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Abstract 

 

INVESTIGATION OF THE EXPRESSION OF LNCRNAS IN HUMAN 

OOCYTES FROM PATIENTS WITH POLYCYSTIC OVARIES 

 

Mehmet AKTAN 

MSc, Department of Medical Biology and Genetics 

June, 2022, 45 pages 

   

 

Background: Polycystic ovary syndrome (PCOS) is a widespread 

premenopausal female condition resulting from signs and symptoms of excess 

androgen and ovarian abnormalities. It affects 6% to 20% of women who have not 

reached menopause, making it the widespread metabolic and endocrine disease 

affecting woman who is in the age of reproductive. A high number of women present 

to fertility clinics for PCOS related problems each year. Altered gene expression 

levels in ovarian and oocyte samples may be associated with infertility. In this study, 

the regulatory effects of lncRNAs on changing gene expression in human oocytes 

donated by patients with polycystic ovaries and patients without polycystic ovaries 

were examined.  

Methods: In total, 13 meiosis II stage (MII) oocytes were collected from 

patients who applied to In Vitro Fertilization (IVF) Clinic at the Near East Hospital, 

Nicosia, Cyprus. Oocytes were used to examine the expression levels of 3 lncRNAs 

targeting the CYP11A1 gene. RNAs were individually extracted from each oocyte. 

Expression data were obtained for each oocyte using the real-time polymerase chain 

reaction (PCR) using the cDNA samples obtained from each RNA from each oocyte. 

Statistical analysis was performed and a P value of 0.05 were considered as 

statistically significant. 

Result: The samples consisted of seven oocytes from patients with polycystic 

ovaries and six from patients without signs of polycystic ovaries. The real-time PCR 

results showed that there was no statistically significant (p>0.05) difference in the 

expression levels of RP11-573D15.8, RP11-156E8.1, and lnc-CYP11A1-1 in 

patients with polycystic ovaries compared to the patients without polycystic ovaries. 
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Conclusions: The expression of CYP11A1, which was previously shown to 

be upregulated in oocytes obtained from patients with polycystic ovaries, is not 

implied to be regulated by RP11-573D15.8, RP11-156E8.1 and lnc-CYP11A1-1 

since the expression levels of these lncRNAs did not show any variation in oocyte 

samples between each group. In order to elucidate the up-regulated gene expression 

in the CYP11A1 gene associated with the development of polycystic ovary 

syndrome, different target lncRNA expression should be examined. In this way, 

more information about the development of polycystic ovary syndrome can be 

obtained. 

 

Keywords: PCOS, human oocytes, lncRNAs, gene expression
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Chapter I 

Introduction 

Polycystic ovary syndrome (PCOS) is a very common female condition 

resulting from the combination of signs of excess hormone androgen 

(hyperandrogenemia) with ovarian dysfunction (polycystic ovarian morphology 

and/or oligo-ovulation). PCOS patients also face with insulin resistance and insulin 

excess in the bloodstream, that lead to elevated risk of developing diabetes mellitus 

(DM). It is also related to various pregnancy-related conditions, endometrial tumors, 

and cardio-vascular diseases (Lizneva et al., 2018). The prevalence of PCOS in 

women who have not yet reached menopause is between 6% according to the old 

criteria and 20% according to the new criteria. This makes it the most common 

endocrine and metabolic disorder in women of reproductive age (Escobar-Morreale, 

2022). 

 

1.1. Pathophysiology of PCOS 

PCOS is an endocrine and multifactorial condition, which is characterized by 

hyperandrogenism, obesity, and insulin resistance. Intraovarian androgen excess 

stimulates the maturation of small-sized follicles while inhibiting the selection of a 

dominant follicle. The resulting excess of small follicles that are arrested during 

development gives the ovaries a "polycystic" appearance. Although PCOS was 

thought to be a syndrome related to hypothalamic-pituitary gonadotropin secretion 

disorder at first (Jonard, 2004), it is now proving that PCOS is basically a disorder of 

ovarian steroidogenesis. 

 

1.1.1 PCOS Symptoms 

Hirsutism is a medical name for excessive hair growth. It develops due to 

high androgen levels. The Ferriman-Gallwey system, which measures hair growth in 

androgen-sensitive areas, is often used to determine the level of hirsutism. Although 

it is a common symptom, not every hyperandrogenic juvenile is facing hirsutism, 

because the pilosebaceous units are insensitive to androgens. Some of the young 

adolescents whose hyperandrogenism is not fully developed may not have hirsutism. 

However, the opposite is also possible. The hairiness that occurs when androgen is at 

normal levels is defined as "idiopathic hirsutism" (Spritzer et al., 2016). 
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Acne vulgaris is an important problem caused by hyperandrogenism in 

adolescents. The increased serum level of androgens increases sebum production. 

Genetic factors, diet, medications, and hyperandrogenism increase skin dysbiosis and 

increase acne and long-term skin damage (Carmina et al., 2022). 

Menstrual irregulations are also common in PCOS patients. The distinction 

between abnormal and physiological anovulation is often difficult, and clinical 

examination is often delayed because of this. The absence of a period after the age of 

14 or more than three years after the start of breast development is referred to as 

primary amenorrhea. Secondary amenorrhea is defined as an unnatural ovulation 

delay lasting more than 90 days, even if menstruation was previously experienced. 

