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Abstract
The Time-Dependent Source Identification Problem for the Delay Hyperbolic
Equations
Haso, Bishar Chato
Master Thesis, Department of Mathematics
Supervisor: Prof. Dr. Allaberen Ashyralyev
June, 2022, (113) pages

Our project is aimed to investigate the time-dependent source identification
problem for delay hyperbolic partial differential equations. This thesis deals with
analytical and approximate solutions of several problems for delay hyperbolic partial
differential equations. In the present study, a time-dependent source identification
problem with local and nonlocal conditions for a one-dimensional delay hyperbolic
equation is investigated. Stability estimates for the solutions of the time-dependent
source identification problems are established. Furthermore, a first order of accuracy
difference scheme for the numerical solutions of the time-dependent source
identification problems for delay hyperbolic equations with local and nonlocal
conditions are presented. New absolute stable difference scheme for the approximate
solution of the one dimensional delay hyperbolic equation is constructed and a
numerical algorithm is presented. Additionally, illustrative numerical results are
provided.
Key Words: Hyperbolic differential equation, Time delay, Source identification

problem, Stability, Difference Schemes.



Ozet
Zaman Gecikmeli Hiperbolik Denklemler icin Kaynak Tamimlama Problemi
Haso, Bishar Chato
Yuksek Lisans Tezi, Matematik Anabilim Dali
Damisman: Prof. Dr. Allaberen Ashyralyev
Haziran, 2022, (113) sayfa

Projemiz, gecikmeli hiperbolik kismi diferansiyel denklemler i¢in zamana
bagli kaynak tanimlama problemini arastirmayi amaclamaktadir. Bu tez, gecikmeli
hiperbolik kismi diferansiyel denklemler i¢in ¢esitli problemlerin analitik ve yaklasik
¢Oziimlerini ele almaktadir. Bu caligmada, tek boyutlu bir gecikme hiperbolik
denklemi i¢in yerel ve yerel olmayan kosullarla zamana baglh bir kaynak belirleme
problemi incelenmistir. Zamana bagli kaynak tanimlama problemlerinin ¢éziimleri
icin kararlilik tahminleri olusturulmustur. Ayrica, yerel ve yerel olmayan kosullara
sahip gecikmeli hiperbolik denklemler icin zamana baghh kaynak tanimlama
problemlerinin sayisal ¢ézlimleri i¢in bir dogruluk farki semasi1 sunulmaktadir. Tek
boyutlu gecikmeli hiperbolik denklemin yaklasik ¢6ziimii i¢in yeni mutlak kararli fark
semas1 olusturulmus ve sayisal algoritma sunulmustur. Ek olarak, aciklayici sayisal
sonuglar saglanmaktadir.
Anahtar Kelimeler: hiperbolik diferansiyel denklem, zaman gecikmesi, kaynak

tanimlama sorunu, istikrar, fark semalart.
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CHAPTER |

Introduction

1.1 Historical Note and Literature Survey

Delay differential equations, differential integral equations and functional
differential equations have been studied for at least 200 years. During the last 50 years,
the theory of functional differential equations has been developed extensively and has
become part of the vocabulary of researchers dealing with specific applications such as
viscoelasticity, mechanics, nuclear reactors, distributed networks, heat flow, neural
networks, combustion, interaction of species, microbiology, learning models,
epidemiology, physiology, as well as many others. Stochastic effects are also being
considered but the theory is not as well developed by Hale, J. K. (2006). Delay
hyperbolic differential equation have been studied in several papers, for example:
Ashyralyev, Agirseven, 2019; Son, Thao, 2019; Monteghetti, Haine, Matignon, 2017;
Zhang, Zhang, Deng, 2014; Prakash, Harikrishnan, 2012; VVyazmin, Sorokin, 2017;
Farkas, 2003. However, Shah, Wiener, 1985, studied the existence and uniqueness of
the bounded solution of nonlinear one dimensional delay hyperbolic differential
equation with constant coefficients. Ashyralyev and Agirseven in 2019 studied the
existence and uniqueness of a bounded solution a semilinear time delay hyperbolic
equation in a Hilbert space. In applications, theorems on the existence and uniqueness
of bounded solutions of four problems for semilinear time delay differential equations
of hyperbolic type were obtained. The two-steps of a first order of accuracy difference
scheme was presented, the main theorem on the existence and uniqueness of uniformly
bounded solution of the difference scheme with respect to time step size was proved.
Numerical results were presented. In the paper of Prakash and Harikrishnan, 2012, a
class of impulsive vector hyperbolic differential equation with delays was
investigated. They studied different sufficient conditions for H-oscillation of solutions
systems subject to the Neumann boundary condition by employing certain
second-order impulsive differential inequality, where H is a unite vector in RM.
Allaberen Ashyralyev and Deniz Agirseven in 2014 studied the source identification
problem for a delay parabolic equation with nonlocal conditions. The stability
estimates in Holder norms for the solution of the problem was established. In 2020 the
absolute stable difference schemes for third order delay partial differential equations

have been studied. The absolute stable of a first order of accuracy difference scheme
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for the approximate solution of the delay partial differential equation in a Hilbert space
was presented. However, the theorem on the stability of the difference scheme was
proved. In practice, stability estimates for the solutions of three-step difference
schemes for different types of delay partial differential equations were obtained.
Numerical results were given by Ashyralyev, A., Hingal, E., Ibrahim, S. Numerical
solutions of source identification problem for hyperbolic-parabolic equations have
been studied, partial differential equations with unknown source terms were widely
used in mathematical modeling of real-life systems in many different fields of science
and engineering. Various local and nonlocal boundary value problems for
hyperbolic-parabolic equations with unknown sources have been reduced to the
boundary value problem for the differential equation with parameter p. In applications,
the stability inequalities for the solution of three source identification problems for
hyperbolic-parabolic equations were obtained. The first and second order of accuracy
difference scheme for the approximate solution were constructed and investigated by
Maral Ashyralyyeva and Maksat Ashyraliyev, 2016. There is always a major interest
for the theory of source identification problems for partial differential equations since
they have widespread applications in modern physics and technology. For this effort,
the stability of various source identification problems for partial differential and
difference equations has also been studied extensively by many researchers (see, for
examle, Ashyralyev, A., Agirseven, D., 2014; Blasio, G. Di., Lorenzi,A.2007;
Kabanikhin, S.1. 2004; Orazov, |., Sadybekov, M.A., 2012; Ashyralyev, A., Emharab,
F., 2019; Ashyralyev, A., Ashyralyyev, C., 2014; Ashyralyev, A., Al-Hammouri,A.,
2020; Ashyralyev, A., Al-Hammouri, A., Ashyralyyev, C., 2021; Ashyralyev, A.,
Erdogan, A.S., 2014; Ashyralyev, A., Urun, M., 2021; Sadybekov, M.A., Dildabek,G.,
Ivanova,M.B., 2018; Saitoh, S., Tuan, V.K., Yamamoto, M., 2002; Sakamoto,
K.,Yamamoto, M., 2011; Samarskii, A.A., Vabishchevich, P.N., 2007; Ashyralyev,
A., Agirseven, D., Agarwal, R.P., 2020; Emharab, F., 2019; Ahmad Mohammad
Salem  Al-Hammauri, 2020; Erdogan, A.S., 2010; Ashyraliyev,M.,
Ashyralyyeva,M.A., Ashyralyev,A., 2020; Ashurov, R.R., Shakarova M.D., 2022). In
many fields of the contemporary science and technology, systems with delaying terms
appear. The dynamical processes are described by systems of delay ordinary and
partial differential and difference equations. The delay appears in complicated systems
with logical and computing devices, where certain time for information processing is

needed. The stability of the delay differential and difference equations has been
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studied in many papers (see, for example, Al-Mutib, A.N., 1984; Ashyralyev, A,
Akca, H., 2001; Ashyralyev, A., Akca, H., Yenicerioglu, A. F., 2003; Ashyralyev, A.,
Sobolevskii, P.E., 2001; Bellen, A., Jackiewicz, Z., Zennaro, M., 1988; Torelli, L.,
1989; Yenigerioglu, A. F., Yal¢inbas, S., 2004; Yenigerioglu, A. F., 2008; Ashyralyev,
A., Agirseven, D., 2020; Agirseven, D., 2018). Delay partial differential equations
arise in many applications such as control theory, climate models, medicine, biology,

and much more (for example, see Wu, J., 1996 and the references therein).

1.2 Layout of the Present Thesis

The time-dependent source identification problem for delay hyperbolic partial
differential equations has not been investigated before. The main aim of the present
Thesis is to study the boundedness solution of several time-dependent identification
problems for delay hyperbolic equations. This thesis consists of five Chapters. First
chapter is the introduction. Second chapter, six examples of the second order
differential equation with time-dependent identification problems for delay hyperbolic
equations are investigated. We obtained the exact solution of the initial boundary
value problem for a one dimensional delay hyperbolic equation. Third chapter,
Theorems on stability estimates for the solution of the initial boundary value problem
for the second order of hyperbolic differential equations with time delay are proved. In
Chapter Four, we obtain the algorithms of numerical solution for the IVP for the one
dimensional delay hyperbolic partial differential equation with Dirichlet, Neumann
and nonlocal boundary conditions. We will present the first order of accuracy
difference schemes for the numerical solutions of delay hyperbolic equations.
Numerical analysis is provided. Based on the main results of the thesis, reports were
made at the Satellite Conference "Numerical Functional Analysis - 2021" of ICAAM
November 22 - 24 , 2021 ISTANBUL, TURKEY. Chapter Five presents some
conclusions which are obtained from Chapters Two, Three and Four. Two expanded
abstracts are published in AIP Conference Proceedings 2022. One paper is submitted
in the journal "Bulletin of the Karaganda University" and one paper is submitted in the
international journal of Applied Mathematics. Besides, some ideas are given for

working in the future.
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1.3.Basic Concepts and Definitions :
This section highlights basic concepts and definitions in the theory of ordinary and
partial differential equations with Delay Hyperbolic equation leading us to conduct

and understand the works in this thesis.

1.3.1 Sturm-Liouville problem (Arfken, Weber, 2005)

We denote the Sturm-Liouville operator as

Lly] = _2 [p(x) d—y] +q(x)y
dx dx
and consider the Sturm-Liouville equation
Llyl+ Ay =0, (1.1)
where p > 0 and p and g are continuous functions on the interval [0, ] with local

boundary conditions

a1y(0) + azp(0)y'(0) = 0; By (D) + oar(Dy'(D) = 0, (1.2)
where a? + a% # 0 and 57 + B2 # 0 or nonlocal boundary conditions
y(0) —y() = 0;¥"(0) —y'()) = 0. (1.3)

The problem of finding a complex number A = u such that the BVPs (1.1), (1.2) or
(1.1), (1.3) have a non trivial solution are called Sturm-Liouville problems. The value
A = u is called an eigenvalue and the corresponding solution y(x, ) is called an

eigenfunction. We will consider three types of Sturm-Liouville problem.

1.3.1.1. The Sturm-Liouville Problem with Dirichlet Condition.
—u"(x)+ux) =00<x<lLu(0)=ul)=0 (1.4)
has solution

~ knx T
up(x) = smT and A = — <—> k=123,...

In the case when [ = 7, we have that

u,(x) =sinkx and A, = —-k%k=123,...

1.3.1.2. The Sturm-Liouville Problem with Neumann Condition.
—uU')+ux)=00<x<Lu'(0)=u'{)=0 (1.5)
has solution

X k2
u(x) = cosT and A, = — (T) ,k=01.2,...
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In the case when [ = 7, we have that
u, (x) = coskx and A, = —k%k=0,12,...

1.3.1.3. The Sturm-Liouville Problem with Nonlocal Conditions.

—u"(x) + u(x) =0,0 <x <Lu(0) =ul),u'0)=u"() (1.6)
has solution
2kmx
uk(x) = cos ] k=0,1,2,...
2kmx
Uk (x) = sin Jk=1,2,...

l
and

km\?
Ay = —4 (T) L k=0,1,2,...

In the case when [ = m, we have that
Ui (x) = cos2kx ,k=0,1,2,..
ug(x) =sin2kx ,k=12,..
and
A = —4k%k=0,12,...

1.3.2 Fourier Series (Serov, V. (2017))
Let L be a fixed number and f(x) be a periodic function with periodic 2L ,
defined on (—L,L). The Fourier series of f(x) is a way of expanding the function

f (x) into an infinite series involving sines and cosines:

flx) = % + i @,,COS (?) + i b, sin (mzrx) (1.7)

where the Fourier coefficients a,,a,, and b,, are defined by the integrals

) L
G =7 ff(x)dx (1.8)
ZL
) L
Ay = I ff(x)cos (mzrx) dx,m=1,23,... (1.9)
ZL

And

L

b _lf i (m”x)d 123 1.10)

m =7 f(x)sin I x,m=123,.... (1.
“L
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1.3.3 The Laplace Transform (Finan, M. B. 2010)

The Laplace transform can be helpful in solving ordinary and partial differential
equations because it can replace an ODE with an algebraic equation or replace a PDE
with an ODE. Another reason that the Laplace transform is useful is that it can help
deal with the boundary conditions of a PDE on an infinite domain.

Definition 1. Let f be areal valued function of the real variable t, defined for t > 0.
Let s be a variable that we will assume to be real, and consider the function F
defined by

T oo
L{f(t)} = F(s) =Tli_1)r£10ff(t)e_5tdt=ff(t)e"“dt (1.11)
0 0

for all values of s for which this integral exists. The function F defined by the
integral (1.11) is called the Laplace transform of the function f. We will denote the
Laplace transform F of f by L{f} and will denote F(s) by L{f(t)} .Note that for
those s € C for which the integral makes sense F(s) isacomplex-valued function of

complex number.

1.3.4 The Fourier transform (Bracewell, 1999)
There are several ways to define the Fourier transform of a function f:R - C.
Definition. Let f be a real valued function of the real variable x, defined for

X € (—o0,00). Let s be a variable and consider the function F defined by
F(s) = F{f(x)} = f f(x)e *dx, (1.12)

for all values of s for which this integral exists. The function F defined by the
integral (1.12) is called the Fourier transform of the function f. We will denote the
Fourier transform F of f by F{f} and will denote F(s) by F{f(x)}. Note that for
those s € C for which the integral makes sense F(s) isacomplex-valued function of

complex number.
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CHAPTER II
Integral Transform Methods of Time-Dependent Identification Problem for

Delay Hyperbolic Equations

2.1 Introduction

Delay hyperbolic equations appear in mathematical models of applied
mathematics, physics, biology, and population dynamics. Therefore, it is important to
study hyperbolic type differential equations with time delay terms. Note that
time-dependent identification problems for delay hyperbolic equations are not
investigated. Therefore, the main aim of Chapter Two is to study the time-dependent
identification problems for several hyperbolic equations. Applying results of Chapter
One and Fourier series, Laplace and Fourier transform methods, we obtain the exact
solution of several time-dependent identification problems for delay hyperbolic

equations.

2.2 Fourier Series Method

We consider the Fourier series method for the solution of the time-dependent
identification problems for delay hyperbolic differential equations with Dirichlet,
Neumann and non-local boundary conditions.
Problem 1. we consider the time-dependent identification problem

(0%u(t,x) 0%u(t,x) ) 0%u(t — w, x)
ot2 0x2 0x2

+p(©q(x) + f(¢, ),

0<t<oo,xe€(00),

Vult,x) = g(t, x),—w < t < 0,x € [0,1], (2.1)

l

u(t,0) = u(t,l) = O,fu(t, x)dx = {(t),t =0
\ 0

for a one dimensional delay hyperbolic equation with Dirichlet condition. Here

u(t,x) and p(t) are unknown functions. Under compatibility conditions, problem
(2.1) has a unique solution (u(t,x),p(t)) for the smooth functions f(t,x)(t €
(0,),x € (0, l)),g(t, x),¢(t),q(x). Here b is a constant. Assume that
f, q()dx = 0,and q(0) = q(1) = 0, and g(¢,0) = g(t,)) = 0,¢ € [~w, 0],
f(t,0)=f(t1) =0,t €[0,00).
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For example, we consider the time-dependent identification problem

((Upr — Ugy = p(t)sinx + buy, (t — 7, x)
—sintsinx — bsintsinx, t > 0,0 < x < T,

s u(t,x) =sintsinx, Tt <t<00<x<m, (2.2)

T

u(t,0) =u(t,m) = 0,[ u(t,x)dx = 2sint,t > 0
\ 0

for a one dimensional delay hyperbolic equation with Dirichlet condition.

Solution. For this case w =mn,l=m g(t,x) =sintsinx, -7t <t<00<x<
m; f(t,x) = —sintsinx — bsintsinx, t > 0,0 < x < 7, {(t) = 2sint,t = 0. In order
to solve the problem (2.2), we consider the Sturm-Liouville problem
u’'(x) —Au(x) =00<x<mu(0) =u(m)=0
generated by the space operator of problem (2.2). Note that the solution of this
Sturm-Liouville problem is
w, (x) = sinkx, A, = —k%,k = 1,2,3,....

Therefore, we will seek the Fourier series solution u(t, x) by the formula

u(t,x) = Z A (t)sinkx. (2.3)
k=1

Here A, (t),k = 1,2,3,... are unknown functions. Putting (2.3) into the equation

(2.2) and using given initial and boundary conditions, we obtain
Z A () + K2[Ay (£) + bAy (t — m)]sinkx

= p(t)sinx — sintsinx — bsintsinx, 0 < t < oo

and

z A (t)sinkx = sintsinx,—n <t < 0.
k=1

Equating coefficients of sinkx, k = 1,2,3,... to zero,we get
A{(t) + A1(t) + bA{(t — ) = p(t) — sint — bsint, k = 1,

AL (D) + K?[Ap()) + bA(t—m)] =0,k #1,0<t < o

and
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A (t) = sint, k =1,

A(t)=0k+1,—-n1<t<0.
First, we obtain A, (t), k # 1. Itis clear that A, (t) be solution of the following IVP
() + kAR (t) + bk?A(t—m) = 0,0 < t < oo,

A(t)=0,—-1<t<0
for the second order ordinary differential equation with time delay. We denote that
A ) ={Axm(@®), (m-—1Dr <t <mn,m=0,123,...},
where Ay ., (t),(m — 1)m < t < mm be solutions of the following IVPs

(A1 () + k241 (H) =00 <t <,
I

L 41a(©) = 0,4),,(0) = 0,

l\A;c’,m(t) + k2 A m(t) + bk?Ag 1 (t — 1) = 0,(m — V)w < t < mm,m = 2
for the second order ordinary differential equation with time delay. For obtaining
Ay 1(t), we will consider the auxilliary equation
q*>+k*>=0.
We have that g = tki. Therefore,
A 1(t) = cicos(kt) + cpsin(kt).
Taking the derivative, we get
A1 (t) = —kcysin(kt) + kcycos(kt).
Using initial conditions A ,(0) = 0,4}, 1(0) = 0, we get
c1=0,c,=0.
Therefore,
A1) =00<t<m.
Now, suppose that
Aem(@®)=0,(m -1 <t < mm.
Then, Ay, (t), (m — 1) < t < mm be solutions of the following I'VPs

A;c,,m(t) + szk,m(t) =0,(m—-1)n <t <mm,

A ((m = D) = 0, 4}, (M — D7) = 0,m > 2
for the second order ordinary differential equation with time delay. In the same
manner, we can write
A m(t) = cicos(k(t — (m — 1)m)) + cpsin(k(t — (m — 1)m)).
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Using initial conditions Ay ,,, ((m — 1)m) = 0, A}, ((m — 1)) = 0, we get
¢, =0,c,=0.

