
 
 

 
 

 

NEAR EAST UNIVERSITY 

INSTITUTE OF GRADUATE STUDIES 

DEPARTMENT OF MATHEMATICS 

 

 

 

 

THE TIME-DEPENDENT SOURCE IDENTIFICATION PROBLEM FOR 

THE  

DELAY HYPERBOLIC EQUATIONS 

 

 

 

 

 

M.Sc. THESIS 

 

 

 

 

 

Bishar Chato HASO 

 

 

 

 

Nicosia 

June, 2022 

 

 

 

B
IS

H
A

R
 C

H
A

T
O

        T
H

E
 T

IM
E

-D
E

P
E

N
D

E
N

T
 S

O
U

R
C

E
 ID

E
N

T
IF

IC
A

T
IO

N
           M

.S
c
. T

H
E

S
IS

           N
ic

o
sia

              

H
A

S
O

               
     P

R
O

B
L

E
M

 F
O

R
 T

H
E

 D
E

L
A

Y
 H

Y
P

E
R

B
O

L
IC

 E
Q

U
A

T
IO

N
S

                              
  2

0
2
2
                            

 



 
 

 
 

NEAR EAST UNIVERSITY 

INSTITUTE OF GRADUATE STUDIES 

DEPARTMENT OF MATHEMATICS 

 

 

 

 

THE TIME-DEPENDENT SOURCE IDENTIFICATION  

PROBLEM FOR THE  

DELAY HYPERBOLIC EQUATIONS 

 

 

 

M.Sc. THESIS 

 

 

 

Bishar Chato HASO 

 

 

 

Supervisor 

Prof. Dr. Allaberen ASHYRALYEV 

 

 

 

Nicosia 

June, 2022



 



 



3 
 

 
 

Acknowledgments 

 

      First, I would like to thank the faculty of applied sciences at Near East 

University for giving me the opportunity to complete my master's degree. I would also 

like to express my sincere gratitude and appreciation for the supervisor of my thesis 

Prof. Dr. Allaberen Ashyralyev for his valuable advice and consistent support in the 

journey of completing my thesis. I would also like to thank Prof. Dr. Charyyar 

Ashyralyyev for his helpful discussions and his guidance in Matlab Implementation. 

My appreciation goes to all staff of the Mathematics Department at Near East 

University for their guidance, encouragement, and insightful comments. I am very 

grateful for my family including my wife, sisters, and brothers for financial and moral 

support while completing my master's degree. Finally, I would also like to thank all 

my friends for their support. 

 

 

Bishar Chato Haso 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

 
 

Abstract 

The Time-Dependent Source Identification Problem for the Delay Hyperbolic 

Equations 

Haso, Bishar Chato 

Master Thesis, Department of Mathematics 

Supervisor: Prof. Dr. Allaberen Ashyralyev  

June, 2022, (113) pages 

       Our project is aimed to investigate the time-dependent source identification 

problem for delay hyperbolic partial differential equations. This thesis deals with 

analytical and approximate solutions of several problems for delay hyperbolic partial 

differential equations. In the present study, a time-dependent source identification 

problem with local and nonlocal conditions for a one-dimensional delay hyperbolic 

equation is investigated. Stability estimates for the solutions of the time-dependent 

source identification problems are established. Furthermore, a first order of accuracy 

difference scheme for the numerical solutions of the time-dependent source 

identification problems for delay hyperbolic equations with local and nonlocal 

conditions are presented. New absolute stable difference scheme for the approximate 

solution of the one dimensional delay hyperbolic equation is constructed and a 

numerical algorithm is presented. Additionally, illustrative numerical results are 

provided. 

Key Words: Hyperbolic differential equation, Time delay, Source identification 

problem, Stability, Difference Schemes. 
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Özet 

Zaman Gecikmeli Hiperbolik Denklemler İçin Kaynak Tanımlama Problemi 

Haso, Bishar Chato 

Yüksek Lisans Tezi, Matematik Anabilim Dalı 

Danışman: Prof. Dr. Allaberen Ashyralyev  

Haziran, 2022, (113) sayfa 

        Projemiz, gecikmeli hiperbolik kısmi diferansiyel denklemler için zamana 

bağlı kaynak tanımlama problemini araştırmayı amaçlamaktadır. Bu tez, gecikmeli 

hiperbolik kısmi diferansiyel denklemler için çeşitli problemlerin analitik ve yaklaşık 

çözümlerini ele almaktadır. Bu çalışmada, tek boyutlu bir gecikme hiperbolik 

denklemi için yerel ve yerel olmayan koşullarla zamana bağlı bir kaynak belirleme 

problemi incelenmiştir. Zamana bağlı kaynak tanımlama problemlerinin çözümleri 

için kararlılık tahminleri oluşturulmuştur. Ayrıca, yerel ve yerel olmayan koşullara 

sahip gecikmeli hiperbolik denklemler için zamana bağlı kaynak tanımlama 

problemlerinin sayısal çözümleri için bir doğruluk farkı şeması sunulmaktadır. Tek 

boyutlu gecikmeli hiperbolik denklemin yaklaşık çözümü için yeni mutlak kararlı fark 

şeması oluşturulmuş ve sayısal algoritma sunulmuştur. Ek olarak, açıklayıcı sayısal 

sonuçlar sağlanmaktadır. 

Anahtar Kelimeler: hiperbolik diferansiyel denklem, zaman gecikmesi, kaynak 

tanımlama sorunu, istikrar, fark şemaları. 
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CHAPTER I 

Introduction 

 

1.1 Historical Note and Literature Survey 

      Delay differential equations, differential integral equations and functional 

differential equations have been studied for at least 200 years. During the last 50 years, 

the theory of functional differential equations has been developed extensively and has 

become part of the vocabulary of researchers dealing with specific applications such as 

viscoelasticity, mechanics, nuclear reactors, distributed networks, heat flow, neural 

networks, combustion, interaction of species, microbiology, learning models, 

epidemiology, physiology, as well as many others. Stochastic effects are also being 

considered but the theory is not as well developed by Hale, J. K. (2006). Delay 

hyperbolic differential equation have been studied in several papers, for example: 

Ashyralyev, Agirseven, 2019; Son, Thao, 2019; Monteghetti, Haine, Matignon, 2017; 

Zhang, Zhang, Deng, 2014; Prakash, Harikrishnan, 2012; Vyazmin, Sorokin, 2017; 

Farkas, 2003. However, Shah, Wiener, 1985, studied the existence and uniqueness of 

the bounded solution of nonlinear one dimensional delay hyperbolic differential 

equation with constant coefficients. Ashyralyev and Agirseven in 2019 studied the 

existence and uniqueness of a bounded solution a semilinear time delay hyperbolic 

equation in a Hilbert space. In applications, theorems on the existence and uniqueness 

of bounded solutions of four problems for semilinear time delay differential equations 

of hyperbolic type were obtained. The two-steps of a first order of accuracy difference 

scheme was presented, the main theorem on the existence and uniqueness of uniformly 

bounded solution of the difference scheme with respect to time step size was proved. 

Numerical results were presented. In the paper of Prakash and Harikrishnan, 2012, a 

class of impulsive vector hyperbolic differential equation with delays was 

investigated. They studied different sufficient conditions for H-oscillation of solutions 

systems subject to the Neumann boundary condition by employing certain 

second-order impulsive differential inequality, where H is a unite vector in   . 

Allaberen Ashyralyev and Deniz Agirseven in 2014 studied the source identification 

problem for a delay parabolic equation with nonlocal conditions. The stability 

estimates in Hölder norms for the solution of the problem was established. In 2020 the 

absolute stable difference schemes for third order delay partial differential equations 

have been studied. The absolute stable of a first order of accuracy difference scheme 
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for the approximate solution of the delay partial differential equation in a Hilbert space 

was presented. However, the theorem on the stability of the difference scheme was 

proved. In practice, stability estimates for the solutions of three-step difference 

schemes for different types of delay partial differential equations were obtained. 

Numerical results were given by Ashyralyev, A., Hınçal, E., Ibrahim, S. Numerical 

solutions of source identification problem for hyperbolic-parabolic equations have 

been studied, partial differential equations with unknown source terms were widely 

used in mathematical modeling of real-life systems in many different fields of science 

and engineering. Various local and nonlocal boundary value problems for 

hyperbolic-parabolic equations with unknown sources have been reduced to the 

boundary value problem for the differential equation with parameter p. In applications, 

the stability inequalities for the solution of three source identification problems for 

hyperbolic-parabolic equations were obtained. The first and second order of accuracy 

difference scheme for the approximate solution were constructed and investigated by 

Maral Ashyralyyeva and Maksat Ashyraliyev, 2016. There is always a major interest 

for the theory of source identification problems for partial differential equations since 

they have widespread applications in modern physics and technology. For this effort, 

the stability of various source identification problems for partial differential and 

difference equations has also been studied extensively by many researchers (see, for 

examle, Ashyralyev, A., Agirseven, D., 2014; Blasio, G. Di., Lorenzi,A.2007; 

Kabanikhin, S.I. 2004; Orazov, I., Sadybekov, M.A., 2012; Ashyralyev, A., Emharab, 

F., 2019; Ashyralyev, A., Ashyralyyev, C., 2014; Ashyralyev, A., Al-Hammouri,A., 

2020; Ashyralyev, A., Al-Hammouri, A., Ashyralyyev, C., 2021; Ashyralyev, A., 

Erdogan, A.S., 2014; Ashyralyev, A., Urun, M., 2021; Sadybekov, M.A., Dildabek,G., 

Ivanova,M.B., 2018; Saitoh, S., Tuan, V.K., Yamamoto, M., 2002; Sakamoto, 

K.,Yamamoto, M., 2011; Samarskii, A.A., Vabishchevich, P.N., 2007; Ashyralyev, 

A., Agirseven, D., Agarwal, R.P., 2020; Emharab, F., 2019; Ahmad Mohammad 

Salem Al-Hammauri, 2020; Erdogan, A.S., 2010; Ashyraliyev,M., 

Ashyralyyeva,M.A., Ashyralyev,A., 2020; Ashurov, R.R., Shakarova M.D., 2022). In 

many fields of the contemporary science and technology, systems with delaying terms 

appear. The dynamical processes are described by systems of delay ordinary and 

partial differential and difference equations. The delay appears in complicated systems 

with logical and computing devices, where certain time for information processing is 

needed. The stability of the delay differential and difference equations has been 
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studied in many papers (see, for example, Al-Mutib, A.N., 1984; Ashyralyev, A., 

Akca, H., 2001; Ashyralyev, A., Akca, H., Yenicerioglu, A. F., 2003; Ashyralyev, A., 

Sobolevskii, P.E., 2001; Bellen, A., Jackiewicz, Z., Zennaro, M., 1988; Torelli, L., 

1989; Yeniçerioğlu, A. F., Yalçinbaş, S., 2004; Yeniçerioğlu, A. F., 2008; Ashyralyev, 

A., Agirseven, D., 2020; Agirseven, D., 2018). Delay partial differential equations 

arise in many applications such as control theory, climate models, medicine, biology, 

and much more (for example, see Wu, J., 1996 and the references therein). 

 

1.2 Layout of the Present Thesis 

      The time-dependent source identification problem for delay hyperbolic partial 

differential equations has not been investigated before. The main aim of the present 

Thesis is to study the boundedness solution of several time-dependent identification 

problems for delay hyperbolic equations. This thesis consists of five Chapters. First 

chapter is the introduction. Second chapter, six examples of the second order 

differential equation with time-dependent identification problems for delay hyperbolic 

equations are investigated. We obtained the exact solution of the initial boundary 

value problem for a one dimensional delay hyperbolic equation. Third chapter, 

Theorems on stability estimates for the solution of the initial boundary value problem 

for the second order of hyperbolic differential equations with time delay are proved. In 

Chapter Four, we obtain the algorithms of numerical solution for the IVP for the one 

dimensional delay hyperbolic partial differential equation with Dirichlet, Neumann 

and nonlocal boundary conditions. We will present the first order of accuracy 

difference schemes for the numerical solutions of delay hyperbolic equations. 

Numerical analysis is provided. Based on the main results of the thesis, reports were 

made at the Satellite Conference "Numerical Functional Analysis - 2021" of ICAAM 

November 22 - 24 , 2021 ISTANBUL, TURKEY. Chapter Five presents some 

conclusions which are obtained from Chapters Two, Three and Four. Two expanded 

abstracts are published in AIP Conference Proceedings 2022. One paper is submitted 

in the journal "Bulletin of the Karaganda University" and one paper is submitted in the 

international journal of Applied Mathematics. Besides, some ideas are given for 

working in the future. 
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1.3.Basic Concepts and Definitions : 

    This section highlights basic concepts and definitions in the theory of ordinary and 

partial differential equations with Delay Hyperbolic equation leading us to conduct 

and understand the works in this thesis. 

 

1.3.1 Sturm-Liouville problem (Arfken, Weber, 2005) 

      We denote the Sturm-Liouville operator as 

 , -   
 

  
[ ( )

  

  
]   ( )  

and consider the Sturm-Liouville equation 

 , -                                       (1.1) 

where     and   and   are continuous functions on the interval ,   - with local 

boundary conditions 

    ( )     ( )  ( )       ( )     ( )  ( )                (1.2) 

where   
    

    and   
    

    or nonlocal boundary conditions 

  ( )   ( )      ( )    ( )                          (1.3) 

The problem of finding a complex number     such that the BVPs (   ) (   ) or 

(   ) (   ) have a non trivial solution are called Sturm-Liouville problems. The value 

    is called an eigenvalue and the corresponding solution  (   ) is called an 

eigenfunction. We will consider three types of Sturm-Liouville problem. 

 

1.3.1.1. The Sturm-Liouville Problem with Dirichlet Condition. 

     ( )    ( )           ( )   ( )             (1.4) 

has solution 

  ( )     
   

 
             (

  

 
)
 

              

In the case when      we have that 

  ( )                                      

 

1.3.1.2. The Sturm-Liouville Problem with Neumann Condition. 

    ( )    ( )            ( )    ( )                (1.5) 

has solution 

  ( )     
   

 
             (

  

 
)
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In the case when      we have that 

  ( )                                      

 

1.3.1.3. The Sturm-Liouville Problem with Nonlocal Conditions. 

     ( )    ( )           ( )   ( )   ( )    ( )          (1.6) 

has solution 

  ( )     
    

 
               

  ( )     
    

 
             

and 

     (
  

 
)
 

              

In the case when      we have that 

  ( )                         

  ( )                       

and 

                     

 

1.3.2 Fourier Series (Serov, V. (2017)) 

       Let   be a fixed number and  ( ) be a periodic function with periodic    , 

defined on (    ). The Fourier series of  ( ) is a way of expanding the function 

 ( ) into an infinite series involving sines and cosines: 

 ( )  
  

 
 ∑      .

   

 
/

 

   

 ∑      .
   

 
/

 

   

                      (   ) 

where the Fourier coefficients   ,   and    are defined by the integrals 

   
 

 
∫ ( )  

 

  

                                                     (   ) 

   
 

 
∫ ( )   .

   

 
/  

 

  

                                   (   ) 

And 

   
 

 
∫ ( )   .

   

 
/  

 

  

                                (    ) 
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1.3.3 The Laplace Transform (Finan, M. B. 2010) 

      The Laplace transform can be helpful in solving ordinary and partial differential 

equations because it can replace an ODE with an algebraic equation or replace a PDE 

with an ODE. Another reason that the Laplace transform is useful is that it can help 

deal with the boundary conditions of a PDE on an infinite domain.   

Definition 1. Let   be a real valued function of the real variable  , defined for    . 

