

NEAR EAST UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MILD AND SEVERE COVID DETECTION USING DEEP LEARNING

M.Sc. THESIS

Balla Moussa TRAORE

Nicosia

June, 2022

B
A

LLA
 M

O
U

SSA

TR
A

O
R

E

M
ILD

 A
N

D
 SEV

ER
E C

O
V

ID
 D

ETEC
TIO

N
 U

SIN
G

D
EEP

 LEA
R

N
IN

G

M
A

STER
 TH

ESIS
2

0
2

2

NEAR EAST UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MILD AND SEVERE COVID DETECTION USING DEEP LEARNING

M.Sc. THESIS

Balla Moussa TRAORE

Supervisor

Assoc. Prof. Dr. Sertan SERTE

Nicosia

June, 2022

5

Declaration

I hereby declare that all information, documents, analysis and results in this thesis

have been collected and presented according to the academic rules and ethical

guidelines of Institute of Graduate Studies, Near East University. I also declare that

as required by these rules and conduct, I have fully cited and referenced information

and data that are not original to this study.

Balla Moussa Traore

…../…../…..

6

Acknowledgments

I would like to express my utmost gratitude to Assist. Prof. Dr. Ali Serener for his

constant output and support throughout this study and Assoc. Prof. Dr. Sertan

SERTE for allowing me to present this document and accommodating with the

various issues encountered along the way.

Balla Moussa Traore

7

Abstract

Mild and Severe COVID Detection Using Deep Learning

Balla Moussa Traore

MSc, Department of Electrical Electronic Engineering

June, 2022, 70 pages

The coronavirus disease of 2019 caused most countries worldwide to go into

lockdown due to its highly contagious nature. It had a lot of economic ramifications

that are still felt to this day. The first step to fighting a disease is to recognize it.

Radiography imagery is one of the methods used to detect COVID-19, and allows

doctors to act quickly on it upon discovery.

Machine Learning has come a long way during the last decade, and make use of deep

convolutional learning network to recognize everyday objects of images with high

accuracy, comparable with that of human beings. With that in mind, the objective is

to train deep learning networks to recognize COVID cases. Knowing the fact that

computer have faster processing power than human being it allows for faster course

of action.

This thesis describes how a deep convolutional neural network was built and trained

to detect two different progressions of COVID, that is, mild COVID and severe

COVID. Three main questions were to be answered during the study. First, can the

network detect COVID? Second, can the network differentiate between a mild

COVID case and a severe COVID case? Thirdly, can the network differentiate

between COVID and other diseases? The way in which overfitting and vanishing

gradient problems were dealt with is also mentioned and talked about in the

document. The resulting network contains 25 layers, including multiple

convolutional layers with ReLU (Rectified Linear Unit), and some fully connected

layers. Five experiments have been set up to test the network performance and

answer the previously raised questions. As a result, the non-pretrained network that

was designed achieves an accuracy of 88.20 % when classifying X-ray scans of

COVID or healthy patients. the model is also quite adept at recognizing CT-scans, as

it is able to differentiate between severe and mild cases of COVID with a 93.7%

accuracy. Some experiments involved cases of cancer and Pneumonitis in order to

8

check if the network could also differentiate between cases of COVID and

potentially other disease.