Therefore,

Axm(@)=0,(m— 1) <t < mm.
Applying mathematical induction,

Axm@®) =0mr <t<(m+Dm
is true for any m > 1. Thus,

A ) ={Agm@®), m—Dr<t<mr,m=12,..}=0 (2.4)

for all k # 1. Applying formula (2.3) and condition f: u(t, x)dx = 2sint, we get

Vs (e}
24551 (t
ju(t, x)dx = Zj("—_lg) = 2sint, 0 < ¢ < oo. (2.5)

0 k=1

Second, we obtain A, (t). Applying formulas (2.4) and (2.5), we get
2A,(t) = 2Zsint.
Then, A;(t) = sint.Thus,

u(t,x) = Z Ay (t)sinkx = A, (t)sinx = sintsinx.
k=1

Third, we obtain p(t). Itis clear that A,(t) be the solution of the following BVP
A7 (t) + A1 (t) + bA,(t — ™) = p(t) — sint — bsint,0 < t < oo,

Ai(t) =sint,—nt<t<0
for the second order ordinary differential equation with time delay. Since A;(t) =
sint, we have that
p(t) = sint.

Therefore,

(u(t,x),p(t)) = (sintsinx, sint)
is the exact solution of the problem (2.2).
Note that using similar procedure one can obtain the solution of the following

time-dependent identification problem
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r62u(1: x) Z E)Zu(t x) bzn:a 0%u(t — m, x)
CoxZ L " dx2

=p(t)g(x) + f(t, %),

0<t<oo,x=1_(xg,",%x,) €EQ,

. (2.6)
u(t,x) =g(t,x),—~w <t<0,x €Q,

ult,x) =01<r<n0<t<owx€Ss,

J‘x

for the multidimensional hyperbolic partial differential equation with a delay term.

fu(t x)dxq ..dx, ={(t),t =0
Q

€

Assume that a,>a>0 and f(tx),q(x),(t€ (0,0),x € Q),g(t,x)(te
[—w, 0], x € Q) are given smooth functions. Here and in the future Q is the unit open
cube in the n-dimensional Euclidean space R"(0 < x; < 1,1 < k < n) with the
boundary S and Q = QU S.

Unfortunately, The Fourier series method described in solving (2.6) can be used only

in the case when (2.6) has constant coefficients.

Problem 2. we consider the time-dependent identification problem

(0%u(t,x) 0%u(t,x) . 0%u(t — w, x)
at2 ax? dx2

+p()q(x) + f(t, %),

0<t<oo,xe€ (00,
< 2.7)
u(t,x) =g(t,x),—w <t<0,x€[0,[]

l
U, (t,0) = u, (¢, 1) = O,f u(t,x)dx =¢(t),t =0
\ 0

for a one dimensional delay hyperbolic equation with Neumann condition. Here
u(t,x) and p(t) are unknown functions. Under compatibility conditions, problem
(2.7) has a unique solution (u(t,x),p(t)) for the smooth functions f(t,x)(t €
(0,0),x € (0,0)),9(t,x),¢(t),q(x). Here b is a constant. Assume that

fol qx)dx+0 , and q'(0)=q'()=0, and g,(t,0)=g,(t D =0,te

[—w,0], £ (t,0) = £,.(t, 1) =0,t € [0, 00).
For example, we consider the time-dependent identification problem
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((Use — Uyye = P(E)(1 + cosx) + buy, (t — m, x)
—sint(2 + cosx) — bsintcosx,t > 0,0 < x < T,

Ju(t,x) =sint(1 +cosx),—nm<t<00<x<m, (2.8)

T

Uy (t,0) = u,(t,m) =0, f u(t,x)dx = msint,t = 0
\ 0

for a one dimensional delay hyperbolic equation with Neumann condition.

Solution. For this case w=m,l=m,g(t,x) =sint(1+ cosx),—-t<t<0,0<
x < m; f(t,x) = —sint(2 + cosx) — bsintcosx,t > 0,0 < x < m,{(t) = msint, t >
0. In order to solve problem (2.8), we consider the Sturm-Liouville problem
u'(x)—Au(x) =00<x<mu'(0)=u'(m) =0
generated by the space operator of problem (2.8). Note that the solution of this
Sturm-—Liouville problem is
u,(x) = coskx, A, = —k? k =0,1,2,3,...

Therefore, we will seek the Fourier series solution u(t, x) by the formula

u(t,x) = Z Ay (t)coskx. (2.9)
k=0

Here A, (t),k =0,1,2,... are unknown functions. Putting (2.9) into the equation

(2.8) and using given initial and boundary conditions, we obtain

[o0)

Z[A;g(t) 4 K2[Ag (£) + bA,(t — m)]]coskx
k=0

= p(t)(1 + cosx) — sint(2 + cosx) — bsintcosx,t > 0

and

Z A (t)coskx = sint(1 + cosx),—m <t < 0.
k=0

Equating coefficients of coskx, k = 0,1,2,... to zero,we get
(A7 (t) + A1 (t) + bA;(t — ) = p(t) — sint — bsint, k = 1,
4A6’(t) p(t) — 2sint,k =0

\A ") + K2[Ap () + bAy(t —m)] = 0,k % 0,1,¢ > 0

and
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(A1(t) =sint,k =1,
Ay(t) =sint, k =0,

I\Ak(t) =0,k#01,-7<t<0.

First, we obtain A, (t), k # 0,1. It is clear that A, (t) be solution of the following
IVP

AL (t) + k2A,(t) + bk?A,(t — ) = 0,t > 0,

A,(t)=0,-T<t<0
for the second order ordinary differential equation with time delay. We denote that
A () ={Axm(@®),(m—1Dnr <t <mm,m=0,123,...},
where Ay, (t),(m —1)mr <t < mm be solutions of the following initial value
problems
I(A;é'l(t) + k%41 (t) =00<t <,

{ A11(0) = 0,43,,(0) = 0,

l\A;(’,m(t) + k2 A (8) + bk?Ag 1 (t —1) = 0,(m — V) < t < mm,m = 2
for the second order ordinary differential equation with time delay. For obtaining
Ay 1(t), we will consider the auxilliary equation
q> + k% = 0.
We have that g = tki. Therefore,
Ag 1(t) = cicos(kt) + c,sin(kt).
Taking the derivative, we get
Al 1(t) = —kcysin(kt) + kcycos(kt).
Using the initial conditions 4y 1(0) = 0,4}, ,(0) = 0, we get
¢, =0,¢c,=0.
Therefore,
A () =00<t<m.
Now, suppose that
Agm(@®)=0,(m— 1 <t < mm.
Then, Ay, (t), (m — 1) < t < mm be solutions of the following IVPs

km () + k2 A (8) = 0,(m — Dmr < t <mm,

A m((m — D) = 0,4), ,((m — D) = 0,m = 2
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for the second order ordinary differential equation with time delay. In the same
manner, we can write
A m(t) = cicos(k(t — (m — 1)m)) + cpsin(k(t — (m — 1)m)).
Using initial conditions Ay ,,,((m — 1)m) = 0, A} ., ((m — 1)) = 0, we get
¢, =0,c,=0.

Therefore,

Aem(@®)=0,(m— 1) <t < mm.
Applying mathematical induction,

Axm@®) =0mr <t<(m+ )m
is true for any m > 1. Thus,

A@®) ={Agm@®, (m—Dr<t<mr,m=12.}=0 (2.10)

forall k # 0,1.
Second, we obtain Ay(t). Applying formula (2.9) and condition f: u(t,x)dx =

msint, we get

A

T oo
ju(t, x)dx = jZAk(t)coskx = Ay(t)mr = msint, t = 0.
o k=0

0

From that it follows that
Ay (t) = sint.
Third, we obtain p(t). Itis clear that Ay(t) be the solution of the following BVP
Ag (t) = p(t) — 2sint, t > 0,

Ap(t) =sint,— <t <0
for the second order ordinary differential equation with time delay. Since A, (t) =
sint, we have that
p(t) = sint.
Fourth, we obtain A,(t),k = 1. It is clear that A,(t) be solution of the following
IVP
1(t) + AL (t) + bA,(t — m) = —bsint,t > 0,

A (t) =sint,—-m <t <0
for the second order ordinary differential equation with time delay. We denote that
A1) ={A1m@®), (m—Dr <t<mmn,m=0,123,...},

where A, .,(t), (m — 1) < t < mm be solutions of the following I\VPs
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(Alll,l(t) +A4,,(t)=00<t<m,
|

{400 = 0,43,0) = 1,

IkA’l"m(t) + Ay (t) + bAy 1 (t — @) = —bsint,(m — D) <t < mm,m = 2
for the second order ordinary differential equation with time delay. For obtaining
A4 1(t), we will consider the auxilliary equation
qg*+1=0.
We have that g = +i. Therefore,
A 1(t) = cqcos(t) + cpsin(t).
Taking the derivative, we get
11(t) = —cysin(t) + cycos(t).
Using the initial conditions A, ;(0) = 0,47 ;(0) = 1, we get
c1=0,c, =1.
Therefore,
Ap4(t) =sint,0 <t <.
Now, suppose that
A m(t) =sint,(m— 1w <t < mm.
Then, A; ,(t),(m — 1)m < t < mm be solutions of the following IVPs

AL (®) + A m(®) = 0,(m — D < t < mm,

Aim((m—1Dm) = 0,41 n((m—Dm) =1,m =2
for the second order ordinary differential equation with time delay. In the same
manner, we can write
A1 m(t) = cicos(k(t — (m — 1)m)) + cpsin(k(t — (m — 1)m)).
Using initial conditions A; ,,((m — 1)) = 0,4} ,,((m — 1)) = 1, we get
c1=0,¢c, =1.
Therefore,
Aim(t) =sint,(m — 1)mr <t < mm.
Applying mathematical induction,
Ajp@) =sintmr<t<(m+Dm
is true for any m > 1. Thus,
A1) ={A (), (m— Dr <t <mm,m=0,12,...} = sint.

Therefore,
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u(t,x) = Z Ay (t)coskx = Ay(t) + A1 (t)cosx = sint(1 + cosx).
k=0

Hence,
(u(t,x),p(t)) = (sint(1 + cosx), sint)
is the exact solution of the problem (2.8).
Note that using similar procedure one can obtain the solution of the following
time-dependent identification problem

(02u(t, x) zn: 0%u(t,x) bzn: 0%u(t — m, x)
at? r_lar 9x2 G a2

r=1

=p®)qx) + f (&, x),

0<t<oox=(xq,",x,) €EQ,

. _ (2.11)
u(t,x) =gt x),—w<t<0,x€Qq,
ou(t,x)
——=01<r<n0<t<omxeES,
om

j---ju(t,x)dxl wdx, =7(t),t=0
\ " xen
for the multidimensional hyperbolic partial differential equation with a delay term.

Assume that a,>a >0 and f(t,x),q(x),(t€ (0,0),x € Q),g(t,x)(teE
[—w,0],x € Q) are given smooth functions. Here and in future m is the normal
vector to S. However, The Fourier series method described in solving (2.11) can be
used only in the case when (2.11) has constant coefficients.

Problem 3. we consider the time-dependent identification problem

(0%u(t,x) 0%u(t,x) b 2*u(t — w,x)
ot? ax2 0x?

+p(®)q(x) + f(t,x),

0<t<oo,xe€ (00,

u(t,x) =g(t,x),—w <t<0,x€[0,l], (212)

u(t,0) = u(t, 1), u,(t,0) = u,(t,0),

l

Ju(t, x)dx ={(t),t =0
\ 0
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for a one dimensional delay hyperbolic equation with non-local condition. Here
u(t,x) and p(t) are unknown functions. Under compatibility conditions, problem
(2.12) has a unique solution (u(t,x),p(t)) for the smooth functions f(t,x)(t €
(0,0),x € (0,0)),g(t,x),¢(t),q(x). Here b is a constant. Assume that

Jy q@)dx =0, and q(0) = q(1),q'(0) = q'() and g(t,0) = g(t,1), gx(t, 0) =
gx(t, D).t € [=w, 0], f(£,0) = f(£, 1), £(t,0) = fi (¢, D), t € [0, ).

For example, we consider the time-dependent identification problem
(U — Uy = P(E)(1 + coS2x) + buy, (t — m,x)

—sin2t(5 + cos2x) + 4bsin2tcos2x,t > 0,0 < x < 7,

u(t,x) = sin2t(1 + cos2x), - <t<00<x<m,
! (2.13)
u(t,0) = u(t,m),u,(t,0) = u,(t,m),

Vs

f u(t,x)dx = msin2t,t > 0
\ 0

for a one dimensional delay hyperbolic equation with non-local condition.

Solution. For this case w = m,l =1, g(t,x) = sin2t(1 + cos2x),—nw <t < 0,0 <
x <m; f(t,x) = —sin2t(5 + cos2x) + 4bsin2tcos2x,t > 0,0 < x < 7, {(t) =
nsin2t,t > 0. In order to solve problem (2.13), we consider the Sturm-Liouville
problem
u''(x) —Au(x) = 0,0 <x <mu(0) =u(m),u'(0) =u'(n)
generated by the space operator of problem (2.13). Note that the solution of this
Sturm-—Liouville problem is
. (x) = cos2kx, A, = —4k? k =0,1,2,3,..,,
and
u, (x) = sin2kx, A, = —4k? k =1,2,3,....

Therefore, we will seek the Fourier series solution u(t, x) by the formula

u(t,x) = Z Ay (t)cos2kx + Z By (t)sin2kx. (2.14)
k=0 k=1

Here A, (t),k =0,1,2,...and By(t),k = 1,2,.. are unknown functions. Putting
(2.14) into the equation (2.13) and using given initial and boundary conditions, we

obtain
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iNs

A;(’(t) + 4k?[A(t) + bA, (t — m)]cos2kx

+ ) [BY (t) + 4k?[By(t) + bBy (t — m)]]sin2kx

s &L

=
1]

1

= p(t)(1 + cos2x) — sin2t(5 + cos2x) + 4bsin2tcos2x,t > 0

and

2 Ay (t)cos2kx + z B (t)sin2kx = sin2t(1 + cos2x),—m <t < 0.

k=0 k=1
Equating coefficients of cos2kx,k = 0,1,2,... to zero,we get
(A’l’(t) + 4A,(t) + 4bA,(t — m) = p(t) — sin2t + 4bsin2t, k = 1,

{A()’(t) = p(t) — 5sin2t,k = 0,

A (t) + 4k2[Ax(t) + PA(t —m)] =0,k #0,1,t >0
and
(A1(t) =sin2t, k =1,

Ay(t) = sin2t, k =0,

A()=0k+#01,-n<t<0.
Also we have that
By (t) + 4k?B, (t) + 4bk?B, (t —m) = 0,t > 1
itis clear that B, (t) = 0 for k > 1.
First, we obtain A, (t),k # 0,1. Itisclear that A, (t) be solution of the following IVP

AL (6) + 4k2 A, (t) + 4bk2A(t — ) = 0,t > 0,

A(t)=0,—-T<t<0
for the second order ordinary differential equation with time delay. We denote that
A®) ={Agm(@®), (m—-1Dr <t <mmn,m=0,123,...},
where Ay ., (t),(m — 1)m < t < mm be solutions of the following IVPs

(A1 (t) +4k?4,(t) =00 <t <,
I

L A1(0) = 0,43,(0) = 0,

\AY () + 4k2Ap (£ + 4bK2 Ao (t — ) = 0,(m — D) < t < mm,m = 2

for the second order ordinary differential equation with time delay. For obtaining



29

Ay 1(t), we will consider the auxilliary equation
q? + 4k? = 0.
We have that g = +2ki. Therefore,
Ay 1(t) = cicos(2kt) + cpsin(2kt).
Taking the derivative, we get
Al 1 (t) = —2kcysin(2kt) + 2kc,cos(2kt).
Using the initial conditions 4y 1(0) = 0,4}, ,(0) = 0, we get
¢, =0,c,=0.
Therefore,
A () =00<t<m.
Now, suppose that
Agm(@®)=0,(m— 1 <t < mm.
Then, A, (t), (m — 1) < t < mm be solutions of the following IVPs

em (D) + 4k A () = 0,(m — D) < t < mm,

Agm((m —1Dm) = 0,4, ,((m — D) = 0,m = 2
for the second order ordinary differential equation with time delay. In the same
manner, we can write
A m(t) = cicos(2k(t — (m — 1)m)) + cpsin(2k(t — (m — 1)m)).
Using initial conditions Ay ,,, ((m — 1)m) = 0, A} ., ((m — 1)m) = 0, we get

¢, =0,¢c,=0.