Oligo-menorrhea is an infrequent delay in ovulation exceeding 39 days outside of the 

usual ovulation pattern. Studies show that androgen level is associated with long-

term infertility or PCOS (Pundir et al., 2020). 

Polycystic ovaries are fluid-filled sacs that are formed in the ovaries. 

Polycystic ovaries are very difficult to detect with ultrasound, especially in 

adolescents. Ultrasound is nowadays accepted as a tertiary method and now four 

different phenotypes associated with the syndrome are sought (Carmina et al., 2022). 

Obesity and hyperinsulinemia with insulin resistance strongly associated with 

PCOS although not included in a diagnostic criterion. These are acanthosis nigricans, 

metabolic syndrome, insomnia like sleeping problems, and fatty liver disease. In the 

long term, it causes problems such as heart diseases and diabetes mellitus (Ezeh et 

al., 2013; Pundir et al., 2020). Ten percent of PCOS patients aged 40 years suffer 

from diabetes mellitus and its complications (Otto-Buczkowska et al., 2018). Insulin 

resistance exacerbates hyperandrogenemia and aggravates chronic problems (Shaikh 

et al., 2014). 

 

1.2 Etiology of PCOS 

Although familial aggregation suggests that PCOS is genetically based, only 

a few genetic variants and mutations are associated with PCOS carriers in different 

populations, with only 10% showing PCOS heritability. PCOS is now recognized 

being a multigene condition that is characterized by genetic variations that combine 

with strong environmental variables that cause various PCOS phenotypes. (Escobar-

Morreale, 2022). PCOS risk is increased by an unhealthy life or agents of infection. 
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Insulin resistance and hyperinsulinemia, and its high levels disrupt the ovaries, 

causing androgen levels to rise, resulting in anovulation (Shaikh et al., 2014). 

Polycystic ovaries are associated with the hypothalamus-pituitary junction 

including hormones like luteinizing hormone (LH) and follicular stimulating 

hormone (FSH). It is not just related to genetic factors. It is also linked to 

environmental factors. Related genes and single nucleotide polymorphisms (SNPs) 

are responsible for disease progression. Databases associate PCOS with over 240 

SNPs. Polymorphism, non-coding RNAs and nucleotide mutations affect the 

expression of related genes (Chen & Fang, 2018). 

FSH receptors, androgen hormone receptors, LH receptors, and leptin 

receptors are the most common genes involved. A polymorphism within a gene may 

disrupt the metabolic process, resulting in ovarian abnormalities (Xita et al., 2002). 

StAR polymorphisms, FSHR polymorphisms, FTO polymorphisms, VDR 

polymorphisms, IR and IRS polymorphisms, and GnRHR polymorphisms have all 

been linked to PCOS. The progression and severity of PCOS worsen when insulin 

levels and androgen levels rise. Theca cells of the ovary are affected by 

hyperinsulinemia, which raises androgen levels. SHBG and IGFBP-1 production in 

the liver are reduced as a result of this disease. Increased testosterone levels, on the 

other hand, encourage the production of free fatty acids (FFAs) in the visceral 

adipose tissue (VAT), which causes increased insulin resistance (Chen & Fang, 

2018; Gambineri et al., 2022). PCOS patients have numerous 8mm cycts and about 

70 percent patients face with infertility and acne caused by elevated level of 

testosterone (Ye et al., 2020). Twenty percent of patients suffers from sleep apnea. 

Elevated levels of insulin hormone cause irregularity in the menstrual cycle which 

increases risk of infertility in older ages. Depression and anxiety are also common 

psychological disorders in patients. 

Aromatase, an one of the members of the complex Cytochromes P450 

(CYPs), is a steroidogenesis enzyme (in Steroidogenic pathway) that generally plays 

a key part in steroid conversion. It enables the body to convert testosterone to 

estrogen. Aromatase insufficiency causes a malfunction in the pathway, which 

prevents it from being converted. Because C19 does not convert to C18, this defect 

affects ovarian function and raises androgen levels. CYP1A1, CYP11A, CYP11B2, 

CYP17, CYP19A, CYP21, and CYP3A7 are aromatase genes that have been reported 

in PCOS datasets. Any cytochrome P450 abnormality increases the risk of PCOS 
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development (Joseph et al., 2015; Gambineri et al., 2022). Importantly, this study 

shows that the expression of CYP11A1 was significantly different in human oocytes 

donated by PCO patients (Al-Omar et al., 2020).  

 

1.3 Diagnostic criteria 

In 1935, Dr. Stein and Dr. Leventhal published the first complete description 

of Stein-Leventhal Syndrome, or another name known as PCOS. Due to its diverse 

clinical presentations, uncertain genesis, complex pathophysiology, and poor 

diagnosis, it has led to significant scientific controversy. U.S. National Institute of 

Health (NIH) criteria were established in 1990 in attempt to produce a 

comprehensive and detailed characterization to diagnose PCOS. Then, in 2003, an 

atelier in Rotterdam, Netherlands, built up the Rotterdam criteria, a next diagnostic 

criterion for PCOS (Franks, 2006). Out of the three criteria, this criterion needs the 

presence of two; atypical ovulation, hyperandrogenism, and/or polycystic ovarian 

morphology (>11 follicles in each ovary measuring between 2 and 8.99 mm) (Pundir 

et al., 2020). 

