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Abstract 

Time-dependent source identification problem for Schrödinger differential and 

difference equation 

Ürün, Mesut 

PhD Thesis, Department of Mathematics 

Supervisor: Prof. Dr. Allaberen Ashyralyev 

June, 2022, (128) pages 

        In the present thesis, the time-dependent source identification problem for the 

Schrödinger equation is investigated.  

The stability of the time-dependent source identification problem for the Schrödinger 

equation in a Hilbert space with the self-adjoint positive definite operator is 

established. In practice, theorems on stability estimates for the solution of five types of 

time-dependent source identification problems for one-dimensional and 

multidimensional Schrödinger equations with local and nonlocal boundary conditions 

are proved. The absolute stable difference schemes for the approximate solutions of 

this time-dependent abstract source identification problem are presented. The stability 

of these difference schemes are established. In applications, stability estimates for the 

solution of difference schemes for the approximate solutions five types of 

time-dependent source identification problems for Schrödinger equations are 

obtained. Numerical results for the first and second-order of accuracy difference 

schemes of the approximate solution of one-dimensional time-dependent source 

identification problem for Schrödinger equations with nonlocal, Dirichlet, Neumann, 

and Robin conditions are provided. 

Key Words: Schrödinger equation; Source identification problem; Hilbert spaces; 

Nonlocal conditions; Neumann conditions; Dirichlet conditions; Robin conditions; 

Stability; Difference Schemes. 
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Özet 

Schrödinger Diferansiyel ve Fark Denklemi için Zamana Bağlı Kaynak 

Tanımlama Problemi 

Ürün, Mesut 

Doktora Tezi, Matematik Anabilim Dalı 

Danışman: Prof. Dr. Allaberen Ashyralyev 

Haziran, 2022, (128) sayfa 

        Bu tezde, Schrödinger denklemi için zamana bağlı kaynak tanımlama 

problemi incelenmiştir. 

Schrödinger denklemi için zamana bağlı kaynak tanımlama probleminin bir Hilbert 

uzayında kendine eşlenik pozitif tanımlı operatör ile kararlılığı kurulmuştur. 

Uygulamada, yerel ve yerel olmayan sınır koşulları ile tek boyutlu ve çok boyutlu 

Schrödinger denklemi için zamana bağlı beş tür kaynak tanımlama probleminin 

çözümü için kararlılık tahminleri üzerine teoremler kanıtlanmıştır. Bu zamana bağlı 

soyut kaynak tanımlama probleminin yaklaşık çözümleri için mutlak kararlı fark 

şemaları sunulmaktadır. Bu fark şemalarının kararlılığı kurulmuştur. 

Uygulamalarda, Schrödinger denklemi için zamana bağlı beş tür kaynak tanımlama 

probleminin yaklaşık çözümleri için fark şemalarının kararlılık tahminleri elde 

edilmiştir. Yerel ve yerel olmayan olmayan, Dirichlet, Neumann ve Robin sınır 

koşullarıyla Schrödinger denklemleri için bir boyutlu zamana bağlı kaynak tanımlama 

probleminin yaklaşık çözümünün birinci ve ikinci mertebeden doğruluk fark şemaları 

için sayısal sonuçlar verilmiştir. 

Anahtar Kelimeler: Schrödinger Denklemi; Kaynak Tanımlama Problemi, Hilbert 

Uzayı; Lokal Olmayan Sınır Şartları; Neumann sınır Şartları; Dirichlet Sınır Şartları; 

Robin Sınır Şartları; Kararlılık; Fark Şeması. 
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CHAPTER I 

Introduction 

 

1.1 Historical Note and Literature Survey 

A special case of the Schrödinger equation that admits a statement in those 

terms are the position-space Schrödinger equation for a single nonrelativistic particle 

in one dimension:  

             ),(),(
2

=
2

22
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Here, ),( tx  is a wave function, a function that assigns a complex number to each 

point x  at each time t . The parameter m  is the mass of the particle, and ),( txV  is 

the potential that represents the environment in which the particle exists. The constant 

i  is the imaginary unit, and h is the reduced Planck constant, which has units of 

action. It shows that behavior of wave functions and their variation in space and time. 

It is named after Erwin Schrödinger, who proposed the equation in 1925 and published 

it in 1926, and formed the basis of the work that later won the Nobel Prize in Physics in 

1933 (Schrödinger, 1926a,1926b). 

 The Schrödinger type equation has many applications such as natural 

sciences, engineering sciences. The mathematical modeling of many problems in 

physics, such as quantum mechanics, diffusion equations, heat transfer, quantum 

physics, and the propagation of sound under water, is based on partial differential 

equations similar to the Schrödinger equations (Agmon, 1970, 1981; Aguilar & 

Combes, 1971; Aizenman & Lieb, 1978; Avron & Herbst, 1977; Aizenman & Simon, 

1982a, 1982b; J. Avron, Herbst & Simon, 1978; Brdzis & Kato, 1979; Eskin & 

Ralston, 1995; Burnham et al., 2020; Ita et al., 2020; Biondini, Lottes & Mantzavinos, 

2021; Osman et al., 2021; Zhi, 2021). The Schrodinger equation has many 

technological applications. For example, in modeling quantum devices, 

electromagnetic wave propagation, underwater acoustics, optics, beam propagation in 

nonlinear Kerr medium, two-dimensional Schrödinger equation is widely used in 

modeling problems encountered in relativistic physics or plasmas (Arnold, 1998; 

Shang et al., 2014; Tappert, 1977; Mayfield, 1989; Manganaro & Parker, 1993; 

Kopylov, Popov & Vinogradov, 1995a, 1995b). Some of recent studies on the 

Schrödinger equation are the following. Local and nonlocal problems in the 
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Schrödinger equation have been extensively studied by many researchers (Antoine, 

Besse & Mouysset, 2004, 2005; Gordeziani & Avalishvili, 2000; Avalishvili, 

Avalishvili & Gordeziani, 2005; Avalishvili & Avalishvili, 2014; Avalishvili, 

Avalishvili & Gordeziani, 2011; Xu, Han & Wu, 2007). 

The numerical method for partial differential equations is an effective method 

in scientific computation. It is not easy to obtain a numerical solution using classical 

first and second order difference schemes unless many nodes are used. A reasonable 

way to overcome this disadvantage of classical difference schemes is to design a 

highly compact finite difference scheme, since the computational overhead will be 

quite high. The fourth-order compact difference scheme for the linear Schrödinger 

equation with periodic boundary conditions over a limited region was discussed by Lio 

and Sun, and by applying the energy method with certain Sobolev embedding 

inequalities, maximum norm error estimations of the solutions were obtained (Lin 

Liao, Zhong Sun & Shi, 2010; Liao, Sun, Shi & Wang, 2012; Bratsos, 2010). Proposed 

two high-order compact finite difference schemes for the one-dimensional nonlinear 

Schrödinger equation and showed discrete 𝐿2  norm error estimations and 

convergence speed (Xie, Li Sucheol-Yi, 2009). For the two-dimensional Schrödinger 

equation, Gao and Xie created fourth-order vari-directional closed compact difference 

schemes and analyzed the degree of convergence of the schemes (Gao and Xie, 2011). 

 In the PhD Thesis (Sirma, 2007), the nonlocal boundary value problem 
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for the Schrödinger equation in a Hilbert space H  with the self-adjoint operator A  

was considered. Stability estimates for the solution of this problem were established. 

Two nonlocal boundary value problems were investigated. The first and second order 

of accuracy difference schemes for the approximate solutions of this nonlocal 

boundary value problem were presented. The stability of these difference schemes was 

established. In practice, stability inequalities for the solutions of difference schemes 

for the Schrödinger equation were obtained. A numerical method was proposed to 

solve a one-dimensional Schrödinger equation with nonlocal boundary condition. A 
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procedure involving the modified Gauss elimination method was used to solve these 

difference schemes. The method is illustrated by giving numerical examples. These 

and other results of this subject were published in papers (Sirma, 2007; Ashyralyev & 

Sirma 2008, 2009b, 2009a). 

In the PhD Thesis (Hicdurmaz, 2015), the initial value problem  

{
 
 

 
 𝑖𝑢𝑡 + 𝐴𝑢 +∫ 𝛾(𝑠)𝐷𝑠

𝛼𝑢(𝑠)𝑑𝑠 = 𝑓(𝑡),
𝑡

0

 𝑡 ∈ (0,1),                       

𝑢(0) = 0                                                                                               
                                                                                                 

 

for the fractional Schrödinger equation in a Hilbert space H  with the self-adjoint 

operator A  was considered.The stability estimates for the solution of the problem and 

its first order of derivative were established. In practice, one-dimensional fractional 

Schrödinger differential equation with nonlocal boundary conditions and 

multidimensional fractional Schrödinger differential equation with the Dirichlet 

condition were considered. The stability estimates for the solutions of these problems 

were established. The first order of accuracy difference scheme for approximate 

solution of this equation was presented. The stability of this difference scheme was 

established. In applications, the stability estimates for the solutions of difference 

schemes of the fractional Schrödinger problems were established. These and other 

results for this subject were published in papers (Ashyralyev, Hicdurmaz, 2011, 2012)  

Fractional nonlinear Schrödinger equation was studied by Rida, El-Sherbiny 

and Arafa, 2007; In these studies, the Adomian decomposition method in applied 

mathematics was used and analytical and approximate solutions for different kinds of 

fractional differential equations were investigated (Haydari & Atangana 2019; 

Sweilam, Hassan & Hassan, 2017; Rida, Sherbiny & Arafa, 2008; Bhrawy, Zaky & 

Abdelkawy, 2016; Bhrawy & Zaky, 2017; Abdel-Salam, Yousif & El-Aasser, 2016; 

Asyralyev and Hicdurmaz, 2011, 2012b, 2012a 2016, 2017, 2018b, 2018a; Hicdurmaz 

2019, 2020b, 2020a; Asyralyev & Hicdurmaz, 2021; Hicdurmaz, 2021). 

The theory and applications of linear and nonlinear time-delayed Schrödinger 

equations have been widely researched (Agırseven, 2018; Chen, Zhou & Zhao, 2010; 

Guo & Shao, 2005; Guo & Yang, 2010, 2010a; Wu, 1996; Zhao & Ge, 2011). The 

existence, uniqueness and regularity properties, Strichartz type estimates for solution 

of multipoint Cauchy problem for linear and nonlinear Schrödinger equations with 

general elliptic leading part was obtained in papers (Shakhmurov, 2019, 2020, 2021a, 
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2021b). Equation involves a involution of integral operators with a general kernel 

operator functions whose Fourier transform are operator functions defined in a Hilbert 

space 𝐻 together with some growth conditions. By assuming enough smoothness on 

the initial data and the operator functions, the local and global existence and 

uniqueness of solutions are established. Shakhmurov can obtained a different classes 

of nonlocal Schrödinger equations by choosing the space 𝐻 and linear operators, 

which occur in a wide variety of physical system. The theory and applications of linear 

time-delay Schrödinger equation  

{
𝑖𝑢𝑡 + 𝐴𝑢(𝑡) = 𝑏𝐴𝑣([𝑡]), 𝑡 ∈ (0,∞),                       

𝑢(0) = 𝜑                                                                       
 

in a Hilbert space 𝐻 with the self-adjoint operator 𝐴 was studied in papers (Erköse, 

2021; Agirseven,2018; Ashyralyev & Agirseven, 2019). Theorems on stability 

estimates for the solution of this problem were established. The applications of 

theorems for three types of Schrödinger problems were provided. The first and second 

order of accuracy difference schemes for the approximate solutions of this abstract 

problem were presented. The theorem on stability estimates for the solutions of these 

difference schemes was established. The application of theorems on stability of 

difference schemes for the approximate solutions of the initial boundary value 

problems for Schrödinger partial differential equation was provided. Additionally, 

some illustrative numerical results were presented. 

Identification problems take an important place in applied sciences and 

engineering applications and have been studied by many authors (see, Kabanikhin, 

2004, 2011; Belov, 2002; Gryazin, Klibanov and Lucas, 1999). The theory and 

applications of source identification problems for partial differential equations have 

been given in various papers (Erdogan & Ashyralyev, 2014; Ashyralyev & Prenov, 

2014; Ashyralyev & Sazaklioglu, 2014; Kostin, 2013;  

Choulli & Yamamoto, 1999; Ashyralyev & Emharab, 2019; Ashyralyev & 

Sazaklioglu, 2017; Saitoh, Tuan, & Yamamoto, 2002; Ivanchov, 1995; Samarskii & 

Vabishchevich, 2008; Borukhov & Vabishchevich, 2000; Blasio & Lorenzi, 2007; 

Ashyralyev, Erdogan & Sazaklioglu, 2019). 
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 The theory and applications of space dependent identification problem for 

Schrödinger equation 

{
𝑖𝑢𝑡 + 𝐴𝑢(𝑡) = 𝑓(𝑡) + 𝑝, 𝑡 ∈ (0, 𝑇),                       

𝑢(0) = 𝜑, 𝑢(𝑇) = 𝜓, 𝑡 ∈ [0, 𝑇]                               
 

in a Hilbert space H  with the self-adjoint operator A  was studied in papers 

(Ashyralyev et al., 2019; Ashyralyev and Urun, 2013a, 2013b, 2014; Urun, 2013). The 

well-posedness of this problem was established. The stability inequalities for the 

solution of two boundary value problems for the Schrödinger’s equation with 

unknown parameter were obtained. The first and second order of accuracy stable 

difference schemes for the approximate solution this problem were presented. The 

well-posedness of these difference schemes was established. Numerical techniques 

were developed and algorithms were tested on an example. 

In the present thesis, we investigate the time-dependent source identification 

problem for Schrödinger differential equation    

        {
𝑖
𝑑𝑢

𝑑𝑡
+ 𝐴𝑢(𝑡) = 𝑝(𝑡)𝑞 + 𝑓(𝑡), 𝑡 ∈ (0, 𝑇),

𝑢(0) = 𝜑, 𝐵[𝑢(𝑡)] = 𝜓(𝑡), [0, 𝑇]               

                     (1.1) 

in a Hilbert space H  with the with self-adjoint positive definite operator A  with 

dense domain )(AD  in H . Here 𝐵:𝐻 → 𝑅 is a given linear bounded functional and 

𝜓(𝑡): [0, 𝑇] → 𝑅 is a given smooth function and 0.),(  BqADq  

The stability of the differential problem is established. In applications, 

theorems on stability estimates for the solution of five types of time-dependent source 

identification problems for Schrödinger equations are obtained. The first of them is the 

time-dependent source problem for the one dimensional Schrödinger equation with 

nonlocal conditions. The second of them is the time-dependent source problem for the 

one dimensional Schrödinger equation with involution and Dirichlet conditions. The 

third is the time-dependent source problem for the one dimensional Schrödinger 

equation with Robin conditions. Two of them are the time-dependent source problems 

for the multidimensional Schrödinger equation with Dirichlet and Neumann 

conditions. The absolute stable difference schemes for the approximate solutions of 

this time-dependent abstract source identification problem are investigated. The first 

and second order of accuracy implicit and second order of accuracy 𝑟 -modified 

Crank-Nicolson difference schemes are presented. Stability of these difference 



   16 
 

 
 

schemes are established. In applications, theorems on stability estimates for the 

solution of difference schemes for the approximate solutions five type of 

time-dependent source identification problems for Schrödinger equations are 

obtained. The first of them is the time-dependent source problem for the one 

dimensional Schrödinger equation with nonlocal conditions. The second of them is the 

time-dependent source problem for the one dimensional Schrödinger equation with 

involution and Dirichlet conditions. The third is the time-dependent source problem 

for the one dimensional Schrödinger equation with Robin conditions. Two of them are 

the time-dependent source problems for the multidimensional Schrödinger equation 

with Dirichlet and Neumann conditions.When the analytical methods do not work 

properly, numerical methods to obtain approximate solutions for partial differential 

equations play an important role in applied mathematics. We can say that there are 

many considerable studies in the literature. In present section for the approximate 

solution of one-dimensional time-dependent source identification problem for 

Schrödinger equations with nonlocal, Dirichlet, Neumann, and Robin conditions, we 

use the first and second order of accuracy difference schemes. The error analysis is 

given. Presently, the time-dependent source identification problem for the fractional 

Schrödinger type equation was investigated by (Ashurov & Shakarova in 2021, 2022). 

 

1.2 Layout of the Present Thesis 

 Time-dependent source identification problem for the Schrödinger 

differential and difference equation has not been investigated before. The main aim the 

present thesis is a study of the boundedness solution of several time-dependent source 

identification problem for the schrödinger differential and difference equation. This 

thesis consists of six chapters. 

The first chapter a historical note and literature survey. 

The second chapter is to study of the time-dependent source identification 

problems for several Schrödinger equations. Applying results of Chapter one Fourier 

series, Laplace and Fourier transform methods, we obtain the exact solution of several 

time-dependent source identification problems for Schrödinger equations. 

In the thirth chapter, the main theorem on stability of the time-dependent 

source identification problems is established. In applications of the main theorem, 

stability estimates for the solutions of five type time-dependent source identification 

problems for the Schrödinger equations with local and nonlocal conditions are 
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obtained. (This chapter was published in TWMS J. Pure Appl. Math. Ashyralyev, 

Urun, 2022). 

In the fourth chapter, single-step absolute stable difference schemes for the 

approximate solutions of source identication problem are presented. The main 

theorems on stability of these difference schemes are established. In applications of 

the main theorems, stability estimates for the solutions of difference schemes for the 

approximate solutions of the five type of time-dependent source identification 

problems for Schrödinger equations with local and nonlocal conditions are obtained. 

In the fifth chapter, results of numerical experiments are provided with local 

and nonlocal boundary contions, Dirihlet contions, Neumann conditions, Robin 

conditions, (This chapter publishe in International Journal of Applied Mathematics 

and Bulletin of the Karaganda University-Mathematics Ashyralyev,Urun 2021, 

2021a). 

Finally, in the sixth chapter, the conclusion is given. 

 

1.3 Basic Concept and Definitions 

1.3.1   Sturm-Liouville Problem (Arfken, Weber, 2005) 

We denote the Sturm Liouville operator as 

                  vxq
dx

dv
xp

dx

d
vL )()(=][ +








−      

and consider the Sturm Liouville equation 

                         0,=][ vvL +                                  (1.2) 

where 0>p  and p  and q  are continuous functions on the interval [0, 𝑙] 

with local boundary conditions  

𝛼1𝑣(0) + 𝛼2𝑝(0)𝑣
′(0) = 0;  𝛽1𝑣(𝑙) + 𝛽2𝑝(𝑙)𝑣

′(𝑙) = 0,           (1.3) 

where 02

2

2

1 +  and 02

2

2

1 +   or nonlocal boundary conditions  

          0,=)((0)0,=)((0) lvvlvv '' −−                                 (1.4) 

The problem of finding a complex number  =  such that the boundary 

value problems (1.2), (1.3) or (1.2), (1.4) have a non trivial solution are called 

Sturm-Liouville problems. 

The value  =  is called an eigenvalue and the corresponding solution 

),( xy  is called an eigenfunction. 
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We will consider three types of Sturm-Liouville problem. 

1. The Sturm-Liouville Problem with Dirichlet Condition  

0=)(=(0),<<0,0=)()( luulxxuxu
''

+−  

has solution 

l

kx
xuk sin=)(  

and  

1,2,....=,=

2

k
l

k
k 








−


  

In the case when =l   

kxxuk sin=)(  

and  

1,2,....=,= 2 kkk −  

2. The Sturm-Liouville Problem with Neumann Condition  

0=)(=(0),<<0,0=)()( luulxxuxu ''''

+−  

has solution 

                            
l

kx
xuk cos=)(  

and  

0,1,2,....=),(= k
l

k
k


  

In the case when =l  

kxxuk cos=)(  

and  

0,1,2,....=,= 2 kkk −  

 

 

3. The Sturm-Liouville problem with nonlocal conditions 

)(=(0)),(=(0),<<0,0=)()( luuluulxxuxu
''''

−−  

has solution 

 0,1,2,...=,2cos=)( kkxxuk  

1,2,...=,2sin=)( kkxxuk  
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and  

 0,1,2,....=,4= 2 kkk  

 

1.3.2 Fourier Series (Brown, Churchyll, 1993) 

Let l  be a fixed number and )(xf  be a periodic function with periodic 2𝑙, 

defined on ),( ll− . The Fourier series of )(xf  is a way of expanding the function 

)(xf  into an infinite series involving sins and cosines : 

   ),(sin)(cos
2

=)(
1=1=

0

l

xn
b

l

xn
a

a
xf n

n

n

n





++                           (1.5) 

where 0a , na  and nb  called the Fourier coefficientes of )(xf , are given by 

these formulas 

1,2,...=,)(cos)(
1

=,)(
1

=0 ndx
p

xn
xf

l
adxxf

l
a

l

l
n

l

l


 −−

 

and  

1,2,....=,)(sin
1

= ndx
p

xn

l
b

i

l
n


−  

 

1.3.3 Laplace Transform (Franklyn,1 949) 

Let )(tf  be defined for 0t . The Laplace transform of )(tf  denoted by )(sF  

or )},({ tfL  is an integral transform given by the integral  

dtetftfLsF st−



 )(=)}({=)(
0

 

provided that this (improper) integral exsists i.e that this integral is convergent. 

The Laplace transform is operation that transforms a function of t  (i.e a 

function of time domain), defined on ][0,  to a function of s  (i.e of frequency 

domain). The Laplace transform can be used in some cases to solve linear differential 

equations with given initial conditions. )(sF  is Laplace transform or simply 

transform of ).(tf  Together the two functions )(tf  and )(sF  are called a Laplace 

transform pair. 
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1.3.4 Fourier Transform (Bracewell, 1999) 

The Fourier transform of a function )(= xff  denoted by )(sF  or )},({ xfF  

is an integral transform given by the integral  

.)(=)}({=)( dxexfxfFsF xs−


−  
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CHAPTER II 

Integral Transform Methods Of The Time-Dependent Source Identification 

Problem For Schrödinger Differential Equations 

 

2.1 Introduction 

    Time-dependent source identification problem for the Schrödinger equation have 

the significant role in natural science, applied sciences, engineering, quantum 

mechanics, diffusion equations, heat equations. Therefore, it is important to study 

identification problem for the Schrödinger equation. Noted that time-dependent 

identification problem for Schrödinger equations are not investigated. Therefore, the 

main aim of chapter two is to study of the time-dependent source identification 

problems for Schrödinger equations. Applying results of Fourier series, Laplace and 

Fourier transform methods, we obtain the exact solution of several time-dependent 

source identification problems for Schrödinger equations. 

 

 2.2 Fourier Series Method 

We consider Fourier series method for solution of the time-dependent source 

identification problems for Schrödingerequations with Dirichlet, Neumann and 

nonlocal boundary conditions. 

Problem 2.1. Obtain the Fourier series solution of the following time-dependent 

source identification problem  

( ) ( )
( )

( ) ( )

( )  

( ) ( ) ( )  























−



−







−

0,1,2=,0,=,=,0

,0,,=0,

,0,1,0,

,=
,,

0

2

2

tedxxtututu

xsinxxu

tx

sinxesinxtp
x

xtu

t

xtu
i

it

it








                           (2.1) 

 for a one-dimensional Schrödinger equation. 

Solution. In order to solve this problem, we consider the Sturm-Liouville problem for 

Dirichlet condition  

−𝑢′′(𝑥) + 𝜆𝑢(𝑥) = 0, 𝑢(0) = 𝑢(𝜋) = 0, 𝑥 ∈ (0, 𝜋) 
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generated by the space operator of problem (2.1). The solution of this Sturm-Liouville 

problem is  

1,2,3,....=),(=)(,= 2 kkxsinxuk kk −  

Then we will obtain the Fourier series solution of problem (2.1) by formula  

                     ).(sin)(=),(
1=

kxtAxtu k

k




                           (2.2) 

Here )(tAk  are unknown functions. Applying this formula to the Schrödinger 

equation and initial condition, we get  

( ) ,=)(sin1)]()([ 2

1=

sinxesinxtpkxktAi it

k

k

−


−++  

).(=)((0)=)(0,
1=

xsinkxsinAxu k

k




 

Moreover, using the integral condition, we get  

               ( ) .2=)(sin)(=,
1=

00

it

k

k

edxkxtAdxxtu 


                  (2.3) 

Equating coefficients of sin(𝑘𝑥) , 𝑘 = 1,2,3, .. to zero, we get  

𝑖𝐴𝑘
′ (𝑡) + 𝑘2𝐴𝑘(𝑡) = 0, 𝐴𝑘(0) = 0, 𝑡 ∈ (0,1) 

for 2,3,4,...=k  and      

       𝑖𝐴1
′ (𝑡) + 𝐴1(𝑡) = 𝑝(𝑡) − 𝑒−𝑖𝑡 , 𝑡 ∈ (0,1), 𝐴1(0) = 1                 (2.4) 

 for 1.=k  It is clear that 1.0,=)( ktAk  From that and formula (2.3), we get  

−𝐴1(𝑡)(−2) = 2𝑒𝑖𝑡, 

we obtain 

𝐴1(𝑡) = 𝑒𝑖𝑡.                                 (2.5)                                           

 Putting itetA =)(1  in the equation (2.4), we get  

                            .=)( itetp −
   

Applying obtaining formulas for 1.2...,=),( ktAk  we can obtain the exact solution of 

problem (2.2) by formulas 

(𝑢(𝑡, 𝑥), 𝑝(𝑡)) = (𝑒𝑖𝑡 sin 𝑥 , 𝑒−𝑖𝑡). 

Note that using similar procedure one can obtain the solution of the following 

time-dependent source identification problem 
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( ) ( ) ( ) ( )

( ) ( )

 

 






























+−







Tttdxdxxtu

TtSxxtu

xxxu

xxxTt

xtfxqtpuxaxtiu

n

n

r
x

r
xr

n

r

t

0,),(=...),(...

,0,,0,=),(

,,=0,

,),...,(=,<<0

,,=))((,

1

1

1=



                           (2.6) 

for the multidimensional Schrödinger equation with Dirichlet boundary condition can 

be investigated. Here and in future 
nR  be a bounded open domain with smooth 

boundary S , .= S  Under compatibility conditions problem (2.6) has a unique 

solutio ( ))(),,( tpxtu  for the smooth functions  

𝑓(𝑡, 𝑥), (𝑡, 𝑥) ∈ (𝑜, 𝑇) × Ω, 𝛼𝑟(𝑥) ≥ 𝑎 > 0,   SxxqTttxx  0,=)(,0,),(,),(   

and 0....)(... 1 


ndxdxxq  

Problem 2.2. Obtain the Fourier series solution of the following time-dependent 

source identification problem  

   

( ) ( )
( )

( ) ( )

( )  

( ) ( )

( )  































+



−++



−





 0,1,=,

0,=
,

=
,0

,0,,1=0,

,0,1,0,

,)(1=),(
,,

0

2

2

tedxxtu

x

tu

x

tu

xcosxxu

tx

ecosxtpxtu
x

xtu

t

xtu
i

it

it











                   (2.7) 

for a one-dimensional Schrödinger equation. 

Solution. In order to solve the problem, we consider the Sturm-Liouville problem with 

Neumann condition  

−𝑢′′(𝑥) + 𝜆𝑢(𝑥) = 0, 𝑢′(0) = 𝑢′(𝜋) = 0, 𝑥 ∈ (0, 𝜋) 
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generated by the space operator of problem (2.7). It is easy to see that the solution of 

this Sturm-Liouville problem is  

..0,1,2,3,..=),(=)(,= 2 kkxcosxuk kk −  

Therefore, we will seek solution ),( xtu  using by the Fourier series  

                 ).()(=),(
0=

kxcostAxtu k

k




                               (2.8) 

 Here 0,1,2...=),( ktAk  are unknown functions. Putting (2.8) into the equation (2.7), 

we obtain  

( ) ,)(1=)(cos1)]()([ 2

0=

it'

k

k

ecosxtpkxktiA −+++


 

),(1=)((0)=)(0,
0=

xcoskxcosAxu k

k

+


 

( ) .=)()(=,
0=

00

it

k

k

ekxcostAdxxtu 





 

Equating the coefficients of cos(𝑘𝑥),  𝑘 = 0,1,2,3,4,… to zero, we get  







 ++

0=(0)

(0,1),0,=)(1)()( 2

k

k

'

k

A

ttAktiA

 

for 2,3,4,...,=k   

𝑖𝐴0
′ (𝑡) + 𝐴0(𝑡) = 𝑝(𝑡) − 𝑒

𝑖𝑡, 𝐴0(0) = 1, 𝑡 ∈ (0,1) 

for 0=k  and 

𝑖𝐴1
′ (𝑡) + 𝐴1(𝑡) = 𝑝(𝑡), 𝐴1(0) = 1, 𝑡 ∈ (0,1) 

 

for 1=k . It is easy that  

𝐴0(𝑡) = 𝑒
𝑖𝑡, 𝐴𝑘(𝑡) = 0, 𝑘 = 2,3,4,…                              (2.9) 

 Therefore,  

                   .=)( itetp                                           (2.10) 

 Then,we get the following Cauchy problem  

  {
𝑖𝐴′1(𝑡) + 𝐴1(𝑡) = 𝑒

𝑖𝑡 , 𝑡 ∈ (0,1)

𝐴1(0) = 1                                       

                                    (2.11) 
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 for the first order differential equation. It is clear that  

                         .=)(1

itetA                                    (2.12) 

 Applying the formula(8), we get ).(1=),( cosxextu it +  Therefore, the exact solution 

of problem (2.7) )),(1(=))(),,(( itit ecosxetpxtu + . 

Note that using similar procedure one can obtain the solution of the following 

time-dependent source identification problem 

( ) ( ) ( ) ( )

( ) ( )

 

 
































++−







Tttdxdxxtu

TtSx
p

xtu

xxxu

xxxTt

xtfxqtpxtuuxaxtiu

n

x

n

r
x

r
xr

n

r

t

0,),(=...),(

,0,,0,=
),(

,,=0,

,),...,(=,<<0

,,=),())((,

1

1

1=







                (2.13) 

for the multidimensional Schrödinger equation with Neumann condition can be 

investigated under compatibility conditions problem (2.13) and for the given smooth 

functions ( ) ( ) 0,>0,>,0,),(),,( axaTxtxtf r    ,0,),(,),( Tttxx    

Sxxq 0,=)(  and 0....)(... 1 


ndxdxxq  

Here, p  is the normal vector to S . 

Problem 2.3. Obtain the Fourier series solution of the following time-dependent 

source identification problem  

( ) ( )
( )

( ) ( )

( )  

( ) ( ) ( ) ( )

( )  






















+

−+

++



−





 0,1,=,

,,=,0,,=,0

,0,,2cos1=0,

,0,1,0,,1)2cos(3

)2cos(1=),(
,,

0

2

2

tedxxtu

tutututu

xxxu

txex

xtpxtu
x

xtu

t

xtu
i

it

xx

it











                        (2.14) 
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 for a one-dimensional Schrödinger equation with nonlocal conditions. 

