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Abstract 

 
A Bi-Geometric Fractional Model for The Competition Between Cancerous and Healthy Cells and 

The Effect of Radiotherapy on Both Cells.  
 

Ada Obi, Olivia 

PhD, Department of Mathematics 

June, 2022, 70 Pages 

   
 
We established our model based on the modification of a well-known predator-

prey simulation. The Lotka–Volterra competition model also known as a system of 
differential equations that describes the population of healthy and cancerous cells 
within the tumor tissue of a patient that is struggling with cancer. Besides, fractional 
differentiation implies a meticulous model with more flexible parameters. 
Furthermore, studying fractional differential operators on non-Newtonian calculi 
obtains different types of fractional operators with distinct singularities. Bi-geometric 
calculus is a famous example of these calculi which is equipped with the Hadamard 
fractional differential operator. The model is extended in these criteria and in the first 
step, the existence and uniqueness of the model are considered and guaranteed by 
applying the Arzela-Ascoli theorem. The bi-geometric analogue of the numerical 
method has provided a suitable tool to solve the model approximately. In the end, the 
visual graphs are obtained by using the MATLAB program.  

 
 

Key Words: Bi-Geometric Calculus, Fractional Differential Operator, Prey-Predator Model,  
Hadamard fractional operator  
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CHAPTER I 
 

Introduction 
1. What is Cancer? 

 
 

There are many reasons to be interested in the study of cancer. For me 

specifically, it was triggered by the loss of my mother to cancer. Even glimpses of 

mundane incident rate of death due to cancer can convince any researcher to spend 

time to investigate the disease. The last updates of cancer incidence and mortality 

showed an estimated 19.3 million new cancer cases and almost 10 million cancer 

deaths occurred in 2020. [Sung et. al (2020)] 

In this section, we present some of the key biological concepts that are 

necessary to understand the tumor models introduced in this literature. The 

cooperation of more than ten million cells needs to meet to maintain the healthy life 

of a human being. On the most basic level of definition, cancer is caused by 

rebellious, selfish cells that impact the harmony between cells. Eventually, the 

absence of treatment leads to the death of the organism. Although, understanding 

the mechanism of cancer and cancer biology which involves many components is 

sophisticated, we focus on the molecular and cellular biology of cancer in any 

specific tissue. An interested reader can find a comprehensive overview of cancer 

biology in some standard textbooks [Vogelstein et. al (2004)]. Roughly speaking, 

cancer is the disease of the DNA that causes alterations or mutations in the genetic 

material and imminent uncontrolled growth of cells. Once a cancerous cell has 

emerged, it undergoes a process known as clonal expansion. The population of 

cancerous cells increases by cell division. However, cells can acquire a variety of 

further mutations which lead to more advanced progression. The process by which 

cancerous cells migrate and start growing in another organ is referred to as 

metastasis. 

The division patterns of tissue stem cells and the interactions between these 

two populations have been studied [Vogelstein et. al (2004)]. The increase of 

cancerous cells population leads to emerging tumors. Tumor evolution is a 

sophisticated process involving many different phenomena which occur at different 

scales. Three natural viewpoints in medicine or biology are remarkable in 

describing the phenomena occurring during the evolution of tumors. These are sub-

cellular level (microscopic scale), the cellular level (mesoscopic scale), and the 

tissue level (macroscopic scale) [Wang (2010)]. The mesoscopic scale refers to the 
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cellular level and therefore to the main activities of the cell populations. E.g., 

statistical description of the progression and activation state, interactions among 

tumor cells, and the other types of cells present in the body such as endothelial cells, 

macrophages, lymphocytes, proliferative and destructive interactions, aggregation 

and disaggregation properties. Most of the published articles refer to two main 

methods of cancer treatments; chemotherapy and radiotherapy. Radiotherapy or 

radiation therapy is a cancer treatment that uses high doses of radiation to kill cancer 

cells and shrink the tumor by damaging their DNA. This procedure is not the 

immediate consequence of irradiation. Indeed, it takes days or weeks of treatment 

before DNA is damaged enough for cancer cells to die. 

 

2. Mathematical Model and Different Approaches 
 

Similar to [Dominik (2014)], we follow the same categorization in the area 

of mathematical modeling of tumorigenesis. Indeed, broadly speaking, there are 

three major areas where theory has contributed the most to cancer research 

(i) Using the context of epidemiology and other statistical data to describe 

the model. Furthermore, using the available incident statistics and creating models 

to explain the observations are one of the oldest and most successful methodologies 

in theoretical cancer research. This field, in general, has not been very fruitful and 

there have been some hesitations in applying the technique to the study of cancer 

originated by [Armitage and Doll (1954)], and then taken to the next level by 

Moolgavkar and colleagues [Moolgavkar and Knudson (1981)]. 

(ii) Mechanistic modeling of tumor growth, including multi-scale modeling. 

An entirely different approach to cancer modeling is to look at the mechanistic 

aspects of the tumor material and use physical properties of biological tissues to 

describe the tumor growth. In series of articles, the various methods were studied 

and biochemical kinetics were modeled, see [Preziosi (2003); Cristini and 

Lowengrub (2010)] for review. 

(iii) Modeling of cancer initiation and progression as somatic evolution. In 

this area of research, methods of population dynamics and evolutionary game 

theory are applied to study cancer. First developed by ecologists and evolutionary 

biologists, these methods have been used to understand the collective behavior of a 

population of cancer cells, see [Gatenby and Gawlinski (2003); Gatenby and 

Vincent (2003b)]. 
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Mathematical modeling of growth, differentiation and mutation of cells in 

tumor are one of the oldest and best developed topics in biomathematics [Bellomo 

and Maini (2007)]. Let us view cancer as a population of cells that evolves 

deterministically and has some potential to grow. For a successful discussion, we 

need to overview the different types of mathematical model population. The 

simplest case could be considered as the given differential equation; 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑ℎ − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ + 𝑚𝑚𝑏𝑏𝑚𝑚𝑏𝑏𝑑𝑑𝑑𝑑𝑏𝑏𝑚𝑚𝑚𝑚. 

Here, X denotes the number of the population. If we assume the birth and death as 

a constant coefficient of population, by neglecting the immigration, the result gives 

the exponential growth of the population 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑑𝑑 − 𝑑𝑑𝑑𝑑 

⇒ 𝑑𝑑(𝑑𝑑) = 𝑑𝑑𝑜𝑜𝑑𝑑𝑒𝑒𝑒𝑒�(𝑏𝑏 − 𝑑𝑑)𝑑𝑑�. 

Obviously, 𝑏𝑏 > 𝑑𝑑 implies the exponential growth of the population while 𝑑𝑑 > 𝑏𝑏 

leads to extinction. This model is not realistic and in the long run, there must be 

some adjustment to such exponential growth. Verhulst (1834) proposed that a self-

limiting process should operate when a population becomes too large 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑑𝑑 �1 −
𝑑𝑑
𝐾𝐾
�             𝑏𝑏,𝐾𝐾 > 0 

This model is called the logistic growth equation and it has two steady states or 

equilibrium states, namely 𝑑𝑑 = 𝐾𝐾 and 𝑑𝑑 = 0. The carrying capacity, 𝐾𝐾, determines 

the size of the stable population while 𝑏𝑏, is a measure of the rate at which it is 

reached. That is, it is a measure of the dynamics. Applying the Bernoulli method of 

ODE with 𝑉𝑉 = 𝑑𝑑−1, solve the logistic growth equation in terms of terms of 𝑑𝑑0, the 

initial population  

𝑑𝑑(𝑑𝑑) = 𝑋𝑋0𝐾𝐾𝑒𝑒𝑟𝑟𝑟𝑟

𝐾𝐾+𝑋𝑋0(𝑒𝑒𝑟𝑟𝑟𝑟−1)  𝑑𝑑𝑒𝑒𝑒𝑒𝑏𝑏𝑚𝑚𝑑𝑑𝑎𝑎ℎ𝑑𝑑𝑒𝑒 𝑑𝑑𝑚𝑚 𝐾𝐾, 𝑑𝑑𝑒𝑒   𝑑𝑑 𝑑𝑑𝑒𝑒𝑒𝑒𝑏𝑏𝑚𝑚𝑑𝑑𝑎𝑎ℎ𝑑𝑑𝑒𝑒 𝑑𝑑𝑚𝑚 ∞.  

 

3. Predator and Prey Model  
 
 
In this section, we study a few things about Lotka–Volterra equation or as it is 

known predator-prey equation. This equation is a couple of first order nonlinear 

differential equation which was inspired during the conversation about ecology. For 

the prey species, it is assumed that the prey growth, if left alone, is Malthusian. It 

means that the specific growth rate is constant. Furthermore, in this model, the 
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specific growth rate diminishes by an amount proportional to the predator density. 

This leads to the prey equation 
𝑑𝑑𝑋𝑋1
𝑑𝑑𝑑𝑑

(𝑑𝑑) = 𝑑𝑑1(𝑑𝑑)(𝛼𝛼 − 𝛽𝛽𝑑𝑑2(𝑑𝑑))        𝛼𝛼,𝛽𝛽 > 0, 

for the predator species, it is assumed that the predator will become extinct 

exponentially just as a radioactive decay in the absence of prey, inversely their 

growth rate is enhanced by an amount proportional to the prey density which leads 

to the predator equation as 
𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

(𝑑𝑑) = 𝑑𝑑2(𝑑𝑑)(−𝛾𝛾 + 𝛿𝛿𝑑𝑑1(𝑑𝑑))        𝛾𝛾, 𝛿𝛿 > 0 

There are some remarkable comments about this system of first order nonlinear 

differential equation. First, we assume that the prey species (rabbits) is growing 

exponentially at the rate of 𝛼𝛼𝑑𝑑1(𝑑𝑑). In the absence of predators, 𝑑𝑑2 = 0  and at the 

equilibrium point where 𝑑𝑑𝑋𝑋2
𝑑𝑑𝑑𝑑

= 0, and when the coefficient of the interaction 𝑑𝑑1𝑑𝑑2  

is added, the sign of interaction factor determines the type of Lotka–Volterra 

equation. If the sign of interaction factor is negative, then it means that after the 

equilibrium point the population of that species will decline. Conversely, if the 

interaction factor is positive, then the population of the species will increase after 

the equilibrium point. For instance, if 𝛿𝛿 < 0  , then both species will decline after 

the equilibrium point and that means we will have a competition form like sheep-

rabbits. Furthermore, if 𝛽𝛽 < 0 then both species will grow after the equilibrium 

point and the cooperation between them can be constructed. Now let 𝑑𝑑1 and 𝑑𝑑2  

determine the population of healthy and cancerous cells respectively. In the first 

step, we should let healthy cells grow logistically in the absence of cancerous cells. 

Thus, we have  
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

(𝑑𝑑) = 𝛼𝛼1𝑑𝑑1(𝑑𝑑) �1 −
𝑑𝑑1(𝑑𝑑)
𝐾𝐾1

�, 

here,  𝛼𝛼1 is the proliferation coefficient and 𝐾𝐾1 denotes the carrying capacity. In the 

next step, we should add the interaction factor which determines the competition 

between cancerous cells and healthy cells. This interaction is similar to the attitude 

of sheep-rabbits that compete for the same resources. There are some restrictions in 

each model which should be implemented eventually. Here, we assume that the 

concentration of cancerous and healthy cells exists in the same region of the 

organism. Thus, the system can be rewritten as 

13



⎩
⎨

⎧
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= 𝛼𝛼1𝑑𝑑1(𝑑𝑑) �1 −
𝑑𝑑1(𝑑𝑑)
𝐾𝐾1

� − 𝛽𝛽1𝑑𝑑1(𝑑𝑑)𝑑𝑑2(𝑑𝑑)

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= 𝛼𝛼2𝑑𝑑2(𝑑𝑑) �1 −
𝑑𝑑2(𝑑𝑑)
𝐾𝐾2

� − 𝛽𝛽2𝑑𝑑1(𝑑𝑑)𝑑𝑑2(𝑑𝑑)
 

Here, 𝛽𝛽𝑖𝑖, 𝑏𝑏 = 1,2 describe the coefficients of interaction factor or competition 

coefficients. This model determines the competition between cancerous and healthy 

cells. In the next step, we can plug in the treatment effects and study the efficiency 

of different treatments on the population of cancerous and healthy cells. For 

instance, in [Nani and et. al. (2000)], the effect of the treatment by immunotherapy 

on the population of cancer and healthy cells is studied. So, the plugged-in part is a 

function −ℎ(𝑑𝑑2(𝑑𝑑),𝑤𝑤) of the population of cancerous cells.  is defined by another 

ODE and describes the effect of immunotherapy.  

Now, let us see the effect of two other main treatments; radiotherapy and 

chemotherapy. In radiotherapy, the struggling tissue is affected by the exposure to 

radiation. Indeed, the radiation causes mutation on the DNA of the cells and in that 

period of time, the affected cells die. This is like harvesting the population of both 

healthy and cancerous cells. In this circumstance, [Liu et. al. (2016)] describes the 

effect of radiotherapy in two phases. If  denotes the number of times that the 

radiation is administrated and 𝑤𝑤 denotes the period of administration, then we can 

split the interval of [𝑚𝑚𝑤𝑤, (𝑚𝑚 + 1)𝑤𝑤] to two parts and the model will be as follows 

for 𝑑𝑑 ∈ [𝑚𝑚𝑤𝑤, 𝐿𝐿], 

⎩
⎨

⎧
𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= 𝛼𝛼1𝑑𝑑1(𝑑𝑑) �1 −
𝑑𝑑1(𝑑𝑑)
𝐾𝐾1

� − 𝛽𝛽1𝑑𝑑1(𝑑𝑑)𝑑𝑑2(𝑑𝑑) − 𝜀𝜀𝛾𝛾𝑑𝑑1(𝑑𝑑)

𝑑𝑑𝑑𝑑2
𝑑𝑑𝑑𝑑

= 𝛼𝛼2𝑑𝑑2(𝑑𝑑) �1 −
𝑑𝑑2(𝑑𝑑)
𝐾𝐾2

� − 𝛽𝛽2𝑑𝑑1(𝑑𝑑)𝑑𝑑2(𝑑𝑑) − 𝛾𝛾𝑑𝑑2(𝑑𝑑)
 

In the remainder of the interval, the patient is in resting, and the normal growth 

without the plugged-in part is considered in 𝑑𝑑 ∈ [𝐿𝐿, (𝑚𝑚 + 1)𝑤𝑤]. Here, 𝛾𝛾 describes 

the efficiency of the radiation and 𝜀𝜀  is the suitable location of the radiation. 

Moreover, we can add the effect of chemotherapy in the resting period by plugging 

in −𝜂𝜂𝑖𝑖Δ𝑑𝑑−𝜎𝜎�𝑑𝑑−(𝑛𝑛𝑛𝑛+𝐿𝐿)�𝑑𝑑𝑖𝑖(𝑑𝑑) in both equations.   
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CHAPTER II 
 

Non-Newtonian Calculi and Fractional Differentiation  
 
 

1. Non-Newtonian Calculi 
 

In this section, the progress of non-Newtonian calculus and the origin of the 

debate are investigated. A successful discussion on this topic could be considered by 

investigating the structure of real numbers. The real numbers can be assumed as a 

complete set with two binary operators and the order on the set. Most mathematical 

systems are sets with some binary operations, some relations or distinguished subsets. 

In this analogy, we can demonstrate the real set as a quadruple (𝑅𝑅, +,−, <). Here, the 

real system with these binary operators and inequality satisfies the axioms of a 

complete Archimedean ordered field. Let us simplify the idea of non-Newtonian 

calculus roughly as applying product instead of addition and division instead of 

subtraction. At first glance, this structure can interpret the proportions of changes 

instead of differences of changes, especially when we consider the derivative. To 

construct the general form of this structure, we should apply a function, let’s say 𝛼𝛼(𝑒𝑒) 

such that, the binary operators are redefined by them. As far as we know, the original 

idea belongs to Michael Grossman and Robert Katz, who introduced the non-

Newtonian calculus in 1972 in a book titled non-Newtonian calculi [Grossman et al. 

(1972)]. Almost Simultaneously, E. Pop was inspired by 𝑑𝑑 − 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚 decomposable 

measures and defined g-calculus by putting 𝑚𝑚−1(𝑒𝑒) instead of 𝛼𝛼(𝑒𝑒) and these binary 

operators were named Pseudo-operators [Dubois (1982) and Pop (1993)]. These two 

different analogies of the same concept were developed quite separately in different 

aspects. It is safe to say that researchers in these two branches have not found out the 

similarities of the concepts, and the consequence is that many articles with the same 

purpose have been published with different notations [Kirisci (2017), Babakhani 

(2018)]. 

Furthermore, there is not a consensus about the conditions of 𝛼𝛼(𝑒𝑒) generally 

in both approaches. Indeed, the function 𝛼𝛼(𝑒𝑒) plays the role of transformation 

between different calculi and maintaining the algebraic structure of real numbers 

provided by properties of 𝛼𝛼(𝑒𝑒) as an invertible function. Naturally, we can consider 

𝛼𝛼(𝑒𝑒) as a bijection making sure about the transformation of topological properties, 

or as we mentioned before, the main example could be exponential function, and to 
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meet the need for differentiation, we can generally extend the concept and consider 

𝛼𝛼(𝑒𝑒) as an analytic function. In this literature, we assume the function 𝛼𝛼(𝑒𝑒) as a 

differentiable monotone function from real line to ℝ+. This assumption is freely 

developed to the analytic function for complex cases. In this circumstance, the 

arithmetic operators can be redefined as follows     

𝑑𝑑⨁𝛼𝛼𝑏𝑏 = 𝛼𝛼�𝛼𝛼−1(𝑑𝑑) + 𝛼𝛼−1(𝑏𝑏)� 

𝑑𝑑 ⊖𝛼𝛼 𝑏𝑏 = 𝛼𝛼�𝛼𝛼−1(𝑑𝑑) − 𝛼𝛼−1(𝑏𝑏)� 

𝑑𝑑⨂𝛼𝛼𝑏𝑏 = 𝛼𝛼�𝛼𝛼−1(𝑑𝑑) × 𝛼𝛼−1(𝑏𝑏)� 

𝑑𝑑 ⊘𝛼𝛼 𝑏𝑏 = 𝛼𝛼�𝛼𝛼−1(𝑑𝑑) ÷ 𝛼𝛼−1(𝑏𝑏)� 

Needless to say, that the substitution of 𝛼𝛼(𝑒𝑒) by an exponential function 

implies the replacement of addition with multiplication and subtraction with division, 

and consequently, it leads to geometric calculus [Grossman et al. (2006)]. Moreover, 

this branch is well-developed to the complex space [Bashirov et al. (2018)]. 

Furthermore, the special case of 𝛼𝛼(𝑒𝑒) = exp (𝑒𝑒) shrinks the whole real line in ℝ+. 

This operator obtains the new vision to Cartesian coordinate, which can be seen in 

the following figure 

The figure describes the action of bi-geometric calculus. Here, we deal with 

𝑑𝑑0, 𝑑𝑑1, 𝑑𝑑2, … instead of 0,1,2, … and the Y-coordinate can merge with these values. 