Therefore,

Axm(@)=0,(m— 1) <t < mm.
Applying mathematical induction,

Axm@®) =0mr <t<(m+Dm
is true for any m > 1. Thus,

A () ={Agm@®, (Mm—-Dr<t<mr,m=12,..}=0 (2.15)

forall k # 0,1.
Second, we obtain A,(t). Applying formula (2.14) and condition fon u(t,x)dx =

msin2t, we get
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A

ju(t,x)dx =jn

0
— A+ Z Ak(t)sm2kx] _ z Bk(t);l(:SZkX]:

0 k=1

Z A (t)cos2kx + Z Bk(t)sinka] dx
k=0 k=1

= Ao(t)mr = msin2t, t = 0.
From that it follows that
Ay(t) = sin2t.
Third, we obtain p(t). Itis clear that Ay(t) be the solution of the following BVP
1 o (t) = p(t) — 5sin2t ,t > 0,

Aog(t) =sin2t,-nt <t <0
for the second order ordinary differential equation with time delay. Since A, (t) =
sin2t, we have that
p(t) = sin2t.
Fourth, we obtain A,(t),k = 1. It is clear that A,(t) be solution of the following
IVP
1(t) +4A1(t) + 4bA,(t — ) = 4bsin2t,t > 0,

Ai(t) =sin2t,—- Tt <t <0
for the second order ordinary differential equation with time delay. We denote that
Ai(t) ={A m@®), (m—Drn <t <mm,m=0,123,...},
where A; .,,(t), (m — 1) < t < mm be solutions of the following I\VPs
I(A’lfl(t) +44,,(t)=00<t<m,

L 411(0) = 0,4,(0) = 2,

\AY (6 + 441 m(t) + 4bA1m_y (t — ) = 4bsin2t, (m — D < t < mm,m > 2
for the second order ordinary differential equation with time delay. For obtaining
A4 1(t), we will consider the auxilliary equation

q*+4=0.
We have that g = +2i. Therefore,

A 1(t) = cycos(2t) + c,psin(2t).
Taking the derivative, we get
A7 1(t) = —2¢4sin(2t) + 2c,c0s(2t).
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Using the initial conditions A, ;(0) = 0,47 ;(0) = 2, we get
¢, =0,c,=1.
Therefore,
Ap1(t) =sin2t,0 <t <m.
Now, suppose that
Ay (t) =sin2t,(m — 1) <t < mm.
Then, A; ,(t),(m — 1)m < t < mm be solutions of the following IVPs

Al (@) +4A1 () = 0,(m — D < t < mu,

Ajm((m—1Dm) = 0,41 n((m— D) =2,m =2
for the second order ordinary differential equation with time delay. In the same
manner, we can write
A () = cicos(2k(t — (m — 1)m)) + csin(2k(t — (m — 1)m)).
Using initial conditions A, ,,((m — 1)) = 0, A} ,,((m — 1)) = 2, we get
c1=0,¢c, =1.
Therefore,
A (t) =sin2t,(m — 1w < t < mm.
Applying mathematical induction,
Ajp@) =sin2tmr <t<(m+ m

is true for any m > 1. Thus,

A1) ={Aim(t),(m— D <t <mm,m=0,1,2,...} = sin2t.

Therefore,
u(t,x) = Z Ay (t)cos2kx + z By (t)sin2kx
k=0 k=1
= Ay(t) + A1 (t)cos2x = sin2t(1 + cos2x).
Hence,

(u(t,x),p(t)) = (sin2t(1 + cos2x), sin2t)
is the exact solution of the problem (2.13).
Note that using similar procedure one can obtain the solution of the following

time-dependent identification problem
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(02u(t, x) Zn: 0%u(t,x) b Zn: 0%u(t — m, x)
at? oz T g2
r=1 r=1

=p(®)q(x) + f(t,x),

0<t<oox=_(x,,x,) €EQ,

Vult,x) = g(t,x),~w < t < 0,x €0, (2.16)
ou(t,x) ou(t, x)
u(t, x)ls, = ult,x)ls,, e =—= ,
S1 S,

fn-fu(t,x)dxl wdx, =), t=0
\" xen

for the multidimensional hyperbolic partial differential equation with a delay term.
Assume that a,>a>0 and f(tx),q(x), (t€ (0,0),x € Q),g(tx)(te
[—w, 0], x € Q) are given smooth functions. Here and in the future S = S; U S,, S; N
S, =@,x € S. However, The Fourier series method described in solving (2.16) can

be used only in the case when (2.16) has constant coefficients.

2.3 Laplace Transform Method

We consider the Laplace transform method for the solution of the
time-dependent identification problem for delay hyperbolic equations.
Problem 4. Obtain the Laplace transform solution of the time-dependent
identification problem

(Usp — Uy = P(t)e™* + by, (t — 7, x)
—3sin(t) e ™* + bsin(t)e™*,t > 0,x > 0,

u(t,x) =sin(t)e™, -7 <t<0,x =0,
! (2.17)
u(t,0) = sint,u,(t,0) = —sint, t > 0,

o

f u(t,x)dx = sint,t > 0
\o

for a one dimensional delay hyperbolic differential equation.

Solution. Here and in future, we will denote
L{u(t,x)} = u(t,s).
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Using the formula

1
s+1
and taking the Laplace transform of both sides of the problem (2.17), we can write

(L{uee (6, %)} = L{ttex (8, X)} — DL{Ux (t — 0, X)}

L{e™} =

= p(t)L(e ™} — 3sint L(e *} + bsint L(e ™},

0<t<oo

\L{u(t,x)} =sint L(e™},—n <t <0.
Applying the definition of Laplace transform and initial conditions, u(t,0) =
sint, u, (t, 0) = —sint, we can write

(U (t, ) — s?u(t,s) — bs?u(t — m,s) = sint — ssint + bssint — bsint

1 1
+p(t)s+1—3 sint +

bsint,
s+1 s+1

1
ku(t, s) = H—lsmt .

Now, we obtain u(t,s). Itis clear that u(t,s) is solution of the following IVP

(U (t,8) — s?u(t,s) — bs?u(t — m,s) = sint — ssint + bssint — bsint

1 1
) +p(t) ST 1 3 sint + bsint,

s+1 s+1

ku(t,s) = p— 1sint,—7T <t<o0

for the second order delay ordinary differential equation with time delay. We denote
that

u(t,s) ={up(t,s),(im—1r<t<mnm=123,...}.

Since

ul(t—n,s)z—s sint, m<t<0

+1
we have that

(Uy (8, 5) — s?uy(t,5) — bs?uy (t — m,s) = sint — ssint + bssint — bsint

sint +

bsint,0 < t < T,
s+1 s+1 s+1

1 +p(®)

1
= =——, —n<t<
kul(O, s) = 0,u;+(0,s) g n<t<0
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or

1
(ul,tt(t; s) — s?u,(t,s) = —bs?sint it sint — ssint + bssint — bsint

sint +

bsint,0 < t < T,
s+1 s+1 s+1

§ +p(t)

1
0,s)=0, 0,s) =——.
\ul( s) uy,¢(0,s) s+ 1

Taking the Laplace transform of both sides with respect to t, we get

,uzul(,u, S) - .uul(OJ S) - ul,t(OJ S) - 52”1(#' S)

1 1 s bs b
= —bs? + - + -
W +D(s+1) pw?+1 p?+1 p?2+1 p?2+1
N 1 3 N b
P 2+ D6 +D @+ DE+1)
or
2 2 _ (1 _ bs? 3 b \ 1 | 1-s+bs—b
W2 =D s) = (1- 57 +pW) - 2 + o) o + ey (219)
Since fowu(t, x)dx = sint and by definition of Laplace transform, we get
L{u(t,x)} = f e S *u(t, x)dx
0
u(t,s) = ] e S*u(t, x)dx
0
putting s = 0, we get
u(t,0) = f u(t,x)dx = sint.
0
Taking the Laplace transform of both sides with respect to ¢, we get
1
,0) = ———. 2.19
u(,0) = g (2.19)
Putting s = 0 into equation (2.18), we get
luzul(.ui 0) =1- #2 +1 + p(nu)
0) = ! 1 : +p(u) (2.20)
ul(.ul )_,le ,Ll2+1 plu .

From (2.19) and (2.20), we get
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From that it follows that
p(u) = PR

1
uz+1

Putting p(w) = into equation (2.18), we obtain u,(y, s), then

u? —s? — bs? + bs?
Ww?>+D(s+1)

W = sHu(w,s) =

or
1
W) = DG+
Therefore, we have that
1 1
ui(u,s) = W+ DG+ 1),zo(u) T EZrT

Now, taking the inverse Laplace transform with respect to t,we get

1
1 sin(t),0 <t <m,

uq.(t,s) = s

p(t) = sin(t).
Suppose that

1
Up-1(t,s) = ) sin(t),( m—1)r <t < mm.

Now, we obtain u,,(t,s) as the solution of the following problem

(Ut (t,S) — s%up(t,s) — bs?up(t — m,s)

= sint — ssint + bssint — bsint

N 1sint +S+ 1bsint,(m— D <t<mn,
\um(t, s) = " sin(t), ( m—-2)r<t< (m-1)m.
Since
Uy (t —1m,8) = Upy_1(t —m,5) = T 1 sin(t).

We have that
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rum,tt(t, s) — s2uy,(t,s) = — ST bs?sin(t) + sin(t) — ssin(t)
+bssin(t) — bsin(t) 2 '(t)+1b't
) ssin sin sr15n S 1 0sint,
(m—-1r <t<mmn,
kum(mn, s) = 0,uy, (mm,s) = 11 cos(mm).
Therefore,
un(t,s) = p—— sin(t),( m—1)r <t < mm.

Applying mathematical induction,

Uy (t,s) = 1 sin(t),  m—1)r<t<mnm

s+
is true for any m > 1. Thus,
1
u(t,s) = {S 1

Now, taking the inverse Laplace transform with respect to x,we get

u(t,x) = sin(t)e™™.
Therefore,
(u(t,x),p(t)) = (sin(t)e™*,sin(t))

Is the exact solution of the problem (2.17).

1
sin(t), ( m—D)r<t<mn,m=123,...}= s

36

Note that using similar procedure one can obtain the solution of the following

time-dependent identification problem



37

r62u(1: x) Z azu(t x) bzn: 0%u(t —m, x)
CoxZ %r dx2

r=1

=p(©)q() + f(t, ),

0<t<oo,x=1(xg,,x,) €EQ*

Jut,x) = glt,x),—w<t<0,xeqQ (2.21)

u(t,x) = a(t,x),uy (t,x) = (¢, x),

1<r<n0<t<oxeSt

J-
x

for the multidimensional hyperbolic partial differential equation with a delay term.

fu(t x)dxq ...dx, = {(t),t =0
Q

€

Assume that a,>a >0 and f(tx),qx),(t€ (0,0),x€ Q) g(t,x)(te

[-w,0],x € ﬁ+),a(t, x), B(t,x),(t € (0,00),x € S*, are given smooth functions.

Here and in the future Q is the unit open cube in the n-dimensional Euclidean space

R™(0 < x;, < 0,1 < k < n) with the boundary S* and a =atust.
Unfortunately, The Laplace transform method described in solving (2.21) can be

used only in the case when (2.21) has constant coefficients.

Problem 5. Obtain the Laplace transform solution of the time-dependent
identification problem
((Use — Uyy = P(E)e™ + by, (t — 1, x)

—3sin(t) e ™* + bsin(t)e ¥, t > 0,x > 0,

u(t,x) =sin(t)e™, —-n <t <0,x =0,
\ (2.22)
u, (t,0) = —sint,u(t,) =0,t >0,

o

f u(t,x)dx = sint,t > 0
\0

for a one dimensional delay hyperbolic differential equation.

Solution. Here and in future, we will denote
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L{u(t,x)} = u(t,s).
Using the formula

1
s+1
and taking the Laplace transform of both sides of the differential equation (2.22), we

L{e™*} =

can write
(L{uee(t, %)} — L{uyx (t, %)} — bL{uyy (t — 7, )}

= p(t)L(e™*} — 3sint L(e™*} + bsint L(e ™},

0<t<oo,

\L{u(t,x)} =sint L(e™},—n <t <0.
Applying the definition of Laplace transform and initial condition, u,(t,0) = —sint,
and denoting u(t,0) = &;(t), we can write

(U (t,5) — s?u(t,s) — bs?u(t — m,s) = sint — bsint — s&;(t) — bs&;(t — )

1 1
t -3 int bsint,
<+p()s+1 s+1Sln +s+1 s

1
Lu(t, s) = S_i_—lsint,u(t, o) = 0.

Now, we obtain u(t,s). Itis clear that u(t,s) is solution of the following IVP
(Uee (t,5) — s?u(t,s) — bs?u(t — m,s) = sint — bsint — s&;(t)

1 1 . _
—bs&;(t —m) + p(t) STl 3 sint + bsint,

s+1 s+1

1
u(t,s) :s+ 1sinf:,—n <t<0,

\u(t,©) =0
for the second order ordinary differential equation with time delay. We denote that
u(t,s) ={up(t,s),(im—Dr<t<mnm=123,...}.

Since

1
u(t—ms) = Py 1sint,—n <t<O0.

We have that
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(Ug ¢¢(t, ) — s?uy(t,s) — bs?uy (t — m,s) = sint — bsint — s&;(t) — bs&;(t — 1)

sint +

bsint,0 < t < m,
s+1 s+1 s+1

1 +p(®)

1
Lul(O, s) = 0,uy.(0,s) = s-l-—l'_n <t<0

or

1
(ul,tt(t, s) — s?uy(t,s) = —bs?sint i1t sint — bsint — s&, (t) + bssint

1 .
s+1 s+1smt +s+1

y +p(t) bsint,0 < t < m,

1
(11(0,5) = 0,uy,(0,5) = s-I-_l'ul(t' o) = 0.

Taking the Laplace transform of both sides with respect to t, we get

pPuy (p, 5) — pug (0,8) — u £(0,8) — s%uy (4, )

= P SE ()
W+ D(s+1) p2+1 p2+1 u>+1
+o (W) - > + 2
s+1 W+D(G+1D) W+D(s+1)
or
2
(2 = 52Yus (. 5) = (1 P - 1)S — @)
1—b+bs
Zr1 s&1(w).
We know that u(t, x) = sin(t)e™*, then
u(t, 0) = sint. (2.24)
Since
u(t,0) = & (t). (2.25)
From (2.24) and (2.25) we have that
&, (t) = sint.

Taking the Laplace transform with respect to t, we obtain

() =

Now, putting (2.26) into (2.23), we get

T (2.26)



bs?
uz+1

(W? = sHuy(u,s) = (1 —

Since f0°° u(t, x)dx = sint and by definition of Laplace transform, we get

+p(w) —

uw2+1 - u?+1/ s+1

co

L{u(t,x)} = f e S*u(t, x)dx

0

u(t,s) = j e S*u(t, x)dx
0
putting s = 0, we get
u(t,0) = f u(t,x)dx = sint.
0

Taking the Laplace transform of both sides with respect to ¢, we get

,0) = .
u(y, 0) 211

Putting s = 0 into equation (2.27), we get

ru (u,0) =1~ +p(W)

ur+1

1 2
u (u, 0) = !7[1 T Zr1 + p(u)]-

From (2.28) and (2.29), we get

1 1
uc+1 pu uc+1

From that it follows that

p(u) = P

1
uz+1

Putting p(u) = into equation (2.27), we obtain u, (u, s), then

u? —s? — bs? + bs?
W+ D(s+1)

(W? = s®Huy(u, s) =

or

1
wlS) = DG D)

Therefore, we have that

3 b 1 1-b+bs-s
) o 2T

40

(2.28)

(2.29)



1
u (W, s) = W+ DG+ 1),29(#) T ZrT

Now, taking the inverse Laplace transform with respect to t,we get

1
uq(t,s) = T 1 sin(t),0 <t<m,

p(t) = sin(t).
Suppose that

Now, we obtain u,,(t,s) as the solution of the following problem

1
| — 1sint +s+ 1bsint,(m— D <t <mmn,
Lum(t, s) = " sin(t), ( m—-2)r<t< (m-1)m.
Since
Uy (t —1m,8) = Upy_1(t —m,5) = T 1 sin(t).

We have that

(um,tt(t; ) — s%up(t,s) = — bs? sin(t)

s+1

+ sin(t) — ssin(t) + bssin(t) — bsin(t)

sin(t) +

' — <t<
1 p— 1bsmt, (m-—1Dn <t<mm,

\um(mn, s) = 0,uy, (mm,s) = S cos(mm).

+1
Therefore,

un(t,s) = 1 sin(t),(m—1)r <t < mm.

s+
Applying mathematical induction,

Un(t,s) = Y sin(t), ( m—1)r <t<mn

is true for any m > 1. Thus,

1
s+1

u(t,s) ={

sin(t),  m—2)r <t <(m-1m.

1
sin(t),  m—Dr<t<mmm=123,...}= T 1

(U ¢t (t,S) — S*up (¢, 5) — bs?u,, (t — m,s) = sint — ssint + bssint — bsint

sin(t).

41
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Now, taking the inverse Laplace transform with respect to x,we get
u(t,x) = sin(t)e™™
Therefore,
(u(t, x),p(t)) = (sin(t)e™,sin(t))
is the exact solution of the problem (2.22).
Note that using similar procedure one can obtain the solution of the following

time-dependent identification problem

(02u(t, x) Zn: 0%u(t,x) bzn: 0%u(t — m, x)
at? r_lar 9x2 T g2

r=1

=p(O)q(x) + f(t,x),

0<t<oo,x=(xg,,x,) €O,

fultx) =gt x),~w<t<0,xeq, (2.30)
u(t,x) = a(t,x),uy (t,x) = B(t,x),

1<r<n0<t<oxeSt

f f u(t,x)dx; ...dx, = {(t),t =0
\" xen

for the multidimensional hyperbolic partial differential equation with a delay term.
Assume that a,>a >0 and f(¢tx),q(x),(t€ (0,0),x € Q") g(t,x)(te

[-w,0],x € ﬁ+),a(t, x), B(t,x), (t € (0,0),x € S*, are given smooth functions.

Here and in the future Q is the unit open cube in the n-dimensional Euclidean space

R™(0 < x;, < 0,1 < k < n) with the boundary S* and a =atust.
Unfortunately, The Laplace transform method described in solving (2.30) can be

used only in the case when (2.30) has constant coefficients.

3.4 Fourier Transform Method

We consider the Fourier transform method for the solution of the
time-dependent identification problem for delay hyperbolic equations.
Problem 6. Obtain the Fourier transform solution of the time-dependent identification

problem
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x2

(U — Upy = (D)™ + buy, (t —1,x) — sin(t) e~
—sin(t) (4x2 — 1)e™*" + bsin(t)(4x2 — 2)e™*",t > 0,x € R},

1 u(t,x) =sin(t) e, —r < t < 0,x € R, (2.31)

f u(t, x)dx = v/msint, t > 0
\ _o»

for a one dimensional delay hyperbolic differential equation.

Solution. Here and in the future, we will denote
F{u(t,x)} = u(t,s).

Taking the Fourier transform of both sides of the problem (2.31), we can write

Flue (8, 0)} = Flux (6, %)} — bF{uyy (t — m, %)}

= p(t)F{e™*"} — 2sin(t) F{e '} — sin(t)F{4x%e™*" —e*'}
+bsin(t) F{4x2e™ —2e*"},0 <t < o

and

F{u(t,x)} = sin(t) F{e™’},—m <t <0,x € R,
Applying definition of Fourier transform. Therefore,
(utt(t, s) + s2u(t, s) + bs?u(t — m,s) = p(t)F{e ™'}
{ —2sin(t)F{e *"} + sZsin(t)F{e *"} — bs?sin(t)F{e *'},t > 0,

|
ku(t, s) = sin(t)F{e™*’},—mr < t < 0,x € R,

Now, we obtain u(t, s). Itis clear that u(t,s) is solution of the following IVP

l(utt(t, s) + s2u(t,s) + bs?u(t — m,s) = p(t)F{e™*"}

{ —2sin(t)F{e™*"} + s%sin(t)F{e™*"} — bs2sin(t)F{e ™*'},t > 0,

Lu(t, s) = sin(t)F{e‘xz}, -T<t<0

for the second order ordinary differential equation with time delay, we denote that
u(t,s) = {uy(t,s),(im—1r <t<mnm,m=0,123,...}.

