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Abstract
Time-dependent source identification problem for Schrodinger differential and
difference equation
Uriin, Mesut
PhD Thesis, Department of Mathematics
Supervisor: Prof. Dr. Allaberen Ashyralyev
June, 2022, (128) pages

In the present thesis, the time-dependent source identification problem for the
Schrodinger equation is investigated.
The stability of the time-dependent source identification problem for the Schrodinger
equation in a Hilbert space with the self-adjoint positive definite operator is
established. In practice, theorems on stability estimates for the solution of five types of
time-dependent source identification problems for one-dimensional and
multidimensional Schrédinger equations with local and nonlocal boundary conditions
are proved. The absolute stable difference schemes for the approximate solutions of
this time-dependent abstract source identification problem are presented. The stability
of these difference schemes are established. In applications, stability estimates for the
solution of difference schemes for the approximate solutions five types of
time-dependent source identification problems for Schrédinger equations are
obtained. Numerical results for the first and second-order of accuracy difference
schemes of the approximate solution of one-dimensional time-dependent source
identification problem for Schrodinger equations with nonlocal, Dirichlet, Neumann,
and Robin conditions are provided.
Key Words: Schrodinger equation; Source identification problem; Hilbert spaces;
Nonlocal conditions; Neumann conditions; Dirichlet conditions; Robin conditions;

Stability; Difference Schemes.



Ozet
Schrodinger Diferansiyel ve Fark Denklemi i¢cin Zamana Bagh Kaynak
Tanimlama Problemi
Uriin, Mesut
Doktora Tezi, Matematik Anabilim Dal
Damsman: Prof. Dr. Allaberen Ashyralyev
Haziran, 2022, (128) sayfa
Bu tezde, Schrodinger denklemi i¢in zamana bagli kaynak tanimlama
problemi incelenmistir.
Schrodinger denklemi i¢in zamana bagli kaynak tanimlama probleminin bir Hilbert
uzaymnda kendine eslenik pozitif tanimli operatdr ile kararliligi kurulmustur.
Uygulamada, yerel ve yerel olmayan sinir kosullar ile tek boyutlu ve ¢cok boyutlu
Schrodinger denklemi i¢in zamana bagli bes tiir kaynak tanimlama probleminin
¢Oziimi i¢in kararhilik tahminleri {izerine teoremler kanitlanmistir. Bu zamana bagh
soyut kaynak tanimlama probleminin yaklasik ¢éziimleri i¢in mutlak kararli fark
semalar1 sunulmaktadir. Bu fark semalarinin kararliligi kurulmustur.
Uygulamalarda, Schrodinger denklemi i¢in zamana bagl bes tiir kaynak tanimlama
probleminin yaklasik ¢ozlimleri i¢in fark semalarmin kararlilik tahminleri elde
edilmistir. Yerel ve yerel olmayan olmayan, Dirichlet, Neumann ve Robin simir
kosullariyla Schrodinger denklemleri i¢in bir boyutlu zamana bagli kaynak tanimlama
probleminin yaklasik ¢6ziimiiniin birinci ve ikinci mertebeden dogruluk fark semalar1
icin sayisal sonuglar verilmistir.
Anahtar Kelimeler: Schrodinger Denklemi; Kaynak Tanimlama Problemi, Hilbert
Uzay1; Lokal Olmayan Sinir Sartlari; Neumann sinir Sartlari; Dirichlet Sinir Sartlart;

Robin Smir Sartlari; Kararhilik; Fark Semasi.



Table of Contents

APPIOVALL ... 1
DECIAIALION ...ttt 2
ACKNOWIEAGMENTS ... 3
ADSTTACT ... 4
(075, ST SRR 5
LISE OF TADIES.....eieeee e 9
List of Abbreviations and SYmbOIS ...........ccccoiiiiiiiii 10
CHAPTER |
INEFOTUCTION ..ottt 11
1.1 Historical Note and Literature SUIVEY..........cocveiiieriiienie e 11
1.2 Layout Of the Present ThESIS.......cuviiiiieeiiieeciie e sse e 16
1.3 Basic Concept and Definitions..........cccveiieeeiiieeiiie e 17
1.3.1 Sturm-Liouville Problem (Arfken, Weber, 2005) ..........cccccviviveeiiiirennnen. 17
1.3.2 Fourier Series (Brown, Churchyll, 1993) ..........cccooe i, 19
1.3.3 Laplace Transform (Franklyn,1 949)...........cccooveiiiiiiiiie e 19
1.3.4 Fourier Transform (Bracewell, 1999)..........cccooveiviviiiiii e 20
CHAPTER II

Integral Transform Methods Of The Time-Dependent Source Identification Problem

For Schrodinger Differential EQUAtioNS...........ovveiiiiiiiiiiiiiie e 21
2.1 INEFOTUCTION. ...ttt 21
2.2 Fourier SErieS Method ..........ocuviiiiiiiieiec e 21
2.3 The LaplaceTransform SOIUtION ..........ccccoiiviiiiic e 28

2.4 The Fourier Transform SOIUTION .......covneeeeee e 32



CHAPTER IlI

Stability Of The Time-Dependent Source Identification Problems For Schrodinger

EQUALTTONS ...t 35
B L INTrOAUCTION. ...t 35
3.2 AuXiliary STAtEMENTS ........oiiiiiiii s 35

3.2.1 Banach and Hilbert SPaceS .........cccvuiiiiiieiiiiie e 35
3.2.2 Linear Operators: Boundedness, Norm of Operator ...........ccccocvevvennenne 36
3.2.3 Linear Positive Operators in a Hilbert Space...........cccccoovvviiiiiiiiiennnn, 36

3.2.4 Operator-Function Generated by the Positive Operators in a Hilbert Space

........................................................................................................................ 41

3.2.5 Banach Fixed-Point Theorem and Its Applications ............ccccocceevvenneene. 41

3.3 The Main Theorem On Stability .........ccoveiiiieiii e 44

3.3.1 The Well-Posedness of Differential Problem (3.29) .........cccoveviivevinnnne, 45

B0 N o] o] o= [0 TSR SPRR SR 50
CHAPTER IV

Stability Of Difference SChemMES ..........ccvviiiiiiiiii e 578

A1 INTFOTUCTION. ...ttt 578

4.2 Auxiliary StateMENTS........cocvveiiiie e 578

4.3 The First Order of Accuracy Difference Scheme .........c.ccocovevieiiiie e, 578

4.4 The Second Order of Accuracy Difference Scheme.........ccccocvvveeiiieeiiieceen, 57
CHAPTER V

NUMEFICAl EXPEIIMENTS......oiiiiiie ittt e e aana e 80

1 INErOUUCTION ...t 80

2 NUMEIICAI RESUILS ...t e e e naans 80



5.2.1 Time-Dependent SIP with Nonlocal Conditions...........ccccoccveeviiireniennne 80
5.2.2 Time-Dependent SIP with Dirichlet Condition.............cccooveiiiiiieninnnne. 85
5.2.3 Time-Dependent SIP with Neumann Condition ...........ccccccccvveviireninnnne 88
5.2.4 Time-Dependent SIP with Robin Condition...........cccccoooiviiiiiiiiiennn, 883
CHAPTER VI
CONCIUSTON. ...ttt et 95
RETEIBINCES ...ttt 96
AAPPENTICES ...ttt ettt ettt ettt 107

Appendix A: Matlab Implementation of One Dimension First Order of Accuracy
Difference Schemes of Problem (5.2.1) ....oooiiiiiiiiiiiee e 107

Appendix B: Matlab Implementation of One Dimension Second Order

(Crank-Nicolson) of Accuracy Difference Schemes of Problem (5.2.1)................. 110

Appendix C: Matlab Implementation of One Dimension Second Order
(Crank-Nicolson) of Accuracy Difference Schemes of Problem (5.2.2)............... 1104

Appendix D: Matlab Implementation of One Dimension First Order of Accuracy
Difference Schemes of Problem (5.2.3) . ..cccviiiiiieiiiie e 116

Appendix E: Matlab Implementation of One Dimension First Order of Accuracy

Difference Schemes of Problem (5.2.4) .....cccveiiii it 119
Appendix F: Near East UNIVEISITY.........cccoviiiiiie i 123
Appendix G: Turnitin Similarity REPOIt...........cccovveiiiie i 124

APPENTIX H: (CV) 1t sra e e area e 125



LIST OF TABLES
Table 5.2.1: Error Analysis for Difference Scheme (5.1)....ccccccovvviiniiiininnennene 87
Table 5.2.2: Error Analysis for Difference Scheme (5.1).......ccccoevviiniieiinicennne. 87
Table 5.2.3: Error Analysis for Difference Scheme (5.15).......cccccceevinciinecnnne. 90
Table 5.2.4: Error Analysis for Difference Scheme (5.23).......ccccocvviiniiinicnnnn. 93

Table 5.2.5: Error Analysis for Difference Scheme (5.31)......ccccocvviiiniviinicennnn. 96



List of Abbreviations and Symbols

SIP Source Identification Problem
SIPs Source Identification Problems
PDE Partial Differential Equation
PDEs Partial Differential Equations

DS Difference Scheme

DSs Difference Schemes

SE Schrodinger Equation

SEs Schrodinger Equations

IVP Initial Value Problem

E, Error function defined by formula

1
E, = max (%3l lu(t, x) — ug|*h)z,
k€eO,N
p Error function defined by formula

B, = max [p(©) - pi (*2))|

10



11

CHAPTER |

Introduction

1.1 Historical Note and Literature Survey
A special case of the Schrodinger equation that admits a statement in those
terms are the position-space Schrodinger equation for a single nonrelativistic particle

in one dimension:

. O¥ h? &2
ih—=| ———+V(t,X) |P(t, X
ot {Zmax2 ( )}( )

Here, W (x,t) is a wave function, a function that assigns a complex number to each

point X ateach time t. The parameter m is the mass of the particle, and V (X,t) is

the potential that represents the environment in which the particle exists. The constant
i is the imaginary unit, and h is the reduced Planck constant, which has units of
action. It shows that behavior of wave functions and their variation in space and time.
It is named after Erwin Schrodinger, who proposed the equation in 1925 and published
it in 1926, and formed the basis of the work that later won the Nobel Prize in Physics in
1933 (Schrodinger, 1926a,1926b).

The Schrodinger type equation has many applications such as natural
sciences, engineering sciences. The mathematical modeling of many problems in
physics, such as quantum mechanics, diffusion equations, heat transfer, quantum
physics, and the propagation of sound under water, is based on partial differential
equations similar to the Schrodinger equations (Agmon, 1970, 1981; Aguilar &
Combes, 1971; Aizenman & Lieb, 1978; Avron & Herbst, 1977; Aizenman & Simon,
1982a, 1982b; J. Avron, Herbst & Simon, 1978; Brdzis & Kato, 1979; Eskin &
Ralston, 1995; Burnham et al., 2020; Ita et al., 2020; Biondini, Lottes & Mantzavinos,
2021; Osman et al.,, 2021; Zzhi, 2021). The Schrodinger equation has many
technological applications. For example, in modeling quantum devices,
electromagnetic wave propagation, underwater acoustics, optics, beam propagation in
nonlinear Kerr medium, two-dimensional Schrodinger equation is widely used in
modeling problems encountered in relativistic physics or plasmas (Arnold, 1998;
Shang et al., 2014; Tappert, 1977; Mayfield, 1989; Manganaro & Parker, 1993;
Kopylov, Popov & Vinogradov, 1995a, 1995b). Some of recent studies on the

Schrodinger equation are the following. Local and nonlocal problems in the
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Schrodinger equation have been extensively studied by many researchers (Antoine,
Besse & Mouysset, 2004, 2005; Gordeziani & Awvalishvili, 2000; Avalishvili,
Avalishvili & Gordeziani, 2005; Avalishvili & Avalishvili, 2014; Awvalishvili,
Avalishvili & Gordeziani, 2011; Xu, Han & Wu, 2007).

The numerical method for partial differential equations is an effective method
in scientific computation. It is not easy to obtain a numerical solution using classical
first and second order difference schemes unless many nodes are used. A reasonable
way to overcome this disadvantage of classical difference schemes is to design a
highly compact finite difference scheme, since the computational overhead will be
quite high. The fourth-order compact difference scheme for the linear Schrodinger
equation with periodic boundary conditions over a limited region was discussed by Lio
and Sun, and by applying the energy method with certain Sobolev embedding
inequalities, maximum norm error estimations of the solutions were obtained (Lin
Liao, Zhong Sun & Shi, 2010; Liao, Sun, Shi & Wang, 2012; Bratsos, 2010). Proposed
two high-order compact finite difference schemes for the one-dimensional nonlinear
Schrodinger equation and showed discrete L, norm error estimations and
convergence speed (Xie, Li Sucheol-Yi, 2009). For the two-dimensional Schrédinger
equation, Gao and Xie created fourth-order vari-directional closed compact difference
schemes and analyzed the degree of convergence of the schemes (Gao and Xie, 2011).

In the PhD Thesis (Sirma, 2007), the nonlocal boundary value problem

i M Au=f@)0<t<T,
ot

W) = Y u(4) + 0,

O< A <A <AL.<AELT

for the Schrodinger equation in a Hilbert space H with the self-adjoint operator A
was considered. Stability estimates for the solution of this problem were established.
Two nonlocal boundary value problems were investigated. The first and second order
of accuracy difference schemes for the approximate solutions of this nonlocal
boundary value problem were presented. The stability of these difference schemes was
established. In practice, stability inequalities for the solutions of difference schemes
for the Schrodinger equation were obtained. A numerical method was proposed to

solve a one-dimensional Schrodinger equation with nonlocal boundary condition. A
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procedure involving the modified Gauss elimination method was used to solve these
difference schemes. The method is illustrated by giving numerical examples. These
and other results of this subject were published in papers (Sirma, 2007; Ashyralyev &
Sirma 2008, 2009b, 2009a).

In the PhD Thesis (Hicdurmaz, 2015), the initial value problem
t

i1, + Au + f Y (s)DEu(s)ds = F(6), t € (0.1),
0

u(0) =0

for the fractional Schrodinger equation in a Hilbert space H with the self-adjoint
operator A was considered.The stability estimates for the solution of the problem and
its first order of derivative were established. In practice, one-dimensional fractional
Schrodinger  differential equation with nonlocal boundary conditions and
multidimensional fractional Schrodinger differential equation with the Dirichlet
condition were considered. The stability estimates for the solutions of these problems
were established. The first order of accuracy difference scheme for approximate
solution of this equation was presented. The stability of this difference scheme was
established. In applications, the stability estimates for the solutions of difference
schemes of the fractional Schrodinger problems were established. These and other
results for this subject were published in papers (Ashyralyev, Hicdurmaz, 2011, 2012)

Fractional nonlinear Schrodinger equation was studied by Rida, El-Sherbiny
and Arafa, 2007; In these studies, the Adomian decomposition method in applied
mathematics was used and analytical and approximate solutions for different kinds of
fractional differential equations were investigated (Haydari & Atangana 2019;
Sweilam, Hassan & Hassan, 2017; Rida, Sherbiny & Arafa, 2008; Bhrawy, Zaky &
Abdelkawy, 2016; Bhrawy & Zaky, 2017; Abdel-Salam, Yousif & El-Aasser, 2016;
Asyralyev and Hicdurmaz, 2011, 2012b, 2012a 2016, 2017, 2018b, 2018a; Hicdurmaz
2019, 2020b, 2020a; Asyralyev & Hicdurmaz, 2021; Hicdurmaz, 2021).

The theory and applications of linear and nonlinear time-delayed Schrodinger
equations have been widely researched (Agirseven, 2018; Chen, Zhou & Zhao, 2010;
Guo & Shao, 2005; Guo & Yang, 2010, 2010a; Wu, 1996; Zhao & Ge, 2011). The
existence, uniqueness and regularity properties, Strichartz type estimates for solution
of multipoint Cauchy problem for linear and nonlinear Schrodinger equations with

general elliptic leading part was obtained in papers (Shakhmurov, 2019, 2020, 2021a,
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2021b). Equation involves a involution of integral operators with a general kernel
operator functions whose Fourier transform are operator functions defined in a Hilbert
space H together with some growth conditions. By assuming enough smoothness on
the initial data and the operator functions, the local and global existence and
uniqueness of solutions are established. Shakhmurov can obtained a different classes
of nonlocal Schrodinger equations by choosing the space H and linear operators,
which occur in a wide variety of physical system. The theory and applications of linear
time-delay Schrodinger equation
iu; + Au(t) = bAv([t]),t € (0,0),

u(0) =¢

in a Hilbert space H with the self-adjoint operator A was studied in papers (Erkose,
2021; Agirseven,2018; Ashyralyev & Agirseven, 2019). Theorems on stability
estimates for the solution of this problem were established. The applications of
theorems for three types of Schrédinger problems were provided. The first and second
order of accuracy difference schemes for the approximate solutions of this abstract
problem were presented. The theorem on stability estimates for the solutions of these
difference schemes was established. The application of theorems on stability of
difference schemes for the approximate solutions of the initial boundary value
problems for Schrodinger partial differential equation was provided. Additionally,
some illustrative numerical results were presented.

Identification problems take an important place in applied sciences and

engineering applications and have been studied by many authors (see, Kabanikhin,
2004, 2011; Belov, 2002; Gryazin, Klibanov and Lucas, 1999). The theory and
applications of source identification problems for partial differential equations have
been given in various papers (Erdogan & Ashyralyev, 2014; Ashyralyev & Prenov,
2014; Ashyralyev & Sazaklioglu, 2014; Kostin, 2013;
Choulli & Yamamoto, 1999; Ashyralyev & Emharab, 2019; Ashyralyev &
Sazaklioglu, 2017; Saitoh, Tuan, & Yamamoto, 2002; Ivanchov, 1995; Samarskii &
Vabishchevich, 2008; Borukhov & Vabishchevich, 2000; Blasio & Lorenzi, 2007;
Ashyralyev, Erdogan & Sazaklioglu, 2019).
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The theory and applications of space dependent identification problem for
Schrodinger equation

ius + Au(t) = f(t) + p,t € (0,7),

u(0) = o, u(T) =¢,t €[0,T]

in a Hilbert space H with the self-adjoint operator A was studied in papers
(Ashyralyev et al., 2019; Ashyralyev and Urun, 2013a, 2013b, 2014; Urun, 2013). The
well-posedness of this problem was established. The stability inequalities for the
solution of two boundary value problems for the Schrodinger’s equation with
unknown parameter were obtained. The first and second order of accuracy stable
difference schemes for the approximate solution this problem were presented. The
well-posedness of these difference schemes was established. Numerical techniques
were developed and algorithms were tested on an example.

In the present thesis, we investigate the time-dependent source identification

problem for Schrédinger differential equation

i‘;—j +Au(®) = p(©q + f(©),t € (0,T),
(1.1)

u(0) = ¢, Blu@®] =¢@®),[0,T]
in a Hilbert space H with the with self-adjoint positive definite operator A with
dense domain D(A) in H.Here B:H — R is a given linear bounded functional and
Y(t):[0,T] = R is a given smooth function and € D(A), Bq #0.