The given function is 𝑦𝑦 = exp (𝑒𝑒) that has a value of 𝑑𝑑0, 𝑑𝑑1, 𝑑𝑑2, … at the given points  
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0,1,2, …  respectively. That means that the corresponding function at Newtonian 

calculus should be 𝑦𝑦 = 𝑒𝑒. On the other hand, the differences of the values in the Y-

axis can be evaluated by ratio. For instance, the vertical arrow shows the distance 

between 𝑑𝑑2 and 𝑑𝑑1  which is one unit in Bi-geometric calculus or  𝑒𝑒
2

𝑒𝑒1
= 𝑑𝑑1. Thus, we 

need to redefine the derivative and replace differences with ratios. In this 

circumstance, we can define the derivative as 

𝐷𝐷𝜊𝜊(𝑓𝑓)(𝑒𝑒) = 𝑓𝑓𝜊𝜊(𝑒𝑒) = 𝑙𝑙𝑏𝑏𝑚𝑚
ℎ→0

�
𝑓𝑓(𝑒𝑒 + ℎ)
𝑓𝑓(𝑒𝑒)

ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑒𝑒𝑒𝑒 �
(𝑓𝑓(𝑒𝑒))′
𝑓𝑓(𝑒𝑒)

� 

Therefore, the derivative of 𝑦𝑦 = 𝑑𝑑𝑒𝑒𝑒𝑒(𝑒𝑒) will be 𝑦𝑦𝜊𝜊 = 𝑑𝑑1 and this function 

similar to 𝑦𝑦 = 𝑒𝑒 has a constant slope of 1. In recent decades, geometric calculus as 

Grossman called it or multiplicative calculus got its niche in researches. [Florack et. 

Al. (2012)] Indeed, the multiplicative derivative 𝑓𝑓𝜊𝜊(𝑒𝑒) has its interpretation as a 

positive number which represents how many times 𝑓𝑓(𝑒𝑒) increases at the moment x, 

or the growth factor at the moment  in comparison with the Newtonian derivative 

that determines the rate of growth. [Bashirov et. Al. (2011)] There is another way to 

define the derivative which equips the Bi-geometric calculus as 

𝐷𝐷(𝑓𝑓)(𝑒𝑒) = 𝑓𝑓∗(𝑒𝑒) = 𝑙𝑙𝑏𝑏𝑚𝑚
𝑦𝑦→𝑒𝑒

�
𝑓𝑓(𝑦𝑦)
𝑓𝑓(𝑒𝑒)

𝑦𝑦
𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑒𝑒𝑒𝑒 �

𝑒𝑒(𝑓𝑓(𝑒𝑒))′
𝑓𝑓(𝑒𝑒)

� 

           The meaning of multiplicative derivative as the growth factor leads to many 

applications in actuarial science, economics, biology, demography, etc. For instance, 

the basic model of population, logistic growth law can be rewritten as follows 

𝑑𝑑𝑒𝑒𝑒𝑒 �
𝑁𝑁′(𝑑𝑑)
𝑁𝑁(𝑑𝑑)

� = 𝐷𝐷𝜊𝜊(𝑁𝑁)(𝑑𝑑) = 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �𝛽𝛽 �1 −
𝑁𝑁
𝐾𝐾
�� , 𝑁𝑁(𝑑𝑑 = 0) = 𝑁𝑁𝜊𝜊 > 0 

Where 𝐾𝐾 >  0 represents the carrying capacity of the population and in the case of 

catching the value , the multiplicative derivative equals to one that interprets the 

only single increase in the population function. Almost the exponential growth of 

small tumors and growth saturation can be predicted by the logistic growth law. 

However, the second Newtonian derivative of this expression shows the symmetry 

of 𝑁𝑁(𝑑𝑑) about its point of inflection and this is not particularly flexible when it is used 

to describe experimental data. The modified model involves the exponential factor 

which controls how rapid the saturation is, and can be expressed as follows  

𝐷𝐷𝜊𝜊(𝑁𝑁)(𝑑𝑑) = 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �
𝛽𝛽
𝑑𝑑
�1 − �

𝑁𝑁
𝐾𝐾
�
𝑎𝑎

�� , 𝑁𝑁(𝑑𝑑 = 0) = 𝑁𝑁𝜊𝜊 > 0     (1) 
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This model represents the general case in which 𝑑𝑑 =  1 and it gives the logistic 

growth law, and 𝑑𝑑 →  0+  recovers to Gompertzian growth law. The Gompertz model 

is studied in terms of non-Newtonian calculus comprehensively [Bashirov et. Al. 

(2011)]. Besides, the model of study of the population of healthy and cancerous cells 

in a struggling tissue can be simplified as 

⎩
⎨

⎧𝑑𝑑1∗ = 𝑑𝑑𝑒𝑒𝑒𝑒 �𝛼𝛼1 �1 −
𝑑𝑑1(𝑑𝑑)
𝐾𝐾1

� − 𝛽𝛽1𝑑𝑑2(𝑑𝑑) − 𝜀𝜀𝛾𝛾�

𝑑𝑑2∗ = 𝑑𝑑𝑒𝑒𝑒𝑒 �𝛼𝛼2 �1 −
𝑑𝑑2(𝑑𝑑)
𝐾𝐾2

� − 𝛽𝛽2𝑑𝑑1(𝑑𝑑) − 𝛾𝛾�
 

Here, the terms inside the exponential determines the instantaneous ratio rate of 

growth. For instance, in the absence of 𝑑𝑑2 and radiation, 𝑑𝑑1 will grow at the ratio 

of 𝛼𝛼1 �1 − 𝑋𝑋1(𝑑𝑑)
𝐾𝐾1

�, this means that the proportion grows at the rate of  𝛼𝛼1 and can be 

controlled by �1 − 𝑋𝑋1(𝑑𝑑)
𝐾𝐾1

�. The multiplicative derivative inspires the alternative 

insight in understanding the model of simulation, and it is worth investigating the 

general formula for non-Newtonian derivative. Derivative and integral of non-

Newtonian calculus satisfy the fundamental theorem of calculus and can be presented 

as   

𝐷𝐷(𝑓𝑓)(𝑒𝑒) = 𝑓𝑓𝛼𝛼�(𝑒𝑒) = 𝑙𝑙𝑏𝑏𝑚𝑚
𝑦𝑦→𝑒𝑒

�(𝑓𝑓(𝑦𝑦) ⊝𝛼𝛼 𝑓𝑓(𝑒𝑒)) ⊘𝛼𝛼 (𝑦𝑦⊝𝛼𝛼 𝑒𝑒)�𝛼𝛼(𝑒𝑒) = 𝛼𝛼 �
𝛼𝛼−1(𝑓𝑓(𝑒𝑒))′
𝛼𝛼−1(𝑒𝑒)′

�, 

𝐼𝐼(𝑓𝑓)(𝑒𝑒) = � 𝑓𝑓(𝑑𝑑)𝑑𝑑𝛼𝛼�𝑑𝑑
𝑒𝑒

𝑎𝑎
= 𝑙𝑙𝑏𝑏𝑚𝑚

𝑛𝑛→∞
⨁𝛼𝛼𝑛𝑛

𝑖𝑖=1 ��𝑓𝑓(𝑎𝑎𝑖𝑖)⨂𝛼𝛼(𝑒𝑒𝑖𝑖+1 ⊝𝛼𝛼 𝑒𝑒𝑖𝑖)��
𝛼𝛼(𝑒𝑒)

= 𝛼𝛼 �� 𝛼𝛼−1(𝑓𝑓(𝑑𝑑))𝛼𝛼−1(𝑑𝑑)′𝑑𝑑𝑑𝑑
𝑒𝑒

𝑎𝑎
�. 

 

2. Fractional Differentiation and Abel Equation 

 

The origin of fractional calculus can be traced back to a letter that was written 

to Guillaume de l'Hôpital by Gottfried Wilhelm Leibniz in 1695. The structure of 

fractional derivative or at least related integral equation has appeared in different 

fields of science since it was introduced and investigated. For instance, in 1823, 

N. H. Abel studied the solution of a mechanical problem where one of the first 

integral equations appeared. [Gorenflo et. Al. (1980)] That problem was stated to 

find the curve of a path with regards to the place of falling bead such that the 
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amount of time consumed is the same. The solution of this mechanical problem is 

cycloid with the parametric equation as 

�𝑒𝑒 = 𝑑𝑑(𝑑𝑑 − 𝑒𝑒𝑏𝑏𝑚𝑚𝑑𝑑)
𝑦𝑦 = 𝑑𝑑(1 − 𝑎𝑎𝑚𝑚𝑒𝑒𝑑𝑑) 

It is easy to see the reason for demonstrating the solution as cycloid. Indeed, the 

term 𝑑𝑑𝑒𝑒 or length differentiation is 𝑑𝑑𝑒𝑒 = �𝑒𝑒′2 + 𝑦𝑦′2 = 𝑑𝑑√2(1 − 𝑎𝑎𝑚𝑚𝑒𝑒𝑑𝑑) and 

equating the kinetic �1
2
𝑚𝑚𝑣𝑣2� and potential energy (𝑚𝑚𝑚𝑚𝑦𝑦) for two different 

positions of the bead show the same amount of time consumed. �𝑣𝑣 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
→ 𝑑𝑑 =

�
𝑎𝑎
𝑔𝑔
𝜋𝜋� Here, we just showed that the cycloid is a solution of this problem. 

Although, finding the time consumed in general, regarding to parameterization of 

curve, can be expressed by integral equation as 

𝑑𝑑(𝑦𝑦) =
1

�2𝑚𝑚
�
�1 + 𝜑𝜑′2(𝑧𝑧)𝑑𝑑𝑧𝑧

�𝑦𝑦 − 𝑧𝑧

𝑦𝑦

0

=
1

�2𝑚𝑚
�(𝑢𝑢 − 𝑧𝑧)−

1
2

𝑦𝑦

0

𝑢𝑢(𝑧𝑧)𝑑𝑑𝑧𝑧 

Here, 𝑒𝑒 = 𝜑𝜑(𝑦𝑦) 𝑤𝑤ℎ𝑑𝑑𝑏𝑏𝑑𝑑 𝑦𝑦 ∈ [0,𝐻𝐻], expresses the curve equation (cycloid) and 

𝑑𝑑(𝑦𝑦) describes the consumed time where initial position of  is applied. In fact, 

Abel treated a more general equation as 

1
Γ(𝜇𝜇)�

(𝑒𝑒 − 𝜏𝜏)𝜇𝜇−1
𝑒𝑒

0

𝑢𝑢(𝜏𝜏)𝑑𝑑𝜏𝜏 = 𝑓𝑓(𝑒𝑒),   0 < 𝜇𝜇 < 1 

In fact, in honor of V. Volterra, the more general type of this equation is named 

singular Volterra equation of the first kind. This integral equation has a kernel with 

singularity of the type (𝑒𝑒 − 𝜏𝜏)𝜇𝜇−1 .  

Roughly speaking, fractional differentiation is the extension of natural order 

derivative to a more general order preferably the complex case. In this 

circumstance, we can see the integral and derivative as two operators and fractional 

order integral can appear by using Cauchy iterated integral. Indeed, the integral 

operator of natural order  can be expressed as following iterated integral 

𝐼𝐼𝑎𝑎 𝑒𝑒
𝑛𝑛(𝑓𝑓)(𝑒𝑒) = �� … � 𝑓𝑓(𝑒𝑒𝑛𝑛)𝑑𝑑𝑒𝑒𝑛𝑛 …𝑑𝑑𝑒𝑒2𝑑𝑑𝑒𝑒1

𝑒𝑒𝑛𝑛−1

𝑎𝑎

𝑒𝑒1

𝑎𝑎

𝑒𝑒

𝑎𝑎

=
1

(𝑚𝑚 − 1)!
�(𝑒𝑒 − 𝜏𝜏)𝑛𝑛−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑒𝑒

𝑎𝑎

 

The order of this operator can be extended to any complex number with positive 

real part by substituting 𝑚𝑚 and using gamma function Γ(𝜇𝜇) instead of (𝑚𝑚 − 1)!. 

This extension obtains non-integer order of integral operator. Furthermore, 
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according to the fundamental theorem of calculus, we can consider the derivative 

as an inverse operator of integral, which inspires the fractional differentiation and 

integration as one unifying operator. Indeed, the unique extension of analytic 

continuation in fractional order leads to Riemann-Liouville derivative as  

𝐷𝐷𝑎𝑎 𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) =

𝑑𝑑𝑛𝑛

𝑑𝑑𝑒𝑒𝑛𝑛
� 𝐼𝐼𝑎𝑎 𝑒𝑒

𝑛𝑛−𝜇𝜇(𝑓𝑓)(𝑒𝑒)� =
𝑑𝑑𝑛𝑛

𝑑𝑑𝑒𝑒𝑛𝑛
�

1
Γ(𝑚𝑚 − 𝜇𝜇)�

(𝑒𝑒 − 𝜏𝜏)𝑛𝑛−𝜇𝜇−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑒𝑒

𝑎𝑎

� 

Here, 𝑚𝑚 denotes the ceiling function, the least integer greater than or equal to 𝜇𝜇 and 

expresses the derivative as a negative order of integration. Due to the uniqueness 

of extension of analytic continuation in fractional order, the only possibility of 

defining analytic continuation of fractional derivative as an inverse operator is 

Riemann-Liouville derivative. However, if we look at fractional derivative as a 

part of an equation, then the boundary values should be written in terms of 

fractional integral which does not suitably fit reality. The Caputo derivative 

remedies the situation and can be considered as follows 

𝐷𝐷𝑎𝑎𝐶𝐶 𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = 𝐼𝐼𝑎𝑎 𝑒𝑒

𝑛𝑛−𝜇𝜇 �
𝑑𝑑𝑛𝑛

𝑑𝑑𝑒𝑒𝑛𝑛
(𝑓𝑓)(𝑒𝑒)� =

1
Γ(𝑚𝑚 − 𝜇𝜇)�

(𝑒𝑒 − 𝜏𝜏)𝑛𝑛−𝜇𝜇−1
𝑑𝑑𝑛𝑛

𝑑𝑑𝑒𝑒𝑛𝑛
�𝑓𝑓(𝜏𝜏)�𝑑𝑑𝜏𝜏

𝑒𝑒

𝑎𝑎

 

This derivative is more suitable to determine the real phenomena since the initial 

value can be considered as the initial values of normal ODE. However, this 

operator is not the extension of analytic continuation in fractional order. These 

operators are concluded directly from the definition of fractional integral. 

However, we could focus on fractional derivative individually and find the 

formula.  In this circumstance, we can extend the general Leibniz formula for the 

product rule to fractional form. The Leibniz formula for the derivative of two 

differentiable functions can be written as  

𝐷𝐷𝑛𝑛�𝑢𝑢(𝑒𝑒). 𝑣𝑣(𝑒𝑒)� = ��𝑚𝑚𝑘𝑘�
𝑛𝑛

𝑘𝑘=0

𝐷𝐷𝑘𝑘�𝑢𝑢(𝑒𝑒)�𝐷𝐷𝑛𝑛−𝑘𝑘�𝑣𝑣(𝑒𝑒)� 

Similarly, the general Leibniz formula for derivative of products in terms of any 

function can be rewritten as  

𝐷𝐷𝑔𝑔(𝑧𝑧)
𝑛𝑛�𝑢𝑢(𝑒𝑒).𝑣𝑣(𝑒𝑒)� = ��𝑚𝑚𝑘𝑘�

𝑛𝑛

𝑘𝑘=0

𝐷𝐷𝑔𝑔(𝑧𝑧)
𝑘𝑘�𝑢𝑢(𝑒𝑒)�𝐷𝐷𝑔𝑔(𝑧𝑧)

𝑛𝑛−𝑘𝑘�𝑣𝑣(𝑒𝑒)�

= ��𝑚𝑚𝑘𝑘�
𝑛𝑛

𝑘𝑘=0

�
1

𝑚𝑚(𝑒𝑒)′
𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑘𝑘

�𝑢𝑢(𝑒𝑒)� �
1

𝑚𝑚(𝑒𝑒)′
𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑛𝑛−𝑘𝑘

�𝑣𝑣(𝑒𝑒)� 
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This generalization of Leibniz formula inspired Osler to find the fractional 

derivative operator in terms of an arbitrary function. [Osler (1970)] There is a 

striking resemblance between this generalization and product rule of non-

Newtonian calculus which can be seen as  

𝐷𝐷𝛼𝛼(𝑒𝑒) 𝑛𝑛�𝑢𝑢(𝑒𝑒)⨂𝛼𝛼𝑣𝑣(𝑒𝑒)� = 𝛼𝛼 ��
1

𝛼𝛼−1(𝑒𝑒)′
𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑛𝑛

�𝛼𝛼−1𝑚𝑚𝑢𝑢(𝑒𝑒).𝛼𝛼−1𝑚𝑚𝑣𝑣(𝑒𝑒)��

= ⨁𝑘𝑘=0
𝑛𝑛

𝛼𝛼(𝑒𝑒) �𝛼𝛼 �
𝑚𝑚!

𝑘𝑘! (𝑚𝑚 − 𝑘𝑘)!
�⨂𝛼𝛼𝐷𝐷𝑘𝑘�𝑢𝑢(𝑒𝑒)�⨂𝛼𝛼𝐷𝐷𝑛𝑛−𝑘𝑘�𝑣𝑣(𝑒𝑒)��

= 𝛼𝛼 ���𝑚𝑚𝑘𝑘�
𝑛𝑛

𝑘𝑘=0

�
1

𝛼𝛼−1(𝑒𝑒)′
𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑘𝑘

�𝛼𝛼−1𝑚𝑚𝑢𝑢(𝑒𝑒)� �
1

𝛼𝛼−1(𝑒𝑒)′
𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑛𝑛−𝑘𝑘

�𝛼𝛼−1𝑚𝑚𝑣𝑣(𝑒𝑒)�� 

Considering the special case of 𝑢𝑢(𝑒𝑒) and 𝑣𝑣(𝑒𝑒), combining with Cauchy formula 

for complex function, we obtain the derivative with respect to any function. 

Moreover, replacing 𝑚𝑚 by any complex number with positive real part makes the 

fractional differential operator with respect to any function which is named 

𝜓𝜓 −fractional differential operator as 

𝐷𝐷𝑎𝑎
𝜇𝜇�𝑓𝑓(𝑧𝑧)�𝑧𝑧

𝜓𝜓(𝑒𝑒) =
1

Γ(−𝜇𝜇) �
𝑓𝑓(𝑑𝑑)𝜓𝜓′(𝑑𝑑)𝑑𝑑𝑑𝑑

(𝜓𝜓(𝑧𝑧) − 𝜓𝜓(𝑑𝑑))𝜇𝜇+1

𝑧𝑧

𝜓𝜓−1(𝑎𝑎)

 

This generalization can be obtained by putting more general functions in the chains 

of iterated Cauchy integral which was determined in Katugampola’s work. 