Since, u (t —m,s) = —sin(t)F{e‘xz}, —r < t < 0, therefore,
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(ul’tt(t, ) + s2u(t,s) = p(t)F{e "} — 2sin(t) F{e *"}

{ +s2sin(t)F{e ™*"},0 < t < oo, (2.32)
|
kul(O, s) =0,u;:(0,s) = F{e‘xz}.

Now, taking the Laplace transform of both sides of the differential equation (2.32)

with respect to t, we get

2 §2 =2 2
W2+ 5w (ws) =Fle™ 3+ (p(w) + e DEe™}
Using formula
§2
F{e™*"} = Jme %.
Then,
2 2 _ s? -2 i
w* +su(u,s) = (1 +p() + . 1>\/Ee 4 (2.33)
putting s = 0 into equation (2.33), we get
o (1,0) = (14 pG0) = 57 )VF
u(1,0) = Z—E(l 000 = ) (2.34)

Applying condition
fu(t, x)dx = \/msin(t),t = 0
and the definition of Fouri;:o transform, we get
u(t,0) = fu(t, x)dx = /msin(t),t > 0.

Taking the Laplace transform of both sides with respect to ¢, we get

u(u,0) = ,uz\/-lﬁ-l' (2.35)
Therefore, using (2.34) and (2.35),we get
VT =ﬁ(1+P(u)— : )
uz+1  u? uz+1
From that it follows that
p(u) =

uwr+1



1
uz+1

2
W+ sHu(uw,s) =1+ ! = 2 \/ne_%
ur+1 p?+1

Putting p(u) = into equation (2.33), we get

From that it follows that

SZ

u’l(.l'll S) = H'Z + 1\/EQ_T.
Since,
_s? 2
Vme % = F{e ™"}
Then,
u(u,s) = e 1F{e""2}.

Now, taking the invers Laplace transform with respect to t, we obtain
u,(t,s) = sin(t)F{e‘xz}, 0<t<m.

Suppose that

Up-1(t,s) = sin(t)F{e‘xz}, m=-2)r<t<(m-—1Dm.
Now, we obtain u,,(t,s) as the solution of the following problem
{um'tt(t’ $) + s2Up (t, s) + bs?uy, (t — m,5) = —sin(t)F{e >}
{ +s2sin(t)F{e™"} — bs2sin(t)F{e™*"} + bsin(t)F{e™*"},t > 0,
I

kum(t, s) = sin(t)F{e‘xz}, (m—1r <t<mm.
Since, u,,(t —m,s) = upy_1(t —m,s) = —sin(t)F{e‘xz}, we have that

I(um'tt(t’ ) + s2uy(t,s) = —sin(t)F{e ™"} + s2sin(¢)F{e™"}

{ +bsin(t)F{e"x2}, (m—-1r <t <mmn,
|

kum(mn, s) = 0,up, ¢(mm,s) = cos(mn)F{e‘xz}.
Therefore,

Un(t,s) = sin(t)F{e‘xz}, (m—1r <t<mm.
Applying mathematical induction,

U (t,5) = sin(t)F{e ™'}, (m — 1)w < t < mm.

is true for any m > 1. Thus,

45

u(t,s) = {sin(t)F{e‘xz}, m-—Dr<t<mrm=123,...}= sin(t)F{e‘xz}.

Therefore,
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u(t,s) = sin(t)F{e‘xz}.
Now, taking the inverse Fourier transform with respect to x, we obtain
u(t,x) = sin(t)e‘xz.
Therefore, the exact solution of the problem (2.31) is
(u(t, x), p(t)) = (sin(t)e™>", sin(t)).
Note that using similar procedure one can obtain the solution of the following

time-dependent identification problem

(9%u(t, x) Al +1y(t, x) A+l (t — w, x)
2 - ay 2 ™ r 2 ™
ot i dx;" ...0x,) = 0x" ... 0x),
=p()q(x) + f(¢t,x),
10<t<oo,x,reRY|r|l=r+ 4+ 1, (2.36)

u(t,x) = g(t,x),—w <t <0,x €R",

f---fu(t,x)dxl wdx, =0(t),t =0

\" xen

for the multidimensional hyperbolic partial differential equation with a delay term.
Assume that a,=>a >0 and f(¢tx),q(x),(t€ (0,00),x € R™),g(t,x)(t€e
[-w,0],x € R"), are given smooth functions. However, The Fourier transform

method described in solving (2.36) can be used only in the case when (2.36) has

constant coefficients.
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CHAPTER Il
Stability of the Time-Dependent Identification Problem for Delay Hyperbolic
Equations

3.1 Introduction
In the present section, two time-dependent identification problems for one
dimensional delay hyperbolic equations are considered. The theorems on the stability
estimates for the solution of these problems are established.
3.2 Basic Formulas
Two basic formulas are given.
3.2.1 Dalambert’s Formula (Wyley, Sons, 1993)

t

u(t) = cos(ct)p + %sin(ct)lp + f%sin(c(t —y)f(y)dy
0

is the exact solution of the initial value problem

U (t) + c?ut) = £(),t > 0,u(0) = ¢, u'(0) = Y
for second order ordinary linear differential equation with constant coefficients

3.2.2 Dalambert’s Formula for Hyperbolic Equations (Dalambert, 1749)

( ) ( ) 1 x+ct t 1 x+c(t-7)
ex+ct)+o(x—ct
u(x,t) = - to [ w@ass [o | raodsar @
c 2c
x—ct 0 x—c(t-1)

Is the exact solution of the initial value problem

0%u(t, x)

oz c?uy, (t,x) = f(t,x),t >0,

u(0,x) = @(x),u'(0,x) = P(x),x € (—0,)
for the one-dimensional wave equation with constant coefficients and initial
conditions at t = 0. It is named after the mathematician Jean le Rond d’Alembert,

who derived it in 1747 as a solution to the problem of a vibrating string.

3.2.3 Operator-Functions Generated by the Positive Operator.

Let c(t) is operator-function generated by the operator A and defined as the solution
of the initial value problem for a second order differential equation

U (t) + Au(t) = 0,0 < t < oo,u(0) = @,u;(0) =0 (3.2)
in a Hilbert space H, thatis
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u(t) = c(t)o.
Similarly, s(t) is operator-function generated by the operator A and defined as the
solution of the initial value problem for a second order differential equation
Ve (t) + Av(t) = 0,0 < t < o0,v(0) = 0,v:(0) =Y (3.3)

in a Hilbert space H, namely

v(t) = s(t)y.
By definitions of c(t) and s(t), we have that
s'(t) = c(t),c'(t) = —As(t). (3.4)
We cosider the second order differential operator A determined by
Av = —(a(x)vx(x))x (3.5

In L,[0,I] with domain D(A) = {v:v,v" € L,[0,1],v(0) = v(l) = 0} dense in
LL,[0, ]. It is well-known that A is the positive-definite and self-adjoint operator in
L,[0,I]. Let us give estimates (formula (3.6)) that will be needed below

1 1
(142 L f000-0,00S U2 I s() N, jo1-1,000S &
i (3.6)

1
Il c(®) N, o0-1,000= 1, I AZ5(t) N, [0,11-1,[0= 1.

3.3 Stability of the Time-Dependent Identification Problems.
First, the time-dependent identification problem

(0%u(t,x) 0%u(t,x) . 0%u(t — w, x)
at2 ax? dx2

+p()q(x) + f(&, %),

0<t<oo,x € (—00,00),

(3.7)

3
u(t, x) = g(t' x)r —w<t< ij € (—OO' OO),

[00]

j a()u(t,x)dx ={(t),t =0
\

— 00

for one dimensional delay hyperbolic equation is considered. Here u(t,x) and p(t)
are unknown functions. Under compatibility conditions, problem (3.7) has a unique
solution  (u(t,x),p(t)) for the smooth functions f£(t,x)(t € (0,),x €
(—00,2)), g(t,x)(t € [-w,0],x € (—00,)),{(t)(¢t = 0),q(x), a(x),x €
(—o0,0). Here b is a constant.

We have the following theorems on the stability of problem (3.7).
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Theorem 3.1. Assume that [ a(x)q(x)dx # 0 and [ |a(x)|dx < a < .
Then for the solution of problem (3.7) the following stability estimate holds:

[nax lp(®)], [nax et |l ¢ (=o0,00)s [nax luell (oo 0y max lullc@ ooy (3:8)

< M@0 [0 + WX If (Ollcioen) + I1FOlc(—omey + max 1],

0<t=w

a = max{ max [1gu(Olle-wemy_max Mg Ol o

_theto lg®I C(Z)(—wrw)}’

max - |p(t)l, max | |l o ey , (3.9)

max el
nwsts(n+1)w nwsts(n+1)w wsts(n+1)w ¢(1)(—c0,00)

max |l gy < M@ [an+_max  p(o)]

nwst<(n+1)w n—1)wstsnw

+  max  |If'(Ollcom + If(0)llc(coom)+ max  [¢7]],

nwsts(n+1)w nwsts(n+1)w

an = max { n- 1%1>§Snwllutt(t)IIC(_oo,oo). (n_lr)r(%snwllut(t)Ilcm(_mm).

(n—11)2)as)§snw”u(t) ”C(Z) (—O0,00)} ) n= 1)21 o

Here C(—oo, ) refers to the vector space of continuous functions w(x) from the

entire real line to R = (—o0, c0) with norm

IwWll¢(—co,0) = sup  [w(x)].
x€(—00,00)

Proof. We will seek u(t, x), using the substitution
u(t,x) = w(t,x) +n(t)q(x), (3.10)

where n(t) is the function defined by the formula
t

n(t) = j (t - s)p(s)ds,n((n - 1)w) = n’((n — 1)(») =0,n=1,...(3.11)
n-1Dw
It is easy to see that w(t, x) is the solution of the problems

(0%2w(t,x) 9%w(t, x)
ot? 0x?

=n(t)q" (x) + bgxx(t — w,x) + f(t, %),

10 <t < wx € (—w,w), (3.12)

\w(0,x) = g(0,x),w:(0,x) = g:(0,x),x € (—o0,00),

and
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(0%w(t,x) 0°w(t,x) b 0°w(t — w,x)
dt? ax2 d0x?

+(n(®) + bn(t — w))q" () + f (£, %),
< n—1Dw<t<nwx€(—w,0),n=23-, (3.13)
W((n — 1)a)+,x) = W((n — 1)w—,x),

Wt((n —Dw+, x) = Wt((n — 1)w—,x),

\x € (—o0,00),n = 2,3,
Now we will take an estimate for |p(t)|. Applying the integral overdetermined

condition

[e0)

j a(x)u(t,x)dx = {(t)

— 00

and substitution (3.10), we get

$(®) = [, a()w(t, x)dx
J7 a()q()dx

From that and p(t) = n"'(t), it follows that

n() =

. 2
$"(0) ~ [, a(x) Sz w(t, x)dx
[, a(x)q(x)dx '

Then, using the triangle inequality, we obtain

p(t) =

0 02
O+ 7 |a(x)mw(t,x)| dx

lp(®)| < 7 a(aax] (3.14)
62
<k(q a) [|(”(t)| +‘ﬁw(t,.) ]
C(—00,00)

for all t € (0,). Now, using substitution (3.10), we get

02 , 02 ,
) V;fj; 9 L p®qw.

ot?
Applying the triangle inequality, we obtain
0%u(t,) 92w(t,”)
ot? = 02 + lpOIllgll¢-w,00y  (3:15)
C(—00,00) C(—00,00)

for all t € (0,0). Therefore, the proof of Theorem 3.1 is based on the following

theorem.
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Theorem 3.2. Under assumptions of Theorem 3.1, for the solution of problems (3.12)

and (3.13) the following stability estimate holds:

max [Weellc-oop  MAXNWell ey — MAX MW@y (3:16)
! 144
<M(q,a) [%"‘OTQé)é)“f (O lc=eo,00) T 1 (Ol ¢(=00,00) T+ rgngIC I].
ao = max{_max llge(®llccwooy_max Mg Ol 4
_max [lg(®)ll C(z)(_wm)},
max w max w ma w 3.17
nosts(n+1)w I tt”C(_°°'°°),nwsts(n+1)a)” ”c(l)( 00,00)” na)<t<(n+1) I ”0(2)(—0000)( )

<M(q, ) [an+ max _ ||f'(Ollc(-em,0) + 1f (10 llc(-00,00)

nwsts(n+1)

+ max |("|]

nwsts(n+l)w

an=max {  max  IWe(©llommy X WOl anny

max ”W(t)llc(z)(—oo,oo)}i n= 1,2,

(n—-1)wstsnw

Proof. First, we will prove that

ma [Weellc(—ence (3.18)
< M(q,0) [ag + max I (Ollcmem + 1 Ollgmm + max 1]
Applying the Dalambert’s formula(3.1), we get the following formula
Ox+0+g0x—t) 1
goO,x+t)+g0,x—t
w(t,x) = ! +5 [ 0.6
x—t
x+(t-1)
j | @a© +bgge - 0,6 + f )dgan
x—(t—1)

forany t € [0, w], x € (—o0, ). From that it follows that

X+t
g0, x+¢t)+g(0,x—1t)

1
w(t,x) = ! +5 | g0.0a
x—t

t

" f 77(2_T) @t e-n) (¢ + (€ = D) = Qo) (x = (t = D) ]d7
0
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b
+ f 5 [92+t-) (T — @0, x + (t = T)) = Gr—(t-0)(T — 0, x — (£ — 7))]d7
0

t x+(t—71)
1
+f§ f f(r,&)dédr.
0 x—(t-1)

Taking the derivatives, we get

wi(t,x) = 2QXEDLIQXTD 4 Ty 0.5+ 0) - .02 - 0]

t
n
fT Tt e—n),e (X + (€= T)) = Queny,e(x — (t = 7))]dr
0

+ f 3 [grxtct-t (T — 0, x + (t = 1)) — Gee(t-0)t (T — 0, x — (£ — T))]dr
0

t

+J%[f(r,x+ (t—1) - f(r,x = (t—1)ldr

0

gt (0, x +t) + g4 (0,x—2t) 1
2z > 2 +§[gtt(0;x+t)_gtt(orx_t)]

Wee(t,x) =

f’?( 2 [CIx+(t (X + (= 1)) = qr—(t—o)ee(x — (t — T))]dT

0

@‘

t
+ f 5 [gee(—w,x +t) — g (—w, x — t)]dT
0

+ j U@ x+ (€ =) = f(r,x = (¢ = )]dr

0

Applying this formula and the triangle inequality and estimate (3.14), we get

Iwee (611 < M(g,@) [0 + max [IF (Ol cooioy + IF Olle-oneny + 18" O]

+M(@) [ Iwee(z)llar
0

forany t € [0, w]. By the integral inequality, we get the estimate (3.18). Applying
equation (3.12) and triangle inequality and estimate (3.18), we get estimate (3.16).
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Second, we will prove that
0°w(t,”)
ot?

(3.19)

m(aX 1
nwsts(n+1)w
C(—O0,00)

sM(ga)|an+  max  [Ip@l+ &~ max = IF Ol

-1wstsnw n+1Dw

+ 1F (o)l +  max |("|],n=1,2,---

nwsts(n+1l)w

Applying the Dalambert’s formula(3.1), we get the following formula

x+t

1
5 | weo,oa
x—t

w(w,x +t) + w(nhw,x —t)
2

w(t,x) =

t x+(t—1)
1
+ 5 | 0@+ = 00a"© + bwgg (e — 0,0 + £ 0)agar
nw x—(t-1)

forany t € [nw, (n + 1)w], x € (—oo0, ). From that it follows that

X+t
whw,x +t) +whw,x —t) 1
w(t, x) = 5 + > f we(nw, §)d&
x—t

+ f (o) + b; (r= ) [@er -0y (X + (6 = ) = Qo) (x = (¢ = T))]dl7

t

b
+ fz [Wx+(t_f) T—w,x+({t—1) = Wy_-n(T—w,x — (t — T))]dT
nw

t x+(t—1)
1
+ fz f f(z,&)dédr.
nw x—(t-1)
Taking the derivatives, we get

we(nw, x +t) + w(nw, x — t)
2

we(t, x) =

1
+§ [we(nw, x + t) — wi(nw, x — t)]

+ f (@) + b;y(r —©) [@esemoye(x + (€ = D)) = Ge(mpe(x — (¢ — 7)) ]de

b
+ f 5 [Wx+(t_f)lt(r —w,x+({t—1)) = Wy_(t—p)t (T —w,x — (t — T))]dr

nw
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g 1
+ fz[f(T,x +(t—1)—f(r,x — (t —1))]dr,
Wi (hw, x +t) + we(nw, x — t)
2

wee(t,x) =

1
+E [th(nw,x + t) - th(n(l),x - t)]

F (D) + bn(T — )
+ f :

[qx+(t—r),tt(x + (= 1) = Qr—qt—o)ee(x — (£ — T))]dT

t
b
+ fz [Wee(—w, x + 1) — wie(—w, x — t)]dt
nw

t

N j Sl x + (=)~ it x — (¢ = D)ldr,

nw

Applying this formula and the triangle inequality and estimate (3.14), we get

Iwee ()l < M@, |an + _max_ PO

n—1)wstsnw

+  max - If'(Ollc-woe) + If (M0)llc-0,00) +  max - [0

nwsts(n+1l)w nwsts(n+1l)w

t
M) j lwee (5, d

for any t € [nw, (n + 1)w]. By the integral inequality, we get the estimate (3.16).
Applying equation (3.13) and triangle inequality and estimate (3.16), we get estimate
(3.17). This completes the proof of Theorem 3.2.

Moreover, we have that

Theorem 3.3. Assume that [~ a(x)q(x)dx # 0 and [ |a(x)|%dx < a < o,1 <
q < oo,$+% = 1. Then for the solution of problem (3.7) the following stability

estimate holds:

Orgt%)(i)lp(t)l' Oréltas)é)lluttlle(—w,w): Orgtas)é)”utllwpl(—oo,oo)i Orgtas)((u”ullwg(—oo,oo)

< M@ @) a0 + max If (Ollgy oy + IF Ol ooy + gmax [£"1]

0<t=w

ao = max{ max 19 (O i, max, ol .

max lg®l,,, 1

—w=st<0
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max t)|, max ) )
nwsts(n+1)w|p( )l nwsts(n+1)w” tt”LP( ©0,00) nw<t<(n+1)w” t” W} (—00,00)
max u <M(q,a)la max t
nwsts(n+1)w” ”WP (-00,00) = (q ) n (n—l)wstsnwlp( )l

+mac NP Ol com + IOy +max 167,

nwsts(n+1)w nwsts(n+1)w
an=max {  max e (®lly oo, max_ el
(n_l%aésnwuu(t)||sz(_oo,m)},n =12, -

Here L,(—o,00) refers to the vector space of functions w(x) from the entire real

lineto R = (—oo, 00) satisfy the condition
flw(x)lpdx < 00,

Second, the time-dependent identification problem

(0%u(t,x) 0%u(t,x) b 0%u(t — w,x)
ot? ax? 0x?