The stability of the differential problem is established. In applications,
theorems on stability estimates for the solution of five types of time-dependent source
identification problems for Schrédinger equations are obtained. The first of them is the
time-dependent source problem for the one dimensional Schrédinger equation with
nonlocal conditions. The second of them is the time-dependent source problem for the
one dimensional Schrédinger equation with involution and Dirichlet conditions. The
third is the time-dependent source problem for the one dimensional Schrodinger
equation with Robin conditions. Two of them are the time-dependent source problems
for the multidimensional Schrédinger equation with Dirichlet and Neumann
conditions. The absolute stable difference schemes for the approximate solutions of
this time-dependent abstract source identification problem are investigated. The first
and second order of accuracy implicit and second order of accuracy r-modified

Crank-Nicolson difference schemes are presented. Stability of these difference
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schemes are established. In applications, theorems on stability estimates for the
solution of difference schemes for the approximate solutions five type of
time-dependent source identification problems for Schrodinger equations are
obtained. The first of them is the time-dependent source problem for the one
dimensional Schrédinger equation with nonlocal conditions. The second of them is the
time-dependent source problem for the one dimensional Schrodinger equation with
involution and Dirichlet conditions. The third is the time-dependent source problem
for the one dimensional Schrodinger equation with Robin conditions. Two of them are
the time-dependent source problems for the multidimensional Schrodinger equation
with Dirichlet and Neumann conditions.When the analytical methods do not work
properly, numerical methods to obtain approximate solutions for partial differential
equations play an important role in applied mathematics. We can say that there are
many considerable studies in the literature. In present section for the approximate
solution of one-dimensional time-dependent source identification problem for
Schrédinger equations with nonlocal, Dirichlet, Neumann, and Robin conditions, we
use the first and second order of accuracy difference schemes. The error analysis is
given. Presently, the time-dependent source identification problem for the fractional

Schrédinger type equation was investigated by (Ashurov & Shakarova in 2021, 2022).

1.2 Layout of the Present Thesis

Time-dependent source identification problem for the Schrédinger
differential and difference equation has not been investigated before. The main aim the
present thesis is a study of the boundedness solution of several time-dependent source
identification problem for the schrodinger differential and difference equation. This
thesis consists of six chapters.

The first chapter a historical note and literature survey.

The second chapter is to study of the time-dependent source identification
problems for several Schrodinger equations. Applying results of Chapter one Fourier
series, Laplace and Fourier transform methods, we obtain the exact solution of several
time-dependent source identification problems for Schrodinger equations.

In the thirth chapter, the main theorem on stability of the time-dependent
source identification problems is established. In applications of the main theorem,
stability estimates for the solutions of five type time-dependent source identification

problems for the Schrodinger equations with local and nonlocal conditions are
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obtained. (This chapter was published in TWMS J. Pure Appl. Math. Ashyralyev,
Urun, 2022).

In the fourth chapter, single-step absolute stable difference schemes for the
approximate solutions of source identication problem are presented. The main
theorems on stability of these difference schemes are established. In applications of
the main theorems, stability estimates for the solutions of difference schemes for the
approximate solutions of the five type of time-dependent source identification
problems for Schrodinger equations with local and nonlocal conditions are obtained.

In the fifth chapter, results of numerical experiments are provided with local
and nonlocal boundary contions, Dirihlet contions, Neumann conditions, Robin
conditions, (This chapter publishe in International Journal of Applied Mathematics
and Bulletin of the Karaganda University-Mathematics Ashyralyev,Urun 2021,
2021a).

Finally, in the sixth chapter, the conclusion is given.

1.3 Basic Concept and Definitions
1.3.1 Sturm-Liouville Problem (Arfken, Weber, 2005)

We denote the Sturm Liouville operator as

L[v]:—%[p(x)%}q(x)v

and consider the Sturm Liouville equation
L[v]+Av =0, (1.2)
where p>0 and p and q are continuous functions on the interval [0,1]
with local boundary conditions
a1v(0) + azp(0)v'(0) = 0; Byv(D) + Bp(Dv'(D) =0, (1.3)
where af +a’ #0 and g7+ B2 #0 or nonlocal boundary conditions
v(0)—v(1)=0,v (0)—v (1) =0, (1.4)
The problem of finding a complex number 4= such that the boundary

value problems (1.2), (1.3) or (1.2), (1.4) have a non trivial solution are called

Sturm-Liouville problems.

The value A=y is called an eigenvalue and the corresponding solution

y(X, ) is called an eigenfunction.
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We will consider three types of Sturm-Liouville problem.
1. The Sturm-Liouville Problem with Dirichlet Condition

“u () +Au(x)=0,0<x<1,u(0) =u(l)=0

has solution

u, (X) =sin %
and

2

In the case when | = ~

u, (x) = sin kx
and

A =—k*k=12,...
2. The Sturm-Liouville Problem with Neumann Condition
U (X)+Au(x)=0,0<x<lLu(0)=u()=0
has solution
u,(x) = cos%

and

A = (kl—”),k =0,1,2,...

In the case when | = ~

u, (x) = cos kx
and
A =-k2,k=01,2,....
3. The Sturm-Liouville problem with nonlocal conditions
“u () =) =00<x<lu©=ull),u ©=u ()
has solution

u, (x) = cos 2kx,k = 0,1,2,...
u,(x) =sin 2kx,k =1,2,...
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and
A =4k? k=012,....

1.3.2 Fourier Series (Brown, Churchyll, 1993)

Let | be a fixed number and f(X) be a periodic function with periodic 21,
defined on (-1,1). The Fourier series of f(X) is a way of expanding the function

f (x) into an infinite series involving sins and cosines :
f(x)= % +a, cos(#) +b, sin(@), (L5)
n=1 n=1

where a,, a, and b, called the Fourier coefficientes of f(X), are given by

these formulas
1 1 Nn7zX _
=1 [ fdx.a, =] 1(x) cos(= )N =12,..
and

b, = }J.I sin(n—ﬂx)dx,n =12,...
[ p

1.3.3 Laplace Transform (Franklyn,1 949)
Let f(t) be defined for to. The Laplace transform of f(t) denoted by F(S)

or L{f(t)}, isan integral transform given by the integral
F(s)=L{f(t)}= j f (t)e dt
0

provided that this (improper) integral exsists i.e that this integral is convergent.

The Laplace transform is operation that transforms a function of t (i.e a
function of time domain), defined on [0,] to a function of S (i.e of frequency
domain). The Laplace transform can be used in some cases to solve linear differential
equations with given initial conditions. F(S) is Laplace transform or simply
transform of f(t). Together the two functions f(t) and F(S) are called a Laplace

transform pair.
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1.3.4 Fourier Transform (Bracewell, 1999)
The Fourier transform of a function f = f(x) denoted by F(s) or F{f(x)},

is an integral transform given by the integral

F(s) = F{f(x)}= fwf (x)e *dx.
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CHAPTER I
Integral Transform Methods Of The Time-Dependent Source Identification

Problem For Schrodinger Differential Equations

2.1 Introduction

Time-dependent source identification problem for the Schrodinger equation have
the significant role in natural science, applied sciences, engineering, quantum
mechanics, diffusion equations, heat equations. Therefore, it is important to study
identification problem for the Schrédinger equation. Noted that time-dependent
identification problem for Schrodinger equations are not investigated. Therefore, the
main aim of chapter two is to study of the time-dependent source identification
problems for Schrodinger equations. Applying results of Fourier series, Laplace and
Fourier transform methods, we obtain the exact solution of several time-dependent

source identification problems for Schrédinger equations.

2.2 Fourier Series Method
We consider Fourier series method for solution of the time-dependent source
identification problems for Schrodingerequations with Dirichlet, Neumann and
nonlocal boundary conditions.
Problem 2.1. Obtain the Fourier series solution of the following time-dependent
source identification problem

i ou(t,x) du(t.x)
ot ox?

= p(t)sinx—e™"sinx,

xe(0,7),te(0,1), (2.1)

u(0,x)=sinx,x € [0, 7},

u(t,0)=u(t,z)= O,Lﬁu(t, x)dx = 2e",t €[0,1]

for a one-dimensional Schrodinger equation.
Solution. In order to solve this problem, we consider the Sturm-Liouville problem for
Dirichlet condition
—u"(x) + Au(x) = 0,u(0) = u(w) = 0,x € (0,7)
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generated by the space operator of problem (2.1). The solution of this Sturm-Liouville
problem is
A, = —k?u, () = sin(kx),k =1,2,3,....

Then we will obtain the Fourier series solution of problem (2.1) by formula
u(t,x) = ZAk (t)sin(kx). (2.2)
k=1

Here A, (t) are unknown functions. Applying this formula to the Schrodinger

equation and initial condition, we get

i[iAL (t) + (k* +1)]sin (kx) = p(t)sinx—e"sinx,

k=1
u(0,x) = iA( (0)sin(kx) = sin(x).
k=1
Moreover, using the integral condition, we get
j u(t, x)dx = J'ED%(Usm(bodx 2e'. (2.3)

Equating coefficients of sin(kx), k = 1,2,3,.. to zero, we get
A, (t) + k2A,(t) = 0,4,(0) =0,t € (0,1)
for k=2,3/4,... and
iAL(t) + A, (0) = p(t) — e, t € (0,1),4,(0) = 1 (2.9)
for k =1. Itisclearthat A (t) =0,k #1. From that and formula (2.3), we get

—A;(O)(-2) = 2e",

we obtain
AL(t) = e't. (2.5)
Putting A (t) =€" in the equation (2.4), we get
p(t)=e™

Applying obtaining formulas for A (t),k =1.2..., we can obtain the exact solution of
problem (2.2) by formulas

(u(t, x),p()) = (e sinx,e™).
Note that using similar procedure one can obtain the solution of the following

time-dependent source identification problem
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iut(t’x)_i(ar (X)uxr)xr = p(t)q(X)+ f(t’ X)’
0<t<T,x=(X,...X,) €,

u(0,x)= p(x),x€Q, (2.6)

u(t,x)=0,xeS,te[0,T]

J'...Iu(t,x)dxl...dxn =y (t),te0,T]

for the multidimensional Schrodinger equation with Dirichlet boundary condition can
be investigated. Here and in future Q@  R" be a bounded open domain with smooth
boundary s ,Q=QuUS. Under compatibility conditions problem (2.6) has a unique
solutio (u(t,x), p(t)) for the smooth functions

ft,x),(t,x) € (0,T) X Qa.(x)=a>0, p(x),xeQu(t),te[0,Tlg(x)=0,xeS

and I...J'q(x)dxl...dxn #0.
o

Problem 2.2. Obtain the Fourier series solution of the following time-dependent
source identification problem

: ou(t,x) &%ult,x)
ot ox?

+u(t, x) = p(t)(1+cosx)—e",
Xe (0, ﬂ'),t IS (0,1),

u(0,x)=1+cosx, x [0, 7 (2.7)

ou(t,0) _ aut, z)

= 0’
OX OX

J.:u(t, x)dx = ze",t €[0,1]

for a one-dimensional Schrodinger equation.
Solution. In order to solve the problem, we consider the Sturm-Liouville problem with
Neumann condition

—u"(x) + Au(x) = 0,u'(0) =u'(r) = 0,x € (0,m)



24

generated by the space operator of problem (2.7). It is easy to see that the solution of
this Sturm-Liouville problem is
A =—k?,u (x) = cos(kx),k =0,1,2,3,....

Therefore, we will seek solution U(t, X) using by the Fourier series

u(t,x) = iAk (t)cos(kx). (2.8)

Here A (t),k =0,1,2... are unknown functions. Putting (2.8) into the equation (2.7),

we obtain

SiA, (1) + (k* +1)]cos(kx) = p(t)1-+cosx)—e",
u(0.x) = iAK (0)cos(kx) =1+cos(x),

T _ T *© _ |t
L u(t, x)dx = L ;Ak (t)cos(kx) = ze".
Equating the coefficients of cos(kx), k = 0,1,2,3,4, ... to zero, we get
iA (t)+(k*+1)A () =0,te(0,1),

A0)=0
for k=2,34,...,
iAg(6) + Ap(8) = p(t) — e, 4,(0) = 1,¢ € (0,1)
for k =0 and
iA7(t) + A (t) = p(t),A,(0) =1,t € (0,1)

for k =1. It is easy that
Ay(t) = e, A (t) = 0,k = 2,34, ... (2.9)
Therefore,
p(t) = e". (2.10)
Then,we get the following Cauchy problem

iA' () + A,(t) = e¥, t € (0,1)
(2.11)

A,00) =1
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for the first order differential equation. It is clear that
At)=e". (2.12)
Applying the formula(8), we get u(t, x) = e"(1+cosx). Therefore, the exact solution
of problem (2.7) (u(t, x), p(t)) = (e" (1+cosx),e") .

Note that using similar procedure one can obtain the solution of the following
time-dependent source identification problem

0, (t,X)- 3@, 00u, ), +ut, ) = pE)al)+ f (t,x),

0<t<T,x=(X,...X,) €Q,

u(0,x)=p(x), x e Q, (2.13)

ou(t, x)

=0,xeS,te(0,T}],

j ju(t, x)dx,...dx, =y (t),t €[0,T]

xeQ
for the multidimensional Schrodinger equation with Neumann condition can be

investigated under compatibility conditions problem (2.13) and for the given smooth

functions f(t,x),(t,x)e(0,T)xQ,a,(x)>a>0,6>0, ¢(x),xeQw(t),t<[0,T]

q(x)=0,xeS and I....[q(x)dxi...danﬁo.

Here, P isthe normal vector tos .
Problem 2.3. Obtain the Fourier series solution of the following time-dependent
source identification problem

iau(t,x)_azu(t,x)

p " +u(t,x) = p(t)(1+cos2x)

+(3cos2x-1)e",x € (0,7),t(0,2),
u(0,x)=1+cos2x,x €0, 7}, (2.14)

u(t,0)=u(t, 7)u,(t,0)=u,(t,7)

joﬁu(t, x)dx = 7ze",t [0,1]



26

for a one-dimensional Schrédinger equation with nonlocal conditions.
Solution. In order to solve this problem, we consider the Sturm-Liouville problem
-u” (x) + Au(x) = 0,u(0) = u(m),u, (0) = u, (), x € (0,7)
generated by the space operator of problem (2.14). It is easy to see that the solution of
this Sturm-Liouville problem is
(A = —4k% k =0,1,2,3, ...

Up(x) = c0s(2kx),k =0,1,2, ...

Ug(x) = Sln(ZkX),k =1,2,3,..

\

Then, we will obtain the Fourier series of problem (2.14) by formula
u(t,x) = > A (t)cos(2kx) + > B, (t)sin(2kx). (2.15)
k=0 k=1

Here A (t),k=0,12..., B, (t),k =1,2..., are unknown functions. Applying this

formula to the Shrodinger’s type differential equation and initial condition, we get

i[i/s; (t) + (4K +1) A, (t)Jcos(2kx) + i[i B, (t) + (4k? +1)B, (t)Jcos(2kx),

= p(t)(1+cos(2x)) + (3cos(2x) —1)e ™, x € [0, 7] t € [0,1],

u(0,x) = iAk (O)cos(2kx) + in (0)sin(2kx) =1+ cos(2x).

Equating coefficients of cos(2kx),k = 0,1,2,3,..and sin(2kx),k = 1,2,3, ... to

zero, we get
iB, (1) + (4k? +1)B, (t) = 0,t € (0,1),
B,(0)=0

for k=12,,...,
iA (1) + (4k? +1)A () = 0,t e (0,1),
A(0)=0

for k=2,34,...,

iA (1) + Ay (t) = p(t)—e",t e (0,1), A (0) =1

for k=0 and
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iA (t)+5A (t) = p(t) +3e",t e (0,1), A (0) =1
for k =1. Itis easy that
At)=e" A (t)=0k=234,.,B(t)=0k=123,.... (2.16)
Therefore,
p(t) =e". (2.17)

Then,we get the following Cauchy problem

A" (t) + 54,(t) = 4e®, t € (0,1)
(2.18)
A1(0) =1
for the first order differential equation. It is clear that
At)=e".

Applying formulas (2.15) and (2.16) to (2.17), we get
U(t,x) = A1)+ A D)cos2x-+ YA (t)cos(kd) + 3B, (1) sin(2k4)
k=2 k=1

= e (1 + cos2x)
We obtain the exact solution of problem (2.14) is
(u(t, x), p(t)) = (e" (1+cos 2x),e™").
Note that using similar procedure one can obtain the solution of the following

time-dependent source identification problem

0, (t,X)- 2@ (00U, ), +Au(t.x)
r=1

= p(t)a(x)+ f(t, x),

0<t<T,Xx=(X,. -, X,) €Q,

u(0,x)=p(x),xeQ, (2.19)

é’u(t,x)I _ou(t,x)
g

u(t X)ls, = u(t, )|, =l

xeS,8,nS,=5,te[0,T]

'[...iu(t,x)dxl...dxn =y (t),te[0,T]
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for the multidimensional Schrédinger equation with nonlocal boundary conditions can
be investigated. Under compatibility conditions problem (2.19) has a unique solution

(u(t, x), p(t)) for the smooth functions f (t, X), (t, X) €
0,T)xQa,(x)>a>0,6>0, (x),xeQut)te[0T] G(X)=0xeS and
J....J.q(x)dxl...dxn #0.

2.3 The Laplace transform solution

We consider Laplace transform method for solution of the time dependent
source identification problem for the Schrodinger equation.
Problem 2.4. Obtain the Laplace transform solution of the time-dependent source
identification problem

iau(t,x)_ézu(t,x) _
ot ox’

u(0,x)=e™,xe[0,), (2.20)

p(tle™ —e™ ™, xe(0,0)t(0,1),

u(t,0)=e™,u,(t,0)= —e"‘,jowu(t, x)dx =e™,te[0,1]

for a one-dimensional Schrodinger equation.

Solution. Taking the Laplace transform of both sides of the differential equation
(2.20), we get

L{i %}—s%{u(t, X)}-su(t.0)—u_(t.0)

=(p(t)-e")L{e "}t (0,2),

L{u(0,x)}=L{e *}.
Putting
L{u(t,x)}=u(t,s), (2.21)
using conditions

u(t,0) = e %, u,(t,0) = —e %
and formula
1
s+1’

L{e ™} = (2.22)

we get



iU, (t,5)—s2u(t,5) = (1—s)e™ + (p(t) e —— t e (0,1),
s+1

0(0,5) = —— u(t0)=e "t e[0,1]
s+1
Now, we taking the Laplace transform with respect to t, we get

(= $)0(40,5) = (L) —— 4+ —— 4 (p(aa) -,
u+1 s+l y78x!

1
u(u,0) = —-.
LA+

Using condition

1
ip——=——+i+plu)———
U+l p+i [
and
1
p(u) = —,
+1
we get
1 1
u(p,8) = ———.
u+is+1

Taking the inverse Laplace transforms with respectto t and x, we obtain

u(t,s) = L{u(u,s)}=e™ L
s+1

and
u(t,x) = Lu(t,s)}=e"e™*
Finally, the exact solution of problem (2.20) is
(u(t,x), p(t) = (™" e™).
Note that using similar procedure one can obtain the solution of the following

time-dependent source identification problem

29
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0, (t,X)- Y@, 00u, ), +ut, ) = plt)al)+ f (¢, x),
0<t<T,x=(X,....,X,) €Q",

u(0,x)= p(x) xe Q" (2.23)

a0k, =60 25 = sasksnteoT)
I..iu(t,x)dxi...dxn =y (t)te0,T]

Q+

for the multidimensional Schrodinger equation can be investigated. Here and in future

Q" cR" beaunitopensetin R"(x:0<x, <w,1<k<n) with boundary S*,

Q" =Q"US". Under compatibility conditions problem (2.23) has a unique solution

(u(t, x), p(t))for the smooth functions f (t,X), (t,X) € (0,T)xQ",a,(x)>a >0,

P(x),xe Q" w(t)te[0,T] q(x)=0,xeS* and j'...jq(x)dxl...dxn #0.
o
Problem 2.5. Obtain the Laplace transform solution of the time-dependent source
identification problem
: ou(t,x) o%ult,x)
ot Ox?