9

TABLE OF CONTENTS

List of Tables.. 11

List of figures ... 12

List of Abbreviations.. 13

CHAPTER I: Introduction ... 14

CHAPTER II: Background and Literature Review ... 17

Overview .. 17

Theoretical Framework .. 17

2.1 Deep Convolutional neural networks ... 17

2.2 DCNN Architecture ... 17

2.3 ALEXNET ... 28

Related Work ... 30

Summary .. 31

CHAPTER III: Methodology ... 33

Overview .. 33

3.1 Datasets .. 33

3.2 Network architecture .. 38

3.3 Training .. 42

A. Experiment 1: X-Ray: Healthy vs Covid ... 42

B. Experiment 2: CT-Scan: Healthy vs Malignant 44

C. Experiment 3: CT-Scan: Severe vs Mild ... 45

D. Experiment 4: CT-Scan: Severe vs Pneumonitis 46

E. Experiment 5: CT-Scan: Mild vs Pneumonitis .. 48

Summary .. 50

CHAPTER IV: Results and Findings ... 51

Overview .. 51

4.1 Results and Findings .. 51

A. Experiment 1 .. 51

B. Experiment 2 .. 54

C. Experiment 3 .. 56

D. Experiment 4 .. 59

E. Experiment 5 .. 61

Summary .. 63

CHAPTER V: Discussion and Conclusion .. 64

10

5.1 Discussion .. 64

5.2 Conclusion ... 65

REFRENCES ... 66

APPENDICES ... 70

Appendix A: Binary Classification Code ... 70

Appendix B: Code for Resizing Images in the Dataset .. 73

11

List of Tables

Table 1 .. 34

Table 2 .. 40

Table 3 .. 42

Table 4 .. 43

Table 5 .. 44

Table 6 .. 44

Table 7 .. 45

Table 8 .. 45

Table 9 .. 47

Table 10 .. 47

Table 11 .. 48

Table 12 .. 49

Table 13 .. 52

Table 14 .. 52

Table 15 .. 54

Table 16 .. 55

Table 17 .. 56

Table 18 .. 57

Table 19 .. 59

Table 20 .. 59

Table 21 .. 61

Table 22 .. 62

12

List of figures

Figure 1 .. 18

Figure 2 .. 19

Figure 3 .. 19

Figure 4 .. 20

Figure 5 .. 21

Figure 6 .. 22

Figure 7 .. 23

Figure 8 .. 24

Figure 9 .. 24

Figure 10 .. 25

Figure 11 .. 26

Figure 12 .. 27

Figure 13 .. 28

Figure 14 .. 29

Figure 15 .. 35

Figure 16 .. 36

Figure 17 .. 37

Figure 18 .. 41

Figure 19 .. 43

Figure 20 .. 45

Figure 21 .. 46

Figure 22 .. 48

Figure 23 .. 49

Figure 24 .. 53

Figure 25 .. 54

Figure 26 .. 55

Figure 27 .. 56

Figure 28 .. 58

Figure 29 .. 58

Figure 30 .. 60

Figure 31 .. 61

Figure 32 .. 62

Figure 33 .. 63

13

List of Abbreviations

ANN: Artificial Neural Network

AUC: Area Under the Curve

CNN: Convolutional Neural Network

CPU: Central Processing Unit

CT: Computerized Tomography

DCNN: Deep Convolutional Neural Network

FN: False Negative

FP: False Positive

GPU: Graphics Processing Unit

ReLU: Rectified Linear Unit

ROC: Receiving Operating Characteristic

SVM: Support Vector Machine

Tanh: Hyperbolic Tangent

TN: True Negative

TP: True Positive

14

CHAPTER I: Introduction

As reported by the World Health Organization, on December 31st 2019, they

received reports about several cases of an unknown viral pneumonia from Chinese

province of Wuhan (World health Organization). It would be found to be a novel

corona virus that would soon be declared to be a pandemic that would trigger an

unprecedented wave of confinement around the world. Needless to say, countless

lives were lost, businesses were shut down, and the economic ramifications are still

present.

Among the testing method available for the COVID-19, X-ray imaging is of

particular interest in this study. It provides a visual and fast way for physicians to

identify infected individuals, and it providing easily accessible materials for deep

learning among other fields. Today, artificial intelligence and deep learning are an

integral part of many field sectors, such as industrial, military, medicinal applications

and more. Convolutional Neural Networks (CNN) are well suited for imaging related

classifications, that is, their architecture is easier to train and allows them to reliably

find information and features relevant to the pictures through the use of kernels and

filters. Their flexibility allows for users to use pre-trained networks and adapt them

to suit various situations or needs.

There is a significant amount of pre-trained networks, and one model of interest is

AlexNet (Krizhevsky,2012). AlexNet is the topic of multiple studies and will be the

main reference for this one. Using transfer learning, the network will be adapted to

complete our task our classifying an X-Ray image as COVID case or a Healthy one.

Nowadays, a lot research about deep learning in diagnosing COVID-19 is happening

with new papers being published every month, and a lot of optimistic results are

being found (Nayak et al, 2021; Yi et al, 2021). Therefore, this study aims to bring

its own contribution in the research field. It is imperative that physicians are able to

quickly and accurately determine the state of a patient, thus making this kind of

document relevant for the medicinal and the engineering literature.

This study will be one of many that tries to make use of deep learning to classify

visual data into useful diagnosis. It goes without saying that finding fast and accurate

ways of detecting COVID cases is of upmost importance in the medical landscape.

Finding new and various models and alternative gives more options to the parties

15

concerned in helping patients being quickly diagnosed in various conditions. The

presented model was built to classify X-rays images and CT-scans to help find

concerned patient even when operating different tasks.

While data showing images of patient is not scarce, it can be a limitation to find out

how the images were obtained and treated. At times during the study, it will be seen

that images retrieved from different sources have proved to be a serious challenge in

properly measuring the effectiveness of the model. It led to sometimes to almost

unrealistically high results, however, it also showed how effective the network was at

discerning pictures.

This study will aim at finding if the model presented can provide accuracy and

flexibility using different sources of visual data. By the time the reading of this

document is done, some interesting questions should have an answer.

• Is the network able to distinguish between two X-Rays involving a COVID

case and a healthy one?

• Is the model able to work with both CT-Scan and X-Rays?

• Is the model able to distinguish between a mild COVID case and a severe

COVID case using CT-scans?

• Is the model able to distinguish between a case of cancer and a healthy one?

• Is the model able to distinguish between two different diseases?

• Is the model able to distinguish between a case of COVID or a different

disease?

We will first take a look at the literature and find more about the work done on our

subject; the next section of the chapter will detail a lot more about the related work in

the field. It will be seen that there are some already encouraging and already

effective models that can be deployed for use, as they show real accuracy sometimes

close or better than human test. Secondly, the method used in this model will be

explained. A network built from scratch will be employed, that is a model that was

not pretrained nor that makes uses of transfer learning. A random weight

initialization method will be used, taking advantages of Rectified Linear Unit

activation. Our convolutional model will also make use of techniques such as

dropout in order to fight against overfitting problems that were definitely

encountered during the training process. The document will detail the structure of the

16

layers forming the network, and extensively discuss AlexNet’s model that served as

the basis of our model. Finally, the training phase and process of the network will be

discussed alongside the results obtained after training, before swiftly bringing a

conclusion to this paper.

17

CHAPTER II: Background and Literature Review

Overview

This part of the chapter will explain the theoretical framework that was followed

while building our model. Some important concept related to deep learning and

possessing relevance in the context of thesis will be described. It will then include

some of the work found in the literature relating to this study.

Theoretical Framework

2.1 Deep Convolutional neural networks

Artificial Neural Networks (ANN), based on the human nervous system, are the main

component in the Artificial Intelligence topic. They possess multiples layers which

brings complexity in their architecture, allowing them to learn how to perform a wide

variety of tasks. One type of neural network is of interest in this document, Deep

Convolutional Neural Networks (DCNN). They get their name from the fact that

their learning process is based on convolutions between matrices. Their overall

architecture includes the combination of one more convolutional layers, pooling

layers, and fully connected layers. DCNNs are excellent at dealing with image

related problems. They not only require less parameters than ANNs to function, but

they are adept are recognizing patterns and extracting features that are propagated

through the layers in order to fish for more higher complexity features which are

relevant to classify the input or any other image related operations.