+p(®)q(x) + f(t,x),

0<t<oo,x€ (01,

u(t,x) =g, x),—w <t<0,x€[0,1], (3.20)

u(t,0) =u(t,)) =0,t =0,

l

f u(t,x)dx =J(t),t =0
\0

for one dimensional delay hyperbolic equation is considered. Here u(t,x) and p(t)

are unknown functions. Under compatibility conditions, problem (3.20) has a unique
solution  (u(t,x),p(t)) for the smooth functions f(t, x)(t € (0,0),x €
(0,),9(t,x)(t € [-w,0],x € [0,1]),{(t)(t = 0),q(x),x € (0,1). Here b is a
constant.

We have the following theorem on the stability of problem (3.20).

Theorem 3.4. Assume that fol q(x)dx # 0 . Then for the solution of problem (3.20)

the following stability estimate holds:

szl mg Weelaton. gogg leelwgron gogg Nellwgron G-21)

< M(q,@) [ao + max ' ©ll,00 + If Ol o+ max ¢”]]
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ap = max{_max lgee(®) o0 max, NgeIl,,

max gl }

max _ |p(t)l, max - lugll, o, max o lugl (3.22)

nwsts(n+1)w nwsts(n+1)w nwsts(n+1)w wioy’

max | ulygon < M@0 [an+ _max  p(o)]

nwst<(n+1)w n—1)wst<nw

+  max  |If' Ol + IIf w)llp,oy+ —max  [{"]f,

nwsts(n+1)w nwsts(n+1)w
an=max { max ue®liion,_max_ @l

max IIu(t)Ilwg[o,l]}.n =12,

(n-1wstsnw
Here L,[0,1] be the space of all square integrable functions w(x) defined on [0, ]

and WX[0,1], k = 1,2 be Sobolev spaces equipped with norms
1

l 2
1Wllyaio = ( fo Ww(z) + w;<z>]dz> ,

l 2
”W”W%[O,l] = <J0 [WZ(Z) + szz(Z)]dZ> ’

respectively.

Proof. We will seek u(t, x), using the substitution

u(t,x) = w(t,x) + n(t)q(x), (3.23)
where n(t) is the function defined by the formula
{ t
[n(t) = f (t — s)p(s)ds,
4 (=D (3.24)
Ln((n —Dw)=1(n-Dw)=0n=12,...
It is easy to see that w(t, x) is the solution of the problems
(0%2w(t,x) 9%w(t,x) .,
2 o2 - n(t)q" (x) + bg,(t — w,x) + f(t,x),
<0<t<w,xe (0,0), (3.25)

W(Or x) = g(OJ x),Wt(O,X) = gt(o' X),x € (Or l)!

\w(t,0) =w(,1)=0,t=>0
and
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(0?w(t,x) 0*w(t,x) b 0°w(t — w,x)
ot? ax2 0x?

+(n(®) + bn(t — w))q" (x) + f (£, %),
n—-1NDw<t<nwxe€01),n=23-,
w(( - Dwt,x) = w((n - Dw-,x), (3.26)
wi((n — Dw+,x) = w((n — Do—,x),

x € (0,D),n=23,-,

\w(t,0) =w(t,1)=0,t=>0.
Now we will take an estimate for |p(t)|. Applying the integral overdetermined

condition
l

f u(t,x)dx = {(t)

0

and substitution (3.23), we get
l
() — f, w(t, x)dx
. :
Jo aCx)dx
From that and p(t) = n''(t), it follows that

" L 0
7" (t) — OWW(t,X)dX

l
Jy aCx)dx
Then, using the triangle inequality, we obtain
5O+
|f, aC)dx|

n() =

p(t) =

62
Ww(t, x)| dx

lp(O)] < (3.27)

02
ﬁw(t, )

<k(q,D [I(”(t)l + ‘ ]
Ly[0.1]

for all t € (0,). Now, using substitution (3.23), we get
2%u(t, x) B 92w(t, x)
atz  ot?
Applying the triangle inequality, we obtain
d%u(t,) a*w(t,")
ot? ot?

+ p()q(x).

+ lpOIllgllL, o (3.28)
Lo [0,1]

Lp[0,]
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for all t € (0,0). Therefore, the proof of Theorem 3.4 is based on the following
theorem.

Theorem 3.5. Under assumptions of Theorem 3.4, for the solution of problems (3.25)
and (3.26) the following stability estimate holds:

s elion axIvellugon 2 Wigon  3:29)

< M(q,1) |ao + max I (Ollu,on + IF Oly00 + max [¢”]]

Qo = maX{_T£§§O||gtt(t)||mz[o,l]’_rar)lsaéo ||gt(t)||w%[0,l]: mftXO”g( )” ol]}
noeaX o Mwell o, max o Wellwyon,,, max o lIwliwgo, (3:30)

<M@D|a+ max 1 Ollygon + IF 000+ 1)

wsts(n+)w <t<(n+1)a)

an=max | max  Iwee®liiom,_max_ weOlwos,

max_ [w(O)llygon},n =12,

(n-1wstsnw
Proof. It is clear that the mixed problems (3.25) and (3.26) can be written as the I\VPs
w'(t) + Aw(t) + u(t)Aq = bAg(t — w) + f(8),t € (0, w),
(3.31)
w(0) = g(0),w'(0) = g:(0)
and
(W' (t) + Aw(t) + u(t)Aq = bAw(t — w) + f(t),

mM—Dw<t<nw, n=23-,
< (3.32)
w((n=Dw+) = w((r = Do =) w/((1 =D +) = w'((n =~ Do)

\n=23--
in a Hilbert space H = L,[0, ] with A determining by (3.5). From (3.24) and (3.27)
it follows that

PO, kO] < kg, DIIT" @] + lIwee (Ol ] (3.33)
for all t € (0,0). Therefore, the proof of Theorem 3.5 is based on the following
abstract theorem.
Theorem 3.6. Under assumptions of Theorem 3.5, for the solution of problems (3.31)

and (3.32) the following stability estimate holds:

1
Azw, ||H max [|[Aw|ly (3.34)

max ||we||y, max
0<t=w

0st=w |



59

< M(q,D) [ao + max If'@©)lls + IF Ol + max [¢”I]
st=w Osts=w

1
ay = maxy max t , max A2q.(t || , max ||Ag(t }'
0 {_wstsollga( Mu _max ge(t) ; —wstso” g®lly

nwsg&ﬁl)w”th”H, nws{ggﬁmllwtllm nwsg(an)g-l)w”AW”H (3.35)

<M@D[ay+  max NIFOly+ IF0o),+ | max 1]

nwst<(n+1)w nwst<(n+1)w
1
a, = max max Wi (t max A2w,(t
n { (n—l)wstsnw” tt( )”H' (n—-1)wstsnw t( ) H’

max ||Aw(t)||H},n — 12,

(n-1)wstsnw
Proof. The initial value problems (3.31) and (3.32) are equivalent to the integral

equations
w(t) = c(£)g(0) + s(£)g.(0) (3.36)
+ fots(t —z)[—u(2)Aq + bAg(z —w) + f(2)]dz,0 <t < w
w(t) =c(t— - Do)w((n - Dw) +s(t— n—-Dw)w((n - Dw) (3.37)
+ f(:l_l)wS(t —2)[-u(2)Aq + bAg(z — w) + f(2)]dz,
mM-Dw<t<nw,n=2,-

in H, respectively. Let t € [0, w]. Applying equation (3.31) and formula (3.36), we
get

Aw(t) = c(t)Ag(0) + s(t)Ag.(0)
+J As(t — z2)[—u(z)Aq + bAg(z — w) + f(2)]dz
0

= c(t)Ag(0) + s()Ag.(0)
—u(t)Aq + bAg(t — w) + () — c(D)[bAg(—w) + f(0)]

—f c(t —2)[—u'(z)Aq + bAg'(z — w) + f'(2)]dz.
0

Therefore, applying this formula, the triangle inequality and estimates (3.6) and (3.33),

we get
1
Iwee(®)ls < 149l + [ A42900) ||+ 1F Ol + 0 ma el
1 t
+ max Aigt(t)” + Mz3(q,1) max [{"”| +M3(q,l)J lw,,(2)||pdz.
—wst<0 H Ost=w 0
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Using the integral inequality, we get
max lwelly < M(q,1) |ao + max I @l + £ (Ol + max [¢”]]
Ost=w Ost=w Ost=w
In the same manner, we can obtain
1
Azw,

max
Ost=w

< M(q,D [ao + max If'(Olly + IFO)lly + max|{”]].
H O<t=w Ost=w
From that and equation (3.31) it follows estimate for ax AW || 4.
<tsw
Let t € [(n — 1w, nw],n = 2,---. Applying equation (3.32) and formula (3.37),

Aw(t) =c(t—(n— Dw)Aw(n —Dw) + st —(n — Dw)Aw;((n — D w)

+j As(t — z)[—u(2)Aq + bAg(z — w) + f(2)]dz
(

n-1w
= c(t)AW((n — l)a)) + s(t)Awt((n - 1)0)) —u(t—(—-1w)Aq
+bAwW(t —nw) + f(t) —c(t — (n — Dw)[bAg(—nw) + f((n — Dw)]

—J; ) c(t —2)[-u'(2)Aq + bAg'(z — w) + f'(2)]dz.
n—-1)w

Applying this formula, the triangle inequality and estimates (3.6) and (3.33), we get

el < 14w (G = D)l + [ 42w (= D) |+ (G = Do),

1
2
-I-wtE[(nrzlfa))c(unwu]”ft”]]"I + (n_lr)r(lngnw A gt(t)”H
t
+M3(q, 1) max |{"| + M3(q, 1) lw,.(2) | ndz.
(n—Dwstsnw (=D

Using the integral inequality, we get

max w.
(n—1)wstsnw” tt”H

SM(q,l)[an+( max wllf'(t)||H+||f((n—1)w)||H+ max I(”I].

n—1)w<t<n (n—-1)wstsnw

In the same manner, we can obtain

1
A2w,

max

(n—-1wstsnw H

< M(q,l)[an+( max wllf’(t)IIH+||f((n—1)a))||H+( max IC"I].

n—1)wst<n n—1)w<tsnw

From that and equation (3.32) it follows estimate for max ||Aw||y. Theorem

(n-1wst<nw

3.6 is established.
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CHAPTER IV
Difference Schemes for the Solution of Time-Dependent Identification Problem

for Delay Hyperbolic Equations

4.1 Introduction

It is important to know that when the analytical methods do not work properly,
the numerical methods for obtaining approximate solutions of partial differential
equations play an important role in applied mathematics. We need numerical
applications when one cannot know concrete values of constants in stability estimates.
Therefore, we can use the numerical methods to get approximate solutions of local and
nonlocal problems for the time-dependent identification problem for delay hyperbolic
partial differential equations. In this chapter we obtain the algorithms of numerical
solution for the initial-boundary-value problem for the one dimensional delay
hyperbolic partial differential equations with Dirichlet, Neumann and nonlocal
boundary conditions. Therefore, the first order of accuracy DSs for the solution of

one-dimensional DHPDEsS are presented.

4.2 Absolute Stable Difference Schemes for the Solution of Time-Dependent
Identification Problems for Delay Hyperbolic Equations with Dirichlet
Boundary Condition.

We consider the time-dependent identification problem

(Uty — Uy = p(t)sinx + 0.01u,, (t — m,x) — 1.01sintsinx,
t>00<x<m,

L u(t,x) = sintsinx, -t <t <00 <x <, 4.1)

Vi

u(t,0) = u(t,m) = O,J u(t,x)dx = 2sint, t = 0,
\ 0

for a one dimentional delay hyperbolic differential equation with Dirichlet condition.
Recall that

(u(t, x),p()) = ((mu(t, x), mp(t)))m=1,
where (mu(t,x), mp(t)) is exact solution pair of the problem (4.1) on t €
[(m—1m,mn],m>1. The exact solution pair of the problem (4.1) is
(u(t,x),p(t)) = (sin(t)sin(x), sin(t)). For the numerical solution of problem (4.1),
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we present the following first order of accuracy difference scheme for the approximate

solution for the problem (4.1)

(muktt — 2mw)k + muk=t  mukil — 2(muw)ktt + muktl

T2 h?

= Mmpg Sin(xn) - Sin(tk+1) Sin(xn):m =1,

1<k<N-11<n<M-1,

k+1

muktt — 2(mw)k + muk~t  mukil — 2(muw)ktt + muktl

T2 hZ

= mpy sin(x,,) — 1.01 sin(t,4) sin(x,,),

(m — Dukl - 2((m - 1)u)S_N + (m — Duky

+0.01 2 )
ty = kt,x, = nh,

1<n<M-1,Nt=n,Mh=mn,m=23,..,

mym-DN+L _ ) (m=DN
umON — g T . =sin(x,),0 <n<Mm=1,

m

mu;m—l)N — (m _ 1)u£lm—1)N'

muglm—l)N-i-l _ mu%m—l)N B (m _ 1)u§lm—1)N _ (m _ 1)u§lm—1)N—1

)

T T

0<n<Mmz=2,

M-1

muktl = muigtt = 0, Z muft h = 2 sin(tyq),

i=1

\(mM—1)N<k<mNm=1,2,...
We consider two cases: m =1 and m > 2. First, let m =1, then 0 <k < N.

From problem (4.2) it follows that
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(1l — 21wk + 1wkt 1wkt — 21wkt + 1uktl

T2 h?

= 1py sin(x,) — sin(ty44) sin(xy),

1<k<N-11<n<M-1,Nt=mnMh=m,

) (4.3)
1ul — 1u
1ul = 0,% =sin(x,),0<n <M,
M-1
Tuk+ = 1k = 0, Z 1k 1k = 2sin(tyy1),0 < k < N.
\ i=1

Algorithm for obtaining the solution of the time-dependent identification problem
(4.3) (1w }h_, = {1ulW_ YL, and {1p,}¥Z1 contains three stages. Actually, let
us define

1uf = 1wk + 1nysin(x,),0 <k <N,0<n <M, (4.4)
Applying difference scheme (4.3) and formula (4.4), we will obtain formula

1 _ 2sin(ty41) — 25" lwf A
Mhet1 =T Sin(x;)h

,—1<k<N-1, (4.5)

and the difference scheme

(1wk*t —2(1w)k + 1wkt 1wkl — 2(1w)k* + 10kt

T2 h?
M 10k h 2(cos(h) — 1)
+ S sin(x,,) —
i1 sin(x;) h h
2 2(cos(h) — 1)

= T TG h 2 — 1| sin(ty41) sin(x,,), (4.6)

ty =kt,x, =nh,1<k<N-11<n<M-1,

lw} — 1wl

1wl =0, =sin(x,),0<n <M,

1wkt =10kl =0,-1<k<N-1.
In the first stage, we find numerical solution {{1wX}¥_ 32, of corresponding first
order of accuracy auxiliary difference scheme (4.6). For obtaining the solution of

difference scheme (4.6), we will write it in the matrix form as



64

A(lw)**t + BAw)* + C(Qw) = (1f)¥ 1<k <N -1,
(4.7)
1w® = 0,1w! = 7sin(x,),

where 4,B,C are (M + 1) X (M + 1) square matrices, 1w5,s =k, k +1,1f* are

(M + 1) x 1 column matrices and

1 0 0 0 0 07
b a+ ﬂ b + & oo ﬁ C_1 0
d d d d
O b+ C_Z a+ C_Z oo C_Z C_Z 0
d d d d
A=j: :
0 Gz Gr g Gy G
Cm-1 Cr-1 Cm-1 Cm-1
d d b d @t d
-0 0 0 0 0 1'(M+1)><(M+1)
[O o - 0 O]
IO e - 0 OI
B=|: P
[0 0 .. e OJ
0 0 - 0 Odm+nxm+1)
[0 0 0 0]
[0 g 0 0]
c=]|: : : |
|l0 0 g o
0 0 0 Odm+n)xm+1)
[0 ]
[1f (trox1) |
1fk =1, I )
'1f<tk,xM_1)J'
0 (M+1)x1
[10)3 ]
[low] |
1S =|. | Jfor s=kk+ 1.
i
Loy dpiyxa
Here,a = = +-2,b = ——, ¢, = sin(x,) 5002 d = ¥ sin(x)h, e =
2 1 2 2(cos(h)—1 ) .
— 2.0 = 5 1f (te %) = [ﬂ;lsin(xi)h om0 — 1 sin(tes)sin(iy), 1 < k <

N-11<n<M-1
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So, we have the IVP for the second order difference equation (4.7) with respect to k
with matrix coefficients 4, B and C: Since w° and w?! are given, we can obtain the
solution of (4.7) by direct formula

1o = A1(Af* - BAw)* — CAw)* Y,k =1,...,N—1.  (4.8)
Applying formula 1n,,., = Y%, (k+1-D(Ap)it2 1<k <N-1,7=1n,=0,
we can obtain

_ Mgeyr — 2(A0)k + 1n—y

lpk 72

,1<k<N-1 (4.9)

In the second stage, we will obtain {1p,}¥=1 by formulas (4.5) and (4.9). Finally, in
the third stage, we will obtain {{1uX3}¥_ 3., by formulas (4.4) and (4.5). The errors

are computed by

N

M-1
— _ k|2
1E, = OrSnkaS>]<V<z lu(ty, x,) — 1usy| h) , (4.10)
n=1
1B, = max [p(t) — 1pl,
where u(t,x),p(t) represent the exact solution, 1uX represent the numerical
solutions at (ty, x,) and 1p, represent the numerical solutions at t.

Second, let m > 2, then (m — 1)N < k < mN. From problem (4.2) it follows that
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k+1

(muktt — 2(muw)k + muk~t  mukil - 2(muw)ktt + muktl

T2 h?
= mpy, sin(x,) — 1.01 sin(ty41) sin(x,),

(m — DuklV — 2((m — 1)u):_N + (m — Duk¥

h2

+0.01

)

tk = kT, Xn = nh,
(m—1)N+1<k<mN -1,
1<n<M-1,Nt=n,Mh=m, (4.11)

mu"gm—l)N — (m _ 1)u1€lm—1)1\/,

(m-1)N

mu;m—l)N+1 _ mu’gm—l)N B (m _ 1)un _ (m _ 1)u$lm—1)N—1
T B T ’
0<n<M,
M-1
muftl = muigtt = 0, Z muftih = 2sin(t,q),
i=1

\(m—1)N <k <mN,m = 2.