= (p(t)—e‘“)e‘x, Xe (O,oo),t S (0,1),

u(0,x)=e,xe[0,), (2.24)

u(t,0)=e™,u(t,o0)= O,J:u(t, x)dx =e™,t[0,1]

for a one-dimensional Schrédinger equation.
Solution. Taking Laplace transform of both sides of the Schrodinger equation and

using (2.21) and (2.22) and condition u(t,0) =e™, we can write

iU 2t 5)sut,s) - u, (4,0)) = (p(t) —e )2,
ot S+1
u(o,s) :i.

s+1

Now, taking the Laplace transform with respect to t, we get
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I P 1 1
(iu—s*)u(u,s) = i1 Sy+i U(ﬂO)+|0(ﬂ)S+1 risel (25)

Using integral condition and definition of Laplace transform, we write

u(u,0) =
,u+|

Therefore, putting s =0 in (2.25), we get

. . 1
=i, (10)+ p() -——
LA+ LA+

and

0, (00) = i) —2—.
LA+

Then

u(u,s) = ! + = FP()
(u+i)(s+1)  (s+1)(u+i)(s*—iu) (s+1)(s* —iu)

_ 1 N S
(u+i)(s+1)  (s+1)(s” —in)

(P(u)——)
LA+

1

S
T (aa)(s+1)  (s11)(s° = )(p(”)_—)

Applying formula

S 1 S

(s+1)(s%—iy) 2s+1 s+\/$ \/E)’

we get
S S Y
(u+i)(s+1) s+l 2 s+.fiu

Taking the inverse Laplace transforms with respect to x, we obtain

_ 1 1
u(u,s) = +S_\/m))(|0(ﬂ) ,u+i)'

1 —X —X 1 —Jiux iux 1
U, x) = e +[e™ == (e +e ")) (p(u) -—). (2.26)
(1 +1) 2 H+i
Using condition
limu(x, x) =0,
we obtain
1
p(e) =—

L+
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and

u(u, x):i_e’x.
U+i

Now, taking the inverse Laplace transform with respect to t, we get
u(t,x) = Lu(t,s)}=e"e™,
a1 it
pt)=L{—}=e".
U+
Thus, the exact solution of problem (2.24) is
(u(t, x), p(t) = (™", e™).

Note that using similar procedure one can obtain the solution of the following

time-dependent source identification problem

n

u(t, )= D (a (x)u, ), +au(t,x) = ptalx)+ f(t, x)

r=1

0<t<T,Xx=(X,.,X,)eQ",
u(0,x)= p(x), x e Q", (2.27)
u(t,x) s, = 4t)1<k <n,tel0,T]

I..iu(t, X)dx,...dx, =y (t),t [0,T]

Q+

for the multidimensional Schrédinger equation can be investigated.

Under compatibility conditions problem (2.27) has a unique solution
(u(t, X), p(t)) for the smooth functions f(¢t,x), (t,x) € (0,T) X QF,a,(x) = a >
0,6 >0,¢0(x),x € QF, Y(t),t €[0,T],q(x) =0,x € S* and

j I q(x)dx,...dx, #0.

Q+

2.4 The Fourier transform solution

We consider Fourier transform method for solution of the time dependent
source identification problem for the Schrodinger equation.
Problem 2.6. Obtain the Fourier transform solution of the following time-dependent

source identification problem
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iau(t,x)_ o%u(t, x)

ot P pltle™ — (4x—2)e™,

te(0,2),x e (~o0,00), (2.28)

u(0,x)= e_xz,Xe(—OO,oo),

fwu(t, x)dx = ze ™t €[0,1]

for a one-dimensional Schrédinger equation.

Solution. Putting

F{u(t, 0}=u(t,s), Fe ™ }= g(s)
and taking the Fourier transform of both sides of the differential equation (2.28) and
using definition of Fourier transform and formula
F{u, (t,x)}=—s’u(t,s),

we can write

iu, (t,s)+s’u(t,s) = p(s)g(s) +s°g(s)e ™,0<t <1,

(2.29)
u(0,s) = g(s).
Now, taking the Laplace transform of both sides of the differential equation (2.29)

with respect to t, we get

S2

(ize+s)u(t,s) = p(u)g(s) + 9(s). (2.30)

1+iu
Applying condition
[Tutx)=+ze" 0<t<1
and the definition of Fourier transform, we get
u,0)= [ u(t,x) =ze",0<t<1.
Then
Jr

u(,u,0)=1+ilu.

(2.31)

From that it follows
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Now, taking the inverse Laplace transform with respect to t, we get

p(t) =e™",u(t,s) = g(s)e™".
Taking the inverse Fourier transform with respect to x, we get

u(t,x)=e e,

Thus, the exact solution of problem (2.28) is
(u(t, x),p(t)) = (e~it=x* g=ity,
Note that using similar procedure one can obtain the solution of the following

time-dependent source identification problem

n

u(t, )= D (& (xu, ), +autt,x) = plta(x)+ f(t, x)

r=1

0<t<T,x=(X,.,X,)eR",
(2.32)

u(0,x)=g(x),xeR",

I...Iu(t,x)dxl...dxn =w(t),te[0,T]

for the multidimensional Schrodinger equation can be investigated.

Under compatibility conditions problem (2.32) has a unique solution (u(t, X), p(t))
for the smooth functions f (t,X),(t,X) € (0,T)xR",a,(x)>a>0,6>0,

@(x),xe R",w(t),t[0,T] and '[,...[q(x)dxl...dxn = 0.

So, all analytical methods described above, namely the Fourier series method, Laplace
transform method and the Fourier transform method can be used only in the case when
the differential equation has constant coefficients. It is well-known that the most
general method for solving partial differential equation with dependent in t and in the

space variables is operator method.
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CHAPTER 111
Stability Of The Time-Dependent Source Identification Problems For
Schrodinger Equations

3.1 Introduction

In this section, the time-dependent source identification problem for the
Schrodinger equation in a Hilbert space with the self-adjoint positive definite operator
is studied. The stability of the differential problem is established. In applications,
theorems on stability estimates for the solution of five type of time-dependent source
identification problems for Schrodinger equations are obtained. The first of them is the
time-dependent source problem for the one dimensional Schrodinger equation with
nonlocal conditions. The second of them is the time-dependent source identification
problem for the one dimensional Schrédinger equation with involution and Dirichlet
conditions. The third is the time-dependent source problem for the one dimensional
Schrodinger equation with Robin conditions. Two of them are the time-dependent
source problems for the multidimensional Schrédinger equation with Dirichlet and

Neumann conditions.

3.2 Auxiliary Statements
Necessary definitions, theorems and estimates (Ashyralyev,2014;

Kreyszig,1978; Kolmogorov & Fomin, 1957) are given that we will be needed below.

3.2.1 Banach and Hilbert Spaces
Let L be linear space. Then x,y € L,3x+y €L and Ax € L, 1 isa

number. B = (L, || .||) be normed space

Vx € L,o(x) = [Ix]l,

1.]lx]| = 0,||x]| = 0 & x = 0 (zero element),

2. |1Ax]l = [A1lIxIl,

3.]lx + yll < |lx]| + llyllfor any x,y € L.
Then we say B be Banach spaces if B- normed space and B complete < Every

Cauchy sequence is convergent < From ||x, — x|l — 0=3x€
n,m—-oo

B, ||lx, — x|| — 0. We denote it by B, the all Banach spaces. H = (L,(.)) be inner
n—-oo

product space



1.{x,y) = (y, %),
2.0y + x2,¥) = (x1,¥) + (x2,9),
3.{Ax,y) = Mx, y),
4(x,x)=0=x=0
[|x|| = \/(x—x) So all inner product spaces are also normed spaces. We say H be

Hilbert space if H - inner product space and H - complete space.

3.2.2 Linear Operators: Boundedness, Norm of Operator
A: B — B, is called the linear operator if D(A) is the linear space and
A(ax + By) = aAx + BAy for any a, B numbers, x,y € D(A),
D(A) = {x € B,3Ax},
R(A) ={z € B,,z= Axforany x € D(4)}.
Band B, be Banach spaces. In the case when B; = (—o0,®), A:B - (—o0,®) is
called the linear functional.
Definition 3.2.2.1. Let B and B, are Banach spaces. A: B — B, is called the
bounded operator if there is a real positive M > 0 such that
lAx|[z, < M||x||gforallx € D(A).
infM = ||A||s-5, is called norm of the operator A. If B = B;,

lAllg-5, = llAllz-5 = IIAll.

Theorem 3.2.2.1. We have the following formulas

A
”A” = Ssup ”Ax”B = Sup ”Ax”B = sup _” xllp

Ixllp=<1 lxllp=1 Ixllp=oep I1*1l5

3.2.3 Linear Positive Operators in a Hilbert Space
Let A:H — H be a linearly bounded operator in a Hilbert Space H. Then
A*:H — H is defined to be the operator satisfying
(Ax,y) = (x,A*y) for any x,y € H.
A* is called the Hilbert adjoint operator A* to A. A is said to be self adjoint or
Hamiltonian, if
A= A" = (Ax,y) = (x,Ay) forany x, y €.
Let A:H — H is said to be positive and written A > 0 if
(Ax,x) = 0 for any x € H.

A:H — H is said to be positive definite and written A > 6§ > 0 if

36
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(Ax,x) = 8(x,x) forany x € H.
We consider some examples of positive operators in a Hilbert space
First, let L,[0, ] be the space of all square integrable functions y(x) difened
n [0,1] equipped with the norm

Y000 = (f ly ()| dx> )

We introduce the differential operator A defined by the formula
Au = — ;—x (a(x) dl;—ix)) + du(x) (3.1)
with the domain
D(A) = {u:u,u" € L,[0,1],u(0) = u(l),u'(0) = u'(D}.

Lemma 3.2.3.1. Let a(x) = 0 and a(0) = a(l) and A be a differential operator
defined by formula (3.1). Prove that A is the positive definite and self-adjoint operator
in H = L,[0,1].
Proof. Assume that u, v € D(A). Applying the following formula

l
<u,v >=J- u(x)v(x)dx,
0

we get
l
< Au,v >=f Au(x)v(x)dx
0
[ (- (o0 52) o)
= ——( alx) + du(x) |v(x)dx
0
= —a(Du Dv() + a(0)u ' (0)v(0)
+J; aCou' (v (dx + [, Su(x)v(x)dx (3.2)
and

l
<uAv >=f u(x)Av(x)dx
[ ({05 ovo)
= | ux)(——(alk) + dv(x) | dx

= —a()v ' (Du() + a(0)v' (0)u(0)
+Jy aGu (v (Odx + [ su(x)v(x)dx. (3.3)
From (3.2) and (3.3) it follows
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< Au,v >=< u,Av >= fol a(u' (x)v ' (x)dx + fol Su(x)v(x)dx. (3.4)

That means A is a self-adjoint operator. Putting u = v in (3.4), we get

l

l
< Au,u >= j aGu’ ()u’ (x)dx +f du()u(x)dx =6 <u,u >.
0 0

That means A is a positive definite operator. Therefore A is a self-adjoint and
positive operator in a Hilbert space H = L,[0,1].
Second, we introduce the differential operator A defined by the formula
Au = —:—x(a(x) dl;—ix)) + du(x) (3.5)
with the domain
D(A) = {u:u,u" € L,[0,1],u(0) = bu'(0),—u(l) = cu'(1)}.
Lemma 3.2.3.2. Let a(x) = 0,b,c > 0 and A be a differential operator defined by
formula (3.5). Prove that A is the positive definite and self-adjoint operator in H =
L,[0,1].
Proof. Assume that u, v € D(A). Then, we have formulas (3.2) and (3.3). Applying
these formulas, we get

< Au,v >=<u,Av >

l
= ']; <_:_x (a(x) dz;ix)) + 5u(x)> v(x)dx

= ca(Du (D)v' (1) + a(0)bu (0)v'(0)

+fol aCGu’ (x)v' (x)dx + fol Su(x)v(x)dx. (3.6)
That means A is a self-adjoint operator. Putting u = v in (3.6), we get

< Au,u >= ca(l)(u’(l))2 + a(O)b(u’(O))2
l l
+f a()u’ ()u’ (x)dx +f du(@)u(x)dx = 6 <u,u >.

That means A is a positive definite operator. Therefore A is a self-adjoint and
positive operator in a Hilbert space H = L,[0,1].
Third, let L,[—1, ] be the space of all square integrable functions f defined
n [—L 1], equipped with the norm

1

l 2
I f Ny —uy= {f |f(x)|2dx} :
2

The inner product in L,[—[, ] defined by the following formula
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l

(w,v) = f u(x)v(x)dx.

-1
We introduce a differential operator A* defined by the formula
Av(x) = —(a() e (0)x = Bla(=x)ve(=x)) _+ v(x) 3.7)
with the domain D(A*) = {u, uy, € Ly[—L 1]: u(=1) = 0,u(l) = 0}.
Lemma3.23.3. Let a = a(x) = a(—x) =0 >0 and § — a|B| = 0. Then, the
operator A defined by formula (3.7) is the self-adjoint and positive definite operator
in L,[—1, 1] space.
Proof. We will prove the following identity and estimate
(Au, v) = (u, Av),u,v € D(4), (3.8)
(Au,u) = 6(u,u), u € D(A). (3.9)
Applying the definition of the inner product and u, v € D (A4),we get

(Au,v) = f_ll (—(a(x)ux(x))x - ﬁ(a(—x)ux(—x))x + au(x)) v(x)dx (3.10)
l

l l
=—f (a(x)ux(x))xv(x)dx—ﬁf (a(—x)ux(—x))xv(x)dx+afu(x)v(x)dx
-1 il

-1

l
= —a(Duy(Dv() + a(=Du,(=DHv(=D) + f a(x)uy, () vy (x)dx
|

l
+Bl—a(=Duy (~Dv(=D) + a(Du, DvD)] + B f A=)y (—)ve () dx
-1

!
+o | u(x)v(x)dx
J
! l
= f a()u, () ve(x)dx + f a(x)u, () vy (—x)dx + o f u(x)v(x)dx,
-1 -1 =l
!
(u,A*v) = f u(x) (—(a(x)vx(x))x - ,B(a(—x)vx(—x))x + av(x)) dx
21
! ! l
= — f (a(x)vy(x))yu(x)dx — f (a(—x)vx(—x))xu(x)dx +o f u(x)v(x)dx
-] -]

-1



l
= —a(Dv,(Dul) + a(=Dv,(—Du(=D) + f a(xX)ve()u,(x)dx
21

A
+HBI=a(-Dv(~Du(=D + eV U] + 8 [ al-v. (0, ()
21

l

+0 f u(x)v(x)dx
21

l l

l
= j a(xX)uy () ve(x)dx + B f ux(x)a(—x)vx(—x)dx+aju(x)v(x)dx.
21

-1 -1
Therefore, from these formulas it follows identity (3.8). Now, we will prove the

estimate (3.9). Applying the identity (3.10), we get
l

l
(Au,u) = f a()u, (x)u, (x)dx + B j U, (x)a(—x)u, (—x)dx
]

-1
l

+0 f u(x)u(x)dx

-]
! !

>o{u,u)+9 f Uy () uy (x)dx + B6 f a(=x)u, () u, (—x)dx.
-] -

Using the Cauchy inequality, we get

1
l 2

l 2/ 1
f a(_x)ux(x)ux(_x)dx = a(f |ux(x)|2dx> <J. |ux(_x)|2dx>
21 ]

]
= a(uy, Uy).

Since B = —|B|, we have that

l
8 f a(=x)ux (Ouy (—x)dx > —|Blalie, ).
21

Then,
(Au,u) = o(u,u) + (6 — |Bla){uy,, u,) = alu, u).

Lemma 3.2.3.3 is proved.
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3.2.4 Operator-Function Generated by the Positive Operators in a Hilbert Space
Let et is the operator-function generated by the operator A and defined as

the solution of the initial value problem

. du(t)

i—t Au(t) =0,t > 0,u(0) =¢ (3.11)

in H. That means

u(t) = e*to.
We have the following formulas
A = ideitty (3.12)
and estimate
I et ly_py< 1. (3.13)

3.2.5 Banach Fixed-Point Theorem and Its Applications
Definition 3.2.5.1. Let E = (E,d) be a metric space. A fixed point of a mapping
T:E — E ofaset E into itself is an element x € E which is mapped onto itself, that
is, Tx = x, the image Tx coincides with x. Note that the Banach fixed-point
theorem to be stated below is an existence and uniqueness theorem for fixed points of
certain mappings, and it also gives a constructive procedure for obtaining better and
better approximations to the solution of the equation

x =Tx. (3.14)
Actually, we choose an arbitrary x, € E and determine successively a sequence
{xj}:zo defined by the relation

xj =Txj_y,j € Ny. (3.15)
Here and in this Thesis we will put , = {j € Z; j = k}.

This procedure is called an iteration. Banach’s fixed-point theorem gives
sufficient conditions for the existence and uniqueness of a fixed point of a class of
mappings, called contractions.

Definition 3.2.5.2. A mapping T: E — E is called a contraction on E, if there is a
positive real number a < 1 such that forall x,y € E

d(Tx, Ty) < ad(x,y). (3.16)
Theorem 3.2.5.1. Assume that E # @ is complete and let T be a contraction

mapping on E. Then, T has precisely one fixed point.
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Theorem 3.2.5.2. Let T be a mapping of a complete metric space E into itself.
Assume that T is a contraction on a closed ball F = {x|d(x, x,) < r}, thatis, T
satisfies assumption (3.16) for all x,y € F. Moreover, assume that

d(x9, Txg) < (1 —a)r. (3.17)

Then, the sequence {xj};:o defined by recursive formula (3.15) with arbitrary x, € E

convergestoan x € F. This x isa fixed point of the mapping T and is the only fixed
pointof T in F. Now, we study the applications of the fixed-point theorem to integral
equations.

Definition 3.2.5.3. An integral equation of the form

x(t) = ,Llf; k(t,s;x(s))ds + f(¢) (3.18)
is called a Fredholm equation of the second kind. Here, [a, b] is a given interval, pu is
a given parameter, f is a given function defined on [a, b], x is an unknown function
defined on [a, b]. The kernel k of the equation is a given function defined on
[a,b] X [a,b] X RL.

Integral equations can be considered on various function spaces. We consider
equation (18) on CJa, b], the space of all continuous functions defined on the interval
[a, b] with the metric d defined by

d(x,y) = trg(ggf]lx(t) —y(@®)I. (3.19)

Cla,b] = (C[a, b],d) is complete. We assume that f € C[a,b] and k isa
continuous function defined on [a, b] X [a, b] X R. Moreover, k satisfies on
[a,b] X [a,b] X R! the Lipschitz condition of the form

|k(t,s;uq) — k(t,s;uy)| < lug —uyl. (3.20)
Obviously, equation (18) can be written x = Tx, where

Tx(e) = u [, k(t,s;%(s))ds + f(©). (3.21)

Since f and k are continuous functions, formula (3.21) defines an operator
T:C[a, b] = C[a, b]. We now impose a restriction on u such that T becomes a

contraction. Applying formulas (3.19), (3.21), and condition (3.20), we get
d(Tx,Ty) = max |Tx(t) — Ty(t)|
tea,b]

fb (k(t, s;x(s)) — k(t,s; y(s))) ds

= max
|,LL| tea,b]

b b
< llultrg%fa lx(s) —y(s)lds < llulsrg‘%]lx(S) —y(S)If ds

a
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= lul(b — a)d(x, ).
So, d(Tx,Ty) < ad(x,y), where a = L|u|(b — a). We see that T becomes a

contraction if

1
I(b-a)

lul < (3.22)

Banach’s fixed-point theorem now gives the following theorem.