Let   be a variable that we will assume to be real, and consider the function   

defined by 

 * ( )+   ( )     
   

∫ ( )      

 

 

 ∫  ( )      

 

 

       (    ) 

for all values of   for which this integral exists. The function   defined by the 

integral (    ) is called the Laplace transform of the function  . We will denote the 

Laplace transform   of   by  * + and will denote  ( ) by  * ( )+ .Note that for 

those     for which the integral makes sense  ( ) is a complex-valued function of 

complex number. 

 

1.3.4 The Fourier transform (Bracewell, 1999) 

     There are several ways to define the Fourier transform of a function      . 

Definition. Let   be a real valued function of the real variable  , defined for 

  (  , ). Let   be a variable and consider the function   defined by 

 ( )   * ( )+  ∫  ( )       

 

  

                               (    ) 

for all values of   for which this integral exists. The function   defined by the 

integral (    ) is called the Fourier transform of the function  . We will denote the 

Fourier transform   of   by  * + and will denote  ( ) by  * ( )+. Note that for 

those     for which the integral makes sense  ( ) is a complex-valued function of 

complex number. 
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CHAPTER II 

Integral Transform Methods of Time-Dependent Identification Problem for 

Delay Hyperbolic Equations 

 

2.1 Introduction 

      Delay hyperbolic equations appear in mathematical models of applied 

mathematics, physics, biology, and population dynamics. Therefore, it is important to 

study hyperbolic type differential equations with time delay terms. Note that 

time-dependent identification problems for delay hyperbolic equations are not 

investigated. Therefore, the main aim of Chapter Two is to study the time-dependent 

identification problems for several hyperbolic equations. Applying results of Chapter 

One and Fourier series, Laplace and Fourier transform methods, we obtain the exact 

solution of several time-dependent identification problems for delay hyperbolic 

equations.  

 

2.2 Fourier Series Method 

      We consider the Fourier series method for the solution of the time-dependent 

identification problems for delay hyperbolic differential equations with Dirichlet, 

Neumann and non-local boundary conditions. 

Problem 1. we consider the time-dependent identification problem 

{
 
 
 
 
 

 
 
 
 
 
   (   )

   
 

   (   )

   
  

   (     )

   
  ( ) ( )   (   ) 

        (   )                                                                              

 (   )   (   )          ,   -                                          

 (   )   (   )    ∫ (   )  

 

 

  ( )                               

                         (   ) 

for a one dimensional delay hyperbolic equation with Dirichlet condition. Here 

 (   ) and  ( ) are unknown functions. Under compatibility conditions, problem 

(   )  has a unique solution ( (   )  ( ))  for the smooth functions  (   )(  

(   )   (   ))  (   )  ( )  ( )  Here   is a constant. Assume that 

∫  
 

 
 ( )    , and  ( )   ( )     and  (   )   (   )      ,    -  

  (   )   (   )      ,   )  
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For example, we consider the time-dependent identification problem 

{
 
 
 
 

 
 
 
 

         ( )         (     )                

                                             

 (   )                                   

 (   )   (   )    ∫  (   )  

 

 

          

                                                   (   ) 

for a one dimensional delay hyperbolic equation with Dirichlet condition. 

Solution. For this case          (   )                      

   (   )                                 ( )            In order 

to solve the problem (   ), we consider the Sturm-Liouville problem  

   ( )    ( )           ( )   ( )    

generated by the space operator of problem (   ). Note that the solution of this 

Sturm–Liouville problem is 

  ( )                            

Therefore, we will seek the Fourier series solution  (   )  by the formula 

 (   )  ∑   ( )     

 

   

                                               (   ) 

Here   ( )             are unknown functions. Putting (   )  into the equation 

(   ) and using given initial and boundary conditions, we obtain 

∑,  
  ( )    ,  ( )     (   )-     

 

   

 

  ( )                              

and 

∑   ( )     

 

   

                  

Equating coefficients of                   to zero,we get  

 

{

  
  ( )    ( )     (   )   ( )                 

  
  ( )    ,  ( )     (   )-             

 

and 
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{
  ( )               
                        
  ( )               

 

First, we obtain   ( )    . It is clear that   ( ) be solution of the following IVP 

{
  

  ( )      ( )       (   )          

  ( )          

 

for the second order ordinary differential equation with time delay. We denote that 

  ( )  *    ( ) (   )                    +  

where     ( ) (   )       be solutions of the following IVPs 

{
 
 

 
 
    

  ( )        ( )          

    ( )        
 ( )    

    
  ( )        ( )           (   )    (   )          

 

for the second order ordinary differential equation with time delay. For obtaining 

    ( ), we will consider the auxilliary equation 

         

We have that        Therefore, 

    ( )       (  )       (  )  

Taking the derivative, we get 

    
 ( )         (  )        (  )  

Using initial conditions     ( )        
 ( )   , we get 

           

Therefore, 

    ( )           

Now, suppose that 

    ( )    (   )        

Then,     ( ) (   )       be solutions of the following IVPs 

{

    
  ( )        ( )    (   )       

    ((   ) )        
 ((   ) )       

 

for the second order ordinary differential equation with time delay. In the same 

manner, we can write 

    ( )       ( (  (   ) ))       ( (  (   ) ))  
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Using initial conditions     ((   ) )        
 ((   ) )   , we get 

           

Therefore, 

    ( )    (   )        

Applying mathematical induction, 

    ( )         (   )  

is true for any    . Thus, 

  ( )  {    ( ) (   )                }            (2.4) 

for all      Applying formula (   ) and condition ∫  
 

 
 (   )          we get    

∫  (   )  

 

 

 ∑
      ( )

    

 

   

                           (   ) 

 

Second, we obtain   ( ). Applying formulas (   ) and (   ), we get 

   ( )         

  Then,   ( )      .Thus, 

 (   )  ∑   ( )     

 

   

   ( )               

Third, we obtain  ( ). It is clear that   ( ) be the solution of the following BVP 

{
  

  ( )    ( )     (   )   ( )                   
  
  ( )                     

 

for the second order ordinary differential equation with time delay. Since   ( )  

    , we have that 

 ( )        

Therefore, 

( (   )  ( ))  (             ) 

is the exact solution of the problem (   ). 

Note that using similar procedure one can obtain the solution of the following 

time-dependent identification problem 
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
    (   )

   
 ∑  

   (   )

   
 

 

   

  ∑  

   (     )

   
 

 

   

  ( ) ( )   (   )                                                          

        (       )                                         

 (   )   (   )                                         

 (   )                                         

∫  ∫ (   )       

                                                  

  ( )                             

                                            (   ) 

for the multidimensional hyperbolic partial differential equation with a delay term. 

Assume that        and  (   )  ( ) (  (   )    )  (   )(  

,    -    ) are given smooth functions. Here and in the future   is the unit open 

cube in the n-dimensional Euclidean space   (            )  with the 

boundary   and      . 

Unfortunately, The Fourier series method described in solving (   ) can be used only 

in the case when (   ) has constant coefficients. 

 

Problem 2. we consider the time-dependent identification problem 

{
 
 
 
 

 
 
 
 
   (   )

   
 

   (   )

   
  

   (     )

   
  ( ) ( )   (   ) 

        (   )                                                                             

 (   )   (   )          ,   -                                          

  (   )    (   )    ∫  (   )  
 

 

  ( )                          

                          (   ) 

for a one dimensional delay hyperbolic equation with Neumann condition. Here 

 (   ) and  ( ) are unknown functions. Under compatibility conditions, problem 

(   )  has a unique solution ( (   )  ( ))  for the smooth functions  (   )(  

(   )   (   ))  (   )  ( )  ( )  Here   is a constant. Assume that 

∫  
 

 
 ( )    , and   ( )    ( )     and   (   )    (   )      

,    -   (   )    (   )      ,   )  

For example, we consider the time-dependent identification problem 
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{
 
 
 
 

 
 
 
 

         ( )(      )      (     )         

     (      )                            

 (   )      (      )                  

  (   )    (   )    ∫  (   )  

 

 

          

                                              (   ) 

for a one dimensional delay hyperbolic equation with Neumann condition.  

Solution. For this case          (   )      (      )          

     (   )       (      )                       ( )          

 . In order to solve problem (   ), we consider the Sturm-Liouville problem 

   ( )    ( )            ( )    ( )    

generated by the space operator of problem (   ). Note that the solution of this 

Sturm–Liouville problem is 

  ( )                              

Therefore, we will seek the Fourier series solution  (   )  by the formula 

 (   )  ∑   ( )     

 

   

                                                  (   ) 

Here   ( )             are unknown functions. Putting (   )  into the equation 

(   ) and using given initial and boundary conditions, we obtain 

∑,  
  ( )    ,  ( )     (   )--     

 

   

 

  ( )(      )      (      )                

and 

∑   ( )     

 

   

     (      )         

Equating coefficients of                   to zero,we get  

 

{
 
 

 
 
  

  ( )    ( )     (   )   ( )                 

  
  ( )   ( )            

  
  ( )    ,  ( )     (   )-             

 

and 
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{
 
 

 
 
  ( )                                           

  ( )                                           

  ( )                 

 

First, we obtain   ( )        It is clear that   ( ) be solution of the following 

IVP 

{
  

  ( )      ( )       (   )        

  ( )                                                    

 

for the second order ordinary differential equation with time delay. We denote that 

  ( )  *    ( ) (   )                    +  

where     ( ) (   )       be solutions of the following initial value 

problems 

{
 
 

 
 
    

  ( )        ( )          

    ( )        
 ( )    

    
  ( )        ( )           (   )    (   )          

 

for the second order ordinary differential equation with time delay. For obtaining 

    ( ), we will consider the auxilliary equation 

         

We have that        Therefore, 

    ( )       (  )       (  )  

Taking the derivative, we get 

    
 ( )         (  )        (  )  

Using the initial conditions     ( )        
 ( )   , we get 

           

Therefore, 

    ( )           

Now, suppose that 

    ( )    (   )        

Then,     ( ) (   )       be solutions of the following IVPs 

{

    
  ( )        ( )    (   )       

    ((   ) )        
 ((   ) )       
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for the second order ordinary differential equation with time delay. In the same 

manner, we can write 

    ( )       ( (  (   ) ))       ( (  (   ) ))  

Using initial conditions     ((   ) )        
 ((   ) )   , we get 

           

Therefore, 

    ( )    (   )        

Applying mathematical induction, 

    ( )         (   )  

is true for any    . Thus, 

  ( )  {    ( ) (   )              }                   (    ) 

for all        

Second, we obtain   ( ). Applying formula (   ) and condition ∫  
 

 
 (   )   

        we get    

∫ (   )  

 

 

 ∫ ∑   ( )     

 

   

 

 

   ( )             

From that it follows that 

  ( )        

Third, we obtain  ( ). It is clear that   ( ) be the solution of the following BVP 

{

  
  ( )   ( )            

  ( )                         
 

for the second order ordinary differential equation with time delay. Since   ( )  

      we have that 

 ( )        

Fourth, we obtain   ( )      It is clear that   ( ) be solution of the following 

IVP 

{

  
  ( )    ( )     (   )             

  ( )             
 

for the second order ordinary differential equation with time delay. We denote that 

  ( )  *    ( ) (   )                    +  

where     ( ) (   )       be solutions of the following IVPs 
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{
 
 

 
 
    

  ( )      ( )          

    ( )        
 ( )    

    
  ( )      ( )         (   )         (   )          

 

for the second order ordinary differential equation with time delay. For obtaining 

    ( ), we will consider the auxilliary equation 

        

We have that       Therefore, 

    ( )       ( )       ( )  

Taking the derivative, we get 

    
 ( )        ( )       ( )  

Using the initial conditions     ( )        
 ( )   , we get 

           

Therefore, 

    ( )              

Now, suppose that 

    ( )       (   )        

Then,     ( ) (   )       be solutions of the following IVPs 

{

    
  ( )      ( )    (   )       

    ((   ) )        
 ((   ) )       

 

for the second order ordinary differential equation with time delay. In the same 

manner, we can write 

    ( )       ( (  (   ) ))       ( (  (   ) ))  

Using initial conditions     ((   ) )        
 ((   ) )   , we get 

           

Therefore, 

    ( )       (   )        

Applying mathematical induction, 

    ( )            (   )  

is true for any    . Thus, 

  ( )  {    ( ) (   )                  }        

Therefore, 



26 
 

 
 

 (   )  ∑   ( )     

 

   

   ( )    ( )         (      )  

Hence, 

( (   )  ( ))  (    (      )     ) 

is the exact solution of the problem (   ). 

Note that using similar procedure one can obtain the solution of the following 

time-dependent identification problem 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
    (   )

   
 ∑  

   (   )

   
 

 

   

  ∑  

   (     )

   
 

 

   

  ( ) ( )   (   )                                                          

        (       )                                          

 (   )   (   )                                         

  (   )

  
                                       

∫ ∫ (   )       

                                                  

  ( )                             

                                          (    ) 

for the multidimensional hyperbolic partial differential equation with a delay term. 

Assume that        and  (   )  ( ) (  (   )    )  (   )(  

,    -    ) are given smooth functions. Here and in future   is the normal 

vector to  . However, The Fourier series method described in solving (    ) can be 

used only in the case when (    ) has constant coefficients. 

Problem 3. we consider the time-dependent identification problem 

{
 
 
 
 
 
 

 
 
 
 
 
 
   (   )

   
 

   (   )

   
  

   (     )

   
  ( ) ( )   (   ) 

        (   )                                                                             

 (   )   (   )          ,   -                                         

 (   )   (   )   (   )    (   )                                                  

∫  (   )  

 

 

  ( )                                                                     

                       (    ) 
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for a one dimensional delay hyperbolic equation with non-local condition. Here 

 (   ) and  ( ) are unknown functions. Under compatibility conditions, problem 

(    ) has a unique solution ( (   )  ( )) for the smooth functions  (   )(  

(   )   (   ))  (   )  ( )  ( )  Here   is a constant. Assume that 

∫  
 

 
 ( )    , and  ( )   ( )   ( )    ( )  and  (   )   (   )   (   )  

  (   )   ,    -  (   )   (   )   (   )    (   )   ,   )  

For example, we consider the time-dependent identification problem 

{
 
 
 
 
 

 
 
 
 
 

         ( )(       )      (     )           

      (       )                         

 (   )       (       )                 

 (   )   (   )   (   )    (   )                                 

∫  (   )  

 

 

                                                          

                                      (    ) 

for a one dimensional delay hyperbolic equation with non-local condition.  