Solution. In order to solve this problem, we consider the Sturm-Liouville problem  

-𝑢′′(𝑥) + 𝜆𝑢(𝑥) = 0, 𝑢(0) = 𝑢(𝜋), 𝑢𝑥(0) = 𝑢𝑥(𝜋), 𝑥 ∈ (0, 𝜋) 

generated by the space operator of problem (2.14). It is easy to see that the solution of 

this Sturm-Liouville problem is  

         

{
  
 

  
 
𝜆𝑘 = −4𝑘2, 𝑘 = 0,1,2,3,…       

𝑢𝑘(𝑥) = cos(2𝑘𝑥) , 𝑘 = 0,1,2,…

𝑢𝑘(𝑥) = sin(2𝑘𝑥) , 𝑘 = 1,2,3,…

 

Then, we will obtain the Fourier series of problem (2.14) by formula 

    ).(2sin)()(2)(=),(
1=0=

kxtBkxcostAxtu k

k

k

k




+                        (2.15) 

 Here 1,2...,=),(0,1,2...,=),( ktBktA kk  are unknown functions. Applying this 

formula to the Shrödinger’s type differential equation and initial condition, we get  

( )  

















++

−++

+++++







−



).(21=)(2sin(0))(2(0)=)(0,

[0,1],,0,,1))(2(3))(2(1=

),(2)](1)(4)([)(2)](1)(4)([

1=0=

2

1=

2

0=

xcoskxBkxcosAxu

txexcosxcostp

kxcostBktiBkxcostAktiA

k

k

k

k

it

k

'

k

k

k

'

k

k

  

Equating coefficients of cos(2𝑘𝑥), 𝑘 = 0,1,2,3,…and  sin(2𝑘𝑥), 𝑘 = 1,2,3,… to 

zero, we get 







 ++

0=(0)

(0,1),0,=)(1)(4)( 2

k

k

'

k

B

ttBktiB

 

for ,...,1,2,=k   







 ++

0=(0)

(0,1),0,=)(1)(4)( 2

k

k

'

k

A

ttAktiA

 

for 2,3,4,...,=k   

 1=(0)(0,1),,)(=)()( 000 AtetptAtiA it' −+  

for 0=k  and 
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1=(0)(0,1),,3)(=)(5)( 111 AtetptAtiA it' ++  

for 1=k . It is easy that  

       1,2,3,....=0,=)(2,3,4,...,=0,=)(,=)(0 ktBktAetA kk

it           (2.16) 

 Therefore,  

                          .=)( itetp                                    (2.17) 

 Then,we get the following Cauchy problem  

{
𝑖𝐴′1(𝑡) + 5𝐴1(𝑡) = 4𝑒

𝑖𝑡, 𝑡 ∈ (0,1)

𝐴1(0) = 1                                              

                                  (2.18) 

for the first order differential equation. It is clear that  

.=)(1

itetA  

Applying formulas (2.15) and (2.16) to (2.17), we get 

)(2sin)()(2)(2cos)()(=),(
1=2=

10 kxtBkxcostAxtAtAxtu k

k

k

k




+++  

= 𝑒𝑖𝑡(1 + 𝑐𝑜𝑠2𝑥) 

We obtain the exact solution of problem (2.14) is 

).),2cos(1(=))(),,(( itit exetpxtu +  

Note that using similar procedure one can obtain the solution of the following 

time-dependent source identification problem 

( )

( ) ( ) ( )

( ) ( )
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                        (2.19) 
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for the multidimensional Schrödinger equation with nonlocal boundary conditions can 

be investigated. Under compatibility conditions problem (2.19) has a unique solution 

( ))(),,( tpxtu  for the smooth functions ),(),,( xtxtf  

( ) ( ) 0,>0,>,0, axaT r    ,0,),(,),( Tttxx    Sxxq 0,=)(  and 

0....)(... 1 


ndxdxxq  

 

2.3 The Laplace transform solution 

       We consider Laplace transform method for solution of the time dependent 

source identification problem for the Schrödinger equation. 

Problem 2.4. Obtain the Laplace transform solution of the time-dependent source 

identification problem  

( ) ( )
( ) ( ) ( )

( )  )

( ) ( ) ( )  













−



−



−





−


−−

−

−−−
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tedxxtuetuetu

xexu

txeetp
x

xtu

t

xtu
i

itit

x

it

x

xitx

            (2.20) 

for a one-dimensional Schrödinger equation. 

Solution. Taking the Laplace transform of both sides of the differential equation 

(2.20), we get  















−

−−−




−

−−

}.{=)}(0,{

(0,1),},{))((=

,0)(,0)()},({}
),(

{ 2

x

xit

x

eLxuL

teLetp

tutsuxtuLs
t

xtu
iL

 

Putting   

                        ),,(=)},({ stuxtuL                             (2.21) 

 using conditions  

                   𝑢(𝑡, 0) = 𝑒−𝑖𝑡 , 𝑢𝑥(𝑡, 0) = −𝑒
−𝑖𝑡   

and formula  

                      ,
1

1
=}{

+

−

s
eL x                                   (2.22) 

 we get  
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Now, we taking the Laplace transform with respect to ,t  we get 
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Using condition  

i
pi

ii
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1
)(

1
=

1
 

and  

,
1

=)(
i

p
+

  

we get  

.
1

11
=),(

++ si
su


  

Taking the inverse Laplace transforms with respect to t  and ,x  we obtain  

1

1
=)},({=),( 1

+

−−

s
esuLstu it  

and  

xiteestuLxtu −−− =)},({=),( 1  

Finally, the exact solution of problem (2.20) is  

).,(=))(),,(( itxit eetpxtu −−−
 

Note that using similar procedure one can obtain the solution of the following 

time-dependent source identification problem 
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( ) ( ) ( ) ( )

( ) ( )
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                (2.23)  

for the multidimensional Schrödinger equation can be investigated. Here and in future 

nR+
 be a unit open set in ),1<<0:( nkxxR k

n   with boundary 
+S ,

.= +++  S  Under compatibility conditions problem (2.23) has a unique solution

( ))(),,( tpxtu for the smooth functions ),(),,( xtxtf ( ) ( ) 0,>,0, axaT r  +

 ,0,),(,),( Tttxx  + 
+ Sxxq 0,=)( and 0....)(... 1 

+

ndxdxxq  

Problem 2.5. Obtain the Laplace transform solution of the time-dependent source 

identification problem  

      

( ) ( )
( ) ( ) ( )

( )  )

( ) ( ) ( )  
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                (2.24) 

for a one-dimensional Schrödinger equation. 

Solution. Taking Laplace transform of both sides of the Schrödinger equation and 

using (2.21) and (2.22) and condition ,=,0)( itetu −  we can write 
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Now, taking the Laplace transform with respect to ,t  we get  
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        (25) 

Using integral condition and definition of Laplace transform, we write  
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Therefore, putting 0=s  in (2.25), we get  
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Applying formula 
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Taking the inverse Laplace transforms with respect to ,x  we obtain  

).
1

)()]((
2

1
[

)(

1
=),(

i
peeee

i
xu

xixixx

+
−+−+

+

−−−





 

            (2.26) 

 Using condition  
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we obtain  
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and  

                        .
1

=),( xe
i

xu −

+
  

Now, taking the inverse Laplace transform with respect to ,t  we get 

,=)},({=),( 1 xiteestuLxtu −−−  

.=}
1

{=)( 1 ite
i

Ltp −−

+
 

Thus, the exact solution of problem (2.24) is  

).,(=))(),,(( itxit eetpxtu −−−  

Note that using similar procedure one can obtain the solution of the following 

time-dependent source identification problem  
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                (2.27) 

for the multidimensional Schrödinger equation can be investigated. 

       Under compatibility conditions problem (2.27) has a unique solution 

( ))(),,( tpxtu  for the smooth functions 𝑓(𝑡, 𝑥), (𝑡, 𝑥) ∈ (0, 𝑇) × Ω+, 𝑎𝑟(𝑥) ≥ 𝑎 >

0, 𝛿 > 0, 𝜑(𝑥), 𝑥 ∈ Ω+,̅̅ ̅̅̅ 𝜓(𝑡), 𝑡 ∈ [0, 𝑇], 𝑞(𝑥) = 0, 𝑥 ∈ 𝑆+ and 

0....)(... 1 
+

ndxdxxq  

 

2.4 The Fourier transform solution 

We consider Fourier transform method for solution of the time dependent 

source identification problem for the Schrödinger equation. 

Problem 2.6. Obtain the Fourier transform solution of the following time-dependent 

source identification problem  
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                        (2.28) 

for a one-dimensional Schrödinger equation. 

Solution. Putting  

)(=}{),,(=)},({
2

sgeFstuxtuF x−
 

and taking the Fourier transform of both sides of the differential equation (2.28) and 

using definition of Fourier transform and formula  

),,(=)},({ 2 stusxtuF xx −  

we can write  







 ++ −

).(=)(0,

1,<<,0)()()(=),(),( 22

sgsu

tesgssgspstusstiu it

t

                   (2.29) 

 Now, taking the Laplace transform of both sides of the differential equation (2.29) 

with respect to ,t  we get  

  ).(
1

)()(=),()(
2

2 sg
i

s
sgpstusi




+
++                              (2.30) 

Applying condition  

1<<,0=),( textu it−


−   

and the definition of Fourier transform, we get  

1.<<,0=),(=,0)( textutu it−


−   

Then  

              .
1

=,0)(
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                                  (2.31) 

 From that it follows 
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Now, taking the inverse Laplace transform with respect to ,t  we get 

.)(=),(,=)( itit esgstuetp −−  

Taking the inverse Fourier transform with respect to ,x  we get 

                        .=),(
2 itx eextu −−

 

Thus, the exact solution of problem (2.28) is 

(𝑢(𝑡, 𝑥), 𝑝(𝑡)) = (𝑒−𝑖𝑡−𝑥
2
, 𝑒−𝑖𝑡).  

Note that using similar procedure one can obtain the solution of the following 

time-dependent source identification problem  

( ) ( ) ( ) ( )

( ) ( )
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                (2.32) 

 for the multidimensional Schrödinger equation can be investigated.  

Under compatibility conditions problem (2.32) has a unique solution ( ))(),,( tpxtu  

for the smooth functions ),(),,( xtxtf  ( ) ( ) 0,>0,>,0, axaRT r

n   

 TttRxx n 0,),(,),(    and 0....)(... 1  n

nR

dxdxxq  

So, all analytical methods described above, namely the Fourier series method, Laplace 

transform method and the Fourier transform method can be used only in the case when 

the differential equation has constant coefficients. It is well-known that the most 

general method for solving partial differential equation with dependent in t  and in the 

space variables is operator method. 
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CHAPTER III 

Stability Of The Time-Dependent Source Identification Problems For 

Schrodinger Equations 

 

3.1 Introduction 

In this section, the time-dependent source identification problem for the 

Schrödinger equation in a Hilbert space with the self-adjoint positive definite operator 

is studied. The stability of the differential problem is established. In applications, 

theorems on stability estimates for the solution of five type of time-dependent source 

identification problems for Schrödinger equations are obtained. The first of them is the 

time-dependent source problem for the one dimensional Schrödinger equation with 

nonlocal conditions. The second of them is the time-dependent source identification 

problem for the one dimensional Schrödinger equation with involution and Dirichlet 

conditions. The third is the time-dependent source problem for the one dimensional 

Schrödinger equation with Robin conditions. Two of them are the time-dependent 

source problems for the multidimensional Schrödinger equation with Dirichlet and 

Neumann conditions. 

 

3.2 Auxiliary Statements 

Necessary definitions, theorems and estimates (Ashyralyev,2014; 

Kreyszig,1978; Kolmogorov & Fomin, 1957) are given that we will be needed below. 

 

3.2.1 Banach and Hilbert Spaces 

 Let 𝐿 be linear space. Then 𝑥, 𝑦 ∈ 𝐿, ∃𝑥 + 𝑦 ∈ 𝐿 and 𝜆𝑥 ∈ 𝐿, 𝜆 is a 

number. 𝐵 = (𝐿, ‖ . ‖) be normed space  

 ∀𝑥 ∈ 𝐿,𝜑(𝑥) = ‖𝑥‖, 

 1. ‖𝑥‖ ≥ 0, ‖𝑥‖ = 0 ⟺ 𝑥 = 0 ̃(zero element), 

 2. ‖𝜆𝑥‖ = |𝜆|‖𝑥‖, 

 3. ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖for any 𝑥, 𝑦 ∈ 𝐿. 

 Then we say 𝐵 be Banach spaces if 𝐵- normed space and 𝐵 complete ⟺ Every 

Cauchy sequence is convergent ⟺ From ‖𝑥𝑛 − 𝑥𝑚‖ ⟶
𝑛,𝑚→∞

0 ⇒ ∃𝑥 ∈

𝐵, ‖𝑥𝑛 − 𝑥‖ ⟶
𝑛→∞

0. We denote it by 𝐵, the all Banach spaces. 𝐻 = (𝐿, ⟨ . ⟩) be inner 

product space  
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 1. ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩, 

 2. ⟨𝑥1 + 𝑥2, 𝑦⟩ = ⟨𝑥1, 𝑦⟩ + ⟨𝑥2, 𝑦⟩, 

 3. ⟨𝜆𝑥, 𝑦⟩ = 𝜆⟨𝑥, 𝑦⟩, 

 4. ⟨𝑥, 𝑥⟩ = 0 ⟺ 𝑥 = 0̃ 

 ‖𝑥‖ = √⟨𝑥, 𝑥⟩. So all inner product spaces are also normed spaces. We say 𝐻 be 

Hilbert space if 𝐻 - inner product space and 𝐻 - complete space. 

 

3.2.2 Linear Operators: Boundedness, Norm of Operator 

𝐴: 𝐵 → 𝐵1 is called the linear operator if 𝐷(𝐴) is the linear space and  

𝐴(𝛼𝑥 + 𝛽𝑦) = 𝛼𝐴𝑥 + 𝛽𝐴𝑦 for any 𝛼, 𝛽 numbers, 𝑥, 𝑦 ∈ 𝐷(𝐴), 

 𝐷(𝐴) = {𝑥 ∈ 𝐵, ∃𝐴𝑥}, 

 𝑅(𝐴) = {𝑧 ∈ 𝐵1, 𝑧 = 𝐴𝑥 for any 𝑥 ∈ 𝐷(𝐴)}. 

𝐵and 𝐵1 be Banach spaces. In the case when 𝐵1 = (−∞,∞), 𝐴:𝐵 → (−∞,∞) is 

called the linear functional. 

Definition 3.2.2.1. Let 𝐵 and 𝐵1 are Banach spaces. 𝐴: 𝐵 → 𝐵1 is called the 

bounded operator if there is a real positive 𝑀 > 0 such that  

 ‖𝐴𝑥‖𝐵1 ≤ 𝑀‖𝑥‖𝐵forall𝑥 ∈ 𝐷(𝐴). 

inf𝑀 = ‖𝐴‖𝐵→𝐵1 is called norm of the operator A. If 𝐵 = 𝐵1, 

 ‖𝐴‖𝐵→𝐵1 = ‖𝐴‖𝐵→𝐵 = ‖𝐴‖. 

Theorem 3.2.2.1. We have the following formulas 

 ‖𝐴‖ = sup
‖𝑥‖𝐵≤1

‖𝐴𝑥‖𝐵 = sup
‖𝑥‖𝐵=1

‖𝐴𝑥‖𝐵 = sup
‖𝑥‖𝐵=0̃∈𝐵

‖𝐴𝑥‖𝐵

‖𝑥‖𝐵
. 

 

3.2.3 Linear Positive Operators in a Hilbert Space 

 Let 𝐴:𝐻 → 𝐻 be a linearly bounded operator in a Hilbert Space 𝐻. Then 

𝐴∗: 𝐻 → 𝐻 is defined to be the operator satisfying  

⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝐴∗𝑦⟩ for any 𝑥, 𝑦 ∈ 𝐻. 

𝐴∗ is called the Hilbert adjoint operator 𝐴∗ to 𝐴. 𝐴 is said to be self adjoint or 

Hamiltonian, if 

𝐴 = 𝐴∗ ⇒ ⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥, 𝐴𝑦⟩ for any 𝑥, 𝑦 ∈. 

Let 𝐴:𝐻 → 𝐻 is said to be positive and written 𝐴 ≥ 0̃ if  

⟨𝐴𝑥, 𝑥⟩ ≥ 0 for any 𝑥 ∈ 𝐻. 

𝐴:𝐻 → 𝐻 is said to be positive definite and written 𝐴 ≥ 𝛿 > 0̃ if  
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⟨𝐴𝑥, 𝑥⟩ ≥ 𝛿⟨𝑥, 𝑥⟩ for any 𝑥 ∈ 𝐻. 

We consider some examples of positive operators in a Hilbert space 

First, let 𝐿2[0, 𝑙] be the space of all square integrable functions 𝛾(𝑥) difened 

on [0, 𝑙] equipped with the norm  

||𝛾||𝐿2[0,𝑙] = (∫
𝑙

0

|𝛾(𝑥)|2𝑑𝑥)

2

. 

 We introduce the differential operator 𝐴 defined by the formula  

                𝐴𝑢 = −
𝑑

𝑑𝑥
(𝑎(𝑥)

𝑑𝑢(𝑥)

𝑑𝑥
) + 𝛿𝑢(𝑥)                        (3.1) 

with the domain  

 𝐷(𝐴) = {𝑢: 𝑢, 𝑢′′ ∈ 𝐿2[0, 𝑙], 𝑢(0) = 𝑢(𝑙), 𝑢
′(0) = 𝑢′(𝑙)}. 

Lemma 3.2.3.1. Let 𝑎(𝑥) ≥ 0 and 𝑎(0) = 𝑎(𝑙) and 𝐴 be a differential operator 

defined by formula (3.1). Prove that 𝐴 is the positive definite and self-adjoint operator 

in 𝐻 = 𝐿2[0, 𝑙]. 

Proof. Assume that 𝑢, 𝑣 ∈ 𝐷(𝐴). Applying the following formula 

< 𝑢, 𝑣 >= ∫
𝑙

0

𝑢(𝑥)𝑣(𝑥)𝑑𝑥, 

we get 

< 𝐴𝑢, 𝑣 >= ∫
𝑙

0

𝐴𝑢(𝑥)𝑣(𝑥)𝑑𝑥 

= ∫
𝑙

0

(−
𝑑

𝑑𝑥
(𝑎(𝑥)

𝑑𝑢(𝑥)

𝑑𝑥
)+ 𝛿𝑢(𝑥))𝑣(𝑥)𝑑𝑥 

= −𝑎(𝑙)𝑢 
′
(𝑙)𝑣(𝑙) + 𝑎(0)𝑢 

′
(0)𝑣(0) 

        +∫
𝑙

0
𝑎(𝑥)𝑢 

′
(𝑥)𝑣  

′
(𝑥)𝑑𝑥 + ∫

𝑙

0
𝛿𝑢(𝑥)𝑣(𝑥)𝑑𝑥                   (3.2) 

and 

< 𝑢,𝐴𝑣 >= ∫
𝑙

0

𝑢(𝑥)𝐴𝑣(𝑥)𝑑𝑥 

= ∫
𝑙

0

𝑢(𝑥) (−
𝑑

𝑑𝑥
(𝑎(𝑥)

𝑑𝑣(𝑥)

𝑑𝑥
) + 𝛿𝑣(𝑥)) 𝑑𝑥 

 

= −𝑎(𝑙)𝑣 
′
(𝑙)𝑢(𝑙) + 𝑎(0)𝑣 

′
(0)𝑢(0) 

              +∫
𝑙

0
𝑎(𝑥)𝑢 

′
(𝑥)𝑣  

′
(𝑥)𝑑𝑥 + ∫

𝑙

0
𝛿𝑢(𝑥)𝑣(𝑥)𝑑𝑥.             (3.3) 

From (3.2) and (3.3) it follows 
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 < 𝐴𝑢, 𝑣 >=< 𝑢, 𝐴𝑣 >= ∫
𝑙

0
𝑎(𝑥)𝑢 

′
(𝑥)𝑣  

′
(𝑥)𝑑𝑥 + ∫

𝑙

0
𝛿𝑢(𝑥)𝑣(𝑥)𝑑𝑥.   (3.4) 

That means 𝐴 is a self-adjoint operator. Putting 𝑢 = 𝑣 in (3.4), we get 

< 𝐴𝑢, 𝑢 >= ∫
𝑙

0

𝑎(𝑥)𝑢 
′
(𝑥)𝑢 

′
(𝑥)𝑑𝑥 +∫

𝑙

0

𝛿𝑢(𝑥)𝑢(𝑥)𝑑𝑥 ≥ 𝛿 < 𝑢, 𝑢 >. 

That means 𝐴 is a positive definite operator. Therefore 𝐴 is a self-adjoint and 

positive operator in a Hilbert space 𝐻 = 𝐿2[0, 𝑙]. 

Second, we introduce the differential operator 𝐴 defined by the formula  

                  𝐴𝑢 = −
𝑑

𝑑𝑥
(𝑎(𝑥)

𝑑𝑢(𝑥)

𝑑𝑥
) + 𝛿𝑢(𝑥)                      (3.5) 

with the domain  

𝐷(𝐴) = {𝑢: 𝑢, 𝑢′′ ∈ 𝐿2[0, 𝑙], 𝑢(0) = 𝑏𝑢
′(0),−𝑢(𝑙) = 𝑐𝑢′(𝑙)}. 

Lemma 3.2.3.2. Let 𝑎(𝑥) ≥ 0, 𝑏, 𝑐 > 0 and 𝐴 be a differential operator defined by 

formula (3.5). Prove that 𝐴 is the positive definite and self-adjoint operator in 𝐻 =

𝐿2[0, 𝑙]. 

Proof. Assume that 𝑢, 𝑣 ∈ 𝐷(𝐴). Then, we have formulas (3.2) and (3.3). Applying 

these formulas, we get 

< 𝐴𝑢, 𝑣 >=< 𝑢, 𝐴𝑣 > 

= ∫
𝑙

0

(−
𝑑

𝑑𝑥
(𝑎(𝑥)

𝑑𝑢(𝑥)

𝑑𝑥
)+ 𝛿𝑢(𝑥))𝑣(𝑥)𝑑𝑥 

= 𝑐𝑎(𝑙)𝑢 
′
(𝑙)𝑣  

′
(𝑙) + 𝑎(0)𝑏𝑢 

′
(0)𝑣 

′
(0) 

    +∫
𝑙

0
𝑎(𝑥)𝑢 

′
(𝑥)𝑣  

′
(𝑥)𝑑𝑥 + ∫

𝑙

0
𝛿𝑢(𝑥)𝑣(𝑥)𝑑𝑥.           (3.6) 

That means 𝐴 is a self-adjoint operator. Putting 𝑢 = 𝑣 in (3.6), we get 

< 𝐴𝑢, 𝑢 >= 𝑐𝑎(𝑙)(𝑢 
′
(𝑙))

2
+ 𝑎(0)𝑏(𝑢 

′
(0))

2
 

+∫
𝑙

0

𝑎(𝑥)𝑢 
′
(𝑥)𝑢 

′
(𝑥)𝑑𝑥 +∫

𝑙

0

𝛿𝑢(𝑥)𝑢(𝑥)𝑑𝑥 ≥ 𝛿 < 𝑢, 𝑢 >. 

That means 𝐴 is a positive definite operator. Therefore 𝐴 is a self-adjoint and 

positive operator in a Hilbert space 𝐻 = 𝐿2[0, 𝑙]. 

Third, let 𝐿2[−𝑙, 𝑙] be the space of all square integrable functions 𝑓 defined 

on [−𝑙, 𝑙], equipped with the norm  

∥ 𝑓 ∥𝐿2[−𝑙,𝑙]= {∫

𝑙

−𝑙

|𝑓(𝑥)|2𝑑𝑥}

1
2

. 

The inner product in 𝐿2[−𝑙, 𝑙] defined by the following formula 
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⟨𝑢, 𝑣⟩ = ∫

𝑙

−𝑙

𝑢(𝑥)𝑣(𝑥)𝑑𝑥. 

We introduce a differential operator 𝐴𝑥 defined by the formula 

𝐴𝑣(𝑥) = −(𝑎(𝑥)𝑣𝑥(𝑥)𝑥 − 𝛽(𝑎(−𝑥)𝑣𝑥(−𝑥))𝑥 + 𝛿𝑣
(𝑥)               (3.7) 

with the domain 𝐷(𝐴𝑥) = {𝑢, 𝑢𝑥𝑥 ∈ 𝐿2[−𝑙, 𝑙]: 𝑢(−𝑙) = 0, 𝑢(𝑙) = 0}. 

Lemma 3.2.3.3. Let 𝑎 ≥ 𝑎(𝑥) = 𝑎(−𝑥) ≥ 𝜎 > 0 and 𝛿 − 𝑎|𝛽| ≥ 0. Then, the 

operator 𝐴 defined by formula (3.7) is the self-adjoint and positive definite operator 

in 𝐿2[−𝑙, 𝑙] space. 

Proof. We will prove the following identity and estimate 

          ⟨𝐴𝑢, 𝑣⟩ = ⟨𝑢, 𝐴𝑣⟩, 𝑢, 𝑣 ∈ 𝐷(𝐴),                               (3.8) 

           ⟨𝐴𝑢, 𝑢⟩ ≥ 𝛿⟨𝑢, 𝑢⟩, 𝑢 ∈ 𝐷(𝐴).                                 (3.9) 

Applying the definition of the inner product and 𝑢, 𝑣 ∈ 𝐷(𝐴),we get 

⟨𝐴𝑢, 𝑣⟩ = ∫
𝑙

−𝑙
(−(𝑎(𝑥)𝑢𝑥(𝑥))𝑥 − 𝛽(𝑎

(−𝑥)𝑢𝑥(−𝑥))𝑥 + 𝜎𝑢
(𝑥))𝑣(𝑥)𝑑𝑥      (3.10) 

= − ∫

𝑙

−𝑙

(𝑎(𝑥)𝑢𝑥(𝑥))𝑥𝑣(𝑥)𝑑𝑥 − 𝛽 ∫

𝑙

−𝑙

(𝑎(−𝑥)𝑢𝑥(−𝑥))𝑥𝑣(𝑥)𝑑𝑥 + 𝜎 ∫

𝑙

−𝑙

𝑢(𝑥)𝑣(𝑥)𝑑𝑥 

= −𝑎(𝑙)𝑢𝑥(𝑙)𝑣(𝑙) + 𝑎(−𝑙)𝑢𝑥(−𝑙)𝑣(−𝑙) + ∫

𝑙

−𝑙

𝑎(𝑥)𝑢𝑥(𝑥)𝑣𝑥(𝑥)𝑑𝑥 

+𝛽[−𝑎(−𝑙)𝑢𝑥(−𝑙)𝑣(−𝑙) + 𝑎(𝑙)𝑢𝑥(𝑙)𝑣(𝑙)] + 𝛽 ∫

𝑙

−𝑙

𝑎(−𝑥)𝑢𝑥(−𝑥)𝑣𝑥(𝑥)𝑑𝑥 

+𝜎 ∫

𝑙

−𝑙

𝑢(𝑥)𝑣(𝑥)𝑑𝑥 

= ∫

𝑙

−𝑙

𝑎(𝑥)𝑢𝑥(𝑥)𝑣𝑥(𝑥)𝑑𝑥 + 𝛽 ∫

𝑙

−𝑙

𝑎(𝑥)𝑢𝑥(𝑥)𝑣𝑥(−𝑥)𝑑𝑥 + 𝜎 ∫

𝑙

−𝑙

𝑢(𝑥)𝑣(𝑥)𝑑𝑥, 

⟨𝑢, 𝐴𝑥𝑣⟩ = ∫

𝑙

−𝑙

𝑢(𝑥) (−(𝑎(𝑥)𝑣𝑥(𝑥))𝑥 − 𝛽(𝑎(−𝑥)𝑣𝑥(−𝑥))𝑥 + 𝜎𝑣
(𝑥))𝑑𝑥 

= − ∫

𝑙

−𝑙

(𝑎(𝑥)𝑣𝑥(𝑥))𝑥𝑢(𝑥)𝑑𝑥 − 𝛽 ∫

𝑙

−𝑙

(𝑎(−𝑥)𝑣𝑥(−𝑥))𝑥𝑢(𝑥)𝑑𝑥 + 𝜎 ∫

𝑙

−𝑙

𝑢(𝑥)𝑣(𝑥)𝑑𝑥 
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= −𝑎(𝑙)𝑣𝑥(𝑙)𝑢(𝑙) + 𝑎(−𝑙)𝑣𝑥(−𝑙)𝑢(−𝑙) + ∫

𝑙

−𝑙

𝑎(𝑥)𝑣𝑥(𝑥)𝑢𝑥(𝑥)𝑑𝑥 

+𝛽[−𝑎(−𝑙)𝑣𝑥(−𝑙)𝑢(−𝑙) + 𝑎(𝑙)𝑣𝑥(𝑙)𝑢(𝑙)] + 𝛽 ∫

𝑙

−𝑙

𝑎(−𝑥)𝑣𝑥(−𝑥)𝑢𝑥(𝑥)𝑑𝑥 

+𝜎 ∫

𝑙

−𝑙

𝑢(𝑥)𝑣(𝑥)𝑑𝑥 

= ∫

𝑙

−𝑙

𝑎(𝑥)𝑢𝑥(𝑥)𝑣𝑥(𝑥)𝑑𝑥 + 𝛽 ∫

𝑙

−𝑙

𝑢𝑥(𝑥)𝑎(−𝑥)𝑣𝑥(−𝑥)𝑑𝑥 + 𝜎 ∫

𝑙

−𝑙

𝑢(𝑥)𝑣(𝑥)𝑑𝑥. 

Therefore, from these formulas it follows identity (3.8). Now, we will prove the 

estimate (3.9). Applying the identity (3.10), we get 

⟨𝐴𝑢, 𝑢⟩ = ∫

𝑙

−𝑙

𝑎(𝑥)𝑢𝑥(𝑥)𝑢𝑥(𝑥)𝑑𝑥 + 𝛽 ∫

𝑙

−𝑙

𝑢𝑥(𝑥)𝑎(−𝑥)𝑢𝑥(−𝑥)𝑑𝑥 

+𝜎 ∫

𝑙

−𝑙

𝑢(𝑥)𝑢(𝑥)𝑑𝑥 

≥ 𝜎⟨𝑢, 𝑢⟩ + 𝛿 ∫

𝑙

−𝑙

𝑢𝑥(𝑥)𝑢𝑥(𝑥)𝑑𝑥 + 𝛽𝛿 ∫

𝑙

−𝑙

𝑎(−𝑥)𝑢𝑥(𝑥)𝑢𝑥(−𝑥)𝑑𝑥. 

Using the Cauchy inequality, we get 

∫

𝑙

−𝑙

𝑎(−𝑥)𝑢𝑥(𝑥)𝑢𝑥(−𝑥)𝑑𝑥 ≤ 𝑎(∫

𝑙

−𝑙

|𝑢𝑥(𝑥)|
2𝑑𝑥)

1
2

(∫

𝑙

−𝑙

|𝑢𝑥(−𝑥)|
2𝑑𝑥)

1
2

 

= 𝑎⟨𝑢𝑥 , 𝑢𝑥⟩. 