Theorem 3.2.5.3. Assume that k and f in equation (3.18) are continuous functions
on [a,b] x [a,b] X R! and [a, b], respectively. Moreover, k satisfies on [a, b] X
[a,b] x R the Lipschitz condition (3.20). Suppose that u satisfies condition (3.22).

Then, equation (3.18) has a unique solution x defined on [a, b]. This function x is

the limit of the iterative sequence {x]-};ozo defined by the recursive formula

x;(t) = ,ufab k (t, S; xj_l(s)) ds+ f(t),j €Ny, (3.23)
xo(t) is the given continuous function.

Definition 3.2.5.4. An integral equation of the form

x(t) = ufatk(t, s;x(s))ds + f(t) (3.24)
is called a Volterra equation of the second kind. Here, u is a given parameter, f isa
given function defined on [a, b], x is an unknown function defined on [a, b]. The
kernel k of the equation is a given function defined on D x R, where D is the
triangular region in the ts —plane givenby a < s <t,a<t < b.

The difference between (3.18) and (3.24) is that in (3.18) the upper limit of
integration b is constant, whereas in (3.24) it is variable. This is essential. In fact,
without any restriction on u we now get the following existence and uniqueness
theorem.

Theorem 3.2.5.4. Assume that k and f in equation (3.24) are continuous

functions on [a, b] X [a,t] X R! and [a, b], respectively. Moreover, k satisfies on
[a,b] X [a,t] x R the Lipschitz condition (3.20). Then, equation (3.18) has a unique
solution x defined on [a, b] for every u. This function x is the limit of the iterative

sequence {x,}n, defined by the recursive formula
xi(t) = ,ufatk (t,s; xj_l(s)) ds + f(t),j € Ny, (3.25)
xo(t) is a given continuous function.

Proof. We consider equation (3.24) on C*[a, b], the space of all continuous

functions defined on the interval [a, b] with the metric d, defined by
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d.(x,y) = ggae}lgﬁe‘“t‘“)lx(t) —y(©OLL > llul. (3.26)
Since e Lt(~a) < ¢L(t-®) < 1, we have that
e L-ad(x,y) < d,.(x,y) <d(x,y) forany x,y € C[a,b]. (3.27)
C*[a,b] = (C*[a, b],d) is complete. Obviously, equation (24) can be written as
x = Tx, where
Tx(t) = u [, k(t,5;%(s))ds + £ (©). (3.28)
Since f and k are continuous functions, formula (3.21) defines an operator
T:C*[a,b] = C*[a, b]. Applying formulas ( 3.28), (3.26), and condition (3.20),
we get

d.(Tx,Ty) = trgag]e‘“t‘“) ITx(t) — Ty(t)|
a,

—L(t—-a)

jt (k(t,s; x(s)) — k(t, s;y(s))) ds

= maxe
|/J| tea,b]

t
< I|u| max j e Lt=9)e=L(=a) | x(s) — y(s)|ds
tea,b] a

t
< —L(s-a) _ —L(t-s)
< llulsrg%e |x(s) y(S)Itrgggﬁ fa e ds

l
= max — (1 — e L= g, (x,y) < %d*(x, ).

te€a,b]
So, d(Tx,Ty) < ad(x,y), where a = % Since L > l|u|, we have that a < 1.
That means T is a contraction mapping on C*[a, b]. Then, equation (3.18) has a
unique solution x defined on [a, b] for every u. This function x is the limit of the

iterative sequence {xj}:ozo defined by recursive formula (3.18). Theorem 3.2.5.4 is

proved.

3.3 The Main Theorem On Stability
We consider the time-dependent SIP for the SE

i<+ Au(t) = p()q + f(£),t € (0,T),
(3.29)
u(0) = ¢, Blu(®)] =¢(v),[0,T]
in a Hilbert space H with the self-adjoint positive definite operator A with dense
domain D(A) in H. Here B: H — R is a given linear bounded functional and

Y(t):[0,T] = R is a given smooth function and q € D(A), Bq # 0.
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By a solution of the time dependent SIP (3.29) we mean a pair (u(t),p(t))
satisfying the following conditions:

1. The element u(t) belong to D(A) forall t € [0,T], and the function
Au(t) is continuous on [0,T], p(t) € C[0,T].

2. u(t) is continuously differentiable on the segment [0, T]. The
derivative at the end points of the interval are understood as the appropriate unilateral
derivative.

3. (u(t),p(t)) satisfies the differential equation and conditions.

We denote u(t) and p(t) by formulas
u(t) = u(t; o, f (), Y (), p(t) = p(t; @, f (1), P(L)).
A solution of problem (3.29) defined in this manner will from now on be
referred to as a solution of problem (3.29) in the space C(H) x C[0,T]. Here,
C(H) = C([0,T],H) isthe space of continuous H-valued functions u(t) defined on
[0, T], equipped with the norm
[1ul] = max||u(t)||H. (3.30)

C(H)  ostsT
In this section the main theorem on stability of the SIP (3.29) is established. In
applications, stability estimates for the solutions of five type of time-dependent SIPs

for SEs with local and nonlocal conditions are obtained.

3.3.1. The Well-Posedness of Differential Problem (3.29)
Theorem 3.1 Let ¢ € D(A). Suppose that f, f; € C(H) and

Y, Y’ € C[0,T]. Then the time dependent SIP (3.29) has a unique solution
(u,p) € C(H) x C[0,T].

Proof. Assume that w(t) be the solution of the initial value problem (1\VP)

{i d“{;g” + Aw(t) = iu(®OAq + F(t), t € (0,T), (3:31)
w(0) =¢
and u(t) be the function determining by
u@® = [ p(s)ds,0 <t <T. (3.32)
Then,
u(t) = w(t) — iu(t)q. (3.33)

Using the B[u(t)] = ¥(t) and formula (3.33), we can obtain
u(®) = 5- (O ~ Blw@®)D). (3:34)
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Since
p(t) = u(t),0<t <T,u(0) =0, (3.35)

we obtain
P(8) = 5 (&) = Bwe (D), 0 <t <T. (3:36)

Therefore, the following theorem will complete the proof of Theorem 3.1.
Theorem 3.2  Under assumptions of Theorem 3.1, the IVP (3.31) has a unique
solution w(t) € C(H).

Proof. The IVP (3.31) is equivalent to the integral equation

w(t) = ety — ifot elAt=s) {é ((s) — B[w(s)]DAq + f(s)} ds. (3.37)
Here, et is operator function generated by the operator A and defined by

formula (3.11). Taking the derivative with respect to t, we get

d - et '
v:lgt) _ el 4 L AeiAt-9) {BLq @W(s) —B[w(s)])Aq+f(s)}ds.

From that it follows

DD < etg 4 1O — BIwDAG + £O)
ie {2 (b(0) ~ Blw(©)Ddq + £ (0}
+y 40 [ (s (s) = Blwy()DAq + () ds. (3.39

Note that (3.38) is a linear Volterra equation of the second kind with respect to t for

dw(t)
dt

theorem. Actually, the recursive formula for the solution of IVP (3.31) is

v;(t) = idety

+i {BLq <1/)(t) - B U; vj_1(s)ds + <pl>Aq + f(t)}

—ie {7 (W(0) - BlgDAq + F (O]

the in C(H). Therefore, the proof of Theorem 3.2 is based on the fixed-point

+j; jlA(t=s) {BLq (s (s) — B[vj_l(s)])Aq + fs(s)} ds,j =1,

vo(©) = e + - (W) - BloDAq + 1)

~ieHt {7 (p(0) ~ Blp]Aq + F(0)}, (3:39)
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Therefore,

aw(t)

= V(O =206 + T (Vi1 (6,2) = it ). (3.40)

Applying the triangle inequality and estimate (3.13), we get

I20(O) s <N e Dy IAgly + {7 (1 + BLaIDIAGH + IOl

04 iy {0 (O] + 1BIoID NG + 1O}

|Bq|

(max w1+ 1BLo]l) 14l + max 1/ (O}

1
< Mol + {5

+ {3 (0O + IBLpIDIAg + 1O} = Mo,

1026 = vo (D)l < o j 1BLvo()]111Aqluds

Bal
[ e, e B gl

< o fy BIvo()]Il1Aglluds < Mt (3.41)

for any t € [0,T]. Therefore
v (Ollg < My + Myt
forany t € [0,T]. Assume that j > 2. Then

Vi1 (t) — U](t)—l{ < U [v](s) vj_ 1(5)]dsl>Aq}

+.I; jetAt=9) {Biq (—=Bv;(s) — vj_l(s)])Aq} ds.

Applying the triangle inequality and estimate (3.13), we get

1 t
[v/4:®) —v; O], < wfo |B[v;(s) = vj_1(9)]|IlAqllds
t 1
+ f le=21l,._ 751 B o) = va ]| 14qlldls
0 ql
2 t
= |B—qu; |B[vj(s) - Uj—l(s)””ACI”HdS

2 t
= mf IBIl|v;(s) = vj—1 ()|, I Aqllds

<K [ |lvj(s) — v (9], ds (3.42)

for any t € [0, T]. Using estimates (3.42) and (3.41), we get
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2

192(0) = va @l < K [ 104() = vo()llydls < KMy

forany t € [0,T]. Let

M, (Kt)/
[[v;(®) = v, O], —1]—,
forany t € [0,T]. Then, using estimate (3.42), we get
M, (Ks)) M, (Kt)U*D

o1 = 0|, < K f o B

and

M, (Kt)U+D
K G+ 1)
forany t € [0,T] by mathematical induction. From that and formula (3.40) it

||v]+1(t)|| < My + Mjt+...+—

follows that.

18Ol < 10Ol + ) (v 62) = v3(6,0))
Jj=0

had M )]+1 Ml e
Z 7(, T =Mt ye
for any t € [0,T] which proves the existence of a bounded solution of problem
(3.31) in C(H).
Now, we will prove uniqueness of this solution of problem (3.31). Assume

that there is a bounded solution z(t, x) of problem (3.31) and z(t, x) # w(t,x). We

denote that V(t,x) = z(t,x) — v(t, x). Therefore, for V(t, x), we have that
t

V(e = |

0

elA(t=9) {Biq B[V (s, x)]Aq(x)} ds.

Applying estimates (3.13), we get

W&l < llAq(. )“Hf [V (s, x)lds < Kf IV (s, )luds

1Bql
for any t € [0,T]. Therefore, using the integral inequality, we get

IV(£)ly <0
for any t € [0,T]. From that it follows that V(t,x) = 0 which proves the
uniqueness of a bounded solution of problem (3.31) in C(H). Theorem 3.2 is proved.

We have the following main theorem on the stability of problem (3.29).
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Theorem 3.3 Assume that the assumptions of Theorem 3.1 hold. The solution of SIP
(3.29) obeys the stability estimate
el + AUl ey + NPl cro,m
< MG, DAy + 1IF Ol + 1 felleany
+|yp(0)] + ||1Pt||c[0,T]]- (3.43)
In the present study, M(&8,q) denotes positive constants, which may different
in time and thus it is not a subject of precision.
Proof. Applying formula (3.36), estimates (3.13) and Bq # 0, we get the estimate
lp(®)| < M, (6, Q)[Hlpt”c[o,ﬂ + ”Wt(t)”H] (3.44)
forall t € [0,T] and
”p”C[O,T] < M, (9, 0)[||¢t||c[o,7"] + ”Wt”C(H)]- (3.49)
Now, applying formulas (3.33) and (3.35), we can write
u(t) =wi(t) + p(t)q,0 <t <T.
By the triangle inequality, this formula yields us
luellcry < lwelleay + lIpllcromllqla (3.46)
Then, the proof of estimate (3.43) is based on equation (3.37), estimates (3.45), (3.46)
and on the following result of stability estimate.
Theorem 3.4 Assume that the assumptions of Theorem 3.1 hold. The solution of IVP
(3.31) obeys the stability estimate
lwell e ey
< M8, Q[llA@lly + YO + [If Oy + I fellccn +elleom]- (3.47)
Proof. Applying formula (3.38), we get
w(t) = ie4tAp

—i et () - BIw DA+ £ ds

—iet {2 (w0) - Blw(©)Ddq + O}

Then, applying the triangle inequality and estimate (3.13) and Bq # 0, we get the

estimate
lIwe (Ol < M (8, L0 + If Ol + 1Al
Hlelleor + Wfellean] + Ma(8, @) J; lws(s)llnds (3.48)

for 0 <t < T. Then, applying the integral inequality, we conclude that the following

stability estimate
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lwe (Ol < MG, @Y+ lIf Ol + 1Ay
Hvellerory + Ifilleanyle™ @Dt (3.49)
is satisfied for the solution of IVP (3.31) for every t € [0, T]. From estimate (3.49) it
follows estimate (3.47). Theorem 3.4 is established.

3.4. Applications
Now, consider the applications of the main theorem.
Problem 3.4.1. We consider one dimensional time-dependent SIP

(iu.(t,x) — (a(x)ux(t, x))x + ou(t, x)
=p(t)gx) +f(t,x),0<t<T,x€(0,0),
Lu(0,x) = @(x),x € [0,1], (3.50)

u(t,0) = u(t, 1), u,(t,0) = u,(t, 1), t € [0,T],

kfol u(t, x)dx = P(t),t € [0,T]

for the SE with nonlocal conditions. Under compatibility conditions problem (3.50)
has a unique solution (u(t, x),p(t)) for the smooth functions f(t,x),

(t,x) € (0,T) x (0,0), a(x) =a >0, a(l) = a(0), p(x), x € [0,1], Y(t),

t €[0,7], q(0) = q(1), ¢'(0) = q' (1) and f, q(x)dx = 0.

Problem (3.50) can be written as the time dependent SIP (3.14) in a Hilbert
space H = L,[0, 1] with self-adjoint positive definite operator A = A* defined by the
formula

A*u(x) = —(a(x)u,(x), + dulx) (3.51)
with the domain D(4*) = {u € WZ[0,1]: u(0) = u(l),u,(0) = u, (1)}. Therefore
the main theorem 3.3 permits to get the following result on the stability of problem
(3.50).
Theorem 3.5. Assume that ¢ € W2[0,1]] and f(t,x) be a continuously
differentiable function in t and square integrable in x, y(t) is a continuously
differentiable function. Then the SIP (3.50) has a unique solution
u € C(L,[0,1]) = €([0,T],L,[0,1]), p € C[0,T] and for the solution of SIP (3.50)

the following stability estimates hold
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Jdu
15 F lulloguzion + IPllcior < M@0 luzion

0
HIf Oz, 10 + [ (O)] + ”a_]:

c(Lz[0.1])

+ ||¢’||C[O,T]l-

c(L2[0.1])
Here and in future, the Sobolev space W.2[0,1] is defined as the set of all
functions u(x) defined on [0,[] such that u(x) and the second order derivative

function u" (x) are all locally integrable in L, [0, 1], equipped the norm

1 1
2 2 2

l l l
lulluzon = | [ lueorax | +| [ werar ) +( [ werar
0 0 0

Proof. The proof of Theorem 3.5 is based on the abstract stability result of the
Theorem 3.3, on the self-adjointness and positivity of operator A = A* defined by the
formula (3.51) of Lemma 3.2.3.1 and on boundedness in L,[0,1] of a linear functional

B defined by the formula

Bu(t,x) = fl

o u(t,x)dx, t € [0,T]. (3.52)

Problem 3.4.2. We consider the time-dependent SIP
(iu,(a()u,(t, x))x — B(a(=x)u,(t, —x))x + du(t, x)

p()glx) + f(t,x),0<t<T,x€e (=Ll
fu(0,x) = p(x),x € [-1,1], (3.53)

u(t,—0) =u(t, ) =0,t €[0,T],

Lf_ll u(t,x)dx = P(t),t € [0,T]
for the SE with involution and Dirichlet conditions. Under compatibility conditions
problem (3.53) has a unique solution (u(t, x),p(t)) for the smooth functions f (¢, x)
(t,x) € (0,T) x (L), alx), a=alx)=a(—x) =8 >0,8 —alB| =0, o),
x €0,1], (t), t €[0,T], (=) = q(D) = 0, and [, q(x)dx # 0.

Problem (3.53) can be written as the time dependent identification problem
(14) in a Hilbert space H = L,[—L, 1] with self-adjoint positive definite operator
A = A* defined by the formula

Au(x) = — (@@, (1) = Fla(-0)ux(-2))_ + sulx) (3.54)
with the domain D(4) = {u € WZ[—1,1]:u(—1) = u(l) = 0}.Therefore the main
theorem 3.3 permits to get the following result on the stability of problem (3.53).
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Theorem 3.6. Suppose that ¢ € W2[—1,1] and f(t,x) be a continuously
differentiable function in t and square integrable in x, ¥ (t) is a continuously
differentiable function. Then the time source time-dependent SIP (3.53) has a unique
solution u € C(L,[—L,1]) = C([0,T],L,[—1L,1]), p € C[0,T] and for the solution of
the time-dependent SIP (3.53) the following stability estimates hold

Hau
Atllc, (-1

d
HIF Ol - + [1$(0)] + ”a_]:

+ lullcwzi—u) + lpllcrom < M1(Q)[||§0||W22[_1,1]

+ ||¢’||C[O,T]l-

C(Lz[—l,l])
Here, the Sobolev space W.2[—, 1] is defined as the set of all functions u(x)

defined on [—1,1] such that u(x) and the second order derivative function u" (x)

are all locally integrable in L,[—1, ], equipped the norm

1 1

2 2

l l
lelzirn = | [ lueoPax | +( [ weorax
-1 -1

Proof. The proof of Theorem 3.6 is based on the abstract stability result of the
Theorem 3.3, on the self-adjointness and positivity of operator A = A* defined by the
formula (3.54) of Lemma 3.2.3.3 and on boundedness in L,[—1,1] of a linear

functional B defined by the formula
l

Bu(t,x) = f u(t,x)dx, t € [0,T].
0

Problem 3.4.3. We consider one dimensional time-dependent SIP

(iu.(t,x) — (a(x)ux(t,x))x + ou(t, x)
=p()qx) +f(t,x),0<t<T,x€(0,10),
Lu(0,x) = @(x),x € [0,1], (3.55)

u(t,0) = bu,(t,0),u(t,l) = —cu,(t,1),t € [0,T],

kfol u(t,x)dx = P(t),t € [0,T]

for the SE with Robin boundary conditions. Under compatibility conditions problem
(3.55) has a unique solution (u(t, x),p(t)) for the smooth functions f (¢, x),

(t,x) € (0,T) x (0,1), a(x) =a >0, a(l) = a(0), b,c =0, p(x), x €0,1],

Y(©), t€[0,T], q(0) = bq'(0), g(1) = —cq' (V) and f, q(x)dx # 0.
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Problem (3.55) can be written as the time dependent identification problem
(3.55) in a Hilbert space H = L,[0, (] with self-adjoint positive definite operator
A = A* defined by the formula

A*u(x) = —(a(x)uy(x), + oulx) (3.56)
with the domain D(4*) = {u € W.2[0,1]:u(0) = bu'(0),q(1) = —cu'(D)}.
Therefore the main theorem 2.3 permits to get the following result on the stability of
problem (3.55).
Theorem 3.7. Assume that ¢ € W2[0,1] and f(t,x) be a continuously
differentiable function in ¢ and square integrable in x, ¥ (t) is a continuously
differentiable function. Then the time-dependent SIP (3.55) has a unique solution
u € C(L,[0,1]) = €([0,T],L,[0,1]), p € C[0,T] and for the solution of the

time-dependent SIP (3.55) the following stability estimates hold

”au
ot

d
+I£ O)lz,00 + [P0 + “a_]z,f

+ ||u||C(W22[O,l]) + ”p”C[O,T] < Ml(CI)[”(p”WZZ[o,l]
c(Lz[0.1])

+ 1Y llcpo,m |-
C(Lz[0,1])

Proof. The proof of Theorem 3.7 is based on the abstract stability result of the
Theorem 3.3, on the self-adjointness and positivity of operator A = A* defined by the
formula (3.56) of Lemma 3.2.3.2 and on boundedness in L,[0,1] of a linear functional
B defined by the formula (3.52).