2.2 DCNN Architecture

DCNNs are typically made out of three main types of layers. Those mentioned layers

are: the convolutional layers, the pooling layers and the fully connected layers. To

that we can include the input and output layers, activation layers and other types of

layers needed to improve the learning performance of the network. Figure 1 shows a

simple layout of the architecture of a CNN.

18

Figure 1

Simplified CNN Architecture Layers (M. Guruchan, 2020)

The input layer is usually the recipient for the image data which usually comes with a

size of a H×W×3 matrix (H being the height, W being the width, and 3 representing

the number of color channels). The convolution layer, as it will be seen later, is

produced through the convolution of filters with the input matrix. An activation

function will be then be applied and produce new inputs for the pooling layer, which

will then sample them down, which will reduce the number of parameters. The fully

connected layer will perform as it would in a standard ANNs by providing scoring

value for the classes that are going to be used for the classification purpose.

2.2.1 Convolutional Layer

The convolutional layer is the most defining layer in the CNN and DCNN

architectures. It essentially works through usage of filters or kernels convolving

around the input image. The kernels are small in size but slide along the entire input

to compute the scalar product that will build a two-dimensional activation map in the

next layer (O’Shea, 2015).

A. Convolution

The significance of using convolutions using kernels can be understood if we

consider the following example. For sake of our example, let’s assume an input

image of size 64 × 64 × 3 going through the layers of our network. In a typical ANN,

an efficient way of processing the information provided would for the next layer to

have neurons matching the value of the height and width. The resulting number of

parameters at this point of the network would be 64×64×3 by 64×64 which give us

19

50,331,648 weight connections. A more efficient method would be looking at local

regions in the image instead of analyzing weighing every pixel of the picture. Figure

2 shows the connection between a local region in a neuron in the following layer. If

the filter window is size selected to be 3 × 3, we then go from having 50 million

parameters to 5×5×3 by 64×64 neurons equaling 307,200 parameters. This holds true

since the weight for the local region in the input layer is kept the same. This means

that we go from each neuron having 12,888 weights to them having 75 weights, thus

drastically reducing the number of parameters needed (Albawi, 2017).

Figure 2

Pixel Related Weight Connection of ANN(Albawi,2017)

Figure 3

Local Region Related Weight Connection

Fixing the weights according the local region not only reduces the number of

parameters needed, but also translate into a process similar to gliding a 5×5×3

20

window across the input and storing the output at its corresponding position. This

allows the network to detect and retrieve features regardless of their position in the

picture. As an example, figure 4 shows how an edge detector 3×3 matrix convolving

around the image will detect the ‘edge’ features on the input regardless of their

position the picture.

Figure 4

Edge Detection Through Convolution

It can be seen that that the edge detecting filter has recognized edges all around the

picture without having any limitation with location in the image.

The mathematical expression for a pixel in the next layer is given by equation 1.

 𝑃(𝑖, 𝑗) = (𝐼 ∗ 𝐾)[𝑖, 𝑗] = ∑

𝑚

∑ 𝐼[𝑚, 𝑛]𝐾[𝑖 − 𝑚, 𝑗 − 𝑛]

𝑛

(1)

We have the output in the next layer represented by 𝑃(𝑖, 𝑗), 𝐼 represents the input

picture, 𝐾 is the kernel matrix, and the convolution operator is ∗. Figure 5 shows a

visual description of the convolution operation between 2-D matrix and filter.

21

Figure 5

Edge Detection through Convolution (Prijono,2018)

(a)

(b)

As shown by figure 5(a), the filter will convolve with part of the input and produce a

result in the corresponding position in the next layer. The convolution window will

then slide across the picture with set stride as shown above until the whole image is

covered.

B. Stride

The stride, along with other parameters such as depth and zero-padding will affect

the size of the output produce in the next layer. With those parameters we can reduce

or increase the amount data transmitted and processed by the next layers of the

network. In actually, the stride controls the amount of overlap between subsequent

parts of the input, as shown in figure 6. With heavy overlap the activation produced

22

in the next layer will get larger. Equation 2 shows how the output can be computed

using the stride, the size of the input and the filter (Albawi,2017).

𝑂 = 1 +

𝑁 − 𝐹

𝑆

(2)

where N is the input size, F being the filter dimension, and S is stride window.

Figure 6

Stride Size 2 Convolution (Prijono,2022)

When comparing figure 6 and figure 5, the size of the output window can be seen to

have decreased. This shows how one can manipulate the output through changing the

stride.

C. Padding

One might observe that the borders of the picture do not get many opportunities to

have their information extracted. In order to avoid loss of information in that area,

one parameter of the convolution can be altered, that is padding. For the purpose of

our task, we use zero-padding to bring additional rows and columns made up of zeros

on the matrix as shown in figure 7. As mentioned above, zero-padding is a parameter

that affects the output size in the next layer, as can be seen in the equation 3.

𝑂 = 1 +

𝑁 + 2𝑃 − 𝐹

𝑆

(3)

where P is the number of row and column added to the input matrix. Figure 7 shows

a case where P=1.

23

Figure 7

2-D Convolution with Padding (Prijono,2022)

It can be seen that the output size increased with the padding, and the borders

features can be registered in the next layer.

2.2.2 Pooling Layer

A pooling layer’s main goal is to reduce the complexity of the input by down-

sampling it. This process leads to a reduction of parameters used in the network,

further reducing the computing time. They are usually used to steadily lower the

dimension of the output during the computation.