The diagnostic criteria for of Androgen Excess and Polycystic Ovary 

Syndrome Society (AES) were changed in 2006. The presence of hyperandrogenism 

in association with either oligo-ovulation or polycystic ovaries is required for the 

AES. The process of diagnostic standardization has certain challenges. First, 

ovulation is frequently erratic during early menarche. As a result, anovulation cannot 

be regarded conclusive evidence of the syndrome's occurrence. Second, in youths, 

transvaginal ultrasonography is not frequently performed, limiting ovary visibility, 

and hence excluding any invasive diagnosis of polycystic ovarian morphology. 

Third, there is just no agreement on the normal androgen levels, and there are little 

studies for normal androgen levels for females with ages 10-20. As a result, detecting 

androgen abnormalities is a difficult undertaking. Finally, cystic ovaries are difficult 

to separate from multi follicular ovaries, which are common in females with ages of 

10-20 years. As a result, the Pediatric Endocrinology Society has issued 

recommendations for the differential diagnosis of PCOS in both adults and 

adolescents. In 2012 and one year later, a new two set of adult and adolescent PCOS 

criteria have recently been proposed, one by an ESHRE and ASRM working group 

another by the Endocrine Society's clinical practice recommendations committee. 

While PCOS is still not openly visible by person of mature age standards, 
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serologically elevated androgen levels and progressively condensed hirsutism, in 

combination with abnormal ovulation for at least 24 months after menstrual 

cycles after age 15 years, or an ovarian volume>10 c m3, may be considered in 

adolescents. It is important to highlight, however, that none of the proposed criteria 

has been verified (Pundir et al., 2020).  

Table 1 summarizes the acceptable consensus (persistent hyperandrogenic 

oligoanovulation) for early PCOS diagnosis based on age and stage appropriate 

norms (Rosenfield et al., 2015; Liznevaet al., 2016). 

 

Table 1. 

Diagnostic criteria for PCOS 

Parameter/age 

group 

Adult Adolescence 

NIH 1990 Hyperandrogenism  

Ovaries Abnormality 

Abnormal Uterine Bleeding 

Persistent Symptoms For 1-2 

Years  

Abnormal For Age 

 

Rotterdam 2003 Hyperandrogenism  

Ovarial Abnormality  

Polycystic Ovary 

Hyperandrogenism  

Moderate-To-Severe Hirsutism 

Moderate-To-Severe Acne 

Vulgaris 

Androgen Excess 

& PCOS Society 

2006 

Hyperandrogenism  

Ovarial Abnormality And/Or 

Polycystic Ovary 

 

ESHRE/ASRM 

2012 

Hyperandrogenism  

Ovaries Abnormality  

Polycystic Ovary 

Clinical Or Biochemical 

Hyperandrogenism 

Ovaries Abnormality  

Polycystic Ovary 
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Table 

1(continued) 

  

Endocrine 

Society2013 

Clinical Or Biochemical 

Hyperandrogenism 

 

Ovaries Abnormality 

Clinical Or Biochemical 

Hyperandrogenism 

Ovaries Abnormality 

ESHRE: European Society for Human Reproduction and Embryology, ASRM: American 

Society for Reproductive Medicine; (Rosenfield, 2015; Lizneva. 2016). 

 

1.4 The association of the CYP11A1 gene and PCOS 

Cytochrome P450 in the family-11 with the subfamily-A, polypeptide 

1(CYP11A1) is a human protein encoded by the CYP11A gene. CYP11A1 catalyzes 

the cholesterol to pregnenolone, which is the first action in the biosynthesis of 

steroids. Many studies show the association of CYP11A1 polymorphisms and the 

development of PCOS, but other factors (such as lncRNA regulation) may affect 

transcription of this gene as well that may lead to pathophysiology of PCOS 

(Heidarzadehpilehrood et al., 2022; Zhang et al., 2012).  

 

1.5 LncRNAs 

Long non-coding RNAs and microRNAs (miR or miRNAs) are two of the 

most common types of non-coding/non-structural RNAs. They used to be classified 

as "junk" or "noise" but these days they are being discovered to have many critical 

roles. Both appear to have mostly regulatory functions, while much remains 

unknown about their functions. LncRNAs are at least 200 bases long and have a 

unique three-dimensional structure. They have a critical role in a variety of 

biomolecular processes, including epigenetic modifications, transcription, post-

transcriptional and post translational regulation of target genes (Mohr et al., 2021). 

 Gene expression is linked to mRNA stability in all living things. mRNAs can 

remain functional for a few minutes to several days in eukaryotes. Its stability and 

operational time help maintain cell homeostasis. The dynamics of mRNA lifespan 
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and quantity help to respond to changes in environmental factors, regulation of cell 

development, and gene regulation at the stage of cell differentiation. Levels of 

mRNA are maintained by the balance between production and decay. Across most 

eukaryotic cells, mRNA molecule decay begins with adenylation and capping of the 

messenger RNA, continued with exonuclease-mediated degrading (Bicknell & Ricci, 

2017). 

 However, the control of mRNA stability is primarily dependent on how 

regulatory variables influence multiple processes (deadenylation, decapping, and 

degradation), hence these aspects should be considered when studying mRNA 

stability regulation. Studies show that miRNAs can promote mRNA degradation by 

aiding endonucleases (Eulalio et al., 2008; Iwakawa & Tomari, 2015). 