Problem 3.4.4. Let Q ¢ R™ be a bounded open domain with smooth boundary S,
Q=QuUS.In[0,T] x Q we consider the multidimensional time-dependent SIP

(iug(t,x) — Xi=q (ar(0)uy,)x, + 6u(t,x) = p(t)q(x) + f(¢,x),
0<t<T,x=(xq,---,Xp) €EQ,

< u(0,x) = p(x),x € Q, (3.57)

u(t,x) =0,x € S,t € [0,T],

Lf 5f u(t,x)dx;...dx, = P(t),t € [0,T]
for the SE with Dirichlet boundary condition. Under compatibility conditions problem
(3.57) has a unique solution (u(t, x),p(t)) for the smooth functions f(t, x),
t,x) € (0,T)XQ, a,(x)=>a>0, p(x), x€Q, Y(t), t €[0,T], g(x) =0,
x €S and
i 5f q(x)dx;...dx, # 0. (3.58)
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Problem (3.57) can be written as the time-dependent source identification

problem (3.57) in a Hilbert space H = L,(Q) with self-adjoint positive definite

operator
A = A* defined by the formula
Au(x) = — Xr=1 (@ (X)) Uy, )y, + Ou(x) (3.59)
with domain

D(A) = {u(x):u(x), (ar(uy, )y, € L(Q),1 <7 <nu(x) =0,x € S}.
Therefore the main theorem 3.3 permits to get the following result on the
stability of problem (3.57).
Theorem 3.8. Assume that ¢ € W2(Q) and f(t,x) be a continuously differentiable
function in t and square integrable in x, y(t) is a continuously differentiable

function. Then the time-dependent SIP (3.57) has a unique solution u € C(L,(Q)) =

¢([0,T1,L,()), p € €[0,T] and for the solution of time-dependent SIP (3.57) the

following stability estimates hold

u
1560, + Ml cuzay + MPllctors < Ma (@ [z

HIFOl, + O] + [[Z

(3.60)
t ” C(L2(Q))

+ 19 letor |
Proof. The proof of Theorem 3.8 is based on the abstract stability result of the
Theorem 3.3, on the self-adjointness and positivity of operator A = A* defined by the
formula (3.59) and on boundedness in L,(Q) of a linear functional B defined by the
formula

Bu(t,x) = [ =+ [ u(t,x)dx;...dx,,t € [0,T] (3.61)

Q
and the following theorem on coercivity inequality for the solution of the elliptic

problem in L,(Q).
Theorem 3.9. For the solution of the elliptic differential problem (see,

Sobolevskii,1975)
Au(x) =w(x), x€Q,

u(x) =0, xX€S

the following coercivity inequality holds
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n
O Ml < MWL
r=1

Problem 3.4.5. In [0,T] x Q we consider the multidimensional time-dependent SIP

(ue(t,x) = Xroq (ar(0)Uy, )z, + 0u(t,x) = p(t)g(x) + f(¢,x),
0<t<T,x=(%q,.---,%Xp) EQ,

u(0,x) = p(x),x € Q,
< (3.62)

a%u(t,x) =0,x€ S, te0,T],

Lf ﬁf u(t,x)dx;...dx, = P(t),t € [0,T]

«

for the SE with Neumann boundary condition. Here, p is the normal vector to (.
Under compatibility conditions problem (3.62) has a unique solution (u(t, x), p(t))
for the smooth functions f(t,x), (t,x) € (0,T) XQ, a,(x) =a >0, ¢(x),

x €Q, Y(t), t€[0,T], a%q(x) =0, xeSand [ Ef q(x)dx,...dx, # 0.

Problem (3.62) can be written as the time dependent identification problem
(3.14) in a Hilbert space H = L,(Q) with self-adjoint positive definite operator
A = A* defined by the formula
Au(x) = = Ty (@r (), ), + Su(x) (3.63)

with domain
D(A) = {u(x):u(x), (ar(X)uy, )y, € L,(Q),1<r< n,aiﬁu(x) =0,x € S}.

Therefore the main theorem 3.3 permits to get the following result on the stability of
problem (3.62).
Theorem 3.10. Suppose that assumptions of Theorem 2.8 hold. Then the solutions of
the time-dependent SIP (3.62) satisfy the stability estimates (3.60).

Proof. The proof of Theorem 3.10 is based on the abstract theorem 2.3, on
boundedness in L,(Q) of a linear functional B defined by the formula (3.61) and on

the self-adjointness and positivity of a differential operator A in L,(Q) defined by

the formula (3.63) with domain
— 0
D(A) = {u(x):u(x), (ar(X)uy, )y, € Ly(Q),1 <7 < n,a—ﬁu(x) =0,x E}

and on the following theorem on coercivity inequality for the solution of the elliptic

problem in L,(Q).



Theorem 3.11. For the solution of the elliptic differential problem (see,
Sobolevskii,1975)
A*u(x) = w(x), X €Q,

d
- = € 5.
13 u(x) =0, X€ES

56



57

CHAPTER IV
Stability Of Difference Schemes

4.1 Introduction

In this section, the absolute stable difference schemes for the approximate
solutions of the time-dependent source identification problem for the Schrodinger
equation in a Hilbert space with the selfadjoint positive definite operator are
investigated. The first and second order of accuracy implicit and second order of
accuracy r-modified Crank-Nicolson difference schemes are presented. The stability
of these difference schemes are established. In applications, theorems on stability
estimates for the solution of difference schemes for the approximate solutions of five
type of time-dependent source identification problems for Schrodinger equations are
obtained. The first of them is the time-dependent source problem for the one
dimensional Schrodinger equation with nonlocal conditions. The second them is the
time-dependent source problem for the one dimensional Schrodinger equation with
involution and Dirichlet conditions. The third is the time-dependent source problem
for the one dimensional Schrodinger equation with Robin conditions. Two of them are
the time-dependent source problems for the multidimensional Schrédinger equation

with Dirichlet and Neumann conditions.

4.2 Auxiliary Statements
To formulate our results, we introduce normed space C,(H) = C([0,T],, H)
of all abstract grid functions 1% = {f,}¥, defined on the uniform grid space
[0,T], = {t, = kt,k =0,1,...,N,NT =T}
with values in H equipped with the norm

T —
1 leucny = Jmas I fell

4.3 The First Order of Accuracy Difference Scheme

We present the first order of accuracy difference scheme

i%‘l'/luk =pkq + fio f = f(te), 1 <k <N,
o = 0, (4.1)

Buy = i, i = P(£),0 Sk <N
for the approximate solution of the time dependent SIP (3.31).
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Now, let us state the stability result for the solution of difference scheme (4.1).
Theorem 4.1 Assume that ¢ € D(A). Then, the solution of difference scheme (4.1)
obeys the stability estimate

H{uk - uk—l}
T

N

+ {Aw 3y =ollc, o) + ||{Pk}11¥=1||c[0,T]T
C(H)

<M, DlllA@lly + 1Yol + 1 f1llu

fr—fr=\V Vi iea)”
{%}kzz { = 1}1 c[o,r]rl'

T
Proof. Assume that grid function{w, }¥_, be the solution of the difference scheme

k=1

|

+
Cc(H)

(4.2)

i%wlwk = iuAq + fi,1 < k <N,
(4.3)
Wo =@
and {u,}¥—, be the grid function determining by formula
e =Y pjT, 1 <k < N,puy = 0. (4.4)
Then,
U =w, —ipq,0 <k <N. (4.5)
Using the condition Bu, = ¥, and formula (4.5), we can obtain
e = BLq(lpk — B[wg]),0 < k <N. (4.6)
Since
pkz%JskSN, (4.7)
we obtain
_ b (Y= Wi—Wj—
Dy = 5o (Wit — B[t ) 1 < e < N, (4.8)
Applying formula (4.8) and Bq # 0, we get the estimate
N
< M, (5, || Yr—YPr-1 Wg—Wg—_1 4.9
el (G i R e 49)
forany k, 1<k <N and
i = ¥ie-n)”
1P letor, < Mi(8,0) H{u}
i T k=1ll¢[o,1],
_ N
+ ||{M} l (4.10)
t Tk=tlleor]eH)
Now, applying formulas (4.5) and (4.7), we can write
U — Up— W — Wy _
kel Tk el ipg1<k<N.

T



59
Then from the triangle inequality and this formula it follows
U — Ug—1
==

N
< H{Wk Wk—1}
T k=1

Then, the proof of estimate (4.2) is based on equation (4.3), estimates (4.10), (4.11)

N

k=+1 C:(H)

+ 1o} leom Nlalla, (4.11)
Cz(H)

and on the following result of stability estimate.
Theorem 4.2 Assume that the assumption of Theorem 4.1 holds. The solution of
difference scheme (4.3) obeys the stability estimate

||{Wk - Wk—l}
T C(H)

< M@, DlllA@lly + 1Yol + 11 f1llu

el ) =y

Proof. The difference scheme (4.3) is equivalent to the system of difference equations

w, = Rk@ — i ¥k_, R+ {5 (; - Bw1)Aq + fi} (4.13)

N

k=1

(4.12)

Cr(H)

Here
R=(-1tA)™L

Applying formula (4.13), we get
Wi — Wi

- = iR*¥Ap — iR¥ {B_q (1 — B[w1]DAq + fl}

—i2§-{=2 Rk=j+1 {BLq (l/)j -1 — Blw; — Wj_l])Aq +fi — fj_l}} (4.14)

forany k,1 < k < N. Applying formula (4.14), estimate
IR Igops<1 (4.15)
and Bq # 0, we get the estimate
k
= <@y —wieall,
j=2

N

+M(6.q>{|¢o| ey

k=1ll¢cro,1,

Cr(H)}

+Hfille + 1Al + .

{fk _fk—l}N

k=2
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for 1 < k < N. Then, applying the discrete analogy of integral inequality, we

conclude that the following stability estimate

||M||H < M(5,CI){|1P0| + H{M}:l

T T

clo,T]¢

_ N
Hlfulls + Naglly +[|{2L=)

M1(8,@)(k+N-1)t

}e 1-TM1(8,4) (4.16)
’ Co(H)
is satisfied for the solution of difference scheme (4.2) for 1 < k < N. From estimate
(4.16) it follows estimate (4.12). Theorem 4.3.2 is established. Now, consider the
applications of the main Theorem 4.1. First, we study the absolute stable difference
scheme for the approximate solution of the time dependent SIP (3.50). The
discretization of time dependent SIP (3.50) is carried out in two stages. In the first
stage, we define the grid space

[0,{]n = {x = x,: x,, = nh, 0<n<M, Mh = 1}.
We introduce the Hilbert spaces L, = L,([0,1],) and W2 = W2([0,1],) of the
grid functions ¢"(x) = {¢;}¢’ defined on [0,],, equipped with the norms

1/2
oM, =| Y lo" @)
x€0,l]p
and
1/2 1/2
2 2

oMz, = oMl +{ D 1@ 0]+ D @My [*n]

x€0,l]p x€0,l]p

respectively. We denote the self-adjoint positive definite difference operator A,

defined by the formula
Ape"(x)

= {_h_12 (a(xn+1)(<Pn+1 — @) —a(x,)(@Qpeq — <pn)) + 5('0"}11—11 (4.17)

acting in the space of grid functions ¢"(x) satisfying the conditions ¢, = ¢y,
1= Qo =Py — Pm-1-
It is well-known that A7 is a self-adjoint positive definite operator in L.

With the help of A}, we reach the time dependent SIP
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(iuf (t,x) + Azu(t,x) = p(0)q" () + f(¢, %),

x€[0,1],0<t<T,
{ (4.18)

u"(0,x) = p"(x),x € [0,1],

XML ulh(t,x)h =), 0 <t <T.
In the second stage, we replace time dependent SIP (4.18) with a first order of

accuracy difference scheme

(. ulo-ul_ (0
j AT e )y AU () = peq™(x) + ), il () = (¢t x),

T

x€[0,1],,1<k<N,
4 " (4.19)

ug(x) = " (x),x € [0,1],

I up (x)h = Y, Y = (), 0 S k < N.
Theorem 4.3 Let T and h be sufficiently small numbers. For the solution of

difference scheme (4.19) the following stability estimates hold

n h AN-1
e (3
T klk=0
k=1

C([0,T]7.L2p)
< M0 [llo"llyz, + £, +

+ [{pr3R=ollcior .
Ce(Wiy) ofictor]

T

{fkh - fl, }”
2

Cr(Lzh)

N

+lpol + | (L) (420

T

1 C[O.T]Tl'
Proof. The proof of Theorem 4.3 is based on the abstract Theorem 4.1, on the
self-adjointness and positivity of operator A, defined by the formula (4.17) and on
uniformly boundedness a linear functional B" in L,, defined by the formula
BMul(t,x) = XM uh(t, x;)h, t € [0,T]. (4.21)

Second, we study the absolute stable difference scheme for the approximate solution
of time dependent SIP (3.50). The discretization of time dependent SIP (3.50) is
carried out in two stages. In the first stage, we define the grid space

=Ll ={x=xx, =nh,—M <n<M,Mh=1}.

We introduce the Hilbert spaces L,, = L,([—1,1],) and W3, = WZ([—L,1],) of the
grid functions ¢"(x) = {¢;}¥, defined on [, 1], equipped with the norms
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1/2
I = D l0"COPh
xe—l,l]h
and

1/2

2
Iz, = 0"+ D [Pyl n |

xE—l,l]h

respectively. To the differential operator A generated by problem (3.50), we assign
the difference operator Aj by the formula
Re" () = {(—(a()pz () xr — Ba(—) @z (—X)xr + S0, Myt (4.22)
acting in the space of grid functions ¢"(x) = {¢,}M,, satisfying the conditions
O_y =@y =0.
It is well-known that A7 is a self-adjoint positive definite operator in L.
With the help of A3, we reach the time dependent SIP

(iuf (8, x) + Aju"(t,x) = p(H)q" (%) + (¢, %),

€[-L1],,0<t<T,
] (4.23)

ul(0,x) = p"(x),x € [, 1],

Mt x)h=9(),0<t<T.
In the second stage, we replace time dependent SIP (4.23) with a first order of

accuracy difference scheme

(- up)-—up_ (x)
j et Ajup (%) = preg" () + il (), il () = fM(te, %),

T

x€[-Ll,1<k<N,
. " 4.24)

ug(x) = " (x), x € [=L 1,

XM ul(x)h = Y, P = P(&),0 < k < N.
Theorem 4.4 Let T and h be sufficiently small numbers. For the solution of

difference scheme (4.24) the following stability estimates hold
N
{ulicl - ul’cl—1}
T k=1

fit = i
< M5, 9"z, + ol + A2, + {k Tk 1
1

+ ”{ul’;}::o + ||{Pk}11¥=1”c[o,T]T

C([0,T]z,L2n)

Cr (W)

C([0,T]¢.L2n)



63

N

Fol + H{lpk —Tlpk—1}

Proof. The proof of Theorem 4.4 is based on the abstract Theorem 4.1, on the

Llcro,r,

self-adjointness and positivity of operator A;, defined by the formula (4.21) and on
uniformly boundedness a linear functional B" in L,, defined by the formula
BMul(t,x) =Y¥M 2%, ut(t, x)h,t € [0,T]. (4.25)

Third, we study the absolute stable difference scheme for the approximate solution of
the time dependent SIP (3.53). The discretization of time dependent SIP (3.53) is
carried out in two stages. In the first stage, we consider the grid functions ¢"(x) on
grid space [0, [],.We denote the self-adjoint positive definite difference operator Ay
defined by the formula

Ape"(x)

_ {_h_12 (a(n41)(@ns1 — 0p) — a(x) (@it — @) + 6(p"}r:11 @.26)
=b P1—Po

acting in the space of grid functions ¢"(x) satisfying the conditions ¢,

—c (PM—<PM—1.
T

Pm =
It is well-known that A7 is a self-adjoint positive definite operator in L.
With the help of A}, we reach the time dependent SIP
(iuf (t,x) + Axu"(t, %) = p()q" (%) + f*(t, %),
x €[0,1],0<t<T,
{ (4.27)
ul(0,x) = p"(x),x € [0,1],

M ulh(t,x)h =9(t),0<t<T.
In the second stage, we replace time dependent SIP (4.27) with a first order of

accuracy difference scheme

(upE)-up (%)
(DU AR () = peg(x) + £, (%) = FH(Ee, %),

T

x€[0,l,1<k<N,
! (4.28)

ul(x) = " (x),x € [0,1],

i up (x)h = Y, Y = (&), 0 < k < N.
Theorem 4.5 Let t and h be sufficiently small numbers. For the solution of

difference scheme (4.28) the following stability estimates hold
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h n \N-1
{uk_uk—l}
T k=1

<M, q) |llo"llyz + ||f1h||L2h +

N
+ e
C0.TTekzn)

N
(W) + I{pidk=ollcror),

{fkh - fkh—1}N

T

C([0.T]¢.L2n)

+ol + ||{—”’"‘1”"‘1}11V

T

l. (4.29)
c[0,T];

Proof. The proof of Theorem 4.5 is based on the abstract Theorem 3.1, on the

self-adjointness and positivity of operator A;, defined by the formula (4.17) and on

uniformly boundedness a linear functional B" in L,, defined by the formula
BMul(t,x) = Y1 ul(t, x;)h, t € [0,T].(30)

Fourth, we study the absolute stable difference scheme for the approximate solution
of time dependent SIP (3.55). The discretization of time dependent SIP (3.55) is also
carried out in two stages. In the first stage, let us define the grid sets

Q= =x,=(ry,...., hy1), 7 = (11, ..., 1),
0<7r<N,hN;=1j=1,..n},
Q0 =0,nQ0,S5,=Q,nS.
We introduce the Banach spaces L,, = L,(Q,,) and W3, = WZ(Q,) of the grid
functions ¢"(x) = {@(hy1y,..., h,1,)} defined on Q,,, equipped with the norms

1/2
Iy = | D 10" @R - b
xEEh
and
1/2

n
2
A PR S N (70 M ey 8
xeﬁh r=1
respectively. To the differential operator A generated by problem (3.55), we assign

the difference operator Aj by the formula

Afut(x) = =30 (ar(ul)  +8ulh(0) (4.31)

Xr,]
acting in the space of grid functions u"(x), satisfying the conditions u"(x) = 0 for
all x € S,. Itis known that A% is a self-adjoint positive definite operator in L,(Qy,).