Solution. For this case          (   )       (       )          

     (   )        (       )                          ( )  

          . In order to solve problem (    ), we consider the Sturm-Liouville 

problem 

   ( )    ( )           ( )   ( )   ( )    ( ) 

generated by the space operator of problem (    ). Note that the solution of this 

Sturm–Liouville problem is 

  ( )                                

and 

  ( )                              

Therefore, we will seek the Fourier series solution  (   )  by the formula 

 (   )  ∑   ( )      

 

   

 ∑   ( )      

 

   

                        (    ) 

Here   ( )            and   ( )          are unknown functions. Putting 

(    ) into the equation (    ) and using given initial and boundary conditions, we 

obtain 
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∑,  
  ( )     ,  ( )     (   )-      

 

   

 

 ∑,  
  ( )     ,  ( )     (   )--      

 

   

 

  ( )(       )       (       )                   

and  

∑   ( )      

 

   

 ∑   ( )      

 

   

      (       )         

Equating coefficients of                    to zero,we get  

{
 
 

 
 
  

  ( )     ( )      (   )   ( )                    

  
  ( )   ( )             

  
  ( )     ,  ( )     (   )-             

 

and 

{
 
 

 
 

  ( )                              

  ( )                               

  ( )                 

 

Also we have that 

  
  ( )       ( )        (   )        

it is clear that   ( )    for      

First, we obtain   ( )      . It is clear that   ( ) be solution of the following IVP 

{
  

  ( )       ( )        (   )        

  ( )                                                    

 

for the second order ordinary differential equation with time delay. We denote that 

  ( )  *    ( ) (   )                    +  

where     ( ) (   )       be solutions of the following IVPs 

{
 
 

 
 
    

  ( )         ( )          

    ( )        
 ( )    

    
  ( )         ( )            (   )    (   )          

 

for the second order ordinary differential equation with time delay. For obtaining 
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    ( ), we will consider the auxilliary equation 

          

We have that         Therefore, 

    ( )       (   )       (   )  

Taking the derivative, we get 

    
 ( )          (   )         (   )  

Using the initial conditions     ( )        
 ( )   , we get 

           

Therefore, 

    ( )           

Now, suppose that 

    ( )    (   )        

Then,     ( ) (   )       be solutions of the following IVPs 

{

    
  ( )         ( )    (   )       

    ((   ) )        
 ((   ) )       

 

for the second order ordinary differential equation with time delay. In the same 

manner, we can write 

    ( )       (  (  (   ) ))       (  (  (   ) ))  

Using initial conditions     ((   ) )        
 ((   ) )   , we get 

 

           

Therefore, 

    ( )    (   )        

Applying mathematical induction, 

    ( )         (   )  

is true for any    . Thus, 

  ( )  {    ( ) (   )                }            (2.15) 

for all        

Second, we obtain   ( ). Applying formula (    ) and condition ∫  
 

 
 (   )   

         we get    
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∫  (   )  

 

 

 ∫ [∑   ( )      

 

   

 ∑   ( )      

 

   

]   

 

 

 

   ( )  ∑
  ( )      

  

 

   

]

 

 

 ∑
  ( )      

  
]
 

  

   

 

   ( )              

From that it follows that 

  ( )         

Third, we obtain  ( ). It is clear that   ( ) be the solution of the following BVP 

{
  

  ( )   ( )               
  
  ( )                        

 

for the second order ordinary differential equation with time delay. Since   ( )  

       we have that 

 ( )         

Fourth, we obtain   ( )      It is clear that   ( ) be solution of the following 

IVP 

{

  
  ( )     ( )      (   )              

  ( )                                                        
 

for the second order ordinary differential equation with time delay. We denote that 

  ( )  *    ( ) (   )                    +  

where     ( ) (   )       be solutions of the following IVPs 

{
 
 

 
 
    

  ( )       ( )          

    ( )        
 ( )    

    
  ( )       ( )          (   )          (   )          

 

for the second order ordinary differential equation with time delay. For obtaining 

    ( ), we will consider the auxilliary equation 

        

We have that        Therefore, 

    ( )       (  )       (  )  

Taking the derivative, we get 

    
 ( )         (  )        (  )  
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Using the initial conditions     ( )        
 ( )   , we get 

           

Therefore, 

    ( )               

Now, suppose that 

    ( )        (   )        

Then,     ( ) (   )       be solutions of the following IVPs 

{

    
  ( )       ( )    (   )       

    ((   ) )        
 ((   ) )       

 

for the second order ordinary differential equation with time delay. In the same 

manner, we can write 

    ( )       (  (  (   ) ))       (  (  (   ) ))  

Using initial conditions     ((   ) )        
 ((   ) )   , we get 

           

Therefore, 

    ( )        (   )        

Applying mathematical induction, 

    ( )             (   )  

is true for any    . Thus, 

 

  ( )  {    ( ) (   )                  }         

Therefore, 

 (   )  ∑   ( )      

 

   

 ∑   ( )      

 

   

 

   ( )    ( )           (       )  

Hence, 

( (   )  ( ))  (     (       )      ) 

is the exact solution of the problem (    ). 

Note that using similar procedure one can obtain the solution of the following 

time-dependent identification problem 
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{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
    (   )

   
 ∑  

   (   )

   
 

 

   

  ∑  

   (     )

   
 

 

   

  ( ) ( )   (   )                                                           

        (       )                                         

 (   )   (   )                                         

 (   )|  
  (   )|  

 
  (   )

  
|
  

 
  (   )

  
|
  

          

∫ ∫ (   )       

                                                 

  ( )                              

                                         (    ) 

for the multidimensional hyperbolic partial differential equation with a delay term. 

Assume that        and  (   )  ( ) (  (   )    )  (   )(  

,    -    ) are given smooth functions. Here and in the future            

         . However, The Fourier series method described in solving (    ) can 

be used only in the case when (    ) has constant coefficients. 

 

2.3 Laplace Transform Method  

      We consider the Laplace transform method for the solution of the 

time-dependent identification problem for delay hyperbolic equations. 

Problem 4. Obtain the Laplace transform solution of the time-dependent 

identification problem 

{
 
 
 
 
 

 
 
 
 
 

         ( )        (     )     

     ( )         ( )            

 (   )     ( )                

 (   )         (   )                

∫  (   )  

 

 

                                     

                                                              (    ) 

for a one dimensional delay hyperbolic differential equation. 

Solution. Here and in future, we will denote 

 * (   )+   (   )  
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Using the formula 

 *   +  
 

   
 

and taking the Laplace transform of both sides of the problem (    ), we can write 

{
 
 
 

 
 
 
 *   (   )+   *   (   )+    *   (     )+

  ( ) (   +          (   +          (   + 

        

 * (   )+         (   +                      

 

Applying the definition of Laplace transform and initial conditions,  (   )  

       (   )       , we can write 

{
  
 

  
 
   (   )     (   )      (     )                         

  ( )
 

   
  

 

   
       

 

   
      

 (   )  
 

   
                                                                                                          

 

Now, we obtain  (   ). It is clear that  (   ) is solution of the following IVP 

{
  
 

  
 
   (   )     (   )      (     )                         

  ( )
 

   
  

 

   
       

 

   
         

 (   )  
 

   
              

 

for the second order delay ordinary differential equation with time delay. We denote 

that 

 (   )  *  (   ) (   )                  +  

Since 

  (     )   
 

   
            

we have that 

{
  
 

  
 
     (   )      (   )       (     )                         

  ( )
 

   
 

 

   
       

 

   
            

  (   )        (   )  
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or 

{
 
 
 

 
 
      (   )      (   )            

 

   
                        

  ( )
 

   
 

 

   
       

 

   
            

  (   )        (   )  
 

   
   

 

Taking the Laplace transform of both sides with respect to  , we get 

    (   )     (   )      (   )      (   ) 

     
 

(    )(   )
 

 

    
 

 

    
 

  

    
 

 

    
 

  ( )
 

   
 

 

(    )(   )
 

 

(    )(   )
 

or 

(     )  (   )  .  
   

    
  ( )  

 

    
 

 

    
/

 

   
 

        

    
  (2.18) 

Since ∫  (   )  
 

 
      and by definition of Laplace transform, we get 

 

 * (   )+  ∫      (   )  

 

 

 

 (   )  ∫      (   )  

 

 

 

putting    , we get 

 (   )  ∫  (   )  

 

 

       

Taking the Laplace transform of both sides with respect to  , we get 

 (   )  
 

    
                                                      (    ) 

Putting     into equation (    ), we get 

    (   )    
 

    
  ( ) 

  (   )  
 

  
[  

 

    
  ( )]                                   (    ) 

From (    ) and (    ), we get 



35 
 

 
 

 

    
 

 

  
[  

 

    
  ( )] 

From that it follows that 

 ( )  
 

    
  

Putting  ( )  
 

    
 into equation (    ), we obtain   (   ), then 

(     )  (   )  
             

(    )(   )
 

or 

  (   )  
 

(    )(   )
  

Therefore, we have that 

  (   )  
 

(    )(   )
  ( )  

 

    
  

Now, taking the inverse Laplace transform with respect to  ,we get 

{
  (   )  

 

   
   ( )       

 ( )     ( )                                                   

 

Suppose that 

    (   )  
 

   
   ( ) (   )        

Now, we obtain   (   ) as the solution of the following problem 

{
 
 
 
 

 
 
 
 

     (   )      (   )       (     )               

                                                           

 
 

   
       

 

   
      (   )           

  (   )  
 

   
   ( ) (   )    (   )  

 

Since   

  (     )      (     )   
 

   
   ( )  

We have that 
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{
 
 
 
 

 
 
 
      (   )      (   )   

 

   
      ( )      ( )      ( )

      ( )      ( )  
 

   
   ( )   

 

   
                                

(   )                                                                                        

  (    )        (    )  
 

   
   (  )                                 

 

Therefore, 

  (   )  
 

   
   ( ) (   )        

Applying mathematical induction, 

  (   )  
 

   
   ( ) (   )       

is true for any    . Thus, 

 (   )  *
 

   
   ( ) (   )                  +  

 

   
   ( )  

Now, taking the inverse Laplace transform with respect to  ,we get 

 (   )     ( )     

Therefore, 

( (   )  ( ))  (   ( )       ( )) 

is the exact solution of the problem (    ). 

Note that using similar procedure one can obtain the solution of the following 

time-dependent identification problem 
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{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
    (   )

   
 ∑  

   (   )

   
 

 

   

  ∑  

   (     )

   
 

 

   

  ( ) ( )   (   )                                                            

        (       )                                          

 (   )   (   )           
 
                             

 (   )   (   )    
(   )   (   )                                

                                                             

∫ ∫ (   )       

                                                  

  ( )                               

                                        (    ) 

for the multidimensional hyperbolic partial differential equation with a delay term. 

Assume that        and  (   )  ( ) (  (   )     )  (   )(  

,    -    
 
)  (   )   (   ) (  (   )     , are given smooth functions. 

Here and in the future   is the unit open cube in the n-dimensional Euclidean space 

  (            ) with the boundary    and  
 

      . 

Unfortunately, The Laplace transform method described in solving (    ) can be 

used only in the case when (    ) has constant coefficients. 

 

Problem 5. Obtain the Laplace transform solution of the time-dependent 

identification problem 

{
 
 
 
 
 

 
 
 
 
 

         ( )        (     )    

     ( )         ( )            

 (   )     ( )                

  (   )         (   )                 

∫  (   )  

 

 

                                     

                                                               (    ) 

for a one dimensional delay hyperbolic differential equation. 

Solution. Here and in future, we will denote 
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 * (   )+   (   )  

Using the formula 

 *   +  
 

   
 

and taking the Laplace transform of both sides of the differential equation (    ), we 

can write 

{
 
 
 

 
 
 
 *   (   )+   *   (   )+    *   (     )+

  ( ) (   +          (   +          (   + 

        

 * (   )+         (   +        

 

Applying the definition of Laplace transform and initial condition,   (   )       , 

and denoting  (   )    ( ), we can write 

{
  
 

  
 
   (   )     (   )      (     )                ( )      (   )

  ( )
 

   
  

 

   
       

 

   
      

 (   )  
 

   
      (   )                            

 

Now, we obtain  (   ). It is clear that  (   ) is solution of the following IVP 

{
 
 
 
 

 
 
 
 
   (   )     (   )      (     )                ( )

     (   )   ( )
 

   
  

 

   
       

 

   
         

 (   )  
 

   
               

 (   )    

 

for the second order ordinary differential equation with time delay. We denote that 

 (   )  *  (   ) (   )                  +  

Since 

  (     )   
 

   
             

We have that 
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{
  
 

  
 
     (   )      (   )       (     )                ( )      (   )

  ( )
 

   
 

 

   
       

 

   
            

  (   )        (   )  
 

   
                                                                     

 

or 

{
 
 
 

 
 
      (   )      (   )            

 

   
               ( )        

  ( )
 

   
 

 

   
       

 

   
            

  (   )        (   )  
 

   
   (   )         

 

Taking the Laplace transform of both sides with respect to  , we get 

 

    (   )     (   )      (   )      (   ) 

     
 

(    )(   )
 

 

    
 

 

    
    ( )  

  

    
 

  ( )
 

   
 

 

(    )(   )
 

 

(    )(   )
 

or 

(     )  (   )  4  
   

    
  ( )  

 

    
 

 

    
5

 

   
       (    ) 

 
      

    
    ( )  

We know that  (   )     ( )   , then 

 (   )                                                                (    ) 

Since 

 (   )    ( )                                                        (    ) 

From (    ) and (    ) we have that 

  ( )        

Taking the Laplace transform with respect to  , we obtain 

  ( )  
 

    
                                                     (    ) 

Now, putting (    ) into (    ), we get 
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(     )  (   )  .  
   

    
  ( )  

 

    
 

 

    
/

 

   
 

        

    
  (2.27) 

Since ∫  (   )  
 

 
      and by definition of Laplace transform, we get 

 * (   )+  ∫      (   )  

 

 

 

 

 (   )  ∫      (   )  

 

 

 

putting    , we get 

 (   )  ∫  (   )  

 

 

       

Taking the Laplace transform of both sides with respect to  , we get 

 (   )  
 

    
                                                          (    ) 

Putting     into equation (    ), we get 

    (   )    
 

    
  ( ) 

  (   )  
 

  
[  

 

    
  ( )]                                 (    ) 

From (    ) and (    ), we get 

 

    
 

 

  
[  

 

    
  ( )] 

From that it follows that 

 ( )  
 

    
  

Putting  ( )  
 

    
 into equation (    ), we obtain   (   ), then 

(     )  (   )  
             

(    )(   )
 

or 

  (   )  
 

(    )(   )
  

Therefore, we have that 
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  (   )  
 

(    )(   )
  ( )  

 

    
  

Now, taking the inverse Laplace transform with respect to  ,we get 

{
  (   )  

 

   
   ( )       

 ( )     ( )       

      

Suppose that 

    (   )  
 

   
   ( ) (   )    (   )   

Now, we obtain   (   ) as the solution of the following problem 

{
  
 

  
 
     (   )      (   )       (     )                         

 
 

   
       

 

   
      (   )                  

  (   )  
 

   
   ( ) (   )    (   )              

   

Since   

  (     )      (     )   
 

   
   ( )  

We have that 

{
 
 
 
 

 
 
 
      (   )      (   )   

 

   
      ( )         

    ( )      ( )       ( )      ( )                   

 
 

   
   ( )   

 

   
      (   )       

  (    )        (    )  
 

   
   (  )       

          

Therefore, 

  (   )  
 

   
   ( ) (   )        

Applying mathematical induction, 

  (   )  
 

   
   ( ) (   )       

is true for any    . Thus, 

 (   )  *
 

   
   ( ) (   )                  +  

 

   
   ( )  
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Now, taking the inverse Laplace transform with respect to  ,we get 

 (   )     ( )    

Therefore, 

( (   )  ( ))  (   ( )       ( )) 

is the exact solution of the problem (    ). 

Note that using similar procedure one can obtain the solution of the following 

time-dependent identification problem 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
    (   )

   
 ∑  

   (   )

   
 

 

   

  ∑  

   (     )

   
 

 

   

  ( ) ( )   (   )                                                          

        (       )                                        

 (   )   (   )           
 
                           

 (   )   (   )    
(   )   (   )                              

                                                          

∫ ∫ (   )       

                                                 

  ( )                               

                                          (    ) 

for the multidimensional hyperbolic partial differential equation with a delay term. 

Assume that        and  (   )  ( ) (  (   )     )  (   )(  

,    -    
 
)  (   )  (   ) (  (   )     , are given smooth functions. 

Here and in the future   is the unit open cube in the n-dimensional Euclidean space 

  (            ) with the boundary    and  
 

      . 

