 9 38.73
Verbenaceae Tectona grandis Linn 29.5 46.8 23.7 48.31
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Arachis hypoga Linn 40.07 40.69 19.39 48.86
Cocos nucifera 4.7 0.96 94.37 65.8
Oryza sativa 41.79 35.36 22.88 50.09

Elaeis guineensis 45.56 11.07 43.79 59.11
Glycine max (L.) merr 24.04 61.93 14.07 42.21
Helianthus annuus L. 22.52 67.12 10.39 41.41

Zea mays L. 35.3 48.58 16.15 46.3
Arachis hypogaea Linn. 63.57 16.46 20.21 54.03
Sesamum orientale L. 35.52 49.85 14.66 45.91
Sesamum indinum L. 41.21 44.61 14.2 46.92

Prunus dulcis 69.14 22.63 8.24 50.54
Brassica rapa (napus) 66.06 26.32 7.61 52.98

Carthamus tinctorius Linn. 14.19 76.72 9.12 39.32
Olea europoea Linn. 81.09 4.73 14.22 55

Irvingia malayana Oliv. ex A.W. Benn 3.07 0.44 96.21 66.13
Parinari anamensi Hance 43.52 19.59 36.89 56.35

Ceiba pentandra (L.) Gaertn. 26.51 43.76 29.64 49.52
Dipterocarpus alatus Roxb. ex G. Don 21.98 61.94 17 40.29

Ricinus communis L. 31.15 44.56 24.29 48.32
Jatropha currcas L. 41.79 38.88 19.34 48.91
Nicotiana tabacum L. 11.01 75.8 13.19 40.1

Citrus maxima (Burm.) Merr 24.7 45.32 30.02 49.29
Carica papaya Linn. 73.36 5.12 21.56 56.27

Nephelium lappaceum L. 56.21 3.98 39.6 61.17
Cucurbita moschata Duchesne 38.75 33.18 28.11 51.87

Citrus reticulate Blan co 21.38 52.45 26.03 46.48
Dasymaschalon lomentaceum Fiet &

Gagnep
47 14.91 38.11 57.35

Rapeseed 64.1 30.5 5.4 46
Soybean 22.8 62.3 14.1 48

Rubber seed 27.8 51.1 21 51
Cottonseed 19.2 55.8 23.8 52.1
Jatropha 42.1 31.1 26.2 54
Karanja 53.2 19.1 17.8 52

Jatropha:palm 50:50 42.7 20.3 36.4 59
Neem 41.3 16.7 39.6 58.7

Sunflower 44 10.8 44.2 61.6
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Palm 43.1 10.5 45.6 64
Mahua 36.4 16.1 46.2 61.4

SFCt 50:50 19.4 32.6 44.4 54.6
Beef Tallow 42.4 3.8 45.3 58.8
JCt 50:50 26.1 18.3 52.2 58
Coconut 8.2 2.7 81.5 60

Inedible tallow 41.9 6.7 45.6 61.7
Canola 60.3 28.5 7.8 55
Lard 41.9 13.7 40.9 63.6

Yellow grease 48.8 15.8 27.9 52.9
Linseed 20 73 7 52

Wild mustard 59.1 27.2 3.6 61.1
Waste palm oil 44.1 10.7 44.3 60.4

Palm 46.4 8.9 44.7 61
Olive 76 8.4 15.6 57
Peanut 55.7 28.7 15.6 53
Rape 65.3 28.3 6.5 55

Soybean 25.6 59.1 15.3 49
Sunflower 25.6 63.3 11.1 50
Grape 19.1 69.4 11.3 48

H.O. Sunflower 62.9 27.6 9.3 53
Corn 66.4 25.3 8.1 53

Almond 77.6 8.4 13.9 57
Apocynaceae Ervatamia coronaria Stapf 50.9 16.4 32.5 56.33
Cannabinaceae Cannabis sativa Linn 15 80 0 36.4