With the help of A}, we reach the time dependent SIP
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(iug (8, x) + Aju"(t,x) = p(Hq" (x) + (¢, %),

Xx€QN,0<t<T,
. - (4.32)
ul(0,x) = p"(x),x € Qp,

Zyeq, W (XM by = P(6),0 <t <T.
In the second stage, we replace time dependent SIP (3.55) with a first order of

accuracy difference scheme

(up(O)—up_; ()
L7109 oz h ) = p gt o) + FR), () = (e %),

T
x€0,1<k<N,
3 _ (4.33)
ug(x) = "(x), x € Qp,

LZ:xeﬁh u;cl(x)hl Ry =Yg, Py = lp(tk): 0<k<N.
Theorem 4.6 Let T and h be sufficiently small numbers. For the solution of

difference scheme (4.33) the following stability estimates hold

h_.h N
U~ Ug—1 + {uh}N
T k=1 kJr=0

< M0 [Ilo"llyg, + £, +

+ ||{Pk}£,=1||c[o,r]r

Ce (W)
{fk fk 1}
T
1

c[o0,T]¢ l
Proof. The proof of Theorem 4.6 is based on the abstract Theorem 3.1, on the

C([0,T]z.L2n)

C([0,T]¢.L2n)

gl + | {Lte=)” (434

self-adjointness and positivity of operator A, defined by the formula (4.31) and on
uniformly boundedness a linear functional B" in L,(Q,,) defined by the formula
BMu"(t,x) = Yyeq, u"(t,x)hy - hy, t €[0,T] (4.35)
and on the following theorem on coercivity inequality for the solution of the
elliptic problem in L, (Qp).
Theorem 4.7 For the solutions to the elliptic difference problem

uh(x) =wh(x), x€Q,

ul(x) =0, x€S5,

the following coercivity inequality holds (see, Sobolevskii,1975):
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h
z ” xrxrlr L (Q) ”W ”Lz(Qh)

Fifth, we study the absolute stable difference scheme for the approximate solution of
time dependent SIP (3.62). The discretization of time dependent SIP (3.62) is also
carried out in two stages. In the first stage, let us define the difference operator A7 by

the formula
At () = = Xie (ar(ug,)  +8u"(x) (4.36)

acting in the space of grid functions u"(x), satisfying the conditions

D"uM(x) = 0 forall x € S,. Itis known that A% is a self-adjoint positive definite

operator in L,(€,). With the help of A%, we also reach the time dependent SIP (4.32).
Therefore, in the second stage we get difference scheme (4.33)

Theorem 4.8 Let 7 and h be sufficiently small numbers. For the solution of
difference scheme (4.33) the stability estimates (4.34) hold.

Proof. The proof of Theorem 4.8 is based on the abstract Theorem 4.1, on the
self-adjointness and positivity of operator A;, defined by the formula (4.36) and on
uniformly boundedness of a linear functional B" in L,(Q,,) defined by the formula
(4.35) and on the following theorem on coercivity inequality for the solution of the
elliptic problem in L, ().

Theorem 4.9 For the solutions to the elliptic difference problem

Xul(x) = wh(x), x € Qp,

DMulh(x)=0, =x€S,
the following coercivity inequality holds (see, Sobolevskii,1975):

h —
Z ” xrxr]r Ly(Qp) S M”W ”LZ(Qh)'

4.4 The Second Order of Accuracy Difference Schemes

We are interested in studying the stability of a high order of accuracy single
step absolute stable difference schemes of approximate solutions of the time
dependent SIP (3.50). In this section we consider the second order of accuracy r —

modified Crank-Nicolson difference schemes generated by
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(i—uk_:k_l +tAu =peq +fi fiu = f (tk _‘);1 <ks=sr,

iuk_:k—l-l-Auk‘i':k—l =kaI+fk,fk =f(tk ——),‘r-{— 1<k<N,

Up = @,

kBuk = lpk'lpk = lp(tk),o < k <N
for the approximate solution of the time dependent SIP (3.50). Note that for r = 0,
we have the Crank-Nicolson difference scheme

(U — Up_q Up + Up_q
[ + A

T ) =pkq+fk1fk=f(tk__):1SkSN,

Ug = @,

\Bu, =Y, Y =9P(t), 0 <k <N
for the approximate solution of the time dependent SIP (3.50).

Now, let us state the stability result for the solution of difference schemes
(4.37).
Theorem 4.10 Assume that ¢ € D(A). Then, the solution of difference schemes
(4.37) satisfy the following stability estimates

||{uk - uk—l}
T

+ max ||Au 4+ max
Osksr” k”H r+1<ksN

N

+ ||{Pk}11¥=1||c[o,T]T
C(H)

k=1

Up + Ug—1
2

<M, OlllAelly + 1Yol + I fillu

+ ||{fk—fk—1}N + ||{1Pk—1l’k—1}N
T k=2 T 1

|4

H

(4.38)

Co(H) C[o,rlrl'

Proof. Suppose that grid function{w, }¥_, be the solution of the difference scheme

(i%+Awk=i,ukAq+fk,1SkSr,

iWk—:Vk—l + Awk+:/k—1 =iuAq + fr,r+1<k <N, (4.39)
Wo = @
and {u,}¥_, be the grid function determining by formula
e =Yk pT, 1<k <N,u, =0. (4.40)

Then,
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Using the condition Bu, = vy, and formula (4.41), we can get

W = B—q (W — B[w]),0 <k < N. (4.42)
Since
pe =HH= 1 <k <N, (4.43)
we get
pi = o (Wit - i) 1< k< . (4.44)
Applying formula (4.44) and Bq # 0, we obtain the estimate
N
il < My(5, ) “|{%}k=1 om ™t (R Hl (4.45)

forany k, 1 <k <N and

Vi — Y1)
”{pk}g=1”C[0,T]T < M,(6,0) H{M}k
=1

T
¥ ”{Wk_:v,(_l}:ﬂ cT(H))l'

Now, applying formulas (4.41) and (4.43), we can write

C[0,T]¢

(4.46)

Ug = Ug—1 Wi = Wi

. —iprq,1 <k <N.

Then from the triangle inequality and this formula it follows
U — U1\
&=

< ||{Wk_Wk—1}N
T Jk=tllc )

Then, the proof of estimate (4.38) is based on equation (4.39), estimates (4.46), (4.47)

and on the following result of stability estimate.

k=+1 C(H)

+ {3 lcrom Nalla, (4.47)

Theorem 4.11 Suppose that the assumption of Theorem 4.1 holds. The solution of

difference scheme (4.39) holds the stability estimate

||{Wk - Wk—l}
T k=1

+ ||{fk_fk—1}N
L

N

< M@, DlllA@lly + 1Yol + 1 f1llu

Cr(H)

e

T

Co(H) C[o.rlfl'
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Proof. The difference scheme (4.39) is equivalent to the system of difference

equations
kg — i2§‘=1 Cck-j+1 {é (1/)]- — B[wj])Aq + f]} 7,1<k<r,
wye =4 D5 {CTp — i 35oy € (- (w; — BIwi))Aq + i} 7) (4.49)
B {B;q (; - Bw)Aq + filir + 1<k < N.

Here C = (I —ﬂ) - ,D = (I + ”A) (I —ﬂ) . Applying formula (4.49), we
obtain

iCkAp — iC* {5 (1 — B DAq + fi| — i Bk, CKI+1
Wek=Wk-1 _

(4.50)
{Bq (wl Yj-1 — Blw; —w;_ 1])Aq +fi — f}'_l}}, 1<k<r,

forany k,1 < k < N. Applying formula (4.50), estimate
I Cllgor<1LID llgop<1 (4.51)

and Bq # 0, we obtain the estimate

k
s IR ACH N e
T H =

_ N
+M(6,q){|¢o| ety

=1

clo,T];

Cr(H)l

for 1 < k < N. Then, applying the discrete analogy of integral inequality, we

+Hfilla + 1Al +

{fk Tfk 1}

k=2

conclude that the following stability estimate

Wy, — Wy _
== SM(a,q){lonH{‘P ~ Y- 1}
! k=1ll¢ro,r],
fk fre-1 M1 (8.0)(k+N-1)T
HIflln + Mgl + (BR[| e oo @52
C;(H

is satisfied for the solution of difference scheme (39) for 1 < k < N. From estimate
(4.52) it follows estimate (4.48). Theorem 4.11 is established.

Now, we consider the second order of accuracy difference scheme generated
by A and A?
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(4.53)

Up = @,

\Buy, = Y, Y, = P(t,),0 <k <N
for the approximate solution of the time dependent SIP (4.1).
Let us state the stability result for the solution of difference schemes ( 4.53).
Theorem 4.12 Assume that ¢ € D(A). Then, the solution of difference schemes

(4.53) satisfies the following stability estimates

N
Ug—Uk—1 N
B + - 4,54
(e o T 1Bl (4.54)
HIfAw I R=1lle,on < M(S, DllA@L + 1ol + If1llx

{f - fk_l}kzz N H {wk —ka_l}

T
Proof. Suppose that grid function{w, }¥_, be the solution of the difference scheme

+

1

C:(H) c [O,T]J

(122 4 4 (14 2wy = 1 (1+70) weAq

1+ +2) fe1<k<N, (4.55)
\Wo = @
and {w }¥_, be the grid function determining by formula
e =Y pjT,1 <k < N,py = 0. (4.56)
Then,
U =w, —ipq,0 <k <N. (4.57)
Using the condition Bu, = vy, and formula (4.57), we can get
= é(z/)k — B[w]),0 <k <N. (4.58)
Since
_ Mk~ Hk-—1
P =MMet g <k <N, (4.59)
we get
Pi = BLq (Bebims _ p[eecit)) g <k < N, (4.60)

Applying formula (4.60) and Bq # 0, we obtain the estimate
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N
Wr—Wgk—1

Pl < My (8,9) [”{&}

+|
k=1 T

Hl (4.61)

Cc[0,T];

forany k, 1 <k <N and

Vi — Y1)
I{pidr=1llcor, < Mi1(6,0) H{M}k
=1

T
’ ”{%}:ﬂ cT(H)l'

Now, applying formulas (4.57) and (4.59), we can write
e — Up—1 _ Wik — Wi—1

C[0,T]¢

(4.62)

- —iprq,1 <k <N.

Then from the triangle inequality and this formula it follows

||{uk - uk—l}N
T

N
< ||{Wk_Wk—1}
t k=il

Then, the proof of estimate (4.54) is based on equation (4.55), estimates (4.62), (4.63)

k=+1 C:(H)

) + o3 o Nallm, (4.63)

and on the following result of stability estimate.
Theorem 4.13 Suppose that the assumption of Theorem 4.1 holds. The solution of
the difference scheme (4.55) holds the stability estimate

Wk —_ Wk— N
=" < M6, D[I4@lls + ol + [Iill
b Te=tlle
+ ||{fk_fk—1}N + ||{¢k_1»bk—1}N ] (463)
T Jk=2llc () t 1llcro,11,

Proof. The difference scheme (4.55) is equivalent to the system of difference

equations

(Chp —iXf, CFI {é (w; — BIw;])Aq + ff} nl<ksr,
DFT{CTp = i jy €7 {5 (0 = BIw1)Aa + fi} 7}

Wi =9 (4.65)

_iZ?=r+1 pk—j+1 {BLq (1/)]- — B[Wj])Aq + fj}r,

\r+1<k<N.
Here C = (I —%)_1,D = (I + %) (I - %)_1. Applying formula (4.49),

we obtain
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(iCkAp — iC* {5- (s — BIwDAq + fi} — i B, €K+

Wir—Wgk—-1

— =\ x {Bq(% Y1 — Blw; —w;_11)Aq + f; — f]._l}}, (4.66)

\1<k<r,
forany k,1 < k < N. Applying formula (4.66), estimate

I Cllgon<LIBlg-p<1 (4.67)
and Bq # 0, we obtain the estimate

k
=2 < g = wi
=2

T

_ N
+MG, q>1|¢o| ety

=1llcio,1,

Cr(H)}

for 1 < k < N. Then, applying the discrete analogy of integral inequality, we

Al + g + |ty

k=2

conclude that the following stability estimate

) M((S,q){lll)ol n H{w e 1}k 1

T

c[0,T]¢

fk fk- 1}

M1(8,q)(k+N-1)t
+lfull + Al + || {2 }e—l-wlw (4.68)
C.(H)

k=2

is satisfied for the solution of difference scheme (4.55) for 1 < k < N. From estimate
(4.68) it follows estimate (4.64). Theorem 4.13 is established.

Now, consider the applications of the main Theorems 4.10 and 4.12. First, we
study the absolute stable difference scheme for the approximate solution of the time
dependent SIP (3.50). The discretization of time dependent SIP (3.50) is carried out in
two stages. In the first stage, we get the time dependent SIP (4.18). In the second stage,
we replace time dependent SIP (4.18) with a second order of accuracy difference

schemes
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(. uﬁ(x)—u,';_l(x) x. h . n n
P+ A (%) = peq ™ () + i (X)),
fle) ="t — 2, 0,1 <k <rx €0,y

LU (x) ult (x) u (x)+u (x)
[ 4 A e = g () + (),

4 T 2 (4.69)
fl) ="t —,%),r + 1<k <N,x €[0,l],
ug(x) = " (x), x € [0,1],
Tl ug()h = Y P = P(t),0 Sk < N.
and
i —“Q@‘;"’é—l(") + A (1 + "T;“h) ul(x) = (1 + ”Ah) R (x)
[+ e o0 = Fre =S e 0l sk SN

ug(x) = @"(x),x € [0,1],

Nt g (c)h = Py = (), 0 <k < N.
Theorem 4.14 Let T and h be sufficiently small numbers. For the solution of the

difference scheme (4.69), the following stability estimates hold

{uk - uk—l}
T
k=1

+max [luill,,; + max

+ ||{pk}11¥=o||c[o,r]T
CT(LZh)

h h
U + Up_q
2

2
Wih

< M0 [llo"llyg, + £, +

fi = fiea - fi"
T

2ller(Lzp)

_ N
H{I/Jk Tl/Jk—l

1

+hol +

o],
Proof. The proof of Theorem 4.14 is based on the abstract Theorem 4.10, on the
self-adjointness and positivity of operator A;, defined by the formula (4.17) and on
uniformly boundedness a linear functional B" in L,, defined by the formula (4.21).
Theorem 4.15 Let T and h be sufficiently small numbers. For the solution of the

difference scheme (4.70), the following stability estimates hold
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N

h h
{uk - uk—1}
T
k=1

<M, q) |llp"llyz + ||f1h||L2h +

+ ||{ulfcl}1:=1| 2 + ||{pk}II¥=OI|C[O,T]T

T\'""2h

fk fk 1
T 2

_ N
H{lpk Tll)k—1

1

Ct(Lzh)

CT(LZh)

+|ol +

clo,T]¢
Proof. The proof of Theorem 4.15 is based on the abstract Theorem 4.10, on the
self-adjointness and positivity of operator A;, defined by the formula (4.17) and on
uniformly boundedness a linear functional B" in L,, defined by the formula (4.21).

Second, we study the absolute stable difference scheme for the approximate
solution of time dependent SIP (3.53). The discretization of time dependent SIP (3.53)
is carried out in two stages. In the first stage, we get the time dependent SIP (4.23). In
the second stage, we replace time dependent SIP (4.23) with second order of accuracy
difference schemes

(i u,’é(x)—:,’;_l(x) +

Ajui(x) = prq" (%) + £ (%),

fle) =it —5, )1 <k <rxe[-Ll,

h h h h
LU ()~ Uy _4 (%) x U () +up_4 (%) h h
[ +A = x) + X),
) . h > Peq" (%) + fi' (x) (4.71)

il (x) = ' (t, —%,x),r +1<k<N,x€[-L1],

ug(x) = ¢"(x),x € [=L ],

M ul () h = Y, P = (), 0 < k < N.
and

(; we@)—u_1 (%)
1M+Ax(1+” h)uk(x)—pk(1+ ) " (%)

( nAh)fk ), fk (x) = fh(tk ,x).x e[-Ll,1<k<N, (4.72)

ul(x) = "(x),x € [, 1],

I up (x)h = Y, Y = P(8), 0 < k < N.
Theorem 4.16 Let T and h be sufficiently small numbers. For the solution of the

difference scheme (4.71) the following stability estimates hold
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N-1

h h
{uk - uk—1}
T
k=1

ekl +, max,

+ {prJ¥ =ollcio.r,

C%(Lzh)
ul +ul |
2

2
Wsh

fk fk 1
T

<M, ) |llp"llyz + ||f1h||L2h +

2 C}(Lzh)

+|ol +
1

_ N
H{lpk T¢k—1

clo,T]¢
Proof. The proof of Theorem 4.16 is based on the abstract Theorem 4.10, on the
self-adjointness and positivity of operator A;, defined by the formula (4.17) and on
uniformly boundedness a linear functional B" in L,, defined by the formula (4.22).
Theorem 4.17 Let T and h be sufficiently small numbers. For the solution of the

difference scheme (4.72), the following stability estimates hold

N

n n
{uk - uk—l}
T
k=1

< M0 [llo" Iz, + £, +

el e, + 1PRolcron,

fk fk 1
T 2

_ N
H{I/Jk Tl/Jk—1

Cr(L2n)

C‘E(LZh)

+hol +

Cc[0,T];
Proof. The proof of Theorem 4.17 is based on the abstract Theorem 4.10, on the
self-adjointness and positivity of operator A, defined by the formula (4.17) and on
uniformly boundedness a linear functional B" in L,, defined by the formula (4.25).
Third, we study the absolute stable difference scheme for the approximate
solution of the time dependent SIP (3.55). The discretization of time dependent SIP
(3.55) is carried out in two stages. In the first stage, we get the time dependent SIP
(4.27). In the second stage, we replace time dependent SIP (4.27) with second order of

accuracy difference schemes
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(. uﬁ(x)—u,';_l(x) x. h . n n
P+ A (%) = peq ™ () + fi' (X)),
fle) =Mt — 2, 0,1 <k <rx €0,y

u (x) ull (x) u (x)+u (x)
e A pq(x)+fk(x)

{ T 2 (4.73)
fl) ="t =5, 7+ 1<k <N,x €[0,],
ug(x) = 9" (x), x € [0,1],
Zil ug()h = Y P = P(t),0 Sk < N.
and
i —“Q@‘;"’é—l(") + A (1 + "T;“h) ul(x) = (1 + ”Ah) R (x)
[+ e o0 = P =S 0l sk SN

ug(x) = @"(x),x € [0,1],

Nt g (c)h = Py = (), 0 <k < N.
Theorem 4.18 Let T and h be sufficiently small numbers. For the solution of the

difference scheme (4.73), the following stability estimates hold

{uk - uk—l}
T
k=1

+max [luill,,; + max

+ ||{pk}11¥=o||c[o,r]T
CT(LZh)

h h
U + Up_q
2

2
Wih

< M0 [llo"llyg, + £, +

fi = fiea - fi"
T

2ller(Lzp)

_ N
H{I/Jk Tl/Jk—l

1

+hol +

o],
Proof. The proof of Theorem 4.18 is based on the abstract Theorem 4.10, on the
self-adjointness and positivity of operator A;, defined by the formula (4.17) and on
uniformly boundedness a linear functional B" in L,, defined by the formula (4.30).
Theorem 4.19 Let T and h be sufficiently small numbers. For the solution of the

difference scheme (4.74), the following stability estimates hold
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N

h h
{uk - uk—1}
T
k=1

<M, q) |llp"llyz + ||f1h||L2h +

+ ||{ulfcl}1:=1| 2 + ||{pk}II¥=OI|C[O,T]T

T\'""2h

fk fk 1
T 2
C[O,T]T].

Ct(Lzh)

CT(LZh)

+|ol +

_ N
H{lpk Tll)k—1

1

Proof. The proof of Theorem 4.19 is based on the abstract Theorem 4.10, on the

self-adjointness and positivity of operator A, defined by the formula (4.17) and on

uniform

ly boundedness a linear functional B" in L,, defined by the formula (4.30).