[Katugampola (2011)] This iterated Cauchy integral is presented as  

�𝑑𝑑1𝑟𝑟𝑑𝑑𝑑𝑑1

𝑒𝑒

𝑎𝑎

� 𝑑𝑑2𝑟𝑟𝑑𝑑𝑑𝑑2

𝑑𝑑1

𝑎𝑎

… � 𝑑𝑑𝑛𝑛𝑟𝑟𝑓𝑓(𝑑𝑑𝑛𝑛)𝑑𝑑𝑑𝑑𝑛𝑛

𝑑𝑑𝑛𝑛−1

𝑎𝑎

=
(𝑏𝑏 + 1)1−𝑛𝑛

(𝑚𝑚 − 1)!
�(𝑑𝑑𝑟𝑟+1 − 𝑒𝑒𝑟𝑟+1)𝑛𝑛−1
𝑒𝑒

𝑎𝑎

𝑒𝑒𝑟𝑟𝑓𝑓(𝑒𝑒)𝑑𝑑𝑒𝑒 

This formula can be extended to the fractional integral operator of any order and 

the result is the specific case of operator with respect to any function. The same 

method in non-Newtonian calculus can be applied and  

�𝑑𝑑𝛼𝛼�𝑑𝑑1

𝑒𝑒

𝑎𝑎

� 𝑑𝑑𝛼𝛼�𝑑𝑑2

𝑑𝑑1

𝑎𝑎

… � 𝑓𝑓(𝑑𝑑𝑛𝑛)𝑑𝑑𝛼𝛼�𝑑𝑑𝑛𝑛

𝑑𝑑𝑛𝑛−1

𝑎𝑎

= 𝛼𝛼 �
1

(𝑚𝑚 − 1)!
��𝛼𝛼−1(𝑒𝑒) − 𝛼𝛼−1(𝑒𝑒)�

𝑛𝑛−1
𝑒𝑒

𝑎𝑎

𝛼𝛼−1�𝑓𝑓(𝑒𝑒)�𝛼𝛼−1(𝑒𝑒)′𝑑𝑑𝑒𝑒� 
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Besides, the special cases of 𝜓𝜓 −fractional differential operator are considered. 

For instance, in 1892, Hadamard began the publication of series of articles under 

the common title [Hadamard (1892)]. The third section of the article gave an 

underlying idea for creating different forms of fractional integral operators. The 

main purpose of the study in those publications was investigating the relationship 

between coefficients of series with the unit radius of convergence and 

consequently, singularity of kernel was transformed to point one. We recap some 

definitions as follows 

Definition 2.1 Let [𝑑𝑑, 𝑏𝑏] be the real interval and 𝑒𝑒 ∈ [𝑑𝑑, 𝑏𝑏], then for 𝜇𝜇 ∈

ℂ (𝑅𝑅𝑑𝑑(𝜇𝜇) > 0)  the Riemann-Liouville, Hadamard, 𝜓𝜓 −fractional, and non-

Newtonian integral operators are defined as follows respectively 

𝐼𝐼𝑎𝑎 𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) =

1
Γ(𝜇𝜇)�

(𝑒𝑒 − 𝜏𝜏)𝜇𝜇−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑒𝑒

𝑎𝑎

, 

𝐼𝐼𝑎𝑎𝐻𝐻 𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) =

1
Γ(𝜇𝜇)��𝑙𝑙𝑚𝑚

𝑒𝑒
𝜏𝜏
�
𝜇𝜇−1

𝑓𝑓(𝜏𝜏)
𝑑𝑑𝜏𝜏
𝜏𝜏

𝑒𝑒

𝑎𝑎

, 

𝐼𝐼𝑎𝑎
𝜓𝜓(𝑒𝑒)

𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) =

1
Γ(𝜇𝜇)��𝜓𝜓

(𝑒𝑒) −𝜓𝜓(𝜏𝜏)�
𝜇𝜇−1

𝑓𝑓(𝜏𝜏)𝜓𝜓′(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑒𝑒

𝑎𝑎

, 

𝐼𝐼𝑎𝑎
𝛼𝛼(𝑒𝑒)

𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = 𝛼𝛼 �

1
Γ(𝜇𝜇)��𝛼𝛼

−1(𝑒𝑒) − 𝛼𝛼−1(𝜏𝜏)�
𝜇𝜇−1

𝛼𝛼−1𝑚𝑚𝑓𝑓(𝜏𝜏)𝛼𝛼−1′(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑒𝑒

𝑎𝑎

�. 

The negative order of these operators obtains the derivative operators. Indeed, the 

continuum analytics of their order implies the following definition of their 

derivative as follows, respectively 

𝐷𝐷𝑎𝑎 𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) =

1
Γ(𝑚𝑚 − 𝜇𝜇) �

𝑑𝑑𝑛𝑛

𝑑𝑑𝑒𝑒𝑛𝑛
��(𝑒𝑒 − 𝜏𝜏)𝑛𝑛−𝜇𝜇−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏

𝑒𝑒

𝑎𝑎

, 

𝐷𝐷𝑎𝑎𝐻𝐻 𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) =

1
Γ(𝑚𝑚 − 𝜇𝜇) �𝑒𝑒

𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑛𝑛

��𝑙𝑙𝑚𝑚
𝑒𝑒
𝜏𝜏
�
𝑛𝑛−𝜇𝜇−1

𝑓𝑓(𝜏𝜏)
𝑑𝑑𝜏𝜏
𝜏𝜏

𝑒𝑒

𝑎𝑎

, 

𝐷𝐷𝑎𝑎
𝜓𝜓(𝑒𝑒)

𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) =

1
Γ(𝑚𝑚 − 𝜇𝜇) �

1
𝜓𝜓′(𝑒𝑒)

𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑛𝑛

��𝜓𝜓(𝑒𝑒) − 𝜓𝜓(𝜏𝜏)�
𝑛𝑛−𝜇𝜇−1

𝑓𝑓(𝜏𝜏)𝜓𝜓′(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑒𝑒

𝑎𝑎

, 

𝐷𝐷𝑎𝑎
𝛼𝛼(𝑒𝑒)

𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = 
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𝛼𝛼�
1

Γ(𝑚𝑚 − 𝜇𝜇) �
1

𝛼𝛼−1(𝑒𝑒)′
𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑛𝑛

��𝛼𝛼−1(𝑒𝑒) − 𝛼𝛼−1(𝜏𝜏)�
𝑛𝑛−𝜇𝜇−1

𝛼𝛼−1𝑚𝑚𝑓𝑓(𝜏𝜏)𝛼𝛼−1′(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑒𝑒

𝑎𝑎

�. 

 

We can reach Caputo derivative operator by moving the derivative part inside the 

integral. We emphasize that Caputo is not the analytic continuum of order, but it 

is more suitable to make equations for real phenomena. The semi group property 

and more information about their comparisons were studied in [Momenzadeh 

(2021)].  

We recap different types of non-Newtonian Calculi, their derivatives, integrals and 

fractional operators in the following table 

 

 

Table 1: Comparison of differentiation operators in different Calculi 

Type of calculus Derivative (µ =  𝟏𝟏) Integral (µ = − 𝟏𝟏) 

Newtonian 𝑓𝑓′(𝑒𝑒) 𝐼𝐼𝑒𝑒𝑎𝑎 (𝑓𝑓)(𝑒𝑒) = � f(s)𝑑𝑑𝑒𝑒
𝑒𝑒

𝑎𝑎
 

Bi-Geometric 𝑓𝑓∗(𝑒𝑒) = 𝑑𝑑𝑒𝑒𝑒𝑒 �
𝑒𝑒(𝑓𝑓(𝑒𝑒))′
𝑓𝑓(𝑒𝑒)

� 𝐼𝐼𝑒𝑒𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒) (𝑓𝑓)(𝑒𝑒) = exp �� ln(f(s))

𝑑𝑑𝑒𝑒
𝑒𝑒

𝑒𝑒

𝑎𝑎
� 

𝑑𝑑𝑒𝑒 − calculus 𝑓𝑓(p)(𝑒𝑒) =
(𝑓𝑓(𝑒𝑒))q(𝑓𝑓(𝑒𝑒)′)p

𝑒𝑒𝑞𝑞
,

1
p

+
1
q

= 1 𝐼𝐼𝑒𝑒𝑎𝑎
𝑒𝑒𝑝𝑝 (𝑓𝑓)(𝑒𝑒) = �

1
p
� 𝑓𝑓

1
p(𝑒𝑒)𝑒𝑒

1
qds

𝑒𝑒

𝑎𝑎
�
p

 

Bi-Positive Calculus 𝑓𝑓(ℓ)(𝑒𝑒) = 𝑙𝑙𝑚𝑚(𝑓𝑓(𝑒𝑒)′) + 𝑓𝑓(𝑒𝑒) − 𝑒𝑒 𝐼𝐼𝑒𝑒𝑎𝑎
𝑙𝑙𝑛𝑛(𝑒𝑒) (𝑓𝑓)(𝑒𝑒) = 𝑙𝑙𝑚𝑚 �� exp(𝑒𝑒𝑓𝑓(𝑒𝑒))ds

𝑒𝑒

𝑎𝑎
� 

α- Calculus 𝐷𝐷𝛼𝛼(𝑒𝑒) (𝑓𝑓)(𝑒𝑒) = 𝛼𝛼 �
𝛼𝛼−1(𝑓𝑓(𝑒𝑒))′
𝛼𝛼−1(𝑒𝑒)′

� 𝐼𝐼𝑒𝑒𝑎𝑎
𝛼𝛼(𝑒𝑒) (𝑓𝑓)(𝑒𝑒) = 𝛼𝛼 �� 𝛼𝛼−1(𝑓𝑓(𝑒𝑒))𝛼𝛼−1(𝑒𝑒)′𝑑𝑑𝑒𝑒

𝑒𝑒

𝑎𝑎
� 

 

 

 

 

 

Type of calculus Fractional Integral (µ ) 

Newtonian 
𝐼𝐼𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) =

1
Γ(𝜇𝜇)�

(𝑒𝑒 − 𝑒𝑒)𝜇𝜇−1𝑓𝑓(𝑒𝑒)𝑑𝑑𝑒𝑒
𝑒𝑒

𝑎𝑎
𝑎𝑎  

 

Bi-Geometric 𝐼𝐼𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = 𝑑𝑑𝑒𝑒𝑒𝑒 �

1
Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �

𝑒𝑒
𝑒𝑒
��

𝜇𝜇−1

𝑙𝑙𝑚𝑚�𝑓𝑓(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑒𝑒

𝑎𝑎
�𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒  
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𝑑𝑑𝑒𝑒 − calculus 𝐼𝐼𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = �

1
pΓ(𝜇𝜇)� �𝑒𝑒

1
p − 𝑒𝑒

1
p�

𝜇𝜇−1

𝑓𝑓
1
p(𝑒𝑒)𝑒𝑒

1
qds

𝑒𝑒

𝑎𝑎
�
p

𝑎𝑎
𝑒𝑒𝑝𝑝  

 

Bi-Positive Calculus 
𝐼𝐼𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = 𝑙𝑙𝑚𝑚 �

1
Γ(𝜇𝜇)�

(𝑑𝑑𝑒𝑒 − 𝑑𝑑𝑑𝑑)𝜇𝜇−1𝑑𝑑𝑒𝑒𝑒𝑒(𝑓𝑓(𝑒𝑒) + 𝑒𝑒)𝑑𝑑𝑒𝑒
𝑒𝑒

𝑎𝑎
�𝑎𝑎

𝑙𝑙𝑛𝑛  

 

α- Calculus 
𝐼𝐼𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = α �

1
Γ(𝜇𝜇)� �𝛼𝛼−1(x) − 𝛼𝛼−1(s)�𝜇𝜇−1𝛼𝛼−1�𝑓𝑓(𝑒𝑒)�𝛼𝛼−1(𝑒𝑒)′𝑑𝑑𝑒𝑒

𝑒𝑒

𝑎𝑎
�𝑎𝑎  

 
 

Type of calculus Caputo Fractional derivative (−µ ) 

Newtonian 
𝐷𝐷𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) =

1
Γ(𝑚𝑚 − 𝜇𝜇)�

(𝑒𝑒 − 𝑒𝑒)𝑛𝑛−𝜇𝜇−1𝑓𝑓(𝑛𝑛)(𝑒𝑒)𝑑𝑑𝑒𝑒
𝑒𝑒

𝑎𝑎
𝑎𝑎
𝐶𝐶  

 

Bi-Geometric 
𝐷𝐷𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = 𝑑𝑑𝑒𝑒𝑒𝑒 �

1
Γ(𝑚𝑚 − 𝜇𝜇)� �𝑙𝑙𝑚𝑚 �

𝑒𝑒
𝑒𝑒
��

𝑛𝑛−𝜇𝜇−1

�𝑒𝑒
𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑛𝑛

𝑙𝑙𝑚𝑚�𝑓𝑓(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑒𝑒

𝑎𝑎
�𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒  

 

𝑑𝑑𝑒𝑒 − calculus 𝐷𝐷𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = �

1
Γ(𝑚𝑚 − 𝜇𝜇)� �𝑒𝑒

1
p − 𝑒𝑒

1
p�

𝑛𝑛−𝜇𝜇−1

�
1
𝑒𝑒
𝑒𝑒
1
𝑞𝑞
𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑛𝑛

𝑓𝑓
1
p(𝑒𝑒)𝑒𝑒

1
𝑞𝑞ds

𝑒𝑒

𝑎𝑎
�
p

𝑎𝑎
𝑒𝑒𝑝𝑝  

 

Bi-Positive Calculus 
𝐷𝐷𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = 𝑙𝑙𝑚𝑚 �

1
Γ(𝑚𝑚 − 𝜇𝜇)�

(𝑑𝑑𝑒𝑒 − 𝑑𝑑𝑑𝑑)𝑛𝑛−𝜇𝜇−1 �𝑑𝑑𝑑𝑑
𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑛𝑛

𝑑𝑑𝑒𝑒𝑒𝑒�𝑓𝑓(𝑒𝑒)�𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒
𝑒𝑒

𝑎𝑎
�𝑎𝑎

𝑙𝑙𝑛𝑛  

 

α- Calculus 
𝐷𝐷𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = α �

1
Γ(𝑚𝑚 − 𝜇𝜇)� �𝛼𝛼−1(x) − 𝛼𝛼−1(s)�𝑛𝑛−𝜇𝜇−1 �

1
𝛼𝛼−1(s)′

𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑛𝑛

𝛼𝛼−1�𝑓𝑓(𝑒𝑒)�𝛼𝛼−1(𝑒𝑒)′𝑑𝑑𝑒𝑒
𝑒𝑒

𝑎𝑎
�𝑎𝑎  

 
 

Our study in this literature is focused on bi-geometric calculus, so it is necessary 

to investigate the properties of the fractional operators in this calculus. Indeed, the 

relationship between bi-geometric fractional operators and Hadamard operators 

when 0 < 𝜇𝜇 < 1, can be rewritten as 

𝐼𝐼𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = 𝑑𝑑𝑒𝑒𝑒𝑒 � 𝐼𝐼𝑑𝑑𝐻𝐻 𝑒𝑒

𝜇𝜇
�𝑙𝑙𝑚𝑚(𝑓𝑓)� (𝑒𝑒)� = 𝑑𝑑𝑒𝑒𝑒𝑒 �

1
Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �

𝑒𝑒
𝑒𝑒
��

𝜇𝜇−1

𝑙𝑙𝑚𝑚�𝑓𝑓(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑒𝑒

𝑎𝑎
�𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒  

𝐼𝐼𝑒𝑒1(𝑓𝑓)(𝑒𝑒) = 𝑑𝑑𝑒𝑒𝑒𝑒 �� 𝑙𝑙𝑚𝑚�𝑓𝑓(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑒𝑒

𝑎𝑎
�𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒  

𝐷𝐷𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = 𝑑𝑑𝑒𝑒𝑒𝑒 � 𝐷𝐷𝑑𝑑𝐻𝐻 𝑒𝑒

𝜇𝜇
�𝑙𝑙𝑚𝑚(𝑓𝑓)� (𝑒𝑒)� = 𝑑𝑑𝑒𝑒𝑒𝑒 �

1
Γ(1 − 𝜇𝜇) �𝑒𝑒

𝑑𝑑
𝑑𝑑𝑒𝑒
�� �𝑙𝑙𝑚𝑚 �

𝑒𝑒
𝑒𝑒
��

−𝜇𝜇

𝑙𝑙𝑚𝑚�𝑓𝑓(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑒𝑒

𝑎𝑎
�𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒  

𝐷𝐷𝑒𝑒1(𝑓𝑓)(𝑒𝑒) = 𝑑𝑑𝑒𝑒𝑒𝑒 �𝛿𝛿 �𝑙𝑙𝑚𝑚(𝑓𝑓)� (𝑒𝑒)� = 𝑑𝑑𝑒𝑒𝑒𝑒 �𝑒𝑒
𝑑𝑑
𝑑𝑑𝑒𝑒

�𝑙𝑙𝑚𝑚(𝑓𝑓)� (𝑒𝑒)� = 𝑑𝑑𝑒𝑒𝑒𝑒 �𝑒𝑒
𝑓𝑓′
𝑓𝑓

(𝑒𝑒)�𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒  
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As we mentioned before, this derivative is an analytic continuous extension of 

the order and we can see this in the following lemma. 

Lemma 2.2 The operators 𝐼𝐼𝑒𝑒
𝜇𝜇

𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒  and 𝐷𝐷𝑒𝑒

𝜇𝜇
𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒  are the continuations of each other 

with respect to 𝜇𝜇 on the respective half line or half plane in complex case. If 𝑓𝑓(𝑒𝑒) 

is differentiable by bi-geometric calculus, so that 𝐼𝐼𝑒𝑒
𝜇𝜇

𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑒𝑒) and 𝐷𝐷𝑒𝑒

𝜇𝜇
𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑒𝑒) are 

defined, then, they coincide at 𝜇𝜇 = 0. In particular, we have  

lim
𝜇𝜇→0−

� 𝐼𝐼𝑒𝑒
𝜇𝜇

𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑒𝑒)� = lim

𝜇𝜇→0+
� 𝐷𝐷𝑒𝑒

𝜇𝜇
𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑒𝑒)� =𝑓𝑓(𝑒𝑒) 

Proof: The proof can be obtained due to continuity of exponential function and 

property 2.27 of [Kilbas et. al. (2006)].   

Interchanging the order of derivative and integration in the definition of fractional 

differentiation leads to Caputo derivative. We emphasize that the analytic 

continuation of fractional integral operator is unique, thus applying the fractional 

integral on Caputo derivative will not give the identity function. Indeed, the 

properties of Caputo type derivative on bi-geometric calculus can be listed in the 

following lemma. 

Lemma 2.3 The fractional Caputo derivative for differentiable function 𝑓𝑓(𝑒𝑒) on 

bi-geometric calculus is defined as  

𝐷𝐷𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) = 𝑑𝑑𝑒𝑒𝑒𝑒 �

1
Γ(𝑚𝑚 − 𝜇𝜇)� �𝑙𝑙𝑚𝑚 �

𝑒𝑒
𝑒𝑒
��

𝑛𝑛−𝜇𝜇−1

�𝑒𝑒
𝑑𝑑
𝑑𝑑𝑒𝑒
�
𝑛𝑛

𝑙𝑙𝑚𝑚�𝑓𝑓(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑒𝑒

𝑎𝑎
� = 𝑑𝑑𝑒𝑒𝑒𝑒 � 𝐼𝐼𝑒𝑒𝑚𝑚−𝜇𝜇𝑑𝑑

𝐻𝐻 𝛿𝛿𝑚𝑚𝑙𝑙𝑚𝑚𝑓𝑓(𝑒𝑒)�𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶  

Moreover, this operator has the following properties 

• 𝐷𝐷𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) =𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶 𝐷𝐷𝑒𝑒
𝜇𝜇 �𝑓𝑓(𝑑𝑑) − ∑ 𝛿𝛿𝑘𝑘𝑓𝑓(𝑎𝑎)

𝑘𝑘!
�𝑙𝑙𝑚𝑚 𝑑𝑑

𝑎𝑎
�
𝑘𝑘

𝑛𝑛−1
𝑘𝑘=0 � (𝑒𝑒)𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒  
In particular, for 0 < 𝜇𝜇 < 1, we have  

𝐷𝐷𝑒𝑒
𝜇𝜇(𝑓𝑓)(𝑒𝑒) =𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶 𝐷𝐷𝑒𝑒
𝜇𝜇(𝑓𝑓(𝑑𝑑) − 𝑓𝑓(𝑑𝑑))(𝑒𝑒)𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒  
 

• 𝐼𝐼𝑒𝑒
𝜇𝜇

𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒 � 𝐷𝐷𝑒𝑒

𝜇𝜇
𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶 �(𝑓𝑓)(𝑒𝑒) = 𝑑𝑑𝑒𝑒𝑒𝑒 �𝑙𝑙𝑚𝑚𝑓𝑓(𝑒𝑒) − ∑ 𝛿𝛿𝑘𝑘𝑙𝑙𝑛𝑛𝑓𝑓(𝑎𝑎)
𝑘𝑘!