Unfortunately, The Laplace transform method described in solving (    ) can be 

used only in the case when (    ) has constant coefficients. 

 

3.4 Fourier Transform Method 

      We consider the Fourier transform method for the solution of the 

time-dependent identification problem for delay hyperbolic equations. 

Problem 6. Obtain the Fourier transform solution of the time-dependent identification 

problem 
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{
 
 
 
 

 
 
 
          ( )    

     (     )     ( )     
               

    ( ) (     )    
     ( )(     )    

          

 (   )     ( )     
                                                   

∫  (   )  

 

  

 √                                                                     

                      (    ) 

for a one dimensional delay hyperbolic differential equation. 

Solution. Here and in the future, we will denote 

 * (   )+   (   )  

Taking the Fourier transform of both sides of the problem (    ), we can write 

 *   (   )+   *   (   )+    *   (     )+ 

  ( ) *    
+      ( )   *    

+     ( ) *       
    

+ 

     ( )   *       
     

+       

and 

 * (   )+     ( )   *    
+              

Applying definition of Fourier transform. Therefore, 

{
 
 

 
    (   )     (   )      (     )   ( ) *    

+  
                                        

     ( ) *    
+       ( ) *    

+        ( ) *    
+     

 (   )     ( ) *    
+                   

 

Now, we obtain  (   ). It is clear that  (   ) is solution of the following IVP 

{
 
 

 
    (   )     (   )      (     )   ( ) *    

+   
                                    

     ( ) *    
+       ( ) *    

+        ( ) *    
+     

 (   )     ( ) *    
+               

 

for the second order ordinary differential equation with time delay, we denote that 

 (   )  *  (   ) (   )                    +  

Since,   (     )      ( ) *    
+         therefore, 
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{
 
 

 
      (   )     (   )   ( ) *    

+      ( ) *    
+

      ( ) *    
+              

  (   )        (   )   *    
+         

                                    (    ) 

Now, taking the Laplace transform of both sides of the differential equation (    ) 

with respect to  , we get 

(     )  (   )   *    
+  ( ( )  

    

    
) *    

+  

Using formula 

 *    
+  √   

  

   

Then, 

(     )  (   )  4   ( )  
    

    
5√   

  

                (    ) 

putting     into equation (    ), we get 

    (   )  (   ( )  
 

    
)√   

  (   )  
√ 

  
(   ( )  

 

    
)                             (    ) 

Applying condition 

∫  (   )  

 

  

 √    ( )     

and the definition of Fourier transform, we get 

 (   )  ∫  (   )  

 

  

 √    ( )      

Taking the Laplace transform of both sides with respect to  , we get 

 (   )  
√ 

    
                                                   (    ) 

Therefore, using (    ) and (    ),we get 

√ 

    
 

√ 

  
(   ( )  

 

    
)  

From that it follows that 

 ( )  
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Putting  ( )  
 

    
 into equation (    ), we get 

(     )  (   )  4  
 

    
 

    

    
5√   

  

   

From that it follows that 

  (   )  
 

    
√   

  

   

Since, 

√   
  

   *    
+  

Then, 

  (   )  
 

    
 *    

+  

Now, taking the invers Laplace transform with respect to  , we obtain 

  (   )     ( ) {    
}        

Suppose that 

    (   )     ( ) *    
+ (   )    (   )   

Now, we obtain   (   ) as the solution of the following problem 

{
 
 

 
      (   )      (   )       (     )      ( ) *    

+  
              

      ( ) *    
+        ( ) *    

+      ( ) *    
+     

  (   )     ( ) {    
} (   )         

 

Since,   (     )      (     )      ( ) *    
+, we have that 

{
 
 

 
      (   )      (   )      ( ) *    

+       ( ) *    
+

     ( ) *    
+ (   )           

  (    )        (    )     (  ) *    
+    

 

Therefore, 

  (   )     ( ) *    
+ (   )        

Applying mathematical induction, 

  (   )     ( ) *    
+ (   )        

is true for any    . Thus, 

 (   )  *   ( ) *    
+ (   )                  +     ( ) *    

+  

Therefore, 
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 (   )     ( ) *    
+  

Now, taking the inverse Fourier transform with respect to  , we obtain 

 (   )     ( )    
  

Therefore, the exact solution of the problem (    ) is 

( (   )  ( ))  (   ( )    
    ( ))  

Note that using similar procedure one can obtain the solution of the following 

time-dependent identification problem 

{
 
 
 
 
 
 

 
 
 
 
 
 
   (   )

   
 ∑   

 | |   (   )

   
      

  
| |   

  ∑   

 | |   (     )

   
      

  
| |   

  ( ) ( )   (   )                                                                                 

             | |                                                         

 (   )   (   )                                                              

∫ ∫ (   )       

                                                  

  ( )                                                     

                   (    ) 

for the multidimensional hyperbolic partial differential equation with a delay term. 

Assume that        and  (   )  ( ) (  (   )     )  (   )(  

,    -     ), are given smooth functions.  However, The Fourier transform 

method described in solving (    ) can be used only in the case when (    ) has 

constant coefficients. 
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CHAPTER III 

Stability of the Time-Dependent Identification Problem for Delay Hyperbolic 

Equations  

 

3.1 Introduction 

      In the present section, two time-dependent identification problems for one 

dimensional delay hyperbolic equations are considered. The theorems on the stability 

estimates for the solution of these problems are established.   

3.2 Basic Formulas 

   Two basic formulas are given. 

3.2.1 Dalambert’s Formula (Wyley, Sons, 1993) 

 ( )     (  )  
 

 
   (  )  ∫

 

 
   ( (   )) ( )  

 

 

 

is the exact solution of the initial value problem 

   ( )     ( )   ( )      ( )      ( )    

for second order ordinary linear differential equation with constant coefficients 

 

3.2.2 Dalambert’s Formula for Hyperbolic Equations (Dalambert, 1749) 

 (   )  
 (    )   (    )

 
 

 

  
∫  ( )  

    

    

 ∫
 

  
∫  (   )    

   (   )

   (   )

 

 

      (   ) 

is the exact solution of the initial value problem 

   (   )

   
      (   )   (   )      

 (   )   ( )   (   )   ( )   (    ) 

for the one-dimensional wave equation with constant coefficients and initial 

conditions at      It is named after the mathematician Jean le Rond d’Alembert, 

who derived it in 1747 as a solution to the problem of a vibrating string. 

 

3.2.3 Operator-Functions Generated by the Positive Operator.  

Let  ( ) is operator-function generated by the operator   and defined as the solution 

of the initial value problem for a second order differential equation 

   ( )    ( )           ( )      ( )                    (   ) 

in a Hilbert space    that is 
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 ( )   ( )   

Similarly,  ( ) is operator-function generated by the operator   and defined as the 

solution of the initial value problem for a second order differential equation 

   ( )    ( )           ( )      ( )               (   ) 

in a Hilbert space    namely 

 ( )   ( )   

By definitions of  ( ) and  ( )  we have that 

  ( )   ( )   ( )     ( )                                         (   ) 

We cosider the second order differential operator   determined by  

    ( ( )  ( ))
 
                                               (   ) 

In   ,   -  with domain  ( )  *          ,   -  ( )   ( )   +  dense in 

  ,   -. It is well-known that    is the positive-definite and self-adjoint operator in 

  ,   -  Let us give estimates (formula (3.6)) that will be needed below 

{
 

    
 
    ,   -   ,   -   

 
    ( )    ,   -   ,   -   

  ( )    ,   -   ,   -         
 
  ( )    ,   -   ,   -   

                                         (   ) 

 

3.3 Stability of the Time-Dependent Identification Problems.  

First, the time-dependent identification problem 

{
 
 
 
 
 

 
 
 
 
 
   (   )

   
 

   (   )

   
  

   (     )

   
  ( ) ( )   (   ) 

        (    )                                                                      

 (   )   (   )          (    )                                  

∫  

 

  

 ( ) (   )    ( )                                                           

                         (   ) 

for one dimensional delay hyperbolic equation is considered. Here  (   ) and  ( ) 

are unknown functions. Under compatibility conditions, problem (   ) has a unique 

solution ( (   )  ( ))  for the smooth functions  (   )(  (   )   

(    ))  (   )(  ,    -   (    ))  ( )(   )  ( )  ( )   

(    )  Here   is a constant.   

We have the following theorems on the stability of problem (3.7). 
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Theorem 3.1. Assume that ∫  
 

  
 ( ) ( )     and ∫  

 

  
| ( )|        

Then for the solution of problem (3.7) the following stability estimate holds: 

   
     

| ( )|    
     

‖   ‖ (    )    
     

‖  ‖ ( )(    )    
     

‖ ‖ ( )(    )    (   ) 

  (   ) 0      
     

‖  ( )‖ (    )  ‖ ( )‖ (    )       
     

|   |1  

      2    
      

‖   ( )‖ (    )    
      

  ‖  ( )‖ 
 ( )(    )

  

     
      

‖ ( )‖ 
 ( )(    )

3  

 

   
     (   ) 

| ( )|        
     (   ) 

‖   ‖  (    )
    
     (   ) 

‖  ‖ 
 ( )(    )

     (   ) 

     
     (   ) 

‖ ‖
 ( )(    )   (   ) [      

(   )      
| ( )| 

    
     (   ) 

‖  ( )‖ (    )  ‖ (  )‖ (    )     
     (   ) 

|   |]  

        {     
(   )      

‖   ( )‖ (    )    
(   )      

‖  ( )‖ ( )(    )  

     
(   )      

‖ ( )‖ ( )(    )}           

Here  (    ) refers to the vector space of continuous functions  ( ) from the 

entire real line to   (    ) with norm 

‖ ‖ (    )     
  (    )

| ( )|  

Proof.  We will seek  (   )  using the substitution 

 (   )   (   )   ( ) ( )                                        (    ) 

 where  ( ) is the function defined by the formula 

 ( )  ∫  
 

(   ) 

(   ) ( )    ((   ) )    ((   ) )          (    ) 

 It is easy to see that  (    ) is the solution of the problems 

{
 
 

 
 
   (   )

   
 

   (   )

   
  ( )   ( )      (     )   (   ) 

        (    )                                                                         

 (   )   (   )   (   )    (   )   (    )                    

                    (    ) 

and  
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{
 
 
 
 
 
 

 
 
 
 
 
 
   (   )

   
 

   (   )

   
  

   (     )

   
                 

 ( ( )    (   ))   ( )   (   )                        

(   )         (    )                

 ((   )    )   ((   )    )                      

  ((   )    )    ((   )    )                    

  (    )                                                       

                                              (    ) 

Now we will take an estimate for | ( )|  Applying the integral overdetermined 

condition 

∫  

 

  

 ( ) (   )    ( ) 

and substitution (3.10), we get 

 ( )  
 ( )  ∫  

 

  
 ( ) (   )  

∫  
 

  
 ( ) ( )  

 

From that and  ( )     ( )  it follows that 

 ( )  
   ( )  ∫  

 

  
 ( )

  

    (   )  

∫  
 

  
 ( ) ( )  

  

Then, using the triangle inequality, we obtain 

| ( )|  
|   ( )|  ∫  

 

  
| ( )

  

    (   )|   

|∫  
 

  
 ( ) ( )  |

                          (    ) 

  (   ) [|   ( )|  ‖
  

   
 (   )‖

 (    )

] 

for all   (   )  Now, using substitution (3.10), we get 

   (   )

   
 

   (   )

   
  ( ) ( )  

Applying the triangle inequality, we obtain 

‖
   (   )

   
‖

 (    )

 ‖
   (   )

   
‖

 (    )

 | ( )|‖ ‖ (    )     (    ) 

for all   (   )  Therefore, the proof of Theorem 3.1 is based on the following 

theorem. 
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Theorem 3.2. Under assumptions of Theorem 3.1, for the solution of problems (3.12) 

and (3.13) the following stability estimate holds: 

   
     

‖   ‖ (    )    
     

‖  ‖ ( )(    )    
     

‖ ‖ ( )(    )      (    ) 

  (   ) 0      
     

‖  ( )‖ (    )  ‖ ( )‖ (    )       
     

|   |1  

      2    
      

‖   ( )‖ (    )    
      

  ‖  ( )‖ 
 ( )(    )

  

     
      

‖ ( )‖ 
 ( )(    )

3  

 

   
     (   ) 

‖   ‖  (    )
    
     (   ) 

‖  ‖ 
 ( )(    )

    
     (   ) 

‖ ‖
 ( )(    ) (    ) 

  (   ) [      
     (   ) 

‖  ( )‖ (    )  ‖ (  )‖ (    )

    
     (   ) 

|   |] 

        {     
(   )      

‖   ( )‖ (    )    
(   )      

‖  ( )‖ ( )(    )  

     
(   )      

‖ ( )‖ ( )(    )}           

Proof.  First, we will prove that 

   
     

‖   ‖ (    )                                              (    ) 

  (   ) 0      
     

‖  ( )‖ (    )  ‖ ( )‖ (    )       
     

|   |1  

Applying the Dalambert’s formula(   ), we get the following formula 

 (   )  
 (     )   (     )

 
 

 

 
∫   (   )  

   

   

 

 ∫
 

 
∫ [ ( )   ( )      (     )   (   )]    

  (   )

  (   )

 

 

 

for any   ,   -   (    )  From that it follows that 

 (   )  
 (     )   (     )

 
 

 

 
∫   (   )  

   

   

 

 ∫
 ( )

 
[   (   )(  (   ))     (   )(  (   ))]  
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 ∫
 

 
[   (   )(      (   ))     (   )(      (   ))]  

 

 

 

 ∫
 

 
∫  (   )     

  (   )

  (   )

 

 

 

Taking the derivatives, we get 

  (   )  
  (     )    (     )

 
 

 

 
,  (     )    (     )- 

 ∫
 ( )

 
[   (   )  (  (   ))     (   )  (  (   ))]  

 

 

 

 ∫
 

 
[   (   )  (      (   ))     (   )  (      (   ))]  

 

 

 

 ∫
 

 
, (    (   ))   (    (   ))-   

 

 

 

   (   )  
   (     )     (     )

 
 

 

 
,   (     )     (     )- 

 ∫
 ( )

 
[   (   )   (  (   ))     (   )   (  (   ))]  

 

 

 

 ∫
 

 
,   (      )     (      )-  

 

 

 

 ∫
 

 
,  (    (   ))    (    (   ))-   

 

 

 

Applying this formula and the triangle inequality and estimate (3.14), we get  

‖   (   )‖   (   ) 0      
     

‖  ( )‖ (    )  ‖ ( )‖ (    )  |   ( )|1 

  ( )∫‖   (   )‖  

 

 

 

for any   ,   -  By the integral inequality, we get the estimate (3.18). Applying 

equation (3.12) and triangle inequality and estimate  (3.18), we get estimate (3.16). 
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Second, we will prove that  

   
     (   ) 

‖
   (   )

   
‖

 (    )

                                 (    ) 

  (   ) [      
(   )      

| ( )|     
     (   ) 

‖  ( )‖ (    )

 ‖ (  )‖ (    )     
     (   ) 

|   |]          

Applying the Dalambert’s formula(   ), we get the following formula 

 (   )  
 (      )   (      )

 
 

 

 
∫   (    )  

   

   

 

 ∫
 

 
∫ [( ( )    (   ))   ( )      (     )   (   )]     

  (   )

  (   )

 

  

 

for any   ,   (   ) -   (    )  From that it follows that 

 (   )  
 (      )   (      )

 
 

 

 
∫   (    )  

   

   

 

 ∫
( ( )    (   ))

 
[   (   )(  (   ))     (   )(  (   ))]  

 

  

 

 ∫
 

 
[   (   )(      (   ))     (   )(      (   ))]  

 

  

 

 ∫
 

 
∫  (   )     

  (   )

  (   )

 

  

 

 Taking the derivatives, we get 

  (   )  
  (      )    (      )

 
 

 
 

 
,  (      )    (      )- 

 ∫
( ( )    (   ))

 
[   (   )  (  (   ))     (   )  (  (   ))]  

 

  

 

 ∫
 

 
[   (   )  (      (   ))     (   )  (      (   ))]  
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 ∫
 

 
, (    (   ))   (    (   ))-   

 

  

 

   (   )  
   (      )     (      )

 
 

 
 

 
,   (      )     (      )- 

 ∫
( ( )    (   ))

 
[   (   )   (  (   ))     (   )   (  (   ))]  

 

  

 

 ∫
 

 
,   (      )     (      )-  

 

  

 

 ∫
 

 
,  (    (   ))    (    (   ))-   

 

  

 

Applying this formula and the triangle inequality and estimate (3.14), we get 

‖   (   )‖   (   ) [      
(   )      

| ( )| 

    
     (   ) 

‖  ( )‖ (    )  ‖ (  )‖ (    )     
     (   ) 

|   |] 

  ( ) ∫‖   (   )‖

 

  

   

for any   ,   (   ) -  By the integral inequality, we get the estimate (3.16). 