Fourth, we study the absolute stable difference schemes for the approximate

solution

of the time dependent SIP (3.57). The discretization of the time dependent SIP

(3.57) is carried out in two stages. In the first stage, we get the time dependent SIP

(4.32). 1
order of

n the second stage, we replace time dependent SIP (4.32) with the second

accuracy difference schemes

(. uh(x)—uh_ (%)
U 4 ARl () = Peg () + iR (),

fit () = f(ts —g,x),l <k<rx€Q,

ull (0 -uf_ (%) x URGO+UR_ (1) _ h
[ + 43 = x) + X
; 2 Prq"(x) fk( ), (4.75)

fre) =it —2,0,r+1<k<N,x€Q,

ug(x) = @"(x),x € Qy,

and

I up(x)h = Y, P = P(t), 0 <k < N.

heon_oh T A
(L) Wea @) | g (1+” h)u,’é(x) = Pk (1"‘%) q"(x)

T

( lTAh) fk (X) fk (x) = fh(tk - = X) X € [0 l]h' 1<k<N, (76)

ul(x) = " (x),x € [0,1],

T up()h = Y, P = P(t), 0 <k < N.
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Theorem 4.20 Let T and h be sufficiently small numbers. For the solution of the
difference scheme (4.75), the following stability estimates hold

n n N-1
{uk - uk—l}
T k=1

+ ||{Pk}1;g=0||C[O.T]r

Ce(Lzp)
h h
+max||u || 2 + max M
0<Kk<r r+1<ksN 2 Wi
2
fit = fie
S M(5,Q) ”(ph”WZZh + ||f1h||L2h + { : T —
2

CT(LZh)

_ N
| + H{lpk T¢k—1

C[O,T]J

Proof. The proof of Theorem 4.20 is based on the abstract Theorem 4.10, on the
self-adjointness and positivity of operator A, defined by the formula (4.17) and on
uniformly boundedness a linear functional B" in L,, defined by the formula (4.35)
and on the following Theorem 4.7 on coercivity inequality for the solution of the
elliptic problem in L, ().

Theorem 4.21 Let T and h be sufficiently small numbers. For the solution of the

difference scheme (4.76), the following stability estimates hold

h N
Up — Ug—q N
e
k=1 CT(LZh) e
fk fk 1
< M@, |lo" gz, + £, + { T
2 CT(LZh)
l/Jk _l/)k—l N
S Ul | — '
ol H{ = llon

Proof. The proof of Theorem 4.21 is based on the abstract Theorem 4.12, on the
self-adjointness and positivity of operator A, defined by the formula (4.17) and on
uniformly boundedness a linear functional B" in L,, defined by the formula (4.35)
and on the following Theorem 4.7 on coercivity inequality for the solution of the
elliptic problem in L, (Qp).

Fifth, we study the absolute stable difference schemes for the approximate
solution of the time dependent SIP (3.62). The discretization of time dependent SIP

(3.62) is carried out in two stages. In the first stage, we also get the time dependent SIP
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(4.32). In the second stage, we replace time dependent SIP (4.32) with second order of
accuracy difference schemes (4.75) and (4.76).
Theorem 4.22 Let T and h be sufficiently small numbers. For the solution of

difference schemes (4.75), the following stability estimates hold
N-1

h h
{uk - uk—l}
T k=1

+max||u || 2 + max
0<ksr r+1<ksN

+ ||{Pk}1;g=0||C[O.T]r

CT(LZh)
ul +ul_,
2

<M, q) |llp"llyz + ||f1h||L2h +

2 Cr (Lzh)

_ \N
H{lpk T¢k—1

+|ol + ]
clo,Tl,

Proof. The proof of Theorem 4.22 is based on the abstract Theorem 3.10, on the
self-adjointness and positivity of operator A, defined by the formula (4.17) and on
uniformly boundedness a linear functional B" in L,, defined by the formula (4.35)
and on the following Theorem 4.8 on coercivity inequality for the solution of the
elliptic problem in L, ().

Theorem 4.23 Let T and h be sufficiently small numbers. For the solution of the

difference scheme (4.76), the following stability estimates hold

h h N
Up — Ug—q N
L it
k=1 CT(LZh) e
fk fk 1
< M@, |lo" gz, + £, + { T
2 CT(LZh)
l/Jk _l/)k—l N
S Ul | — '
ol H{ = llon

Proof. The proof of Theorem 4.23 is based on the abstract Theorem 3.12, on the
self-adjointness and positivity of operator A, defined by the formula (4.17) and on
uniformly boundedness a linear functional B" in L,, defined by the formula (4.35)

and on the following Theorem 4.8 on coercivity inequality for the solution of the

elliptic problem in L, (Qp).
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CHAPTER V
Numerical Experiments

1 Introduction

When the analytical methods do not work properly, the numerical methods for
obtaining approximate solutions of partial differential equations play an important role
in applied mathematics. We can say that there are many considerable works in the
literature. In present section for the approximate solution of one-dimensional
time-dependent source identification problem for Schrodinger equations with
nonlocal, Dirichlet, Neumann, and Robin conditions, we use the first and second order

of accuracy difference schemes. The error analysis is given.

2 Numerical Results
5.2.1 Time-Dependent SIP with Nonlocal Conditions

We study the first and second order of accuracy difference schemes for the the
numerical solution of the following SIP

(l. u(tx) 02u(t,x)
at dx2

+ u(t,x) = p(t)(1 + sin2x)
+(3sin(2x) — 1)e't, x € (0,7),t € (0,1),
1u(0,x) = 1 + sin2x,x € [0, 7], (5.1)

u(t,0) = u(t,m), u,(t,0) = u,(t, m),

Lf: u(t, x)dx = me't, t € [0,1]
for a one dimensional time-dependent SE with nonlocal conditions. The exact
solution of this problem is (u(t,x),p(t)) = ((1 + sin2x)e’, et).
First, we consider the first order of accuracy Rothe DS

- k k
(l. uf-uf1 _ uf g —2uguk

k
. 2 +uy,

= pr(1 + sin2x,) + (3sin2x, — 1)e't,

ty =kt,x,=nh,1<k<N,1<n<M-1,
(5.2)

ud =1 +sin2x,,0 <n<M,Mh=mNt=1,

k _ .k .k kK _ .k k
Uy = Ug, Uy — Upy—q = Uy — U,

\YM_ ukh=me',0<k<N.
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Algorithm for obtaining the solution {{uX}¥_,}M_, and {p,}¥_, of first order

DS (5.2) contains three steps. We introduce 7, by the formula

M = Zia=1 PmT k € LN, 7o = 0. (5.3)
Then,
p =" ke LN. (5.4)
We have that
uk = wk —in,(1+ sin2x,),k €0,N, neo,M, (5.5)

where w) is the solution of the following DS

(l. wk-—wk-1 _ wk i —2wk4w

T h2

k
n—1 k M k — ,k
+Wn _Znh2k=1 Wy = @7,

J ¥ = z,me' + (3sin2x,, — 1)e'k, k € 1,N,n € 1,M — 1, (56)

w? =1+sin2x,,n€1,M — 1,

kK _ ok ok kK _ ok k
\Wy = Wy, Wy — Wy—1 = Wy — Wy,

where z, is defined by formula
1

“n =T+ dh

Using the integral condition

sin2x, (— - =

we get

_ Z‘rnll’llzl WT’;lh_T[eitk PEEN

imeany ' KELN, (5.7)

Nk

M

d= Z SiN2x,,.

m=1

Second, we present the second order of accuracy Crank-Nicolson DS
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k k-1 k k k k-1 1 k-1 k k-1
(l. Un—Un ~  Upy1—2UptUp g Upgg— 2uf~14ukzl + Uy +uy
T 2h2 2h? 2

= PEZIEL (1 4 sin2x,) + (3sin2x, — 1)ei(t"_5),

Jte =kt x,=nh,1<k<N1<n<M-1, (5.8)

9=1+sin2x,,0<n<M,Mh=mNt=1,

k — .k ok K — ok K
Uy = Ug, Uy — Uy-—1 = Uy — U,

\YM_ ukh=me',0<k<N.
Algorithm for obtaining the solution {{u*}¥_,}*_, and {p,}¥-, of second

order DS (5.8) contains also three steps. We introduce 7, by the formula

e = BBk 4 YK pt,k € LN, 70 = 0. (5.9)
Then,
PitPr—1 _ Mk—Nk-1 k € m (5 10)
2 T ! e )
We will use formula (5.5), where w} is the solution of the following DS
(. wk-wk-1 Wr’§+1_2Wr’§+W1,§—1 Wr’§+% 2wk ewfol | wkiwkl
[ > > +
T 2h 2h 2

—Zyh XN_y Wit — 2, h T wit = z (et + e'tk-1)

+(3sin2x,, — 1)ei(tk"5), kel,Nnel,M—1 (5.11)

w? =1+sin2x,,n € 1,M — 1,

k — .,k k k — ik k
kWM _WOIWM_WM—l _Wl _Wo.

Algorithm for obtaining the solution {{ufX}¥_,}*., and {p,}¥_, of DS (5.8)
contains also three steps. For the fist step,will obtain {{w}¥_,}M_,. by (5.11).
It is clear that we can written (5.6) and (5.11) as the initial value problem the
first-order difference equation concerning k and matrix coefficients

AwF + Bwk1 =k 1 <k<N -1,
(5.12)
w® = {1+ sin(2x,) ML ,.

Then,
wk = inv(4) (¥ — Bwk1),
where A,B are (M +1)x (M + 1) square matrices and ¢* is (M +1)x1

column matrix and
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1 0 0 0 -1
a b - th a— h21 . —h21 _hZ1
O a— hZz b - hZZ . _hZZ _hZZ
A=
O _hZM_2 _hZM—Z * a— hZM—Z _hZM—Z
O _hZM_1 _hZM_1 * b - hZM_1 a— hZM_1
11 -1 0 . -1 1 AM+D)X(M+1)
and
0 0 0 O 0 0 O
0O ¢c 0 O 0 0 O
0 0 ¢ O 0 0 O
0 0 0 ¢ 0 0 O
B=|0 0 0 O 0 0 O )
0O 0 0 O 0 0 O
0O 0 0 O c 0 0
0O 0 0 O 0 ¢c O
0 0 0 O 0 0 O'm+yxm+1)
=l h=tilire=-t
A= TP T2 -
0
) o
fa =1 . ,
Prm-1
0 (M+1)x1
wg
wi
wk =1:
Wl\lfl—l
wk
M (M+1)x1
for the first order of accuracy Rothe DS and
1 0 0 . 0 -1 07
a b—hzy a—hzy - —hz; —hz; 0
0 a—hz, b—hz, - —hz, —hz, 0
A == )
O _h'ZM—Z _h'ZM—Z ° a— hZM_2 _hZM—Z 0
O _h'ZM—l _h'ZM—l ° b - h'ZM—l a — hZM—l 0
‘1 -1 0 : -1 1 0dm+yxm+1)

and
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0 0 -0 0 07
a— th C — h21 . —h21 _hZ1
a— hZz C — hZZ * _hZZ _hZZ 0

o a o
o

O _hZM_2 _h'ZM—Z * C — hZM—Z a — hZM—Z 0
_hZM_1 _hZM_1 * a— hZM_1 C — hZM_1
0 0 0 -0 0 0 ' m+1yxm+1)

o

0 dm+nx1

T(M+1)x1
ok = z,(e't* + eltk-1) + (3sin2x,, — 1)e(tx=7/2)
for the second order of accuracy Crank-Nicolson DS (5.11). Second, we will findn,
and p, and M by formulas (5.4),(5.10), (5.9) and (5.5).
Third, we will find {{uf}¥_,}_, by formulas (5.5). The errors are computed

by formulas

1
E, = mﬂ(fozo lu(t, x) — uk|?h)?, (5.13)
ke

E, = max |p(t) Dk (p" L= 1) (5.14)

Numerical solutions of u(t,x) at (i, x,) is uk and of p(t) at t, is p,. The

numerical results of SIP (5.2) are provided.
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Table 5.2.1
The errors between the exact and the numerical solutions of (5.2) for different values
of N and M

Error M=N=20 M =N =40 M =N =280
E, 0.0022 0.0011 0.0005
E, 0.034 0.017 0.008

As it is seen in Table 5.2.1, if M and N are multiplied by 2, the value of
errors decreases approximately 1/2 for the DS. This shows that it has the first order

of accuracy and numerical solutions for second order of accuracy Crank-Nicolson DS
of u(t,x) at (t, x,) is uk and of p(t) at t; is %. The numerical results
of SIP (5.2) are provided.

Table 5.2.2

The errors between the exact and the numerical solutions of (5.2) for different values
of N and M

Error M=N =20 M=N=40 M =N =380
E, 0.0002 0.00005 0.00001
E, 0.017 0.0043 0.0011

As it is seen in Table 5.2.2, if M and N are multiplied by 2, the value of
errors decreases approximately 1/4 for the DS. This shows that it has the second

order of accuracy.

5.2.2 Time-Dependent SIP with Dirichlet Condition

We study the numerical solution of the following SIP
(iU — Uy, = p(t)sin(x) — e sinx,x € (0,m),t € (0,1),
u(0,x) = sinx,x € 0, 7],

] (5.15)
u(t,0) =u(t,m) =0,

kfon u(t,x)dx = 2e%,t € 0,1]
for a one dimensional SE with Dirichlet condition. The exact solution of this problem

is (u(t,x),p(t)) = (e"tsinx, e‘it). We study the following first order of accuracy
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difference scheme

i _ 1
(; (uf —ui™) — ﬁ(uﬁﬂ — 2uj + u5—1)

= pysinx, + sinx,e "k,

ty =kt,x,=nhk=1,Nn=1M -1,
{ (5.16)

ud = sinx,,n =0,M,Mh =m,Nt =1,

\>M_, ukh = 2eitk,k =0,N.
The algorithm for obtaining the solution {{uX}¥_ }¥ and {p,}Y of DS (5.16)

contains three steps. We introduce 7, by the formula

Mk = Yhe1 PmT k= 1,N, 19 = 0. (5.17)
We have that
uk = vk —insinx,, k =0,N,n=0,M, (5.18)
where v is the solution of the DS
(vE—vETt vy —2vkivl
i : - ;Z}z L 47, Yt Uk = £
it .
= Zeh krn — e ksinx,, k=1,N,n=1,M — 1,
4 . ZSinxT(;(hCzOSh_ll d=Y"_ sinx,nel,M—1, (5.19)
10 = sinx,,,n = 0, M,
\wk =vk =0,k=0,N.
Using the integral condition
M
uk h = 2e'tk,k € O, N,
m=1
we get
M k1 _oit -
m = Zmmtmi=2e kg e TN, (5.20)
pr = B=1 e = 1,N. (5.21)

T

In the first step, we find the solution {{v<}¥_,}_, of the corresponding first order of

accuracy difference scheme (5.19). For obtaining it, we will write difference scheme
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(5.19) in matrix form as

AvF + Bvk 1 =k 1<k <N -1,
(5.22)
v° = {sinx, }}_,,
where A,B are (M +1)x (M + 1) square matrices and ¢* is (M +1)x1
column matrix and

[1 0 . 0 0
a b - hT‘l a— hT‘l . —hT1 —hT'1
0 a— hrz b — hrz . _hrz —hrz
A=
O _hTM—Z _hrM_z * a — hTM—Z _hrM_z
O _hTM—l _hTM—l ‘ b - hT‘M_l a— hTM_1
0 0 0 . 0 1 A(M+1D)X(M+1)
and

o
a

o
o
o
o
o

B = )
0 0 0 O c 0 O
0O 0 0 0- 0 c O
0 0 0 0 - 0 0 Odm+nyxm+1)
1 i 2 i
e=TbErtee= Ty
_0 _|
) o
Pn = :k l )
<PM—1J
0 (M+1)x1
vg ]
vi I
vk =1:
UII\C/1—1‘
k
-Um (M+1)x1

In the second step we will find {1, }¥_,, {pi}¥-, by formulas (5.20) and (5.21). In
the third step we will find {{uX}¥_, 3., by formulas (5.17) and (5.18).
The errors are computed by formulas (5.13) and (5.14).

Numerical solutions of w(t,x) at (ty, x,) is ufk and of p(t) at t; is pg.
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The results of numerical experiments for problem (5.15) are provided in Table 4.2.1.
As it is seen in Table 5.2.3, if M and N are multiplied by 2, the value of

errors decreases approximately 1/2 for the DS. This shows that it has the first order

of accuracy.

Table 5.2.3

The errors between the exact and the numerical solutions of (5.15) for different

values of N and M

Error M =N =20 M =N =40 M =N =380
E, 0.0710 0.036 0.017
E, 0.0292 0.0142 0.0710

5.2.3 Time-Dependent SIP with Neumann Condition
We study the numerical solution of the following SIP

(l. u(tx) 02%u(t,x)
at 0x?2

+ u(t,x) = p(t)(1 + cos2x)
+(3cos(2x) — 1)e',x € (0,m),t € (0,1),
1u(0,%x) = 1 4 cos2x, x € [0, 7], (5.23)

u,(t,0) = u,(t,m) =0,

Lf: u(t, x)dx = me't, t € [0,1]

for a one dimensional SE with Neumann condition. The exact solution of this
problem is (u(t,x),p(t)) = ((1 + cos2x)e,ei). We study the following first
order of accuracy difference scheme

- k k
(l. uf-uf? _ uf g —2uguk

k
T 2h2 T Un

= pr (1 + cos2x,,) + (3cos2x, — 1)etk,

ty =kt,x,=nh,1<k<N,1<n<M-1,
(5.24)

ud =1+ cos2x,,0 <n<M,Mh=m,Nt =1,

k _ .k .k kK _ .k k
Uy = Ug, Uy — Upy—q = Uy — U,

\YM_ ukh=me',0<k<N.

The algorithm for obtaining the solution {{uX}¥_ }_, and {p,}}_,of DS (5.24)



contains three steps. We introduce 7, by the formula

Me = Y=t PmT k € L,N,79 = 0.
We have that
uk = wk — in, (1 + cos2x),k € 0,N,n € 0,M],
where w) is the solution of the DS

(l. wh-wkt wk i —2wkiw

T h2

k
=l wk + A YN wh

=@k kel,Nne 1M —1,

ok = el (mr, + 3cos2x, — 1),

r, = ——|2cosx (COSh_l l) 1]
n T rtdh n\ p2 2 ’

w? =1+ cos2x,,n € 0, M,

Wl —wf =wf —wy_, =0,k€O,N.

Using the integral condition

M
Z ul h = mwe'tk,0 < k <N,

m=1

we get

_ Z%:l WTIIC’lh_T[eltk
- i(m+dh)

Nk ,kE].,N

pk — nk_‘?k—l , 1, N

89

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

In the first step, we find the solution {{w}}¥_ 3}, of the corresponding first order of

accuracy difference scheme (5.27). For obtaining it, we will write difference scheme

(5.27) in matrix form as

AwF + Bwk 1l =k 1 <k<N -1,

w? = {1+ cos(x, )},

where A,B are (M +1)x (M + 1) square matrices and ¢* is (M +1)x1

column matrix and
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-1 1 0 . 0 0
a b—hry, a—hr - —hry —hry
0 a—hr, b—hr, - —hr, —hr,
A=
O —hTM_2 _hTM—Z * a— hTM_Z —hTM_Z
O —hTM_1 _hTM—l * b - hrM—l a— hTM_1
0 0 0 : -1 1 AM+1)x(M+1)
and

o
a

o
o
o
o
(@)

0O 0 - c 0 O

0 -0

0 0 0 0 - 0 0 Odm+nyxm+1)
1
h?

o
a
o

b=t 41c=-1
) _T hz ,C— TJ
_0 —

0 dmrnx1

M+1)x1
In the second step, we will find {n, }¥_,, {px}¥-,; by formulas (5.28) and (5.29). In
the third step, will find {{uX}¥_,}_, by formulas (5.25) and (5.26).