 The most common pooling methods are Max Pooling and Average Pooling. A

popular way of using the pooling layer is by setting its window size to 2×2 with

stride set to 2, both horizontal and vertical. This means that the maximum value

contained within that window will be returned in the case of max pooling (figure 8),

and the average of all the values inside that window will be returned in an average

pooling case (figure 9). Moreover, while setting the stride to be 2 and having the

kernel size to 3×3, an overlap is created. It is an efficient way of reducing parameters

while keeping extra spatial information.

24

Figure 8

2×2 Kernel Max Pooling (Prijono,2018)

The max pooling function will return 6 in the next layer as it is the maximum value

in the window. The output position will match that of the previous layer so as to

maintain location sensitive data.

Figure 9

2×2 Kernel Average Pooling (Prijono,2018)

The average pooling layer will find the average value of the data inside the kernel

and return it to the next layer.

25

Figure 10

3×3 Kernel with Stride 2 Max Pooling (Prijono,2018)

The kernel size matching the stride would have returned a 2×2 matrix as output,

however by keeping the stride as 2 an overlap is formed; therefore, the output

presents more information about the inner part of the matrix.

2.2.3 Fully Connected Layer

Reminiscent of the more traditional artificial neural networks, the fully connected

layer is arranged by having each node of it connected to every one of those in the

previous layer and potentially the next layer. The fully connected layer presents a lot

of complexity because of the number of nodes and the number connections they each

have, in other words the number of parameters to work out is quite significant.

As mentioned previously, one of the main advantages of DCNN is the reduction of

those parameters through the use of the processes discussed above, however fully

connected layers are still used. AlexNet (Krizhevsky, 2012) is a popular example of a

DCNN using the dropout technique as tool to reduce the number of parameters and

therefore the computational requirements during training.

2.2.4 Activation function

An activation function or also called squashing function is used to “squash” or

“activate” a node in the network. It defines the output of a given node and defines its

“usefulness” in the next layers. The activation function also helps limits the value of

data into norms. An example would the sigmoid function where the value of a node

after activation ranges between 0 and 1. More than one activation function can be

used in a network; typically, the output layer makes use of a different activation

26

function better suited for its purpose. the most commonly used activation functions

are:

• Sigmoid function

• Hyperbolic Tangent

• Rectified Linear Unit

2.2.4.1 Sigmoid

As mentioned before, after taking any real value from a node the sigmoid function

outputs a value between 0 and 1, and is defined by equation 4. It is quite useful for

assign a probability and boats effectiveness with binary classification.

𝜎(𝑥) =

1

1 + 𝑒−𝑥

(4)

Figure 11 shows the graphical representation of the sigmoid function.

Figure 11

Sigmoid Function

The sigmoid function is shaped like an S. there is a sharp increase around the

inflexion point and its value seems to plateau at its extremities. The downside with

sigmoid is that it can tend to reach a local minimum and therefore get stuck during

training.

27

2.2.4.2 Hyperbolic Tangent

The Hyperbolic tangent or tanh also possess a S looking shape as sigmoid, however,

it is on a bigger range. Tanh is defined by equation 5 and is represented graphically

by figure 12.

tanh (𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

(5)

Figure 12

Hyperbolic Tangent(tanh) Function

The bigger range allows for the values to be activated and seen as “strongly”

negative or positive.

2.2.4.3 Rectified Linear Unit

ReLU is one of the most commonly used function in convolutional neural networks

and deep learning. It is a simple function that presents advantages over the two

previously mentioned activation functions, like its robustness to vanishing gradient

where the model stops because it is unable to properly update the gradient. It is

defined by equation 6 and is graphically represented by figure 13.

 𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (6)

28

Figure 13

Rectified Linear Unit (ReLU) Function

The ReLU function sets all negative values to zero, which represents its strength but

also its weakness since it creates “dead” units in the network.

2.3 ALEXNET

One the most important aspect of this project is AlexNet. It is a groundbreaking deep

convolutional network that was entered in the ImageNet LSVRC-2010 contest that

requires classifying 1.2 million images into one thousand different categories. The

model produced a top-1 error rate of 37.5% and a top-5 error rate of 17%. Those

results were outperforming their closest competitor by a substantial amount. When

dealing with such large dataset, overfitting becomes a major issue, and as such

AlexNet has ways of dealing with that problem. The resulting network has 8 layers

where the removal of any particular one would reduce the performance despite

consisting of 1% of the model’s total number of parameters. It is important to note

that the model was trained on two GPU due to the large amount of data and the

computational resource available at the time.

2.3.1 Dataset

The dataset used in the model consist of images of different size that were fixed to a

256×256 resolution. The number of images used ranges in the million and should be

classified into 1000 classes representing different objects or animals.

29

2.3.2 Architecture

The model contains fire convolutional layers and 3 fully connected layers as seen in

figure 14. the network uses ReLU as an activation function due to its significantly

shorter training time compared to others like tanh or sigmoid function. Since

overfitting represents the main problem of the model, making the choice of using

ReLU makes that much more sense.

Pooling layers often return output from adjacent regions without overlapping.

However, in this case, it was found that overlapping the pooling area reduces the

error rate by 0.4% and generally reduces overfitting.

2.3.3 Overall Architecture

AlexNet consists of five convolutional layers and three fully connected layers. The

last fully connected layer returns an output given to a 1000-way Softmax that will

classify into the equally numbered labeled classes.

Figure 14

AlexNet Architectural Map (Krizhevsky,2012)

The layers following the input are divided into two GPUs operating in cross-

parallelization. Half of the parameters are deployed on each GPU, however they still

communicate in some layers. Max pooling layers are set in conjunction with local

response normalization on the first two convolutional layers, before being set on the

fifth one right before the fully connected layers.

30

2.3.4 Overfitting

Two ways are used to deal with overfitting this net, data augmentation and dropout.