Applying equation (3.13) and triangle inequality and estimate  (3.16), we get estimate 

(3.17). This completes the proof of Theorem 3.2. 

Moreover, we have that 

Theorem 3.3. Assume that ∫  
 

  
 ( ) ( )     and ∫  

 

  
| ( )|          

    
 

 
 

 

 
    Then for the solution of problem (3.7) the following stability 

estimate holds: 

   
     

| ( )|    
     

‖   ‖  (    )    
     

‖  ‖  
 (    )    

     
‖ ‖  

 (    ) 

  (   ) 0      
     

‖  ( )‖  (    )  ‖ ( )‖  (    )       
     

|   |1  

      {    
      

‖   ( )‖  (    )    
      

  ‖  ( )‖ 
  

 (    )
  

     
      

‖ ( )‖ 
  

 (    )
}  
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     (   ) 

| ( )|        
     (   ) 

‖   ‖   (    )
    
     (   ) 

‖  ‖ 
  

 (    )
  

   
     (   ) 

‖ ‖  
 (    )   (   ) [      

(   )      
| ( )| 

    
     (   ) 

‖  ( )‖  (    )  ‖ (  )‖  (    )     
     (   ) 

|   |]  

        {     
(   )      

‖   ( )‖  (    )    
(   )      

‖  ( )‖  
 (    )  

     
(   )      

‖ ( )‖  
 (    )}           

Here   (    ) refers to the vector space of functions  ( ) from the entire real 

line to   (    ) satisfy the condition 

∫| ( )|      

 

  

 

Second, the time-dependent identification problem  

{
 
 
 
 
 
 

 
 
 
 
 
 
   (   )

   
 

   (   )

   
  

   (     )

   
  ( ) ( )   (   ) 

        (   )                                                                             

 (   )   (   )          ,   -                                          

 (   )   (   )                                                                         

∫  

 

 

 (   )    ( )                                                                       

                       (    ) 

 for one dimensional delay hyperbolic equation is considered. Here  (   ) and  ( ) 

are unknown functions. Under compatibility conditions, problem (    ) has a unique 

solution ( (   )  ( ))  for the smooth functions  (   )(  (   )   

(   ))  (   )(  ,    -   ,   -)  ( )(   )  ( )   (   )  Here   is a 

constant.   

We have the following theorem on the stability of problem (3.20). 

Theorem 3.4. Assume that ∫  
 

 
 ( )       Then for the solution of problem (3.20) 

the following stability estimate holds: 

   
     

| ( )|    
     

‖   ‖  ,   -    
     

‖  ‖  
 ,   -    

     
‖ ‖  

 ,   -  (    ) 

  (   ) 0      
     

‖  ( )‖  ,   -  ‖ ( )‖  ,   -       
     

|   |1 
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      {    
      

‖   ( )‖  ,   -    
      

  ‖  ( )‖ 
  

 ,   -
  

     
      

‖ ( )‖ 
  

 ,   -
}  

  

   
     (   ) 

| ( )|        
     (   ) 

‖   ‖   ,   -
    
     (   ) 

‖  ‖ 
  

 ,   -
     (3.22) 

   
     (   ) 

‖ ‖  
 ,   -   (   ) [      

(   )      
| ( )| 

    
     (   ) 

‖  ( )‖  ,   -  ‖ (  )‖  ,   -     
     (   ) 

|   |]  

        {     
(   )      

‖   ( )‖  ,   -    
(   )      

‖  ( )‖  
 ,   -  

     
(   )      

‖ ( )‖  
 ,   -}           

Here   ,   - be the space of all square integrable functions  ( ) defined on ,   -  

and   
 ,   -       be Sobolev spaces equipped with norms 

‖ ‖  
 ,   -  4∫  

 

 

,  ( )    
 ( )-  5

 
 

  

‖ ‖  
 ,   -  4∫  

 

 

,  ( )     
 ( )-  5

 
 

  

respectively. 

Proof.  We will seek  (   )  using the substitution 

 (   )   (   )   ( ) ( )                                  (    ) 

where  ( ) is the function defined by the formula 

{
 
 

 
  ( )  ∫  

 

(   ) 

(   ) ( )                                  

 ((   ) )    ((   ) )            

                                                    (    ) 

It is easy to see that  (    ) is the solution of the problems 

{
 
 
 
 

 
 
 
 
   (   )

   
 

   (   )

   
  ( )   ( )      (     )   (   ) 

        (   )                                                                                 

 (   )   (   )   (   )    (   )   (   )                             

 (   )   (   )                                                                         

                     (    ) 

and  
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

   (   )

   
 

   (   )

   
  

   (     )

   
               

 ( ( )    (   ))   ( )   (   )                       

(   )         (   )                     

 ((   )    )   ((   )    )                     

  ((   )    )    ((   )    )                  

  (   )                                                              

 (   )   (   )                                               

                                               (    ) 

Now we will take an estimate for | ( )|  Applying the integral overdetermined 

condition 

∫  

 

 

 (   )    ( ) 

and substitution (3.23), we get 

 ( )  
 ( )  ∫  

 

 
 (   )  

∫  
 

 
 ( )  

  

From that and  ( )     ( )  it follows that 

 ( )  
   ( )  ∫  

 

 

  

    (   )  

∫  
 

 
 ( )  

  

Then, using the triangle inequality, we obtain 

| ( )|  
|   ( )|  ∫  

 

 
|
  

    (   )|   

|∫  
 

 
 ( )  |

                            (    ) 

  (   ) [|   ( )|  ‖
  

   
 (   )‖

  ,   -

] 

for all   (   )  Now, using substitution (3.23), we get 

   (   )

   
 

   (   )

   
  ( ) ( )  

Applying the triangle inequality, we obtain 

‖
   (   )

   
‖

  ,   -

 ‖
   (   )

   
‖

  ,   -

 | ( )|‖ ‖  ,   -               (    ) 
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for all   (   )  Therefore, the proof of Theorem 3.4 is based on the following 

theorem. 

Theorem 3.5. Under assumptions of Theorem 3.4, for the solution of problems (3.25) 

and (3.26) the following stability estimate holds: 

   
     

‖   ‖  ,   -    
     

‖  ‖  
 ,   -    

     
‖ ‖  

 ,   -       (    ) 

  (   ) 0      
     

‖  ( )‖  ,   -  ‖ ( )‖  ,   -     
     

|   |1  

      {    
      

‖   ( )‖  ,   -    
      

  ‖  ( )‖  
 ,   -    

      
‖ ( )‖ 

  
 ,   -

}  

 

   
     (   ) 

‖   ‖   ,   -
    

     (   ) 
‖  ‖  

 ,   -    
     (   ) 

‖ ‖  
 ,   - (    ) 

  (   ) [      
     (   ) 

‖  ( )‖  ,   -  ‖ (  )‖  ,   -     
     (   ) 

|   |]  

        {     
(   )      

‖   ( )‖  ,   -    
(   )      

‖  ( )‖  
 ,   -  

     
(   )      

‖ ( )‖  
 ,   -}           

Proof. It is clear that the mixed problems (3.25) and (3.26) can be written as the IVPs 

{

   ( )    ( )   ( )      (   )   ( )   (   ) 

 ( )   ( )   ( )    ( )
                (3.31) 

and 

{
 
 
 

 
 
 
   ( )    ( )   ( )      (   )   ( ) 

(   )                   

 ((   )  )   ((   )  )   ((   )  )    ((   )  ) 

         

  (3.32) 

in a Hilbert space     ,   - with   determining by (3.5). From (3.24) and (3.27) 

it follows that 

 | ( )| | ( )|   (   ),|   ( )|  ‖   ( )‖ -            (3.33) 

for all   (   )  Therefore, the proof of Theorem 3.5 is based on the following 

abstract theorem. 

Theorem 3.6. Under assumptions of Theorem 3.5, for the solution of problems (3.31) 

and (3.32) the following stability estimate holds: 

   
     

‖   ‖     
     

‖ 
 

   ‖
 

    
     

‖  ‖             (3.34) 
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  (   ) 0      
     

‖  ( )‖  ‖ ( )‖       
     

|   |1 

      {    
      

‖   ( )‖     
      

  ‖ 
 
   ( )‖

 
    
      

‖  ( )‖ }  

 

   
     (   ) 

‖   ‖     
     (   ) 

‖  ‖     
     (   ) 

‖  ‖       (3.35) 

  (   ) [      
     (   ) 

‖  ( )‖  ‖ (  )‖     
     (   ) 

|   |]  

        {     
(   )      

‖   ( )‖     
(   )      

‖ 
 
   ( )‖

 
  

     
(   )      

‖  ( )‖ }           

Proof. The initial value problems (3.31) and (3.32) are equivalent to the integral 

equations  

 ( )   ( ) ( )   ( )  ( )                    (3.36) 

 ∫  
 

 

 (   ),  ( )      (   )   ( )-         

 ( )   (  (   ) ) ((   ) )   (  (   ) )  ((   ) )   (3.37) 

 ∫  
 

(   ) 

 (   ),  ( )      (   )   ( )-    

(   )             

in    respectively. Let   ,   -  Applying equation (3.31) and formula (3.36), we 

get  

  ( )   ( )  ( )   ( )   ( ) 

 ∫  
 

 

  (   ),  ( )      (   )   ( )-   

  ( )  ( )   ( )   ( ) 

  ( )      (   )   ( )   ( ),   (  )   ( )- 

 ∫  
 

 

 (   ),   ( )       (   )    ( )-    

Therefore, applying this formula, the triangle inequality and estimates (3.6) and (3.33), 

we get  

‖   ( )‖  ‖  ( )‖  ‖ 
 
   ( )  ‖

 
 ‖ ( )‖      

  ,   -
‖  ‖  

    
      

‖ 
 
   ( )‖

 
   (   )     

     
|   |    (   )∫  

 

 

‖   ( )‖     
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Using the integral inequality, we get 

   
     

‖   ‖     (   ) 0      
     

‖  ( )‖  ‖ ( )‖     
     

|   |1  

In the same manner, we can obtain 

   
     

‖ 
 
   ‖

 
    (   ) 0      

     
‖  ( )‖  ‖ ( )‖       

     
|   |1  

From that and equation (3.31) it follows estimate for    
     

‖  ‖ . 

Let   ,(   )    -        Applying equation (3.32) and formula (3.37), 

  ( )   (  (   ) )  ((   ) )   (  (   ) )   ((   ) ) 

 ∫  
 

(   ) 

  (   ),  ( )      (   )   ( )-   

  ( )  ((   ) )   ( )   ((   ) )   (  (   ) )   

    (    )   ( )   (  (   ) ),   (   )   ((   ) )- 

 ∫  
 

(   ) 

 (   ),   ( )       (   )    ( )-    

Applying this formula, the triangle inequality and estimates (3.6) and (3.33), we get  

‖   ( )‖  ‖  ((   ) )‖  ‖ 
 
   ((   ) )  ‖

 
 ‖ ((   ) )‖

 
 

     
  ,(   )    -

‖  ‖     
(   )      

‖ 
 
   ( )‖

 
 

   (   )     
(   )      

|   |    (   )∫  
 

(   ) 

‖   ( )‖     

Using the integral inequality, we get 

   
(   )      

‖   ‖  

   (   ) [      
(   )      

‖  ( )‖  ‖ ((   ) )‖
 

      
(   )      

|   |]  

In the same manner, we can obtain 

   
(   )      

‖ 
 
   ‖

 
 

    (   ) [      
(   )      

‖  ( )‖  ‖ ((   ) )‖
 

      
(   )      

|   |]  

From that and equation (3.32) it follows estimate for    
(   )      

‖  ‖ . Theorem 

3.6 is established. 
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CHAPTER IV 

Difference Schemes for the Solution of Time-Dependent Identification Problem 

for Delay Hyperbolic Equations 

 

4.1 Introduction 

      It is important to know that when the analytical methods do not work properly, 

the numerical methods for obtaining approximate solutions of partial differential 

equations play an important role in applied mathematics. We need numerical 

applications when one cannot know concrete values of constants in stability estimates. 

Therefore, we can use the numerical methods to get approximate solutions of local and 

nonlocal problems for the time-dependent identification problem for delay hyperbolic 

partial differential equations. In this chapter we obtain the algorithms of numerical 

solution for the initial-boundary-value problem for the one dimensional delay 

hyperbolic partial differential equations with Dirichlet, Neumann and nonlocal 

boundary conditions. Therefore, the first order of accuracy DSs for the solution of 

one-dimensional DHPDEs are presented. 

 

4.2 Absolute Stable Difference Schemes for the Solution of Time-Dependent 

Identification Problems for Delay Hyperbolic Equations with Dirichlet 

Boundary Condition. 

       We consider the time-dependent identification problem 

{
 
 
 
 

 
 
 
 
         ( )            (     )               

                                                                                       

 (   )                                                     

 (   )   (   )    ∫  (   )  

 

 

                          

                                  (   ) 

for a one dimentional delay hyperbolic differential equation with Dirichlet condition. 