In the same manner, algorithm for obtaining the solution of the time-dependent
identification problem (4.11) {mu, }¥_, = {{muf}_ 3, and {mp,}=} contains
three stages. Actually, let us define

muf = mwk + mysin(x,),(m—1DN <k<mN,0<n<M, (4.12)

Applying difference scheme (4.11) and formula (4.12), we will obtain formula

2sin(ty41) — 2ity" moftth

= ,(m—1)N—-1<k<mN -1, 4.13
mng+1 {l/i—ll sin(x;)h (m ) m ( )

and the difference scheme



67

(Mmoktt —2(mw)k + mwkt  mokil - 2(mw)ktt + mektl
T2 B h?
N Mt moktth ( )2(cos(h) -1)
M7t sin(x;) h Sin h?
k—N k=N
 (Gm - DwEY —2(n—Dw) " + ((n — Dw)r}
= 0.0 =
2 2(cos(h) — 1)
+ — — 1.01] sin(tg41) sin(x,,),
] "M sin(x) k2 e " (4.14)
m—1)N+1<k<mN -1,
mwT(Lm—l)N — (m _ 1)w1(1m—1)N’
mwr(lm—l)N+1 _ mw’sm—l)N B (m _ 1)w7sm—1)N _ (m _ 1)(‘)15111—1)]\[—1
T B T ’
0<n<M,
\mwk*t! = mwt =0,(m —1)N <k <mN,m > 2.

In the first stage, we find numerical solution {{mwX3}¥_ 3., of corresponding first
order of accuracy auxiliary difference scheme (4.14). For obtaining the solution of
difference scheme (4.14), we will write it in the matrix form as

(A(mw)**t + B(mw)* + C(mw)*~1 = (mf)¥,

m-—DN+1<k<mN-1,
X (4.15)
(maw)" " = ((m = Do),

L(mw) ™DV = 2((m — D)™V — ((m - D)) DN
where A,B,C are (M +1)x (M + 1) square matrices, mwS,s =k, k +1,mf*

are (M + 1) x 1 column matrices and

0

[mf(tk,xl) ]
mfk =|. |
Imf(tk’xm—ﬂl
Lo |

(M+1)x1
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Jfor s=k k+ 1.

(M+1)x1

So, we have the initial value problem for the second order difference equation (4.15)
with respect to k with matrix coefficients 4, B and C: Since mw) and mw)*? are
given, we can obtain the solution of (4.15) by direct formula

{(mw)'“r1 = A7 ((mf)* — B(mw)* = C(mw)* ™),
N+1<k<mN-1.

Applying formula mn, =35, (k+1—-i)(mp);t2, (m— 1N +1 <k <mN —

(4.16)

1, MNn-1)y = MNm-1)n+1 = 0, We can obtain

MNgyq — 2(mn)g + mng_4
72

mpy = ,(m—1)N+1<k<mN-1. (4.17)

In the second stage, we will obtain {mp, }¥={ by formulas (4.13) and (4.17). Finally,
in the third stage, we will obtain {{muX}¥_, 3, by formulas (4.12) and (4.13). The

errors are computed by
1

M= 2

= E 2

mby = (m- 1)N<k<m ( lu(ty, x,) — mug| h) (4.18)
‘n:

mE - ma t —m )
P (m—l)N+1S)I(CSmN_1|p( k) Pl

where u(t, x),p(t) represent the exact solution, muk represent the numerical
solutions at (t, x,) and mp, represent the numerical solutions at t;. The numerical
results are given in the following table.
Table 4.1.
Error Analysis for Difference Schemes (4.6) and (4.14)
Errorr N=M=20 N=M=40 N=M=80 N=M =160

1E, 0.1267 0.0669 0.0345 0.0176
1E, 0.1564 0.0785 0.0393 0.0196
2E, 0.2942 0.1655 0.0883 0.0456
2E, 0.1404 0.0747 0.0379 0.0190
3E, 0.4341 0.2567 0.1408 0.0739
3E, 0.2185 0.1418 0.1027 0.0830

Asitisseenin Table 1,if M and N are multiplied by 2, the value of errors decreases

approximately 1/2 for the DS. This shows that it has the first order of accuracy.
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4.3 Absolute Stable Difference Schemes for the Solution of Time-Dependent
Identification Problems for Delay Hyperbolic Equations with Neumann
Boundary Condition.

We consider the time-dependent identification problem
((Upr — Ugy = P()(1 + cosx) + 0.01u,, (t — m, x)

—sint(2 + cosx) — 0.01sintcosx,t > 0,0 < x < 7,

Ju(t,x) =sint(1+cosx),-nm<t<00<x<m, (4.19)

T

U, (t,0) = u,(t,m) = O,f u(t,x)dx = msint, t > 0
\ 0

for a one dimentional delay hyperbolic differential equation with Neumann condition.
Recall that

(u(t,x), p()) = ((mu(t, x), mp(£)))m=1,
where (mu(t,x), mp(t)) is exact solution pair of the problem (4.19) on t €
[(m—1m,mn],m>1. The exact solution pair of the problem (4.19) is
(u(t,x),p(t)) = (sint(1 + cosx), sint) . For the numerical solution of problem
(4.19), we present the following first order of accuracy difference scheme for the

approximate solution for the problem (4.19)



70

(muktt —2(mw)k + muk=t  mukil — 2muw)k+t + muktl

T2 h2

= mpy (1 + cos(xy,)) — sin(tx41) (2 + cos(xy)),m =1,
1<k<N-11<n<M-1,

muktt — 2(mw)k + muk='  muktl — 2(muw)ktt + muktl

T2 h?

= mpy (1 + cos(x,)) — 2sin(tr41) — 1.01sin(ty4q1) cos(xy,),

(m — DY —2(Gm - Du), " + (m — Dk

+0.01 - ,

ty = kt,x, = nh,

(m—1)N+1<k<mN-1,

X (4.20)
1<n<M-1,Nt=n,Mh=n,m-=2]3,..,

(m-1)N+1 (m—-1)N
Uy, — mu,,

—1)N m
g

mu =1+ cos(x,),

T

0<n<Mm=1,
mur(lm—l)N — (m _ l)u-flm_l)N,

(m—-1)N+1 _ mu’gm—l)N _ (m _ 1)u1(1m—1)N _ (m _

mul 1)u1(1m—1)N—1

)

T T

0<n<Mm=2,

muk*tt — muktt = multt — mulity = o,

M-1

Z muf*'h = msin(tk + 1),(m — DN <k <mN,m = 1,2,....
\ =0

We consider two cases: m =1 and m > 2. First, let m =1, then 0 <k < N.

From problem (4.20) it follows that
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(Tuftt — 21wk + 1uk1 1kt — 2(1w)E* + 10k
T2 Bl h?

= 1p (1 + cos(x,)) — sin(tr41) (2 + cos(xy,)),
1<k<N-11<n<M-1Nt=rn,Mh=m,

S 1ul — 1u? (4.21)
1ul = 0,%: 1+ cos(x,),0<n <M,

k+1 k+1 _ k+1 k+1 _
11.1,1 - 1u0 —_ 1uM - 1uM_1 —_ 0,

M-1

Z muf*tth = wsin(ty,,),0 < k < N.
\ =0

Algorithm for obtaining the solution of the time-dependent identification problem
(4.21) {1w }h—o = {{1ufI_o ¥, and {1p,}¥Z1 contains three stages. Actually, let
us define

1uk = 10f + 1 (1 + cos(x,)),0<k<N,0<n<M, (422)
Applying difference scheme (4.21) and formula (4.22), we will obtain formula

msin(te, 1) — SM L 1wk 1h
1Mprs = (i) nz“" L, —-1<k<N-1, (4.23)

and the difference scheme

(1wk*t —2(1w)k + 1wkt 10kl — 2(1w)k*! + 1wkt]

T2 h?

2(cos(h) — 1)

M-1
+ Z 1w cos(x,) —

i=0

2(cos(h) — 1) _ .
| = [T— 1] Sin(tisr) c0SCrn) = 25in(tiss), (4.24)
ty =kt,x, =nh,1<k<N-11<n<M-1,

1w} — 1w
1wl = 0,%= 1+ cos(x,),0<n <M,

1wt —10ft! = 1ol — 10, =0,-1<k<N-1.
In the first stage, we find numerical solution {{1wX}¥_,}"_, of corresponding first
order of accuracy auxiliary difference scheme (4.24). For obtaining the solution of

difference scheme (4.24), we will write it in the matrix form as
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A(lw)**t + BAw)* + C(Qw) = (1f)¥ 1<k <N -1,
(4.25)
1w® = 0,1w! = 7(1 + cos(xy,),

where 4,B,C are (M + 1) X (M + 1) square matrices, 1w5,s =k, k +1,1f* are

(M + 1) x 1 column matrices and

—1 1 0 0 0 07
b a+c, b+c¢ - Cq Cq 0
0 b+c; a+c, - Ccy cy 0

A=]: : : : : : :
0 ¢y cCy—p =+ a+cy—p, b+cy_—, O
0 cy-1 ©Cy-1 = bH+cy1 a+tcy_1 b

-0 0 0 0 -1 1'(M+1)><(M+1)

[0 0 0 0]
|0 e 0 0]
B=|: S
IO 0 e OI
[() 0 0 0J(M+1)><(M+1)
0 0 0
|[O g 0 0]|
c=I: : Pt
lo o g o
lO 0 0 0J(M+1)><(M+1)
I[ 1f (ty, x1) ]I
1fk =|. I :
[1 (terM—l)J
0 (M+1)x1
lw§ 1
lw]
| | Jfor s=kk+ 1.
|1wM 1|
J(M+1)><1
Here, a = T%"‘%:b = %,cn = cos(xn)%,e =-2.9==

2(cos(h) — 1)
h2

1<k<N-11<n<M-1

- 1] sin(ty41) cos(xy) — 2 sin(ty41),

1f(tkl xn) = [

So, we have the IVVP for the second order difference equation (4.25) with respect to k
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with matrix coefficients 4, B and C: Since 1w° and 1w?! are given, we can obtain
the solution of (4.25) by direct formula

1wkt = A71(1f* = B(Aw)* — CAw)* 1),k =1,...,N — 1. (4.26)
Applying formula 11, = Y5, (k+1-)(Ap);t31<k<N-1,9=71,=0,
we can obtain

_ Mper1 — 2(AN)k + 1nk—q

1pk Tz

,1<k<N-1 (4.27)

In the second stage, we will obtain {1p,}¥-{ by formulas (4.23) and (4.27). Finally,
in the third stage, we will obtain {{1uX}Y_,}M_, by formulas (4.22) and (4.23). The
errors are computed by

I

0<ksN

M-1 2
1E, = max <z |u(ty, xn) — 1u’,§|2h> ) (4.28)
n=0

1B, = max [p(t) — 1pl,
where u(t,x),p(t) represent the exact solution, 1ukf represent the numerical
solutions at (ty, x,) and 1p, represent the numerical solutions at t.

Second, let m > 2, then (m — 1)N < k < mN. From problem (4.20) it follows that
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(muktt — 2(mw)k + mukt muktl — 2(mw)Ett + muktl
n n n n+1 n n-1

T2 h?
= mp; (1 + cos(x,)) — 2sin(ty41) — 1.01 sin(ty1) cos(xy,),

(m — Dukl - 2((m — 1)u):_N + (m — Dukl

+0.01 -

,tr = kt,x, = nh,

(m—1N+1<k<mN -1,

1<n<M-1,Nt=mn,Mh=m,
(4.29)
mu‘l(‘Lm—l)N — (m _ 1)u1(1m—1)N’

mu"gm—l)N+1 _ mu-'gm—l)N _ (m _ 1)u£lm—1)N _ (m _ 1)u7gm—1)N—1

)

T T
0<n<Mm?=2,

muftt — muktt = muftt — multt = o,

M-1

1uf*1h = wsin(tgy,),(m — )N < k <mN,m > 2.

\ =0
In the same manner, algorithm for obtaining the solution of the time-dependent
identification problem (4.29) {mu,}r—, = {{muk}_ ¥, and {mp,}¥Z] contains
three stages. Actually, let us define
muk = mwk + mn,(1+cos(x,)),(m—1)N<k<mN,0<n<M, (430)
Applying difference scheme (4.29) and formula (4.30), we will obtain formula
msin(tee1) — Xio' mwf*th

MmNy = - ,(m—1)N-1<k<mN-1, (431)

and the difference scheme
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(mwktt —2(mw)k + mwk!  mowkil — 2(mw)ktt + mektl

T2 hZ

M-1
1 2(cos(h) — 1)
+ ; mwk cos(xn)T
| (on= DW= 2(0n = W)™ + (Gn = DY
hZ

=0.0
2(cos(h) — 1) _ _

+ IT — 1.01| sin(ty41) cos(x,) — 2 sin(tx41),

< (4.32)

(m—1N+1<k<mN-1,

ma),(lm_l)N =(m-— 1)w,(1m_1)N,

e ONFL _ p  (m=DN (- D™V _ (n — 1)e0m-ON-1
T T ’

0<n<M,

muftl — muktt = mulstt — multy = o,

\(m—1)N <k <mN,m = 2.

In the first stage, we find numerical solution {{mwX}¥_,}*_, of corresponding first
order of accuracy auxiliary difference scheme (4.32). For obtaining the solution of
difference scheme (4.32), we will write it in the matrix form as

(A(mw)**! + B(mw)* + C(mw)*~* = (mf)k,

m—1)N+1<k<mN -1,
! (4.33)

(ma)y" ™M = ((m = D)™™,

k(mw);m_1)N+1 =2((m— 1)w)§lm—1)1v — ((m - 1)w)£lm—1)1v—1'
where A,B,C are (M + 1) x (M + 1) square matrices, mw®,s =k, k + 1,mf*

are (M + 1) x 1 column matrices and

[0 1
|mf(tewx) |
mfk =], | ,
'lmf(tk.xm_l)J'

0 (M+1)x1
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Jfor s=k, k + 1.

(M+1)x1
So, we have the initial value problem for the second order difference equation (4.33)
with respect to k with matrix coefficients 4, B and C: Since mw) and mw)*? are
given, we can obtain the solution of (4.33) by direct formula

(mw)**t = A7 ((mf)* — B(mw)* — C(mw)*1), (4.34)

(m—1),N+1<k<mN—1.

Applying formula mn, = X5, (k+1—-i)(mp);t2, (m— 1N +1 <k <mN —
1, mnmm-1)n = MNan-1)n+1 = 0, We can obtain

MNgyq — 2(mn)y + mng_4
72

mpy = ,(m—1)N+1<k<mN-1. (4.35)

In the second stage, we will obtain {mp, }¥={ by formulas (4.31) and (4.35). Finally,
in the third stage, we will obtain {{muX}¥_,}_, by formulas (4.30) and (4.31). The

errors are computed by
1

M 2
= 2
mEu (m- 1)N<k<m (Z u(tk’xn) muy | h) (436)
’n:
mkp = (m—l)NIPl%)I(csmN—llp(tk) — mpyl,

where u(t, x), p(t) represent the exact solution, mu¥ represent the numerical
solutions at (t, x,) and mp, represent the numerical solutions at t;. The numerical
results are given in the following table.
Table 4.2.
Error Analysis for Difference Schemes (4.24) and (4.32)

Errorr N=M=20 N=M=40 N=M=80 N=M =160

1E, 0.1754 0.1112 0.0625 0.0331
1E, 0.2018 0.0967 0.0475 0.0235
2E, 0.6868 0.3775 0.1947 0.0937
2E, 0.2270 0.1052 0.0499 0.0242
3E, 0.8276 0.4675 0.2869 0.2023
3E 0.2490 0.1119 0.0516 0.0245

p
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4.4 Absolute Stable Difference Schemes for the Solution of Time-Dependent
Identification Problems for Delay Hyperbolic Equations with Nonlocal
Boundary Condition.

we consider the time-dependent identification problem
(Ut — Uy = p(£)(1 + cos2x) + 0.01u,, (t — 7, x)

—sin2t(5 + cos 2x) + 0.04sin2tcos2x,t > 0,0 < x < T,

u(t,x) = sin2t(1 + cos2x), -t <t<0,0<x <m,
. (4.37)
u(t,0) = u(t, m), uy(t,0) = u,(t,m),

A

ju(t, x)dx =msin2t,t =0
\0

for a one dimentional delay hyperbolic differential equation with nonlocal condition.
Recall that

(u(t, x),p(t)) = ((mu(t, x), mp()))m=1,
where (mu(t,x), mp(t)) is exact solution pair of the problem (4.37) on t €
[(m—1m,mn],m>1. The exact solution pair of the problem (4.37) is
(u(t,x),p(t)) = (sin2t(1 + cos2x), sin2t). For the numerical solution of problem
(4.37), we present the following first order of accuracy difference scheme for the

approximate solution for the problem (4.37)
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(muktt — 2(mw)k + muk'  muktl — 2muw)ktt + muktl

T2 h?

= mpy (1 + cos(2x,)) — sin(2tx4+1)(5 + cos(2x,)), m =1,

1<k<N-11<n<M-1,

k+1

muktt — 2(mw)k + muk~!  muktl — 2mw)ktt + muktl

T2 h?

= mp; (1 + cos(2x,)) — 5sin(2t;41) — 0.96 sin(2t; 1) cos(2x,,)

(m — DukV — 2((m — 1)u):_N + (m — Duky

+0.01 e .

ty = kt,x, = nh,

m—1)N+1<k<mN -1,

{ (4.38)
1<n<M-1,Nt=n,Mh=n,m=2,3,..,

mu M- ON+1 _ ) (m=DN
mu,(lm_l)N =0,—=& - = = 2(1 + cos(2xy)),

0<n<s<Mm-=1,
mu"gm—l)N — (m _ 1)u£1m—1)N’

mu’gm—l)N-Fl _ mu’gm—l)N _ (m _ 1)u7(lm—1)N _ (m _ 1)u7g'm—1)N—1

)

T T

0<n<Mm=2,

muftt = mulgtt, muftt — muktt = multt — multl,

M—1

Z mu{*h = wsin(2tk + 1), (m — DN <k <mN,m = 1.2, ...
\ =0

We consider two cases: m =1 and m > 2. First, let m =1, then 0 <k < N.

From problem (4.38) it follows that
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(Tuftt — 21wk + 1uk1 1kt — 2(1w)E* + 10k
T2 Bl h?