Since 𝛽 ≥ −|𝛽|, we have that  

𝛽 ∫

𝑙

−𝑙

𝑎(−𝑥)𝑢𝑥(𝑥)𝑢𝑥(−𝑥)𝑑𝑥 ≥ −|𝛽|𝑎⟨𝑢𝑥 , 𝑢𝑥⟩. 

Then, 

⟨𝐴𝑢, 𝑢⟩ ≥ 𝜎⟨𝑢, 𝑢⟩ + (𝛿 − |𝛽|𝑎)⟨𝑢𝑥 , 𝑢𝑥⟩ ≥ 𝜎⟨𝑢, 𝑢⟩. 

Lemma 3.2.3.3 is proved. 
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3.2.4 Operator-Function Generated by the Positive Operators in a Hilbert Space 

 Let 𝑒𝑖𝐴𝑡 is the operator-function generated by the operator 𝐴 and defined as 

the solution of the initial value problem   

         𝑖
𝑑𝑢(𝑡)

𝑑𝑡
+ 𝐴𝑢(𝑡) = 0, 𝑡 > 0, 𝑢(0) = 𝜑                         (3.11) 

in 𝐻. That means 

𝑢(𝑡) = 𝑒𝑖𝐴𝑡𝜑. 

We have the following  formulas 

                      
𝑑(𝑒𝑖𝐴𝑡)

𝑑𝑡
𝜑 = 𝑖𝐴𝑒𝑖𝐴𝑡𝜑                            (3.12) 

and estimate 

                        ∥ 𝑒𝑖𝐴𝑡 ∥𝐻→𝐻≤ 1.                             (3.13) 

 

3.2.5 Banach Fixed-Point Theorem and Its Applications 

Definition 3.2.5.1. Let 𝐸 = (𝐸, 𝑑) be a metric space. A fixed point of a mapping 

𝑇:𝐸 → 𝐸 of a set 𝐸 into itself is an element 𝑥 ∈ 𝐸 which is mapped onto itself, that 

is, 𝑇𝑥 = 𝑥, the image 𝑇𝑥 coincides with 𝑥.  Note that the Banach fixed-point 

theorem to be stated below is an existence and uniqueness theorem for fixed points of 

certain mappings, and it also gives a constructive procedure for obtaining better and 

better approximations to the solution of the equation 

                      𝑥 = 𝑇𝑥.                                         (3.14) 

Actually, we choose an arbitrary 𝑥0 ∈ 𝐸 and determine successively a sequence 

{𝑥𝑗}𝑛=0
∞

 defined by the relation 

                      𝑥𝑗 = 𝑇𝑥𝑗−1, 𝑗 ∈ ℕ1.                              (3.15) 

Here and in this Thesis we will put  𝑘 = {𝑗 ∈ ℤ; 𝑗 ≥ 𝑘}. 

This procedure is called an iteration. Banach’s fixed-point theorem gives 

sufficient conditions for the existence and uniqueness of a fixed point of a class of 

mappings, called contractions. 

Definition 3.2.5.2. A mapping 𝑇: 𝐸 → 𝐸 is called a contraction on 𝐸, if there is a 

positive real number 𝛼 < 1 such that for all 𝑥, 𝑦 ∈ 𝐸  

              𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑(𝑥, 𝑦).                                (3.16) 

Theorem 3.2.5.1.  Assume that 𝐸 ≠ ⌀ is complete and let 𝑇 be a contraction 

mapping on 𝐸. Then, 𝑇 has precisely one fixed point. 



   42 
 

 
 

Theorem 3.2.5.2. Let 𝑇  be a mapping of a complete metric space 𝐸 into itself. 

Assume that 𝑇 is a contraction on a closed ball 𝐹 = {𝑥|𝑑(𝑥, 𝑥0) ≤ 𝑟}, that is, 𝑇 

satisfies assumption (3.16) for all 𝑥, 𝑦 ∈ 𝐹. Moreover, assume that  

                     𝑑(𝑥0, 𝑇𝑥0) < (1 − 𝛼)𝑟.                           (3.17) 

Then, the sequence {𝑥𝑗}𝑗=0
∞

 defined by recursive formula (3.15) with arbitrary 𝑥0 ∈ 𝐸 

converges to an 𝑥 ∈ 𝐹. This 𝑥 is a fixed point of the mapping 𝑇 and is the only fixed 

point of 𝑇 in 𝐹. Now, we study the applications of the fixed-point theorem to integral 

equations. 

Definition 3.2.5.3. An integral equation of the form  

       𝑥(𝑡) = 𝜇 ∫
𝑏

𝑎
𝑘(𝑡, 𝑠; 𝑥(𝑠))𝑑𝑠 + 𝑓(𝑡)                          (3.18) 

is called a Fredholm equation of the second kind. Here, [𝑎, 𝑏] is a given interval, 𝜇 is 

a given parameter, 𝑓 is a given function defined on [𝑎, 𝑏], 𝑥 is an unknown function 

defined on [𝑎, 𝑏]. The kernel 𝑘 of the equation is a given function defined on 

[𝑎, 𝑏] × [𝑎, 𝑏] × ℝ1. 

Integral equations can be considered on various function spaces. We consider 

equation (18) on 𝐶[𝑎, 𝑏], the space of all continuous functions defined on the interval 

[𝑎, 𝑏] with the metric 𝑑 defined by 

            𝑑(𝑥, 𝑦) = max
𝑡∈𝑎,𝑏]

|𝑥(𝑡) − 𝑦(𝑡)|.                              (3.19) 

𝐶[𝑎, 𝑏] = (𝐶[𝑎, 𝑏], 𝑑) is complete. We assume that 𝑓 ∈ 𝐶[𝑎, 𝑏] and 𝑘 is a 

continuous function defined on [𝑎, 𝑏] × [𝑎, 𝑏] × 𝑅1. Moreover,   𝑘 satisfies on 

[𝑎, 𝑏] × [𝑎, 𝑏] × ℝ1 the Lipschitz condition of the form  

   |𝑘(𝑡, 𝑠; 𝑢1) − 𝑘(𝑡, 𝑠; 𝑢2)| ≤ 𝑙|𝑢1 − 𝑢2|.                            (3.20) 

Obviously, equation (18) can be written 𝑥 = 𝑇𝑥, where  

             𝑇𝑥(𝑡) = 𝜇 ∫
𝑏

𝑎
𝑘(𝑡, 𝑠; 𝑥(𝑠))𝑑𝑠 + 𝑓(𝑡).                     (3.21) 

Since 𝑓 and 𝑘 are continuous functions, formula (3.21) defines an operator 

𝑇: 𝐶[𝑎, 𝑏] → 𝐶[𝑎, 𝑏]. We now impose a restriction on 𝜇 such that 𝑇 becomes a 

contraction. Applying formulas (3.19), (3.21), and condition (3.20), we get 

𝑑(𝑇𝑥, 𝑇𝑦) = max
𝑡∈𝑎,𝑏]

|𝑇𝑥(𝑡) − 𝑇𝑦(𝑡)| 

= |𝜇|max
𝑡∈𝑎,𝑏]

|∫
𝑏

𝑎

(𝑘(𝑡, 𝑠; 𝑥(𝑠)) − 𝑘(𝑡, 𝑠; 𝑦(𝑠)))𝑑𝑠| 

≤ 𝑙|𝜇|max
𝑡∈𝑎,𝑏]

∫
𝑏

𝑎

|𝑥(𝑠) − 𝑦(𝑠)|𝑑𝑠 ≤ 𝑙|𝜇|max
𝑠∈𝑎,𝑏]

|𝑥(𝑠) − 𝑦(𝑠)|∫
𝑏

𝑎

𝑑𝑠 
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= 𝑙|𝜇|(𝑏 − 𝑎)𝑑(𝑥, 𝑦). 

So, 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑(𝑥, 𝑦), where 𝛼 = 𝑙|𝜇|(𝑏 − 𝑎). We see that 𝑇 becomes a 

contraction if  

|𝜇| <
1

𝑙(𝑏−𝑎)
.           (3.22) 

Banach’s fixed-point theorem now gives the following theorem. 

Theorem 3.2.5.3.  Assume that 𝑘 and 𝑓 in equation (3.18) are continuous functions 

on [𝑎, 𝑏] × [𝑎, 𝑏] × ℝ1 and [𝑎, 𝑏], respectively. Moreover, 𝑘 satisfies on [𝑎, 𝑏] × 

[𝑎, 𝑏] × ℝ1 the Lipschitz condition (3.20). Suppose that 𝜇 satisfies condition (3.22). 

Then, equation (3.18) has a unique solution 𝑥 defined on [𝑎, 𝑏]. This function 𝑥 is 

the limit of the iterative sequence {𝑥𝑗}𝑗=0
∞

 defined by the recursive formula 

          𝑥𝑗(𝑡) = 𝜇 ∫
𝑏

𝑎
𝑘 (𝑡, 𝑠; 𝑥𝑗−1(𝑠))𝑑𝑠 + 𝑓(𝑡), 𝑗 ∈ ℕ1,             (3.23) 

𝑥0(𝑡) is the given continuous function. 

Definition 3.2.5.4. An integral equation of the form  

                      𝑥(𝑡) = 𝜇 ∫
𝑡

𝑎
𝑘(𝑡, 𝑠; 𝑥(𝑠))𝑑𝑠 + 𝑓(𝑡)                      (3.24) 

is called a Volterra equation of the second kind. Here, 𝜇 is a given parameter, 𝑓 is a 

given function defined on [𝑎, 𝑏], 𝑥 is an unknown function defined on [𝑎, 𝑏]. The 

kernel 𝑘 of the equation is a given function defined on 𝐷 × ℝ1, where 𝐷  is the 

triangular region in the 𝑡𝑠 −plane given by 𝑎 ≤ 𝑠 ≤ 𝑡, 𝑎 ≤ 𝑡 ≤ 𝑏. 

The difference between (3.18) and (3.24) is that in (3.18) the upper limit of 

integration 𝑏 is constant, whereas in (3.24) it is variable. This is essential. In fact, 

without any restriction on 𝜇 we now get the following existence and uniqueness 

theorem. 

Theorem 3.2.5.4.  Assume that 𝑘 and 𝑓  in equation (3.24) are continuous 

functions on [𝑎, 𝑏] × [𝑎, 𝑡] × ℝ1 and [𝑎, 𝑏], respectively. Moreover,   𝑘 satisfies on 

[𝑎, 𝑏] × [𝑎, 𝑡] × ℝ1 the Lipschitz condition (3.20). Then, equation (3.18) has a unique 

solution 𝑥 defined on [𝑎, 𝑏] for every 𝜇. This function 𝑥 is the limit of the iterative 

sequence {𝑥𝑛}𝑛=0
∞  defined by the recursive formula  

        𝑥𝑗(𝑡) = 𝜇 ∫
𝑡

𝑎
𝑘 (𝑡, 𝑠; 𝑥𝑗−1(𝑠))𝑑𝑠 + 𝑓(𝑡), 𝑗 ∈ ℕ1,               (3.25) 

 𝑥0(𝑡) is a given continuous function. 

Proof.  We consider equation (3.24) on 𝐶∗[𝑎, 𝑏], the space of all continuous 

functions defined on the interval [𝑎, 𝑏] with the metric 𝑑∗ defined by  
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          𝑑∗(𝑥, 𝑦) = max
𝑡∈𝑎,𝑏]

𝑒−𝐿(𝑡−𝑎)|𝑥(𝑡) − 𝑦(𝑡)|, 𝐿 > 𝑙|𝜇|.             (3.26) 

Since 𝑒−𝐿(𝑏−𝑎) ≤ 𝑒−𝐿(𝑡−𝑎) ≤ 1, we have that  

𝑒−𝐿(𝑏−𝑎)𝑑(𝑥, 𝑦) ≤ 𝑑∗(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦)  for any  𝑥, 𝑦 ∈ 𝐶[𝑎, 𝑏].            (3.27) 

𝐶∗[𝑎, 𝑏] = (𝐶∗[𝑎, 𝑏], 𝑑) is complete. Obviously, equation (24) can be written as 

 𝑥 = 𝑇𝑥, where  

              𝑇𝑥(𝑡) = 𝜇 ∫
𝑡

𝑎
𝑘(𝑡, 𝑠; 𝑥(𝑠))𝑑𝑠 + 𝑓(𝑡).                    (3.28) 

Since 𝑓 and 𝑘 are continuous functions, formula (3.21) defines an operator 

𝑇: 𝐶∗[𝑎, 𝑏] → 𝐶∗[𝑎, 𝑏]. Applying formulas ( 3.28), (3.26), and condition (3.20),    

we get  

𝑑∗(𝑇𝑥, 𝑇𝑦) = max
𝑡∈𝑎,𝑏]

𝑒−𝐿(𝑡−𝑎)|𝑇𝑥(𝑡) − 𝑇𝑦(𝑡)| 

= |𝜇|max
𝑡∈𝑎,𝑏]

𝑒−𝐿(𝑡−𝑎) |∫
𝑡

𝑎

(𝑘(𝑡, 𝑠; 𝑥(𝑠)) − 𝑘(𝑡, 𝑠; 𝑦(𝑠)))𝑑𝑠| 

≤ 𝑙|𝜇|max
𝑡∈𝑎,𝑏]

∫
𝑡

𝑎

𝑒−𝐿(𝑡−𝑠)𝑒−𝐿(𝑠−𝑎)|𝑥(𝑠) − 𝑦(𝑠)|𝑑𝑠 

≤ 𝑙|𝜇|max
𝑠∈𝑎,𝑡]

𝑒−𝐿(𝑠−𝑎)|𝑥(𝑠) − 𝑦(𝑠)|max
𝑡∈𝑎,𝑏]

∫
𝑡

𝑎

𝑒−𝐿(𝑡−𝑠)𝑑𝑠 

= max
𝑡∈𝑎,𝑏]

𝑙|𝜇|

𝐿
(1 − 𝑒−𝐿(𝑡−𝑎))𝑑∗(𝑥, 𝑦) ≤

𝑙|𝜇|

𝐿
𝑑∗(𝑥, 𝑦). 

So, 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑(𝑥, 𝑦), where 𝛼 =
𝑙|𝜇|

𝐿
. Since 𝐿 > 𝑙|𝜇|, we have that 𝛼 < 1. 

That means 𝑇 is a contraction mapping on 𝐶∗[𝑎, 𝑏]. Then, equation (3.18) has a 

unique solution 𝑥 defined on [𝑎, 𝑏] for every 𝜇. This function 𝑥 is the limit of the 

iterative sequence {𝑥𝑗}𝑗=0
∞

 defined by recursive formula (3.18). Theorem 3.2.5.4 is 

proved. 

 

3.3 The Main Theorem On Stability 

 We consider the time-dependent SIP for the SE  

       {
𝑖
𝑑𝑢

𝑑𝑡
+ 𝐴𝑢(𝑡) = 𝑝(𝑡)𝑞 + 𝑓(𝑡), 𝑡 ∈ (0, 𝑇),    

𝑢(0) = 𝜑, 𝐵[𝑢(𝑡)] = 𝜓(𝑡), [0, 𝑇]                

                    (3.29)                       

in a Hilbert space 𝐻 with the self-adjoint positive definite operator 𝐴 with dense 

domain 𝐷(𝐴) in 𝐻. Here 𝐵:𝐻 → R is a given linear bounded functional and 

𝜓(𝑡): [0, 𝑇] → R is a given smooth function and 𝑞 ∈ 𝐷(𝐴), 𝐵𝑞 ≠ 0. 
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By a solution of the time dependent SIP (3.29) we mean a pair (𝑢(𝑡), 𝑝(𝑡)) 

satisfying the following conditions:  

    1.  The element 𝑢(𝑡) belong to 𝐷(𝐴) for all 𝑡 ∈ [0, 𝑇], and the function 

𝐴𝑢(𝑡) is continuous on [0, 𝑇], 𝑝(𝑡) ∈ 𝐶[0, 𝑇]. 

    2.  𝑢(𝑡) is continuously differentiable on the segment [0, 𝑇]. The 

derivative at the end points of the interval are understood as the appropriate unilateral 

derivative. 

    3.  (𝑢(𝑡), 𝑝(𝑡)) satisfies the differential equation and conditions.  

 We denote 𝑢(𝑡) and 𝑝(𝑡) by formulas  

𝑢(𝑡) = 𝑢(𝑡; 𝜑, 𝑓(𝑡), 𝜓(𝑡)), 𝑝(𝑡) = 𝑝(𝑡; 𝜑, 𝑓(𝑡), 𝜓(𝑡)). 

A solution of problem (3.29) defined in this manner will from now on be 

referred to as a solution of problem (3.29) in the space 𝐶(𝐻) × 𝐶[0,𝑇]. Here, 

 𝐶(𝐻) = 𝐶([0,𝑇],𝐻) is the space of continuous 𝐻-valued functions 𝑢(𝑡) defined on 

[0, 𝑇], equipped with the norm  

                               ||𝑢||
𝐶(𝐻)

= max
0≤𝑡≤𝑇

||𝑢(𝑡)||
𝐻
.                     (3.30) 

In this section the main theorem on stability of the SIP (3.29) is established. In 

applications, stability estimates for the solutions of five type of time-dependent SIPs 

for SEs with local and nonlocal conditions are obtained. 

 

3.3.1. The Well-Posedness of Differential Problem (3.29) 

Theorem 3.1 Let 𝜑 ∈ 𝐷(𝐴).  Suppose that 𝑓, 𝑓𝑡 ∈ 𝐶(𝐻) and  

𝜓,  𝜓′ ∈ 𝐶[0, 𝑇]. Then the time dependent SIP (3.29) has a unique solution 

(𝑢, 𝑝) ∈ 𝐶(𝐻) × 𝐶[0, 𝑇]. 

Proof.  Assume that 𝑤(𝑡) be the solution of the initial value problem (IVP)  

{
𝑖
𝑑𝑤(𝑡)

𝑑𝑡
+ 𝐴𝑤(𝑡) = 𝑖𝜇(𝑡)𝐴𝑞 + 𝑓(𝑡), 𝑡 ∈ (0, 𝑇),

𝑤(0) = 𝜑
                       (3.31) 

and  𝜇(𝑡) be the function determining by  

                 𝜇(𝑡) = ∫
𝑡

0
𝑝(𝑠)𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇.                        (3.32) 

Then, 

                   𝑢(𝑡) = 𝑤(𝑡) − 𝑖𝜇(𝑡)𝑞.                            (3.33) 

 Using the 𝐵[𝑢(𝑡)] = 𝜓(𝑡) and formula (3.33), we can obtain 

         𝜇(𝑡) =
𝑖

𝐵𝑞
(𝜓(𝑡) − 𝐵[𝑤(𝑡)]).                       (3.34) 
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 Since  

𝑝(𝑡) = 𝜇𝑡(𝑡), 0 < 𝑡 < 𝑇, 𝜇(0) = 0,                    (3.35) 

 we obtain 

𝑝(𝑡) =
𝑖

𝐵𝑞
(𝜓𝑡(𝑡) − 𝐵[𝑤𝑡(𝑡)]), 0 < 𝑡 < 𝑇.                   (3.36) 

Therefore, the following theorem will complete the proof of Theorem 3.1. 

Theorem 3.2  Under assumptions of Theorem 3.1, the IVP (3.31) has a unique 

solution 𝑤(𝑡) ∈ 𝐶(𝐻). 

Proof. The IVP (3.31) is equivalent to the integral equation  

𝑤(𝑡) = 𝑒𝑖𝐴𝑡𝜑  − 𝑖 ∫
𝑡

0
    𝑒𝑖𝐴(𝑡−𝑠)   {

𝑖

𝐵𝑞
(𝜓(𝑠) − 𝐵[𝑤(𝑠)])𝐴𝑞 + 𝑓(𝑠)} 𝑑𝑠.     (3.37) 

Here, 𝑒𝑖𝐴𝑡 is operator function generated by the operator 𝐴 and defined by 

formula (3.11). Taking the derivative  with respect to 𝑡, we get  

𝑑𝑤(𝑡)

𝑑𝑡
= 𝑖𝐴𝑒𝑖𝐴𝑡𝜑 + ∫

𝑡

0

𝐴𝑒𝑖𝐴(𝑡−𝑠)   {
𝑖

𝐵𝑞
(𝜓(𝑠) − 𝐵[𝑤(𝑠)])𝐴𝑞 + 𝑓(𝑠)} 𝑑𝑠. 

 From that it follows  

𝑑𝑤(𝑡)

𝑑𝑡
= 𝑖𝐴𝑒𝑖𝐴𝑡𝜑 + 𝑖 {

𝑖

𝐵𝑞
(𝜓(𝑡) − 𝐵[𝑤(𝑡)])𝐴𝑞 + 𝑓(𝑡)} 

−𝑖𝑒𝑖𝐴𝑡 {
𝑖

𝐵𝑞
(𝜓(0) − 𝐵[𝑤(0)])𝐴𝑞 + 𝑓(0)} 

 +∫
𝑡

0
𝑖𝑒𝑖𝐴(𝑡−𝑠) {

𝑖

𝐵𝑞
(𝜓𝑠(𝑠) − 𝐵[𝑤𝑠(𝑠)])𝐴𝑞 + 𝑓𝑠(𝑠)} 𝑑𝑠.             (3.38) 

 Note that (3.38) is a linear Volterra equation of the second kind with respect to 𝑡 for 

the 
𝑑𝑤(𝑡)

𝑑𝑡
 in 𝐶(𝐻). Therefore, the proof of Theorem 3.2 is based on the fixed-point 

theorem. Actually, the recursive formula for the solution of IVP (3.31)  is  

𝑣𝑗(𝑡) = 𝑖𝐴𝑒
𝑖𝐴𝑡𝜑 

+𝑖 {
𝑖

𝐵𝑞
(𝜓(𝑡) − 𝐵 [∫

𝑡

0

𝑣𝑗−1(𝑠)𝑑𝑠 + 𝜑])𝐴𝑞 + 𝑓(𝑡)} 

−𝑖𝑒𝑖𝐴𝑡 {
𝑖

𝐵𝑞
(𝜓(0) − 𝐵[𝜑])𝐴𝑞 + 𝑓(0)} 

+∫
𝑡

0

𝑖𝑒𝑖𝐴(𝑡−𝑠) {
𝑖

𝐵𝑞
(𝜓𝑠(𝑠) − 𝐵[𝑣𝑗−1(𝑠)])𝐴𝑞 + 𝑓𝑠(𝑠)} 𝑑𝑠, 𝑗 ≥ 1, 

𝑣0(𝑡) = 𝑖𝐴𝑒
𝑖𝐴𝑡𝜑 + 𝑖 {

𝑖

𝐵𝑞
(𝜓(𝑡) − 𝐵[𝜑])𝐴𝑞 + 𝑓(𝑡)} 

 

         −𝑖𝑒𝑖𝐴𝑡 {
𝑖

𝐵𝑞
(𝜓(0) − 𝐵[𝜑])𝐴𝑞 + 𝑓(0)}.                  (3.39) 
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 Therefore,  

𝑑𝑤(𝑡)

𝑑𝑡
= 𝑣(𝑡) = 𝑣0(𝑡, 𝑥) + ∑

∞
𝑖=0 (𝑣𝑖+1(𝑡, 𝑥) − 𝑣𝑖(𝑡, 𝑥)).           (3.40) 

 Applying the triangle inequality and estimate (3.13), we get  

‖𝑣0(𝑡)‖𝐻 ≤∥ 𝑒
𝑖𝐴𝑡 ∥𝐻→𝐻 ‖𝐴𝜑‖𝐻 + {

1

|𝐵𝑞|
(|𝜓(𝑡)| + |𝐵[𝜑]|)‖𝐴𝑞‖𝐻 + ‖𝑓(𝑡)‖𝐻} 

+∥ 𝑒𝑖𝐴𝑡 ∥𝐻→𝐻 {
1

|𝐵𝑞|
(|𝜓(0)| + |𝐵[𝜑]|)‖𝐴𝑞‖𝐻 + ‖𝑓(0)‖𝐻} 

≤ ‖𝐴𝜑‖𝐻 + {
1

|𝐵𝑞|
( max
𝑡∈[0,𝑇]

|𝜓(𝑡)| + |𝐵[𝜑]|) ‖𝐴𝑞‖𝐻 + max
𝑡∈[0,𝑇]

‖𝑓(𝑡)‖𝐻} 

+{
1

|𝐵𝑞|
(|𝜓(0)| + |𝐵[𝜑]|)‖𝐴𝑞‖𝐻 + ‖𝑓(0)‖𝐻} = 𝑀0, 

‖𝑣1(𝑡) − 𝑣0(𝑡)‖𝐻 ≤
1

|𝐵𝑞|
∫
𝑡

0

|𝐵[𝑣0(𝑠)]|‖𝐴𝑞‖𝐻𝑑𝑠 

+∫
𝑡

0

‖𝑒𝑖𝐴(𝑡−𝑠)‖
𝐻→𝐻

1

|𝐵𝑞|
|𝐵[𝑣0(𝑠)]|‖𝐴𝑞‖𝐻𝑑𝑠 

≤
2

|𝐵𝑞|
∫
𝑡

0
|𝐵[𝑣0(𝑠)]|‖𝐴𝑞‖𝐻𝑑𝑠 ≤ 𝑀1𝑡                 (3.41) 

 for any 𝑡 ∈ [0, 𝑇]. Therefore   

 ‖𝑣1(𝑡)‖𝐻 ≤ 𝑀0 +𝑀1𝑡 

 for any 𝑡 ∈ [0, 𝑇]. Assume that 𝑗 ≥ 2. Then  

𝑣𝑗+1(𝑡) − 𝑣𝑗(𝑡) = 𝑖 {
𝑖

𝐵𝑞
(−𝐵 [∫

𝑡

0

[𝑣𝑗(𝑠) − 𝑣𝑗−1(𝑠)]𝑑𝑠])𝐴𝑞} 

+∫
𝑡

0

𝑖𝑒𝑖𝐴(𝑡−𝑠) {
𝑖

𝐵𝑞
(−𝐵[𝑣𝑗(𝑠) − 𝑣𝑗−1(𝑠)])𝐴𝑞}𝑑𝑠. 

 Applying the triangle inequality and estimate (3.13), we get  

‖𝑣𝑗+1(𝑡) − 𝑣𝑗(𝑡)‖𝐻 ≤
1

|𝐵𝑞|
∫
𝑡

0

|𝐵[𝑣𝑗(𝑠) − 𝑣𝑗−1(𝑠)]|‖𝐴𝑞‖𝐻𝑑𝑠 

+∫
𝑡

0

‖𝑒𝑖𝐴(𝑡−𝑠)‖
𝐻→𝐻

1

|𝐵𝑞|
|𝐵[𝑣𝑗(𝑠) − 𝑣𝑗−1(𝑠)]|‖𝐴𝑞‖𝐻𝑑𝑠 

≤
2

|𝐵𝑞|
∫
𝑡

0

|𝐵[𝑣𝑗(𝑠) − 𝑣𝑗−1(𝑠)]|‖𝐴𝑞‖𝐻𝑑𝑠 

≤
2

|𝐵𝑞|
∫
𝑡

0

‖𝐵‖‖𝑣𝑗(𝑠) − 𝑣𝑗−1(𝑠)‖𝐻
‖𝐴𝑞‖𝐻𝑑𝑠 

≤ 𝐾 ∫
𝑡

0
‖𝑣𝑗(𝑠) − 𝑣𝑗−1(𝑠)‖𝐻𝑑𝑠                           (3.42) 

 for any 𝑡 ∈ [0, 𝑇]. Using estimates (3.42) and (3.41), we get  
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‖𝑣2(𝑡) − 𝑣1(𝑡)‖𝐻 ≤ 𝐾∫
𝑡

0

‖𝑣1(𝑠) − 𝑣0(𝑠)‖𝐻𝑑𝑠 ≤ 𝐾𝑀1

𝑡2

2
 

 for any 𝑡 ∈ [0, 𝑇]. Let  

‖𝑣𝑗(𝑡) − 𝑣𝑗−1(𝑡)‖𝐻 ≤
𝑀1

𝐾

(𝐾𝑡)𝑗

𝑗!
 

 for any 𝑡 ∈ [0, 𝑇]. Then, using estimate (3.42), we get  

‖𝑣𝑗+1(𝑡) − 𝑣𝑗(𝑡)‖𝐻 ≤ 𝐾
∫
𝑡

0

𝑀1

𝐾

(𝐾𝑠)𝑗

𝑗!
𝑑𝑠 =

𝑀1

𝐾

(𝐾𝑡)(𝑗+1)

(𝑗 + 1)!
 

 and 

‖𝑣𝑗+1(𝑡)‖𝐻 ≤ 𝑀0 +𝑀1𝑡+. . . +
𝑀1

𝐾

(𝐾𝑡)(𝑗+1)

(𝑗 + 1)!
 

 for any 𝑡 ∈ [0, 𝑇] by mathematical induction. From that and formula (3.40) it 

follows that.   

‖𝑣(𝑡)‖𝐻 ≤ ‖𝑣0(𝑡)‖𝐻 +∑

∞

𝑗=0

(𝑣𝑗+1(𝑡, 𝑥) − 𝑣𝑗(𝑡, 𝑥)) 

≤ 𝑀0 +∑

∞

𝑗=0

𝑀1

𝐾

(𝐾𝑡)𝑗+1

(𝑗 + 1)!
≤ 𝑀0 +

𝑀1

𝐾
𝑒𝐾𝑡 

 for any 𝑡 ∈ [0, 𝑇] which proves the existence of a bounded solution of problem 

(3.31) in 𝐶(𝐻).  

 Now, we will prove uniqueness of this solution of problem (3.31). Assume 

that there is a bounded solution 𝑧(𝑡, 𝑥) of problem (3.31) and 𝑧(𝑡, 𝑥) ≠ 𝑤(𝑡, 𝑥). We 

denote that 𝑉(𝑡, 𝑥) = 𝑧(𝑡, 𝑥) − 𝑣(𝑡, 𝑥). Therefore, for 𝑉(𝑡, 𝑥), we have that  

𝑉((𝑡, 𝑥) = ∫
𝑡

0

𝑒𝑖𝐴(𝑡−𝑠)   {
𝑖

𝐵𝑞
𝐵[𝑉(𝑠, 𝑥)]𝐴𝑞(𝑥)} 𝑑𝑠. 

 Applying estimates (3.13), we get  

‖𝑉(𝑡,⋅)‖𝐻 ≤
1

|𝐵𝑞|
‖𝐴𝑞(. )‖𝐻∫

𝑡

0

|𝑉(𝑠, 𝑥)|𝑑𝑠 ≤ 𝐾∫
𝑡

0

‖𝑉(𝑠,⋅)‖𝐻𝑑𝑠 

 for any 𝑡 ∈ [0, 𝑇]. Therefore, using the integral inequality, we get  

‖𝑉(𝑡,⋅)‖𝐻 ≤ 0 

 for any 𝑡 ∈ [0, 𝑇]. From that it follows that 𝑉(𝑡, 𝑥) = 0 which proves the 

uniqueness of a bounded solution of problem (3.31) in 𝐶(𝐻).  Theorem 3.2 is proved. 