Previously published studies showed that non-coding RNAs are associated 

with mRNA stability (Sebastian-delaCruz et al., 2021). Non-coding RNAs act as 

enhancer RNAs signaling RNAs, guide, decoy, scaffold. LncRNAs guide the target 

and bind directly to specific mRNAs, specific RNA-binding proteins, or microRNAs 

(miRNAs). LncRNAs can bind to miRNAs or miRNA-messenger RNA junctions, 

block miRNAs and additionally promote gene expression (Tu et al., 2021). 

RNA binding proteins (RBPs) are proteins that are critically important in the 

regulation of gene expression (Corley et al., 2020). LncRNAs can accelerate their 

degradation by binding RBPs to mRNA (Noh et al., 2018). However, it can also 

stabilize mRNA by preventing them from binding (Briata & Gherzi, 2020). It 

supports modulation of target genes by interacting with m6a machinery to lncRNAs 

(Huang et al., 2018; Wang et al., 2013) 

 

1.5.1 Biogenesis of the lncRNAs 

LncRNAs, like other RNAs, are transcribed by RNA polymerase 2. They 

have a 3' poly a tail and a 5′ methyl-cytosine cap (Zhang et al., 2019). They can be 

classed in a variety of ways based on their characters. It can be characterized as 

sense, anti-sense, bi-directional, intronic, or intergenic based on its genetic origin 

(Lanzafame et al., 2018). They are classed as nuclear, cytoplasmic, or mitochondrial 

based on their subcellular location. LncRNAs can be capped or polyadenylated, and 

they can also be created via splicing (Gourvest et al., 2019). Ribonuclease P can cut 

them to create 3' ends and turn them into a circular structure. This prevents them 

from degrading (Alessio et al., 2020; Chen, 2016). 



8 
 

 

LncRNA biogenesis can be regulated by various mechanisms. Epigenetic 

changes can affect lncRNA expression; for example, acetylation of the H3K56ac and 

CAF-1 can enhance the antisense of H3K56 lncRNA (Quinn & Chang, 2015). 

Exosomes, as well as slc22a2 and slc22a3, are capable of degrading them. In fact, 

their degradation involves Nrd1, Nrd3 like complexes inside the nuclear membrane, 

and protein XRN1 (5'-3' Exoribonuclease 1) in the cytoplasm (Quinn & Chang, 

2015). The UPF1 protein inhibits these processes as well (Sleutels et al., 2002). 

Although epigenetic factors seem to play a role in regulation, we are still at the 

beginning of understanding their detailed mechanisms. It seems that more research 

on lncRNA biogenesis needs to be study in the future (Liu et al., 2021). 

 

1.6 The statement of the problem 

PCOS is one of the most problematic phenotypes in women of reproductive 

age.  Pathophysiology of the syndrome increases the risk of being infertile. The 

studies suggest that expression of CYP11A gene which has a key role in 

steroidogenesis pathway is related with development of PCOS. The expression of 

CYP11A may be regulated by lncRNAs or epigenetic mechanism which finally affect 

the development of PCOS. Understanding gene regulation and the relationship of 

lncRNAs can help to develop early diagnosis and treatments. 

 

1.7 Significance of the study 

To date, there has not been any studies investigating the lncRNA expression 

levels in human oocytes donated by patients with polycystic ovaries. This study can 

provide information about lncRNA expression in oocytes and how it may be 

regulating CYP11A expression. Thus, the result of this study is important to 

understand the underlying mechanism of PCOS.  

 

1.8 Study Hypothesis and Goals 

LncRNAs are nucleotides that have a regulatory effect on gene expression. 

This study aims to examine the expression levels of lncRNAs that regulates CYP11A 

in human oocytes from PCO patients and oocytes from patients with no polycystic 

ovaries (control group). It was hypothesized that there would be a significant 

variation in the expression levels of lncRNAs in oocytes from patients with 

polycystic ovaries relative to the control group. 
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CHAPTER II 

 

Literature Review and Related Research 

 

2.1 Noncoding RNA Expression in the Ovaries and the Oocytes 

Studies show that miRNAs have a high expression in the mammalian ovaries 

(Tripurani et al., 2010; Ro et al., 2007; Ahn et al., 2010; Choi et al., 2007). A 

previously published study showed that microRNAs are involved in important 

processes in development of the ovary (Fitzgerald et al., 2015). It even showed a 

high expression in the ovary compared to organs such as the brain, hypothalamus, 

small intestine, and kidney (Fitzgerald et al., 2015). 

Studies are showing an association between miRNA expression and 

polycystic ovaries, for example over 120 miRNAs were overexpressed in PCOS 

patients, but only miR-320 showed a significantly lower expression profile (Sang et 

al. 2013). This study also showed that microRNA-93, microRNA-133, and 

microRNA-223 targeting the insulin receptor have a high expression profile in PCOS 

patients (Chen et al., 2013). 

Although micro-RNA expression has been studied for a long time, lncRNAs 

in the ovaries have only recently been investigated. However, the results show that 

lncRNAs are associated with PCOS, in such lncRNA NEAT1 had increased 

expression in the ovaries of PCOS patients (Sang & Zhang, 2020). It also shows the 

elevated expression of lncRNAs such as ZFAS1 (Zhu et al., 2020), MALAT1 (Zhang 

et al., 2020), and PVT1 (Liu et al., 2020) in granulosa cells. Regarding the 

steroidogenesis pathway, silenced OC1 long non-coding RNA promotes aromatase 

mRNA expression and increases estrogen production (Wu et al., 2020). In addition, 

the HUPCOS has been shown to affect the expression of CYP11 (Che et al., 2020). 