Data augmentation, being an easy way of diminishing overfitting, consists of

artificially enlarging a dataset while conserving its properties.

The “dropout” technique is another method used to deal with overfitting. It consists

of dropping a certain number of hidden neurons in the fully connected layer, by

setting their output to zero. In AlexNet’s case, the dropout probability is set to 50%.

The neurons that are dropped, do not contribute in forwarding data in the subsequent

layers nor are they involved in back-propagation. In principle, this forces the network

to learn more solid features and stops any co-dependency between neurons since the

presence of any particular becomes uncertain. The dropout technique in this way

prevents substantial overfitting.

Related Work

The model proposed by Hilmizen et al. (2020) in their study uses the concatenation

of two transfer learning models using two datasets being CT scans and X-Ray

images. The idea is to use the different characteristics the two modalities can provide

and find the complementarity they share. They used different pretrained ImageNet

networks such as, ResNet50, DenseNet121, Xception for the CT-scans images and

VGG16, MobileNet, and InceptionV3 for the X-Ray images. The concatenated

network models were shown to perform better than the individual networks by

themselves. The ResNet50-VGG16 and DenseNet121-MobileNet had the same score

on accuracy, sensitivity and specificity and were overall the top performing network

with the results being 99.87%, 99.74%, 100% respectively.

Another model in the literature makes use of a three-stepped model that includes a

feature extractor, followed an algorithm that sorts the said features and select the

most important ones to be finally classified using an SVM classifier (Jin,2021). In

the study, AlexNet is the network used for the feature extraction step. Using ReliefF

the ten most important features extracted from the previous step are then sorted based

on their importance. This results in reducing training time by removing unnecessary

information. At the end, the SVM will handle the classification process the network.

The proposed model showed a 98.642 ±0.398% overall accuracy which was the best

performance when compared to five other models.

31

DeTraC is a process adopted by Abbas et al. (2020) in their study to improve on their

previous deep convolutional neural network. DeTraC, in their work stands for

Decompose, Transfer, and Compose. First, the pre-trained DCNN model of DeTraC

is trained in order to extract local features of each element of the dataset. The

decomposition layer is then applied, to provide simplification to the data structure.

That process consists of partitioning each class in the input dataset in multiple sub-

classes. After training, a class composition layer is applied to reassemble the sub-

classes and to refine the last classification of the images. The results show significant

improvement in accuracy, sensitivity, specificity in each of the DCNN models in

which DeTraC was applied to.

FCOD is another network model proposed by Panahi et al. (2020), in an objective to

reduce the computational cost and the issues with overfitting common with DCNNs

having a significant number of parameters, reducing the detection time for COVID

cases while offering high accuracy, a “depth-wise” separation of convolutional layers

seemed to be solution that made sense. Instead of adopting a standard convolution

filter, the model instead divides the input into channels where each of them will be

met with a convolutional filter. There, a point-wise convolution will occur, where the

output channels will be mixed.

The literature shows multiple other works, such as CVDNet from Ouchicha et al.

(2020), where they propose a deep learning network based on two parallel paths with

different kernel sizes aiming to study both local and global features of the images.

ShuffleNet, built by Zhang (2017), is a DCNN which design is built for low

computing devices such as mobile devices. Its architecture presents parameters that

requires less complexity while maximizing the accuracy of the network. It serves as

the basis for the model proposed by Ozyurt (2021) to provide automatic detection of

COVID-19 cases. The model is designed by applying a feature extraction protocol

using ReliefF and NCA in order to find and select the distinctive features. It also

includes using transfer learning with ShuffleNet’s pretrained layers. Finally, the

extracted features serve as input in the classifying layer of the network.

Summary

This chapter showed important concept such as the major layers that builds a deep

neural network. The convolutional layer filters the images for important features

while the pooling layer reduces the size and the complexity of the input. A controlled

32

use of padding and stride allows for one to control the dimension of the input into the

next layers. The choice of an activation function is an essential step into building the

network as it they offer different advantages but different cons that are to be

considered when setting the network.

33

CHAPTER III: Methodology

Overview

This section of the document explores the method used in this project. It documents

the datasets used in the network, its architecture and the experiment set in order to

reach the goals set at the beginning of the document.

3.1 Datasets

This section of the document will describe the different datasets used in the

experiments conducted in the study. In order to test the flexibility of the model, five

different experiments will be conducted. The datasets in this study includes two

categories that our network is going to classify into. Each category includes a

training and testing set.

The first dataset used in this document was obtained from Kaggle (Viradiya,2021)

and includes thousands of radiography images showing x-ray scans of COVID

afflicted patient and healthy ones. It includes patients of a wide range of age, gender,

weight and body type picked at random. For the purpose of this study, the training

sets include 3000 pictures to be examined while the testing or validation sets include

500 images each. In an effort to reduce the number of parameters and through trial

and error, the number of pictures selected per case was kept at 3000.

The second dataset was retrieved from Mendelay Data (Alyasriy,2020). This set

includes CT-scans showing patient afflicted with lunger cancer and healthy patient.

They were obtained by taking slices from DICOM format of pictures. They include

slices from 110 patients with various age, gender and living conditions. The training

set for the purpose of the study includes 511 images for malignant cancer cases and

366 healthy cases, whereas the testing set includes 50 images each. Those number

were selected due the limited number of pictures, but during training they proved to

be enough.

The third dataset in the study was retrieved form the Stoic Grand Challenge 2021

database. This set has CT-scans of patient with mild cases COVID or severe cases of

COVID. The inclusion of this set of images is to observe how precise our network

can be to differentiate between two types of actual cases of COVID. The set is made

up of 3D views of 1000 cases of COVID. However, for the purposes of this network.