Recall that 

( (   )  ( ))  ((  (   )   ( )))   
   

where (  (   )   ( ))  is exact solution pair of the problem (4.1) on   

,(   )    -    . The exact solution pair of the problem (4.1) is 

( (   )  ( ))  (   ( )   ( )    ( )). For the numerical solution of problem (4.1), 
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we present the following first order of accuracy difference scheme for the approximate 

solution for the problem (4.1) 

{
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(   )                                                                                         
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(   )       

(   ) 

 
    (  )            

   
(   )  (   )  

(   )                                                                                 

   
(   )       

(   ) 

 
 

(   )  
(   )  (   )  

(   )   

 
         

                                                                                                             

   
       

      ∑  

   

   

   
         (    )                                         

(   )                                                                                      

       (   ) 

We consider two cases:     and      First, let      then        

From problem (4.2) it follows that  
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       (  )     (    )    (  )                                             

                                            

   
    

   
     

 

 
    (  )                                    

   
       

      ∑  

   

   

   
         (    )       

                                 (   ) 

Algorithm for obtaining the solution of the time-dependent identification problem 

(4.3) *   +   
  **   

 +   
 +   

  and *   +   
    contains three stages. Actually, let 

us define 

   
     

        (  )                               (   ) 

Applying difference scheme (4.3) and formula (4.4), we will obtain formula 

      
    (    )  ∑     

      
    

∑     
      (  ) 

                      (   ) 

and the difference scheme 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
   

     (  ) 
     

   

  
 

     
     (  ) 

         
   

  

 
∑     

      
    

∑     
      (  )  

   (  )
 (   ( )   )

  
                                  

 6
 

∑     
      (  )  

 (   ( )   )

  
  7    (    )    (  )    

                                            

   
    

   
     

 

 
    (  )                                 

   
       

                                                   

                                 (   ) 

In the first stage, we find numerical solution **   
 +   

 +   
  of corresponding first 

order of accuracy auxiliary difference scheme (4.6). For obtaining the solution of 

difference scheme (4.6), we will write it in the matrix form as 
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{
 (  )     (  )   (  )    (  )          

              (  ) 

                                (   ) 

where       are (   )  (   )  square matrices,                 are 

(   )    column matrices and 
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(   ) (   )

 

 

  

[
 
 
 
 
     
     
     
     
     ]

 
 
 
 

(   ) (   )
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  (     )
 
  (       )
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 ]

 
 
 
 

(   )  

                 

Here,  
 

   
 

      
 

         (  )
 (   ( )  )

 
   ∑     

      (  )    

 
 

     
 

     (     )  [
 

∑     
      (  ) 

 (   ( )  )

    ]    (    )   (  )     
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So, we have the IVP for the second order difference equation (4.7) with respect to   

with matrix coefficients     and  : Since    and    are given, we can obtain the 

solution of (4.7) by direct formula 

         (     (  )   (  )   )                  (4.8) 

Applying formula       ∑   
   (     )(  )  

                  , 

we can obtain 

    
       (  )       

  
                        (   ) 

In the second stage, we will obtain *   +   
    by formulas (4.5) and (4.9). Finally, in 

the third stage, we will obtain **   
 +   

 +   
  by formulas (4.4) and (4.5). The errors 

are computed by 

       
     

(∑  

   

   

| (     )     
 |  )

 
 

                     (    ) 

       
       

| (  )     |  

where  (   )  ( )  represent the exact solution,    
  represent the numerical 

solutions at (     ) and     represent the numerical solutions at   . 

Second, let      then (   )        From problem (4.2) it follows that  



66 
 

 
 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
     (  ) 

     
   

  
 

     
     (  ) 

         
   

  
           

       (  )         (    )    (  )                                                 

     
(   )    

     ((   ) )
 

   
 (   )    

   

  
                    

                                                                                                          

(   )                                                                                

                                                                                 

   
(   )  (   )  

(   )                                                                       

   
(   )       

(   ) 

 
 

(   )  
(   )  (   )  
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      ∑  

   

   

   
         (    )                                  

(   )                                                                                 

              (    ) 

In the same manner, algorithm for obtaining the solution of the time-dependent 

identification problem (4.11) *   +   
  **   

 +   
 +   

  and *   +   
    contains 

three stages. Actually, let us define 

   
     

        (  ) (   )                   (    ) 

Applying difference scheme (4.11) and formula (4.12), we will obtain formula 

      
    (    )  ∑     

      
    

∑     
      (  ) 

 (   )           (    ) 

and the difference scheme 
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           (    ) 

In the first stage, we find numerical solution **   
 +   

 +   
  of corresponding first 

order of accuracy auxiliary difference scheme (4.14). For obtaining the solution of 

difference scheme (4.14), we will write it in the matrix form as 

{
 
 
 

 
 
 

 (  )     (  )   (  )    (  )                              

(   )                                                                      

(  ) 
(   )  ((   ) ) 

(   )                                                    

(  ) 
(   )     ((   ) ) 

(   )  ((   ) ) 
(   )   

                        (    ) 

where       are (   )  (   )  square matrices,                 

are (   )    column matrices and 
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  (     )
 
  (       )
 ]

 
 
 
 

(   )  
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 ]

 
 
 
 

(   )  

                 

So, we have the initial value problem for the second order difference equation (4.15) 

with respect to   with matrix coefficients     and  : Since    
  and    

    are 

given, we can obtain the solution of (4.15) by direct formula 

{(  )       ((  )   (  )   (  )   ) 
                                                               

                                               (    ) 

Applying formula       ∑   
   (     )(  )  

  (   )         

    (   )    (   )     , we can obtain 

    
       (  )       

  
 (   )                (    ) 

In the second stage, we will obtain *   +   
    by formulas (4.13) and (4.17). Finally, 

in the third stage, we will obtain **   
 +   

 +   
  by formulas (4.12) and (4.13). The 

errors are computed by 

       
(   )      

(∑  

   

   

| (     )     
 |  )

 
 

            (    )  

       
(   )          

| (  )     |  

where  (   )  ( )  represent the exact solution,    
  represent the numerical 

solutions at (     ) and     represent the numerical solutions at   . The numerical 

results are given in the following table. 

Table 4.1. 

 Error Analysis for Difference Schemes (4.6) and (4.14)  

                                   

    0.1267 0.0669 0.0345 0.0176 

    0.1564 0.0785 0.0393 0.0196 

    0.2942 0.1655 0.0883 0.0456 

    0.1404 0.0747 0.0379 0.0190 

    0.4341 0.2567 0.1408 0.0739 

    0.2185 0.1418 0.1027 0.0830 

As it is seen in Table 1, if   and   are multiplied by  , the value of errors decreases 

approximately     for the DS. This shows that it has the first order of accuracy. 
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4.3 Absolute Stable Difference Schemes for the Solution of Time-Dependent 

Identification Problems for Delay Hyperbolic Equations with Neumann 

Boundary Condition. 

       We consider the time-dependent identification problem 

{
 
 
 
 

 
 
 
 

         ( )(      )         (     )   

     (      )                         

 (   )      (      )                 

  (   )    (   )    ∫  (   )  

 

 

          

                                            (    ) 

for a one dimentional delay hyperbolic differential equation with Neumann condition. 

Recall that 

( (   )  ( ))  ((  (   )   ( )))   
   

where (  (   )   ( ))  is exact solution pair of the problem (4.19) on   

,(   )    -    . The exact solution pair of the problem (4.19) is 

( (   )  ( ))  (    (      )     ) . For the numerical solution of problem 

(4.19), we present the following first order of accuracy difference scheme for the 

approximate solution for the problem (4.19) 
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We consider two cases:     and      First, let      then        

From problem (4.20) it follows that  
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Algorithm for obtaining the solution of the time-dependent identification problem 

(4.21) *   +   
  **   

 +   
 +   

  and *   +   
    contains three stages. Actually, let 

us define 

   
     

     (     (  ))                      (    ) 

Applying difference scheme (4.21) and formula (4.22), we will obtain formula 

      
    (    )  ∑     

      
    

 
                     (    ) 

and the difference scheme 

{
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                               (    ) 

In the first stage, we find numerical solution **   
 +   

 +   
  of corresponding first 

order of accuracy auxiliary difference scheme (4.24). For obtaining the solution of 

difference scheme (4.24), we will write it in the matrix form as 
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 (  )     (  )   (  )    (  )          

           (     (  )                                                     

                            (    ) 

where       are (   )  (   )  square matrices,                 are 

(   )    column matrices and 
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Here,    
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  (     )  6
 (   ( )   )

  
  7    (    )    (  )      (    )  

                 

So, we have the IVP for the second order difference equation (4.25) with respect to   
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with matrix coefficients     and  : Since     and     are given, we can obtain 

the solution of (4.25) by direct formula 

         (     (  )   (  )   )                       (    ) 

Applying formula       ∑   
   (     )(  )  

                  , 

we can obtain 

    
       (  )       

  
                      (    ) 

In the second stage, we will obtain *   +   
    by formulas (4.23) and (4.27). Finally, 

in the third stage, we will obtain **   
 +   

 +   
  by formulas (4.22) and (4.23). The 

errors are computed by 

       
     

(∑  

   

   

| (     )     
 |  )

 
 

                    (    ) 

       
       

| (  )     |  

where  (   )  ( )  represent the exact solution,    
  represent the numerical 

solutions at (     ) and     represent the numerical solutions at   . 

Second, let      then (   )        From problem (4.20) it follows that  
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In the same manner, algorithm for obtaining the solution of the time-dependent 

identification problem (4.29) *   +   
  **   

 +   
 +   

  and *   +   
    contains 

three stages. Actually, let us define 

   
     

     (     (  )) (   )                  (    ) 

Applying difference scheme (4.29) and formula (4.30), we will obtain formula 

      
    (    )  ∑     

      
    

 
 (   )                (    ) 

and the difference scheme 
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In the first stage, we find numerical solution **   
 +   

 +   
  of corresponding first 

order of accuracy auxiliary difference scheme (4.32). For obtaining the solution of 

difference scheme (4.32), we will write it in the matrix form as 

{
 
 
 

 
 
 

 (  )     (  )   (  )    (  )                               

(   )                                                                       

(  ) 
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(   )                                                     

(  ) 
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where       are (   )  (   )  square matrices,                 

are (   )    column matrices and 
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So, we have the initial value problem for the second order difference equation (4.33) 

with respect to   with matrix coefficients     and  : Since    
  and    

    are 

given, we can obtain the solution of (4.33) by direct formula 

(  )       ((  )   (  )   (  )   )                    (    ) 

(   )             

Applying formula       ∑   
   (     )(  )  

  (   )         

    (   )    (   )     , we can obtain 

    
       (  )       

  
 (   )                (    ) 

In the second stage, we will obtain *   +   
    by formulas (4.31) and (4.35). Finally, 

in the third stage, we will obtain **   
 +   

 +   
  by formulas (4.30) and (4.31). The 

errors are computed by 

       
(   )      

(∑  

   

   

| (     )     
 |  )

 
 

             (    ) 

       
(   )          

| (  )     |  

where  (   )  ( ) represent the exact solution,    
  represent the numerical 

solutions at (     ) and     represent the numerical solutions at   . The numerical 

results are given in the following table. 

Table 4.2.  

Error Analysis for Difference Schemes (4.24) and (4.32) 

                                   

    0.1754 0.1112 0.0625 0.0331 

    0.2018 0.0967 0.0475 0.0235 

    0.6868 0.3775 0.1947 0.0937 

    0.2270 0.1052 0.0499 0.0242 

    0.8276 0.4675 0.2869 0.2023 

    0.2490 0.1119 0.0516 0.0245 
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4.4 Absolute Stable Difference Schemes for the Solution of Time-Dependent 

Identification Problems for Delay Hyperbolic Equations with Nonlocal 

Boundary Condition. 

       we consider the time-dependent identification problem 

{
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      (       )                                 

 (   )       (       )                            

 (   )   (   )   (   )    (   )                                           

∫  (   )   

 

 

                                                                     

                            (    ) 

for a one dimentional delay hyperbolic differential equation with nonlocal condition. 

Recall that 

( (   )  ( ))  ((  (   )   ( )))   
   

where (  (   )   ( ))  is exact solution pair of the problem (4.37) on   

,(   )    -    . The exact solution pair of the problem (4.37) is 

( (   )  ( ))  (     (       )      ). For the numerical solution of problem 

(4.37), we present the following first order of accuracy difference scheme for the 

approximate solution for the problem (4.37) 
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We consider two cases:     and      First, let      then        

From problem (4.38) it follows that  
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Algorithm for obtaining the solution of the time-dependent identification problem 

(4.39) *   +   
  **   

 +   
 +   

  and *   +   
    contains three stages. Actually, let 

us define 

   
     

     (     (   ))                       (    ) 

Applying difference scheme (4.39) and formula (4.40), we will obtain formula 
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and the difference scheme 
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In the first stage, we find numerical solution **   
 +   

 +   
  of corresponding first 

order of accuracy auxiliary difference scheme (4.42). For obtaining the solution of 
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difference scheme (4.42), we will write it in the matrix form as 

{
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where       are (   )  (   )  square matrices,                 are 

(   )    column matrices and 
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  (     )  6
 (   (  )   )

  
  7    (     )    (   )      (     )  

                 

So, we have the IVP for the second order difference equation (4.43) with respect to   

with matrix coefficients     and  : Since     and     are given, we can obtain 

the solution of (4.43) by direct formula 

         (     (  )   (  )   )                     (    ) 

Applying formula       ∑   
   (     )(  )  

                  , 

we can obtain 

    
       (  )       

  
                         (    ) 

In the second stage, we will obtain *   +   
    by formulas (4.41) and (4.45). Finally, 

in the third stage, we will obtain **   
 +   

 +   
  by formulas (4.40) and (4.41). The 

errors are computed by 

       
     

(∑  

   

   

| (     )     
 |  )

 
 

                     (    ) 

       
       

| (  )     |  

where  (   )  ( ) represent the exact solution,    
  represent the numerical 

solutions at (     ) and     represent the numerical solutions at   . 

Second, let      then (   )        From problem (4.38) it follows that  
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In the same manner, algorithm for obtaining the solution of the time-dependent 

identification problem (4.47) *   +   
  **   

 +   
 +   

  and *   +   
    contains 

three stages. Actually, let us define 

   
     

     (     (  )) (   )             (    ) 

Applying difference scheme (4.47) and formula (4.48), we will obtain formula 

      
    (     )  ∑     

      
    

 
 (   )               (    ) 

and the difference scheme 
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In the first stage, we find numerical solution **   
 +   

 +   
  of corresponding first 

order of accuracy auxiliary difference scheme (4.50). For obtaining the solution of 

difference scheme (4.50), we will write it in the matrix form as 

{
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So, we have the initial value problem for the second order difference equation (4.51) 

with respect to   with matrix coefficients     and  : Since    
  and    

    are 

given, we can obtain the solution of (4.51) by direct formula 

{
(  )       ((  )   (  )   (  )   ) 

(   )                                                

                                              (    ) 

Applying formula       ∑   
   (     )(  )  

  (   )         

    (   )    (   )     , we can obtain 

    
       (  )       

  
 (   )                 (    ) 

In the second stage, we will obtain *   +   
    by formulas (4.49) and (4.53). Finally, 

in the third stage, we will obtain **   
 +   

 +   
  by formulas (4.48) and (4.49). The 

errors are computed by 

       
(   )      

(∑  

   

   

| (     )     
 |  )

 
 

              (    ) 

       
(   )          

| (  )     |  

where  (   )  ( )  represent the exact solution,    
  represent the numerical 

solutions at (     ) and     represent the numerical solutions at   . The numerical 

results are given in the following table. 

Table 4.3.  

Error Analysis for Difference Schemes (4.42) and (4.50) 

                                   

    1.1609 0.7991 0.4562 0.2424 

    0.5665 0.2845 0.1384 0.0678 

    2.3541 2.3087 1.4187 0.7631 

    0.5251 0.3449 0.1957 0.1020 

    2.5509 4.6543 3.3288 1.8975 

    0.7032 0.2679 0.2075 0.1240 
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CHAPTER V 

Conclusion 

 

      This thesis is devoted to the time-dependent source identification problems for 

delay hyperbolic differential equations with unknown parameter p(t). The following 

results are established: 

• The history of direct and inverse boundary value problems for delay hyperbolic 

differential equations is considered. 

• Fourier series, Laplace transform and Fourier transform methods are applied for the 

solution of six identification problems for delay hyperbolic differential equations. 

• The main theorems on the stability estimates for the solution of the time-dependent 

source identification problems for delay hyperbolic differential equations are 

established. 

• The first order of accuracy difference schemes for the approximate solution of the 

one dimensional time-dependent source identification problems for delay hyperbolic 

differential equations with local and non-local conditions are given. 

• The Matlab implementation of these difference schemes is presented. 