However, there is no studies investigating the expression of lncRNAs in human 

oocytes. 

 

2.2 LncRNA associated with CYP11 

RP11-573D15.8 is a lncRNA with a length of 1129 bases located on 

chromosome 3. According to the genomic origin, it is an antisense RNA and has 

three exons. It interacts with CYP11 mRNA with a high energy of -46.16 kcal/mol 

(lnc-HNRNPU-5:3, LNCipedia 2018). 
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RP11-156E8.1 is a 1739 base-long antisense lncRNA. It is found in 

chromosome 1 and can interact with CYP11 at -36.57 kcal/mol (lnc-TBCCD1-4:21, 

LNCipedia 2018). 

Lnc-CYP11A1-1 is a 612 bases long lncRNA that is antisense of CYP11A1 

and is located on chromosome 15. There is no direct interaction with CYP11. But 

similar sequence can establish a competitive relationship with ncRNAs targeting 

CYP11 (lnc-CYP11A1-1:1, LNCipedia 2018), and finally affect CYP11 gene 

expression level Competitive lncRNAs have similar sequences to target genes. In this 

way, they can bind to ncRNAs targeting the target gene and suppress the regulation 

of ncRNAs on the target gene (Dong et al., 2019). 
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Chapter III 

Materials and Methods 

CYP11A has an important role in steroidogenesis pathway. Previous studies 

had shown that statistically significant changes in the expression of this gene was 

detected in human oocytes from patients with polycystic ovaries. The objective of 

this research was to investigate the expression levels of lncRNAs that have possible 

regulatory effects on the expression pattern of CYP11A gene in human oocytes 

obtained from PCO patients and the control group. 

Oocytes were collected from Near East University Hospital In Vitro 

Fertilization (IVF) Center, Nicosia, Cyprus. Ethical approval was provided by the 

Near East University Institutional Review Board with the decision numbered 

YDU/2019/75-920. 

 

3.1 The sample collection and sample size   

A total of 13 oocytes were obtained at meiosis II stages (MII) from the IVF 

center. Seven oocytes were donated by PCO patients with polycystic ovaries, while 

six oocytes were donated by females without signs of polycystic ovaries. The 

samples were included in the control group if the females are non-obese (within the 

age range of BMI) with normal ovarian morphology and antral follicle count. The 

sample group included young females with polycystic ovaries with typical 

morphology and within the normal range of BMI (non-obese). These obtained human 

oocytes were then used to study expression of selected lncRNAs which possibly have 

regulatory roles on CYP11 gene. The main steps included extraction of RNA and 

synthesis of cDNA. Real-time PCR was performed for each sample in duplicates. For 

each PCR, a negative control with no cDNA sample was used. 

 

3.2 In Vitro Fertilization (IVF) 

In the first three days of the menstrual period, transvaginal ultrasound was 

applied to the patients and antral follicle count (AFC) was assessed. The follicles 

were expected to have a diameter of 2-9 mm. Patients who have different follicle 

diameter were not included in the study. Controlled ovarian stimulation (COS) was 

initiated between the first and the fifth day following short antagonist protocol. 

Considering the age, BMI and AFC data, different doses of FSH were applied to 

each patient. Ultrasound controls were performed on the fourth and sixth days. 
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Gonadotropin-releasing hormone (GnRH) antagonist was applied daily to patients to 

obtain a follicle with 14mm diameter. After the ovulation trigger, the oocytes were 

collected after an average of 35.5 hours. 

 

3.3 Analysis of oocytes: RNA extraction, cDNA synthesis and real time PCR 

The study group included 13 oocytes, of which seven oocytes obtained from 

females with the polycystic ovaries and six oocytes from the control group. The 

experiments were performed at NEU DESAM Research Institute’s Laboratory, 

Nicosia, North Cyprus. RNA purification was carried out using Norgen's RNA 

purification kit (Canada). NanoDrop ND-1000 was used to assess the quality of the 

RNA obtained following manufacturer’s protocol.  

Norgen's Transcript First Strand cDNA Synthesis kit (Norgen, Canada) was 

used for reverse transcription from RNA to synthesize cDNA following 

manufacturer’s protocol with no modifications. Real time polymerase chain reaction 

(PCR) was carried out using cDNA samples to investigate the expression levels of 

selected lncRNAs. The expression levels were investigated in a total of three 

lncRNA genes. The target lncRNAs were selected using the LncRRIsearch database 

which is a bioinformatics tool that calculates the possible relationship between 

lncRNAs and messenger RNAs and other lncRNAs using human and mouse genome 

data, and ranks the results from high to low. The Incipedia database was used to 

obtain RNA sequences. Primers were designed for RP11-573D15.8, RP11-156E8.1, 

lnc-CYP11A1-1. The primers were designed to flank the exon-exon boundaries to 

avoid amplification of any DNA that may be contaminating the samples. The 

designed primer sequences for each lncRNAs are shown in table 2.  