�𝑙𝑙𝑚𝑚 𝑒𝑒
𝑎𝑎
�
𝑘𝑘

𝑛𝑛−1
𝑘𝑘=0 � 

Proof: The first property is a direct consequence of Theorem 2.1 of [Jarad et. al. 

(2012)] and for the second one we have 

𝐼𝐼𝑒𝑒
𝜇𝜇

𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒 � 𝐷𝐷𝑒𝑒

𝜇𝜇
𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶 �(𝑓𝑓)(𝑒𝑒) = 𝑑𝑑𝑒𝑒𝑒𝑒 � 𝐼𝐼𝑒𝑒
𝜇𝜇ln 𝑎𝑎

𝐻𝐻 �𝑑𝑑𝑒𝑒𝑒𝑒� 𝐷𝐷𝑒𝑒
𝜇𝜇

𝑎𝑎
𝐻𝐻,𝐶𝐶 �(𝑙𝑙𝑚𝑚𝑓𝑓)�� (𝑒𝑒) 

Now applying lemma 2.5 in [Jarad et. al. (2012)] leads to the conclusion.  

 

3. Equicontinuous Functions and Arzela-Ascoli Theorem 
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In this section, we prepare the background study to prove the existence and 

uniqueness of the introduced model. There are many approaches for determining 

the existence of system of differential equations and one of them is using the 

concepts of mathematical analysis which are used in Arzela-Ascoli theorem. Our 

main reference here is Conway’s book. [Conway (2012)] 

Consider 𝐺𝐺 as an open set in complex plane ℂ, which is equipped with the metric 

function (Ω,𝑑𝑑). The metric space (Ω,𝑑𝑑) is complete in the sense of convergence 

of Cauchy sequences, then designate by 𝐶𝐶(𝐺𝐺,Ω) the set of all continuous functions 

from 𝐺𝐺 to Ω. The definition of Equicontinuous family of the functions can be 

described as follows: 

Definition 2.4 A set ℑ ⊆ 𝐶𝐶(𝐺𝐺,Ω) is Equicontinuous at a point 𝜔𝜔 ∈ 𝐺𝐺 if and only 

if for every non-negative 𝜀𝜀, there is a non-negative 𝛿𝛿 such that for |𝑧𝑧 − 𝜔𝜔| < 𝛿𝛿, 

we have 𝑑𝑑�𝑓𝑓(𝑧𝑧),𝑓𝑓(𝜔𝜔)� < 𝜀𝜀. Moreover, ℑ is Equicontinuous over a set 𝐸𝐸 ⊆ 𝐺𝐺 

instead of only one single point. If for any given 𝜀𝜀 > 0,  there exist 𝛿𝛿 > 0 such 

that for any two closed enough points in 𝐸𝐸 (i. e. |𝑧𝑧 − 𝑧𝑧′| < 𝛿𝛿), the inequality 

𝑑𝑑�𝑓𝑓(𝑧𝑧),𝑓𝑓(𝑧𝑧′)� < 𝜀𝜀 is satisfied for all 𝑓𝑓 ∈ ℑ.  

Definition 2.5 A set ℑ ⊆ 𝐶𝐶(𝐺𝐺,Ω) is normal if each sequence in ℑ has a 

subsequence which converges to a function 𝑓𝑓 ∈ ℑ in 𝐶𝐶(𝐺𝐺,Ω). This condition 

(being normal) is equivalent to the statement that the closure of ℑ ⊆ 𝐶𝐶(𝐺𝐺,Ω) is 

compact. Indeed, compactness in Hausdorff space is equivalent to sequential 

compactness.  

Definition 2.6 A sequence of the functions 𝑓𝑓𝑘𝑘:Ω ⊆ ℝ → ℝ𝑛𝑛 is uniformly bounded 

if there exists 𝑀𝑀 > 0 such that |𝑓𝑓𝑘𝑘(𝑑𝑑)| ≤ 𝑀𝑀 for every 𝑑𝑑 ∈ Ω and every 𝑘𝑘 ∈ ℕ. 

Now, we state the Arzela-Ascoli theorem and the equivalent forms for real 

functions. First, let’s state the original form 

Theorem 2.7 A set ℑ ⊆ 𝐶𝐶(𝐺𝐺,Ω) is normal if and only if the following two 

conditions are satisfied 

1. For each 𝑧𝑧 in 𝐺𝐺, {𝑓𝑓(𝑧𝑧):𝑓𝑓 ∈ ℑ} has compact closure in Ω; 

2. ℑ is equicontinuous at each point of 𝐺𝐺. 

Corollary 2.8 Every uniformly bounded, uniformly Equicontinuous sequence of 

functions 𝑓𝑓𝑘𝑘:Ω ⊆ ℝ → ℝ𝑛𝑛 has a subsequence that converges uniformly on 

compact sets. (Here compactness is equivalent to closed and bounded sets due to 

Hine-Borel Theorem)  
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It is noticeable that uniformly convergent implies the interchange of limit and 

integral, thus  

lim
𝑛𝑛→∞

� 𝑓𝑓𝑛𝑛(𝑒𝑒)𝑑𝑑𝑒𝑒 = � 𝑓𝑓(𝑒𝑒)𝑑𝑑𝑒𝑒
𝑐𝑐

𝑏𝑏

𝑐𝑐

𝑏𝑏
 

The corollary 2.8 clarifies the method of the proof for existence. Indeed, after 

stating the fractional model, we should follow some steps to determine the solution 

of the system as a sequence of the functions. In the next step, we should check if 

the introduced operator is uniformly bounded and uniformly Equicontinuous or 

not.   

In the end, we should be concerned about suitable norm and space of discussion. 

Let 𝐼𝐼 be the closed interval and 𝑑𝑑 = 𝐶𝐶(𝐼𝐼) denotes the space of all continuous 

functions defined on 𝐼𝐼 endowed with the maximum norm 

‖𝑓𝑓‖ = 𝑚𝑚𝑑𝑑𝑒𝑒𝑑𝑑∈𝐼𝐼|𝑓𝑓(𝑑𝑑)| 

Definitely, the maximum norm induces the Banach space. (The complete norm 

space in the sense that any Cauchy sequence is convergent)  

Moreover, for any (𝑢𝑢, 𝑣𝑣) ∈ 𝑑𝑑 × 𝑑𝑑 the product topology induces the norm in 𝑑𝑑2 as 

‖(𝑓𝑓,𝑚𝑚)‖ = 𝑚𝑚𝑑𝑑𝑒𝑒{‖𝑓𝑓‖, ‖𝑚𝑚‖} 

Clearly, this space with given norm is a Banach space.  

Definition 2.9 Let (𝐻𝐻,𝑑𝑑) be the metric space equipped with metric function 𝑑𝑑, 

then 𝑇𝑇:𝐻𝐻 → 𝐻𝐻 is a contraction mapping if there exist 0 < 𝜌𝜌 < 1 such that  

𝑑𝑑�𝑇𝑇(ℎ2),𝑇𝑇(ℎ1)� < 𝜌𝜌𝑑𝑑(ℎ2,ℎ1)      (1) 

Moreover, if 𝑇𝑇:𝐻𝐻 → 𝐻𝐻 is a contraction mapping, then, for any ℎ in 𝐻𝐻, the sequence 

{ℎ𝑛𝑛}𝑛𝑛=1∞  of iterations of ℎ under 𝑇𝑇 is a Cauchy sequence. This iteration is defined 

as 

ℎ1 = ℎ, ℎ𝑛𝑛 = 𝑇𝑇(ℎ𝑛𝑛−1) = 𝑇𝑇𝑛𝑛(ℎ) 

In addition, if the space is complete then the Banach theorem obtains the exact 

fixed point for this operator. There are fixed-point theorems for operators that 

satisfies (1) with 𝜌𝜌 = 1 and even for arbitrary continuous operator on certain 

matric spaces. For example, the Schauder fixed point theorem states that a 

continuous operator on a convex, compact subset of a Banach space has a fixed 

point. In this literature, we use the Banach fixed-point theorem to obtain the 

uniqueness of solution for our model.  
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CHAPTER III 
 

Mathematical Method  
 
 

1. Fractional Bi-Geometric Model 
 
 

In this section, we introduce our model in terms of bi-geometric calculus. Also, 

the existence and uniqueness of this model are discussed. In the previous 

chapter we constructed the model of healthy and cancerous cells based on 

Lotka–Volterra competition which can be rewritten in terms of bi-geometric 

calculus as  

⎩
⎨

⎧𝑑𝑑1∗ = 𝑑𝑑𝑒𝑒𝑒𝑒 �𝛼𝛼1𝑑𝑑 �1 −
𝑑𝑑1(𝑑𝑑)
𝐾𝐾1

� − 𝛽𝛽1𝑑𝑑𝑑𝑑2(𝑑𝑑) − 𝜀𝜀𝑑𝑑𝐷𝐷(𝑑𝑑)�

𝑑𝑑2∗ = 𝑑𝑑𝑒𝑒𝑒𝑒 �𝛼𝛼2𝑑𝑑 �1 −
𝑑𝑑2(𝑑𝑑)
𝐾𝐾2

� − 𝛽𝛽2𝑑𝑑𝑑𝑑1(𝑑𝑑) − 𝑑𝑑𝐷𝐷(𝑑𝑑)�
 

Here, 𝛼𝛼𝑖𝑖,   𝑏𝑏 = 1,2 are respective proliferation coefficients, 𝐾𝐾𝑖𝑖,   𝑏𝑏 = 1,2 

denotes carrying capacities, 𝛽𝛽𝑖𝑖, 𝑏𝑏 = 1,2 denotes the coefficients of interaction 

factor or competition coefficients, 𝑑𝑑1(𝑑𝑑) is the population of healthy cells at 

the time t and 𝑑𝑑2(𝑑𝑑) is the population of cancerous cells at time t. The effect of 

radiotherapy is determined by the function 𝐷𝐷(𝑑𝑑) with 

𝐷𝐷(𝑑𝑑) = �𝛾𝛾 > 0            𝑑𝑑 ∈ [𝑚𝑚𝑤𝑤, 𝐿𝐿]
0         𝑑𝑑 ∈ [𝐿𝐿, (𝑚𝑚 + 1)𝑤𝑤] 

In fact, the 𝑚𝑚𝑑𝑑ℎ time radiotherapy with the duration of 𝑤𝑤 is administrated and 

the period of treatment is divided to two stages. The first period is determined 

by the positive value 𝛾𝛾  and the second period is the rest time with the value of 

fractional operators, and replace the fractional operator with bi-geometric 

derivative of this calculus. 

There are some attempts to fit this model with Hadamard fractional operator 

[Awadalla et. al. (2019)]. However, the most suitable way of extension is to 

consider the Hadamard operator as a plugged part of a bigger scale (i.e., bi-

geometric calculus) to have a successful mathematical model. We should recall 

that Hadamard derivative operator tends to 𝛿𝛿 = 𝑒𝑒 𝑑𝑑
𝑑𝑑𝑒𝑒

 when the fractional order 

tends to 1. This expression was not considered in the said article and therefore, 

leads to an unsuitable extension of the model. Now, let us introduce our model 
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based on fractional operators of bi-geometric calculus. Indeed, the model can 

be developed for 0 < 𝜇𝜇 < 1 as follows: 

⎩
⎨

⎧� 𝐷𝐷𝑒𝑒
𝜇𝜇

𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶 �(𝑑𝑑1)(𝑑𝑑) = 𝑑𝑑𝑒𝑒𝑒𝑒 �𝛼𝛼1𝑑𝑑 �1 −

𝑑𝑑1(𝑑𝑑)
𝐾𝐾1

� − 𝛽𝛽1𝑑𝑑𝑑𝑑2(𝑑𝑑) − 𝜀𝜀𝑑𝑑𝐷𝐷(𝑑𝑑)�

� 𝐷𝐷𝑒𝑒
𝜇𝜇

𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶 �(𝑑𝑑2)(𝑑𝑑) = 𝑑𝑑𝑒𝑒𝑒𝑒 �𝛼𝛼2𝑑𝑑 �1 −

𝑑𝑑2(𝑑𝑑)
𝐾𝐾2

� − 𝛽𝛽2𝑑𝑑𝑑𝑑1(𝑑𝑑) − 𝑑𝑑𝐷𝐷(𝑑𝑑)�
 (1) 

Now, applying the lemma 2.3 on these equations obtains the following 

expression for left hand side of the equation 

� 𝐷𝐷𝑒𝑒
𝜇𝜇

𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒,𝐶𝐶 �(𝑑𝑑1)(𝑑𝑑) = � 𝐷𝐷𝑑𝑑

𝜇𝜇
𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒 ��(𝑑𝑑1)(𝑑𝑑) − (𝑑𝑑1)(𝑑𝑑)� 

Administrating the integral operator, 𝐼𝐼𝑑𝑑
𝜇𝜇

𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒  , in addition of lemma 2.3 shows  

⎩
⎪
⎨

⎪
⎧𝑑𝑑𝑒𝑒𝑒𝑒(𝑙𝑙𝑚𝑚𝑑𝑑1(𝑑𝑑) − 𝑙𝑙𝑚𝑚𝑑𝑑1(𝑑𝑑)) = 𝐼𝐼𝑑𝑑

𝜇𝜇
𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒 �𝑑𝑑𝑒𝑒𝑒𝑒 �𝛼𝛼1𝑑𝑑 �1 −
𝑑𝑑1(𝑑𝑑)
𝐾𝐾1

� − 𝛽𝛽1𝑑𝑑𝑑𝑑2(𝑑𝑑) − 𝜀𝜀𝑑𝑑𝐷𝐷(𝑑𝑑)��

𝑑𝑑𝑒𝑒𝑒𝑒(𝑙𝑙𝑚𝑚𝑑𝑑2(𝑑𝑑) − 𝑙𝑙𝑚𝑚𝑑𝑑2(𝑑𝑑)) = 𝐼𝐼𝑑𝑑
𝜇𝜇

𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒 �𝑑𝑑𝑒𝑒𝑒𝑒 �𝛼𝛼2𝑑𝑑 �1 −

𝑑𝑑2(𝑑𝑑)
𝐾𝐾2

� − 𝛽𝛽2𝑑𝑑𝑑𝑑1(𝑑𝑑) − 𝑑𝑑𝐷𝐷(𝑑𝑑)��
 

Due to the definition of 𝐼𝐼𝑒𝑒
𝜇𝜇

𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑑𝑑) = 𝑑𝑑𝑒𝑒𝑒𝑒� 𝐼𝐼𝑑𝑑

𝜇𝜇𝑙𝑙𝑚𝑚(𝑓𝑓(𝑑𝑑))𝑎𝑎
𝐻𝐻 �, we can rewrite the 

system of nonlinear equations as 

⎩
⎪
⎨

⎪
⎧𝑙𝑙𝑚𝑚 �

𝑑𝑑1(𝑑𝑑)
𝑑𝑑1(𝑑𝑑)

� = 𝐼𝐼𝑑𝑑
𝜇𝜇

𝑎𝑎
𝐻𝐻 �𝛼𝛼1𝑑𝑑 �1 −

𝑑𝑑1(𝑑𝑑)
𝐾𝐾1

� − 𝛽𝛽1𝑑𝑑𝑑𝑑2(𝑑𝑑) − 𝜀𝜀𝑑𝑑𝐷𝐷(𝑑𝑑)�

𝑙𝑙𝑚𝑚 �
𝑑𝑑2(𝑑𝑑)
𝑑𝑑2(𝑑𝑑)

� = 𝐼𝐼𝑑𝑑
𝜇𝜇

𝑎𝑎
𝐻𝐻 �𝛼𝛼2𝑑𝑑 �1 −

𝑑𝑑2(𝑑𝑑)
𝐾𝐾2

� − 𝛽𝛽2𝑑𝑑𝑑𝑑1(𝑑𝑑) − 𝑑𝑑𝐷𝐷(𝑑𝑑)�
 

The related integral equation can be expressed as  

⎩
⎪
⎨

⎪
⎧𝑙𝑙𝑚𝑚 �

𝑑𝑑1(𝑑𝑑)
𝑑𝑑1(𝑑𝑑)

� =
1

Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �
𝑑𝑑

𝑒𝑒
��

𝜇𝜇−1

�𝛼𝛼1 �1 −
𝑑𝑑1(𝑒𝑒)
𝐾𝐾1

� − 𝛽𝛽1𝑑𝑑2(𝑒𝑒) − 𝜀𝜀𝐷𝐷(𝑑𝑑)� 𝑑𝑑𝑒𝑒
𝑑𝑑

𝑑𝑑

𝑙𝑙𝑚𝑚 �
𝑑𝑑2(𝑑𝑑)
𝑑𝑑2(𝑑𝑑)

� =
1

Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �
𝑑𝑑

𝑒𝑒
��

𝜇𝜇−1

�𝛼𝛼2 �1 −
𝑑𝑑2(𝑒𝑒)
𝐾𝐾2

� − 𝛽𝛽2𝑑𝑑1(𝑒𝑒) −𝐷𝐷(𝑑𝑑)� 𝑑𝑑𝑒𝑒
𝑑𝑑

𝑑𝑑

 (2) 

This integral equation describes the converted model to bi-geometric calculus 

and we will investigate the existence and uniqueness of the solution in the next 

section. Due to biological interpretation, we will only consider the non-

negative solutions. Hence, we suppose that both initial values for the 

population of healthy and cancerous cells, 𝑑𝑑1(𝑑𝑑) and 𝑑𝑑2(𝑑𝑑) are positive. One 

of the advantages of using bi-geometric calculus then appears by determining 

only the non-negative solutions. The next proposition describes this property. 

Proposition 3.1 Non-negative quadrant of ℝ2 is invariant for system (2). 

Proof: The first equation in (2), expresses the population in terms of 

exponential function, this means 

29



𝑑𝑑1(𝑑𝑑) = 𝑑𝑑1(𝑑𝑑)𝑑𝑑𝑒𝑒𝑒𝑒 �
1

Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �
𝑑𝑑

𝑒𝑒
��

𝜇𝜇−1

�𝛼𝛼1 �1 −
𝑑𝑑1(𝑒𝑒)
𝐾𝐾1

� − 𝛽𝛽1𝑑𝑑2(𝑒𝑒)
𝑑𝑑

𝑑𝑑

− 𝜀𝜀𝐷𝐷(𝑒𝑒)�
𝑑𝑑𝑒𝑒

𝑒𝑒
� 

Thus 𝑑𝑑1(𝑑𝑑) should be positive for any positive 𝑑𝑑1(𝑑𝑑). Moreover, this formula 

shows that if 𝑑𝑑1(𝜏𝜏) = 0 at some 𝜏𝜏 ≥ 0 then the population should be 

identically zero after that.  