Combretaceae Terminalia bellirica Roxb 24 31 35 56.24
Corylaceae Corylus avellana 88 2.9 8.9 54.5
Aleurites moluccana Wild 10.5 77 12.2 34.18
Euphorbia helioscopia Linn 18.8 64.8 19.3 34.25
Perilla frutescens Britton 9.8 83.7 0 30.09
Litsea glutinosa Robins 2.3 0 96.3 64.79

Magnoliaceae Michelia champaca Linn 29.2 42.5 25.8 50.28
Rosaceae Princepia utilis Royle 32.6 43.6 22.4 48.94
Simaroubaceae Quassia indica

Nooleboom
36 48 9 46.74

Sterculaceae Pterygota alata Rbr 44 32.4 23 51.09
Ulmaceae Holoptelia integrifolia 55.2 0 44.2 61.22
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Appendix B

Some Model Performances With One Input To Predict Cetane Number

Model Name Input R2 RMSE

MLP#1 ∑MUFAMs 0.0153 10.4066

MLP#2 ∑PUFAMs 0.6169 6.5181

MLP#3 ∑SFAMs 0.4181 8.0070

RBFNN#1 ∑MUFAMs 0.2987 8.8062

RBFNN#2 ∑MUFAMs 0.6459 6.2417

RBFNN#3 ∑MUFAMs 0.4579 7.7257

ME#1 ∑MUFAMs 0.0078 10.4462

ME#2 ∑MUFAMs 0.0565 10.1863

ME#3 ∑PUFAMs 0.6270 6.4048

ME#4 ∑PUFAMs 0.6277 6.3992

ME#5 ∑SFAMs 0.4195 7.9899

ME#6 ∑SFAMs 0.0048 7.9735
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Appendix C

Some Model Performances With Two Input To Predict Cetane Number

Model Name Input R2 RMSE
MLP#4 ∑MUFAMs, ∑SFAMs 0.7079 5.7526

MLP#5 ∑MUFAMs, ∑PUFAMs 0.6707 6.0516

MLP#6 ∑PUFAMs, ∑SFAMs 0.6264 6.4513

RBFNN#4 ∑MUFAMs, ∑SFAMs 0.6678 6.0784

RBFNN#5 ∑MUFAMs, ∑PUFAMs 0.7528 5.3128

RBFNN#6 ∑PUFAMs, ∑SFAMs 0.6711 6.0644

ME#7 ∑MUFAMs, ∑SFAMs 0.7001 5.7841

ME#8 ∑MUFAMs, ∑SFAMs 0.7086 5.7041

ME#9 ∑MUFAMs, ∑SFAMs 0.7145 5.6471

ME#10 ∑MUFAMs, ∑SFAMs 0.7170 5.6213

ME#11 ∑MUFAMs, ∑PUFAMs 0.7039 5.7467

ME#12 ∑MUFAMs, ∑PUFAMs 0.7198 5.5932

ME#13 ∑MUFAMs, ∑PUFAMs 0.7058 5.7288

ME#14 ∑MUFAMs, ∑PUFAMs 0.7205 5.5860

ME#15 ∑PUFAMs, ∑SFAMs 0.7040 5.7460

ME#16 ∑PUFAMs, ∑SFAMs 0.9880 5.5945

ME#17 ∑PUFAMs, ∑SFAMs 0.7039 5.7472

ME#18 ∑PUFAMs, ∑SFAMs 0.7221 5.5701



48

Appendix D

Some Model Performances With Three Inputs To Predict Cetane Number

Model Name Input
R2

RMSE

MLP#7 ∑MUFAMs, ∑PUFAMs, ∑SFAMs 0.6491 6.2783

RBFNN#7 ∑MUFAMs, ∑PUFAMs, ∑SFAMs 0.6986 5.8251

ME#19 ∑MUFAMs, ∑PUFAMs, ∑SFAMs 0.7041 5.7451

ME#20 ∑MUFAMs, ∑PUFAMs, ∑SFAMs 0.7215 5.5766

ME#21 ∑MUFAMs, ∑PUFAMs, ∑SFAMs 0.7213 5.5784

ME#22 ∑MUFAMs, ∑PUFAMs, ∑SFAMs 0.7294 5.4981
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