• The theoretical statements for the solution of these difference schemes are supported 

by the results of numerical examples. 

 

Our Future Plan is 

 

• Investigate a high order of accuracy absolute stable difference schemes for the 

numerical solution of the time-dependent SIP for the DHE. 

• Study the numerical realization for the numerical solution of two and three 

dimensional time-dependent SIP for the DHE. 
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Appendices 

Appendix A 

Matlab Implementation of one Dimension First Order of Accuracy Difference 

Schemes of Problem (4.1) 

 

function pb1(N,M) 

h=pi/M;tau=pi/N; 

a=(1/(tau^2))+(2/(h^2)); 

e=-2/(tau^2); 

b=-1/(h^2); 

g=1/(tau^2); 

d=0; 

for i=1:M-1; 

d=d+h*sin(i*h); 

end; 

z=2*(cos(h)-1)/(d*h); 

A=zeros(M+1,M+1); 

for i=2:M; 

for j=2:M; 

A(i,j)=z*sin((i-1)*h); 

end; 

end; 

for i=2:M 

A(i,i)=a+(z*sin((i-1)*h)); 

end; 

for i=2:M-1; 

A(i,i+1)=b+(z*sin((i-1)*h)); 

end; 

for i=3:M; 

A(i,i-1)=b+(z*sin((i-1)*h)); 

end; 

A(1,1)=1;A(M+1,M+1)=1;A(2,1)=b;A(M,M+1)=b; 

A; 

B=zeros(M+1,M+1); 

for n=2:M; 

B(n,n)=e; 

end; 

B; 

C=zeros(M+1,M+1); 

for n=2:M; 

C(n,n)=g; 

end; 

C; 

fii1=zeros(M+1,1); 

for j=1:M+1; 

for k=2:N; 

fii1(j,k)=((4*(cos(h)-1)/(d*(h^2)))-1)*sin(k*tau)*sin((j-1)*h); 

end; 
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end; 

fii1; 

G=inv(A); 

W1=zeros(M+1,1); 

for j=1:M+1; 

W1(j,1)=0; 

W1(j,2)=(tau)*sin((j-1)*h); 

for k=3:N+1; 

W1(:,k)=G*(-(B*W1(:,k-1))-(C*W1(:,k-2))+fii1(:,k-1)); 

end; 

end; 

for k=2:N; 

D=0; 

for j=1:M-1; 

s1(j)=D+(W1(j,k+1)-2*(W1(j,k))+W1(j,k-1)); 

D=s1(j); 

end; 

p1(k)=(2*sin((k+1)*tau)-4*sin(k*tau)+2*sin((k-1)*tau)-(h*D))/(d*(tau^2)); 

end; 

p1(k); 

L=zeros(M+1,M+1); 

for i=2:M; 

for j=2:M; 

L(i,j)=0; 

end; 

end; 

for i=2:M; 

L(i,i)=a; 

end; 

for i=2:M-1; 

L(i,i+1)=b; 

end; 

for i=3:M; 

L(i,i-1)=b; 

end; 

L(1,1)=1; 

L(M+1,M+1)=1; 

L; 

B=zeros(M+1,M+1); 

for n=2:M; 

B(n,n)=e; 

end 

B; 

C=zeros(M+1,M+1); 

for n=2:M; 

C(n,n)=g; 

end; 

C; 

fii1=zeros(M+1,1); 

for j=1:M+1; 
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for k=2:N; 

x=(j-1)*h; 

fii1(j,k)=(p1(k)*sin(x))-sin(k*tau)*sin(x); 

end; 

end; 

fii1; 

G=inv(L); 

u1=zeros(M+1,1); 

for j=1:M+1; 

x=(j-1)*h; 

u1(j,1)=0; 

u1(j,2)=(tau)*sin(x); 

end; 

for k=3:N+1; 

u1(:,k)=G*(-(B*u1(:,k-1))-(C*u1(:,k-2))+fii1(:,k-1)); 

end; 

%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE'\%\%\%\%\%\%\%\% 

for j=1:M+1; 

for k=1:N+1; 

t=(k-1)*tau; 

x=(j-1)*h; 

es1(j,k)=(2*sin(t)-t)*sin(x); 

eu1(j,k)=sin(t)*sin(x); 

end; 

end; 

for k=2:N; 

t=(k-1)*tau; 

ep1(k)=sin(t); 

end; 

%ABSOLUTE DIFFERENCES; 

absdifW1=max(max(abs(es1-W1))); 

absdifu1=max(max(abs(eu1-u1))); 

absdifp1=max(max(abs(ep1-p1))); 

display([absdifW1,absdifu1,absdifp1]) 

 

%SECOND STEP; 

fii2=zeros(M+1,1); 

for j=2:M; 

for k=2:N;      

fii2(j,k)=((0.01)/h^2)*(W1(j+1,k)-2*W1(j,k)+W1(j-1,k))+(((4*(cos(h)-1)/(d*(h^2)))-

1)*sin((k+N)*tau)-((0.01)*sin(k*tau)))*sin((j-1)*h); 

end; 

end; 

fii2; 

G=inv(A); 

W2=zeros(M+1,1); 

for j=1:M+1; 

W2(j,1)=W1(j,N+1); 

W2(j,2)=2*W1(j,N+1)-W1(j,N); 

for k=3:N+1; 
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W2(:,k)=G*(-(B*W2(:,k-1))-(C*W2(:,k-2))+fii2(:,k-1)); 

end; 

end; 

for k=2:N; 

D=0; 

for j=1:M-1; 

s2(j)=D+(W2(j,k+1)-2*(W2(j,k))+W2(j,k-1)); 

D=s2(j); 

end;    

p2(k)=(2*sin((k+N+1)*tau)-4*sin((k+N)*tau)+2*sin((k+N-1)*tau)-(h*D))/(d*(tau^2

)); 

end; 

p2(k); 

fii2=zeros(M+1,1); 

for j=2:M; 

for k=2:N; 

x=(j-1)*h;      

fii2(j,k)=(p2(k)-sin((k+N)*tau)-(0.01)*sin(k*tau))*sin(x)+((0.01)/h^2)*(W1(j+1,k)-2

*W1(j,k)+W1(j-1,k)); 

end; 

end; 

fii2; 

G=inv(L); 

u2=zeros(M+1,1); 

for j=1:M+1; 

x=(j-1)*h; 

u2(j,1)=u1(j,N+1); 

u2(j,2)=2*u1(j,N+1)-u1(j,N); 

end; 

for k=3:N+1; 

u2(:,k)=G*(-(B*u2(:,k-1))-(C*u2(:,k-2))+fii2(:,k-1)); 

end; 

%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE'\%\%\%\%\%\%\%\% 

for j=1:M+1; 

for k=1:N+1; 

t=(k+N-1)*tau; 

x=(j-1)*h; 

es2(j,k)=(2*sin(t)-t)*sin(x); 

eu2(j,k)=sin(t)*sin(x); 

end; 

end; 

for k=2:N; 

t=(k+N-1)*tau; 

ep2(k)=sin(t); 

end; 

%ABSOLUTE DIFFERENCES; 

absdifW2=max(max(abs(es2-W2))); 

absdifu2=max(max(abs(eu2-u2))); 

absdifp2=max(max(abs(ep2-p2))); 

display([absdifW2,absdifu2,absdifp2]) 
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%THIRD STEP; 

fii3=zeros(M+1,1); 

for j=2:M; 

for k=2:N;      

fii3(j,k)=((0.01)/h^2)*(W2(j+1,k)-2*W2(j,k)+W2(j-1,k))+(((4*(cos(h)-1)/(d*(h^2)))-

1)*sin((k+(2*N))*tau)-((0.01)*sin(k*tau)))*sin((j-1)*h); 

end; 

end; 

fii3; 

G=inv(A); 

W3=zeros(M+1,1); 

for j=1:M+1; 

W3(j,1)=W2(j,N+1); 

W3(j,2)=2*W2(j,N+1)-W2(j,N); 

for k=3:N+1; 

W3(:,k)=G*(-(B*W3(:,k-1))-(C*W3(:,k-2))+fii3(:,k-1)); 

end; 

end; 

for k=2:N; 

D=0; 

for j=1:M-1; 

s3(j)=D+(W3(j,k+1)-2*(W3(j,k))+W3(j,k-1)); 

D=s3(j); 

end;  

p3(k)=(2*sin((k+2*N+1)*tau)-4*sin((k+2*N)*tau)+2*sin((k+2*N-1)*tau)-(h*D))/(d

*(tau^2)); 

end; 

p3(k); 

fii3=zeros(M+1,1); 

for j=2:M; 

for k=2:N; 

x=(j-1)*h;       

fii3(j,k)=(p3(k)-sin((k+2*N)*tau)-(0.01)*sin(k*tau))*sin(x)+((0.01)/h^2)*(W2(j+1,k

)-2*W2(j,k)+W2(j-1,k)); 

end; 

end; 

fii3; 

G=inv(L); 

u3=zeros(M+1,1); 

for j=1:M+1; 

x=(j-1)*h; 

u3(j,1)=u2(j,N+1); 

u3(j,2)=2*u2(j,N+1)-u2(j,N); 

end; 

for k=3:N+1; 

u3(:,k)=G*(-(B*u3(:,k-1))-(C*u3(:,k-2))+fii3(:,k-1)); 

end; 

%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE'\%\%\%\%\%\%\%\% 

for j=1:M+1; 

for k=1:N+1; 
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t=(k+2*N-1)*tau; 

x=(j-1)*h; 

es3(j,k)=(2*sin(t)-t)*sin(x); 

eu3(j,k)=sin(t)*sin(x); 

end; 

end; 

for k=2:N; 

t=(k+2*N-1)*tau; 

ep3(k)=sin(t); 

end; 

%ABSOLUTE DIFFERENCES; 

absdifW3=max(max(abs(es3-W3))); 

absdifu3=max(max(abs(eu3-u3))); 

absdifp3=max(max(abs(ep3-p3))); 

display([absdifW3,absdifu3,absdifp3]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

 
 

Appendix B 

Matlab Implementation of one Dimension First Order of Accuracy Difference 

Schemes of Problem (4.19) 

 

function pb2(N,M) 

h=pi/M;tau=pi/N; 

a=(1/(tau^2))+(2/(h^2)); 

e=-2/(tau^2); 

b=-1/(h^2); 

g=1/(tau^2); 

z=2*(cos(h)-1)/(pi*h); 

A=zeros(M+1,M+1); 

for i=2:M; 

for j=2:M; 

A(i,j)=z*cos((i-1)*h); 

end; 

end; 

for i=2:M 

A(i,i)=a+(z*cos((i-1)*h)); 

end; 

for i=2:M-1; 

A(i,i+1)=b+(z*cos((i-1)*h)); 

end; 

for i=3:M; 

A(i,i-1)=b+(z*cos((i-1)*h)); 

end; 

A(1,1)=-1;A(1,2)=1;A(M+1,M+1)=1;A(M+1,M)=-1; 

A(2,1)=b;A(M,M+1)=b; 

A; 

B=zeros(M+1,M+1); 

for n=2:M; 

B(n,n)=e; 

end; 

B; 

C=zeros(M+1,M+1); 

for n=2:M; 

C(n,n)=g; 

end; 

C; 

fii1=zeros(M+1,1); 

for j=2:M; 

for k=2:N; fii1(j,k)=((2*(cos(h)-1)/(h^2))-1)*sin(k*tau)*cos((j-1)*h)-2*sin(k*tau); 

end; 

end; 

fii1; 

G=inv(A); 

W1=zeros(M+1); 

for j=1:M+1; 
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W1(j,1)=0; 

W1(j,2)=(tau)*(1+cos((j-1)*h)); 

for k=3:N+1; 

W1(:,k)=G*(-(B*W1(:,k-1))-(C*W1(:,k-2))+fii1(:,k-1)); 

end; 

end; 

for k=2:N; 

D=0; 

for j=1:M-1; 

s1(j)=D+(W1(j,k+1)-2*(W1(j,k))+W1(j,k-1)); 

D=s1(j); 

end;   

p1(k)=((sin((k+1)*tau)-2*sin(k*tau)+sin((k-1)*tau))/((tau)^2))-((h*D)/(pi*(tau)^2)); 

end; 

L=zeros(M+1); 

for i=2:M; 

L(i,i)=a; 

end; 

for i=2:M-1; 

L(i,i+1)=b; 

end; 

for i=3:M; 

L(i,i-1)=b; 

end; 

L(1,1)=-1;L(1,2)=1; 

L(M+1,M+1)=1;L(M+1,M)=-1; 

L(2,1)=b;L(M,M+1)=b; 

L; 

B=zeros(M+1,M+1); 

for n=2:M; 

B(n,n)=e; 

end 

B; 

C=zeros(M+1,M+1); 

for n=2:M; 

C(n,n)=g; 

end; 

C; 

fii1=zeros(M+1); 

for j=2:M; 

for k=2:N; 

x=(j-1)*h; 

fii1(j,k)=(p1(k)*(1+cos(x)))-sin(k*tau)*(2+cos(x)); 

end; 

end; 

fii1; 

G=inv(L); 

u1=zeros(M+1); 

for j=1:M+1; 

x=(j-1)*h; 
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u1(j,1)=0; 

u1(j,2)=(tau)*(1+cos(x)); 

end; 

for k=3:N+1; 

u1(:,k)=G*(-(B*u1(:,k-1))-(C*u1(:,k-2))+fii1(:,k-1)); 

end; 

%n%n%n%n%n%?EXACT SOLUTION OF THIS PDE?n%n%n%n%n%n%n%n% 

for j=1:M+1; 

for k=1:N+1; 

t=(k-1)*tau; 

x=(j-1)*h; 

es1(j,k)=(2*sin(t)-t)*(1+cos(x)); 

eu1(j,k)=sin(t)*(1+cos(x)); 

end; 

end; 

for k=2:N; 

t=(k-1)*tau; 

ep1(k)=sin(t); 

end; 

%ABSOLUTE DIFFERENCES; 

absdifW1=max(max(abs(es1-W1))); 

absdifu1=max(max(abs(eu1-u1))); 

absdifp1=max(max(abs(ep1-p1))); 

display([absdifW1,absdifu1,absdifp1]) 

%SECOND STEP; 

fii2=zeros(M+1,1); 

for j=2:M; 

for k=2:N;    

fii2(j,k)=((0.01)/h^2)*(W1(j+1,k)-2*W1(j,k)+W1(j-1,k))+((2*(cos(h)-1)/(h^2)-1)*(si

n((k+N)*tau)-((0.01)*sin(k*tau)))*cos((j-1)*h))-2*sin((k+N)*tau); 

end; 

end; 

fii2; 

G=inv(A); 

W2=zeros(M+1); 

for j=1:M+1; 

W2(j,1)=W1(j,N+1); 

W2(j,2)=2*W1(j,N+1)-W1(j,N); 

for k=3:N+1; 

W2(:,k)=G*(-(B*W2(:,k-1))-(C*W2(:,k-2))+fii2(:,k-1)); 

end; 

end; 

for k=2:N; 

D=0; 

for j=1:M-1; 

s2(j)=D+(W2(j,k+1)-2*(W2(j,k))+W2(j,k-1)); 

D=s2(j); 

end; 
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p2(k)=((sin((k+N+1)*tau)-2*sin((k+N)*tau)+sin((k+N-1)*tau))/((tau)^2))-((h*D)/(pi

*(tau)^2)); 

end; 

fii2=zeros(M+1); 

for j=2:M; 

for k=2:N; 

x=(j-1)*h;    

fii2(j,k)=p2(k)*(1+cos(x))-2*sin((k+N)*tau)-sin((k+N)*tau)*cos(x)-(0.01)*sin(k*tau