 

2. Existence of solution 
 
 
In this section, we apply the results of Arzela-Ascoli theorem to provide the 

conditions of existence. First, let us state the equivalence of integral equations 

(2) and our model (1).  

Lemma 3.1 The system of fractional nonlinear equations (1) and integral 

equations (2) are equivalent. In other words, if (𝑢𝑢, 𝑣𝑣) ∈ 𝑑𝑑2  is a solution of 

integral equations (2) then (𝑢𝑢, 𝑣𝑣) is a solution of (1) and vice versa.  

Proof: The procedure of finding the system of integral equations in the 

previous section obtains one side of the proof which (𝑢𝑢, 𝑣𝑣) as a solution of (1) 

implies the solution of (2). If we apply bi-geometric fractional derivative to 

both sides of (2) then it will result in system (1). 

Proposition 3.2 The given equation (1) has a solution (𝑢𝑢, 𝑣𝑣) ∈ 𝑑𝑑2. 

Proof: Let define the operator 𝑇𝑇:𝑑𝑑2 → 𝑑𝑑2 for 𝑢𝑢, 𝑣𝑣 ∈ 𝑑𝑑 as 

𝑇𝑇(𝑢𝑢, 𝑣𝑣)(𝑑𝑑) =  
1

Γ(𝜇𝜇)�� �𝑙𝑙𝑚𝑚 �
𝑑𝑑

𝑒𝑒
��

𝜇𝜇−1

�𝜑𝜑(𝑢𝑢, 𝑣𝑣)�
𝑑𝑑𝑒𝑒

𝑒𝑒

𝑑𝑑

𝑑𝑑
,� �𝑙𝑙𝑚𝑚 �

𝑑𝑑

𝑒𝑒
��

𝜇𝜇−1

�𝜓𝜓(𝑢𝑢, 𝑣𝑣)�
𝑑𝑑𝑒𝑒

𝑒𝑒

𝑑𝑑

𝑑𝑑
�

= (𝑇𝑇1(𝑢𝑢, 𝑣𝑣)(𝑑𝑑),  𝑇𝑇2(𝑢𝑢, 𝑣𝑣)(𝑑𝑑) ) 

Here, 𝜑𝜑(𝑢𝑢, 𝑣𝑣) and 𝜓𝜓(𝑢𝑢, 𝑣𝑣) are defined as 

𝜑𝜑(𝑢𝑢, 𝑣𝑣) = 𝛼𝛼1𝑒𝑒 �1 −
𝑢𝑢(𝑒𝑒)
𝐾𝐾1

� − 𝛽𝛽1𝑒𝑒𝑣𝑣(𝑒𝑒) − 𝜀𝜀𝑒𝑒𝐷𝐷(𝑒𝑒) 

𝜓𝜓(𝑢𝑢, 𝑣𝑣) = 𝛼𝛼2𝑒𝑒 �1 −
𝑣𝑣(𝑒𝑒)
𝐾𝐾2

� − 𝛽𝛽2𝑒𝑒𝑢𝑢(𝑒𝑒) − 𝑒𝑒𝐷𝐷(𝑒𝑒) 

These two functions are bounded because  

|𝜑𝜑(𝑢𝑢, 𝑣𝑣)| ≤ |𝛼𝛼1||𝑒𝑒|�1 +
|𝑢𝑢(𝑒𝑒)|
𝐾𝐾1

� + |𝛽𝛽1||𝑒𝑒||𝑣𝑣(𝑒𝑒)| + 𝜀𝜀𝛾𝛾|𝑒𝑒| = 𝑀𝑀1 
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|𝜓𝜓(𝑢𝑢, 𝑣𝑣)| ≤ |𝛼𝛼2||𝑒𝑒|�1 +
|𝑣𝑣(𝑒𝑒)|
𝐾𝐾2

� + |𝛽𝛽2||𝑒𝑒||𝑢𝑢(𝑒𝑒)| + 𝛾𝛾|𝑒𝑒| = 𝑀𝑀2 

We emphasize that  𝑢𝑢, 𝑣𝑣 ∈ 𝑑𝑑 = 𝐶𝐶(𝐼𝐼) and 𝐼𝐼 is a closed interval with the positive 

values greater than 𝑑𝑑0 = 1. Moreover, we can see that the operator is bounded 

with respect to its norm and consequently, the first condition of Arzela-Ascoli 

theorem is verified. It is correct because  

|𝑇𝑇1(𝑢𝑢(𝑑𝑑), 𝑣𝑣(𝑑𝑑))| ≤
1

Γ(𝜇𝜇) ���𝑙𝑙𝑚𝑚 �
𝑑𝑑
𝑒𝑒
��

𝜇𝜇−1

𝜑𝜑�𝑢𝑢(𝑒𝑒), 𝑣𝑣(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑

𝑎𝑎

�

≤
𝑀𝑀1

Γ(𝜇𝜇) �� �𝑙𝑙𝑚𝑚 �
𝑑𝑑
𝑒𝑒
��

𝜇𝜇−1 𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑

𝑎𝑎

� =
𝑀𝑀1

Γ(𝜇𝜇 + 1) �𝑙𝑙𝑚𝑚 �
𝑑𝑑
𝑑𝑑
��

𝜇𝜇

≤ 𝑁𝑁1 

Therefore, ‖𝑇𝑇1(𝑢𝑢, 𝑣𝑣)‖ = 𝑚𝑚𝑑𝑑𝑒𝑒𝑑𝑑∈𝐼𝐼|𝑇𝑇1(𝑢𝑢(𝑑𝑑), 𝑣𝑣(𝑑𝑑))| ≤ 𝑁𝑁1  and similarly we can 

see ‖𝑇𝑇2(𝑢𝑢, 𝑣𝑣)‖ ≤ 𝑁𝑁2 for some positive constant 𝑁𝑁2. This implies that  

‖𝑇𝑇(𝑢𝑢, 𝑣𝑣)‖ = ��𝑇𝑇1(𝑢𝑢, 𝑣𝑣),𝑇𝑇2(𝑢𝑢, 𝑣𝑣)�� = 𝑚𝑚𝑑𝑑𝑒𝑒(‖𝑇𝑇1(𝑢𝑢, 𝑣𝑣)‖, ‖𝑇𝑇2(𝑢𝑢, 𝑣𝑣)‖) ≤ 𝑁𝑁 

Where 𝑁𝑁 = 𝑚𝑚𝑑𝑑𝑒𝑒(𝑁𝑁1,𝑁𝑁2). Furthermore, the given operator is Equicontinuous 

because 

�𝑇𝑇1�𝑢𝑢(𝑑𝑑2), 𝑣𝑣(𝑑𝑑2)� − 𝑇𝑇1�𝑢𝑢(𝑑𝑑1),𝑣𝑣(𝑑𝑑1)��

= �
1

Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �
𝑑𝑑2
𝑒𝑒
��

𝜇𝜇−1

𝜑𝜑�𝑢𝑢(𝑒𝑒), 𝑣𝑣(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑2

𝑎𝑎

−
1

Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �
𝑑𝑑1
𝑒𝑒
��

𝜇𝜇−1

𝜑𝜑�𝑢𝑢(𝑒𝑒), 𝑣𝑣(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑1

𝑎𝑎

∓
1

Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �
𝑑𝑑2
𝑒𝑒
��

𝜇𝜇−1

𝜑𝜑�𝑢𝑢(𝑒𝑒),𝑣𝑣(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑1

𝑎𝑎

�

= �
1

Γ(𝜇𝜇)� ��𝑙𝑙𝑚𝑚 �
𝑑𝑑2
𝑒𝑒
��

𝜇𝜇−1

− �𝑙𝑙𝑚𝑚 �
𝑑𝑑1
𝑒𝑒
��

𝜇𝜇−1

�𝜑𝜑�𝑢𝑢(𝑒𝑒), 𝑣𝑣(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑1

𝑎𝑎

+
1

Γ(𝜇𝜇) � �𝑙𝑙𝑚𝑚 �
𝑑𝑑2
𝑒𝑒
��

𝜇𝜇−1

𝜑𝜑�𝑢𝑢(𝑒𝑒),𝑣𝑣(𝑒𝑒)�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑2

𝑑𝑑1

� 

31



≤
𝑀𝑀1

Γ(𝜇𝜇)�� ��𝑙𝑙𝑚𝑚 �
𝑑𝑑2
𝑒𝑒
��

𝜇𝜇−1

− �𝑙𝑙𝑚𝑚 �
𝑑𝑑1
𝑒𝑒
��

𝜇𝜇−1

�
𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑1

𝑎𝑎

+ � �𝑙𝑙𝑚𝑚 �
𝑑𝑑2
𝑒𝑒
��

𝜇𝜇−1 𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑2

𝑑𝑑1

�

=
𝑀𝑀1

Γ(𝜇𝜇 + 1)��𝑙𝑙𝑚𝑚 �
𝑑𝑑2
𝑑𝑑1
��

𝜇𝜇

− �𝑙𝑙𝑚𝑚 �
𝑑𝑑1
𝑑𝑑
��

𝜇𝜇

� 

Similarly, we can see 

�𝑇𝑇2�𝑢𝑢(𝑑𝑑2), 𝑣𝑣(𝑑𝑑2)� − 𝑇𝑇2�𝑢𝑢(𝑑𝑑1),𝑣𝑣(𝑑𝑑1)��

≤
𝑀𝑀2

Γ(𝜇𝜇 + 1)��𝑙𝑙𝑚𝑚 �
𝑑𝑑2
𝑑𝑑1
��

𝜇𝜇

− �𝑙𝑙𝑚𝑚 �
𝑑𝑑1
𝑑𝑑
��

𝜇𝜇

� 

Now, using the fact that logarithmic function in closed interval 𝐼𝐼 is uniformly 

continuous to obtain that the operator 𝑇𝑇 in 𝑑𝑑2 is equicontinuous. Therefore  𝑇𝑇 

is completely continuous and the equation (1) has a solution in 𝑈𝑈 ⊆ 𝑑𝑑.  

 
3. Uniqueness of solution 

 
In this section, we state the uniqueness theorem based on Banach fixed-point 

theorem. In this case, we apply some restrictions on the coefficients and have 

the following theorem: 

Theorem 3.4 Consider the following constants 

𝜉𝜉1 =
1

Γ(𝜇𝜇 + 1)𝑚𝑚𝑑𝑑𝑒𝑒𝑑𝑑∈𝐼𝐼 �
𝛼𝛼1
𝐾𝐾1
�𝑙𝑙𝑚𝑚 �

𝑑𝑑
𝑑𝑑
��

𝜇𝜇

,𝛽𝛽1 �𝑙𝑙𝑚𝑚 �
𝑑𝑑
𝑑𝑑
��

𝜇𝜇

� 

𝜉𝜉2 =
1

Γ(𝜇𝜇 + 1)𝑚𝑚𝑑𝑑𝑒𝑒𝑑𝑑∈𝐼𝐼 �
𝛼𝛼2
𝐾𝐾2
�𝑙𝑙𝑚𝑚 �

𝑑𝑑
𝑑𝑑
��

𝜇𝜇

,𝛽𝛽2 �𝑙𝑙𝑚𝑚 �
𝑑𝑑
𝑑𝑑
��

𝜇𝜇

� 

Have the properties that 𝜉𝜉 = 𝑚𝑚𝑑𝑑𝑒𝑒{𝜉𝜉1, 𝜉𝜉2} < 1 then the given system (1) has a 

unique solution.  

Proof. Let (𝑢𝑢(𝑑𝑑), 𝑣𝑣(𝑑𝑑)) and (𝑒𝑒(𝑑𝑑), 𝑦𝑦(𝑑𝑑)) be two couples of ordered pairs in 𝑑𝑑2, 

then, we can see 

�𝑇𝑇1�𝑢𝑢(𝑑𝑑), 𝑣𝑣(𝑑𝑑)� − 𝑇𝑇1�𝑒𝑒(𝑑𝑑),𝑦𝑦(𝑑𝑑)��

= �
1

Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �
𝑑𝑑
𝑒𝑒
��

𝜇𝜇−1

�𝜑𝜑�𝑢𝑢(𝑒𝑒),𝑣𝑣(𝑒𝑒)�
𝑑𝑑

𝑎𝑎

− 𝜑𝜑�𝑒𝑒(𝑒𝑒),𝑦𝑦(𝑒𝑒)��
𝑑𝑑𝑒𝑒
𝑒𝑒
� 
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= �
1

Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �
𝑑𝑑
𝑒𝑒
��

𝜇𝜇−1

�
𝛼𝛼1
𝐾𝐾1
�𝑒𝑒(𝑒𝑒) − 𝑢𝑢(𝑒𝑒)� + 𝛽𝛽1(𝑦𝑦(𝑒𝑒) − 𝑣𝑣(𝑒𝑒))�

𝑑𝑑

𝑎𝑎

𝑑𝑑𝑒𝑒
𝑒𝑒
�

≤
1

Γ(𝜇𝜇 + 1) �𝑙𝑙𝑚𝑚 �
𝑑𝑑
𝑑𝑑
��

𝜇𝜇

�
𝛼𝛼1
𝐾𝐾1
‖𝑢𝑢 − 𝑣𝑣‖ + 𝛽𝛽1‖𝑣𝑣 − 𝑦𝑦‖�

≤ 𝜉𝜉‖(𝑢𝑢, 𝑣𝑣) − (𝑒𝑒,𝑦𝑦)‖ 

We should emphasize that the norm on the ordered pair of continuous functions 

was defined as  

‖(𝑢𝑢, 𝑣𝑣) − (𝑒𝑒,𝑦𝑦)‖ = ‖(𝑢𝑢 − 𝑒𝑒, 𝑣𝑣 − 𝑦𝑦)‖ = 𝑚𝑚𝑑𝑑𝑒𝑒{‖𝑢𝑢 − 𝑒𝑒‖, ‖𝑣𝑣 − 𝑦𝑦‖}

= 𝑚𝑚𝑑𝑑𝑒𝑒{𝑚𝑚𝑑𝑑𝑒𝑒𝑑𝑑∈𝐼𝐼|𝑢𝑢(𝑑𝑑) − 𝑒𝑒(𝑑𝑑)|,𝑚𝑚𝑑𝑑𝑒𝑒𝑑𝑑∈𝐼𝐼|𝑣𝑣(𝑑𝑑) − 𝑦𝑦(𝑑𝑑)|} 

Similarly, we can see  

�𝑇𝑇2�𝑢𝑢(𝑑𝑑), 𝑣𝑣(𝑑𝑑)� − 𝑇𝑇2�𝑒𝑒(𝑑𝑑),𝑦𝑦(𝑑𝑑)�� ≤ 𝜉𝜉‖(𝑢𝑢, 𝑣𝑣) − (𝑒𝑒,𝑦𝑦)‖ 

Hence, for the Euclidean distance 𝑑𝑑 on ℝ2, we get  

𝑑𝑑�𝑇𝑇(𝑢𝑢, 𝑣𝑣),𝑇𝑇(𝑒𝑒,𝑦𝑦)� = 𝑑𝑑 ��𝑇𝑇1(𝑢𝑢, 𝑣𝑣),𝑇𝑇2(𝑢𝑢, 𝑣𝑣)�, �𝑇𝑇1(𝑒𝑒,𝑦𝑦),𝑇𝑇2(𝑒𝑒,𝑦𝑦)��

= ��𝑇𝑇1(𝑢𝑢, 𝑣𝑣) − 𝑇𝑇1(𝑒𝑒,𝑦𝑦)�
2

+ �𝑇𝑇2(𝑢𝑢, 𝑣𝑣) − 𝑇𝑇2(𝑒𝑒,𝑦𝑦)�
2

≤ 𝜉𝜉𝑑𝑑�(𝑢𝑢, 𝑣𝑣), (𝑒𝑒,𝑦𝑦)� 

 That is, 𝑇𝑇 is a contraction and Banach contraction principle guarantees the 

uniqueness of solution.  
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CHAPTER IV 
 

Numerical Solution 
 

 
1. Numerical Methods in Bi-geometric Calculus 

 
  

 
In this section, we will discuss the numerical solution of (1) which is the 

nonlinear system of fractional differential equation (FDE). As we mentioned 

in the previous chapter, the solution of (1) leads to Volterra integral equation 

(VIE) of the first type which was presented as equation (2). It is a straight way 

to approximate the given integral with numerical methods to find the solution 

of the system (1). But this procedure is not that much trivial since we have the 

non-local nature of FDE. The presence of a real power (𝜇𝜇 ∈ ℝ ) in the kernel 

of integral equation as �𝑙𝑙𝑚𝑚 �𝑑𝑑
𝑑𝑑
��

𝜇𝜇−1
 makes it impossible to divide the solution 

at some previous point 𝑑𝑑𝑛𝑛 − ℎ plus the increment term related to the interval 

[𝑑𝑑𝑛𝑛 − ℎ, 𝑑𝑑𝑛𝑛], as is common with ordinary differential equations. Besides, these 

partitions of interval seem not suitable to be considered in this case. Indeed, 

the steps are defined by differences but division describes better meshes which 

is more practical for logarithmic function.  

Furthermore, the absence of smoothness at some point, poses some problems 

for the numerical computation since methods based on polynomial 

approximations fail to provide accurate results when there are some lacks of 

smoothness. Indeed, as Lubich mentioned in his works, the solution of VIE 

which is totally equivalent to Reimann FDE can be presented as expansion in 

mixed (integer and fractional) powers. [Lubich (1983)] 

Roughly speaking, the step-by-step numerical methods mainly can be divided 

into two main methods.  

• One-step method:  

Just one approximation of the solution at the previous step is used to evaluate 

the solution. They are particularly used when it is necessary to dynamically 

change the step size in order to adapt the integration process to the behavior of 

solution. 
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• Multiple steps method: 

In these classes of methods, it is necessary to use more previously computed 

approximations to evaluate the solution. Because of the persisting memory of 

fractional operators, multi-step methods are clearly a natural choice of solving 

FDE.  

Therefore, we apply the multiple-step method to find our model solutions. 

Before we go forward, it is necessary to describe the interpolation function in 

Newtonian and Bi-geometric calculus. Let us describe the situation for the first 

and second order interpolation polynomials.   

Example 4.1 One of the oldest methods of solving FDE is by applying the 

approximation method for integration on relevant VIE. Product integration 

rules were introduced by Young [Young (1954)] to numerically solve second 

type of weak singular VIEs. They hence apply in a natural way to FDEs due to 

their formulation as integral presentation. In this method, the given integral 

splits to different partitions and different order of interpolation polynomials 

are used to approximate the integral. Here, we show both cases:  

• constant interpolation polynomial: 

� 𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏

𝑑𝑑𝑛𝑛

𝑑𝑑0

= �� 𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏

𝑑𝑑𝑖𝑖+1

𝑑𝑑𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

≅ � � 𝑓𝑓(𝑑𝑑𝑖𝑖)𝑑𝑑𝜏𝜏

𝑑𝑑𝑖𝑖+1

𝑑𝑑𝑖𝑖

= �(𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖)𝑓𝑓(𝑑𝑑𝑖𝑖) = �ℎ𝑓𝑓(𝑑𝑑𝑖𝑖)
𝑛𝑛−1

𝑖𝑖=0

𝑛𝑛−1

𝑖𝑖=0

𝑛𝑛−1

𝑖𝑖=0

 

Here, the allocated terms in summation determines the area of rectangle with 

side of ℎ = 𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖 and height of 𝑓𝑓(𝑑𝑑𝑖𝑖). In fact, the function 𝑦𝑦 = 𝑓𝑓(𝑑𝑑) is 

approximated by the constant values 𝑓𝑓(𝑑𝑑𝑖𝑖) in the interval of [𝑑𝑑𝑖𝑖, 𝑑𝑑𝑖𝑖+1]. The 

interval [𝑑𝑑, 𝑏𝑏] splits with the steps of ℎ and 𝑑𝑑𝑖𝑖 = 𝑑𝑑 + 𝑏𝑏ℎ. 