= 1pr (1 + cos(2x,)) — sin(2t,41)(5 + cos(2x,)),

1<k<N-11<n<M-1,Nt=n,Mh=m,

< 1ul — 1ud (4.39)
1ul = 0,% =2(1+cos(2x,)),0<n <M,
1wt = 1wt 1kt — 1t = 1wt — 1t
M-1
z 1uf*1h = msin(2ty41),0 < k < N.
\ =0

Algorithm for obtaining the solution of the time-dependent identification problem
(4.39) (1w }_y = {{1ufIN_o YL, and {1p,}¥=] contains three stages. Actually, let
us define

1uk = 1wk + 17, (1 + cos(2x,)),0 <k <N,0<n <M, (4.40)
Applying difference scheme (4.39) and formula (4.40), we will obtain formula

wsin(2ty4) — Niko' 1wf*'h
gy =

- ,—1<k<N-1, (441)

and the difference scheme
((1wkt —2(1w)k + 10k 1wkt —2(1w)k+! + 1wktl
T2 B hZ2

M-1

+ Z 1w¥*1cos(2x,)

i=0

2(cos(2h) — 1)
Th

3 IZ(cos(Zh) -1

2 — 1] sin(2ty4+1)cos(2x,,) — 5sin(2t,44),

(4.42)

ty =kt,x, =nh,1<k<N-11<n<<M-1,

1wl —1w?
1wl = 0,——— = 2(1 4 cos(2x,)),0 <n < M,
1okt = 1ol 10! — 10ft! = 1ol — 1ot

\-1<k<N-1
In the first stage, we find numerical solution {{1wX}_,}"_, of corresponding first

order of accuracy auxiliary difference scheme (4.42). For obtaining the solution of
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difference scheme (4.42), we will write it in the matrix form as

A(lw)**t + Blw)* + CAw)F 1= (1H)% 1<k <N -1,
(4.43)
1w® = 0,10t = 27(1 + cos(2x,),

where 4,B,C are (M + 1) X (M + 1) square matrices, 1w5,s =k, k +1,1f%* are

(M + 1) x 1 column matrices and

! 0 0 0 0 —1
b a+c¢y b+cg - cq cq 0
0 b+c, a+c, - cy cy 0
A=]: : : : : :
0 cy_2 Cy—2 = a+cy—, b+cy, 0
0 cy-1 cy—q v b+cy-1 a+cyq4 b
—1 1 0 0 1 _1‘(M+1)x(M+1)
0 O 0 O
|[O e 0 O]|
B=|: : : |
IO 0 e OI
l0 0 0 OJ(M+1)><(M+1)
0 0 0 0
I[O g 0 0]I
c=\|: : : |
lo o g ol
l0 0 0 Odm+nxm+1)
0
I[lf(terl) ]I
1k =1 | ,
Ilf(tk'xM—l)Jl
0 (M+1)x1
1w ]
[lwf |
1ws =| | Jfor s=k k+ 1.
|
Loy i
Here,
a =Ti2+%,b = —%,cn = cos(2x,) Z(COS(j:) 1),6 = —Tiz,g ==
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2(cos(2h) — 1)
h2

1<k<N-11<ns<M-1

1f (ty, xn) = — 1| sin(2ty41) cos(2x,) — 5sin(2¢tx44),

So, we have the I\VP for the second order difference equation (4.43) with respect to k
with matrix coefficients 4, B and C: Since 1w° and 1w?! are given, we can obtain
the solution of (4.43) by direct formula

1lo** = A1(Af* - BAw)* — CAw)* 1),k =1,...,N—1.  (4.44)
Applying formula 1n,., = Y5, (k+1-)(Ap);it31<k<N-1,9,=1,=0,
we can obtain

_ 1M1 — 2(AN)k + 1nk—q

1pk T2

L 1<k<N-1. (4.45)

In the second stage, we will obtain {1p,}¥- by formulas (4.41) and (4.45). Finally,
in the third stage, we will obtain {{1uX}¥_,}M_, by formulas (4.40) and (4.41). The
errors are computed by
1
M-1 2
1E, = max (Z lu(ty, x,,) — 1u£§|2h> ) (4.46)
o n=0
1B, = max [p(t) — 1pl,
where u(t, x), p(t) represent the exact solution, 1uk represent the numerical
solutions at (ty, x,) and 1p, represent the numerical solutions at ¢.
Second, let m > 2, then (m — 1)N < k < mN. From problem (4.38) it follows that
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(muftt — 2(muw)k + muk~t  muktl — 2(muw)ktt + muktl

T2 h?

= mpy (1 + cos(2x,)) — 5sin(2t;41) — 0.96sin(2t;11)cos(xy,),

(m — Duky —2((m - 1)u):_N + (m — DukV

hZ

+0.01

)

ty = kt,x, = nh,

(m—1)N+1<k<mN -1,

{1<n<M-1,Nt=mn,Mh=m, (4.47)
mu™ N = (m — Du™ BV,

mur(lm—l)N+1 _ mu"(lm—l)N B (m _ 1)u1(1m—1)N _ (m _ 1)u1(1m—1)N—1

T T

)

muk*tt = multt, muktt — muktt = mulgtt — multy,

M-1
muf*t1h = wsin(2tyy,), (M — 1)N < k <mN,m = 2.

\ =0
In the same manner, algorithm for obtaining the solution of the time-dependent
identification problem (4.47) {mu,}r-o = {{muk}¥_ ¥, and {mp,}¥Z] contains
three stages. Actually, let us define

muk = mok + mn, (14 cos(x,)),(m— DN <k <mN,0<n<M,  (448)
Applying difference scheme (4.47) and formula (4.48), we will obtain formula
msin(2tys1) — M5! moltth

MNgy1 = - ,(m—1)N-1<k<mN-1, (4.49)

and the difference scheme
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1 _2(mw)k + mwk ™t mokil - 2(mw)ktt + moktl

1—2 h2

(Mmwy

M-1
2(cos(2h) — 1
+Z mw¥*1lcos(2x,) ( (hz) )

i=0

(Gm = Dw) = 2(Gm = Dw)" ™ + (G — Dw)kY

=0.01 =

2(cos(2h) — 1) ) )
+ I 2 — 0.96(sin(2t,41) cos(2x,,) — 5sin(2t,44),

X (4.50)
(m—1N+1<k<mN -1,

mwr(lm—l)N — (m . 1)wr(lm—1)N’
mw’(@m—l)N+1 _ mwr(lm—l)N (m _ 1)(‘)7(1m_1)N _ (m _ 1)wr(Lm—l)N—l
T - T ’
0<n<M,
muftt = multt, muftt — muktt = mugtt — mugty,

\(m—1)N<k<mN,m2=2.

In the first stage, we find numerical solution {{mwX}¥_,}*_, of corresponding first
order of accuracy auxiliary difference scheme (4.50). For obtaining the solution of
difference scheme (4.50), we will write it in the matrix form as

(A(mw)**! + B(mw)* + C(mw)*~1 = (mf)¥,

m—1N+1<k<mN-1

4 (4.51)
(ma)y" ™M = ((m = D)™™,

k(mw);m_1)N+1 =2((m— 1)w)§lm—1)1v — ((m - 1)w)£lm—1)1v—1'
where A,B,C are (M + 1) x (M + 1) square matrices, mw®,s =k, k + 1,mf*

are (M + 1) x 1 column matrices and

[0 1
|mf(tewx) |
mfk =], | ,
'lmf(tk.xm_l)J'

0 (M+1)x1



84

Jfor s=k, k + 1.

(M+1)x1
So, we have the initial value problem for the second order difference equation (4.51)
with respect to k with matrix coefficients 4, B and C: Since mw) and mw)*? are

given, we can obtain the solution of (4.51) by direct formula

(mw)*** = A7 (mf)* — B(mw)* — C(mw)*™),
(4.52)
m—1)N+1<k<mN -1.

Applying formula mn,; = Y5, (k+1—-i)(mp);t2,(m— 1N +1 <k <mN —
1, mNm-1)n = MNn-1)n+1 = 0, We can obtain

MNgyq — 2(mn)y + mny_4q
72

mpy, = ,(m—1)N+1<k<mN-1. (4.53)

In the second stage, we will obtain {mp, }¥=1 by formulas (4.49) and (4.53). Finally,
in the third stage, we will obtain {{muf}¥_,}_, by formulas (4.48) and (4.49). The

errors are computed by
1

2
= 2
mky = (m— 1)N<k<mN<Z [ute, %) — mug] ) ) (4.54)

E, = _
Mo (m—l)Nr-Pl%)liSmN—llp(tk) mpy/,

where u(t, x),p(t) represent the exact solution, muk represent the numerical
solutions at (t, x,) and mp, represent the numerical solutions at t;. The numerical
results are given in the following table.

Table 4.3.

Error Analysis for Difference Schemes (4.42) and (4.50)

Errorr N=M=20 N=M=40 N=M=80 N=M=160

1E, 1.1609 0.7991 0.4562 0.2424
1E, 0.5665 0.2845 0.1384 0.0678
2E, 2.3541 2.3087 1.4187 0.7631
2E, 0.5251 0.3449 0.1957 0.1020
3E, 2.5509 4.6543 3.3288 1.8975

3E, 0.7032 0.2679 0.2075 0.1240
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CHAPTER YV

Conclusion

This thesis is devoted to the time-dependent source identification problems for
delay hyperbolic differential equations with unknown parameter p(t). The following
results are established:

* The history of direct and inverse boundary value problems for delay hyperbolic
differential equations is considered.

* Fourier series, Laplace transform and Fourier transform methods are applied for the
solution of six identification problems for delay hyperbolic differential equations.

» The main theorems on the stability estimates for the solution of the time-dependent
source identification problems for delay hyperbolic differential equations are
established.

* The first order of accuracy difference schemes for the approximate solution of the
one dimensional time-dependent source identification problems for delay hyperbolic
differential equations with local and non-local conditions are given.

* The Matlab implementation of these difference schemes is presented.

* The theoretical statements for the solution of these difference schemes are supported

by the results of numerical examples.

Our Future Plan is

* Investigate a high order of accuracy absolute stable difference schemes for the
numerical solution of the time-dependent SIP for the DHE.
* Study the numerical realization for the numerical solution of two and three

dimensional time-dependent SIP for the DHE.
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Matlab Implementation of one Dimension First Order of Accuracy Difference

Schemes of Problem (4.1)

function pb1(N,M)

h=pi/M;tau=pi/N;
a=(1/(tau"2))+(2/(h"2));
e=-2/(tau”2);

b=-1/(h"2);

g=1/(tau”2);

d=0;

for i=1:M-1;
d=d+h*sin(i*h);

end;
z=2*(cos(h)-1)/(d*h);
A=zeros(M+1,M+1);

for i=2:M;

for j=2:M;
A(i,j)=z*sin((i-1)*h);
end;

end;

for i=2:M
A(i,i)=a+(z*sin((i-1)*h));
end;

for i=2:M-1;
A(i,i+1)=b+(z*sin((i-1)*h));
end;

for i=3:M;
A(i,i-1)=b+(z*sin((i-1)*h));
end;
A(1,1)=1;A(M+1,M+1)=1;A(2,1)=b;A(M,M+1)=b;
A

B=zeros(M+1,M+1);

for n=2:M;

B(n,n)=¢;

end;

B;

C=zeros(M+1,M+1);

for n=2:M;

C(n,n)=g;

end;

(0%

fill=zeros(M+1,1);

for j=1:M+1,;

for k=2:N;

fii1(j,k)=((4*(cos(h)-1)/(d*(h2)))-1)*sin(k*tau)*sin((j-1)*h);

end;



end;

fiil;

G=inv(A);
W1=zeros(M+1,1);
for j=1:M+1,;
W1(j,1)=0;
W1(j,2)=(tau)*sin((j-1)*h);
for k=3:N+1;
W1(;,K)=G*(-(B*W1(;,k-1))-(C*W1(:,k-2))+fiil(:,k-1));
end;

end;

for k=2:N;

D=0;

for j=1:M-1,
s1(j)=D+(W1(j,k+1)-2*(W1(j,k))+W1(j,k-1));
D=s1(j);

end;
pl(k)=(2*sin((k+1)*tau)-4*sin(k*tau)+2*sin((k-1)*tau)-(h*D))/(d*(tau"2));
end;

p1(k);
L=zeros(M+1,M+1);
for i1=2:M;

for j=2:M;

L(i,j)=0;

end;

end;

for i=2:M;

L(i,i)=a;

end;

for i=2:M-1;
L(i,i+1)=b;

end;

for i=3:M;
L(i,i-1)=b;

end;

L(1,1)=1;
L(M+1,M+1)=1;

L;
B=zeros(M+1,M+1);
for n=2:M;

B(n,n)=¢;

end

B;
C=zeros(M+1,M+1);
for n=2:M;
C(n,n)=g;

end;

C;
fill=zeros(M+1,1);
for j=1:M+1,;



for k=2:N;
x=(j-1)*h;
fii1(),k)=(p1(k)*sin(x))-sin(k*tau)*sin(x);
end;

end;

fiil;

G=inv(L);
ul=zeros(M+1,1);
for j=1:M+1,;
x=(j-1)*h;
ul(j,1)=0;
ul(j,2)=(tau)*sin(x);
end;

for k=3:N+1,;

ul(;,k)=G*(-(B*ul(:k-1))-(C*ul(: k-2))+fiil(:,k-1));

end;

%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE"\%\%\%\%\%\%\%\%

for j=1:M+1;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;
es1(j,k)=(2*sin(t)-t)*sin(x);
eul(j,k)=sin(t)*sin(x);

end,

end;

for k=2:N;

t=(k-1)*tau;

epl(k)=sin(t);

end;

%ABSOLUTE DIFFERENCES;
absdifWl=max(max(abs(es1-W1)));
absdiful=max(max(abs(eul-ul)));
absdifpl=max(max(abs(epl-pl)));
display([absdifW1,absdiful,absdifpl])

%SECOND STEP;
fii2z=zeros(M+1,1);
for j=2:M;
for k=2:N;
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fii2(j,K)=((0.01)/hA2)*(WL(j+1,K)-2*WL(j, K)+WL(j-1,k))+(((4*(cos(h)-1)/(d*(h"2)))-

1)*sin((k+N)*tau)-((0.01)*sin(k*tau)))*sin((j-1)*h);

end;

end;

fii2;

G=inv(A);

W2=zeros(M+1,1);

for j=1:M+1,;
W2(j,1)=W1(j,N+1);
W2(j,2)=2*W1(j,N+1)-W1(j,N);
for k=3:N+1;
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W2(:,K)=G*(-(B*W2(:,k-1))-(C*W2(:,k-2))+fii2(:,k-1));
end;

end;

for k=2:N;

D=0;

for j=1:M-1,
s2(j)=D+(W2(j,k+1)-2*(W2(j,k))+W2(j,k-1));
D=s2(j);

end;
p2(k)=(2*sin((k+N+1)*tau)-4*sin((k+N)*tau)+2*sin((k+N-1)*tau)-(h*D))/(d*(tau"2
);

end,

p2(Kk);

fii2z=zeros(M+1,1);

for j=2:M;

for k=2:N;

x=(j-1)*h;
fi12(J,k)=(p2(k)-sin((k+N)*tau)-(0.01)*sin(k*tau))*sin(x)+((0.01)/h"2)*(W1(j+1,k)-2
*W1(j,k)+W1(j-1,k));

end,

end;

fii2;

G=inv(L);

u2=zeros(M+1,1);

for j=1:M+1,;

x=(j-1)*h;

u2(j,1)=ul(j,N+1);

u2(j,2)=2*ul(j,N+1)-ul(j,N);

end;

for k=3:N+1,
u2(:,k)=G*(-(B*u2(:,k-1))-(C*u2(:,k-2))+fii2(:,k-1));
end,

%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE"\%\%\%\%\%\%\%\%
for j=1:M+1;

for k=1:N+1;

t=(k+N-1)*tau;

x=(j-1)*h;

es2(j,K)=(2*sin(t)-t)*sin(x);

eu2(j,k)=sin(t)*sin(x);

end;

end;

for k=2:N;

t=(k+N-1)*tau;

ep2(k)=sin(t);

end;

%ABSOLUTE DIFFERENCES;
absdifWw2=max(max(abs(es2-W2)));
absdifu2=max(max(abs(eu2-u2)));
absdifp2=max(max(abs(ep2-p2)));
display([absdifW2,absdifu2,absdifp2])
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%THIRD STEP;

fii3=zeros(M+1,1);

for j=2:M;

for k=2:N;
fii3(j,k)=((0.01)/h"2)*(W2(j+1,k)-2*W2(j, k) +W2(j-1,k))+(((4*(cos(h)-1)/(d*(h"2)))-
1)*sin((k+(2*N))*tau)-((0.01)*sin(k*tau)))*sin((j-1)*h);
end,

end;

fii3;

G=inv(A);

W3=zeros(M+1,1);

for j=1:M+1,;

W3(j,1)=W2(j,N+1);

W3(j,2)=2*W2(j,N+1)-W2(j,N);

for k=3:N+1;
W3(:,K)=G*(-(B*W3(:,k-1))-(C*W3(:,k-2))+fii3(:,k-1));
end;

end;

for k=2:N;

D=0;

for j=1:M-1,
s3(j)=D+(W3(j,k+1)-2*(W3(j,k))+W3(j,k-1));

D=s3(j);

end;
p3(k)=(2*sin((k+2*N+1)*tau)-4*sin((k+2*N)*tau)+2*sin((k+2*N-1)*tau)-(h*D))/(d
*(tau"2));

end;

p3(K);

fii3=zeros(M+1,1);

for j=2:M;

for k=2:N;

x=(j-1)*h;
fii3(j,K)=(p3(K)-sin((k+2*N)*tau)-(0.01)*sin(k*tau))*sin(x)+((0.01)/h"2)*(W2(j+1,k
)-2*W2(j,k)+W2(j-1,k));

end;

end;

fii3;

G=inv(L);

u3=zeros(M+1,1);

for j=1:M+1,;

x=(j-1)*h;

u3(j,1)=u2(j,N+1);

u3(j,2)=2*u2(j,N+1)-u2(j,N);

end,

for k=3:N+1,;
u3(;,K)=G*(-(B*u3(;,k-1))-(C*u3(:,k-2))+fii3(;,k-1));
end;

%\%\%\%\%\%'EXACT SOLUTION OF THIS PDE"\%\%\%\%\%\%\%\%
for j=1:M+1,;

for k=1:N+1;



t=(k+2*N-1)*tau;

x=(j-1)*h;
es3(j,K)=(2*sin(t)-t)*sin(x);
eu3(j,k)=sin(t)*sin(x);

end;

end;

for k=2:N;

t=(k+2*N-1)*tau;

ep3(K)=sin(t);

end,

%ABSOLUTE DIFFERENCES;
absdifWw3=max(max(abs(es3-W3)));
absdifu3=max(max(abs(eu3-u3)));
absdifp3=max(max(abs(ep3-p3)));
display([absdifW3,absdifu3,absdifp3])
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Appendix B
Matlab Implementation of one Dimension First Order of Accuracy Difference
Schemes of Problem (4.19)

function pb2(N,M)

h=pi/M;tau=pi/N;
a=(1/(tau"2))+(2/(h"2));
e=-2/(tau2);

b=-1/(h"2);

g=1/(tau™2);
z=2*(cos(h)-1)/(pi*h);
A=zeros(M+1,M+1);

for i=2:M;

for j=2:M;
A(i,J)=z*cos((i-1)*h);
end,

end;

fori=2:M
A(i,i)=a+(z*cos((i-1)*h));
end,

for i=2:M-1;
A(i,i+1)=b+(z*cos((i-1)*h));
end;

for i=3:M;
A(i,i-1)=b+(z*cos((i-1)*h));
end,
A(1,1)=-1;A(1,2)=1;A(M+1,M+1)=1;A(M+1,M)=-1;
A(2,1)=b;A(M,M+1)=b;
A