34

The “.mha” format of the set was converted into DICOM images before going

through another conversion of the pictures into “.png” images. Similar to the second

dataset, the slices that were selected show different sides and angles of the scans.

Once again, the number of images was selected in an effort to reduce computing

power while maximizing the accuracy. The training set is made out of 1190 images

for the mild COVID case and 1234 images for the severe COVID case. The testing

set is made out of 150 images for each case.

Finally, the fourth dataset used in the study from Kaggle (Lami,2021). This data

involves patient suffering from radiation Pneumonitis as a result of their cancer

treatment. The images show 1062 instances of CT-scan. They offer different angles

and cuts much more similar to the previous dataset, which makes it a more

interesting classification case for it.

Table 1 offers clarity in the numbers of images used for each set of data used in our

training. It can be seen that x-rays have the most available image number. The

Medelay data has the lowest number of images available and Pneumonitis set has a

number of images that matches the Stoic 2021 set.

Table 1

Training Samples Breakdown

 Radiography

Set

Medelay Data

Set

Stoic 2021

Set

Pneumonitis

Set

 X-Ray CT-Scans CT-Scans CT-Scans

 Healthy COVID Malignant Healthy Mild Severe Pneumonitis

Training 3000 3000 511 366 1190 1234 952

Test 500 500 50 150 150 150 110

Total

Training

6000 877 2424

Total

Test

1000 100 300

Total 7000 977 2724 1062

35

Since the original dataset was made up of images with different and unfitting sizes

from our network input layer, a resize of the pictures were made in order to obtain

the required 227x227 size needed for training. Figure 15, figure 16 and figure 17

show examples of the images used in the network.

Figure 15

Sample of the Radiography Training Dataset

36

Figure 16

Sample of the Lung Cancer CT-Scan Training Set

37

Figure 17

Sample of Severe and Mild COVID CT-Scan Training Set

The similarity between the images is striking and would definitely require a medical

license to properly observe and interpret.

38

3.2 Network architecture

The network was designed personally coded with AlexNet as a base. As a result, the

presented network while very similar to AlexNet has some differences. This network

is not using pretrained data to improve its accuracy nor is it using transfer learning.

The initial weights of the network have therefore been randomly initialized using a

GPU array. The random initialization is a better choice since we use ReLU as an

activation function which is an effective tool against problems that might arise like a

vanishing gradient. All the convolutional layers are followed by a ReLU layer for

better activation and optimization of the parameters. The first two fully connected

layers are also connected to ReLU layers but the third is connected to a softmax layer

that will classify into the two concerned classes.

The Convolutional network was built with 25 layers designed as such:

1. The first layer has a number of 227×227×3 inputs, as our input images need

to be resized to 227 by 227 pixels.

2. Convolutional layer with 96 filters of window size 227×227×3 with stride

window 4×4.

3. ReLU layer

4. Cross Channel Normalization with 5 channels per element

5. Maximum pooling layer of window size 3×3 with stride window 2×2.

6. Grouped Convolutional Layer with 2 groups of 128 5×5 convolution

windows with stride 1 and padding 2.

7. ReLU layer

8. Cross Channel Normalization with 5 channels per element

9. Maximum pooling layer of window size 3×3 with stride window 2×2.

10. Convolutional layer with 384 filters of window size 3×3 with stride 1 and

padding 1.

11. ReLU layer

12. Grouped Convolutional Layer with 2 groups of 192 3×3 convolution

windows with stride 1 and padding 1.

13. ReLU layer

14. Grouped Convolutional Layer with 2 groups of 128 3×3 convolution

windows with stride 1 and padding 1.

15. ReLU layer

39

16. Maximum pooling layer of window size 3×3 with stride window 2×2.

17. Fully connected layer with 4096 outputs

18. ReLU layer

19. 50 % Dropout Layer

20. Fully connected layer with 4096 outputs

21. ReLU layer

22. 50% Dropout Layer

23. Fully connected Layer with 2 outputs

24. SoftMax Layer

25. Classification Output Layer

The different activation map sizes and their learnable are detailed in table 2 in the

next page of the document. A diagram showing the layout of the network can be seen

in figure 18.

40

Table 2

Activation Map and Learnables Size per Layers

The table can be obtained from MATLAB by inputting a line of command. The

enormous number of parameters can be observed from the table.

 Name Type Activation Learneables

1 imageinput Image Input 227×227×3

2 conv_1 Convolution 55×55×96
Weights 11×11×3×96

Bias 1×1×96

3 relu_1 ReLU 55×55×96

4 crossnorm_1
Cross

Channel Normaliztion
55×55×96

5 maxpool_1 Max Pooling 27×27×96

6 conv_2 Convolution 27×27×256
Weights 5×5×48×128×2

Bias 1×1×128×2

7 relu_2 ReLU 27×27×256

8 crossnorm_2
Cross

Channel Normaliztion
27×27×256

9 maxpool_2 Max Pooling 13×13×256

10 conv_3 Convolution 13×13×384
Weights 3×3×256×384

Bias 1×1×384

11 relu_3 ReLU 13×13×384

12 conv_4 Convolution 13×13×384
Weights 3×3×256×384

Bias 1×1×192×2

13 relu_4 ReLU 13×13×384

14 conv_5 Convolution 13×13×256
Weights 3×3×192×128×2

Bias 1×1×128×2

15 relu_5 ReLU 13×13×256

16 maxpool_3 Max Pooling 6×6×256

17 fc_1 Fully Connected 1×1×4096
Weights 4096×9216

Bias 4096×1

18 relu_6 ReLU 1×1×4096

19 dropout_1 Dropout 1×1×4096

20 fc_2 Fully Connected 1×1×4096
Weights 4096×4096

Bias 4096×1

21 relu_7 ReLU 1×1×4096

22 dropout_2 Dropout 1×1×4096

23 fc_3 Fully Connected 1×1×2
Weights 2×4096

Bias 2×1

24 softmax Softmax 1×1×2

25 classoutput Classification Output _

41

Figure 18

Network Diagram

As we can see in figure 18, the size of the input images changes multiple times in the

network. At the start, the image input of 227×227×1 is input in the first layer of the

network. The first convolutional layer, possessing 96 filters, changes the input

dimension to 55×55×96. The ReLU and cross normalization layers throughout the

network do not changes the size of the activation maps, which is why the figure does

not display those layers in an effort to keep clarity and avoid redundance. The first

maximum pooling layer will reduce the size to 27×27×96 before passing through the