 We have the following main theorem on the stability of problem (3.29). 
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Theorem 3.3  Assume that the assumptions of Theorem 3.1 hold. The solution of SIP 

(3.29) obeys the stability estimate  

‖𝑢𝑡‖𝐶(𝐻) + ‖𝐴𝑢‖𝐶(𝐻) + ‖𝑝‖𝐶[0,𝑇] 

⩽ 𝑀(𝛿, 𝑞)[‖𝐴𝜑‖𝐻 + ‖𝑓(0)‖𝐻 + ‖𝑓𝑡‖𝐶(𝐻) 

           +|𝜓(0)| + ‖𝜓𝑡‖𝐶[0,𝑇]].                           (3.43) 

In the present study, 𝑀(𝛿, 𝑞) denotes positive constants, which may different 

in time and thus it is not a subject of precision. 

Proof. Applying formula (3.36), estimates (3.13) and 𝐵𝑞 ≠ 0, we get the estimate  

|𝑝(𝑡)| ≤ 𝑀1(𝛿, 𝑞)[‖𝜓𝑡‖𝐶[0,𝑇] + ‖𝑤𝑡(𝑡)‖𝐻]                (3.44) 

 for all 𝑡 ∈ [0, 𝑇] and  

‖𝑝‖𝐶[0,𝑇] ⩽ 𝑀1(𝛿, 𝜎)[‖𝜓𝑡‖𝐶[0,𝑇] + ‖𝑤𝑡‖𝐶(𝐻)].               (3.45) 

 Now, applying formulas (3.33) and (3.35), we can write 

𝑢𝑡(𝑡) = 𝑤𝑡(𝑡) + 𝑝(𝑡)𝑞, 0 < 𝑡 ≤ 𝑇. 

 By the triangle inequality, this formula yields us 

‖𝑢𝑡‖𝐶(𝐻) ⩽ ‖𝑤𝑡‖𝐶(𝐻) + ‖𝑝‖𝐶[0,𝑇]‖𝑞‖𝐻 .                  (3.46) 

 Then, the proof of estimate (3.43) is based on equation (3.37), estimates (3.45), (3.46) 

and on the following result of stability estimate. 

Theorem 3.4  Assume that the assumptions of Theorem 3.1 hold. The solution of IVP 

(3.31) obeys the stability estimate  

‖𝑤𝑡‖𝐶(𝐻) 

⩽ 𝑀(𝛿, 𝑞)[‖𝐴𝜑‖𝐻 + |𝜓(0)| + ‖𝑓(0)‖𝐻 + ‖𝑓𝑡‖𝐶(𝐻)+‖𝜓𝑡‖𝐶[0,𝑇]].      (3.47) 

Proof. Applying formula (3.38), we get 

𝑤𝑡(𝑡) = 𝑖𝑒
𝑖𝐴𝑡𝐴𝜑 

−𝑖 ∫
𝑡

0

    𝑒𝑖𝐴(𝑡−𝑠)   {
𝑖

𝐵𝑞
(𝜓𝑠(𝑠) − 𝐵[𝑤𝑠(𝑠)])𝐴𝑞 + 𝑓𝑠(𝑠)} 𝑑𝑠 

−𝑖𝑒𝑖𝐴𝑡   {
𝑖

𝐵𝑞
(𝜓(0) − 𝐵[𝑤(0)])𝐴𝑞 + 𝑓(0)}. 

 Then, applying the triangle inequality and estimate (3.13) and 𝐵𝑞 ≠ 0, we get the 

estimate  

‖𝑤𝑡(𝑡)‖𝐻 ≤ 𝑀3(𝛿, 𝑞)[|𝜓(0)| + ‖𝑓(0)‖𝐻 + ‖𝐴𝜑‖ℍ 

+‖𝜓𝑡‖𝐶[0,𝑇] + ‖𝑓𝑡‖𝐶(𝐻)] + 𝑀4(𝛿, 𝑞) ∫
𝑡

0
‖𝑤𝑠(𝑠)‖𝐻𝑑𝑠         (3.48) 

for 0 ≤ 𝑡 ≤ 𝑇. Then, applying the integral inequality, we conclude that the following 

stability estimate 
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‖𝑤𝑡(𝑡)‖𝐻 ≤ 𝑀(𝛿, 𝑞)[|𝜓(0)| + ‖𝑓(0)‖𝐻 + ‖𝐴𝜑‖𝐻 

+‖𝜓𝑡‖𝐶[0,𝑇] + ‖𝑓𝑡‖𝐶(𝐻)]𝑒
𝑀4(𝛿,𝑞)𝑡                  (3.49) 

is satisfied for the solution of IVP (3.31) for every 𝑡 ∈ [0, 𝑇]. From estimate (3.49) it 

follows estimate (3.47). Theorem 3.4 is established. 

 

3.4. Applications 

Now, consider the applications of the main theorem. 

Problem 3.4.1. We consider one dimensional time-dependent SIP  

{
 
 
 
 

 
 
 
 
𝑖𝑢𝑡(𝑡, 𝑥) − (𝑎(𝑥)𝑢𝑥(𝑡, 𝑥))𝑥 + 𝛿𝑢

(𝑡, 𝑥)

= 𝑝(𝑡)𝑞(𝑥) + 𝑓(𝑡, 𝑥), 0 < 𝑡 < 𝑇, 𝑥 ∈ (0, 𝑙),

𝑢(0, 𝑥) = 𝜑(𝑥), 𝑥 ∈ [0, 𝑙],

𝑢(𝑡, 0) = 𝑢(𝑡, 𝑙), 𝑢𝑥(𝑡, 0) = 𝑢𝑥(𝑡, 𝑙), 𝑡 ∈ [0, 𝑇],

∫
𝑙

0
𝑢(𝑡, 𝑥)𝑑𝑥 = 𝜓(𝑡), 𝑡 ∈ [0, 𝑇]

                     (3.50) 

for the SE with nonlocal conditions. Under compatibility conditions problem (3.50) 

has a unique solution (𝑢(𝑡, 𝑥), 𝑝(𝑡)) for the smooth functions 𝑓(𝑡, 𝑥),  

(𝑡, 𝑥) ∈ (0, 𝑇) × (0, 𝑙), 𝑎(𝑥) ≥ 𝑎 > 0, 𝑎(𝑙) = 𝑎(0), 𝜑(𝑥), 𝑥 ∈ [0, 𝑙], 𝜓(𝑡),   

𝑡 ∈ [0, 𝑇], 𝑞(0) = 𝑞(𝑙), 𝑞 
′
(0) = 𝑞 

′
(𝑙) and ∫

𝑙

0
𝑞(𝑥)𝑑𝑥 ≠ 0. 

Problem (3.50) can be written as the time dependent SIP (3.14) in a Hilbert 

space 𝐻 = 𝐿2[0, 𝑙] with self-adjoint positive definite operator 𝐴 = 𝐴𝑥  defined by the 

formula 

     𝐴𝑥𝑢(𝑥) = −(𝑎(𝑥)𝑢𝑥(𝑥)𝑥 + 𝛿𝑢(𝑥)                    (3.51) 

 with the domain 𝐷(𝐴𝑥) = {𝑢 ∈ 𝑊2
2[0, 𝑙]: 𝑢(0) = 𝑢(𝑙), 𝑢𝑥(0) = 𝑢𝑥(𝑙)}.Therefore 

the main theorem 3.3 permits to get the following result on the stability of problem 

(3.50). 

Theorem 3.5. Assume that 𝜑 ∈ 𝑊2
2[0, 𝑙]  and 𝑓(𝑡, 𝑥)  be a continuously 

differentiable function in 𝑡  and square integrable in 𝑥 , 𝜓(𝑡)  is a continuously 

differentiable function. Then the SIP (3.50) has a unique solution  

𝑢 ∈ 𝐶(𝐿2[0, 𝑙]) = 𝐶([0, 𝑇], 𝐿2[0, 𝑙]), 𝑝 ∈ 𝐶[0, 𝑇] and for the solution of SIP (3.50)  

the following stability estimates hold 
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‖
𝜕𝑢

𝜕𝑡
‖
𝐶(𝐿2[0,𝑙])

+ ‖𝑢‖𝐶(𝑊22[0,𝑙]) + ‖𝑝‖𝐶[0,𝑇] ⩽ 𝑀1(𝑞)[‖𝜑‖𝑊22[0,𝑙]

+‖𝑓(0)‖𝐿2[0,𝑙] + |𝜓(0)| + ‖
𝜕𝑓

𝜕𝑡
‖
𝐶(𝐿2[0,𝑙])

+ ‖𝜓′‖𝐶[0,𝑇]] .

 

 Here and in future, the Sobolev space 𝑊2
2[0, 𝑙] is defined as the set of all 

functions 𝑢(𝑥) defined on [0, 𝑙] such that 𝑢(𝑥)  and the second order derivative 

function 𝑢′′(𝑥) are all locally integrable in 𝐿2[0, 𝑙], equipped the norm  

‖𝑢‖𝑊22[0,𝑙] = (∫

𝑙

0

|𝑢(𝑥)|2𝑑𝑥)

1
2

+ (∫

𝑙

0

|𝑢′(𝑥)|2𝑑𝑥)

1
2

+ (∫

𝑙

0

|𝑢′′(𝑥)|2𝑑𝑥)

1
2

. 

Proof. The proof of Theorem 3.5 is based on the abstract stability result of the 

Theorem 3.3, on the self-adjointness and positivity of operator 𝐴 = 𝐴𝑥  defined by the 

formula (3.51) of Lemma 3.2.3.1 and on boundedness in 𝐿2[0, 𝑙] of a linear functional 

𝐵 defined by the formula  

𝐵𝑢(𝑡, 𝑥) = ∫
𝑙

0
𝑢(𝑡, 𝑥)𝑑𝑥, 𝑡 ∈ [0, 𝑇].                    (3.52) 

Problem 3.4.2. We consider the time-dependent SIP  

{
 
 
 
 

 
 
 
 
𝑖𝑢𝑡(𝑎(𝑥)𝑢𝑥(𝑡, 𝑥))𝑥 − 𝛽(𝑎(−𝑥)𝑢𝑥

(𝑡,−𝑥))
𝑥
+ 𝛿𝑢(𝑡, 𝑥)

𝑝(𝑡)𝑞(𝑥) + 𝑓(𝑡, 𝑥), 0 < 𝑡 < 𝑇, 𝑥 ∈ (−𝑙, 𝑙)

𝑢(0, 𝑥) = 𝜑(𝑥), 𝑥 ∈ [−𝑙, 𝑙],

𝑢(𝑡,−𝑙) = 𝑢(𝑡, 𝑙) = 0, 𝑡 ∈ [0, 𝑇],

∫
𝑙

−𝑙
𝑢(𝑡, 𝑥)𝑑𝑥 = 𝜓(𝑡), 𝑡 ∈ [0, 𝑇]

              (3.53) 

for the SE with involution and Dirichlet conditions. Under compatibility conditions 

problem (3.53) has a unique solution (𝑢(𝑡, 𝑥), 𝑝(𝑡)) for the smooth functions 𝑓(𝑡, 𝑥) 

(𝑡, 𝑥) ∈ (0, 𝑇) × (−𝑙, 𝑙)), 𝑎(𝑥), 𝑎 ≥ 𝑎(𝑥) = 𝑎(−𝑥) ≥ 𝛿 > 0, 𝛿 − 𝑎|𝛽| ≥ 0, 𝜑(𝑥),

𝑥 ∈ 0, 𝑙], 𝜓(𝑡), 𝑡 ∈ [0, 𝑇], 𝑞(−𝑙) = 𝑞(𝑙) = 0, and ∫
𝑙

−𝑙
𝑞(𝑥)𝑑𝑥 ≠ 0. 

Problem (3.53) can be written as the time dependent identification problem 

(14) in a Hilbert space 𝐻 = 𝐿2[−𝑙, 𝑙] with self-adjoint positive definite operator  

𝐴 = 𝐴𝑥  defined by the formula 

𝐴𝑢(𝑥) = −(𝑎(𝑥)𝑢𝑥(𝑥)𝑥 − 𝛽(𝑎(−𝑥)𝑢𝑥(−𝑥))𝑥 + 𝛿𝑢
(𝑥)              (3.54) 

with the domain 𝐷(𝐴) = {𝑢 ∈ 𝑊2
2[−𝑙, 𝑙]: 𝑢(−𝑙) = 𝑢(𝑙) = 0}.Therefore the main 

theorem 3.3 permits to get the following result on the stability of problem (3.53). 



   52 
 

 
 

Theorem 3.6. Suppose that 𝜑 ∈ 𝑊2
2[−𝑙, 𝑙] and 𝑓(𝑡, 𝑥) be a continuously 

differentiable function in 𝑡 and square integrable in 𝑥, 𝜓(𝑡) is a continuously 

differentiable function. Then the time source time-dependent SIP (3.53) has a unique 

solution 𝑢 ∈ 𝐶(𝐿2[−𝑙, 𝑙]) = 𝐶([0,𝑇], 𝐿2[−𝑙, 𝑙]), 𝑝 ∈ 𝐶[0, 𝑇] and for the solution of 

the time-dependent SIP (3.53)  the following stability estimates hold 

‖
𝜕𝑢

𝜕𝑡
‖
𝐶(𝐿2[−𝑙,𝑙])

+ ‖𝑢‖𝐶(𝑊22[−𝑙,𝑙]) + ‖𝑝‖𝐶[0,𝑇] ⩽ 𝑀1(𝑞)[‖𝜑‖𝑊22[−𝑙,𝑙]

+‖𝑓(0)‖𝐿2[−𝑙,𝑙] + |𝜓(0)| + ‖
𝜕𝑓

𝜕𝑡
‖
𝐶(𝐿2[−𝑙,𝑙])

+ ‖𝜓′‖𝐶[0,𝑇]] .

 

 Here, the Sobolev space 𝑊2
2[−𝑙, 𝑙] is defined as the set of all functions 𝑢(𝑥) 

defined on [−𝑙, 𝑙] such that 𝑢(𝑥) and the second order derivative function 𝑢′′(𝑥) 

are all locally integrable in 𝐿2[−𝑙, 𝑙], equipped the norm  

‖𝑢(𝑥)‖𝑊22[−𝑙,𝑙] = (∫

𝑙

−𝑙

|𝑢(𝑥)|2𝑑𝑥)

1
2

+(∫

𝑙

−𝑙

|𝑢′′(𝑥)|2𝑑𝑥)

1
2

. 

Proof. The proof of Theorem 3.6 is based on the abstract stability result of the 

Theorem 3.3, on the self-adjointness and positivity of operator 𝐴 = 𝐴𝑥  defined by the 

formula (3.54) of Lemma 3.2.3.3 and on boundedness in 𝐿2[−𝑙, 𝑙] of a linear 

functional 𝐵 defined by the formula  

𝐵𝑢(𝑡, 𝑥) = ∫

𝑙

−𝑙

𝑢(𝑡, 𝑥)𝑑𝑥, 𝑡 ∈ [0, 𝑇]. 

Problem 3.4.3. We consider one dimensional time-dependent SIP  

{
 
 
 
 

 
 
 
 
𝑖𝑢𝑡(𝑡, 𝑥) − (𝑎(𝑥)𝑢𝑥(𝑡, 𝑥))𝑥 + 𝛿𝑢

(𝑡, 𝑥)

= 𝑝(𝑡)𝑞(𝑥) + 𝑓(𝑡, 𝑥), 0 < 𝑡 < 𝑇, 𝑥 ∈ (0, 𝑙),

𝑢(0, 𝑥) = 𝜑(𝑥), 𝑥 ∈ [0, 𝑙],

𝑢(𝑡, 0) = 𝑏𝑢𝑥(𝑡, 0), 𝑢(𝑡, 𝑙) = −𝑐𝑢𝑥(𝑡, 𝑙), 𝑡 ∈ [0, 𝑇],

∫
𝑙

0
𝑢(𝑡, 𝑥)𝑑𝑥 = 𝜓(𝑡), 𝑡 ∈ [0, 𝑇]

                  (3.55) 

for the SE with Robin boundary conditions. Under compatibility conditions problem 

(3.55) has a unique solution (𝑢(𝑡, 𝑥), 𝑝(𝑡)) for the smooth functions 𝑓(𝑡, 𝑥), 

(𝑡, 𝑥) ∈ (0, 𝑇) × (0, 𝑙), 𝑎(𝑥) ≥ 𝑎 > 0, 𝑎(𝑙) = 𝑎(0), 𝑏, 𝑐 ≥ 0, 𝜑(𝑥), 𝑥 ∈ 0, 𝑙],

𝜓(𝑡), 𝑡 ∈ [0, 𝑇], 𝑞(0) = 𝑏𝑞 
′
(0), 𝑞(𝑙) = −𝑐𝑞 

′
(𝑙) and ∫

𝑙

0
𝑞(𝑥)𝑑𝑥 ≠ 0. 
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 Problem (3.55) can be written as the time dependent identification problem 

(3.55) in a Hilbert space 𝐻 = 𝐿2[0, 𝑙] with self-adjoint positive definite operator  

𝐴 = 𝐴𝑥  defined by the formula 

𝐴𝑥𝑢(𝑥) = −(𝑎(𝑥)𝑢𝑥(𝑥)𝑥 + 𝛿𝑢(𝑥)                      (3.56) 

with the domain 𝐷(𝐴𝑥) = {𝑢 ∈ 𝑊2
2[0, 𝑙]: 𝑢(0) = 𝑏𝑢′(0), 𝑞(𝑙) = −𝑐𝑢′(𝑙)}. 

Therefore the main theorem 2.3 permits to get the following result on the stability of 

problem (3.55). 

Theorem 3.7. Assume that 𝜑 ∈ 𝑊2
2[0, 𝑙] and 𝑓(𝑡, 𝑥) be a continuously 

differentiable function in 𝑡 and square integrable in 𝑥, 𝜓(𝑡) is a continuously 

differentiable function. Then the time-dependent SIP (3.55) has a unique solution 

 𝑢 ∈ 𝐶(𝐿2[0, 𝑙]) = 𝐶([0, 𝑇], 𝐿2[0, 𝑙]), 𝑝 ∈ 𝐶[0, 𝑇] and for the solution of the 

time-dependent SIP (3.55) the following stability estimates hold 

‖
𝜕𝑢

𝜕𝑡
‖
𝐶(𝐿2[0,𝑙])

+ ‖𝑢‖𝐶(𝑊22[0,𝑙]) + ‖𝑝‖𝐶[0,𝑇] ⩽ 𝑀1(𝑞)[‖𝜑‖𝑊22[0,𝑙]

+‖𝑓(0)‖𝐿2[0,𝑙] + |𝜓(0)| + ‖
𝜕𝑓

𝜕𝑡
‖
𝐶(𝐿2[0,𝑙])

+ ‖𝜓′‖𝐶[0,𝑇]] .

 

Proof. The proof of Theorem 3.7 is based on the abstract stability result of the 

Theorem 3.3, on the self-adjointness and positivity of operator 𝐴 = 𝐴𝑥  defined by the 

formula (3.56) of Lemma 3.2.3.2 and on boundedness in 𝐿2[0, 𝑙] of a linear functional 

𝐵 defined by the formula (3.52). 

Problem 3.4.4. Let Ω ⊂ 𝑅𝑛 be a bounded open domain with smooth boundary 𝑆, 

Ω = Ω ∪ 𝑆. In [0, 𝑇] × Ω  we consider the multidimensional time-dependent SIP  

{
 
 
 
 

 
 
 
 
𝑖𝑢𝑡(𝑡, 𝑥) − ∑

𝑛
𝑟=1 (𝑎𝑟(𝑥)𝑢𝑥𝑟)𝑥𝑟 + 𝛿𝑢(𝑡, 𝑥) = 𝑝(𝑡)𝑞(𝑥) + 𝑓(𝑡, 𝑥),

0 < 𝑡 < 𝑇, 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Ω,

𝑢(0, 𝑥) = 𝜑(𝑥), 𝑥 ∈ Ω,

𝑢(𝑡, 𝑥) = 0, 𝑥 ∈ 𝑆, 𝑡 ∈ [0,𝑇],

∫ ⋯
Ω
∫ 𝑢(𝑡, 𝑥)𝑑𝑥1. . . 𝑑𝑥𝑛 = 𝜓(𝑡), 𝑡 ∈ [0,𝑇]

    (3.57) 

for the SE with Dirichlet boundary condition. Under compatibility conditions problem 

(3.57) has a unique solution (𝑢(𝑡, 𝑥), 𝑝(𝑡)) for the smooth functions 𝑓(𝑡, 𝑥), 

(𝑡, 𝑥) ∈ (0, 𝑇) × Ω, 𝑎𝑟(𝑥) ≥ 𝑎 > 0, 𝜑(𝑥), 𝑥 ∈ Ω, 𝜓(𝑡), 𝑡 ∈ [0, 𝑇], 𝑞(𝑥) = 0, 

  𝑥 ∈ 𝑆 and  

              ∫ ⋯
Ω
∫ 𝑞(𝑥)𝑑𝑥1. . . 𝑑𝑥𝑛 ≠ 0.                           (3.58) 



   54 
 

 
 

 

 Problem (3.57) can be written as the time-dependent source identification 

problem (3.57) in a Hilbert space 𝐻 = 𝐿2(Ω) with self-adjoint positive definite 

operator 

 𝐴 = 𝐴𝑥  defined by the formula 

𝐴𝑢(𝑥) = −∑𝑛𝑟=1 (𝑎𝑟(𝑥)𝑢𝑥𝑟)𝑥𝑟 + 𝛿𝑢(𝑥)                (3.59) 

 with domain 

𝐷(𝐴) = {𝑢(𝑥): 𝑢(𝑥), (𝑎𝑟(𝑥)𝑢𝑥𝑟)𝑥𝑟 ∈ 𝐿2(Ω),1 ≤ 𝑟 ≤ 𝑛, 𝑢(𝑥) = 0, 𝑥 ∈ 𝑆}. 

Therefore the main theorem 3.3 permits to get the following result on the 

stability of problem (3.57). 

Theorem 3.8. Assume that 𝜑 ∈ 𝑊2
2(Ω) and 𝑓(𝑡, 𝑥) be a continuously differentiable 

function in 𝑡 and square integrable in 𝑥, 𝜓(𝑡) is a continuously differentiable 

function. Then the time-dependent SIP (3.57) has a unique solution 𝑢 ∈ 𝐶(𝐿2(Ω)) =

𝐶([0,𝑇], 𝐿2(Ω)), 𝑝 ∈ 𝐶[0, 𝑇] and for the solution of time-dependent SIP (3.57)  the 

following stability estimates hold 

‖
𝜕𝑢

𝜕𝑡
‖
𝐶(𝐿2(Ω))

+ ‖𝑢‖𝐶(𝑊22(Ω)) +
‖𝑝‖𝐶[0,𝑇] ⩽ 𝑀1(𝑞) [‖𝜑‖𝑊22(Ω)

+‖𝑓(0)‖𝐿2(Ω) + |𝜓
(0)| + ‖

𝜕𝑓

𝜕𝑡
‖
𝐶(𝐿2(Ω))

+ ‖𝜓′‖𝐶[0,𝑇]] .
          (3.60) 

Proof. The proof of Theorem 3.8 is based on the abstract stability result of the 

Theorem 3.3, on the self-adjointness and positivity of operator 𝐴 = 𝐴𝑥  defined by the 

formula (3.59) and on boundedness in 𝐿2(Ω) of a linear functional 𝐵 defined by the 

formula  

𝐵𝑢(𝑡, 𝑥) = ∫ ⋯
Ω
∫ 𝑢(𝑡, 𝑥)𝑑𝑥1. . . 𝑑𝑥𝑛 , 𝑡 ∈ [0, 𝑇]                  (3.61) 

 and the following theorem on coercivity inequality for the solution of the elliptic 

problem in 𝐿2(Ω). 

Theorem 3.9. For the solution of the elliptic differential problem (see, 

Sobolevskii,1975)  

{

𝐴𝑢(𝑥) = 𝑤(𝑥), 𝑥 ∈ Ω,

𝑢(𝑥) = 0, 𝑥 ∈ 𝑆
 

the following coercivity inequality holds  
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∑

𝑛

𝑟=1

‖𝑢𝑥𝑟𝑥𝑟‖𝐿2(Ω)
≤ 𝑀‖𝑤‖𝐿2(Ω). 

Problem 3.4.5. In [0, 𝑇] × Ω  we consider the multidimensional time-dependent SIP  

{
 
 
 
 

 
 
 
 
𝑖𝑢𝑡(𝑡, 𝑥) − ∑

𝑛
𝑟=1 (𝑎𝑟(𝑥)𝑢𝑥𝑟)𝑥𝑟 + 𝛿𝑢(𝑡, 𝑥) = 𝑝(𝑡)𝑞(𝑥) + 𝑓(𝑡, 𝑥),

0 < 𝑡 < 𝑇, 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Ω,

𝑢(0, 𝑥) = 𝜑(𝑥), 𝑥 ∈ Ω,

𝜕

𝜕�⃖�
𝑢(𝑡, 𝑥) = 0, 𝑥 ∈ 𝑆, 𝑡 ∈ [0,𝑇],

∫ ⋯
Ω
∫ 𝑢(𝑡, 𝑥)𝑑𝑥1. . . 𝑑𝑥𝑛 = 𝜓(𝑡), 𝑡 ∈ [0,𝑇]

    (3.62) 

for the SE with Neumann boundary condition. Here, �⃖� is the normal vector to Ω. 

Under compatibility conditions problem (3.62) has a unique solution (𝑢(𝑡, 𝑥), 𝑝(𝑡)) 

for the smooth functions 𝑓(𝑡, 𝑥), (𝑡, 𝑥) ∈ (0, 𝑇) × Ω, 𝑎𝑟(𝑥) ≥ 𝑎 > 0,  𝜑(𝑥),  

 𝑥 ∈ Ω, 𝜓(𝑡), 𝑡 ∈ [0, 𝑇], 
𝜕

𝜕�⃖�
𝑞(𝑥) = 0, 𝑥 ∈ 𝑆 and ∫ ⋯

Ω
∫ 𝑞(𝑥)𝑑𝑥1. . . 𝑑𝑥𝑛 ≠ 0. 

 Problem (3.62) can be written as the time dependent identification problem 

(3.14) in a Hilbert space 𝐻 = 𝐿2(Ω) with self-adjoint positive definite operator  

𝐴 = 𝐴𝑥  defined by the formula 

𝐴𝑢(𝑥) = −∑𝑛𝑟=1 (𝑎𝑟(𝑥)𝑢𝑥𝑟)𝑥𝑟 + 𝛿𝑢(𝑥)                  (3.63) 

 with domain 

𝐷(𝐴) = {𝑢(𝑥): 𝑢(𝑥), (𝑎𝑟(𝑥)𝑢𝑥𝑟)𝑥𝑟 ∈ 𝐿2(Ω),1 ≤ 𝑟 ≤ 𝑛,
𝜕

𝜕�⃖�
𝑢(𝑥) = 0, 𝑥 ∈ 𝑆}. 

 Therefore the main theorem 3.3 permits to get the following result on the stability of 

problem (3.62). 

Theorem 3.10. Suppose that assumptions of Theorem 2.8 hold. Then the solutions of 

the time-dependent SIP (3.62) satisfy the stability estimates (3.60). 

Proof. The proof of Theorem 3.10 is based on the abstract theorem 2.3, on 

boundedness in 𝐿2(Ω) of a linear functional 𝐵 defined by the formula (3.61) and on 

the self-adjointness and positivity of a differential operator 𝐴 in 𝐿2(Ω) defined by 

the formula (3.63) with domain 

𝐷(𝐴) = {𝑢(𝑥): 𝑢(𝑥), (𝑎𝑟(𝑥)𝑢𝑥𝑟)𝑥𝑟 ∈ 𝐿2(Ω),1 ≤ 𝑟 ≤ 𝑛,
𝜕

𝜕�⃖�
𝑢(𝑥) = 0, 𝑥 ∈} 

 and on the following theorem on coercivity inequality for the solution of the elliptic 

problem in 𝐿2(Ω). 
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Theorem 3.11. For the solution of the elliptic differential problem (see, 

Sobolevskii,1975) 

{

𝐴𝑥𝑢(𝑥) = 𝑤(𝑥), 𝑥 ∈ Ω,

𝜕

𝜕�⃖�
𝑢(𝑥) = 0, 𝑥 ∈ 𝑆.
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CHAPTER IV 

Stability Of Difference Schemes 

4.1 Introduction 

 In this section, the absolute stable difference schemes for the approximate 

solutions of the time-dependent source identification problem for the Schrödinger 

equation in a Hilbert space with the selfadjoint positive definite operator are 

investigated. The first and second order of accuracy implicit and second order of 

accuracy 𝑟-modified Crank-Nicolson difference schemes are presented. The stability 

of these difference schemes are established. In applications, theorems on stability 

estimates for the solution of difference schemes for the approximate solutions of five 

type of time-dependent source identification problems for Schrödinger equations are 

obtained. The first of them is the time-dependent source problem for the one 

dimensional Schrödinger equation with nonlocal conditions. The second them is the 

time-dependent source problem for the one dimensional Schrödinger equation with 

involution and Dirichlet conditions. The third is the time-dependent source problem 

for the one dimensional Schrödinger equation with Robin conditions. Two of them are 

the time-dependent source problems for the multidimensional Schrödinger equation 

with Dirichlet and Neumann conditions. 

 

4.2 Auxiliary Statements  

To formulate our results, we introduce normed space 𝐶𝜏(𝐻) = 𝐶([0, 𝑇]𝜏 , 𝐻) 

of all abstract grid functions 𝑓𝜏 = {𝑓𝑘}𝑘=0
𝑁  defined on the uniform grid space 

 [0, 𝑇]𝜏 = {𝑡𝑘 = 𝑘𝜏, 𝑘 = 0,1, . . . , 𝑁,𝑁𝜏 = 𝑇} 

with values in 𝐻 equipped with the norm  

 ‖𝑓𝜏‖𝐶𝜏(𝐻) = max
0≤𝑘≤𝑁

‖𝑓𝑘‖𝐻 . 

 

4.3 The First Order of Accuracy Difference Scheme  

We present the first order of accuracy difference scheme  

{
 
 

 
 𝑖

𝑢𝑘−𝑢𝑘−1

𝜏
+ 𝐴𝑢𝑘 = 𝑝𝑘𝑞 + 𝑓𝑘 , 𝑓𝑘 = 𝑓(𝑡𝑘), 1 ≤ 𝑘 ≤ 𝑁,

𝑢0 = 𝜑,

𝐵𝑢𝑘 = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘),0 ≤ 𝑘 ≤ 𝑁

                  (4.1) 

for the approximate solution of the time dependent SIP (3.31). 



   58 
 

 
 

 Now, let us state the stability result for the solution of difference scheme (4.1). 