The LightCycler® 480 SYBR Green I Master kit was used for the real time 

PCR. The manufacturer’s protocol with no modification and the final concentration 

of 0.2 μM of the primers were used in the reaction mixture. The PCR conditions are 

listed in table 3.  2^-∆∆Ct values were obtained to analyze expression levels and 

log10 values were used to calculate the significance level. In the experiment 

conducted with the Insta Q96™ Real Time Machine, Ct values were obtained for 

each sample with melting curve data. ACTB was used as housekeeping gene. 
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Table 2. 

Primers sequences 

Gene ID(Gene name) Transcript ID Forward Primer Reverse Primer 

ENSG00000197099(RP11-

573D15.8) 
ENST00000627551 TGATCATCCAGGAAGCCAACC GAAGCCACTAAGACGGTGAGT 

ENSG00000272195(RP11-

156E8.1) 
ENST00000607453 TGCCTAACGATAACCTCGGC GACGACGCAATGTTTGTGCT 

ENSG00000277749(lnc-

CYP11A1-1; RP11-60L3.6 
ENST00000611006 CATGACTCCTTGGTATTGG AGAGTGGTGTTGTGAATGAC 

 

 

Table 3. 

PCR Conditions 

 
PCR Steps 

Temperature C0 \ 

time (second) 
Cycles 

Steps Initial Denaturation 95 / 10 min 1 

 Denaturing 94 / 10 sec 

40  Annealing 57-64 / 10-20 sec 

 Elongation 72 / 30 sec 

 
High Resolution 

Melting analysis 
 1 

 

 

3.4 Statistical analysis 

 

The obtained data were evaluated by using SPSS and GraphPad Prism v.8 

applications. 

  



14 
 

 

Chapter IV 

Findings and Discussion 

A total of 13 oocytes used to investigate the expression levels of lncRNAs in 

this study. Seven oocytes were collected from PCO patients and six oocytes were 

collected from the control group for this study. The details of the samples are listed 

in the table 4. The details of NanoDrop showing the concentration of each RNA 

extracted and the purity of these samples are shown in table 5. 

 

Table 4. 

Details of oocytes donors used in study 

Patient's ID PCO Maternal Age BMI 

1 Yes 22 27 

2 Yes 29 22 

3 Yes 26 19 

4 Yes 23 21 

5 Yes 21 19 

6 Yes 27 16 

7 Yes 28 34 

8 No 23 22 

9 No 21 19 

10 No 21 19 

11 No 25 18 

12 No 29 18 

13 No 27 23 

 

 

 

 

 

 

 

 

 



15 
 

 

 

Table 5. 

Concentration and absorbance details of the RNA samples used in study 

Sample Concentration (ng/µl) 260/280 

1 10.0 1.52 

2 11.0 1.48 

3 12.7 1.46 

4 11.0 1.50 

5 9.7 1.51 

6 9.9 1.52 

7 12.5 1.53 

8 10.9 1.56 

9 10.3 1.53 

10 10.0 1.52 

11 10.9 1.56 

12 11.5 1.51 

13 10.0 1.52 

 

4.1 LncRNA expression levels in oocytes obtained from the PCO patients 

The Ct, ∆Ct and ∆∆Ct values for each oocyte are shown in table 6. The fold 

change values and student’s T-test results for each lncRNAs obtained from the PCO 

patients and control group are shown in table 7. 

Expression levels of lncRNAs were analyzed using one-way Anova statistical 

analysis method. The results showed that RP11-573D15.8 and lnc-CYP11A1 have 

elevated expression levels as shown in figure 1, however RP11-156E8.1 has 

decreased expression in human oocytes obtained from the study group (PCO) 

compared to the control group as shown in figure 1. However, these results were not 

statically significant (p>0.005). 
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Table 6.  

Ct values for each gene investigated in each oocyte sample. 

Patient 

ID\GENE ID 

ACTB RP11-573D15.8 RP11-156E8.1 lnc-CYP11A1-1 

Ct Ct ∆Ct ∆∆Ct Ct ∆Ct ∆∆Ct Ct ∆Ct ∆∆Ct 

1 32.4 19.2 -13.20 1.63 22.80 -9.60 4.27 26.70 -5.70 2.57 

2 35.6 19.9 -15.70 -0.87 23.10 -12.50 1.37 22.80 -12.80 -4.53 

3 34.7 19.2 -15.50 -0.67 24.00 -10.70 3.17 25.60 -9.10 -0.83 

4 35.4 18.3 -17.10 -2.27 21.50 -13.90 -0.03 25.50 -9.90 -1.63 

5 38.5 19.8 -18.70 -3.87 21.90 -16.60 -2.73 26.00 -12.50 -4.23 

6 33.79 20.3 -13.49 1.34 21.60 -12.19 1.68 25.00 -8.79 -0.52 

7 34.8 22.4 -12.40 2.43 22.10 -12.70 1.17 24.40 -10.40 -2.13 

8 37.6 20.9 -16.70 -1.87 22.70 -14.90 -1.03 27.70 -9.90 -1.63 

9 36.7 22.7 -14.00 0.83 24.00 -12.70 1.17 28.90 -7.80 0.47 

10 35.7 21.1 -14.60 0.23 18.90 -16.80 -2.93 28.60 -7.10 1.17 

11 32 22 -10.00 4.83 22.20 -9.80 4.07 27.50 -4.50 3.77 

12 35.1 21.5 -13.60 1.23 22.60 -12.50 1.37 26.50 -8.60 -0.33 

13 38.2 18.1 -20.10 -5.27 21.70 -16.50 -2.63 26.50 -11.70 -3.43 

 

Table 7. 