The errors are computed by formulas (5.13) and (5.14). Numerical solutions of
u(t,x) at (ty,x,) is uk and of p(t) at t, is p,. The results of numerical
experiments for problem (5.23) are provided in Table 5.2.4 As, it is seen in Table
Table 5.2.4 if M and N are multiplied by 2, the value of errors decreases

approximately 1/2 for the DS. This shows that it has the first order of accuracy.
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Table 5.2.3

The errors between the exact and the numerical solutions of (5.23) for different values
of N and M

Error M=N =20 M =N =40 M =N =280

E, 0.0980 0.0493 0.0247

E, 0.0072 0.0036 0.0018

5.2.4 Time-Dependent SIP with Robin Condition

We study the numerical solution of the following SIP

(iU — Uyy + U = zcosge“"t + p(t)cosg,
x € (0,m),t € (0,1),

u(0,x) = cosg,x € 0,m],

u(t,0) — e~ = u,(t,0),

—u(t, T[) - %e_it = u—x (tl T[),

kfon u(t, x)dx = 2e~, t € 0,1]

(5.31)

for a one dimensional SE with Robin condition. The exact solution of this problem is

(w,p) = (e“'tcosg,e‘“). We study the following first order accuracy

difference scheme

L - 1 (K k
(; (ug —up™) — ﬁ(unﬂ — 2uf + un—l) +uf

5 Xn —it Xn
=-coS—e "k 4+ p;, coSs—
4 2 Pk 2’

\ty = kt,x, =nh,k € 1,N,n€ 1,M — 1,

0

ud — e itk =%,n €0,M,Mh =1, Nt=1,

1 UM—UM-1 M —i 0N
(—up — ~e ity = T'Zm=1 uk h =2e7% k €0,N,

(5.32)

The algorithm for obtaining the solution {{uX}¥_,}_, and {p,}¥_, of DS (5.32)

contains three steps. We introduce 7, by the formula

Nk = Yk—1 PmT k € 1,N,n4 = 0.
We have that

(5.33)
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uk = wk — ir)kcos(’;—”),k € 0,N,n € 0, M], (5.34)

where w is the solution of the DS

(.wk-wk=1  wk  —2wkiwk_| k M Ok _

L T - h2 + wp +Tm2m=1m—§0n
5 X 2r; _i

ok = (Zcos?"+h—;")e Y kel NNne1l,M—1,

h
1 x,, [ cos=—1 x
T = EZCOS?n<h—22 + 0.5>,d =yM_. cos;”

{ (5.35)
wl = cosxf,n €0,M,
wE —e itk = %(Wf —wf),k €0,N,
k 1 —itp — 10k TN
\—wy — e "k = ;(WM —Wy_1),k €0,N.
Using the integral condition
M
Z uk h =2ek,k €0,N,
m=1
we get
M k3 _o,—it -
e = 2m=1‘”fi';’; 2 * kel,N, (5.36)
pi =L 1N, (5.37)

In the first step, we find the solution {{w}¥_,}¥_, of the corresponding first order
of accuracy difference scheme (5.35). For obtaining it, we will write difference
scheme (5.35) in matrix form as

Awk + Bwk 1 =k 1<k <N-1,

X
WO = {cos(GONL,,

where A,B are (M +1)x (M + 1) square matrices and ¢* is (M +1)x1

column matrix and
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h+1 -1 0 0 0
h
a b—hry, a-—hr; - —hry —hry
0 a—hr, b—hr, - —hr, —hr,
A=
O —hTM_2 _hTM—Z * a— hTM_Z —hTM_Z
O —hTM_1 _hTM—l * b - hTM_1 a— hTM_1
0 0 0 1 h+1
h h M+ 1)x(M+1)
and
0 0 0 O 0 0 O
0O c 0 O 0 0 O
0 0 ¢ O 0O 0 O
B = ,
0O 0 0 O c 0 0
0O 0 0 O 0 ¢c O
0 0 0O 0 0 Odm+nyxm+1)
= ! b—i+2+1 = :
a= h2’” "t h? C= T
‘e—itk 7
of
k|
n (P;C/I—l ’
le_itk
-2 AM+1)x1
]
k
M
wr =1 I
|
Wi

(M+1)x1
In the second step, we will find {n, }¥_,, {px}¥-,; by formulas (5.36) and (5.37). In
the third step, we will find {{uX}¥_,}M_, by formulas (5.33) and (5.34). The errors are
computed by formulas (5.13) and (5.14). Numerical solutions of u(t, x) at (t;,x,) is
uk and of p(t) at t, is p,. The results of numerical experiments for problem (5.31)
are provided in Table 5.2.5. As it is seen in Table 5.2.5, if M and N are multiplied by
2, the value of errors decreases approximately 1/2 for the DS. This shows that it has

the first order of accuracy.
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Table 5.2.3

The errors between the exact and the numerical solutions of (5.31) for different values
of N and M

Error M=N=20 M =N =40 M =N =280

E, 0.0341 0.0171 0.0085
E, 0.055 0.0028 0.0014
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CHAPTER VI
Conclusion

1. The history of direct and inverse boundary value problems for SIPs are
studied.
2. Fourier series, Laplace transform and Fourier transform methods are
applied for the solution of six identification problems for SIPs.
3. The stability of the time-dependent SIP for the SE in a Hilbert space
with the self-adjoint positive definite operator is established.
4. First and second order of accuracy single step difference schemes for the
numerical solution of this time-dependent SIP are presented. The absolute
stability of these difference schemes is established.
5. Applications, five time-dependent SIPs for SEs are studied.
Stability estimates are created for the solution of these SIPs and their
difference schemes for the numerical solution of the time-dependent SIPs for
SEs are obtained.
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Appendices
Appendix A

Matlab Implementation of One Dimension First Order of Accuracy Difference

Schemes of Problem (5.2.1)

function(Nonlocal condition)

clear all; close all;

N=40;

M=40;

i=sqrt(-1);

h=pi/M;

tau=1/N;

a=-1/(2*h"2);

b=(i/tau)+(1/h"2)+0.5;

c=-i/tau+1/(h"2)+0.5;

d=0;

for m=1:M

d=d+sin(2*m*h);

end

for m=1:M  z(m)=(sin(2*m*h)*((1-cos(2*h))/(h~2)+0.5)+0.5)/(pi+d*h);

end

A=zeros(M+1,M+1);

B=zeros(M+1,M+1);

A(1,1)=1;

A(1,M+1)=-1;

A(M+1,1)=1;

A(M+1,2)=-1;

A(M+1,M)=-1;

A(M+1,M+1)=1;

for m=2:M

A(m,m)=b;

A(m,m-1)=a;

A(m,m+1)=a;

B(m,m)=c;

B(m,m-1)=a;



B(m,m+1)=a;

end

for m=2:M
temp=h*z(m-1);

for j=2:M+1
A(m,j)=A(m,j)-temp;
B(m.j)=B(m.j)-temp;
end

end
W=zeros(M+1,N+1);
fii=zeros(M+1,N+1);
for j=1:M+1
x=(j-1)*h;
W(j,1)=1+sin(2*x);
end

for k=2:N+1

for j=2:M

x=(j-1)*h;
t=(k-1)*tau;

fii(j,K)=-(pi*z(j-1))* (exp(i*t)+exp(i*(t-tau)))
+(3*sin(2*x)-1)*exp(i*(t-tau/2));

end

W, K)=A\(-B*W(: k-1)+ii(: K)):

end
eta(1)=0;

for k=2:N+1
S=0;

for j=2:M+1
S=S+W(j,k);
end

S=S*h;
t=(k-1)*tau;

eta(k)=(S-pi*exp(i*t))/(i*(pi+d*h));

end
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for k=1:N
r(k)=(eta(k+1)-eta(k))/tau;
end

u=zeros(M+1,N+1);

for k=1:N+1

for j=1:M+1

x=(j-1)*h;
u(j,k)=W(j,k)-i*eta(k)*(1+sin(2*x));
end

end

Exact Solution of this PDE
for k=1:N

t=(k-1/2)*tau;
ep(K)=exp(i*t);

end;

for j=1:M+1

for k=1:N+1

t=(k-1)*tau;

x=(j-1)*h;
eu(j,k)=exp(i*t)*(1+sin(2*x));
end;

end;

for k=1:N+1

for j=1:M+1

t=(k-1)*tau;

x=(j-1)*h;

ew(j,k)=(2*exp(i*t)-1)*(1+sin(2*x));

end;

end;

Absolute Differences
absdiffw=max(max(abs(ew-W)))
absdiffp=max(abs(ep-r))

absdiffu=max(max(abs(eu-u))
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Matlab Implementation of One Dimension Second Order (Crank-Nicolson) of

Accuracy Difference Schemes of Problem (5.2.1)
function(Nonlocal condition)

clear all; close all;
N=40;

M=40;

i=sqrt(-1);

h=pi/M;

tau=1/N;
a=-1/(2*h"2);
b=(i/tau)+(1/h"2)+0.5;
c=-i/tau+1/(h"2)+0.5;
d=0;

for m=1:M
d=d+sin(2*m*h);
end

for m=1:M

z(m)=(sin(2*m*h)*((1-cos(2*h))/(h"2)+0.5)+0.5)/(pi+d*h);

end
A=zeros(M+1,M+1);
B=zeros(M+1,M+1);
A(1,1)=1;
A(1,M+1)=-1;
A(M+1,1)=1;
A(M+1,2)=-1;
A(M+1,M)=-1;
A(M+1,M+1)=1,

for m=2:M
A(m,m)=b;
A(m,m-1)=a;
A(m,m+1)=a;
B(m,m)=c;
B(m,m-1)=a;



B(m,m+1)=a;

end

for m=2:M
temp=h*z(m-1);

for j=2:M+1
A(m,j)=A(m,j)-temp;
B(m.j)=B(m.j)-temp;
end

end
W=zeros(M+1,N+1);
fii=zeros(M+1,N+1);
for j=1:M+1
x=(j-1)*h;
W(j,1)=1+sin(2*x);
end

for k=2:N+1

for j=2:M

x=(j-1)*h;
t=(k-1)*tau;

fii(j,K)=-(pi*z(j-1))* (exp(i*t)+exp(i*(t-tau)))+(3*sin(2*x)-1) *exp(i*(t-tau/2));

end
W(:,K)=A\(-B*W(:,k-1)+fii(:,k));
end
eta(1)=0;

for k=2:N+1
S=0;

for j=2:M+1
S=S+W(j,k);
end

S=S*h;
t=(k-1)*tau;

eta(k)=(S-pi*exp(i*t))/(i*(pi+d*h));

end
for k=1:N
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r(k)=(eta(k+1)-eta(k))/tau;
end

u=zeros(M+1,N+1);

for k=1:N+1

for j=1:M+1

x=(j-1)*h;
u(j,k)=W(j,k)-i*eta(k)*(1+sin(2*x));
end

end

Exact Solution Of This Pde
for k=1:N

t=(k-1/2)*tau;

ep(k)=exp(i*t);

end;

for j=1:M+1

for k=1:N+1

t=(k-1)*tau;

x=(j-1)*h;
eu(j,k)=exp(i*t)*(1+sin(2*x));
end;

end;

for k=1:N+1

for j=1:M+1

t=(k-1)*tau;

x=(j-1)*h;
ew(j,k)=(2*exp(i*t)-1)*(1+sin(2*x));
end;

end;

Absolute Differences
absdiffw=max(max(abs(ew-W)))
absdiffp=max(abs(ep-r))

absdiffu=max(max(abs(eu-u)))
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Appendix C
Matlab Implementation of One Dimension First Order of Accuracy Difference
Schemes of Problem (5.2.2)
function(Drichlet condition)
clear all;
close all;
N=80;
M=80;
i=sqrt(-1);
h=pi/M;
tau=1/N;
a=(i/tau)+(2/h"2)+1;
b=-i/tau;
c=-1/(h"2);
A=zeros(M+1,M+1);
for m=2:M
for j=2:M
A(m,j)=-h/pi;
end
end
for m=2:M
A(m,m)=a-(h/pi);
end
for m=2:M-1
A(m,m+1)=c-(h/pi);
end
for m=3:M
A(m,m-1)=c-(h/pi);
end
A(1,1)=1;
A(1,M+1)=-1;
A(2,1)=c;
A(M,M+1)=c;
A(M+1,1)=1;



A(M+1,2)=-1;
A(M+1,M+1)=1;
A(M+1,M)=-1;
B=zeros(M+1,M+1);

for n=2:M

B(n,n)=b;

end

B;

W=zeros(M+1,N+1);
fii=zeros(M+1,N+1);

for j=1:M+1

x=(j-1)*h;
W(j,1)=sin(2*x)+1;

end

for k=2:N+1

for j=2:M

x=(j-1)*h;

t=(k-1)*tau;
fii(j,K)=exp(i*t)*(-2+4*sin(2*x));
end
W(:,K)=A\(-(B*W(:,k-1))+fii(:,k));
end

eta(1)=0;

for k=2:N+1

S=0;

for j=2:M+1

S=S+W(j,k);

end

S=S*h;

t=(k-1)*tau;
eta(K)=(S-pi*exp(i*t))/(i*pi);
end

for k=2:N
p(k)=(eta(k)-eta(k-1))/tau;
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end
u=zeros(M+1,N+1);
for k=1:N+1

for j=1:M+1
u(j,k)=w(,k)-i*eta(k);
end

end

Exact Solution Of This Pde
for k=2:N

t=(k-1)*tau;
ep(K)=exp(i*1);

end;

for j=1:M+1

for k=1:N+1

t=(k-1)*tau;

x=(j-1)*h;
eu(j,k)=exp(i*t)*(1+sin(2*x));
end;

end;

for k=1:N+1

for j=1:M+1

t=(k-1)*tau;

x=(j-1)*h;

es(j,K)=-1+exp(i*t)*(2+sin(2*x));

end,

end,

Absolute Differences
absdiffW=max(max(abs(es-W)))
absdiffp=max(abs(ep-p))

absdiffu=max(max(abs(eu-u)))
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Appendix D
Matlab Implementation of One Dimension First Order of Accuracy Difference
Schemes of Problem (5.2.3)
function (Neumann condition)
clear all;
close all;
N=20;
M=20;
i=sqrt(-1);
h=pi/M;
tau=1/N;
a=-1/(h"2);
b=(i/tau)+(2/h"2)+1;
c=-i/tau;
d=0;
for m=1:M
d=d+cos(2*m*h);
end
for m=1:M
r(m)=(2*cos(2*m*h)*((cos(2*h)-1)/h"2-0.5)-1)/(pi+h*d);
end
A=zeros(M+1,M+1);
B=zeros(M+1,M+1);
A(1,1)=-1;
A(1,2)=1;
A(M+1,M)=-1;
A(M+1,M+1)=1;
for m=2:M
A(m,m)=b;
A(m,m-1)=a;
A(m,m+1)=a;
B(m,m)=c;
end
for m=2:M



temp=h*r(m);

for j=2:M+1
A(m,j)=A(m,j)+temp;

end

end

v=zeros(M+1,N+1);
fii=zeros(M+1,N+1)

for j=1:M+1

x=(j-1)*h;
v(j,1)=1+cos(2*x);

end

for k=2:N+1

for j=2:M

x=(j-1)*h;

t=(k-1)*tau;
fii(j,K)=(pi*r(j-1)+3*cos(2*x)-1)*exp(i*t); % r(j-1)
end
v(:,K)=A\(-B*v(:,k-1)+fii(:,K));
end

eta(1)=0;

for k=2:N+1

S=0;

for j=2:M+1

S=S+v(j,k);

end

S=S*h;

t=(k-1)*tau;
eta(k)=(S-pi*exp(i*t))/(i*(pi+d*h));
end

eta(1)=0;

for k=2:N
p(k)=(eta(k)-eta(k-1))/tau;
end

u=zeros(M+1,N+1);
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for k=1:N+1

for j=1:M+1

x=(j-1)*h;
u(j,k)=v(j,k)-i*eta(k)*(1+cos(2*x));
end

end

Exact Solution Of This Pde

for k=2:N

t=(k-1)*tau;

ep(K)=exp(i*1);

end;

for j=1:M+1

for k=1:N+1

t=(k-1)*tau;

x=(j-1)*h;
eu(j,k)=exp(i*t)*(1+cos(2*x));
end;

end;

for k=1:N+1

for j=1:M+1

t=(k-1)*tau;

x=(j-1)*h;
ev(j,k)=(exp(i*t)+exp(i)-1)*(1+cos(2*x));
end;

end,

Absolute Differences
absdiffw=max(max(abs(ev-v)))
absdiffp=max(abs(ep-p))

absdiffu=max(max(abs(eu-u)))
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Appendix E
Matlab Implementation of One Dimension First Order of Accuracy Difference
Schemes of Problem (5.2.4)
function (Robin condition)
clear all;
close all;
N=20;
M=20;
i=sqrt(-1);
h=pi/M;
tau=1/N;
b=-1/(h"2);
a=-i/tau;
c=(i/tau)+(2/h"2);
d=0;
for m=1:M
d=d+cos(m*h/2);
end
for m=2:M+1
r(m)=(2/(d*h"2))*(cos(m*h/2)*(cos(h/2)-1));
end
r
A=zeros(M+1,M+1);

for m=2:M+1

for j=2:M
A(m,j)=r(m);

end

end

for m=2:M
A(m,m)=c+h*r(m);
end

for m=2:M-1

A(m,m+1)=b+h*r(m);

end



for m=3:M-1
A(m,m-1)=b+h*r(m);
end

A;

A(1,1)=1+1/h;
A(1,2)=-1/h;
A(2,1)=b;
A(M,M+1)=b;
A(M+1,M-1)=-1/h;
A(M+1,M+1)=1+1/h;
B=zeros(M+1,M+1);
for m=2:M
B(m,m)=a;

end
W=zeros(M+1,N+1);
fii=zeros(M+1,N+1);
for j=2:M+1
x=(j-1)*h;
W(j,1)=cos(x/2);

end

for k=1:N+1
t=(k-1)*tau;
fii(1,k)=exp(-i*t);

fii(M+1,k)=-0.5*exp(-i*t);

end

for k=2:N+1
for j=2:M+1
x=(j-1)*h;
t=(k-1)*tau;

fii(j,K)=(r(m)/(h)+1.25*cos(x/2))*exp(-i*t);

end

W(:,K)=A\(-B*W(:,k-1)+fii(;,k));

end
eta(1)=0;
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for k=2:N+1

S=0;

for j=2:M+1

S=S+W(j,k);

end

S=S*h;

t=(k-1)*tau;
eta(k)=(S-2*exp(-i*t))/(i*d*h);
end

eta(1)=0;

for k=2:N+1
p(k)=(eta(k)-eta(k-1))/tau;
end

u=zeros(M+1,N+1);

for k=1:N+1

for j=1:M+1

x=(j-1)*h;
u(j,k)=W(j,k)-i*eta(k)*(cos(x/2));
end

end

Exact Solution Of This Pde
for k=2:N+1

t=(k-1)*tau;
ep(k)=exp(-i*t);

end,

for j=2:M+1

for k=2:N+1

t=(k-1)*tau;

x=(j-1)*h;
eu(j,k)=exp(-i*t)*cos(x/2);
end;

end,

for k=1:N+1

for j=1:M+1
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t=(k-1)*tau;

x=(j-1)*h;
es(j,K)=(exp(-i*t)+exp(-i*t)-1)*(cos(x/2));
end;

end;

Absolute Differences
absdiffu=max(max(abs(es-W)))
absdiffp=max(abs(ep-p(k)))
absdiffu=max(max(abs(eu-u)))
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