Theorem 4.1 Assume that 𝜑 ∈ 𝐷(𝐴). Then, the solution of difference scheme (4.1) 

obeys the stability estimate  

‖{
𝑢𝑘 − 𝑢𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{𝐴𝑢𝑘}𝑘=0
𝑁 ‖𝐶𝜏(𝐻) + ‖{𝑝𝑘}𝑘=1

𝑁 ‖𝐶[0,𝑇]𝜏  

≤ 𝑀(𝛿, 𝑞)[‖𝐴𝜑‖𝐻 + |𝜓0| + ‖𝑓1‖𝐻 

         +‖{
𝑓𝑘−𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{
𝜓𝑘−𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

].                (4.2) 

Proof.  Assume that grid function{𝑤𝑘}𝑘=0
𝑁  be the solution of the difference scheme 

{

𝑖
𝑤𝑘−𝑤𝑘−1

𝜏
+ 𝐴𝑤𝑘 = 𝑖𝜇𝑘𝐴𝑞 + 𝑓𝑘 , 1 ≤ 𝑘 ≤ 𝑁,

𝑤0 = 𝜑

                                     (4.3) 

and  {𝜇𝑘}𝑘=1
𝑁  be the grid function determining by formula  

𝜇𝑘 = ∑
𝑘
𝑗=1 𝑝𝑗𝜏, 1 ≤ 𝑘 ≤ 𝑁, 𝜇0 = 0.                          (4.4) 

 Then, 

𝑢𝑘 = 𝑤𝑘 − 𝑖𝜇𝑘𝑞, 0 ≤ 𝑘 ≤ 𝑁.                             (4.5) 

 Using the condition 𝐵𝑢𝑘 = 𝜓𝑘 and formula (4.5), we can obtain 

𝜇𝑘 =
𝑖

𝐵𝑞
(𝜓𝑘 − 𝐵[𝑤𝑘]), 0 ≤ 𝑘 ≤ 𝑁.                      (4.6) 

 Since  

𝑝𝑘 =
𝜇𝑘−𝜇𝑘−1

𝜏
, 1 ≤ 𝑘 ≤ 𝑁,                      (4.7) 

 we obtain  

𝑝𝑘 =
𝑖

𝐵𝑞
(
𝜓𝑘−𝜓𝑘−1

𝜏
− 𝐵[

𝑤𝑘−𝑤𝑘−1

𝜏
]) , 1 ≤ 𝑘 ≤ 𝑁.                  (4.8) 

 Applying formula (4.8) and 𝐵𝑞 ≠ 0, we get the estimate  

|𝑝𝑘| ≤ 𝑀1(𝛿, 𝑞) [‖{
𝜓𝑘−𝜓𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

+ ‖
𝑤𝑘−𝑤𝑘−1

𝜏
‖
𝐻
]              (4.9) 

 for any 𝑘, 1 ≤ 𝑘 ≤ 𝑁 and 

‖{𝑝𝑘}𝑘=1
𝑁 ‖𝐶[0,𝑇]𝜏 ≤ 𝑀1(𝛿, 𝜎) [‖{

𝜓𝑘 −𝜓𝑘−1
𝜏

}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

 

+‖{
𝑤𝑘−𝑤𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶([0,𝑇]𝜏,𝐻)

].                        (4.10) 

 Now, applying formulas (4.5) and (4.7), we can write  

𝑢𝑘 − 𝑢𝑘−1
𝜏

=
𝑤𝑘 − 𝑤𝑘−1

𝜏
− 𝑖𝑝𝑘𝑞, 1 ≤ 𝑘 ≤ 𝑁. 
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Then from the triangle inequality and this formula it follows  

‖{
𝑢𝑘 − 𝑢𝑘−1

𝜏
}
𝑘=+1

𝑁

‖
𝐶𝜏(𝐻)

 

≤ ‖{
𝑤𝑘−𝑤𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{𝑝𝑘}1
𝑁‖𝐶[0,𝑇]𝜏‖𝑞‖𝐻,               (4.11) 

Then, the proof of estimate (4.2) is based on equation (4.3), estimates (4.10), (4.11) 

and on the following result of stability estimate. 

Theorem 4.2  Assume that the assumption of Theorem 4.1 holds. The solution of 

difference scheme (4.3) obeys the stability estimate  

‖{
𝑤𝑘 − 𝑤𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶𝜏(𝐻)

 

≤ 𝑀(𝛿, 𝑞)[‖𝐴𝜑‖𝐻 + |𝜓0| + ‖𝑓1‖𝐻 

+‖{
𝑓𝑘−𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{
𝜓𝑘−𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

].              (4.12) 

Proof. The difference scheme (4.3) is equivalent to the system of difference equations  

𝑤𝑘 = 𝑅
𝑘𝜑 − 𝑖 ∑𝑘𝑗=1 𝑅

𝑘−𝑗+1 {
𝑖

𝐵𝑞
(𝜓𝑗 − 𝐵[𝑤𝑗])𝐴𝑞 + 𝑓𝑗} 𝜏.              (4.13) 

 Here  

𝑅 = (𝐼 − 𝚤𝜏𝐴)−1.   

Applying formula (4.13), we get  

𝑤𝑘 − 𝑤𝑘−1
𝜏

= 𝑖𝑅𝑘𝐴𝜑 − 𝑖𝑅𝑘 {
𝑖

𝐵𝑞
(𝜓1 − 𝐵[𝑤1])𝐴𝑞 + 𝑓1} 

−𝑖 ∑𝑘𝑗=2 𝑅
𝑘−𝑗+1 {

𝑖

𝐵𝑞
(𝜓𝑗 −𝜓𝑗−1 − 𝐵[𝑤𝑗 −𝑤𝑗−1])𝐴𝑞 + 𝑓𝑗 − 𝑓𝑗−1}}    (4.14) 

for any 𝑘, 1 ≤ 𝑘 ≤ 𝑁. Applying formula (4.14), estimate 

                     ∥ 𝑅 ∥𝐻→𝐻≤ 1                                     (4.15) 

 and 𝐵𝑞 ≠ 0, we get the estimate 

‖
𝑤𝑘 − 𝑤𝑘−1

𝜏
‖
𝐻
≤ 𝑀1(𝛿, 𝑞)∑

𝑘

𝑗=2

‖𝑤𝑗 −𝑤𝑗−1‖𝐻
 

+𝑀(𝛿, 𝑞) {|𝜓0| + ‖{
𝜓𝑘 − 𝜓𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

 

+‖𝑓1‖𝐻 + ‖𝐴𝜑‖𝐻 + ‖{
𝑓𝑘 − 𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

} 
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for 1 ≤ 𝑘 ≤ 𝑁. Then, applying the discrete analogy of integral inequality, we 

conclude that the following stability estimate  

‖
𝑤𝑘 −𝑤𝑘−1

𝜏
‖
𝐻
≤ 𝑀(𝛿, 𝑞) {|𝜓0| + ‖{

𝜓𝑘 −𝜓𝑘−1
𝜏

}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

 

+‖𝑓1‖𝐻 + ‖𝐴𝜑‖𝐻 + ‖{
𝑓𝑘−𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

} 𝑒
𝑀1(𝛿,𝑞)(𝑘+𝑁−1)𝜏

1−𝜏𝑀1(𝛿,𝑞)        (4.16) 

is satisfied for the solution of difference scheme (4.2) for 1 ≤ 𝑘 ≤ 𝑁. From estimate 

(4.16) it follows estimate (4.12). Theorem 4.3.2 is established.  Now, consider the 

applications of the main Theorem 4.1. First, we study the absolute stable difference 

scheme for the approximate solution of the time dependent SIP (3.50). The 

discretization of time dependent SIP (3.50) is carried out in two stages. In the first 

stage, we define the grid space 

[0, 𝑙]ℎ = {𝑥 = 𝑥𝑛: 𝑥𝑛 = 𝑛ℎ, 0 ≤ 𝑛 ≤ 𝑀, 𝑀ℎ = 𝑙}. 

We introduce the Hilbert spaces 𝐿2ℎ = 𝐿2([0, 𝑙]ℎ) and 𝑊2ℎ
2 = 𝑊2

2([0, 𝑙]ℎ) of the 

grid functions 𝜑ℎ(𝑥) = {𝜑𝑗}0
𝑀 defined on [0, 𝑙]ℎ , equipped with the norms 

‖𝜑ℎ‖𝐿2ℎ = ( ∑

𝑥∈0,𝑙]ℎ

|𝜑ℎ(𝑥)|2ℎ)

1/2

 

and 

‖𝜑ℎ‖𝑊2ℎ
2 = ‖𝜑ℎ‖𝐿2ℎ +( ∑

𝑥∈0,𝑙]ℎ

|(𝜑ℎ)𝑥,𝑗|
2
ℎ)

1/2

+( ∑

𝑥∈0,𝑙]ℎ

|(𝜑ℎ)𝑥𝑥,𝑗|
2
ℎ)

1/2

, 

respectively. We denote the self-adjoint positive definite difference operator 𝐴ℎ 

defined by the formula 

𝐴ℎ𝜑
ℎ(𝑥) 

= {−
1

ℎ2
(𝑎(𝑥𝑛+1)(𝜑𝑛+1 −𝜑𝑛) − 𝑎(𝑥𝑛)(𝜑𝑛+1 − 𝜑𝑛)) + 𝛿𝜑𝑛}

𝑛=1

𝑀−1

     (4.17) 

acting in the space of grid functions 𝜑ℎ(𝑥) satisfying the conditions 𝜑0 = 𝜑𝑀 ,  

𝜑1 − 𝜑0 = 𝜑𝑀 −𝜑𝑀−1. 

It is well-known that 𝐴ℎ
𝑥  is a self-adjoint positive definite operator in 𝐿2ℎ . 

With the help of 𝐴ℎ
𝑥 , we reach the time dependent SIP 
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{
 
 
 

 
 
 
𝑖𝑢𝑡

ℎ(𝑡, 𝑥) + 𝐴ℎ
𝑥𝑢ℎ(𝑡, 𝑥) = 𝑝(𝑡)𝑞ℎ(𝑥) + 𝑓ℎ(𝑡, 𝑥),

𝑥 ∈ [0, 𝑙]ℎ , 0 < 𝑡 < 𝑇,

𝑢ℎ(0, 𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [0, 𝑙]ℎ,

∑𝑀−1𝑖=1 𝑢ℎ(𝑡, 𝑥𝑖)ℎ = 𝜓(𝑡), 0 ≤ 𝑡 ≤ 𝑇.

                     (4.18) 

In the second stage, we replace time dependent SIP (4.18) with a first order of 

accuracy difference scheme  

{
 
 
 

 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥𝑢𝑘
ℎ(𝑥) = 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥), 𝑓𝑘

ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 , 𝑥),

𝑥 ∈ [0, 𝑙]ℎ , 1 ≤ 𝑘 ≤ 𝑁,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [0, 𝑙]ℎ ,

∑𝑀−1𝑖=1 𝑢𝑘
ℎ(𝑥𝑖)ℎ = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

  (4.19) 

 Theorem 4.3  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of 

difference scheme (4.19) the following stability estimates hold  

‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁−1

‖

𝐶([0,𝑇]𝜏,𝐿2ℎ)

+ ‖{𝑢𝑘
ℎ}
𝑘=0

𝑁
‖
𝐶𝜏(𝑊2ℎ

2 )
+ ‖{𝑝𝑘}𝑘=0

𝑁 ‖𝐶[0,𝑇]𝜏  

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶𝜏(𝐿2ℎ)

 

           +|𝜓0| + ‖{
𝜓𝑘−𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

].                          (4.20) 

Proof. The proof of Theorem 4.3 is based on the abstract Theorem 4.1, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula 

𝐵ℎ𝑢ℎ(𝑡, 𝑥) = ∑𝑀−1𝑖=1 𝑢ℎ(𝑡, 𝑥𝑖)ℎ, 𝑡 ∈ [0,𝑇].                            (4.21) 

 Second, we study the absolute stable difference scheme for the approximate solution 

of time dependent SIP (3.50). The discretization of time dependent SIP (3.50) is 

carried out in two stages. In the first stage, we define the grid space 

[−𝑙, 𝑙]ℎ = {𝑥 = 𝑥𝑛: 𝑥𝑛 = 𝑛ℎ,−𝑀 ≤ 𝑛 ≤ 𝑀,𝑀ℎ = 𝑙}. 

We introduce the Hilbert spaces 𝐿2ℎ = 𝐿2([−𝑙, 𝑙]ℎ) and 𝑊2ℎ
2 = 𝑊2

2([−𝑙, 𝑙]ℎ) of the 

grid functions 𝜑ℎ(𝑥) = {𝜑𝑗}−𝑀
𝑀  defined on [−𝑙, 𝑙]ℎ , equipped with the norms 
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‖𝜑ℎ‖𝐿2ℎ = ( ∑

𝑥∈−𝑙,𝑙]ℎ

|𝜑ℎ(𝑥)|2ℎ)

1/2

 

and 

‖𝜑ℎ‖𝑊2ℎ
2 = ‖𝜑ℎ‖𝐿2ℎ + ( ∑

𝑥∈−𝑙,𝑙]ℎ

|(𝜑ℎ)𝑥𝑥,𝑗|
2
ℎ)

1/2

, 

respectively. To the differential operator 𝐴 generated by problem (3.50), we assign 

the difference operator 𝐴ℎ
𝑥  by the formula  

𝐴ℎ
𝑥𝜑ℎ(𝑥) = {−(𝑎(𝑥)𝜑𝑥(𝑥))𝑥,𝑟 − 𝛽(𝑎(−𝑥)𝜑𝑥(−𝑥))𝑥,𝑟 + 𝛿𝜑𝑟}−𝑀+1

𝑀−1 ,  (4.22) 

acting in the space of grid functions 𝜑ℎ(𝑥) = {𝜑𝑟}−𝑀
𝑀  satisfying the conditions 

𝜑−𝑀 = 𝜑𝑀 = 0. 

It is well-known that 𝐴ℎ
𝑥  is a self-adjoint positive definite operator in 𝐿2ℎ . 

With the help of 𝐴ℎ
𝑥 , we reach the time dependent SIP  

{
 
 
 

 
 
 
𝑖𝑢𝑡

ℎ(𝑡, 𝑥) + 𝐴ℎ
𝑥𝑢ℎ(𝑡, 𝑥) = 𝑝(𝑡)𝑞ℎ(𝑥) + 𝑓ℎ(𝑡, 𝑥),

𝑥 ∈ [−𝑙, 𝑙]ℎ , 0 < 𝑡 < 𝑇,

𝑢ℎ(0, 𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [−𝑙, 𝑙]ℎ ,

∑𝑀−1𝑖=−𝑀+1 𝑢
ℎ(𝑡, 𝑥𝑖)ℎ = 𝜓(𝑡), 0 ≤ 𝑡 ≤ 𝑇.

                     (4.23) 

 In the second stage, we replace time dependent SIP (4.23) with a first order of 

accuracy difference scheme  

{
 
 
 

 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥𝑢𝑘
ℎ(𝑥) = 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥), 𝑓𝑘

ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 , 𝑥),

𝑥 ∈ [−𝑙, 𝑙]ℎ , 1 ≤ 𝑘 ≤ 𝑁,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [−𝑙, 𝑙]ℎ ,

∑𝑀−1𝑖=−𝑀+1 𝑢𝑘
ℎ(𝑥𝑖)ℎ = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

   4.24) 

 Theorem 4.4  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of 

difference scheme (4.24) the following stability estimates hold 

‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁

‖

𝐶([0,𝑇]𝜏,𝐿2ℎ)

+ ‖{𝑢𝑘
ℎ}
𝑘=0

𝑁
‖
ℂ𝜏(𝑊2ℎ

2 )
+ ‖{𝑝𝑘}𝑘=1

𝑁 ‖𝐶[0,𝑇]𝜏 

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + |𝜓0| + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
1

𝑁

‖

𝐶([0,𝑇]𝜏,𝐿2ℎ)
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+|𝜓0| + ‖{
𝜓𝑘 −𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. The proof of Theorem 4.4 is based on the abstract Theorem 4.1, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.21) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula  

𝐵ℎ𝑢ℎ(𝑡, 𝑥) = ∑𝑀−1𝑖=−𝑀+1 𝑢
ℎ(𝑡, 𝑥𝑖)ℎ, 𝑡 ∈ [0, 𝑇].                    (4.25) 

 Third, we study the absolute stable difference scheme for the approximate solution of 

the time dependent SIP (3.53). The discretization of time dependent SIP (3.53) is 

carried out in two stages. In the first stage, we consider the grid functions 𝜑ℎ(𝑥) on 

grid space [0, 𝑙]ℎ .We denote the self-adjoint positive definite difference operator 𝐴ℎ 

defined by the formula  

𝐴ℎ𝜑
ℎ(𝑥) 

= {−
1

ℎ2
(𝑎(𝑥𝑛+1)(𝜑𝑛+1 −𝜑𝑛) − 𝑎(𝑥𝑛)(𝜑𝑛+1 − 𝜑𝑛)) + 𝛿𝜑𝑛}

𝑛=1

𝑀−1

     (4.26) 

 acting in the space of grid functions 𝜑ℎ(𝑥) satisfying the conditions 𝜑0 = 𝑏
𝜑1−𝜑0

𝜏
, 

𝜑𝑀 = −𝑐
𝜑𝑀−𝜑𝑀−1

𝜏
. 

It is well-known that 𝐴ℎ
𝑥  is a self-adjoint positive definite operator in 𝐿2ℎ . 

With the help of 𝐴ℎ
𝑥 , we reach the time dependent SIP  

{
 
 
 

 
 
 
𝑖𝑢𝑡

ℎ(𝑡, 𝑥) + 𝐴ℎ
𝑥𝑢ℎ(𝑡, 𝑥) = 𝑝(𝑡)𝑞ℎ(𝑥) + 𝑓ℎ(𝑡, 𝑥),

𝑥 ∈ [0, 𝑙]ℎ , 0 < 𝑡 < 𝑇,

𝑢ℎ(0, 𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [0, 𝑙]ℎ,

∑𝑀−1𝑖=1 𝑢ℎ(𝑡, 𝑥𝑖)ℎ = 𝜓(𝑡), 0 ≤ 𝑡 ≤ 𝑇.

                   (4.27) 

 In the second stage, we replace time dependent SIP (4.27) with a first order of 

accuracy difference scheme  

{
 
 
 

 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥𝑢𝑘
ℎ(𝑥) = 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥), 𝑓𝑘

ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 , 𝑥),

𝑥 ∈ [0, 𝑙]ℎ , 1 ≤ 𝑘 ≤ 𝑁,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [0, 𝑙]ℎ ,

∑𝑀−1𝑖=1 𝑢𝑘
ℎ(𝑥𝑖)ℎ = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

  (4.28) 

 Theorem 4.5  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of 

difference scheme (4.28) the following stability estimates hold  
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‖{
𝑢𝑘
ℎ−𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁−1

‖
𝐶([0,𝑇]𝜏 ,𝐿2ℎ)

+ ‖{𝑢𝑘
ℎ}
𝑘=0

𝑁
‖
𝐶𝜏(𝑊2ℎ

2 )
+ ‖{𝑝𝑘}𝑘=0

𝑁 ‖𝐶[0,𝑇]𝜏   

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶([0,𝑇]𝜏,𝐿2ℎ)

 

+|𝜓0| + ‖{
𝜓𝑘−𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

].                          (4.29) 

Proof. The proof of Theorem 4.5 is based on the abstract Theorem 3.1, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula  

𝐵ℎ𝑢ℎ(𝑡, 𝑥) = ∑𝑀−1𝑖=1 𝑢ℎ(𝑡, 𝑥𝑖)ℎ, 𝑡 ∈ [0,𝑇].(30) 

 Fourth, we study the absolute stable difference scheme for the approximate solution 

of time dependent SIP (3.55). The discretization of time dependent SIP (3.55) is also 

carried out in two stages. In the first stage, let us define the grid sets 

Ωℎ = {𝑥 = 𝑥𝑟 = (ℎ1𝑟1, . . . , ℎ𝑛𝑟𝑛), 𝑟 = (𝑟1, . . . , 𝑟𝑛), 

  0 ≤ 𝑟𝑗 ≤ 𝑁𝑗, ℎ𝑗𝑁𝑗 = 1, 𝑗 = 1, . . . , 𝑛}, 

Ωℎ = Ωℎ ∩ Ω, 𝑆ℎ = Ωℎ ∩ 𝑆. 

We introduce the Banach spaces 𝐿2ℎ = 𝐿2(Ωℎ) and 𝑊2ℎ
2 = 𝑊2

2(Ωℎ) of the grid 

functions 𝜑ℎ(𝑥) = {𝜑(ℎ1𝑟1, . . . , ℎ𝑛𝑟𝑛)} defined on Ωℎ , equipped with the norms  

‖𝜑ℎ‖𝐿2ℎ = (∑

𝑥∈Ωℎ

|𝜑ℎ(𝑥)|2ℎ1 ⋅⋅⋅ ℎ𝑛)

1/2

 

and 

‖𝜑ℎ‖𝑊2ℎ
= ‖𝜑ℎ‖𝐿2ℎ + (∑

𝑥∈Ωℎ

∑

𝑛

𝑟=1

|(𝜑ℎ)𝑥𝑟𝑥𝑟,𝑗𝑟|
2
ℎ1 ⋅⋅⋅ ℎ𝑛)

1/2

 

respectively. To the differential operator 𝐴 generated by problem (3.55), we assign 

the difference operator 𝐴ℎ
𝑥  by the formula 

𝐴ℎ
𝑥𝑢ℎ(𝑥) = −∑𝑛𝑟=1 (𝑎𝑟(𝑥)𝑢𝑥𝑟

ℎ )
𝑥𝑟,𝑗𝑟

+ 𝛿𝑢ℎ(𝑥)                (4.31) 

 acting in the space of grid functions 𝑢ℎ(𝑥), satisfying the conditions 𝑢ℎ(𝑥) = 0 for 

all 𝑥 ∈ 𝑆ℎ . It is known that 𝐴ℎ
𝑥  is a self-adjoint positive definite operator in 𝐿2(Ωℎ). 

With the help of 𝐴ℎ
𝑥 , we reach the time dependent SIP  
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{
 
 
 

 
 
 
𝑖𝑢𝑡

ℎ(𝑡, 𝑥) + 𝐴ℎ
𝑥𝑢ℎ(𝑡, 𝑥) = 𝑝(𝑡)𝑞ℎ(𝑥) + 𝑓ℎ(𝑡, 𝑥),

𝑥 ∈ Ωℎ , 0 < 𝑡 < 𝑇,

𝑢ℎ(0, 𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ Ωℎ ,

∑
𝑥∈Ωℎ

𝑢ℎ(𝑡, 𝑥)ℎ1 ⋅⋅⋅ ℎ𝑛 = 𝜓(𝑡), 0 ≤ 𝑡 ≤ 𝑇.

                     (4.32)        

 In the second stage, we replace time dependent SIP (3.55) with a first order of 

accuracy difference scheme  

{
 
 
 

 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥𝑢𝑘
ℎ(𝑥) = 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥), 𝑓𝑘

ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 , 𝑥),

𝑥 ∈ Ωℎ , 1 ≤ 𝑘 ≤ 𝑁,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ Ωℎ ,

∑
𝑥∈Ωℎ

𝑢𝑘
ℎ(𝑥)ℎ1 ⋅⋅⋅ ℎ𝑛 = 𝜓𝑘 , 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

  (4.33) 

 Theorem 4.6  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of 

difference scheme (4.33) the following stability estimates hold  

 ‖{
𝑢𝑘
ℎ−𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁

‖
𝐶([0,𝑇]𝜏 ,𝐿2ℎ)

+ ‖{𝑢𝑘
ℎ}
𝑘=0

𝑁
‖
ℂ𝜏(𝑊2ℎ

2 )
+ ‖{𝑝𝑘}𝑘=1

𝑁 ‖𝐶[0,𝑇]𝜏  

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
1

𝑁

‖

𝐶([0,𝑇]𝜏,𝐿2ℎ)

 

            +|𝜓0| + ‖{
𝜓𝑘−𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

].                       (4.34) 

Proof. The proof of Theorem 4.6 is based on the abstract Theorem 3.1, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.31) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2(Ωℎ) defined by the formula 

𝐵ℎ𝑢ℎ(𝑡, 𝑥) = ∑𝑥∈Ωℎ 𝑢
ℎ(𝑡, 𝑥)ℎ1 ⋅⋅⋅ ℎ𝑛 , 𝑡 ∈ [0, 𝑇]                     (4.35) 

and on the following theorem on coercivity inequality for the solution of the 

elliptic problem in 𝐿2(Ωℎ). 

Theorem 4.7 For the solutions to the elliptic difference problem 

                          {
𝐴ℎ
𝑥𝑢ℎ(𝑥) = 𝑤ℎ(𝑥), 𝑥 ∈ Ωℎ ,

𝑢ℎ(𝑥) = 0, 𝑥 ∈ 𝑆ℎ

 

the following coercivity inequality holds (see, Sobolevskii,1975): 
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∑

𝑛

𝑟=1

‖𝑢𝑥𝑟𝑥𝑟,𝑗𝑟
ℎ ‖

𝐿2(Ωℎ)
≤ 𝑀‖𝑤ℎ‖

𝐿2(Ωℎ)
. 

Fifth, we study the absolute stable difference scheme for the approximate solution of 

time dependent SIP (3.62). The discretization of time dependent SIP (3.62) is also 

carried out in two stages. In the first stage, let us define the difference operator 𝐴ℎ
𝑥  by 

the formula 

𝐴ℎ
𝑥𝑢ℎ(𝑥) = −∑𝑛𝑟=1 (𝑎𝑟(𝑥)𝑢𝑥𝑟

ℎ )
𝑥𝑟,𝑗𝑟

+ 𝛿𝑢ℎ(𝑥)                     (4.36) 

acting in the space of grid functions 𝑢ℎ(𝑥), satisfying the conditions 

𝐷ℎ𝑢ℎ(𝑥) = 0 for all 𝑥 ∈ 𝑆ℎ . It is known that 𝐴ℎ
𝑥  is a self-adjoint positive definite 

operator in 𝐿2(Ωℎ). With the help of 𝐴ℎ
𝑥 , we also reach the time dependent SIP (4.32). 

Therefore, in the second stage we get difference scheme (4.33) 

Theorem 4.8  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of 

difference scheme (4.33) the stability estimates (4.34) hold. 

Proof. The proof of Theorem 4.8 is based on the abstract Theorem 4.1, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.36) and on 

uniformly boundedness of a linear functional 𝐵ℎ in 𝐿2(Ωℎ) defined by the formula 

(4.35) and on the following theorem on coercivity inequality for the solution of the 

elliptic problem in 𝐿2(Ωℎ). 

Theorem 4.9 For the solutions to the elliptic difference problem 

{
𝐴ℎ
𝑥𝑢ℎ(𝑥) = 𝑤ℎ(𝑥), 𝑥 ∈ Ωℎ ,

𝐷ℎ𝑢ℎ(𝑥) = 0, 𝑥 ∈ 𝑆ℎ

 

the following coercivity inequality holds (see, Sobolevskii,1975): 

∑

𝑛

𝑟=1

‖𝑢𝑥𝑟𝑥𝑟,𝑗𝑟
ℎ ‖

𝐿2(Ωℎ)
≤ 𝑀‖𝑤ℎ‖

𝐿2(Ωℎ)
. 

 

4.4 The Second Order of Accuracy Difference Schemes  

We are interested in studying the stability of a high order of accuracy single 

step absolute stable difference schemes of approximate solutions of the time 

dependent SIP (3.50). In this section we consider the second order of accuracy r − 

modified Crank-Nicolson difference schemes generated by  
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{
 
 
 
 

 
 
 
 𝑖

𝑢𝑘−𝑢𝑘−1

𝜏
+ 𝐴𝑢𝑘 = 𝑝𝑘𝑞 + 𝑓𝑘 , 𝑓𝑘 = 𝑓 (𝑡𝑘 −

𝜏

2
) , 1 ≤ 𝑘 ≤ 𝑟,

𝑖
𝑢𝑘−𝑢𝑘−1

𝜏
+ 𝐴

𝑢𝑘+𝑢𝑘−1

2
= 𝑝𝑘𝑞 + 𝑓𝑘 , 𝑓𝑘 = 𝑓 (𝑡𝑘 −

𝜏

2
) , 𝑟 + 1 ≤ 𝑘 ≤ 𝑁,

𝑢0 = 𝜑,

𝐵𝑢𝑘 = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘),0 ≤ 𝑘 ≤ 𝑁

  (4.37) 

 for the approximate solution of the time dependent SIP (3.50). Note that for 𝑟 = 0, 

we have the Crank-Nicolson difference scheme 

{
 
 

 
 𝑖
𝑢𝑘 − 𝑢𝑘−1

𝜏
+ 𝐴

𝑢𝑘 + 𝑢𝑘−1
2

= 𝑝𝑘𝑞 + 𝑓𝑘 , 𝑓𝑘 = 𝑓 (𝑡𝑘 −
𝜏

2
) , 1 ≤ 𝑘 ≤ 𝑁,

𝑢0 = 𝜑,

𝐵𝑢𝑘 = 𝜓𝑘 , 𝜓𝑘 = 𝜓(𝑡𝑘),0 ≤ 𝑘 ≤ 𝑁

 

for the approximate solution of the time dependent SIP (3.50). 

Now, let us state the stability result for the solution of difference schemes 

(4.37).  