• first order interpolation polynomial: 
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� 𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏

𝑑𝑑𝑛𝑛

𝑑𝑑0

= �� 𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏

𝑑𝑑𝑖𝑖+1

𝑑𝑑𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

≅ � � 𝑓𝑓(𝑑𝑑𝑖𝑖) +
𝑓𝑓(𝑑𝑑𝑖𝑖+1) − 𝑓𝑓(𝑑𝑑𝑖𝑖)

𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖
(𝜏𝜏 − 𝑑𝑑𝑖𝑖)𝑑𝑑𝜏𝜏

𝑑𝑑𝑖𝑖+1

𝑑𝑑𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

= �ℎ𝑓𝑓(𝑑𝑑𝑖𝑖) +
Δ𝑓𝑓
ℎ
ℎ
2

(𝑑𝑑𝑖𝑖+1 + 𝑑𝑑𝑖𝑖) −
Δ𝑓𝑓
ℎ
ℎ𝑑𝑑𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

=
ℎ
2
��𝑓𝑓(𝑑𝑑𝑖𝑖) + 𝑓𝑓(𝑑𝑑𝑖𝑖+1)�
𝑛𝑛−1

𝑖𝑖=0

 

Here, the function 𝑦𝑦 = 𝑓𝑓(𝑑𝑑) is approximated by first order interpolation 

polynomial which is the line that passes through �𝑑𝑑𝑖𝑖 ,𝑓𝑓(𝑑𝑑𝑖𝑖)� and �𝑑𝑑𝑖𝑖+1,𝑓𝑓(𝑑𝑑𝑖𝑖+1)� 

in the interval [𝑑𝑑𝑖𝑖 , 𝑑𝑑𝑖𝑖+1]. That is 𝑦𝑦 = 𝑓𝑓(𝑑𝑑𝑖𝑖) + 𝑓𝑓(𝑑𝑑𝑖𝑖+1)−𝑓𝑓(𝑑𝑑𝑖𝑖)
𝑑𝑑𝑖𝑖+1−𝑑𝑑𝑖𝑖

(𝑑𝑑 − 𝑑𝑑𝑖𝑖) and the 

integral of this line in the given interval determines the area of trapezoid.  

Now, let us consider the Bi-geometric partitions in the given interval. Since 

the exponential function is an onto function, without losing the generality, we 

can assume that the interval is [𝑑𝑑𝑎𝑎 , 𝑑𝑑𝑏𝑏]. Here the steps are defined as 𝑑𝑑ℎ and 

changes in steps by multiplying instead of adding. By another word, the nodes 

define as 𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑎𝑎 ⊗𝑒𝑒𝑒𝑒𝑒𝑒 �𝑑𝑑𝑖𝑖 ⊗𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑ℎ� = 𝑑𝑑𝑎𝑎�𝑑𝑑𝑖𝑖ℎ�. That means the nodes are 

𝑑𝑑𝑎𝑎, 𝑑𝑑𝑎𝑎+ℎ, 𝑑𝑑𝑎𝑎+2ℎ, … , 𝑑𝑑𝑏𝑏. The first order interpolation polynomial of 𝑦𝑦 = 𝑓𝑓(𝑑𝑑) in 

the interval [𝑑𝑑𝑖𝑖, 𝑑𝑑𝑖𝑖+1] is the line that connects  �𝑑𝑑𝑖𝑖,𝑓𝑓(𝑑𝑑𝑖𝑖)� to �𝑑𝑑𝑖𝑖+1,𝑓𝑓(𝑑𝑑𝑖𝑖+1)� with 

the slope of �𝑓𝑓(𝑑𝑑𝑖𝑖+1) ⊖𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑑𝑑𝑖𝑖)�⊘𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑ℎ = �𝑓𝑓(𝑑𝑑𝑖𝑖+1)
𝑓𝑓(𝑑𝑑𝑖𝑖)

ℎ  and the analogue of 

the given line will be 𝑦𝑦 = 𝑓𝑓(𝑑𝑑𝑖𝑖). �𝑑𝑑
𝑑𝑑𝑖𝑖
�
�
𝑙𝑙𝑛𝑛𝑙𝑙�𝑟𝑟𝑖𝑖+1�−𝑙𝑙𝑛𝑛𝑙𝑙�𝑟𝑟𝑖𝑖�

ℎ �
. Thus, approximation of 

bi-geometric integral in terms of the first order interpolation polynomial can 

be expressed as 
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� 𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑑𝑑𝑛𝑛

𝑑𝑑0

= �
𝑖𝑖=0

𝑛𝑛−1

𝑒𝑒𝑒𝑒𝑒𝑒
� 𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑑𝑑𝑖𝑖+1

𝑑𝑑𝑖𝑖

= 𝑑𝑑𝑒𝑒𝑒𝑒�� � 𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑑𝑑𝑖𝑖+1

𝑑𝑑𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

�

= 𝑑𝑑𝑒𝑒𝑒𝑒�� 𝑙𝑙𝑚𝑚�� 𝑓𝑓(𝑑𝑑𝑖𝑖). �
𝑑𝑑
𝑑𝑑𝑖𝑖
�
�𝑙𝑙𝑛𝑛𝑓𝑓(𝑑𝑑𝑖𝑖+1)−𝑙𝑙𝑛𝑛𝑓𝑓(𝑑𝑑𝑖𝑖)

ℎ �
𝑑𝑑𝜏𝜏

𝑑𝑑𝑖𝑖+1

𝑑𝑑𝑖𝑖

�
𝑛𝑛−1

𝑖𝑖=0

�

= 𝑑𝑑𝑒𝑒𝑒𝑒�� � �𝑙𝑙𝑚𝑚𝑓𝑓(𝑑𝑑𝑖𝑖)

𝑑𝑑𝑖𝑖+1

𝑑𝑑𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

+ �
𝑙𝑙𝑚𝑚𝑓𝑓(𝑑𝑑𝑖𝑖+1) − 𝑙𝑙𝑚𝑚𝑓𝑓(𝑑𝑑𝑖𝑖)

ℎ
� (𝑙𝑙𝑚𝑚𝜏𝜏 − 𝑙𝑙𝑚𝑚𝑑𝑑𝑖𝑖)�

𝑑𝑑𝜏𝜏
𝜏𝜏
�

= 𝑑𝑑𝑒𝑒𝑒𝑒 ���𝑙𝑙𝑚𝑚 �
𝑑𝑑𝑖𝑖+1
𝑑𝑑𝑖𝑖
� . 𝑙𝑙𝑚𝑚𝑓𝑓(𝑑𝑑𝑖𝑖)

𝑛𝑛−1

𝑖𝑖=0

+ �
Δ𝑙𝑙𝑚𝑚𝑓𝑓
ℎ

��
(𝑙𝑙𝑚𝑚𝑑𝑑𝑖𝑖+1)2

2
−

(𝑙𝑙𝑚𝑚𝑑𝑑𝑖𝑖)2

2
� −

Δ𝑙𝑙𝑚𝑚𝑓𝑓
ℎ

𝑙𝑙𝑚𝑚𝑑𝑑𝑖𝑖𝑙𝑙𝑚𝑚 �
𝑑𝑑𝑖𝑖+1
𝑑𝑑𝑖𝑖
��� =

= 𝑑𝑑𝑒𝑒𝑒𝑒 ��ℎ�𝑙𝑙𝑚𝑚𝑓𝑓(𝑑𝑑𝑖𝑖) + 𝑙𝑙𝑚𝑚𝑓𝑓(𝑑𝑑𝑖𝑖+1)�
𝑛𝑛−1

𝑖𝑖=0

� 

Here, we can see the bi-geometric analogue of this approximation. In this 

literature we apply the same nodes which we described before. Indeed, the 

interval of [𝑑𝑑 = 𝑑𝑑𝑙𝑙𝑛𝑛𝑎𝑎, 𝑑𝑑 = 𝑑𝑑𝑙𝑙𝑛𝑛𝑑𝑑] can be split by the steps 𝑑𝑑ℎ as we mentioned 

before. Given a grid 𝑑𝑑𝑛𝑛 = 𝑑𝑑(𝑑𝑑𝑛𝑛ℎ), with constant step size ℎ > 0, in product 

integration rules, the solution of (2) at 𝑑𝑑𝑛𝑛 is first written in a piece-wise way as 

⎩
⎪
⎨

⎪
⎧𝑙𝑙𝑚𝑚 �

𝑢𝑢(𝑑𝑑𝑛𝑛)
𝑢𝑢(𝑑𝑑)

� =
1

Γ(𝜇𝜇)�� �𝑙𝑙𝑚𝑚 �
𝑑𝑑𝑚𝑚
𝑒𝑒
��

𝜇𝜇−1

𝜑𝜑�𝑢𝑢(𝑒𝑒),𝑣𝑣(𝑒𝑒)�
𝑑𝑑𝑒𝑒

𝑒𝑒

𝑑𝑑𝑗𝑗+1

𝑑𝑑𝑗𝑗

𝑚𝑚−1

𝑗𝑗=0

𝑙𝑙𝑚𝑚 �
𝑣𝑣(𝑑𝑑𝑛𝑛)
𝑣𝑣(𝑑𝑑)

� =
1

Γ(𝜇𝜇)�� �𝑙𝑙𝑚𝑚 �
𝑑𝑑𝑚𝑚
𝑒𝑒
��

𝜇𝜇−1

𝜓𝜓�𝑢𝑢(𝑒𝑒),𝑣𝑣(𝑒𝑒)�
𝑑𝑑𝑒𝑒

𝑒𝑒

𝑑𝑑𝑗𝑗+1

𝑑𝑑𝑗𝑗

𝑚𝑚−1

𝑗𝑗=0

 

And 𝜑𝜑�𝑢𝑢(𝑒𝑒),𝑣𝑣(𝑒𝑒)� and 𝜓𝜓�𝑢𝑢(𝑒𝑒),𝑣𝑣(𝑒𝑒)� is approximated, in each subinterval 

�𝑑𝑑𝑗𝑗 , 𝑑𝑑𝑗𝑗+1�, by means of some interpolation polynomials. The resulting integrals 

are hence computed in an exact way to lead to 𝑢𝑢(𝑑𝑑𝑛𝑛) and 𝑣𝑣(𝑑𝑑𝑛𝑛). Explicit or 

implicit methods refer to the way in which the approximation is made. This is 

the most straightforward way to generalize Adams multi-steps methods 

commonly used for ordinary differential equations. Roughly speaking, the 

iterated numerical methods can be categorized to two methods, explicit and 
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implicit methods. In an explicit method, 𝑦𝑦𝑛𝑛 would be computed in terms of 

known quantities at the previous time step 𝑚𝑚. An implicit method, in contrast, 

would compute some or all of the terms in iteration in terms of known 

quantities at the new step 𝑚𝑚 + 1.  

In the first step, to make the implicit forward Euler method, we approximate 

the integrand 𝜑𝜑�𝑢𝑢(. ),𝑣𝑣(. )� and 𝜓𝜓�𝑢𝑢(. ),𝑣𝑣(. )� with the weight function 

�𝑙𝑙𝑚𝑚 �𝑑𝑑𝑛𝑛
.
��

𝜇𝜇−1
by the constant values 𝜑𝜑�𝑢𝑢(𝑑𝑑𝑖𝑖),𝑣𝑣(𝑑𝑑𝑖𝑖)� and 𝜓𝜓�𝑢𝑢(𝑑𝑑𝑖𝑖),𝑣𝑣(𝑑𝑑𝑖𝑖)� in the 

interval [𝑑𝑑𝑖𝑖, 𝑑𝑑𝑖𝑖+1] respectively. Indeed, this is the first order interpolation 

polynomial approximation. This leads to the following  

⎩
⎪
⎨

⎪
⎧𝑙𝑙𝑚𝑚 �

𝑢𝑢(𝑑𝑑𝑛𝑛)
𝑢𝑢(𝑑𝑑)

� =
ℎ𝜇𝜇

Γ(𝜇𝜇 + 1)�𝜑𝜑�𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗�� ((𝑚𝑚 − 𝑗𝑗)𝜇𝜇 − (𝑚𝑚 − 𝑗𝑗 − 1)𝜇𝜇)
𝑚𝑚−1

𝑗𝑗=0

𝑙𝑙𝑚𝑚 �
𝑣𝑣(𝑑𝑑𝑛𝑛)
𝑣𝑣(𝑑𝑑)

� =
ℎ𝜇𝜇

Γ(𝜇𝜇 + 1)�𝜓𝜓�𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗�� ((𝑚𝑚 − 𝑗𝑗)𝜇𝜇 − (𝑚𝑚 − 𝑗𝑗 − 1)𝜇𝜇)
𝑚𝑚−1

𝑗𝑗=0

 

We set the coefficients by using the following definition 

𝑏𝑏𝑛𝑛
(𝜇𝜇) =

ℎ𝜇𝜇

Γ(𝜇𝜇 + 1)
((𝑚𝑚 + 1)𝜇𝜇 − 𝑚𝑚𝜇𝜇) 

Therefore, the given model can be rewritten as 

⎩
⎪
⎨

⎪
⎧𝑙𝑙𝑚𝑚 �

𝑢𝑢(𝑑𝑑𝑛𝑛)
𝑢𝑢(𝑑𝑑)

� = �𝑏𝑏𝑛𝑛−𝑗𝑗−1
(𝜇𝜇) 𝜑𝜑 �𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗��

𝑚𝑚−1

𝑗𝑗=0

𝑙𝑙𝑚𝑚 �
𝑣𝑣(𝑑𝑑𝑛𝑛)
𝑣𝑣(𝑑𝑑)

� = �𝑏𝑏𝑛𝑛−𝑗𝑗−1
(𝜇𝜇) 𝜓𝜓�𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗��

𝑚𝑚−1

𝑗𝑗=0

 (3) 

This approximation is called the explicit product integral rectangular method 

and the rectangular terms refer to underlying quadrature rules used for the 

integration as we mentioned in the given example. It is remarkable that the 

values of 𝜑𝜑 �𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗�� and 𝜓𝜓�𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗�� present the non-smoothness in 

the interval with intersection with [𝑚𝑚𝑤𝑤, 𝐿𝐿] and [𝐿𝐿, (𝑚𝑚 + 1)𝑤𝑤]. Similarly, when 

integrands 𝜑𝜑�𝑢𝑢(. ),𝑣𝑣(. )� and 𝜓𝜓�𝑢𝑢(. ),𝑣𝑣(. )� are approximated by the first order 

interpolation polynomials, we reach to 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝑙𝑙𝑚𝑚 �

𝑢𝑢(𝑑𝑑𝑛𝑛)
𝑢𝑢(𝑑𝑑)� =

1

Γ(𝜇𝜇)�� �𝑙𝑙𝑚𝑚 �
𝑑𝑑𝑚𝑚
𝑒𝑒
��

𝜇𝜇−1

⎝

⎜
⎛ 𝜑𝜑 �𝑢𝑢�𝑑𝑑𝑗𝑗+1�, 𝑣𝑣�𝑑𝑑𝑗𝑗+1�� + �

𝑙𝑙𝑚𝑚𝑒𝑒 − 𝑙𝑙𝑚𝑚�𝑑𝑑𝑗𝑗+1�
𝑙𝑙𝑚𝑚(𝑑𝑑ℎ) �

�𝜑𝜑 �𝑢𝑢�𝑑𝑑𝑗𝑗+1�, 𝑣𝑣�𝑑𝑑𝑗𝑗+1�� − 𝜑𝜑 �𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗���
⎠

⎟
⎞𝑑𝑑𝑒𝑒

𝑒𝑒

𝑑𝑑𝑗𝑗+1

𝑑𝑑𝑗𝑗

𝑚𝑚−1

𝑗𝑗=0

𝑙𝑙𝑚𝑚 �
𝑣𝑣(𝑑𝑑𝑛𝑛)
𝑣𝑣(𝑑𝑑)� =

1

Γ(𝜇𝜇)�� �𝑙𝑙𝑚𝑚 �
𝑑𝑑𝑚𝑚
𝑒𝑒
��

𝜇𝜇−1

⎝

⎜
⎛ 𝜓𝜓 �𝑢𝑢�𝑑𝑑𝑗𝑗+1�, 𝑣𝑣�𝑑𝑑𝑗𝑗+1�� + �

𝑙𝑙𝑚𝑚𝑒𝑒 − 𝑙𝑙𝑚𝑚�𝑑𝑑𝑗𝑗+1�
𝑙𝑙𝑚𝑚(𝑑𝑑ℎ) �

�𝜓𝜓 �𝑢𝑢�𝑑𝑑𝑗𝑗+1�, 𝑣𝑣�𝑑𝑑𝑗𝑗+1�� − 𝜓𝜓 �𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗���
⎠

⎟
⎞𝑑𝑑𝑒𝑒

𝑒𝑒

𝑑𝑑𝑗𝑗+1

𝑑𝑑𝑗𝑗

𝑚𝑚−1

𝑗𝑗=0

(4) 

Given terminology of bi-geometric calculus determines the reason for this 

presentation of first order interpolation polynomials. We use the abbreviation 

of  𝜑𝜑𝑗𝑗 for 𝜑𝜑 �𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗�� and 𝜓𝜓𝑗𝑗 for 𝜓𝜓�𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗��, then the right-hand side 

of the first equation can be rewritten as  

1
Γ(𝜇𝜇)�� �𝑙𝑙𝑚𝑚 �

𝑑𝑑𝑛𝑛
𝑒𝑒
��

𝜇𝜇−1

�𝜑𝜑𝑗𝑗+1 + 𝑙𝑙𝑚𝑚� 𝑒𝑒
𝑑𝑑𝑗𝑗+1

��
Δ𝜑𝜑
ℎ ��

𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑𝑗𝑗+1

𝑑𝑑𝑗𝑗

𝑛𝑛−1

𝑗𝑗=0

=
1

Γ(𝜇𝜇)�−�
�𝑙𝑙𝑚𝑚 �𝑑𝑑𝑛𝑛𝑒𝑒 ��

𝜇𝜇

𝜇𝜇(𝜇𝜇 + 1) ��𝜑𝜑𝑗𝑗+1(𝜇𝜇 + 1)
𝑛𝑛−1

𝑗𝑗=0

+
Δ𝜑𝜑
ℎ �(𝜇𝜇 + 1)𝑙𝑙𝑚𝑚� 𝑒𝑒

𝑑𝑑𝑗𝑗+1
� + 𝑙𝑙𝑚𝑚�𝑑𝑑𝑛𝑛

𝑒𝑒
���

𝑑𝑑𝑗𝑗

𝑑𝑑𝑗𝑗+1

=
1

Γ(𝜇𝜇 + 2)��(𝑚𝑚 − 𝑗𝑗)𝜇𝜇ℎ𝜇𝜇 �𝜑𝜑𝑗𝑗+1(𝜇𝜇 + 1)
𝑛𝑛−1

𝑗𝑗=0

+
Δ𝜑𝜑
ℎ (−(𝜇𝜇 + 1)ℎ+ (𝑚𝑚− 𝑗𝑗)ℎ)�

− (𝑚𝑚 − 𝑗𝑗 − 1)𝜇𝜇ℎ𝜇𝜇 �𝜑𝜑𝑗𝑗+1(𝜇𝜇 + 1) +
Δ𝜑𝜑
ℎ �(𝑚𝑚− 𝑗𝑗 − 1)ℎ���

=
ℎ𝜇𝜇

Γ(𝜇𝜇 + 2)��((𝑚𝑚 − 𝑗𝑗)𝜇𝜇(𝜇𝜇 + 1) − (𝑚𝑚 − 𝑗𝑗 − 1)𝜇𝜇(𝜇𝜇 + 1)
𝑛𝑛−1

𝑗𝑗=0

+ (𝑚𝑚 − 𝑗𝑗)𝜇𝜇(−𝜇𝜇 + 𝑚𝑚 − 𝑗𝑗 − 1) − (𝑚𝑚 − 𝑗𝑗 − 1)𝜇𝜇+1)𝜑𝜑𝑗𝑗+1

+ �(𝑚𝑚 − 𝑗𝑗 − 1)𝜇𝜇+1 + (𝑚𝑚 − 𝑗𝑗)𝜇𝜇(𝜇𝜇 − 𝑚𝑚 + 𝑗𝑗 + 1)�𝜑𝜑𝑗𝑗� 

Now, we recap the coefficients of 𝜑𝜑𝑗𝑗 by splitting the first and last term and 

gathering the similar indexes. Therefore,  
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1
Γ(𝜇𝜇)�� �𝑙𝑙𝑚𝑚 �

𝑑𝑑𝑛𝑛
𝑒𝑒
��

𝜇𝜇−1

�𝜑𝜑𝑗𝑗+1 + 𝑙𝑙𝑚𝑚� 𝑒𝑒
𝑑𝑑𝑗𝑗+1

��
Δ𝜑𝜑
ℎ ��

𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑𝑗𝑗+1

𝑑𝑑𝑗𝑗

𝑛𝑛−1

𝑗𝑗=0

=
ℎ𝜇𝜇

Γ(𝜇𝜇 + 2) �
(𝑚𝑚 − 1)𝜇𝜇+1 + 𝑚𝑚𝜇𝜇(𝜇𝜇 − 𝑚𝑚 + 1)�𝜑𝜑0 + ℎ𝜇𝜇

Γ(𝜇𝜇 + 2)𝜑𝜑𝑚𝑚

+ ℎ𝜇𝜇

Γ(𝜇𝜇 + 2)��((𝑚𝑚 − 𝑏𝑏 − 1)𝜇𝜇+1 − 2(𝑚𝑚 − 𝑏𝑏)𝜇𝜇+1 + (𝑚𝑚 − 𝑏𝑏 + 1)𝜇𝜇+1)𝜑𝜑𝑗𝑗�
𝑛𝑛−1

𝑖𝑖=1

 

Moreover, we can use these terms to summarize our calculation by using the 

following introduced coefficients: 

�̃�𝑎𝑛𝑛
(𝜇𝜇) =

(𝑚𝑚 − 1)𝜇𝜇+1 + 𝑚𝑚𝜇𝜇(𝜇𝜇 − 𝑚𝑚 + 1)
Γ(𝜇𝜇 + 2) , 

𝑎𝑎𝑛𝑛
(𝜇𝜇) =

⎩
⎨

⎧
1

Γ(𝜇𝜇 + 2)                                                             𝑚𝑚 = 0

(𝑚𝑚 − 1)𝜇𝜇+1 − 2𝑚𝑚𝜇𝜇+1 + (𝑚𝑚 + 1)𝜇𝜇+1

Γ(𝜇𝜇 + 2)      𝑚𝑚 = 1,2, . .
 

These coefficients can summarize the result as  

1
Γ(𝜇𝜇)�� �𝑙𝑙𝑚𝑚 �

𝑑𝑑𝑛𝑛
𝑒𝑒
��

𝜇𝜇−1

�𝜑𝜑𝑗𝑗+1 + 𝑙𝑙𝑚𝑚� 𝑒𝑒
𝑑𝑑𝑗𝑗+1

��
Δ𝜑𝜑
ℎ ��

𝑑𝑑𝑒𝑒
𝑒𝑒

𝑑𝑑𝑗𝑗+1

𝑑𝑑𝑗𝑗

𝑛𝑛−1

𝑗𝑗=0

= ℎ𝜇𝜇 �𝑎𝑎�𝑚𝑚(𝜇𝜇)𝜑𝜑0 +�𝑎𝑎𝑚𝑚−𝑏𝑏
(𝜇𝜇) 𝜑𝜑𝑏𝑏

𝑛𝑛

𝑖𝑖=1

� 

Similarly, we can write the same for the second equation of (4). The iteration 

formula can be reformed as 

⎩
⎪
⎨

⎪
⎧𝑙𝑙𝑚𝑚 �

𝑢𝑢(𝑑𝑑𝑛𝑛)
𝑢𝑢(𝑑𝑑)� = ℎ𝜇𝜇 ��̃�𝑎𝑛𝑛

(𝜇𝜇)𝜑𝜑0 + �𝑎𝑎𝑛𝑛−𝑖𝑖
(𝜇𝜇)𝜑𝜑𝑖𝑖

𝑚𝑚

𝑏𝑏=1

�

𝑙𝑙𝑚𝑚 �
𝑣𝑣(𝑑𝑑𝑛𝑛)
𝑣𝑣(𝑑𝑑)� = ℎ𝜇𝜇 ��̃�𝑎𝑛𝑛

(𝜇𝜇)𝜓𝜓0 + �𝑎𝑎𝑛𝑛−𝑖𝑖
(𝜇𝜇)𝜓𝜓𝑖𝑖

𝑚𝑚

𝑏𝑏=1

�
 (5) 

Unlike what one would expect, using interpolation polynomials of higher 

degree (i.e., more than one) does not necessarily improve the accuracy of the 

obtained approximation. This issue has been already studied in [Dixon, J. 

(1985)], due to behavior of the solution of FDEs, which with few exceptions 

[Diethelm, K. (2007)] have a non-smooth behavior even in the presence of a 

smooth given function as an integrand.    

 

2. Predictor-Corrector Method 
 
 
The main problem in equation (5) is the presence of 𝑢𝑢(𝑑𝑑𝑛𝑛) in both sides of the 

equation as well as 𝑣𝑣(𝑑𝑑𝑛𝑛) in both sides of the second equation. Indeed, we made 

the equation (5) to find the value of 𝑢𝑢(𝑑𝑑𝑛𝑛) and 𝑣𝑣(𝑑𝑑𝑛𝑛), and these terms appear 
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in the right sides of equations as 𝜑𝜑𝑛𝑛 = 𝜑𝜑(𝑢𝑢(𝑑𝑑𝑛𝑛) , 𝑣𝑣(𝑑𝑑𝑛𝑛) ) and 𝜓𝜓𝑛𝑛 =

𝜓𝜓(𝑢𝑢(𝑑𝑑𝑛𝑛) , 𝑣𝑣(𝑑𝑑𝑛𝑛) ). Due to the nonlinearity of these function, this leads to 

solving the system of non-linear equations which is not acceptable. Therefore, 

we use the equation (3), the explicit product integral rectangular approximation 

in an iterated process as a predictor, then we insert a preliminary approximation 

for implicit trapezoidal  𝜑𝜑𝑛𝑛 and 𝜓𝜓𝑛𝑛 in the right-hand side of (5) to get a better 

approximation that can then be used.  

In the numerical approaches to the given model, we apply the equation (3) for 

finding 𝜑𝜑𝑛𝑛 and 𝜓𝜓𝑛𝑛 which is the so-called predictor-corrector term and then we 

use (5) for the main approximation. In this situation, we have 

⎩
⎪
⎨

⎪
⎧𝑢𝑢𝑛𝑛(𝑒𝑒) = 𝑢𝑢(𝑑𝑑)�𝑑𝑑𝑒𝑒𝑒𝑒�𝑏𝑏𝑛𝑛−𝑗𝑗−1

(𝜇𝜇) 𝜑𝜑 �𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗���
𝑛𝑛−1

𝑗𝑗=0

𝑣𝑣𝑛𝑛(𝑒𝑒) = 𝑣𝑣(𝑑𝑑)�𝑑𝑑𝑒𝑒𝑒𝑒�𝑏𝑏𝑛𝑛−𝑗𝑗−1
(𝜇𝜇) 𝜓𝜓�𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗���

𝑛𝑛−1

𝑗𝑗=0

(4) 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑢𝑢(𝑑𝑑𝑛𝑛) = 𝑢𝑢(𝑑𝑑)𝑑𝑑𝑒𝑒𝑒𝑒 �ℎ𝜇𝜇 ��̃�𝑎𝑛𝑛

(𝜇𝜇)𝜑𝜑�𝑢𝑢(𝑑𝑑),𝑣𝑣(𝑑𝑑)��� 𝑑𝑑𝑒𝑒𝑒𝑒 �ℎ𝜇𝜇 �𝑎𝑎0
(𝜇𝜇)𝜑𝜑�𝑢𝑢𝑛𝑛(𝑒𝑒), 𝑣𝑣𝑛𝑛(𝑒𝑒)���

�𝑑𝑑𝑒𝑒𝑒𝑒 �ℎ𝜇𝜇𝑎𝑎𝑛𝑛−𝑖𝑖
(𝜇𝜇)𝜑𝜑 �𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗���

𝑛𝑛−1

𝑗𝑗=0

𝑣𝑣(𝑑𝑑𝑛𝑛) = 𝑢𝑢(𝑑𝑑)𝑑𝑑𝑒𝑒𝑒𝑒 �ℎ𝜇𝜇 ��̃�𝑎𝑛𝑛
(𝜇𝜇)𝜓𝜓�𝑢𝑢(𝑑𝑑),𝑣𝑣(𝑑𝑑)��� 𝑑𝑑𝑒𝑒𝑒𝑒 �ℎ𝜇𝜇 �𝑎𝑎0

(𝜇𝜇)𝜓𝜓�𝑢𝑢𝑛𝑛(𝑒𝑒), 𝑣𝑣𝑛𝑛(𝑒𝑒)���

�𝑑𝑑𝑒𝑒𝑒𝑒 �ℎ𝜇𝜇𝑎𝑎𝑛𝑛−𝑖𝑖
(𝜇𝜇)𝜓𝜓�𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗���

𝑛𝑛−1

𝑗𝑗=0

(5) 

Here, we used the fractional variant of the trapezoidal formula, which is also 

called the Adams–Moulton method. In addition, the implicit relationship is 

remedied by using predictor terms. Whereas, the non-Newtonian calculus is 

homomorphic with the Newtonian calculus, we may pursue the convergency 

of the numerical method in this calculus. The error analysis of this method is 

given in the following proposition: 

Proposition 4.1. For the given dynamic system, the following relations hold 

true: 

�
1

Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �
𝑑𝑑
𝑒𝑒
��

𝜇𝜇−1

𝜑𝜑�𝑢𝑢(𝑒𝑒), 𝑣𝑣(𝑒𝑒)�
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑒𝑒
𝑒𝑒
−�𝑏𝑏𝑛𝑛−𝑗𝑗−1

(𝜇𝜇) 𝜑𝜑 �𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗��
𝑛𝑛−1

𝑗𝑗=0

�

≤
𝐴𝐴ℎ𝜉𝜉
𝜇𝜇

�𝑙𝑙𝑚𝑚 �
𝑏𝑏
𝑑𝑑
��

𝜇𝜇
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�
1

Γ(𝜇𝜇)� �𝑙𝑙𝑚𝑚 �
𝑑𝑑
𝑒𝑒
��

𝜇𝜇−1

𝜑𝜑�𝑢𝑢(𝑒𝑒), 𝑣𝑣(𝑒𝑒)�
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑒𝑒
𝑒𝑒
− ℎ𝜇𝜇 ��̃�𝑎𝑛𝑛

(𝜇𝜇)𝜑𝜑0 + �𝑎𝑎𝑛𝑛−𝑖𝑖
(𝜇𝜇)𝜑𝜑𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�� ≤
𝐵𝐵ℎ2𝜉𝜉

4𝜇𝜇
�𝑙𝑙𝑚𝑚 �

𝑏𝑏
𝑑𝑑
��

𝜇𝜇

 

Here, ξ is the same as the introduced constant in theorem (3.4). Furthermore, 

constants A and B represent the maximums of u(x) and v(x), and their 

derivatives in the interval [a, b], respectively. A similar relationship can be 

written for the second equation of (2). 

Proof. The first equation determines the error of zero interpolation polynomial 

approximation or rectangular method. The proof is straight-forward and can be 

derived by partitioning the integral into the given intervals. We can rewrite the 

first inequality as: 

�
1

Γ(𝜇𝜇)�� �𝑙𝑙𝑚𝑚 �
𝑑𝑑𝑛𝑛
𝑒𝑒
��

𝜇𝜇−1

�𝜑𝜑�𝑢𝑢(𝑒𝑒), 𝑣𝑣(𝑒𝑒)� − 𝜑𝜑 �𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗���
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In the proposition 3, we chose ξ such that  

�𝜑𝜑�𝑢𝑢(𝑒𝑒), 𝑣𝑣(𝑒𝑒)� − 𝜑𝜑 �𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗��� ≤ 𝜉𝜉 ��𝑢𝑢(𝑒𝑒), 𝑣𝑣(𝑒𝑒)� − �𝑢𝑢�𝑑𝑑𝑗𝑗�, 𝑣𝑣�𝑑𝑑𝑗𝑗��� ≤ 𝜉𝜉𝐴𝐴ℎ 
 

As we mentioned before, the 𝑢𝑢(𝑑𝑑) and 𝑣𝑣(𝑑𝑑) determine the population of healthy 

and cancerous cells respectively, and are continuous. Therefore, these 

functions are bounded within the interval [𝑑𝑑, 𝑏𝑏], and "A" denotes the maximum 

of both. Moreover, we assume that their derivatives are bounded in the 

allocated interval and the maximum of 𝑢𝑢′(𝑑𝑑) and 𝑣𝑣′(𝑑𝑑) is denoted by B. The 

proof of the second inequality is similar and can be derived by using extended 

Taylor expansion for the functions of two variables. Indeed, the first 

interpolation polynomial can be considered as a truncated Taylor expansion of 

the first degree, and the extended mean value theorem leads us to the result. 

Furthermore, proposition (4.1) achieves the sufficient conditions for 

convergence of the given numerical method. By tending the bi-geometric 

partitions to zero, equations in (4) and (5) approach the solution of (2).  A 

comprehensive study of different numerical methods for fractional differential 

equations in Newtonian calculus is investigated in [Garrappa, R. (2018)].  

 

3. Computer Program 
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In this section, we focus on computer program of our model. All the 

experiments are carried out in MATLAB Ver. 8.3.0.532 (R2014a) on a 

computer equipped with a CPU Intel i5- 10210U at 2.11 GHz running under 

the operating system Windows 10. Many MATLAB routines for solving FDE 

can be found on the software section of the webpage ( 

https://www.dm.uniba.it/Members/garrappa/Software). However, most of the 

possible codes were written for Reimann-Liouville FDE and the bi-geometric 

models which are based on Hadamard FDE rarely are discussed in the available 

papers. One of the comprehensive discussions on MATLAB programs for FDE 

can be seen in [Garrappa, R. (2018)].  

In the first step, we determine all inputs which the solution is based on these 

parameters. Generally, the index 1 determines the corresponding properties of 

healthy cells and index 2 is for determining the corresponding properties of 

cancerous cells. We list the input parameters that should be defined in our 

program as follows 

1) a1 and a2: respective proliferation coefficients, 

2) b1 and b2: interaction factor or competition coefficients, 

3) k1 and k2: respective carrying capacities, 

4) r1 and r2: respective efficiency of radiotherapy coefficients,  

5) q: efficiency of radiotherapy in the function 𝐷𝐷(𝑑𝑑), 

6) L: determines the rest time in the procedure of radiotherapy, 

7) u0 and v0: the initial values for healthy and cancerous cells populations in 

the initial time 𝑑𝑑0 = 𝑑𝑑0 = 1, 

8) h: the partition length which describes the accuracy of the approximation 

and the interval is meshed based on this value, 

9) mu: the fractional order of the model. 

The main purpose of coding MATLAB for this model can be described in three 

steps. First, we apply the allocated numerical methods to find the values of the 

healthy and cancerous cells in the specific time. Second, we plot the graph of 

these functions with respect to time in the horizontal line. Last, we determine 

the phase graph that shows the healthy and cancerous cells in X and Y axes 

respectively. In these criteria, both populations are considered as a functions 

of parameter time and the result is called the phase diagram.  
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The introduced nonlinear system of ordinary differential equations in chapter 

1, determines the population of healthy and cancerous cells by using the classic 

Lotka-Volterra equation. The analytic solution of this system when the 

cancerous cells are eradicated and their corresponding graphs are given in [Liu 

et. al. (2014)]. The corresponding Newtonian fractional model can be 

simulated by the MATLAB code FDE12.m [Guiot, C. et. al. (2003)]. However, 

we present the bi-geometric FDE solution here by using the predictor-corrector 

method of Adams-Bashforth-Moulton for Hadamard FDE.  

The disease is diagnosed when some 30 cells doubling from the progenitor 

cancer cells occur. At this stage, a tumor is clinically detectable with 

conventional diagnostic tools at approximately 1 𝑎𝑎𝑚𝑚3 in volume, representing 

a population of about 1 billion cells. [Guiot, C. et. al. (2003)] Regardless of the 

different masses and development times, mammals, birds and fish all share a 

common growth pattern. [West, G. B., et. al. (2001)] However, this value for 

different types of cancer and situations can be changed. Individual responses 

to radiation therapy for cervical cancer (Tumor type: Adenocarcinoma, 

Squamous Cell Carcinoma) in practice are published, and we use the same data 

to compute our initial values. [Belfatto, et. al. (2016)] The carrying capacities 

of healthy and cancerous cells determine the maximum population that can be 

accommodated and are chosen to be 𝑑𝑑1. According to the construction of the 

model, when the population reaches 𝑑𝑑1, then profiling stops. The value 1 

signified a population of approximately 100 billion cells. The rates of 

proliferation are obtained primarily by using values of growth fraction. Many 

experiments have been carried out to determine the growth fractions of 

different cancer cells, and the rate of proliferation has been computed by 

multiplying growth fractions by ln2. [Belostotski. Et. al. (2005)] As a result, 

we assume growth fractions of 0.49 and 1.4e-03 for cancerous and healthy 

cells, respectively. The associated α_i in the bi-geometric analogue can be 

calculated as 𝛼𝛼1 = 𝑑𝑑𝑒𝑒𝑒𝑒(9.7041 × 10−4 ) and 𝛼𝛼2 = 𝑑𝑑𝑒𝑒𝑒𝑒(0.3396). In the 

absence of radiation, cancer wins, resulting in the following conditions: [ 

Freedman, H. I. (1980)] 

𝐾𝐾1 <
𝛼𝛼2
𝛽𝛽2

,           𝐾𝐾2 >
𝛼𝛼1
𝛽𝛽1
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Therefore, we assume 𝛽𝛽1 = 𝑑𝑑𝑒𝑒𝑒𝑒 (0.0433) and 𝛽𝛽1 = 𝑑𝑑𝑒𝑒𝑒𝑒 (0.2385) to obtain the 

necessary conditions for our model. The advantage of conformal radiotherapy 

is that it is less harmful to healthy cells, and we control the effect of radiation 

by putting 𝜀𝜀 = 𝑑𝑑𝑒𝑒𝑒𝑒(0.0008) based on the assumption that e is less than 0.1%. 