)*cos(x)+(((0.01)/h^2)*(W1(j+1,k)-2*W1(j,k)+W1(j-1,k))); 

end; 

end; 

fii2; 

G=inv(L); 

u2=zeros(M+1); 

for j=1:M+1; 

x=(j-1)*h; 

u2(j,1)=u1(j,N+1); 

u2(j,2)=2*u1(j,N+1)-u1(j,N); 

end; 

for k=3:N+1; 

u2(:,k)=G*(-(B*u2(:,k-1))-(C*u2(:,k-2))+fii2(:,k-1)); 

end; 

%n%n%n%n%n%?EXACT SOLUTION OF THIS PDE?n%n%n%n%n%n%n%n% 

for j=1:M+1; 

for k=1:N+1; 

t=(k+N-1)*tau; 

x=(j-1)*h; 

es2(j,k)=(2*sin(t)-t)*(1+cos(x)); 

eu2(j,k)=sin(t)*(1+cos(x)); 

end; 

end; 

for k=2:N; 

t=(k+N-1)*tau; 

ep2(k)=sin(t); 

end; 

%ABSOLUTE DIFFERENCES; 

absdifW2=max(max(abs(es2-W2))); 

absdifu2=max(max(abs(eu2-u2))); 

absdifp2=max(max(abs(ep2-p2))); 

display([absdifW2,absdifu2,absdifp2]) 

%THIRD STEP; 

fii3=zeros(M+1,1); 

for j=2:M; 

for k=2:N;    

fii3(j,k)=((0.01)/h^2)*(W2(j+1,k)-2*W2(j,k)+W2(j-1,k))+((2*(cos(h)-1)/(h^2)-1)*(si

n((k+(2*N))*tau)-((0.01)*sin(k*tau)))*cos((j-1)*h))-2*sin((k+(2*N))*tau); 

end; 

end; 

fii3; 
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G=inv(A); 

W3=zeros(M+1); 

for j=1:M+1; 

W3(j,1)=W2(j,N+1); 

W3(j,2)=2*W2(j,N+1)-W2(j,N); 

for k=3:N+1; 

W3(:,k)=G*(-(B*W3(:,k-1))-(C*W3(:,k-2))+fii3(:,k-1)); 

end; 

end; 

for k=2:N; 

D=0; 

for j=1:M-1; 

s3(j)=D+(W3(j,k+1)-2*(W3(j,k))+W3(j,k-1)); 

D=s3(j); 

end;    

p3(k)=((sin((k+2*N+1)*tau)-2*sin((k+2*N)*tau)+sin((k+2*N-1)*tau))/((tau)^2))-((h

*D)/(pi*(tau)^2)); 

end; 

fii3=zeros(M+1); 

for j=2:M; 

for k=2:N; 

x=(j-1)*h;    

fii3(j,k)=p3(k)*(1+cos(x))-2*sin((k+2*N)*tau)-sin((k+2*N)*tau)*cos(x)-(0.01)*sin(

k*tau)*cos(x)+(((0.01)/h^2)*(W2(j+1,k)-2*W2(j,k)+W2(j-1,k))); 

end; 

end; 

fii3; 

G=inv(L); 

u3=zeros(M+1); 

for j=1:M+1; 

x=(j-1)*h; 

u3(j,1)=u2(j,N+1); 

u3(j,2)=2*u2(j,N+1)-u2(j,N); 

end; 

for k=3:N+1; 

u3(:,k)=G*(-(B*u3(:,k-1))-(C*u3(:,k-2))+fii3(:,k-1)); 

end; 

%n%n%n%n%n%?EXACT SOLUTION OF THIS PDE?n%n%n%n%n%n%n%n% 

for j=1:M+1; 

for k=1:N+1; 

t=(k+2*N-1)*tau; 

x=(j-1)*h; 

es3(j,k)=(2*sin(t)-t)*(1+cos(x)); 

eu3(j,k)=sin(t)*(1+cos(x)); 

end; 

end; 

for k=2:N; 

t=(k+2*N-1)*tau; 

ep3(k)=sin(t); 

end; 
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%ABSOLUTE DIFFERENCES; 

absdifW3=max(max(abs(es3-W3))); 

absdifu3=max(max(abs(eu3-u3))); 

absdifp3=max(max(abs(ep3-p3))); 

display([absdifW3,absdifu3,absdifp3]) 
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Appendix C 

Matlab Implementation of one Dimension First Order of Accuracy Difference 

Schemes of Problem (4.37) 

 

function pb3(N,M) 

h=pi/M;tau=pi/N; 

a=(1/(tau^2))+(2/(h^2)); 

e=-2/(tau^2); 

b=-1/(h^2); 

g=1/(tau^2); 

z=2*(cos(2*h)-1)/(pi*h); 

A=zeros(M+1,M+1); 

for i=2:M; 

for j=2:M; 

A(i,j)=z*cos(2*(i-1)*h); 

end; 

end; 

for i=2:M 

A(i,i)=a+(z*cos(2*(i-1)*h)); 

end; 

for i=2:M-1; 

A(i,i+1)=b+(z*cos(2*(i-1)*h)); 

end; 

for i=3:M; 

A(i,i-1)=b+(z*cos(2*(i-1)*h)); 

end; 

A(1,1)=1;A(1,M+1)=-1;A(M+1,1)=-1;A(M+1,2)=1;A(M+1,M)=1;A(M+1,M+1)=-1; 

A(2,1)=b;A(M,M+1)=b; 

A; 

B=zeros(M+1,M+1); 

for n=2:M; 

B(n,n)=e; 

end; 

B; 

C=zeros(M+1,M+1); 

for n=2:M; 

C(n,n)=g; 

end; 

C; 

fii1=zeros(M+1,1); 

for j=2:M; 

for k=2:N; 

fii1(j,k)=((2*(cos(2*h)-1)/(h^2))-1)*sin(2*k*tau)*cos(2*(j-1)*h)-5*sin(2*k*tau); 

end; 

end; 

fii1; 

G=inv(A); 

W1=zeros(M+1); 
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for j=1:M+1; 

W1(j,1)=0; 

W1(j,2)=2*(tau)*(1+cos(2*(j-1)*h)); 

for k=3:N+1; 

W1(:,k)=G*(-(B*W1(:,k-1))-(C*W1(:,k-2))+fii1(:,k-1)); 

end; 

end; 

for k=2:N; 

D=0; 

for j=1:M-1; 

s1(j)=D+(W1(j,k+1)-2*(W1(j,k))+W1(j,k-1)); 

D=s1(j); 

end; 

p1(k)=((sin(2*(k+1)*tau)-2*sin(2*k*tau)+sin(2*(k-1)*tau))/((tau)^2))-((h*D)/(pi*(ta

u)^2)); 

end; 

L=zeros(M+1); 

for i=2:M; 

L(i,i)=a; 

end; 

for i=2:M-1; 

L(i,i+1)=b; 

end; 

for i=3:M; 

L(i,i-1)=b; 

end; 

L(1,1)=1;L(1,M+1)=-1; 

L(M+1,1)=-1;L(M+1,2)=1;L(M+1,M)=1;L(M+1,M+1)=-1; 

L(2,1)=b;L(M,M+1)=b; 

L; 

B=zeros(M+1,M+1); 

for n=2:M; 

B(n,n)=e; 

end 

B; 

C=zeros(M+1,M+1); 

for n=2:M; 

C(n,n)=g; 

end; 

C; 

fii1=zeros(M+1); 

for j=2:M; 

for k=2:N; 

x=(j-1)*h; 

fii1(j,k)=(p1(k)*(1+cos(2*x)))-sin(2*k*tau)*(5+cos(2*x)); 

end; 

end; 

fii1; 

G=inv(L); 

u1=zeros(M+1); 
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for j=1:M+1; 

x=(j-1)*h; 

u1(j,1)=0; 

u1(j,2)=2*(tau)*(1+cos(2*x)); 

end; 

for k=3:N+1; 

u1(:,k)=G*(-(B*u1(:,k-1))-(C*u1(:,k-2))+fii1(:,k-1)); 

end; 

%n%n%n%n%n%?EXACT SOLUTION OF THIS PDE?n%n%n%n%n%n%n%n% 

for j=1:M+1; 

for k=1:N+1; 

t=(k-1)*tau; 

x=(j-1)*h; 

es1(j,k)=((5/4)*sin(2*t)-(1/2)*t)*(1+cos(2*x)); 

eu1(j,k)=sin(2*t)*(1+cos(2*x)); 

end; 

end; 

for k=2:N; 

t=(k-1)*tau; 

ep1(k)=sin(2*t); 

end; 

%ABSOLUTE DIFFERENCES; 

absdifW1=max(max(abs(es1-W1))); 

absdifu1=max(max(abs(eu1-u1))); 

absdifp1=max(max(abs(ep1-p1))); 

display([absdifW1,absdifu1,absdifp1])  

%SECOND STEP; 

fii2=zeros(M+1,1); 

for j=2:M; 

for k=2:N; 

fii2(j,k)=((-0.01)/h^2)*(W1(j+1,k)-2*W1(j,k)+W1(j-1,k))+((2*(cos(2*h)-1)/(h^2)-1)

*(sin(2*(k+N)*tau)-(4*(0.01)*sin(2*k*tau)))*cos(2*(j-1)*h))-5*sin(2*(k+N)*tau); 

end; 

end; 

fii2; 

G=inv(A); 

W2=zeros(M+1); 

for j=1:M+1; 

W2(j,1)=W1(j,N+1); 

W2(j,2)=2*W1(j,N+1)-W1(j,N); 

for k=3:N+1; 

W2(:,k)=G*(-(B*W2(:,k-1))-(C*W2(:,k-2))+fii2(:,k-1)); 

end; 

end; 

for k=2:N; 

D=0; 

for j=1:M-1; 

s2(j)=D+(W2(j,k+1)-2*(W2(j,k))+W2(j,k-1)); 

D=s2(j); 

end; 
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p2(k)=((sin(2*(k+N+1)*tau)-2*sin(2*(k+N)*tau)+sin(2*(k+N-1)*tau))/((tau)^2))-((h

*D)/(pi*(tau)^2)); 

end; 

fii2=zeros(M+1); 

for j=2:M; 

for k=2:N; 

x=(j-1)*h;   

fii2(j,k)=p2(k)*(1+cos(2*x))-5*sin(2*(k+N)*tau)-sin(2*(k+N)*tau)*cos(2*x)-4*(0.0

1)*sin(2*k*tau)*cos(2*x)-(((0.01)/h^2)*(W1(j+1,k)-2*W1(j,k)+W1(j-1,k))); 

end; 

end; 

fii2; 

G=inv(L); 

u2=zeros(M+1); 

for j=1:M+1; 

x=(j-1)*h; 

u2(j,1)=u1(j,N+1); 

u2(j,2)=2*u1(j,N+1)-u1(j,N); 

end; 

for k=3:N+1; 

u2(:,k)=G*(-(B*u2(:,k-1))-(C*u2(:,k-2))+fii2(:,k-1)); 

end; 

%n%n%n%n%n%?EXACT SOLUTION OF THIS PDE?n%n%n%n%n%n%n%n% 

for j=1:M+1; 

for k=1:N+1; 

t=(k+N-1)*tau; 

x=(j-1)*h; 

es2(j,k)=((5/4)*sin(2*t)-(1/2)*t)*(1+cos(2*x)); 

eu2(j,k)=sin(2*t)*(1+cos(2*x)); 

end; 

end; 

for k=2:N; 

t=(k+N-1)*tau; 

ep2(k)=sin(2*t); 

end; 

%ABSOLUTE DIFFERENCES; 

absdifW2=max(max(abs(es2-W2))); 

absdifu2=max(max(abs(eu2-u2))); 

absdifp2=max(max(abs(ep2-p2))); 

display([absdifW2,absdifu2,absdifp2])   

%THIRD STEP; 

fii3=zeros(M+1,1); 

for j=2:M; 

for k=2:N; 

fii3(j,k)=((-0.01)/h^2)*(W2(j+1,k)-2*W2(j,k)+W2(j-1,k))+((2*(cos(2*h)-1)/(h^2)-1)

*(sin(2*(k+2*N)*tau)-(4*(0.01)*sin(2*k*tau)))*cos(2*(j-1)*h))-5*sin(2*(k+2*N)*t

au); 

end; 

end; 

fii3; 



108 
 

 
 

G=inv(A); 

W3=zeros(M+1); 

for j=1:M+1; 

W3(j,1)=W2(j,N+1); 

W3(j,2)=2*W2(j,N+1)-W2(j,N); 

for k=3:N+1; 

W3(:,k)=G*(-(B*W3(:,k-1))-(C*W3(:,k-2))+fii3(:,k-1)); 

end; 

end; 

for k=2:N; 

D=0; 

for j=1:M-1; 

s3(j)=D+(W3(j,k+1)-2*(W3(j,k))+W3(j,k-1)); 

D=s3(j); 

end; 

p3(k)=((sin(2*(k+2*N+1)*tau)-2*sin(2*(k+2*N)*tau)+sin(2*(k+2*N-1)*tau))/((tau)

^2))-((h*D)/(pi*(tau)^2)); 

end; 

fii3=zeros(M+1); 

for j=2:M; 

for k=2:N; 

x=(j-1)*h;    

fii3(j,k)=p3(k)*(1+cos(2*x))-5*sin(2*(k+2*N)*tau)-sin(2*(k+2*N)*tau)*cos(2*x)-4

*(0.01)*sin(2*k*tau)*cos(2*x)-(((0.01)/h^2)*(W2(j+1,k)-2*W2(j,k)+W2(j-1,k))); 

end; 

end; 

fii3; 

G=inv(L); 

u3=zeros(M+1); 

for j=1:M+1; 

x=(j-1)*h; 

u3(j,1)=u2(j,N+1); 

u3(j,2)=2*u2(j,N+1)-u2(j,N); 

end; 

for k=3:N+1; 

u3(:,k)=G*(-(B*u3(:,k-1))-(C*u3(:,k-2))+fii3(:,k-1)); 

end; 

%n%n%n%n%n%?EXACT SOLUTION OF THIS PDE?n%n%n%n%n%n%n%n% 

for j=1:M+1; 

for k=1:N+1; 

t=(k+2*N-1)*tau; 

x=(j-1)*h; 

es3(j,k)=((5/4)*sin(2*t)-(1/2)*t)*(1+cos(2*x)); 

eu3(j,k)=sin(2*t)*(1+cos(2*x)); 

end; 

end; 

for k=2:N; 

t=(k+2*N-1)*tau; 

ep3(k)=sin(2*t); 

end; 
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%ABSOLUTE DIFFERENCES; 

absdifW3=max(max(abs(es3-W3))); 

absdifu3=max(max(abs(eu3-u3))); 

absdifp3=max(max(abs(ep3-p3))); 

display([absdifW3,absdifu3,absdifp3])  
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Full Name: Bishar Chato Haeo 

Nationality: Iraq 
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Marital Status: Married 

E-mail address: bashar.chato1988@gmail.com 

 

Education 
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Graduation 

B.Sc. In Mathematics University of Zakho, Department of 

Mathematics 

2013 

 

Professional Experience: 

● Worked as a teacher at Sinuny Preparatory Mixed School in Sinuny, 
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● Worked as a teacher teaching math at Shingal Institute for Teacher 

Training for one year (2014-2015) 
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IT Skills: 

 Computer literate with good working knowledge of Microsoft 

Office programs including Word, Excel, Power Point, etc. 
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 Able to motivate others. 
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