Theorem 4.10 Assume that 𝜑 ∈ 𝐷(𝐴). Then, the solution of difference schemes 

(4.37) satisfy the following stability estimates 

‖{
𝑢𝑘 − 𝑢𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{𝑝𝑘}𝑘=1
𝑁 ‖𝐶[0,𝑇]𝜏 

+max
0≤𝑘≤𝑟

‖𝐴𝑢𝑘‖𝐻 + max
𝑟+1≤𝑘≤𝑁

‖𝐴
𝑢𝑘 + 𝑢𝑘−1

2
‖
𝐻

 

≤ 𝑀(𝛿, 𝑞)[‖𝐴𝜑‖𝐻 + |𝜓0| + ‖𝑓1‖𝐻 

+‖{
𝑓𝑘−𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{
𝜓𝑘−𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

].             (4.38) 

Proof.  Suppose that grid function{𝑤𝑘}𝑘=0
𝑁  be the solution of the difference scheme  

{
 
 

 
 
𝑖
𝑤𝑘−𝑤𝑘−1

𝜏
+ 𝐴𝑤𝑘 = 𝑖𝜇𝑘𝐴𝑞 + 𝑓𝑘 , 1 ≤ 𝑘 ≤ 𝑟,

𝑖
𝑤𝑘−𝑤𝑘−1

𝜏
+ 𝐴

𝑤𝑘+𝑤𝑘−1

2
= 𝑖𝜇𝑘𝐴𝑞 + 𝑓𝑘 , 𝑟 + 1 ≤ 𝑘 ≤ 𝑁,

𝑤0 = 𝜑

              (4.39) 

 and  {𝜇𝑘}𝑘=1
𝑁  be the grid function determining by formula 

𝜇𝑘 = ∑
𝑘
𝑗=1 𝑝𝑗𝜏, 1 ≤ 𝑘 ≤ 𝑁, 𝜇0 = 0.                     (4.40) 

 Then, 

𝑢𝑘 = 𝑤𝑘 − 𝑖𝜇𝑘𝑞, 0 ≤ 𝑘 ≤ 𝑁.                           (4.41) 
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 Using the condition 𝐵𝑢𝑘 = 𝜓𝑘 and formula (4.41), we can get 

𝜇𝑘 =
𝑖

𝐵𝑞
(𝜓𝑘 − 𝐵[𝑤𝑘]), 0 ≤ 𝑘 ≤ 𝑁.                    (4.42) 

 Since  

𝑝𝑘 =
𝜇𝑘−𝜇𝑘−1

𝜏
, 1 ≤ 𝑘 ≤ 𝑁,                               (4.43) 

 we get 

𝑝𝑘 =
𝑖

𝐵𝑞
(
𝜓𝑘−𝜓𝑘−1

𝜏
− 𝐵[

𝑤𝑘−𝑤𝑘−1

𝜏
]) , 1 ≤ 𝑘 ≤ 𝑁.                   (4.44) 

 Applying formula (4.44) and 𝐵𝑞 ≠ 0, we obtain the estimate  

|𝑝𝑘| ≤ 𝑀1(𝛿, 𝑞) [‖{
𝜓𝑘−𝜓𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

+ ‖
𝑤𝑘−𝑤𝑘−1

𝜏
‖
𝐻
]            (4.45) 

 for any 𝑘, 1 ≤ 𝑘 ≤ 𝑁 and 

‖{𝑝𝑘}𝑘=1
𝑁 ‖𝐶[0,𝑇]𝜏 ≤ 𝑀1(𝛿, 𝜎) [‖{

𝜓𝑘 −𝜓𝑘−1
𝜏

}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

 

        +‖{
𝑤𝑘−𝑤𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶𝜏(𝐻))

].                             (4.46) 

 Now, applying formulas (4.41) and (4.43), we can write 

 

𝑢𝑘 − 𝑢𝑘−1
𝜏

=
𝑤𝑘 − 𝑤𝑘−1

𝜏
− 𝑖𝑝𝑘𝑞, 1 ≤ 𝑘 ≤ 𝑁. 

Then from the triangle inequality and this formula it follows  

‖{
𝑢𝑘 − 𝑢𝑘−1

𝜏
}
𝑘=+1

𝑁

‖
𝐶𝜏(𝐻)

 

≤ ‖{
𝑤𝑘−𝑤𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{𝑝𝑘}1
𝑁‖𝐶[0,𝑇]𝜏‖𝑞‖𝐻,              (4.47) 

Then, the proof of estimate (4.38) is based on equation (4.39), estimates (4.46), (4.47) 

and on the following result of stability estimate. 

Theorem 4.11  Suppose that the assumption of Theorem 4.1 holds. The solution of 

difference scheme (4.39) holds the stability estimate  

‖{
𝑤𝑘 − 𝑤𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶𝜏(𝐻)

≤ 𝑀(𝛿, 𝑞)[‖𝐴𝜑‖𝐻 + |𝜓0| + ‖𝑓1‖𝐻 

   +‖{
𝑓𝑘−𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{
𝜓𝑘−𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

].               (4.48) 
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Proof. The difference scheme (4.39) is equivalent to the system of difference 

equations  

𝑤𝑘 =

{
  
 

  
 𝐶

𝑘𝜑 − 𝑖 ∑𝑘𝑗=1 𝐶
𝑘−𝑗+1 {

𝑖

𝐵𝑞
(𝜓𝑗 − 𝐵[𝑤𝑗])𝐴𝑞 + 𝑓𝑗} 𝜏, 1 ≤ 𝑘 ≤ 𝑟,

𝐷𝑘−𝑟 {𝐶𝑟𝜑 − 𝑖 ∑𝑟𝑗=1 𝐶
𝑟−𝑗+1 {

𝑖

𝐵𝑞
(𝜓𝑗 − 𝐵[𝑤𝑗])𝐴𝑞 + 𝑓𝑗} 𝜏}

−𝑖 ∑𝑘𝑗=𝑟+1 𝐷
𝑘−𝑗+1 {

𝑖

𝐵𝑞
(𝜓𝑗 − 𝐵[𝑤𝑗])𝐴𝑞 + 𝑓𝑗} 𝜏, 𝑟 + 1 ≤ 𝑘 ≤ 𝑁.

     (4.49) 

 Here 𝐶 = (𝐼 −
𝚤𝜏𝐴

2
)
−1

, 𝐷 = (𝐼 +
𝚤𝜏𝐴

2
) (𝐼 −

𝚤𝜏𝐴

2
)
−1

. Applying formula (4.49), we 

obtain  

𝑤𝑘−𝑤𝑘−1

𝜏
=

{
 

 𝑖𝐶𝑘𝐴𝜑 − 𝑖𝐶𝑘 {
𝑖

𝐵𝑞
(𝜓1 − 𝐵[𝑤1])𝐴𝑞 + 𝑓1} − 𝑖 ∑

𝑘
𝑗=2 𝐶

𝑘−𝑗+1

× {
𝑖

𝐵𝑞
(𝜓𝑗 −𝜓𝑗−1 − 𝐵[𝑤𝑗 −𝑤𝑗−1])𝐴𝑞 + 𝑓𝑗 − 𝑓𝑗−1} } , 1 ≤ 𝑘 ≤ 𝑟,

(4.50) 

 

for any 𝑘, 1 ≤ 𝑘 ≤ 𝑁. Applying formula (4.50), estimate 

∥ 𝐶 ∥𝐻→𝐻≤ 1, ∥ 𝐷 ∥𝐻→𝐻≤ 1                  (4.51) 

 and 𝐵𝑞 ≠ 0, we obtain the estimate 

‖
𝑤𝑘 − 𝑤𝑘−1

𝜏
‖
𝐻
≤ 𝑀1(𝛿, 𝑞)∑

𝑘

𝑗=2

‖𝑤𝑗 −𝑤𝑗−1‖𝐻 

+𝑀(𝛿, 𝑞) {|𝜓0| + ‖{
𝜓𝑘 − 𝜓𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

 

+‖𝑓1‖𝐻 + ‖𝐴𝜑‖𝐻 + ‖{
𝑓𝑘 − 𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

} 

for 1 ≤ 𝑘 ≤ 𝑁. Then, applying the discrete analogy of integral inequality, we 

conclude that the following stability estimate  

‖
𝑤𝑘 −𝑤𝑘−1

𝜏
‖
𝐻
≤ 𝑀(𝛿, 𝑞) {|𝜓0| + ‖{

𝜓𝑘 −𝜓𝑘−1
𝜏

}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

 

+‖𝑓1‖𝐻 + ‖𝐴𝜑‖𝐻 + ‖{
𝑓𝑘−𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

} 𝑒
𝑀1(𝛿,𝑞)(𝑘+𝑁−1)𝜏

1−𝜏𝑀1(𝛿,𝑞)            (4.52) 

is satisfied for the solution of difference scheme (39) for 1 ≤ 𝑘 ≤ 𝑁.  From estimate 

(4.52) it follows estimate (4.48). Theorem 4.11 is established. 

Now, we consider the second order of accuracy difference scheme generated 

by 𝐴 and 𝐴2  
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{
 
 
 
 

 
 
 
 𝑖

𝑢𝑘−𝑢𝑘−1

𝜏
+ 𝐴(𝐼 +

𝑖𝜏𝐴

2
) 𝑢𝑘 = (𝐼 +

𝑖𝜏𝐴

2
) 𝑝𝑘𝑞 + (𝐼 +

𝑖𝜏𝐴

2
)𝑓𝑘 ,   

 𝑓𝑘 = 𝑓 (𝑡𝑘 −
𝜏

2
) , 1 ≤ 𝑘 ≤ 𝑁,

𝑢0 = 𝜑,

𝐵𝑢𝑘 = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁

          (4.53) 

 for the approximate solution of the time dependent SIP (4.1). 

Let us state the stability result for the solution of difference schemes ( 4.53). 

Theorem 4.12 Assume that 𝜑 ∈ 𝐷(𝐴). Then, the solution of difference schemes 

(4.53) satisfies the following stability estimates 

           ‖{
𝑢𝑘−𝑢𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{𝑝𝑘}𝑘=1
𝑁 ‖𝐶[0,𝑇]𝜏                  (4.54) 

+‖{𝐴𝑢𝑘}𝑘=1
𝑁 ‖𝐶𝜏(𝐻) ≤ 𝑀(𝛿, 𝑞)[‖𝐴𝜑‖𝐻 + |𝜓0| + ‖𝑓1‖𝐻 

+‖{
𝑓𝑘 − 𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{
𝜓𝑘 − 𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. Suppose that grid function{𝑤𝑘}𝑘=0
𝑁  be the solution of the difference scheme  

{
 
 

 
 𝑖

𝑤𝑘−𝑤𝑘−1

𝜏
+ 𝐴(𝐼 +

𝑖𝜏𝐴

2
)𝑤𝑘 = 𝑖 (𝐼 +

𝑖𝜏𝐴

2
) 𝜇𝑘𝐴𝑞

+(𝐼 +
𝑖𝜏𝐴

2
) 𝑓𝑘 , 1 ≤ 𝑘 ≤ 𝑁,

𝑤0 = 𝜑

                      (4.55) 

 and  {𝜇𝑘}𝑘=1
𝑁  be the grid function determining by formula 

𝜇𝑘 = ∑
𝑘
𝑗=1 𝑝𝑗𝜏, 1 ≤ 𝑘 ≤ 𝑁, 𝜇0 = 0.               (4.56) 

 Then, 

𝑢𝑘 = 𝑤𝑘 − 𝑖𝜇𝑘𝑞, 0 ≤ 𝑘 ≤ 𝑁.                (4.57) 

 Using the condition 𝐵𝑢𝑘 = 𝜓𝑘 and formula (4.57), we can get 

𝜇𝑘 =
𝑖

𝐵𝑞
(𝜓𝑘 − 𝐵[𝑤𝑘]), 0 ≤ 𝑘 ≤ 𝑁.                (4.58) 

 Since  

𝑝𝑘 =
𝜇𝑘−𝜇𝑘−1

𝜏
, 1 ≤ 𝑘 ≤ 𝑁,              (4.59) 

 we get 

𝑝𝑘 =
𝑖

𝐵𝑞
(
𝜓𝑘−𝜓𝑘−1

𝜏
− 𝐵[

𝑤𝑘−𝑤𝑘−1

𝜏
]) , 1 ≤ 𝑘 ≤ 𝑁.               (4.60) 

Applying formula (4.60) and 𝐵𝑞 ≠ 0, we obtain the estimate 



   71 
 

 
 

|𝑝𝑘| ≤ 𝑀1(𝛿, 𝑞) [‖{
𝜓𝑘−𝜓𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

+ ‖
𝑤𝑘−𝑤𝑘−1

𝜏
‖
𝐻
]            (4.61) 

for any 𝑘, 1 ≤ 𝑘 ≤ 𝑁 and 

‖{𝑝𝑘}𝑘=1
𝑁 ‖𝐶[0,𝑇]𝜏 ≤ 𝑀1(𝛿, 𝜎) [‖{

𝜓𝑘 −𝜓𝑘−1
𝜏

}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

 

    +‖{
𝑤𝑘−𝑤𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶𝜏(𝐻)

].                          (4.62) 

Now, applying formulas (4.57) and (4.59), we can write 

𝑢𝑘 − 𝑢𝑘−1
𝜏

=
𝑤𝑘 − 𝑤𝑘−1

𝜏
− 𝑖𝑝𝑘𝑞, 1 ≤ 𝑘 ≤ 𝑁. 

Then from the triangle inequality and this formula it follows  

‖{
𝑢𝑘 − 𝑢𝑘−1

𝜏
}
𝑘=+1

𝑁

‖
𝐶𝜏(𝐻)

 

≤ ‖{
𝑤𝑘−𝑤𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{𝑝𝑘}1
𝑁‖𝐶[0,𝑇]𝜏‖𝑞‖𝐻,              (4.63) 

Then, the proof of estimate (4.54) is based on equation (4.55), estimates (4.62), (4.63) 

and on the following result of stability estimate. 

Theorem 4.13  Suppose that the assumption of Theorem 4.1 holds. The solution of 

the difference scheme (4.55) holds the stability estimate 

‖{
𝑤𝑘 − 𝑤𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶𝜏(𝐻)

≤ 𝑀(𝛿, 𝑞)[‖𝐴𝜑‖𝐻 + |𝜓0| + ‖𝑓1‖𝐻 

+‖{
𝑓𝑘−𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

+ ‖{
𝜓𝑘−𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

].                (4.63) 

Proof. The difference scheme (4.55) is equivalent to the system of difference 

equations 

𝑤𝑘 =

{
 
 
 
 

 
 
 
 𝐶

𝑘𝜑 − 𝑖 ∑𝑘𝑗=1 𝐶
𝑘−𝑗+1 {

𝑖

𝐵𝑞
(𝜓𝑗 − 𝐵[𝑤𝑗])𝐴𝑞 + 𝑓𝑗} 𝜏, 1 ≤ 𝑘 ≤ 𝑟,

𝐷𝑘−𝑟 {𝐶𝑟𝜑 − 𝑖 ∑𝑟𝑗=1 𝐶
𝑟−𝑗+1 {

𝑖

𝐵𝑞
(𝜓𝑗 − 𝐵[𝑤𝑗])𝐴𝑞 + 𝑓𝑗} 𝜏}

−𝑖 ∑𝑘𝑗=𝑟+1 𝐷
𝑘−𝑗+1 {

𝑖

𝐵𝑞
(𝜓𝑗 − 𝐵[𝑤𝑗])𝐴𝑞 + 𝑓𝑗} 𝜏,

𝑟 + 1 ≤ 𝑘 ≤ 𝑁.

     (4.65) 

Here 𝐶 = (𝐼 −
𝚤𝜏𝐴

2
)
−1

, 𝐷 = (𝐼 +
𝚤𝜏𝐴

2
) (𝐼 −

𝚤𝜏𝐴

2
)
−1

. Applying formula (4.49), 

we obtain 
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𝑤𝑘−𝑤𝑘−1

𝜏
=

{
  
 

  
 𝑖𝐶

𝑘𝐴𝜑 − 𝑖𝐶𝑘 {
𝑖

𝐵𝑞
(𝜓1 − 𝐵[𝑤1])𝐴𝑞 + 𝑓1} − 𝑖 ∑

𝑘
𝑗=2 𝐶

𝑘−𝑗+1

× {
𝑖

𝐵𝑞
(𝜓𝑗 −𝜓𝑗−1 − 𝐵[𝑤𝑗 −𝑤𝑗−1])𝐴𝑞 + 𝑓𝑗 − 𝑓𝑗−1}} ,

1 ≤ 𝑘 ≤ 𝑟,

(4.66) 

for any 𝑘, 1 ≤ 𝑘 ≤ 𝑁. Applying formula (4.66), estimate 

∥ 𝐶 ∥𝐻→𝐻≤ 1, ∥ 𝐵 ∥𝐻→𝐻≤ 1                   (4.67) 

and 𝐵𝑞 ≠ 0, we obtain the estimate 

‖
𝑤𝑘 − 𝑤𝑘−1

𝜏
‖
𝐻
≤ 𝑀1(𝛿, 𝑞)∑

𝑘

𝑗=2

‖𝑤𝑗 −𝑤𝑗−1‖ 

+𝑀(𝛿, 𝑞) {|𝜓0| + ‖{
𝜓𝑘 − 𝜓𝑘−1

𝜏
}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

 

+‖𝑓1‖𝐻 + ‖𝐴𝜑‖𝐻 + ‖{
𝑓𝑘 − 𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

} 

for 1 ≤ 𝑘 ≤ 𝑁. Then, applying the discrete analogy of integral inequality, we 

conclude that the following stability estimate 

‖
𝑤𝑘 −𝑤𝑘−1

𝜏
‖
𝐻
≤ 𝑀(𝛿, 𝑞) {|𝜓0| + ‖{

𝜓𝑘 −𝜓𝑘−1
𝜏

}
𝑘=1

𝑁

‖
𝐶[0,𝑇]𝜏

 

+‖𝑓1‖𝐻 + ‖𝐴𝜑‖ℍ + ‖{
𝑓𝑘−𝑓𝑘−1

𝜏
}
𝑘=2

𝑁

‖
𝐶𝜏(𝐻)

} 𝑒
𝑀1(𝛿,𝑞)(𝑘+𝑁−1)𝜏

1−𝜏𝑀1(𝛿,𝑞)         (4.68) 

is satisfied for the solution of difference scheme (4.55) for 1 ≤ 𝑘 ≤ 𝑁. From estimate 

(4.68) it follows estimate (4.64). Theorem 4.13 is established. 

Now, consider the applications of the main Theorems 4.10 and 4.12. First, we 

study the absolute stable difference scheme for the approximate solution of the time 

dependent SIP (3.50). The discretization of time dependent SIP (3.50) is carried out in 

two stages. In the first stage, we get the time dependent SIP (4.18). In the second stage, 

we replace time dependent SIP (4.18) with a second order of accuracy difference 

schemes  
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{
 
 
 
 
 
 

 
 
 
 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥𝑢𝑘
ℎ(𝑥) = 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥),

𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥),1 ≤ 𝑘 ≤ 𝑟, 𝑥 ∈ [0, 𝑙]ℎ ,

𝑖
𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥 𝑢𝑘
ℎ(𝑥)+𝑢𝑘−1

ℎ (𝑥)

2
= 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥),

𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥), 𝑟 + 1 ≤ 𝑘 ≤ 𝑁, 𝑥 ∈ [0, 𝑙]ℎ ,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [0, 𝑙]ℎ ,

∑𝑀−1𝑖=1 𝑢𝑘
ℎ(𝑥𝑖)ℎ = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

               (4.69) 

and 

{
 
 
 
 

 
 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥 (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
) 𝑢𝑘

ℎ(𝑥) = 𝑝𝑘 (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
) 𝑞ℎ(𝑥)

+ (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
)𝑓𝑘

ℎ(𝑥), 𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥), 𝑥 ∈ [0, 𝑙]ℎ , 1 ≤ 𝑘 ≤ 𝑁,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [0, 𝑙]ℎ ,

∑𝑀−1𝑖=1 𝑢𝑘
ℎ(𝑥𝑖)ℎ = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

  (4.70) 

Theorem 4.14  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of the 

difference scheme (4.69), the following stability estimates hold 

‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁−1

‖

𝐶𝜏(𝐿2ℎ)

+ ‖{𝑝𝑘}𝑘=0
𝑁 ‖𝐶[0,𝑇]𝜏 

+max
0≤𝑘≤𝑟

‖𝑢𝑘
ℎ‖

𝑊2ℎ
2 + max

𝑟+1≤𝑘≤𝑁
‖
𝑢𝑘
ℎ + 𝑢𝑘−1

ℎ

2
‖
𝑊2ℎ
2

 

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶𝜏(𝐿2ℎ)

 

+|𝜓0| + ‖{
𝜓𝑘 −𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. The proof of Theorem 4.14 is based on the abstract Theorem 4.10, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula (4.21). 

Theorem 4.15  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of the 

difference scheme (4.70), the following stability estimates hold 



   74 
 

 
 

‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁

‖

𝐶𝜏(𝐿2ℎ)

+ ‖{𝑢𝑘
ℎ}
𝑘=1

𝑁
‖
𝐶𝜏(𝑊2ℎ

2 )
+ ‖{𝑝𝑘}𝑘=0

𝑁 ‖𝐶[0,𝑇]𝜏  

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶𝜏(𝐿2ℎ)

 

+|𝜓0| + ‖{
𝜓𝑘 −𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. The proof of Theorem 4.15 is based on the abstract Theorem 4.10, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula (4.21). 

        Second, we study the absolute stable difference scheme for the approximate 

solution of time dependent SIP (3.53). The discretization of time dependent SIP (3.53) 

is carried out in two stages. In the first stage, we get the time dependent SIP (4.23). In 

the second stage, we replace time dependent SIP (4.23) with second order of accuracy 

difference schemes 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥𝑢𝑘
ℎ(𝑥) = 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥),

𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥),1 ≤ 𝑘 ≤ 𝑟, 𝑥 ∈ [−𝑙, 𝑙]ℎ ,

𝑖
𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥 𝑢𝑘
ℎ(𝑥)+𝑢𝑘−1

ℎ (𝑥)

2
= 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥),

𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥), 𝑟 + 1 ≤ 𝑘 ≤ 𝑁, 𝑥 ∈ [−𝑙, 𝑙]ℎ ,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [−𝑙, 𝑙]ℎ ,

∑𝑀−1𝑖=1 𝑢𝑘
ℎ(𝑥𝑖)ℎ = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

               (4.71) 

and 

{
 
 
 
 

 
 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥 (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
) 𝑢𝑘

ℎ(𝑥) = 𝑝𝑘 (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
) 𝑞ℎ(𝑥)

+ (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
)𝑓𝑘

ℎ(𝑥), 𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥), 𝑥 ∈ [−𝑙, 𝑙]ℎ , 1 ≤ 𝑘 ≤ 𝑁,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [−𝑙, 𝑙]ℎ ,

∑𝑀−1𝑖=1 𝑢𝑘
ℎ(𝑥𝑖)ℎ = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

 (4.72) 

Theorem 4.16  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of the 

difference scheme (4.71) the following stability estimates hold 
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‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁−1

‖

𝐶𝜏(𝐿2ℎ)

+ ‖{𝑝𝑘}𝑘=0
𝑁 ‖𝐶[0,𝑇]𝜏 

+max
0≤𝑘≤𝑟

‖𝑢𝑘
ℎ‖

𝑊2ℎ
2 + max

𝑟+1≤𝑘≤𝑁
‖
𝑢𝑘
ℎ + 𝑢𝑘−1

ℎ

2
‖
𝑊2ℎ
2

 

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶𝜏(𝐿2ℎ)

 

+|𝜓0| + ‖{
𝜓𝑘 −𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. The proof of Theorem 4.16 is based on the abstract Theorem 4.10, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula (4.22). 

Theorem 4.17  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of the 

difference scheme (4.72), the following stability estimates hold 

‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁

‖

𝐶𝜏(𝐿2ℎ)

+ ‖{𝑢𝑘
ℎ}
𝑘=1

𝑁
‖
𝐶𝜏(𝑊2ℎ

2 )
+ ‖{𝑝𝑘}𝑘=0

𝑁 ‖𝐶[0,𝑇]𝜏  

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶𝜏(𝐿2ℎ)

 

+|𝜓0| + ‖{
𝜓𝑘 −𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. The proof of Theorem 4.17 is based on the abstract Theorem 4.10, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula (4.25). 

Third, we study the absolute stable difference scheme for the approximate 

solution of the time dependent SIP (3.55). The discretization of time dependent SIP 

(3.55) is carried out in two stages. In the first stage, we get the time dependent SIP 

(4.27). In the second stage, we replace time dependent SIP (4.27) with second order of 

accuracy difference schemes 



   76 
 

 
 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥𝑢𝑘
ℎ(𝑥) = 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥),

𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥),1 ≤ 𝑘 ≤ 𝑟, 𝑥 ∈ [0, 𝑙]ℎ ,

𝑖
𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥 𝑢𝑘
ℎ(𝑥)+𝑢𝑘−1

ℎ (𝑥)

2
= 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥),

𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥), 𝑟 + 1 ≤ 𝑘 ≤ 𝑁, 𝑥 ∈ [0, 𝑙]ℎ ,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [0, 𝑙]ℎ ,

∑𝑀−1𝑖=1 𝑢𝑘
ℎ(𝑥𝑖)ℎ = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

,              (4.73) 

and 

{
 
 
 
 

 
 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥 (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
) 𝑢𝑘

ℎ(𝑥) = 𝑝𝑘 (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
) 𝑞ℎ(𝑥)

+ (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
)𝑓𝑘

ℎ(𝑥), 𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥), 𝑥 ∈ [0, 𝑙]ℎ , 1 ≤ 𝑘 ≤ 𝑁,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [0, 𝑙]ℎ ,

∑𝑀−1𝑖=1 𝑢𝑘
ℎ(𝑥𝑖)ℎ = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

  (4.74) 

Theorem 4.18  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of the 

difference scheme (4.73), the following stability estimates hold 

‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁−1

‖

𝐶𝜏(𝐿2ℎ)

+ ‖{𝑝𝑘}𝑘=0
𝑁 ‖𝐶[0,𝑇]𝜏 

+max
0≤𝑘≤𝑟

‖𝑢𝑘
ℎ‖

𝑊2ℎ
2 + max

𝑟+1≤𝑘≤𝑁
‖
𝑢𝑘
ℎ + 𝑢𝑘−1

ℎ

2
‖
𝑊2ℎ
2

 

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶𝜏(𝐿2ℎ)

 

+|𝜓0| + ‖{
𝜓𝑘 −𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. The proof of Theorem 4.18 is based on the abstract Theorem 4.10, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula (4.30). 

Theorem 4.19  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of the 

difference scheme (4.74), the following stability estimates hold 



   77 
 

 
 

‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁

‖

𝐶𝜏(𝐿2ℎ)

+ ‖{𝑢𝑘
ℎ}
𝑘=1

𝑁
‖
𝐶𝜏(𝑊2ℎ

2 )
+ ‖{𝑝𝑘}𝑘=0

𝑁 ‖𝐶[0,𝑇]𝜏  

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶𝜏(𝐿2ℎ)

 

+|𝜓0| + ‖{
𝜓𝑘 −𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. The proof of Theorem 4.19 is based on the abstract Theorem 4.10, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula (4.30). 

Fourth, we study the absolute stable difference schemes for the approximate 

solution of the time dependent SIP (3.57). The discretization of the time dependent SIP 

(3.57) is carried out in two stages. In the first stage, we get the time dependent SIP 

(4.32). In the second stage, we replace time dependent SIP (4.32) with the second 

order of accuracy difference schemes 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥𝑢𝑘
ℎ(𝑥) = 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥),

𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥),1 ≤ 𝑘 ≤ 𝑟, 𝑥 ∈ Ωℎ ,

𝑖
𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥 𝑢𝑘
ℎ(𝑥)+𝑢𝑘−1

ℎ (𝑥)

2
= 𝑝𝑘𝑞

ℎ(𝑥) + 𝑓𝑘
ℎ(𝑥),

𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥), 𝑟 + 1 ≤ 𝑘 ≤ 𝑁, 𝑥 ∈ Ωℎ ,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ Ωℎ ,

∑𝑀−1𝑖=1 𝑢𝑘
ℎ(𝑥𝑖)ℎ = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

               (4.75) 

and 

{
 
 
 
 

 
 
 
 𝑖

𝑢𝑘
ℎ(𝑥)−𝑢𝑘−1

ℎ (𝑥)

𝜏
+ 𝐴ℎ

𝑥 (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
) 𝑢𝑘

ℎ(𝑥) = 𝑝𝑘 (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
) 𝑞ℎ(𝑥)

+ (𝐼 +
𝑖𝜏𝐴ℎ

𝑥

2
)𝑓𝑘

ℎ(𝑥), 𝑓𝑘
ℎ(𝑥) = 𝑓ℎ(𝑡𝑘 −

𝜏

2
, 𝑥), 𝑥 ∈ [0, 𝑙]ℎ , 1 ≤ 𝑘 ≤ 𝑁,

𝑢0
ℎ(𝑥) = 𝜑ℎ(𝑥), 𝑥 ∈ [0, 𝑙]ℎ ,

∑𝑀−1𝑖=1 𝑢𝑘
ℎ(𝑥𝑖)ℎ = 𝜓𝑘, 𝜓𝑘 = 𝜓(𝑡𝑘), 0 ≤ 𝑘 ≤ 𝑁.

    (76) 

 



   78 
 

 
 

Theorem 4.20  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of the 

difference scheme (4.75), the following stability estimates hold 

‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁−1

‖

𝐶𝜏(𝐿2ℎ)

+ ‖{𝑝𝑘}𝑘=0
𝑁 ‖𝐶[0,𝑇]𝜏 

+max
0≤𝑘≤𝑟

‖𝑢𝑘
ℎ‖

𝑊2ℎ
2 + max

𝑟+1≤𝑘≤𝑁
‖
𝑢𝑘
ℎ + 𝑢𝑘−1

ℎ

2
‖
𝑊2ℎ
2

 

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶𝜏(𝐿2ℎ)

 

+|𝜓0| + ‖{
𝜓𝑘 −𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. The proof of Theorem 4.20 is based on the abstract Theorem 4.10, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula (4.35) 

and on the following Theorem 4.7 on coercivity inequality for the solution of the 

elliptic problem in 𝐿2(Ωℎ). 

Theorem 4.21  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of the 

difference scheme (4.76), the following stability estimates hold 

‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁

‖

𝐶𝜏(𝐿2ℎ)

+ ‖{𝑢𝑘
ℎ}
𝑘=1

𝑁
‖
𝐶𝜏(𝑊2ℎ

2 )
+ ‖{𝑝𝑘}𝑘=0

𝑁 ‖𝐶[0,𝑇]𝜏  

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶𝜏(𝐿2ℎ)

 

+|𝜓0| + ‖{
𝜓𝑘 −𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. The proof of Theorem 4.21 is based on the abstract Theorem 4.12, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula (4.35) 

and on the following Theorem 4.7 on coercivity inequality for the solution of the 

elliptic problem in 𝐿2(Ωℎ). 

Fifth, we study the absolute stable difference schemes for the approximate 

solution of the time dependent SIP (3.62). The discretization of time dependent SIP 

(3.62) is carried out in two stages. In the first stage, we also get the time dependent SIP 
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(4.32). In the second stage, we replace time dependent SIP (4.32) with second order of 

accuracy difference schemes (4.75) and (4.76). 

Theorem 4.22  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of 

difference schemes (4.75), the following stability estimates hold 

‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁−1

‖

𝐶𝜏(𝐿2ℎ)

+ ‖{𝑝𝑘}𝑘=0
𝑁 ‖𝐶[0,𝑇]𝜏 

+max
0≤𝑘≤𝑟

‖𝑢𝑘
ℎ‖

𝑊2ℎ
2 + max

𝑟+1≤𝑘≤𝑁
‖
𝑢𝑘
ℎ + 𝑢𝑘−1

ℎ

2
‖
𝑊2ℎ
2

 

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶𝜏(𝐿2ℎ)

 

+|𝜓0| + ‖{
𝜓𝑘 −𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. The proof of Theorem 4.22 is based on the abstract Theorem 3.10, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula (4.35) 

and on the following Theorem 4.8 on coercivity inequality for the solution of the 

elliptic problem in 𝐿2(Ωℎ). 