[Belostotski. Et. al. (2005)] In the end, for the initial values of healthy and 

cancerous cells, we assume the approximation values [Guiot, C. et. al. (2003)] 

and gross tumor volume in 𝑎𝑎𝑚𝑚3 multiplied by a billion. 

It is noticeable that the radiotherapy is implemented 5 days of the week and 

the duration of radiation is 15 to 20 minutes. This period of treatment is called 

fractions. The effects of radiotherapy are determined by the 𝜉𝜉 function in the 

original equation. For simplicity of calculations, we assume 𝜉𝜉 is a Heaviside 

step function for our discussion. However, we can improve the details of our 

model by using more parameters in 𝜉𝜉. [Farayola et. al. (2020)] We remedy the 

situation by considering the proportion of treatment in the time interval. We 

refer to the effect of fractions (estimated as 0.25-hour times 25 times 

implementations) as a proportion of 0.26 day in comparison to 7 weeks of 

second monitoring. In addition, the given data in [Belfatto, et. al. (2016)] is 

categorized into 16 cases, and only 2 patients were treated by radiotherapy with 

staging 𝑁𝑁0𝑀𝑀0. (The N factor denotes the number of nearby lymph nodes that 

have cancer, and M denotes the metastasis.) The results are summarized in the 

following table: 

 

 Patient 1 Patient 2 

Tumor SCC SCC 

Staging 𝑇𝑇1𝑏𝑏𝑁𝑁0𝑀𝑀0 𝑇𝑇1𝑏𝑏𝑁𝑁0𝑀𝑀0 

therapy RT RT 

Initial and final population 24.1e9-3.59e9 
17.4e9-8.61e9 

 

Final population by model 3.26e9 
8.16e9 

 

Moreover, the graph of the cancerous cell population with respect to time is 

sketched in the next figure. We set initial values and constants according to the 

previous discussion, and the cell population is stored in the vectors B and C. 
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Since the original equation is autonomous, we can rewrite that system of ODE 

into one single equation. Consequently, we have an ODE that is based on the 

derivative of healthy cells in terms of cancerous cells. The phase diagram in 

this case shows the population of one species with respect to another one. 

These constants are defined in our program at first and can be changed 

according to the case of study. In the next step, we define a vector of size 600 

to put the time values inside it. In fact, the 𝑚𝑚𝑑𝑑ℎ column of this vector is equal 

to the value of the time in bi-geometric calculus as 𝑑𝑑𝑛𝑛.  

A=zeros(1,400);  

B=zeros(1,400);  

C=zeros(1,400); 

for m=1:400 

     A(1,m)=exp(m); 

end 

for s=1:400 

t=A(1,s); 

end 

To avoid the resizing of matrix and making the longtime of progression, we 

put the initial zero values for the matrices A, B and C. The matrices B and C 

later will be filled by the values of 𝑑𝑑𝑛𝑛 and 𝑌𝑌𝑛𝑛 which are the healthy and 

cancerous cells populations. The size of the time matrix is selected according 

to the performance of computer and can be extended to the larger interval. With 

the last given loop, time is selected as an element of a matrix A one by one. In 

the next step, we determine the steps of iterations based on the value of ℎ =

0.1. Since the time at the step 𝑒𝑒 is equal to 𝑑𝑑 = 𝑑𝑑𝑚𝑚 = 𝑑𝑑𝑚𝑚 and at the initial time 

𝑑𝑑0 = 1, then the steps will be �𝑙𝑙𝑛𝑛(𝑑𝑑)
ℎ
�. Moreover, we put the initial values for the 

predictor-corrector factors as 

n=round(log(t)/h); 

Un=u0;  

Vn=v0;  

In the next step, we use another loop to define the productions of predictor-

corrector and at the end, we will multiply the final values by the initial terms, 

as is mentioned in the equation (4). In this part of the program, we replace the 
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coefficients 𝑏𝑏𝑛𝑛 and 𝜑𝜑(𝑢𝑢(𝑑𝑑), 𝑣𝑣(𝑑𝑑)) and 𝜓𝜓(𝑢𝑢(𝑑𝑑), 𝑣𝑣(𝑑𝑑)) by the given values in 

previous chapter 

 

 

for i=0:n-1  

if (1<=exp(i*h)) && (exp(i*h)<=L)  

Un=exp(((h^mu)/(gamma(mu+1)))*(((n-i)^mu)-((n-i-1)^mu))*(a1*(1-

Un/k1)-(b1*Vn)-(e*q))*exp(i*h));  

Vn=exp(((h^mu)/(gamma(mu+1)))*(((n-i)^mu)-((n-i-1)^mu))*(a2*(1-

Vn/k2)-(b2*Un)-q)*exp(i*h));  

else  

Un=exp(((h^mu)/(gamma(mu+1)))*(((n-i)^mu)-((n-i-1)^mu))*(a1*(1-

Un/k1)-(b1*Vn))*exp(i*h));  

Vn=exp(((h^mu)/(gamma(mu+1)))*(((n-i)^mu)-((n-i-1)^mu))*(a2*(1-

Vn/k2)-(b2*Un))*exp(i*h));  

end  

X=X*Un;Y=Y*Vn;  

end  

Un=X; Vn=Y;  

% the predictor value is reserved to Un and Vn 

for k=0:n0-1  

if (0<=k*h) && (k*h<=L)  

Om=((h^mu)/(gamma(mu+1)))*(((n-k)^mu)-((n-k-1)^mu))*(a1*(1-

Om/k1)*Om-(b1*Om*Lm)-(e*q)*Om);  

Lm=((h^mu)/(gamma(mu+1)))*(((n-k)^mu)-((n-k-1)^mu))*(a2*(1-

Lm/k2)*Lm-(b2*Om*Lm)-q*Lm); 

else  

Om=((h^mu)/(gamma(mu+1)))*(((n-k)^mu)-((n-k-1)^mu))*(a1*(1-

Om/k1)*Om-(b1*Om*Lm));  

Lm=((h^mu)/(gamma(mu+1)))*(((n-k)^mu)-((n-k-1)^mu))*(a2*(1-

Lm/k2)*Lm-(b2*Om*Lm));  

end  

Z=Z+Om;N=N+Lm;  

end  
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Om=Z; Lm=N;; 

We note that the 𝜑𝜑(𝑢𝑢(𝑑𝑑), 𝑣𝑣(𝑑𝑑)) and 𝜓𝜓(𝑢𝑢(𝑑𝑑), 𝑣𝑣(𝑑𝑑)) are written in terms of 𝐷𝐷(𝑑𝑑) 

and the time interval is divided to three partitions of radiotherapy. These 

partitions are given in the program by [1, 𝐿𝐿], [𝑤𝑤,𝑤𝑤𝐿𝐿], [𝑤𝑤2,𝑤𝑤2𝐿𝐿]. Indeed, the 

rest time after radiotherapy was defined as 𝑤𝑤 and we assumed three times of 

radiotherapy in our program. The if statement’s command checks the value of 

𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖ℎ for being included in the radiotherapy periods. The last values of Un 

and Vn in this part determines the predictor-corrector values.  

In the next step, we apply the same method to find 𝑑𝑑𝑛𝑛 and 𝑌𝑌𝑛𝑛, but this time the 

loop has 𝑚𝑚 − 1 steps and after defining the product parts, more terms will be 

multiplied by the result to get the equation (5). Again, we expand the form of 

(5) by substituting the values of 𝑎𝑎𝑛𝑛 and 𝑎𝑎𝑛𝑛� in the program.  

Xn=u0; Yn=v0; 

for j=1:(n-1) 

    if (w<exp(j*h)) && (exp(j*h)<w*L) 

        if (w^2<exp(j*h)) && (exp(j*h)<(w^2)*L) 

            if (1<exp(j*h)) && (exp(j*h)<L) 

            Xn=exp(((h^mu)/(gamma(mu+2)))*(((n-j-1)^(mu+1))-(2*(n-

j)^(mu+1))+((n-j+1)^(mu+1)))*(a1*(1-Xn/k1)-(b1*Yn)-(r1*q/Xn))); 

            Yn=exp(((h^mu)/(gamma(mu+1)))*(((n-j-1)^(mu+1))-(2*(n-

j)^(mu+1))+((n-j+1)^(mu+1)))*(a2*(1-Yn/k2)-(b2*Xn)-(r2*q/Yn))); 

            end 

        end 

        else 

            Xn=exp(((h^mu)/(gamma(mu+2)))*(((n-j-1)^(mu+1))-(2*(n-

j)^(mu+1))+((n-j+1)^(mu+1)))*(a1*(1-Xn/k1)-(b1*Yn))); 

            Yn=exp(((h^mu)/(gamma(mu+1)))*(((n-j-1)^(mu+1))-(2*(n-

j)^(mu+1))+((n-j+1)^(mu+1)))*(a2*(1-Yn/k2)-(b2*Xn))); 

    end 

end 

Xn=Xn*u0*exp((h^mu)/(gamma(mu+2))*((n-1)^(mu+1)+(n^mu)*(mu-

n+1))*(a1*(1-u0/k1)-b1*v0-r1*q/u0))*exp((h^mu)/(gamma(mu+2))*(a1*(1-

Un/k1)-(b1*Vn)-(r1*q/Un))); 
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Yn=Yn*v0*exp((h^mu)/(gamma(mu+2))*((n-1)^(mu+1)+(n^mu)*(mu-

n+1))*(a1*(1-v0/k1)-b1*u0-r1*q/v0))*exp((h^mu)/(gamma(mu+2))*(a2*(1-

Vn/k2)-(b1*Un)-(r2*q/Vn))); 

B(1,s)=real(Xn); 

C(1,s)=real(Yn); 

end 

In the last step, we put the values of healthy and cancerous cells in the vectors 

B and C respectively. The final step is plotting the curves of each population 

separately and move the phase curve which determines the changes in both 

populations in chronological way, when time varies in the vector A. This can 

be done by plot command as 

plot(A,B); 

plot(A,C); 

plot(B,C); 

The following figures are given as a result of this program: 

 

  

 
 
 

Figure 1. The results sample for phase diagram and cancerous cell 
populations according to the given constants in Appendix A: (a) The 
phase diagram; (b) Cancerous cell population. 
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CHAPTER V 

Discussion 

 

One of the main applications of mathematics can be considered as modeling 

real life phenomena with the help of mathematical tools. Since 16th century 

that Newton determined the rate of growth with derivative of the function, this 

powerful tool has been used to describe the dynamic system. The origin of 

discussion traces back to the applications in mechanics when the derivative is 

interpreted as a rate of distance or velocity. Any dynamic apparatus is based 

on some changes and these changes are associated with the derivative of one 

or more functions. Furthermore, the profound investigation in dynamic system 

obtains equations of independent variable, dependent variable and their 

derivatives. Thus, the ordinary differential equation can describe a dynamic 

system and predict the attitude of the system.  

Later, the fractional derivative as a derivative of a given function in any 

complex order was defined and many dynamic systems were reformulated with 

this new definition of derivative. There are many benefits of using fractional 

differentiation to model the dynamic system, such as; having memory effects, 

better fitting functions, etc. Besides, the non-Newtonian calculi prepared the 

alternative view to Newtonian calculus by modifying the arithmetic operators 

and made new interpretations to the growth rate. The mixture of fractional 

differential operators and non-Newtonian calculi, especially the bi-geometric 

calculus obtains the operators with respect to any analytic function.  

The bi-geometric calculus as an old calculus was used in different fields of 

mathematics especially in statistics where we use geometric mean instead of 

arithmetic mean. In fact, rate was described as a proportion instead of 

difference, and this modification leads to many applications in different 

aspects. We apply the bi-geometric analogues to describe the population of 

healthy and cancerous cells in a dynamic system. This approach leads to 

competition equations of Lotka-Volterra type, but this time in bi-geometric 

analogue and the fractional case equipped with Hadamard operator. Many 

articles were investigated the Reimann-Liouville operator as a suitable form of 

fractional operator for modelling the real phenomena. However, the Hadamard 

operator was considered rarely and the origin of this operator was not 
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considered. Therefore, the results were not reliable and not even 

understandable. Our work in this aspect is unique and opens a new aspect of 

working in this area. However, there are many difficulties with working with 

Hadamard operators such as singularity behavior of weight function and so on. 

Working in the field of biomathematics needs many backgrounds in different 

fields. First, the biological background for mathematic student would be an 

obvious obstacle since he/she studies many mathematics courses with different 

nature. For instance, to make a satisfactory complete study, we spent over three 

months to study the biological part. Secondly, understanding the relationship 

between different parts of the system needs accurate consideration in previous 

studies and finding the best cohesive model.   
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CHAPTER VI 
 
 

Conclusion and Recommendations 
 
 

In this chapter we summarize our results and present conclusions based 

on the research findings according to the objective of the research and give 

recommendations accordingly. In this literature, we apply the bi-geometric 

calculus to model the population of healthy and cancerous cells. There are 

some benefits of using this calculus which were mentioned in the text and we 

can list them as follows: 

• The bi-geometric calculus deals with positive numbers and it can be seen in 

proposition 3.1 

• The bi-geometric calculus uses proportion instead of differences and this 

property summarizes the equation as we can see in the first equation of chapter 

3. 

• Before analyzing the model, it is essential, or rather obligatory, to express it in 

non-dimensional terms. This has several advantages. For example, the units 

used in the analysis becomes unimportant and the adjectives small and large 

have a definite relative meaning. It also always reduces the number of relevant 

parameters to dimensionless groupings which determine the dynamics. A 

pedagogical article with several practical examples by Segel (1972) discusses 

the necessity and advantages for non dimensionalization and scaling in general. 

The bi-geometric model describes non-scale parameters and this can be 

considered as a main advantage. 

• The singularity of fractional operator is transferred from the point zero and the 

new operator is based on Hadamard operator with singularity 1. 

The new model based on bi-geometric calculus gives a different view to the 

model and prepares new methods in different fields as numerical calculation 

etc. One of the important usages of this calculus is simplifying the calculations, 

especially for numerical solutions. This discussion can be used for different 

models which were studied before with the help of Reimann-Liouville 

operators and with same logic, many investigations can be followed.    
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Appendices 
 

Appendix A 
 
MATLAB code Figure 1 
 
v = @(t) exp(t); 
t = linspace(-3, 3); 
figure(1) 
plot(t, v(t)) 
grid on 
title('exponential function on Cartesian space') 
xlabel('x'); 
ylabel('Geometry space'); 
hold on  
fplot(@(x) (x), [0,3], 'b') 
hold on 
plot(t,exp(0)+0*t); 
hold on 
plot(t,exp(1)+0*t); 
hold on 
plot(t,exp(2)+0*t); 
hold on 
plot(t,exp(3)+0*t); 
hold off 
 
 
MATLAB code for program section 
 
% Defining the constants for the model 
a1=exp(0.1); a2=exp(0.45); b1=exp(0.11); b2=exp(0.15); k1=exp(0.65); k2=exp(1); 
r1=exp(0.05); 
r2=exp(0.01); q=exp(0.35); L=exp(50); u0=exp(0.44); v0=exp(0.22); h=0.01; mu=0.7; 
w=exp(150); 
% Defining the time variable as a vector 
A=zeros(1,400); B=zeros(1,400); C=zeros(1,400); 
for m=1:400 
     A(1,m)=exp(m); 
end 
for s=1:400 
t=A(1,s); 
% Defining the partition 
n=ceil(log(t)/h);Un=u0; Vn=v0; 
% Finding the predictor-corrector by applying 3 times radiotherapy 
    for i=1:n 
        if (w<exp(i*h)) && (exp(i*h)<w*L) 
            if (w^2<exp(i*h)) && (exp(i*h)<(w^2)*L) 
                if (1<exp(i*h)) && (exp(i*h)<L) 
            Un=exp(((h^mu)/(gamma(mu+1)))*(((n-i)^mu)-((n-i-1)^mu))*(a1*(1-Un/k1)-
(b1*Vn)-(r1*q/Un))); 
            Vn=exp(((h^mu)/(gamma(mu+1)))*(((n-i)^mu)-((n-i-1)^mu))*(a2*(1-Vn/k2)-
(b2*Un)-(r2*q/Vn))); 
                end 
            end 
                  else 
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            Un=exp(((h^mu)/(gamma(mu+1)))*(((n-i)^mu)-((n-i-1)^mu))*(a1*(1-Un/k1)-
(b1*Vn))); 
            Vn=exp(((h^mu)/(gamma(mu+1)))*(((n-i)^mu)-((n-i-1)^mu))*(a2*(1-Vn/k2)-
(b2*Un))); 
        end 
    end 
Un=Un*u0; 
Vn=Vn*v0; 
% Finding the value of healthy cells population Xn and cancerous cells population Yn 
Xn=u0; Yn=v0; 
for j=1:(n-1) 
    if (w<exp(j*h)) && (exp(j*h)<w*L) 
        if (w^2<exp(j*h)) && (exp(j*h)<(w^2)*L) 
            if (1<exp(j*h)) && (exp(j*h)<L) 
            Xn=exp(((h^mu)/(gamma(mu+2)))*(((n-j-1)^(mu+1))-(2*(n-j)^(mu+1))+((n-
j+1)^(mu+1)))*(a1*(1-Xn/k1)-(b1*Yn)-(r1*q/Xn))); 
            Yn=exp(((h^mu)/(gamma(mu+1)))*(((n-j-1)^(mu+1))-(2*(n-j)^(mu+1))+((n-
j+1)^(mu+1)))*(a2*(1-Yn/k2)-(b2*Xn)-(r2*q/Yn))); 
            end 
        end 
        else 
            Xn=exp(((h^mu)/(gamma(mu+2)))*(((n-j-1)^(mu+1))-(2*(n-j)^(mu+1))+((n-
j+1)^(mu+1)))*(a1*(1-Xn/k1)-(b1*Yn))); 
            Yn=exp(((h^mu)/(gamma(mu+1)))*(((n-j-1)^(mu+1))-(2*(n-j)^(mu+1))+((n-
j+1)^(mu+1)))*(a2*(1-Yn/k2)-(b2*Xn))); 
    end 
end 
Xn=Xn*u0*exp((h^mu)/(gamma(mu+2))*((n-1)^(mu+1)+(n^mu)*(mu-n+1))*(a1*(1-u0/k1)-b1*v0-
r1*q/u0))*exp((h^mu)/(gamma(mu+2))*(a1*(1-Un/k1)-(b1*Vn)-(r1*q/Un))); 
Yn=Yn*v0*exp((h^mu)/(gamma(mu+2))*((n-1)^(mu+1)+(n^mu)*(mu-n+1))*(a1*(1-v0/k1)-b1*u0-
r1*q/v0))*exp((h^mu)/(gamma(mu+2))*(a2*(1-Vn/k2)-(b1*Un)-(r2*q/Vn))); 
B(1,s)=real(Xn); 
C(1,s)=real(Yn); 
end 
plot(A,B); 
plot(A,C); 
plot(B,C); 
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