256 filters present in the next convolutional layer resulting in a 27×27×256 output

size. The next max pooling layer and the third convolutional layer in net will further

reduces the size to 13×13×384. The final convolutional layer in the network has 256

filters with 3×3 windows, which results in the activation map to get a size of

13×13×256. The next layer, called maxpool_3, decrease the size further to obtain a

6×6×256 map. The first two fully connected layers of the net will keep the activation

map at size 1×1×4096 before the final fully connected layer reduces it a final 1×1×2

dimension.

42

3.3 Training

This section of the study is going to describe the different experiments that were

made using deep learning. The objective was to find how versatile, flexible and

accurate the network can be.

The datasets include X-rays and CT-scans from different sources and complexity in

classification. The first two experiment are straightforward and compare cases of

patient afflicted with a disease or not. Meanwhile, the remaining experiments are

about patient with either different diseases or different progression of the disease.

The network was training multiple times or sessions in all those cases while trying to

avoid major changes in parameters.

In each of the experiments, the network was trained using the Stochastic Gradient

Descent with Momentum method on an NVIDIA Geo Force GTX 1650i GPU.

Initially, the maximum number of epochs for training was to 10 with initial learn rate

factor of 0.0001. While no gradient threshold was set, the L2 normalization method

was set to compute it. Changes made during training, if any will be mentioned in the

next sections.

The next section will document the layout of the training for each experiments done.

A. Experiment 1: X-Ray: Healthy vs Covid

The first experiment will involve X-Ray pictures comparing COVID patients and

healthy patients. Table 3 show the number distribution of the images per case, where

the positive class is “COVID”.

Table 3

Images Numbers per Case (X-Ray: Healthy vs COVID)

 Healthy COVID

Training Set 3000 3000

Testing Set 500 500

43

Initially, 1000 images per case were chosen but, doing so lead to underwhelming

results during training in the region of 60% - 70%. The training parameters did not

require any changes but a gradual increase in training images through trial and error

gave us the results that will be presented in the next section.

Training parameters

Table 4 shows the parameters used to train the network using this dataset.

Table 4

Training parameters selected (X-Ray: Healthy vs COVID)

Mini-Batch Size 20

Max Epochs 10

Initial Learn Rate 0.0001

Training Method Stochastic Gradient Descent with

Momentum

Normalization Method L2

Under these conditions the training progress that occurred is documented by figure

19.

Figure 19

Training progress (X-Ray: Healthy vs COVID)

44

We can observe a steady increase in the accuracy up until the end of the training

session.

B. Experiment 2: CT-Scan: Healthy vs Malignant

Experiment 2 concerns CT-Scans of patient with malignant lunger cancer against

healthy ones. Table 5 describes the number of images per cases.

Table 5

Images Numbers per Case (CT-Scan: Healthy vs Malignant)

 Healthy Malignant

Training Set 511 366

Testing Set 50 50

Almost the available data were using during this experiment and proved enough to

produce really accurate results.

Training parameters

The training parameters are reflected in table 6. They produced the best overall

results after multiple training sessions.

Table 6

Training parameters selected (CT-Scan: Healthy vs Malignant)

Mini-Batch Size 20

Max Epochs 15

Initial Learn Rate 0.001

Training Method Stochastic Gradient Descent with

Momentum

Normalization Method L2

In figure 20 we can observe the training progress made in one of the sessions.

45

Figure 20

Training progress (CT-Scan: Healthy vs Malignant)

There is a steady increase in accuracy until around 200+ iterations. From there the

accuracy stabilizes in the high 90%.

C. Experiment 3: CT-Scan: Severe vs Mild

The numbers shown in table 7 have shown to produce the best results. Initially, the

number of images were chosen in an effort to match the number of available

Malignant cancer images but, they were unable to provide satisfying results.

Therefore, an increase in number was needed and ultimately proved to be successful.

Table 7

Images Numbers per Case (Severe vs Mild)

 Severe Mild

Training Set 1234 1190

Testing Set 150 150

Training parameters

Table 8

Training parameters selected (Severe vs Mild)

Mini-Batch Size 20

46

Table 8 (continued)

Max Epochs 15

Initial Learn Rate 0.001

Training Method Stochastic Gradient Descent with

Momentum

Normalization Method L2

The training progress in one of the sessions of this experiment are provided by figure

21.

Figure 21

Training progress (Severe vs Mild)

After a steady increase, the network’s accuracy starts to stabilize around the 500

iterations.

D. Experiment 4: CT-Scan: Severe vs Pneumonitis

The network has consistently produced high accuracy in any setting, parameters or

image number throughout the multiple training processes. Therefore, the number of

images from the previous datasets were kept the same.

47

Table 9

Images Numbers per Case (Severe vs Pneumonitis)

 Severe Pneumonitis

Training Set 1234 952

Testing Set 150 110

Training parameters

The training parameters for the training session are shown in table 10.

Table 10

Training parameters selected (Severe vs Pneumonitis)

Mini-Batch Size 20

Max Epochs 15

Initial Learn Rate 0.001

Training Method Stochastic Gradient Descent with

Momentum

Normalization Method L2

Figure 22 shows the training progress of the experiment.