Theorem 4.23  Let 𝜏 and ℎ be sufficiently small numbers. For the solution of the 

difference scheme (4.76), the following stability estimates hold 

‖{
𝑢𝑘
ℎ − 𝑢𝑘−1

ℎ

𝜏
}
𝑘=1

𝑁

‖

𝐶𝜏(𝐿2ℎ)

+ ‖{𝑢𝑘
ℎ}
𝑘=1

𝑁
‖
𝐶𝜏(𝑊2ℎ

2 )
+ ‖{𝑝𝑘}𝑘=0

𝑁 ‖𝐶[0,𝑇]𝜏  

≤ 𝑀(𝛿, 𝑞) [‖𝜑ℎ‖𝑊2ℎ
2 + ‖𝑓1

ℎ‖
𝐿2ℎ

+ ‖{
𝑓𝑘
ℎ − 𝑓𝑘−1

ℎ

𝜏
}
2

𝑁

‖

𝐶𝜏(𝐿2ℎ)

 

+|𝜓0| + ‖{
𝜓𝑘 −𝜓𝑘−1

𝜏
}
1

𝑁

‖
𝐶[0,𝑇]𝜏

]. 

Proof. The proof of Theorem 4.23 is based on the abstract Theorem 3.12, on the 

self-adjointness and positivity of operator 𝐴ℎ defined by the formula (4.17) and on 

uniformly boundedness a linear functional 𝐵ℎ in 𝐿2ℎ defined by the formula (4.35) 

and on the following Theorem 4.8 on coercivity inequality for the solution of the 

elliptic problem in 𝐿2(Ωℎ). 
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CHAPTER V 

Numerical Experiments 

1   Introduction  

When the analytical methods do not work properly, the numerical methods for 

obtaining approximate solutions of partial differential equations play an important role 

in applied mathematics. We can say that there are many considerable works in the 

literature. In present section for the approximate solution of one-dimensional 

time-dependent source identification problem for Schrödinger equations with 

nonlocal, Dirichlet, Neumann, and Robin conditions, we use the first and second order 

of accuracy difference schemes. The error analysis is given. 

 

2   Numerical Results  

5.2.1 Time-Dependent SIP with Nonlocal Conditions  

 We study the first and second order of accuracy difference schemes for the the 

numerical solution of the following SIP  

{
 
 
 
 
 

 
 
 
 
 𝑖

𝜕𝑢(𝑡,𝑥)

𝜕𝑡
−

𝜕2𝑢(𝑡,𝑥)

𝜕𝑥2
+ 𝑢(𝑡, 𝑥) = 𝑝(𝑡)(1 + sin2𝑥)

+(3sin(2𝑥) − 1)𝑒𝑖𝑡, 𝑥 ∈ (0, 𝜋), 𝑡 ∈ (0,1),

𝑢(0, 𝑥) = 1 + sin2𝑥, 𝑥 ∈ [0, 𝜋],

𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋), 𝑢𝑥(𝑡, 0) = 𝑢𝑥(𝑡, 𝜋),

∫
𝜋

0
𝑢(𝑡, 𝑥)𝑑𝑥 = 𝜋𝑒𝑖𝑡 , 𝑡 ∈ [0,1]

                        (5.1) 

 for a one dimensional time-dependent SE with nonlocal conditions. The exact 

solution of this problem is (𝑢(𝑡, 𝑥), 𝑝(𝑡)) = ((1 + sin2𝑥)𝑒𝑖𝑡 , 𝑒𝑖𝑡). 

First, we consider the first order of accuracy Rothe DS 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖

𝑢𝑛
𝑘−𝑢𝑛

𝑘−1

𝜏
−

𝑢𝑛+1
𝑘 −2𝑢𝑛

𝑘+𝑢𝑛−1
𝑘

ℎ2
+ 𝑢𝑛

𝑘

= 𝑝𝑘(1 + sin2𝑥𝑛) + (3sin2𝑥𝑛 − 1)𝑒
𝑖𝑡𝑘 ,

𝑡𝑘 = 𝑘𝜏, 𝑥𝑛 = 𝑛ℎ, 1 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑛 ≤ 𝑀 − 1,

𝑢𝑛
0 = 1 + sin2𝑥𝑛 , 0 ≤ 𝑛 ≤ 𝑀,𝑀ℎ = 𝜋, 𝑁𝜏 = 1,

𝑢𝑀
𝑘 = 𝑢0

𝑘 , 𝑢𝑀
𝑘 − 𝑢𝑀−1

𝑘 = 𝑢1
𝑘 − 𝑢0

𝑘,

∑𝑀𝑚=1 𝑢𝑚
𝑘 ℎ = 𝜋𝑒𝑖𝑡𝑘 , 0 ≤ 𝑘 ≤ 𝑁.

                      (5.2) 
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Algorithm for obtaining the solution {{𝑢𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  and {𝑝𝑘}𝑘=1
𝑁  of first order 

DS (5.2) contains three steps. We introduce 𝜂𝑘  by the formula  

 𝜂𝑘 = ∑
𝑘
𝑚=1 𝑝𝑚𝜏, 𝑘 ∈ 1, 𝑁, 𝜂0 = 0.                         (5.3) 

 Then,  

              𝑝𝑘 =
𝜂𝑘−𝜂𝑘−1

𝜏
, 𝑘 ∈ 1, 𝑁.                                (5.4) 

 We have that  

𝑢𝑛
𝑘 = 𝑤𝑛

𝑘 − 𝑖𝜂𝑘(1 + 𝑠𝑖𝑛2𝑥𝑛), 𝑘 ∈ 0, 𝑁,        𝑛 ∈ 0,𝑀,                   (5.5) 

 where 𝑤𝑛
𝑘  is the solution of the following DS  

{
 
 
 

 
 
 𝑖

𝑤𝑛
𝑘−𝑤𝑛

𝑘−1

𝜏
−

𝑤𝑛+1
𝑘 −2𝑤𝑛

𝑘+𝑤𝑛−1
𝑘

ℎ2
+𝑤𝑛

𝑘 − 𝑧𝑛ℎ∑
𝑀
𝑘=1 𝑤𝑚

𝑘 = 𝜑𝑘 ,

𝜑𝑘 = 𝑧𝑛𝜋𝑒
𝑖𝑡𝑘 + (3sin2𝑥𝑛 − 1)𝑒

𝑖𝑡𝑘 , 𝑘 ∈ 1,𝑁, 𝑛 ∈ 1,𝑀 − 1,

𝑤𝑛
0 = 1 + sin2𝑥𝑛 , 𝑛 ∈ 1,𝑀 − 1,

𝑤𝑀
𝑘 = 𝑤0

𝑘, 𝑤𝑀
𝑘 − 𝑤𝑀−1

𝑘 = 𝑤1
𝑘 − 𝑤0

𝑘,

         (5.6) 

 where 𝑧𝑛 is defined by formula  

𝑧𝑛 =
1

𝜋 + 𝑑ℎ
[𝑠𝑖𝑛2𝑥𝑛 (

1 − 𝑐𝑜𝑠2ℎ

ℎ2
−
1

2
) −

1

2
] , 𝑛 ∈ 1,𝑀 − 1. 

Using the integral condition 

∑

𝑀

𝑚=1

𝑢𝑚
𝑘 ℎ = 𝜋𝑒𝑖𝑡𝑘 , 𝑘 ∈ 0,𝑁, 

we get  

     𝜂𝑘 =
∑𝑀𝑚=1𝑤𝑚

𝑘 ℎ−𝜋𝑒𝑖𝑡𝑘

𝑖(𝜋+𝑑ℎ)
, 𝑘 ∈ 1,𝑁,                         (5.7) 

𝑑 = ∑

𝑀

𝑚=1

𝑠𝑖𝑛2𝑥𝑚 . 

Second, we present the second order of accuracy Crank-Nicolson DS 
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{
 
 
 
 
 
 

 
 
 
 
 
 𝑖

𝑢𝑛
𝑘−𝑢𝑛

𝑘−1

𝜏
−

𝑢𝑛+1
𝑘 −2𝑢𝑛

𝑘+𝑢𝑛−1
𝑘

2ℎ2
−

𝑢𝑛+1
𝑘−1−2𝑢𝑛

𝑘−1+𝑢𝑛−1
𝑘−1

2ℎ2
+

𝑢𝑛
𝑘+𝑢𝑛

𝑘−1

2

=
𝑝𝑘+𝑝𝑘−1

2
(1 + sin2𝑥𝑛) + (3sin2𝑥𝑛 − 1)𝑒

𝑖(𝑡𝑘−
𝜏

2
)
,

𝑡𝑘 = 𝑘𝜏, 𝑥𝑛 = 𝑛ℎ, 1 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑛 ≤ 𝑀 − 1,

𝑢𝑛
0 = 1 + sin2𝑥𝑛 , 0 ≤ 𝑛 ≤ 𝑀,𝑀ℎ = 𝜋, 𝑁𝜏 = 1,

𝑢𝑀
𝑘 = 𝑢0

𝑘 , 𝑢𝑀
𝑘 − 𝑢𝑀−1

𝑘 = 𝑢1
𝑘 − 𝑢0

𝑘,

∑𝑀𝑚=1 𝑢𝑚
𝑘 ℎ = 𝜋𝑒𝑖𝑡𝑘 , 0 ≤ 𝑘 ≤ 𝑁.

               (5.8) 

 Algorithm for obtaining the solution {{𝑢𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  and {𝑝𝑘}𝑘=1
𝑁  of second 

order DS (5.8) contains also three steps. We introduce 𝜂𝑘  by the formula  

               𝜂𝑘 =
𝑝0+𝑝𝑘

2
𝜏 + ∑𝑘−1𝑚=1 𝑝𝑚𝜏, 𝑘 ∈ 1,𝑁, 𝜂0 = 0.             (5.9) 

 Then,  

               
𝑝𝑘+𝑝𝑘−1

2
=

𝜂𝑘−𝜂𝑘−1

𝜏
, 𝑘 ∈ 1,𝑁.                            (5.10) 

 We will use formula (5.5), where 𝑤𝑛
𝑘  is the solution of the following DS  

{
 
 
 
 
 

 
 
 
 
 𝑖

𝑤𝑛
𝑘−𝑤𝑛

𝑘−1

𝜏
−

𝑤𝑛+1
𝑘 −2𝑤𝑛

𝑘+𝑤𝑛−1
𝑘

2ℎ2
−

𝑤𝑛+1
𝑘−1−2𝑤𝑛

𝑘−1+𝑤𝑛−1
𝑘−1

2ℎ2
+

𝑤𝑛
𝑘+𝑤𝑛

𝑘−1

2

−𝑧𝑛ℎ∑
𝑀
𝑘=1 𝑤𝑚

𝑘 − 𝑧𝑛ℎ∑
𝑀
𝑘=1 𝑤𝑚

𝑘−1 = 𝑧𝑛𝜋(𝑒
𝑖𝑡𝑘 + 𝑒𝑖𝑡𝑘−1)

+(3sin2𝑥𝑛 − 1)𝑒
𝑖(𝑡𝑘−

𝜏

2
), 𝑘 ∈ 1,𝑁, 𝑛 ∈ 1,𝑀 − 1

𝑤𝑛
0 = 1 + sin2𝑥𝑛 , 𝑛 ∈ 1,𝑀 − 1,

𝑤𝑀
𝑘 = 𝑤0

𝑘, 𝑤𝑀
𝑘 − 𝑤𝑀−1

𝑘 = 𝑤1
𝑘 − 𝑤0

𝑘.

           (5.11) 

 Algorithm for obtaining the solution {{𝑢𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  and {𝑝𝑘}𝑘=1
𝑁  of DS (5.8) 

contains also three steps. For the fist step,will obtain {{𝑤𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀 . by (5.11). 

It is clear that we can written (5.6) and (5.11) as the initial value problem the 

first-order difference equation concerning 𝑘 and matrix coefficients 

{
𝐴𝑤𝑘 + 𝐵𝑤𝑘−1 = 𝜑𝑘 , 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑤0 = {1 + 𝑠𝑖𝑛(2𝑥𝑛)}𝑛=1
𝑀 .

                             (5.12) 

 Then, 

𝑤𝑘 = 𝑖𝑛𝑣(𝐴)(𝜑1
𝑘 − 𝐵𝑤𝑘−1), 

where 𝐴, 𝐵  are (𝑀 + 1) × (𝑀 + 1)  square matrices and 𝜑𝑘  is (𝑀 + 1) × 1 

column matrix and  
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𝐴 =

[
 
 
 
 
 
 
 
 
 
1 0 0 ⋅ 0 −1
𝑎 𝑏 − ℎ𝑧1 𝑎 − ℎ𝑧1 ⋅ −ℎ𝑧1 −ℎ𝑧1
0 𝑎 − ℎ𝑧2 𝑏 − ℎ𝑧2 ⋅ −ℎ𝑧2 −ℎ𝑧2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 −ℎ𝑧𝑀−2 −ℎ𝑧𝑀−2 ⋅ 𝑎 − ℎ𝑧𝑀−2 −ℎ𝑧𝑀−2
0 −ℎ𝑧𝑀−1 −ℎ𝑧𝑀−1 ⋅ 𝑏 − ℎ𝑧𝑀−1 𝑎 − ℎ𝑧𝑀−1
1 −1 0 ⋅ −1 1 ]

 
 
 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

 

and 

𝐵 =

[
 
 
 
 
 
 
 
 
0 0 0 0 ⋅ 0 0 0
0 𝑐 0 0 ⋅ 0 0 0
0 0 𝑐 0 ⋅ 0 0 0
0 0 0 𝑐 ⋅ 0 0 0
0 0 0 0 ⋅ 0 0 0
0 0 0 0 ⋅ 0 0 0
0 0 0 0 ⋅ 𝑐 0 0
0 0 0 0 ⋅ 0 𝑐 0
0 0 0 0 ⋅ 0 0 0]

 
 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

, 

𝑎 = −
1

ℎ2
, 𝑏 =

𝑖

𝜏
+
2

ℎ2
+ 1, 𝑐 = −

𝑖

𝜏
, 

𝑓𝑛
𝑘 =

[
 
 
 
 
0
𝜑1
𝑘

⋮
𝜑𝑀−1
𝑘

0 ]
 
 
 
 

(𝑀+1)×1

, 

𝑤𝑘 =

[
 
 
 
 
 
𝑤0
𝑘

𝑤1
𝑘

⋮
𝑤𝑀−1
𝑘

𝑤𝑀
𝑘 ]

 
 
 
 
 

(𝑀+1)×1

 

for the first order of accuracy Rothe DS and 

𝐴 =

[
 
 
 
 
 
 
 
 
 
1 0 0 ⋅ 0 −1 0
𝑎 𝑏 − ℎ𝑧1 𝑎 − ℎ𝑧1 ⋅ −ℎ𝑧1 −ℎ𝑧1 0

0 𝑎 − ℎ𝑧2 𝑏 − ℎ𝑧2 ⋅ −ℎ𝑧2 −ℎ𝑧2 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 −ℎ𝑧𝑀−2 −ℎ𝑧𝑀−2 ⋅ 𝑎 − ℎ𝑧𝑀−2 −ℎ𝑧𝑀−2 0

0 −ℎ𝑧𝑀−1 −ℎ𝑧𝑀−1 ⋅ 𝑏 − ℎ𝑧𝑀−1 𝑎 − ℎ𝑧𝑀−1 0

1 −1 0 ⋅ −1 1 0]
 
 
 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

, 

and 
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𝐵 =

[
 
 
 
 
 
 
 
 
 
0 0 0 ⋅ 0 0 0
𝑎 𝑎 − ℎ𝑧1 𝑐 − ℎ𝑧1 ⋅ −ℎ𝑧1 −ℎ𝑧1 0

0 𝑎 − ℎ𝑧2 𝑐 − ℎ𝑧2 ⋅ −ℎ𝑧2 −ℎ𝑧2 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 −ℎ𝑧𝑀−2 −ℎ𝑧𝑀−2 ⋅ 𝑐 − ℎ𝑧𝑀−2 𝑎 − ℎ𝑧𝑀−2 0

0 −ℎ𝑧𝑀−1 −ℎ𝑧𝑀−1 ⋅ 𝑎 − ℎ𝑧𝑀−1 𝑐 − ℎ𝑧𝑀−1 𝑎

0 0 0 ⋅ 0 0 0 ]
 
 
 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

, 

 

𝑎 = −
1

2ℎ2
, 𝑏 =

𝑖

𝜏
+
1

ℎ2
+
1

2
, 𝑐 =

−𝑖

𝜏
+
1

ℎ2
+
1

2
, 

𝜑𝑛
𝑘 =

[
 
 
 
 
0
𝜑1
𝑘

⋮
𝜑𝑀−1
𝑘

0 ]
 
 
 
 

(𝑀+1)×1

, 

𝑤𝑘 =

[
 
 
 
 
 
𝑤0
𝑘

𝑤1
𝑘

⋮
𝑤𝑀−1
𝑘

𝑤𝑀
𝑘 ]

 
 
 
 
 

(𝑀+1)×1

, 

 𝜑𝑛
𝑘 = 𝑧𝑛𝜋(𝑒

𝑖𝑡𝑘 + 𝑒𝑖𝑡𝑘−1) + (3𝑠𝑖𝑛2𝑥𝑛 − 1)𝑒
𝑖(𝑡𝑘−𝜏/2) 

for the second order of accuracy Crank-Nicolson DS (5.11). Second, we will find𝜂𝑘  

and 𝑝𝑘  and 
𝑝𝑘+𝑝𝑘−1

2
 by formulas (5.4),(5.10), (5.9) and (5.5). 

Third, we will find {{𝑢𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  by formulas (5.5). The errors are computed 

by formulas 

𝐸𝑢 = max
𝑘∈0,𝑁

(∑𝑀𝑛=0 |𝑢(𝑡, 𝑥) − 𝑢𝑛
𝑘|2ℎ)

1

2,                 (5.13) 

𝐸𝑝 = max
𝑘∈1,𝑁

|𝑝(𝑡) − 𝑝𝑘 (
𝑝𝑘+𝑝𝑘−1

2
)|.                   (5.14) 

 Numerical solutions of 𝑢(𝑡, 𝑥) at   (𝑡𝑘, 𝑥𝑛) is 𝑢𝑛
𝑘  and  of 𝑝(𝑡) at 𝑡𝑘  is 𝑝𝑘 . The 

numerical results of SIP (5.2) are provided.  
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Table 5.2.1 

The errors between the exact and the numerical solutions of (5.2) for different values 

of 𝑁 and 𝑀  

𝐸𝑟𝑟𝑜𝑟                𝑀 = 𝑁 = 20                   𝑀 = 𝑁 = 40                   𝑀 = 𝑁 = 80  

 𝐸𝑝                         0.0022                              0.0011                               0.0005 

 𝐸𝑢                           0.034                                0.017                                  0.008 

  

  As it is seen in Table 5.2.1, if 𝑀 and 𝑁 are multiplied by 2, the value of 

errors decreases approximately 1/2 for the DS. This shows that it has the first order 

of accuracy and numerical solutions for second order of accuracy Crank-Nicolson DS 

of 𝑢(𝑡, 𝑥) at   (𝑡𝑘, 𝑥𝑛) is 𝑢𝑛
𝑘  and  of 𝑝(𝑡) at 𝑡𝑘  is 

𝑝𝑘+𝑝𝑘−1

2
. The numerical results 

of SIP (5.2) are provided. 

Table 5.2.2  

The errors between the exact and the numerical solutions of (5.2) for different values 

of 𝑁 and 𝑀 

𝐸𝑟𝑟𝑜𝑟                   𝑀 = 𝑁 = 20               𝑀 = 𝑁 = 40                𝑀 = 𝑁 = 80 

𝐸𝑝                            0.0002                            0.00005                         0.00001 

𝐸𝑢                            0.017                               0.0043                           0.0011 

  

As it is seen in Table 5.2.2, if 𝑀 and 𝑁 are multiplied by 2, the value of 

errors decreases approximately 1/4 for the DS. This shows that it has the second 

order of accuracy.  

 

5.2.2 Time-Dependent SIP with Dirichlet Condition  

 We study the numerical solution of the following SIP  

{
 
 
 

 
 
 
𝑖𝑢𝑡 − 𝑢𝑥𝑥 = 𝑝(𝑡)𝑠𝑖𝑛(𝑥) − 𝑒

−𝑖𝑡𝑠𝑖𝑛𝑥, 𝑥 ∈ (0, 𝜋), 𝑡 ∈ (0,1),

𝑢(0, 𝑥) = 𝑠𝑖𝑛𝑥, 𝑥 ∈ 0, 𝜋],

𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋) = 0,

∫
𝜋

0
𝑢(𝑡, 𝑥)𝑑𝑥 = 2𝑒𝑖𝑡, 𝑡 ∈ 0,1]

           (5.15) 

 for a one dimensional SE with Dirichlet condition. The exact solution of this problem 

is (𝑢(𝑡, 𝑥), 𝑝(𝑡)) = (𝑒𝑖𝑡𝑠𝑖𝑛𝑥, 𝑒−𝑖𝑡). We study the following first order of accuracy 
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difference scheme  

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑖

𝜏
(𝑢𝑛

𝑘 − 𝑢𝑛
𝑘−1) −

1

ℎ2
(𝑢𝑛+1

𝑘 − 2𝑢𝑛
𝑘 + 𝑢𝑛−1

𝑘 )

= 𝑝𝑘sin𝑥𝑛 + sin𝑥𝑛𝑒
−𝑖𝑡𝑘 ,

𝑡𝑘 = 𝑘𝜏, 𝑥𝑛 = 𝑛ℎ, 𝑘 = 1,𝑁, 𝑛 = 1,𝑀 − 1,

𝑢𝑛
0 = sin𝑥𝑛 , 𝑛 = 0,𝑀,𝑀ℎ = 𝜋,𝑁𝜏 = 1,

𝑢𝑀
𝑘 = 𝑢0

𝑘 = 0,

∑𝑀𝑚=1 𝑢𝑚
𝑘 ℎ = 2𝑒𝑖𝑡𝑘 , 𝑘 = 0,𝑁.

                          (5.16) 

 The algorithm for obtaining the solution {{𝑢𝑛
𝑘}𝑘=0
𝑁 }0

𝑀  and {𝑝𝑘}1
𝑁  of DS (5.16) 

contains three steps. We introduce 𝜂𝑘  by the formula  

𝜂𝑘 = ∑
𝑘
𝑚=1 𝑝𝑚𝜏, 𝑘 = 1, 𝑁, 𝜂0 = 0.                 (5.17) 

 We have that  

𝑢𝑛
𝑘 = 𝑣𝑛

𝑘 − 𝑖𝜂𝑘sin𝑥𝑛 , 𝑘 = 0,𝑁, 𝑛 = 0,𝑀,                (5.18) 

 where 𝑣𝑛
𝑘  is the solution of the DS  

{
 
 
 
 
 

 
 
 
 
 𝑖

𝑣𝑛
𝑘−𝑣𝑛

𝑘−1

𝜏
−

𝑣𝑛+1
𝑘 −2𝑣𝑛

𝑘+𝑣𝑛−1
𝑘

ℎ2
+ 𝑟𝑛∑

𝑀
𝑚=1 𝑣𝑚

𝑘 = 𝑓𝑛
𝑘 ,

𝑓𝑛
𝑘 =

2𝑒𝑖𝑡𝑘

ℎ
𝑟𝑛 − 𝑒

−𝑖𝑡𝑘sin𝑥𝑛, 𝑘 = 1,𝑁, 𝑛 = 1,𝑀 − 1,

𝑟𝑛 =
2sin𝑥𝑛(𝑐𝑜𝑠ℎ−1

𝑑ℎ2
, 𝑑 = ∑𝑀𝑚=1 𝑠𝑖𝑛𝑥𝑚 , 𝑛 ∈ 1,𝑀 − 1,

𝑣𝑛
0 = sin𝑥𝑛 , 𝑛 = 0,𝑀,

𝑣0
𝑘 = 𝑣𝑀

𝑘 = 0, 𝑘 = 0, 𝑁.

                (5.19) 

 Using the integral condition 

∑

𝑀

𝑚=1

𝑢𝑚
𝑘 ℎ = 2𝑒𝑖𝑡𝑘 , 𝑘 ∈ 0,𝑁, 

we get  

𝜂𝑘 =
∑𝑀𝑚=1𝑣𝑚

𝑘 ℎ−2𝑒𝑖𝑡𝑘

𝑖𝑑ℎ
, 𝑘 ∈ 1,𝑁,                    (5.20) 

𝑝𝑘 =
𝜂𝑘−𝜂𝑘−1

𝜏
, 𝑘 = 1,𝑁.                      (5.21) 

 In the first step, we find the solution {{𝑣𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  of the corresponding first order of 

accuracy difference scheme (5.19). For obtaining it, we will write difference scheme 
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(5.19) in matrix form as  

{
𝐴𝑣𝑘 + 𝐵𝑣𝑘−1 = 𝜑𝑘 , 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑣0 = {sin𝑥𝑛}𝑛=1
𝑀 ,

                             (5.22) 

 where 𝐴, 𝐵  are (𝑀 + 1) × (𝑀 + 1)  square matrices and 𝜑𝑘  is (𝑀 + 1) × 1 

column matrix and  

𝐴 =

[
 
 
 
 
 
 
 
 
 
1 0 ⋅ 0 0
𝑎 𝑏 − ℎ𝑟1 𝑎 − ℎ𝑟1 ⋅ −ℎ𝑟1 −ℎ𝑟1
0 𝑎 − ℎ𝑟2 𝑏 − ℎ𝑟2 ⋅ −ℎ𝑟2 −ℎ𝑟2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 −ℎ𝑟𝑀−2 −ℎ𝑟𝑀−2 ⋅ 𝑎 − ℎ𝑟𝑀−2 −ℎ𝑟𝑀−2
0 −ℎ𝑟𝑀−1 −ℎ𝑟𝑀−1 ⋅ 𝑏 − ℎ𝑟𝑀−1 𝑎 − ℎ𝑟𝑀−1
0 0 0 ⋅ 0 1 ]

 
 
 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

 

and 

𝐵 =

[
 
 
 
 
 
 
 
 
0 0 0 0 ⋅ 0 0 0
0 𝑐 0 0 ⋅ 0 0 0
0 0 𝑐 0 ⋅ 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 0 ⋅ 𝑐 0 0
0 0 0 0 ⋅ 0 𝑐 0
0 0 0 0 ⋅ 0 0 0]

 
 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

, 

𝑎 = −
1

ℎ2
, 𝑏 =

𝑖

𝜏
+
2

ℎ2
, 𝑐 = −

𝑖

𝜏
, 

𝜑𝑛
𝑘 =

[
 
 
 
 
0
𝜑1
𝑘

⋮
𝜑𝑀−1
𝑘

0 ]
 
 
 
 

(𝑀+1)×1

, 

𝑣𝑘 =

[
 
 
 
 
 
𝑣0
𝑘

𝑣1
𝑘

⋮
𝑣𝑀−1
𝑘

𝑣𝑀
𝑘 ]

 
 
 
 
 

(𝑀+1)×1

. 

In the second step we will find {𝜂𝑘}𝑘=0
𝑁 , {𝑝𝑘}𝑘=1

𝑁  by formulas (5.20) and (5.21 ). In 

the third step we will find {{𝑢𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  by formulas (5.17) and (5.18). 

The errors are computed by formulas (5.13) and (5.14). 

Numerical solutions of 𝑢(𝑡, 𝑥) at   (𝑡𝑘, 𝑥𝑛) is 𝑢𝑛
𝑘 and  of 𝑝(𝑡) at 𝑡𝑘  is 𝑝𝑘 . 
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The results of numerical experiments for problem (5.15) are provided in Table 4.2.1. 

As it is seen in Table 5.2.3, if 𝑀 and 𝑁 are multiplied by 2, the value of 

errors decreases approximately 1/2 for the DS. This shows that it has the first order 

of accuracy. 

Table 5.2.3 

The errors between the exact and the numerical solutions of (5.15) for different     

values of 𝑁 and 𝑀  

𝐸𝑟𝑟𝑜𝑟                       𝑀 = 𝑁 = 20          𝑀 = 𝑁 = 40        𝑀 = 𝑁 = 80 

 𝐸𝑝                           0.0710                         0.036                         0.017 

 𝐸𝑢                           0.0292                         0.0142                      0.0710              

 

5.2.3 Time-Dependent SIP with Neumann Condition  

 We study the numerical solution of the following SIP  

 

{
 
 
 
 
 

 
 
 
 
 𝑖

𝜕𝑢(𝑡,𝑥)

𝜕𝑡
−

𝜕2𝑢(𝑡,𝑥)

𝜕𝑥2
+ 𝑢(𝑡, 𝑥) = 𝑝(𝑡)(1 + cos2𝑥)

+(3cos(2𝑥) − 1)𝑒𝑖𝑡, 𝑥 ∈ (0, 𝜋), 𝑡 ∈ (0,1),

𝑢(0, 𝑥) = 1 + cos2𝑥, 𝑥 ∈ [0, 𝜋],

𝑢𝑥(𝑡, 0) = 𝑢𝑥(𝑡, 𝜋) = 0,

∫
𝜋

0
𝑢(𝑡, 𝑥)𝑑𝑥 = 𝜋𝑒𝑖𝑡 , 𝑡 ∈ [0,1]

                      (5.23) 

 for a one dimensional SE with Neumann condition. The exact solution of this 

problem is (𝑢(𝑡, 𝑥), 𝑝(𝑡)) = ((1 + cos2𝑥)𝑒𝑖𝑡, 𝑒𝑖𝑡).  We study the following first 

order of accuracy difference scheme  

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖

𝑢𝑛
𝑘−𝑢𝑛

𝑘−1

𝜏
−

𝑢𝑛+1
𝑘 −2𝑢𝑛

𝑘+𝑢𝑛−1
𝑘

2ℎ2
+ 𝑢𝑛

𝑘

= 𝑝𝑘(1 + cos2𝑥𝑛) + (3cos2𝑥𝑛 − 1)𝑒
𝑖𝑡𝑘 ,

𝑡𝑘 = 𝑘𝜏, 𝑥𝑛 = 𝑛ℎ, 1 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑛 ≤ 𝑀 − 1,

𝑢𝑛
0 = 1 + cos2𝑥𝑛, 0 ≤ 𝑛 ≤ 𝑀,𝑀ℎ = 𝜋, 𝑁𝜏 = 1,

𝑢𝑀
𝑘 = 𝑢0

𝑘 , 𝑢𝑀
𝑘 − 𝑢𝑀−1

𝑘 = 𝑢1
𝑘 − 𝑢0

𝑘,

∑𝑀𝑚=1 𝑢𝑚
𝑘 ℎ = 𝜋𝑒𝑖𝑡𝑘 , 0 ≤ 𝑘 ≤ 𝑁.