 Fold changes and student’s T-test result for each lncRNA 

lncRNAs and fold changes RP11-573D15.8 RP11-156E8.1 lnc-CYP11A1-1 

Average PCO oocytes 2^-∆∆Ct 3.39 1.28 7.55 

Average control oocytes 2^-∆∆Ct 7.33 2.89 2.73 

Fold change PCO/Control 0.46 0.46 2.76 

        

Student's T-Test 0.85 0.38 0.26 

p<0.05 Non-significant Non-significant Non-significant 

 

Figure 1 

Expression levels (2^-∆∆Ct) of all lncRNAs in oocytes obtained from PCO patients 

and control group. 
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4.2 The analysis of lncRNA expression levels in oocytes  

This study, as the first lncRNA research in oocytes, showed that lncRNAs are 

expressed more than the housekeeping gene in oocytes. However, the expression 

levels of lncRNAs in PCO patients did not differ statistically from the control group. 

Thus, these three selected lncRNAs do not show statistical association in oocytes 

obtained from PCO patients compared to the control group.  
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Chapter V 

Discussion 

PCOS is of the leading phenotypes causing abnormalities in reproduction, 

metabolism, and physiology in females. Although PCOS has been known for a long 

time, its etiology is still not well understood. Studies show that the genetic 

abnormalities are associated with PCOS. The regulatory roles of lncRNAs in gene 

expression have proven to be important in the recent years. Thus, it is a possibility 

that abnormal gene expression levels regulated by lncRNAs may be involved in the 

development of PCOS. 

Previously published studies have shown that CYP11A1 gene is expressed 

significantly different in the oocytes of PCO patients (Al-Omar et al., 2020). 

CYP11A1 has an important role in the steroidogenesis pathway, which provides the 

production of estrogen and androgens from cholesterol. While the association of 

hyperandrogenism with PCOS is evident, it is not surprising that in oocytes, CYP11 

is overexpressed in PCO patients, unlike healthy individuals. In this study, a 

hypothesis was developed on the regulatory effects of lncRNAs on gene expression 

(Sebastian-delaCruz et al., 2021) causing CYP11A1 to be overexpressed. However, 

the results of this study showed that there was no significant difference in the 

expression patterns of these three lncRNAs in the PCO samples and the control 

group. Thus, it does not seem that these lncRNAs are involved in the regulation 

process of CYP11A1 gene in human oocytes. Despite this, there are still numerous 

lncRNAs associated with CYP11A1, and as more studies are conducted and the 

number of samples increased, the statistical significance of the change may occur. 

Two lncRNAs, RP11-573D15.8 and RP11-156E8.1, which were examined in 

this study, have a strong interaction with CYP11A1 and may affect mRNA stability. 

In addition, although lnc-CYP11A1-1 does not directly interact with CYP11A1, it 

can indirectly affect CYP11A1 gene expression by binding to ncRNAs that strongly 

target CYP11A1 such as RP11-573D15.8, MIR6820-001 and RP3-323A16.1-001 

(Fukunaga et al., 2019). 

Previously published studies showed an association between altered 

expression of PVT1 and microRNA-17-5p in the development of PCOS (Liu et al., 

2020). Increased expression of NEAT1 lncRNA, which also interacts with CYP11A1, 

in mouse and human granulosa cells were associated with PCOS (Zhen et al., 2021). 

This is the first lncRNA that has been associated with CYP11A1 and may be 
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associated with increased CYP11A1 in oocytes as well. Over-expression of lnc-

MAP3K13-7 was shown to be associated with the development of PCOS (Geng et 

al., 2021). Although there is no lncRNA study in oocytes with PCO/PCOS yet, two 

studies in this field showed that circular RNAs are important in the development of 

oocytes, which can indicate that expression changes or junction anomalies can cause 

PCOS development (Dang et al., 2016; Cheng et al., 2017). A number of lncRNAs 

were examined in human oocytes and neighboring cells, and a different lncRNA 

expression pattern between the oocytes and neighboring cells was observed 

(Bouckenheimer et al., 2018). In healthy oocytes, lncRNAs such as, TUNAR, 

LINC01118, C3orf56, CASC8 and BCAR4 appear to be higher expression levels than 

in cumulus cells. In addition, expression analysis of 943 lncRNAs in cumulus cells 

were shown to be associated with mRNA expression in the oocyte, suggesting that 

the varying expression levels may originate from neighboring cells in the ovary 

(Bouckenheimer et al., 2018). This situation seems to create difficulties in 

understanding the mechanism of PCOS development. On the other hand, it can be 

concluded that more ncRNA studies are required in this field. 