B=zeros(M+1,M+1);

for n=2:M;

B(n,n)=e;

end;

B;

C=zeros(M+1,M+1);

for n=2:M;

C(n,n)=g;

end;

G,

fill=zeros(M+1,1);

for j=2:M;

for k=2:N; fiil(j,k)=((2*(cos(h)-1)/(h"2))-1)*sin(k*tau)*cos((j-1) *h)-2*sin(k*tau);
end;

end;

fiil;

G=inv(A);
W1l=zeros(M+1);

for j=1:M+1,;
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W1(j,1)=0;

W1(j,2)=(tau)*(1+cos((j-1)*h));

for k=3:N+1;
W1(:,k)=G*(-(B*W1(:,k-1))-(C*W1(:,k-2))+fiil(:,k-1));
end;

end;

for k=2:N;

D=0;

for j=1:M-1,
s1(j)=D+(W1(j,k+1)-2*(W1(j,k))+W1(j,k-1));
D=s1(j);

end;
pl(k)=((sin((k+1)*tau)-2*sin(k*tau)+sin((k-1)*tau))/((tau)"2))-((h*D)/(pi*(tau)"2));
end;

L=zeros(M+1);

for i=2:M;

L(i,i)=4;

end;

for i=2:M-1;

L(i,i+1)=b;

end;

for i1=3:M;

L(i,i-1)=b;

end;

L(1,1)=-1;L(1,2)=1;

L(M+1,M+1)=1;L(M+1,M)=-1;
L(2,1)=b;L(M,M+1)=b;

L;
B=zeros(M+1,M+1);
for n=2:M;

B(n,n)=¢;

end

B;
C=zeros(M+1,M+1);
for n=2:M;
C(n,n)=g;

end;

C;

fill=zeros(M+1);
for j=2:M;

for k=2:N;
x=(j-1)*h;
fiil(j,k)=(p1(K)*(1+cos(x)))-sin(k*tau)*(2+cos(x));
end;

end;

fiil;

G=inv(L);
ul=zeros(M+1);

for j=1:M+1,;
x=(j-1)*h;
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ul(j,1)=0;

ul(j,2)=(tau)*(1+cos(x));

end;

for k=3:N+1,;

ul(;,k)=G*(-(B*ul(:k-1))-(C*ul(: k-2))+fiil(:,k-1));
end;

%Nn%n%n%n%n%?EXACT SOLUTION OF THIS PDE?”n%n%n%n%n%n%n%n%
for j=1:M+1,;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;

es1(j,k)=(2*sin(t)-t)*(1+cos(x));
eul(j,k)=sin(t)*(1+cos(x));

end;

end;

for k=2:N;

t=(k-1)*tau;

epl(k)=sin(t);

end;

%ABSOLUTE DIFFERENCES;
absdifWl=max(max(abs(es1-W1)));
absdiful=max(max(abs(eul-ul)));
absdifpl=max(max(abs(epl-pl)));
display([absdifW1,absdiful,absdifpl])

%SECOND STEP;

fii2=zeros(M+1,1);

for j=2:M;

for k=2:N;
fii2(j,k)=((0.01)/h"2)*(W1(j+1,k)-2*W1(j,k)+W1(j-1,k))+((2*(cos(h)-1)/(h"2)-1)*(si
n((k+N)*tau)-((0.01)*sin(k*tau)))*cos((j-1)*h))-2*sin((k+N)*tau);
end;

end;

fii2;

G=inv(A);

W2=zeros(M+1);

for j=1:M+1,;

W2(j,1)=W1(j,N+1);
W2(j,2)=2*W1(j,N+1)-W1(j,N);

for k=3:N+1,;
W2(:,k)=G*(-(B*W2(:,k-1))-(C*W2(:,k-2))+fii2(:,k-1));
end;

end;

for k=2:N;

D=0;

for j=1:M-1,
s2(j)=D+(W2(j,k+1)-2*(W2(j,k))+W2(j,k-1));
D=s2(j);

end;
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p2(kK)=((sin((k+N+1)*tau)-2*sin((k+N)*tau)+sin((k+N-1)*tau))/((tau)"2))-((h*D)/(pi
*(tau)"2));

end;

fii2=zeros(M+1);

for j=2:M;

for k=2:N;

x=(j-1)*h;
fii2(j,K)=p2(k)*(1+cos(x))-2*sin((k+N)*tau)-sin((k+N)*tau)*cos(x)-(0.01) *sin(k*tau
)*cos(x)+(((0.01)/h"2)*(W1(j+1,k)-2*W1(j,k)+W1(j-1,k)));

end;

end;

fii2;

G=inv(L);

u2=zeros(M+1);

for j=1:M+1,;

x=(j-1)*h;

u2(j,1)=ul(j,N+1);

u2(j,2)=2*ul(j,N+1)-ul(j,N);

end;

for k=3:N+1;

u2(:,k)=G*(-(B*u2(:,k-1))-(C*u2(:,k-2))+fii2(:,k-1));

end;

%Nn%n%n%n%n%?EXACT SOLUTION OF THIS PDE?n%n%n%n%n%n%n%n%
for j=1:M+1,;

for k=1:N+1,

t=(k+N-1)*tau;

x=(j-1)*h;

es2(j,k)=(2*sin(t)-t)*(1+cos(x));

eu2(j,k)=sin(t)*(1+cos(x));

end;

end;

for k=2:N;

t=(k+N-1)*tau;

ep2(k)=sin(t);

end;

%ABSOLUTE DIFFERENCES;

absdifWw2=max(max(abs(es2-W2)));

absdifu2=max(max(abs(eu2-u2)));

absdifp2=max(max(abs(ep2-p2)));

display([absdifW2,absdifu2,absdifp2])

%THIRD STEP;

fii3=zeros(M+1,1);

for j=2:M;

for k=2:N;
fii3(j,k)=((0.01)/h"2)*(W2(j+1,k)-2*W2(j,k)+W2(j-1,k))+((2*(cos(h)-1)/(h"2)-1)*(si
n((k+(2*N))*tau)-((0.01)*sin(k*tau)))*cos((j-1)*h))-2*sin((k+(2*N))*tau);
end;

end;

fii3;
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G=inv(A);

W3=zeros(M+1);

for j=1:M+1,;

W3(j,1)=W2(j,N+1);

W3(j,2)=2*W2(j,N+1)-W2(j,N);

for k=3:N+1,;
W3(;,K)=G*(-(B*W3(:,k-1))-(C*W3(:,k-2))+fii3(:,k-1));
end,

end;

for k=2:N;

D=0;

for j=1:M-1,
$3(j)=D+(W3(j,k+1)-2*(W3(j,k))+W3(j,k-1));

D=s3(j);

end;
p3(K)=((sin((k+2*N+1)*tau)-2*sin((k+2*N)*tau)+sin((k+2*N-1)*tau))/((tau)"2))-((h
*D)/(pi*(tau)"2));

end,

fii3=zeros(M+1);

for j=2:M;

for k=2:N;

x=(j-1)*h;
fii3(j,k)=p3(k)*(1+cos(x))-2*sin((k+2*N)*tau)-sin((k+2*N)*tau) *cos(x)-(0.01)*sin(
k*tau)*cos(x)+(((0.01)/h"2)*(W2(j+1,k)-2*W2(j,kK)+W2(j-1,k)));
end;

end,

fii3;

G=inv(L);

u3=zeros(M+1);

for j=1:M+1;

x=(j-1)*h;

u3(j,1)=u2(j,N+1);

u3(j,2)=2*u2(j,N+1)-u2(j,N);

end,

for k=3:N+1,;
u3(:,K)=G*(-(B*u3(:,k-1))-(C*u3(:,k-2))+fii3(;,k-1));
end;

%n%n%n%n%n%?EXACT SOLUTION OF THIS PDE?”n%n%n%n%n%n%n%n%
for j=1:M+1,;

for k=1:N+1;

t=(k+2*N-1)*tau;

x=(j-1)*h;

es3(j,k)=(2*sin(t)-t)*(1+cos(x));
eu3(j,k)=sin(t)*(1+cos(x));

end;

end;

for k=2:N;

t=(k+2*N-1)*tau;

ep3(k)=sin(t);

end;



%ABSOLUTE DIFFERENCES;
absdifWw3=max(max(abs(es3-W3)));
absdifu3=max(max(abs(eu3-u3)));
absdifp3=max(max(abs(ep3-p3)));
display([absdifW3,absdifu3,absdifp3])
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Appendix C
Matlab Implementation of one Dimension First Order of Accuracy Difference
Schemes of Problem (4.37)

function pb3(N,M)

h=pi/M;tau=pi/N;
a=(1/(tau"2))+(2/(h"2));
e=-2/(tau”2);

b=-1/(h"2);

g=1/(tau"2);
z=2*(cos(2*h)-1)/(pi*h);
A=zeros(M+1,M+1);

for i=2:M;

for j=2:M;
A(i,j)=z*cos(2*(i-1)*h);
end,

end;

fori=2:M
A(i,))=a+(z*cos(2*(i-1)*h));
end,

for i=2:M-1;
A(i,i+1)=b+(z*cos(2*(i-1)*h));
end;

for i=3:M;
A(i,i-1)=b+(z*cos(2*(i-1)*h));
end,
A(1,1)=1;A(1,M+1)=-1;A(M+1,1)=-1;A(M+1,2)=1;A(M+1,M)=1;A(M+1,M+1)=-1;
A(2,1)=b;A(M,M+1)=b;

A

B=zeros(M+1,M+1);

for n=2:M;

B(n,n)=¢;

end;

B;

C=zeros(M+1,M+1);

for n=2:M;

C(n,n)=g;

end;

G,

fill=zeros(M+1,1);

for j=2:M;

for k=2:N;
fiil(j,k)=((2*(cos(2*h)-1)/(h"2))-1)*sin(2*k*tau)*cos(2*(j-1) *h)-5*sin(2*k*tau);
end;

end;

fiil;

G=inv(A);

W1=zeros(M+1);
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for j=1:M+1,;

W1(j,1)=0;
W1(j,2)=2*(tau)*(1+cos(2*(j-1)*h));

for k=3:N+1,;
W1(;,K)=G*(-(B*W1(:;,k-1))-(C*WL1(:,k-2))+fiil(:,k-1));
end;

end,

for k=2:N;

D=0;

for j=1:M-1,
s1(j)=D+(W1(j,k+1)-2*(W1(j,k))+W1(j,k-1));
D=s1(j);

end;
pL(k)=((sin(2*(k+1)*tau)-2*sin(2*k*tau)+sin(2*(k-1)*tau))/((tau)"2))-((h*D)/(pi*(ta
u)*2));

end;

L=zeros(M+1);

for i=2:M;

L(i,i)=2;

end;

for i=2:M-1;

L(i,i+1)=b;

end;

for i=3:M;

L(i,i-1)=b;

end;

L(1,1)=1;L(1,M+1)=-1;
L(M+1,1)=-1;L(M+1,2)=1;L(M+1,M)=1;L(M+1,M+1)=-1;
L(2,1)=b;L(M,M+1)=b;

L;

B=zeros(M+1,M+1);

for n=2:M;

B(n,n)=¢;

end

B;

C=zeros(M+1,M+1);

for n=2:M;

C(n,n)=g;

end;

C

fill=zeros(M+1);

for j=2:M;

for k=2:N;

x=(j-1)*h;
fiil(j,k)=(p1(K)*(1+cos(2*x)))-sin(2*k*tau)*(5+cos(2*x));
end,

end;

fiil;

G=inv(L);

ul=zeros(M+1);
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for j=1:M+1,;

x=(j-1)*h;

ul(j,1)=0;

ul(j,2)=2*(tau)*(1+cos(2*x));

end;

for k=3:N+1,;
ul(:,k)=G*(-(B*ul(:,k-1))-(C*ul(:,k-2))+fiil(:,k-1));
end;

%n%n%n%n%n%?EXACT SOLUTION OF THIS PDE?n%n%n%n%n%n%n%n%
for j=1:M+1,;

for k=1:N+1;

t=(k-1)*tau;

x=(j-1)*h;
es1(j,k)=((5/4)*sin(2*t)-(1/2)*t)*(1+cos(2*x));
eul(j,k)=sin(2*t)*(1+cos(2*x));

end;

end;

for k=2:N;

t=(k-1)*tau;

epl(k)=sin(2*t);

end;

%ABSOLUTE DIFFERENCES;
absdifWl=max(max(abs(es1-W1)));
absdiful=max(max(abs(eul-ul)));
absdifpl=max(max(abs(epl-pl)));
display([absdifW1,absdiful,absdifpl])

%SECOND STEP;

fii2=zeros(M+1,1);

for j=2:M;

for k=2:N;
fii2(j,k)=((-0.01)/h"2)*(W1(j+1,k)-2*W1(j,K)+W1(j-1,k))+((2*(cos(2*n)-1)/(h"2)-1)
*(sin(2*(k+N)*tau)-(4*(0.01)*sin(2*k*tau)))*cos(2*(j-1)*h))-5*sin(2*(k+N)*tau);
end;

end;

fii2;

G=inv(A);

W2=zeros(M+1);

for j=1:M+1;

W2(j,1)=W1(j,N+1);
W2(j,2)=2*W1(j,N+1)-W1(j,N);

for k=3:N+1,;
W2(:,K)=G*(-(B*W2(:,k-1))-(C*W2(:,k-2))+fii2(:,k-1));
end;

end;

for k=2:N;

D=0;

for j=1:M-1,
s2(j)=D+(W2(j,k+1)-2*(W2(j,k))+W2(j,k-1));
D=s2(j);

end;
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p2(K)=((sin(2*(k+N+1)*tau)-2*sin(2*(k+N)*tau)+sin(2*(k+N-1)*tau))/((tau)"*2))-((h
*D)/(pi*(tau)*2));

end;

fii2=zeros(M+1);

for j=2:M;

for k=2:N;

x=(J-1)*h;
fii2(j,k)=p2(k)*(1+cos(2*x))-5*sin(2*(k+N)*tau)-sin(2*(k+N)*tau)*cos(2*x)-4*(0.0
1)*sin(2*k*tau)*cos(2*x)-(((0.01)/h"2)*(W1(j+1,k)-2*W1(j,k)+W1(j-1,k)));

end;

end;

fii2;

G=inv(L);

u2=zeros(M+1);

for j=1:M+1,;

x=(j-1)*h;

u2(j,1)=ul(j,N+1);

u2(j,2)=2*ul(j,N+1)-ul(j,N);

end;

for k=3:N+1,;

u2(:,k)=G*(-(B*u2(:,k-1))-(C*u2(:,k-2))+fii2(:,k-1));

end,

%n%n%n%n%n%?EXACT SOLUTION OF THIS PDE?n%n%n%n%n%n%n%n%
for j=1:M+1;

for k=1:N+1;

t=(k+N-1)*tau;

x=(j-1)*h;

es2(j,k)=((5/4)*sin(2*t)-(1/2)*t)*(1+cos(2*X));

eu2(j,k)=sin(2*t)*(1+cos(2*x));

end,

end;

for k=2:N;

t=(k+N-1)*tau;

ep2(k)=sin(2*t);

end;

%ABSOLUTE DIFFERENCES;

absdifWw2=max(max(abs(es2-W2)));

absdifu2=max(max(abs(eu2-u2)));

absdifp2=max(max(abs(ep2-p2)));

display([absdifW2,absdifu2,absdifp2])

%THIRD STEP;

fii3=zeros(M+1,1);

for j=2:M;

for k=2:N;
fii3(j,k)=((-0.01)/h"2)*(W2(j+1,k)-2*W2(j,k)+W2(j-1,k))+((2*(cos(2*n)-1)/(h"2)-1)
*(sin(2*(k+2*N)*tau)-(4*(0.01)*sin(2*k*tau)))*cos(2*(j-1)*h))-5*sin(2*(k+2*N)*t
au);

end;

end;

fii3;
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G=inv(A);

W3=zeros(M+1);

for j=1:M+1,;

W3(j,1)=W2(j,N+1);

W3(j,2)=2*W2(j,N+1)-W2(j,N);

for k=3:N+1,;
W3(;,K)=G*(-(B*W3(:,k-1))-(C*W3(:,k-2))+fii3(:,k-1));
end,

end;

for k=2:N;

D=0;

for j=1:M-1,
$3(j)=D+(W3(j,k+1)-2*(W3(j,k))+W3(j,k-1));

D=s3(j);

end;
p3(K)=((sin(2*(k+2*N+1)*tau)-2*sin(2*(k+2*N)*tau)+sin(2*(k+2*N-1)*tau))/((tau)
72))-((h*D)/(pi*(tau)"2));

end,

fii3=zeros(M+1);

for j=2:M;

for k=2:N;

x=(j-1)*h;
fii3(j,K)=p3(k)*(1+cos(2*x))-5*sin(2*(k+2*N)*tau)-sin(2*(k+2*N)*tau) *cos(2*x)-4
*(0.01)*sin(2*k*tau)*cos(2*x)-(((0.01)/h"2)*(W2(j+1,k)-2*W2(j,k)+W2(j-1,k)));
end;

end,

fii3;

G=inv(L);

u3=zeros(M+1);

for j=1:M+1;

x=(j-1)*h;

u3(j,1)=u2(j,N+1);

u3(j,2)=2*u2(j,N+1)-u2(j,N);

end,

for k=3:N+1,;
u3(:,K)=G*(-(B*u3(:,k-1))-(C*u3(:,k-2))+fii3(;,k-1));
end;

%Nn%n%n%n%n%?EXACT SOLUTION OF THIS PDE?n%n%n%n%n%n%n%n%
for j=1:M+1,;

for k=1:N+1;

t=(k+2*N-1)*tau;

x=(j-1)*h;
es3(j,k)=((5/4)*sin(2*t)-(1/2)*t)*(1+cos(2*x));
eu3(j,k)=sin(2*t)*(1+cos(2*x));

end;

end;

for k=2:N;

t=(k+2*N-1)*tau;

ep3(K)=sin(2*t);

end;



%ABSOLUTE DIFFERENCES;
absdifWw3=max(max(abs(es3-W3)));
absdifu3=max(max(abs(eu3-u3)));
absdifp3=max(max(abs(ep3-p3)));
display([absdifW3,absdifu3,absdifp3])
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