                     (5.24) 

 The algorithm for obtaining the solution {{𝑢𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  and {𝑝𝑘}𝑘=1
𝑁 of DS (5.24) 
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contains three steps. We introduce 𝜂𝑘  by the formula 

       𝜂𝑘 = ∑
𝑘
𝑚=1 𝑝𝑚𝜏, 𝑘 ∈ 1,𝑁, 𝜂0 = 0.                       (5.25) 

 We have that  

𝑢𝑛
𝑘 = 𝑤𝑛

𝑘 − 𝑖𝜂𝑘(1 + cos2𝑥), 𝑘 ∈ 0,𝑁, 𝑛 ∈ 0,𝑀],                 (5.26) 

 where 𝑤𝑛
𝑘  is the solution of the DS  

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖

𝑤𝑛
𝑘−𝑤𝑛

𝑘−1

𝜏
−

𝑤𝑛+1
𝑘 −2𝑤𝑛

𝑘+𝑤𝑛−1
𝑘

ℎ2
+𝑤𝑛

𝑘 + 𝑟𝑛ℎ∑
𝑀
𝑚=1 𝑤𝑚

𝑘

= 𝜑𝑛
𝑘 , 𝑘 ∈ 1,𝑁, 𝑛 ∈ 1,𝑀 − 1,

𝜑𝑛
𝑘 = 𝑒𝑖𝑡𝑘(𝜋𝑟𝑛 + 3cos2𝑥𝑛 − 1),

𝑟𝑛 =
1

𝜋+𝑑ℎ
[2cos𝑥𝑛 (

𝑐𝑜𝑠ℎ−1

ℎ2
−

1

2
) − 1] ,

𝑤𝑛
0 = 1 + cos2𝑥𝑛 , 𝑛 ∈ 0,𝑀,

𝑤1
𝑘 −𝑤0

𝑘 = 𝑤𝑀
𝑘 − 𝑤𝑀−1 = 0, 𝑘 ∈ 0,𝑁.

                 (5.27) 

 Using the integral condition  

∑

𝑀

𝑚=1

𝑢𝑚
𝑘 ℎ = 𝜋𝑒𝑖𝑡𝑘 , 0 ≤ 𝑘 ≤ 𝑁, 

we get  

𝜂𝑘 =
∑𝑀𝑚=1𝑤𝑚

𝑘 ℎ−𝜋𝑒𝑖𝑡𝑘

𝑖(𝜋+𝑑ℎ)
, 𝑘 ∈ 1,𝑁.                           (5.28) 

𝑝𝑘   =
𝜂𝑘−𝜂𝑘−1

𝜏
, 1, 𝑁.                                     (5.29) 

In the first step, we find the solution {{𝑤𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  of the corresponding first order of 

accuracy difference scheme (5.27). For obtaining it, we will write difference scheme 

(5.27) in matrix form as 

{
𝐴𝑤𝑘 + 𝐵𝑤𝑘−1 = 𝜑𝑘 , 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑤0 = {1 + cos(2𝑥𝑛)}𝑛=1
𝑀 ,

                  (30) 

where 𝐴, 𝐵  are (𝑀 + 1) × (𝑀 + 1)  square matrices and 𝜑𝑘  is (𝑀 + 1) × 1 

column matrix and  
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𝐴 =

[
 
 
 
 
 
 
 
 
 
−1 1 0 ⋅ 0 0
𝑎 𝑏 − ℎ𝑟1 𝑎 − ℎ𝑟1 ⋅ −ℎ𝑟1 −ℎ𝑟1
0 𝑎 − ℎ𝑟2 𝑏 − ℎ𝑟2 ⋅ −ℎ𝑟2 −ℎ𝑟2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 −ℎ𝑟𝑀−2 −ℎ𝑟𝑀−2 ⋅ 𝑎 − ℎ𝑟𝑀−2 −ℎ𝑟𝑀−2
0 −ℎ𝑟𝑀−1 −ℎ𝑟𝑀−1 ⋅ 𝑏 − ℎ𝑟𝑀−1 𝑎 − ℎ𝑟𝑀−1
0 0 0 ⋅ −1 1 ]

 
 
 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

 

and 

𝐵 =

[
 
 
 
 
 
 
 
 
0 0 0 0 ⋅ 0 0 0
0 𝑐 0 0 ⋅ 0 0 0
0 0 𝑐 0 ⋅ 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 0 ⋅ 𝑐 0 0
0 0 0 0 ⋅ 0 𝑐 0
0 0 0 0 ⋅ 0 0 0]

 
 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

, 

𝑎 = −
1

ℎ2
, 𝑏 =

𝑖

𝜏
+
2

ℎ2
+ 1, 𝑐 = −

𝑖

𝜏
, 

𝜑𝑛
𝑘 =

[
 
 
 
 
0
𝜑1
𝑘

⋮
𝜑𝑀−1
𝑘

0 ]
 
 
 
 

(𝑀+1)×1

, 

𝑤𝑘 =

[
 
 
 
 
 
𝑤0
𝑘

𝑤1
𝑘

⋮
𝑤𝑀−1
𝑘

𝑤𝑀
𝑘 ]

 
 
 
 
 

(𝑀+1)×1

. 

In the second step, we will find {𝜂𝑘}𝑘=0
𝑁 , {𝑝𝑘}𝑘=1

𝑁  by formulas (5.28) and (5.29). In 

the third step, will find {{𝑢𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  by formulas (5.25) and (5.26). 

The errors are computed by formulas (5.13) and (5.14). Numerical solutions of 

𝑢(𝑡, 𝑥)  at (𝑡𝑘 , 𝑥𝑛)  is 𝑢𝑛
𝑘  and of 𝑝(𝑡)  at 𝑡𝑘  is 𝑝𝑘 . The results of numerical 

experiments for problem (5.23) are provided in Table 5.2.4 As, it is seen in Table 

Table 5.2.4  if 𝑀  and 𝑁  are multiplied by 2, the value of errors decreases 

approximately 1/2 for the DS. This shows that it has the first order of accuracy. 
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Table 5.2.3 

The errors between the exact and the numerical solutions of (5.23) for different values 

of 𝑁 and 𝑀  

𝐸𝑟𝑟𝑜𝑟                      𝑀 = 𝑁 = 20              𝑀 = 𝑁 = 40           𝑀 = 𝑁 = 80 

𝐸𝑝                                 0.0980                          0.0493                      0.0247 

𝐸𝑢                                 0.0072                          0.0036                     0.0018 

 

5.2.4 Time-Dependent SIP with Robin Condition 

We study the numerical solution of the following SIP  

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢 =

5

4
cos

𝑥

2
𝑒−𝑖𝑡 + 𝑝(𝑡)cos

𝑥

2
,

𝑥 ∈ (0, 𝜋), 𝑡 ∈ (0,1),

𝑢(0, 𝑥) = cos
𝑥

2
, 𝑥 ∈ 0, 𝜋],

𝑢(𝑡, 0) − 𝑒−𝑖𝑡 = 𝑢𝑥(𝑡, 0),

−𝑢(𝑡, 𝜋) −
1

2
𝑒−𝑖𝑡 = 𝑢𝑥(𝑡, 𝜋),

∫
𝜋

0
𝑢(𝑡, 𝑥)𝑑𝑥 = 2𝑒−𝑖𝑡𝑘 , 𝑡 ∈ 0,1]

                            (5.31) 

 for a one dimensional SE with Robin condition. The exact solution of this problem is 

(𝑢, 𝑝) = (𝑒−𝑖𝑡cos
𝑥

2
, 𝑒−𝑖𝑡) . We study the following first order accuracy 

difference scheme  

{
 
 
 
 
 

 
 
 
 
 
𝑖

𝜏
(𝑢𝑛

𝑘 − 𝑢𝑛
𝑘−1) −

1

ℎ2
(𝑢𝑛+1

𝑘 − 2𝑢𝑛
𝑘 + 𝑢𝑛−1

𝑘 ) + 𝑢𝑛
𝑘

=
5

4
cos

𝑥𝑛

2
𝑒−𝑖𝑡𝑘 + 𝑝𝑘cos

𝑥𝑛

2
,

𝑡𝑘 = 𝑘𝜏, 𝑥𝑛 = 𝑛ℎ, 𝑘 ∈ 1,𝑁, 𝑛 ∈ 1,𝑀 − 1,

𝑢𝑛
0 − 𝑒−𝑖𝑡𝑘 =

𝑢1−𝑢0

ℎ
, 𝑛 ∈ 0,𝑀,𝑀ℎ = 𝜋, 𝑁𝜏 = 1,

−𝑢𝑛
0 −

1

2
𝑒−𝑖𝑡𝑘 =

𝑢𝑀−𝑢𝑀−1

ℎ
, ∑𝑀𝑚=1 𝑢𝑚

𝑘 ℎ = 2𝑒−𝑖𝑡𝑘 , 𝑘 ∈ 0, 𝑁,

           (5.32) 

 The algorithm for obtaining the solution {{𝑢𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  and {𝑝𝑘}𝑘=1
𝑁  of DS (5.32) 

contains three steps. We introduce 𝜂𝑘  by the formula  

𝜂𝑘 = ∑
𝑘
𝑚=1 𝑝𝑚𝜏, 𝑘 ∈ 1, 𝑁, 𝜂0 = 0.                  (5.33) 

 We have that  
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𝑢𝑛
𝑘 = 𝑤𝑛

𝑘 − 𝑖𝜂𝑘cos(
𝑥𝑛

2
), 𝑘 ∈ 0,𝑁, 𝑛 ∈ 0,𝑀],                        (5.34) 

 where 𝑤𝑛
𝑘  is the solution of the DS  

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑖

𝑤𝑛
𝑘−𝑤𝑛

𝑘−1

𝜏
−

𝑤𝑛+1
𝑘 −2𝑤𝑛

𝑘+𝑤𝑛−1
𝑘

ℎ2
+𝑤𝑛

𝑘 + 𝑟𝑚 ∑
𝑀
𝑚=1 𝑚

𝑘
= 𝜑𝑛

𝑘

𝜑𝑛
𝑘 = (

5

4
cos

𝑥𝑛

2
+

2𝑟𝑚

ℎ𝑑
) 𝑒−𝑖𝑡𝑘 , 𝑘 ∈ 1, 𝑁, 𝑛 ∈ 1,𝑀 − 1,

𝑟𝑚 =
1

𝑑
2cos

𝑥𝑛

2
(
𝑐𝑜𝑠

ℎ

2
−1

ℎ2
+ 0.5) , 𝑑 = ∑𝑀𝑚=1 cos

𝑥𝑛

2

𝑤𝑛
0 = cos

𝑥𝑛

2
, 𝑛 ∈ 0,𝑀,

𝑤0
𝑘 − 𝑒−𝑖𝑡𝑘 =

1

ℎ
(𝑤1

𝑘 −𝑤0
𝑘), 𝑘 ∈ 0,𝑁,

−𝑤𝑀
𝑘 −

1

2
𝑒−𝑖𝑡𝑘 =

1

ℎ
(𝑤𝑀

𝑘 −𝑤𝑀−1), 𝑘 ∈ 0,𝑁.

                (5.35) 

 Using the integral condition  

∑

𝑀

𝑚=1

𝑢𝑚
𝑘 ℎ = 2𝑒−𝑖𝑡𝑘 , 𝑘 ∈ 0,𝑁, 

we get  

𝜂𝑘 =
∑𝑀𝑚=1𝑤𝑚

𝑘 ℎ−2𝑒−𝑖𝑡𝑘

𝑖𝑑ℎ
, 𝑘 ∈ 1,𝑁,                       (5.36) 

𝑝𝑘 =
𝜂𝑘−𝜂𝑘−1

𝜏
, 1, 𝑁.                                (5.37) 

 In the first step, we find the solution {{𝑤𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  of the corresponding first order 

of accuracy difference scheme (5.35). For obtaining it, we will write difference 

scheme (5.35) in matrix form as  

{

𝐴𝑤𝑘 + 𝐵𝑤𝑘−1 = 𝜑1
𝑘 , 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑤0 = {cos(
𝑥𝑛
2
)}𝑛=1
𝑀 ,

 

where 𝐴, 𝐵  are (𝑀 + 1) × (𝑀 + 1)  square matrices and 𝜑𝑘  is (𝑀 + 1) × 1 

column matrix and  
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𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
ℎ + 1

ℎ

−1

ℎ
0 ⋅ 0 0

𝑎 𝑏 − ℎ𝑟1 𝑎 − ℎ𝑟1 ⋅ −ℎ𝑟1 −ℎ𝑟1
0 𝑎 − ℎ𝑟2 𝑏 − ℎ𝑟2 ⋅ −ℎ𝑟2 −ℎ𝑟2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 −ℎ𝑟𝑀−2 −ℎ𝑟𝑀−2 ⋅ 𝑎 − ℎ𝑟𝑀−2 −ℎ𝑟𝑀−2
0 −ℎ𝑟𝑀−1 −ℎ𝑟𝑀−1 ⋅ 𝑏 − ℎ𝑟𝑀−1 𝑎 − ℎ𝑟𝑀−1

0 0 0 ⋅
1

ℎ
−
ℎ + 1

ℎ ]
 
 
 
 
 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

 

and  

𝐵 =

[
 
 
 
 
 
 
 
 
0 0 0 0 ⋅ 0 0 0
0 𝑐 0 0 ⋅ 0 0 0
0 0 𝑐 0 ⋅ 0 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 0 ⋅ 𝑐 0 0
0 0 0 0 ⋅ 0 𝑐 0
0 0 0 0 ⋅ 0 0 0]

 
 
 
 
 
 
 
 

(𝑀+1)×(𝑀+1)

, 

𝑎 = −
1

ℎ2
, 𝑏 =

𝑖

𝜏
+
2

ℎ2
+ 1, 𝑐 = −

𝑖

𝜏
, 

𝜑𝑛
𝑘 =

[
 
 
 
 
 
𝑒−𝑖𝑡𝑘

𝜑1
𝑘

⋮
𝜑𝑀−1
𝑘

1

2
𝑒−𝑖𝑡𝑘]

 
 
 
 
 

(𝑀+1)×1

, 

𝑤𝑘 =

[
 
 
 
 
 
𝑤0
𝑘

𝑤1
𝑘

⋮
𝑤𝑀−1
𝑘

𝑤𝑀
𝑘 ]

 
 
 
 
 

(𝑀+1)×1

. 

In the second step, we will find {𝜂𝑘}𝑘=0
𝑁 , {𝑝𝑘}𝑘=1

𝑁  by formulas (5.36) and (5.37). In 

the third step, we will find {{𝑢𝑛
𝑘}𝑘=0
𝑁 }𝑛=0

𝑀  by formulas (5.33) and (5.34). The errors are 

computed by formulas (5.13) and (5.14). Numerical solutions of 𝑢(𝑡, 𝑥) at (𝑡𝑘, 𝑥𝑛) is 

𝑢𝑛
𝑘 and of 𝑝(𝑡) at 𝑡𝑘  is 𝑝𝑘 . The results of numerical experiments for problem (5.31) 

are provided in Table 5.2.5. As it is seen in Table 5.2.5, if 𝑀 and 𝑁 are multiplied by 

2, the value of errors decreases approximately 1/2 for the DS. This shows that it has 

the first order of accuracy. 
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Table 5.2.3 

The errors between the exact and the numerical solutions of (5.31) for different values 

of 𝑁 and 𝑀  

𝐸𝑟𝑟𝑜𝑟                 𝑀 = 𝑁 = 20                 𝑀 = 𝑁 = 40                𝑀 = 𝑁 = 80 

 𝐸𝑝                          0.0341                             0.0171                            0.0085 

 𝐸𝑢                          0.055                                0.0028                           0.0014 
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CHAPTER VI 

Conclusion 

1. The history of direct and inverse boundary value problems for SIPs are 

studied. 

2.  Fourier series, Laplace transform and Fourier transform methods are 

applied for the solution of six identification problems for SIPs. 

3.  The stability of the time-dependent SIP for the SE in a Hilbert space 

with the self-adjoint positive definite operator is established. 

4. First and second order of accuracy single step difference schemes for the 

numerical solution of this time-dependent SIP are presented. The absolute 

stability of these difference schemes is established. 

5. Applications, five time-dependent SIPs for SEs are studied. 

Stability estimates are created for the solution of these SIPs and their 

difference schemes for the numerical solution of the time-dependent SIPs for 

SEs are obtained. 
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Appendices 

Appendix A 

Matlab Implementation of One Dimension First Order of Accuracy Difference 

Schemes of Problem (5.2.1)  

function(Nonlocal condition) 

clear all; close all; 

N=40; 

M=40; 

i=sqrt(-1); 

h=pi/M; 

tau=1/N; 

a=-1/(2*h^2); 

b=(i/tau)+(1/h^2)+0.5; 

c=-i/tau+1/(h^2)+0.5; 

d=0; 

for m=1:M 

d=d+sin(2*m*h); 

end 

for m=1:M   z(m)=(sin(2*m*h)*((1-cos(2*h))/(h^2)+0.5)+0.5)/(pi+d*h); 

end 

A=zeros(M+1,M+1); 

B=zeros(M+1,M+1); 

A(1,1)=1; 

A(1,M+1)=-1; 

A(M+1,1)=1; 

A(M+1,2)=-1; 

A(M+1,M)=-1; 

A(M+1,M+1)=1; 

for m=2:M 

A(m,m)=b; 

A(m,m-1)=a; 

A(m,m+1)=a; 

B(m,m)=c; 

B(m,m-1)=a; 
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B(m,m+1)=a; 

end 

for m=2:M 

temp=h*z(m-1); 

for j=2:M+1 

A(m,j)=A(m,j)-temp; 

B(m,j)=B(m,j)-temp; 

end 

end 

W=zeros(M+1,N+1); 

fii=zeros(M+1,N+1); 

for j=1:M+1 

x=(j-1)*h; 

W(j,1)=1+sin(2*x); 

end 

for k=2:N+1 

for j=2:M 

x=(j-1)*h; 

t=(k-1)*tau; 

fii(j,k)=-(pi*z(j-1))*(exp(i*t)+exp(i*(t-tau))) 

+(3*sin(2*x)-1)*exp(i*(t-tau/2)); 

end 

W(:,k)=A\(-B*W(:,k-1)+fii(:,k)); 

end 

eta(1)=0; 

for k=2:N+1 

S=0; 

for j=2:M+1 

S=S+W(j,k); 

end 

S=S*h; 

t=(k-1)*tau; 

eta(k)=(S-pi*exp(i*t))/(i*(pi+d*h)); 

end 
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for k=1:N 

r(k)=(eta(k+1)-eta(k))/tau; 

end 

u=zeros(M+1,N+1); 

for k=1:N+1 

for j=1:M+1 

x=(j-1)*h; 

u(j,k)=W(j,k)-i*eta(k)*(1+sin(2*x)); 

end 

end 

Exact Solution of this PDE 

for k=1:N 

t=(k-1/2)*tau; 

ep(k)=exp(i*t); 

end; 

for j=1:M+1 

for k=1:N+1 

t=(k-1)*tau; 

x=(j-1)*h; 

eu(j,k)=exp(i*t)*(1+sin(2*x)); 

end; 

end; 

for k=1:N+1 

for j=1:M+1 

t=(k-1)*tau; 

x=(j-1)*h; 

ew(j,k)=(2*exp(i*t)-1)*(1+sin(2*x)); 

end; 

end; 

Absolute Differences 

absdiffw=max(max(abs(ew-W))) 

absdiffp=max(abs(ep-r)) 

absdiffu=max(max(abs(eu-u)) 

 



   110 
 

 
 

Appendix B 

 Matlab Implementation of One Dimension Second Order (Crank-Nicolson) of 

Accuracy Difference Schemes of Problem (5.2.1) 

function(Nonlocal condition) 

clear all; close all; 

N=40; 

M=40; 

i=sqrt(-1); 

h=pi/M; 

tau=1/N; 

a=-1/(2*h^2); 

b=(i/tau)+(1/h^2)+0.5; 

c=-i/tau+1/(h^2)+0.5; 

d=0; 

for m=1:M 

d=d+sin(2*m*h); 

end 

for m=1:M 

z(m)=(sin(2*m*h)*((1-cos(2*h))/(h^2)+0.5)+0.5)/(pi+d*h); 

end 

A=zeros(M+1,M+1); 

B=zeros(M+1,M+1); 

A(1,1)=1; 

A(1,M+1)=-1; 

A(M+1,1)=1; 

A(M+1,2)=-1; 

A(M+1,M)=-1; 

A(M+1,M+1)=1; 

for m=2:M 

A(m,m)=b; 

A(m,m-1)=a; 

A(m,m+1)=a; 

B(m,m)=c; 

B(m,m-1)=a; 
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B(m,m+1)=a; 

end 

for m=2:M 

temp=h*z(m-1); 

for j=2:M+1 

A(m,j)=A(m,j)-temp; 

B(m,j)=B(m,j)-temp; 

end 

end 

W=zeros(M+1,N+1); 

fii=zeros(M+1,N+1); 

for j=1:M+1 

x=(j-1)*h; 

W(j,1)=1+sin(2*x); 

end 

for k=2:N+1 

for j=2:M 

x=(j-1)*h; 

t=(k-1)*tau; 

fii(j,k)=-(pi*z(j-1))*(exp(i*t)+exp(i*(t-tau)))+(3*sin(2*x)-1)*exp(i*(t-tau/2)); 

end 

W(:,k)=A\(-B*W(:,k-1)+fii(:,k)); 

end 

eta(1)=0; 

for k=2:N+1 

S=0; 

for j=2:M+1 

S=S+W(j,k); 

end 

S=S*h; 

t=(k-1)*tau; 

eta(k)=(S-pi*exp(i*t))/(i*(pi+d*h)); 

end 

for k=1:N 
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r(k)=(eta(k+1)-eta(k))/tau; 

end 

u=zeros(M+1,N+1); 

for k=1:N+1 

for j=1:M+1 

x=(j-1)*h; 

u(j,k)=W(j,k)-i*eta(k)*(1+sin(2*x)); 

end 

end 

Exact Solution Of This Pde 

for k=1:N 

t=(k-1/2)*tau; 

ep(k)=exp(i*t); 

end; 

for j=1:M+1 

for k=1:N+1 

t=(k-1)*tau; 

x=(j-1)*h; 

eu(j,k)=exp(i*t)*(1+sin(2*x)); 

end; 

end; 

for k=1:N+1 

for j=1:M+1 

t=(k-1)*tau; 

x=(j-1)*h; 

ew(j,k)=(2*exp(i*t)-1)*(1+sin(2*x)); 

end; 

end; 

Absolute Differences  

absdiffw=max(max(abs(ew-W))) 

absdiffp=max(abs(ep-r)) 

absdiffu=max(max(abs(eu-u))) 
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Appendix C 

Matlab Implementation of One Dimension First Order of Accuracy Difference 

Schemes of Problem (5.2.2) 

function(Drichlet condition) 

clear all; 

close all; 

N=80; 

M=80; 

i=sqrt(-1); 

h=pi/M; 

tau=1/N; 

a=(i/tau)+(2/h^2)+1; 

b=-i/tau; 

c=-1/(h^2); 

A=zeros(M+1,M+1); 

for m=2:M 

for j=2:M 

A(m,j)=-h/pi; 

end 

end 

for m=2:M 

A(m,m)=a-(h/pi); 

end 

for m=2:M-1 

A(m,m+1)=c-(h/pi); 

end 

for m=3:M 

A(m,m-1)=c-(h/pi); 

end 

A(1,1)=1; 

A(1,M+1)=-1; 

A(2,1)=c; 

A(M,M+1)=c; 

A(M+1,1)=1; 
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A(M+1,2)=-1; 

A(M+1,M+1)=1; 

A(M+1,M)=-1; 

B=zeros(M+1,M+1); 

for n=2:M 

B(n,n)=b; 

end 

B; 

W=zeros(M+1,N+1); 

fii=zeros(M+1,N+1); 

for j=1:M+1 

x=(j-1)*h; 

W(j,1)=sin(2*x)+1; 

end 

for k=2:N+1 

for j=2:M 

x=(j-1)*h; 

t=(k-1)*tau; 

fii(j,k)=exp(i*t)*(-2+4*sin(2*x)); 

end 

W(:,k)=A\(-(B*W(:,k-1))+fii(:,k)); 

end 

eta(1)=0; 

for k=2:N+1 

S=0; 

for j=2:M+1 

S=S+W(j,k); 

end 

S=S*h; 

t=(k-1)*tau; 

eta(k)=(S-pi*exp(i*t))/(i*pi); 

end 

for k=2:N 

p(k)=(eta(k)-eta(k-1))/tau; 
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end 

u=zeros(M+1,N+1); 

for k=1:N+1 

for  j=1:M+1 

u(j,k)=W(j,k)-i*eta(k); 

end 

end 

Exact Solution Of This Pde 

for k=2:N 

t=(k-1)*tau; 

ep(k)=exp(i*t); 

end; 

for j=1:M+1 

for k=1:N+1 

t=(k-1)*tau; 

x=(j-1)*h; 

eu(j,k)=exp(i*t)*(1+sin(2*x)); 

end; 

end; 

for k=1:N+1 

for j=1:M+1 

t=(k-1)*tau; 

x=(j-1)*h; 

es(j,k)=-1+exp(i*t)*(2+sin(2*x)); 

end; 

end; 

Absolute Differences  

absdiffW=max(max(abs(es-W))) 

absdiffp=max(abs(ep-p)) 

absdiffu=max(max(abs(eu-u))) 
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Appendix D 

Matlab Implementation of One Dimension First Order of Accuracy Difference 

Schemes of Problem (5.2.3)  

function (Neumann condition) 

clear all; 

close all; 

N=20; 

M=20; 

i=sqrt(-1); 

h=pi/M; 

tau=1/N; 

a=-1/(h^2); 

b=(i/tau)+(2/h^2)+1; 

c=-i/tau; 

d=0; 

for m=1:M 

d=d+cos(2*m*h); 

end 

for m=1:M 

r(m)=(2*cos(2*m*h)*((cos(2*h)-1)/h^2-0.5)-1)/(pi+h*d); 

end 

A=zeros(M+1,M+1); 

B=zeros(M+1,M+1); 

A(1,1)=-1; 

A(1,2)=1; 

A(M+1,M)=-1; 

A(M+1,M+1)=1; 

for m=2:M 

A(m,m)=b; 

A(m,m-1)=a; 

A(m,m+1)=a; 

B(m,m)=c; 

end 

for m=2:M 
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temp=h*r(m); 

for j=2:M+1 

A(m,j)=A(m,j)+temp; 

end 

end 

v=zeros(M+1,N+1); 

fii=zeros(M+1,N+1) 

for j=1:M+1 

x=(j-1)*h; 

v(j,1)=1+cos(2*x); 

end 

for k=2:N+1 

for j=2:M 

x=(j-1)*h; 

t=(k-1)*tau; 

fii(j,k)=(pi*r(j-1)+3*cos(2*x)-1)*exp(i*t); % r(j-1) 

end 

v(:,k)=A\(-B*v(:,k-1)+fii(:,k)); 

end 

eta(1)=0; 

for k=2:N+1 

S=0; 

for j=2:M+1 

S=S+v(j,k); 

end 

S=S*h; 

t=(k-1)*tau; 

eta(k)=(S-pi*exp(i*t))/(i*(pi+d*h)); 

end 

eta(1)=0; 

for k=2:N 

p(k)=(eta(k)-eta(k-1))/tau; 

end 

u=zeros(M+1,N+1); 
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for k=1:N+1 

for j=1:M+1 

x=(j-1)*h; 

u(j,k)=v(j,k)-i*eta(k)*(1+cos(2*x)); 

end 

end 

Exact Solution Of This Pde 

for k=2:N 

t=(k-1)*tau; 

ep(k)=exp(i*t); 

end; 

for j=1:M+1 

for k=1:N+1 

t=(k-1)*tau; 

x=(j-1)*h; 

eu(j,k)=exp(i*t)*(1+cos(2*x)); 

end; 

end; 

for k=1:N+1 

for j=1:M+1 

t=(k-1)*tau; 

x=(j-1)*h; 

ev(j,k)=(exp(i*t)+exp(i)-1)*(1+cos(2*x)); 

end; 

end; 

Absolute Differences 

absdiffw=max(max(abs(ev-v))) 

absdiffp=max(abs(ep-p)) 

absdiffu=max(max(abs(eu-u))) 
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Appendix E 

Matlab Implementation of One Dimension First Order of Accuracy Difference 

Schemes of Problem (5.2.4)  

function (Robin condition) 

clear all; 

close all; 

N=20; 

M=20; 

i=sqrt(-1); 

h=pi/M; 

tau=1/N; 

b=-1/(h^2); 

a=-i/tau; 

c=(i/tau)+(2/h^2); 

d=0; 

for m=1:M 

d=d+cos(m*h/2); 

end 

for m=2:M+1 

r(m)=(2/(d*h^2))*(cos(m*h/2)*(cos(h/2)-1)); 

end 

r; 

A=zeros(M+1,M+1); 

for m=2:M+1 

for j=2:M 

A(m,j)=r(m); 

end 

end 

for m=2:M 

A(m,m)=c+h*r(m); 

end 

for m=2:M-1 

A(m,m+1)=b+h*r(m); 

end 
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for m=3:M-1 

A(m,m-1)=b+h*r(m); 

end 

A; 

A(1,1)=1+1/h; 

A(1,2)=-1/h; 

A(2,1)=b; 

A(M,M+1)=b; 

A(M+1,M-1)=-1/h; 

A(M+1,M+1)=1+1/h; 

B=zeros(M+1,M+1); 

for m=2:M 

B(m,m)=a; 

end 

W=zeros(M+1,N+1); 

fii=zeros(M+1,N+1); 

for j=2:M+1 

x=(j-1)*h; 

W(j,1)=cos(x/2); 

end 

for k=1:N+1 

t=(k-1)*tau; 

fii(1,k)=exp(-i*t); 

fii(M+1,k)=-0.5*exp(-i*t); 

end 

for k=2:N+1 

for j=2:M+1 

x=(j-1)*h; 

t=(k-1)*tau; 

fii(j,k)=(r(m)/(h)+1.25*cos(x/2))*exp(-i*t); 

end 

W(:,k)=A\(-B*W(:,k-1)+fii(:,k)); 

end 

eta(1)=0; 
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for k=2:N+1 

S=0; 

for j=2:M+1 

S=S+W(j,k); 

end 

S=S*h; 

t=(k-1)*tau; 

eta(k)=(S-2*exp(-i*t))/(i*d*h); 

end 

eta(1)=0; 

for k=2:N+1 

p(k)=(eta(k)-eta(k-1))/tau; 

end 

u=zeros(M+1,N+1); 

for k=1:N+1 

for  j=1:M+1 

x=(j-1)*h; 

u(j,k)=W(j,k)-i*eta(k)*(cos(x/2)); 

end 

end 

Exact Solution Of This Pde 

for k=2:N+1 

t=(k-1)*tau; 

ep(k)=exp(-i*t); 

end; 

for j=2:M+1 

for k=2:N+1 

t=(k-1)*tau; 

x=(j-1)*h; 

eu(j,k)=exp(-i*t)*cos(x/2); 

end; 

end; 

for k=1:N+1 

for j=1:M+1 
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t=(k-1)*tau; 

x=(j-1)*h; 

es(j,k)=(exp(-i*t)+exp(-i*t)-1)*(cos(x/2)); 

end; 

end; 

Absolute Differences 

absdiffu=max(max(abs(es-W))) 

absdiffp=max(abs(ep-p(k))) 

absdiffu=max(max(abs(eu-u))) 
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