There are a number of studies examining the relationship between CYP11A1 

and ncRNAs. In the first study, the expression relationship between various miRNAs 

and CYP11A1 was examined in the corpus luteum (CL) obtained from cattle, and no 

correlation was found between the selected miRNAs and the target gene (Donadeu et 

al., 2020; Andreas et al., 2021). Another ncRNA study on granulosa cells in sheep 

showed that microRNA-150 has negative regulation on the CYP11A1 gene. A study 

in Leydig cells of goats also showed that miR-1197-3p increases testosterone 

synthesis by promoting CYP11A1 (An et al., 2019). MiR-628-5p obtained from the 

serum of pregnant women was associated with CYP11A1 expression level and 

lncRNA-miR-628-5p-CYP11A1 networks indicating that it may play a role in 

increasing the risk prenatal abnormalities and post-natal abnormalities in PCOS 

patients (Martinez-Fierro et al., 2019). Whether miR-628-5p and its associated 

lncRNAs play a role in PCOS development in oocytes remains to be clarified. 
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CHAPTER VI 

 

Conclusion and Recommendations 

 

The current study investigated the gene expression levels of the selected 

lncRNAs targeting the CYP11A1 gene involved in the steroidogenesis pathway in 

oocytes donated by PCO patients and the control group, respectively. 

 

6.1 Conclusion 

In this study, no statistically significant results could be obtained between the 

lncRNAs with transcript IDs ENST00000627551, ENST00000607453, 

ENST00000607453, and upregulated CYP11A1 gene expression in human oocytes 

obtained from PCO patients. However, studies show that ncRNAs have a strong 

relationship with PCOS and the regulation of related genes. 

No ncRNA study has yet been performed in human oocytes obtained from 

PCOS/PCO patients. This study shows that the selected lncRNAs are highly 

expressed compared to the housekeeping gene. Although the functions of lncRNAs 

in oocytes are not well known, miRNAs are known to be important in oocyte 

development, and this study may show that they may have important roles with the 

high expression levels. 

In conclution, this study shows that there is no regulatory relationship 

between selected ENST00000627551, ENST00000607453, ENST00000607453, and 

CYP11A1. It can be concluded that the three selected lncRNAs are not associated 

with PCOS, but it would not be wrong to conclude that they also show a high 

expression in human oocytes. 

 

6.2 Recommendations 

Altered expression levels of genes such as CYP17, HSD17B1, and CYP11A1, 

which have important roles in the steroidogenesis pathway, may be associated with 

hyperandrogenism. This can cause the arrest of follicular development. Future 

studies may examine ncRNAs and epigenetic mechanisms associated with genes 

involved in this pathway. In addition, by examining the changing ncRNA expression 

levels in the neighbouring tissues of oocytes, a relationship can also be established. 
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Understanding the developmental mechanism of PCOS seems promising to develop 

treatment strategies for PCOS and other reproductive disorders. 

The major limitations for this study were the very few number of samples and 

the difficulty of primer design because lncRNAs are mostly composed of repeat 

regions. However, the difficulty of collecting human oocytes at the MII stage proves 

that studies with low number of oocytes were sufficient for the study. In addition, not 

performing hormonal checks from patients donating oocytes for this study was 

another limitation. In the future studies, it may be useful to use RNA-seq analysis for 

miRNAs where primer design is almost impossible and to identify high numbers of 

lncRNAs. 
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Table I summarizes the acceptable consensus (persistent hyperandrogenic 

oligoanovulation) for earl y PCOS diagnosis based on age and stage appropriate norms 

(Rosenfield et al., 2015; Liznevaet al., 2016). 

 
Table 1. 

Diagnostic criteria for PCOS 

Parameter/age 

group 

Adult Adolescence 

NIH 1990 Hyperandrogenism 

Ovaries Abnormality 

Abnormal Uterine Bleeding 

Persistent Symptoms For 1-2 

Years 

Abnormal For Age 

Rotterdam 2003 Hyperandrogenism 

Ovarial Abnormalit y 

Polyc ystic Ovary 

Hyperandrogenism 

Moderate-To-Severe Hirsutism 

Moderate-To-Severe Acne 

Vulgaris 

Androgen Excess 

& PCOS Society 

2006 

Hyperandrogenism 

Ovarial Abnormality And/Or 

Polycystic Ovary 

 

ESHRE/ASRM 

201 2 

Hyperandrogenism 

Ovaries Abnormalit y 

Polyc ystic Ovary 

Clinical Or Biochemical 

Hyperandrogenism 

Ovaries Abnormalit y 

Polycystic Ovary 
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Table 2. 

Printer.s .sequent e.s 
 

    

    

 
  156E8.1) 

   

ENSG00000277749(lnc-
CYP11A1-1; RP11-60L3.6 

ENST00000611006 CATGACTCCTTGGTATTGG AGAGTGGTGTTGTGAATGAC 

 

 

Table 3. 

PCR Conditions 
 

 
PCR Steps 

Temperature C' \ 

time (second) 
Cycles 

Steps Initial Denaturation 95 / 10 min 
 

 

 Denaturing 94 / 10 sec  
40  Annealing 57-64 / 10-20 sec 

 Elongation 72 / 30 sec 

 High Resolution 

Melting analysis 

        1 

 

 

3.4 Statistical analysis 

 
 

The obtained data were evaluated by using SPSS and GraphP and Prism v.8 

applications. 
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4.2 The analysis of lncRNA expression levels in oocytes 

This study, as the first lncRN A research in oocytes, showed that lncRN As are 

expressed more than the housekeeping gene in ocic ytes. However, the expression levels of 

lncRN As in PCO patients did not differ statistically from the control group. Thus, these three 

selected  lncRN As do not show statistical association in cinc ytes obtained from PCO patients 

compared to the control group. 
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