48

Figure 22

Training progress (Severe vs Pneumonitis)

We can observe a sharp increase in accuracy that stabilize itself as soon as the 100

iterations. The network has quickly learnt and acquired really high accuracy from

that point.

E. Experiment 5: CT-Scan: Mild vs Pneumonitis

This experiment operated almost identically in the same fashion as the previous one.

The rationale behind the selected number of images is the same as in the previous

experiment. The layout is shown in table 11.

Table 11

Images Numbers per Case (Mild vs Pneumonitis)

 Mild Pneumonitis

Training Set 1190 950

Testing Set 150 110

Training parameters

The parameters are the same as previously mentioned in other experiments and

shown in table 12.

49

Table 12

Training parameters selected (Mild vs Pneumonitis)

Mini-Batch Size 20

Max Epochs 15

Initial Learn Rate 0.001

Training Method Stochastic Gradient Descent with

Momentum

Normalization Method L2

These parameters gave the best results and the progress of the training in one of the

sessions can be seen in figure 23.

Figure 23

Training progress (Mild vs Pneumonitis)

A rapid increase in accuracy before the 100-iteration mark followed by a steady

continuation is observed. These results and their implication will be discussed in the

next section but, it is important to remember that this is the training progress made

during one session out of many.

50

Summary

The datasets were obtained from different sources and provide images of several

lung conditions. The dataset in the study includes X-Rays and CT images. The

network presents an architecture that, while very similar to AlexNet, is not a result of

transfer learning, but instead built from scratch with the random initial biases along

with it. It has 25 layers, five of which are convolutional. Five experiments were set

up where different comparison cases were tested as such:

• Experiment 1: Healthy vs COVID

• Experiment 2: Healthy vs Cancer

• Experiment 3: Severe COVID vs Mild COVID

• Experiment 4: Severe COVID vs Pneumonitis

• Experiment 5: Mild COVID vs Pneumonitis

51

CHAPTER IV: Results and Findings

Overview

In this part of the document, a review of the results obtained during the training

sessions that occurred in each experiment will be provided.

4.1 Results and Findings

Firstly, a table showing the accuracy obtained during each of the training session will

be presented. The table also shows the average accuracy and highlights the best

results obtained. Afterwards, a second table will show more detailed results of the

best training session. In addition to the accuracy, the other results that will be

provided are:

• Sensitivity

• Specificity

• Area-Under-Curve

Equation 7 and equation 8 describe the sensitivity and the specificity.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(7)

where TP = True Positive

FN = False Negative

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

(8)

where TN = True Negative

FP = False Positive

Finally, the confusion matrix and the ROC curve will be provided as figures to give

further knowledge about the network.

A. Experiment 1

Table 13 show the results of the training session performed under the conditions

already provided earlier.

52

Table 13

Accuracy per training session (Experiment 1)

 Accuracy

Training Session 1 0.852

Training Session 2 0.882

Training Session 3 0.845

Training Session 4 0.85

Training Session 5 0.858

Average 0.8574

Best 0.882

The average accuracy obtained during the training session is 85.74% and the best

validation accuracy as seen in table 13 is shown to be 88.20%.

More details about the best result are given in table 14.

Table 14

Accuracy, Sensitivity, Specificity and AUC values (Experiment 1)

Accuracy Sensitivity Specificity AUC

0.882 0.886 0.878 0.9525

This result is confirmed using the mean from the diagonal of the confusion matrix

shown in figure 24. The positive class in the confusion matrix is ‘COVID’, while the

negative one is ‘Normal’.

53

Figure 24

Confusion matrix (Experiment 1)

It is interesting to note that the network performs better when finding true negatives

showing an 87.8% accuracy in that class, whereas it increases to an 88.6% accuracy

when trying to find true positives.

54

Figure 25

ROC Curve (Experiment 1)

The ROC has provided an Area Under the Curve value of 0.9525.

B. Experiment 2

The results obtained during the five training sessions are shown in table 15.

Table 15

Accuracy per training session (Experiment 2)

 Accuracy

Training Session 1 0.99

Training Session 2 0.98

Training Session 3 0.98

Training Session 4 0.99

Training Session 5 0.99

Average 0.986

55

Table 15 (Continued)

Best 0.99

The best result obtained is 99% accuracy, while the average accuracy is 98.6%. Even

when perform at its worst the network is highly accurate in its predictions. Table 16

offers more detailed information about the best result.

Table 16

Accuracy, Sensitivity, Specificity and AUC values (Experiment 2)

Accuracy Sensitivity Specificity AUC

0.99 0.98 1 1

The numbers on table 16 show that the network can hardly perform better. The AUC

and the specificity are maximum meaning the network only on very rare occasion

produce a false positive.

Figure 26

Confusion Matrix (Experiment 2)

56

The confusion matrix illustrates how accurately the network performed when testing.

Figure 27

ROC Curve (Experiment 2)

The ROC produces an area of 1. The network performs as best as it can.

C. Experiment 3

The training session conducted during experiment 3 lead to the results provided by

table 17.

Table 17

Accuracy per training session (Experiment 3)

 Accuracy

Training Session 1 93.7

Training Session 2 93

Training Session 3 93.3

Training Session 4 92.7

57

Table 17 (Continued)

Training Session 5 91.7

Average 92.88

Best 93.7

The network achieved 92.88% accuracy on average which shows great performance.

The best performance obtained 93.7% accuracy.

Table 18 provide additional details about the best outcomes during training.

Table 18

Accuracy, Sensitivity, Specificity and AUC values (Experiment 3)

Accuracy Sensitivity Specificity AUC

0.93.7 0.947 0.92 0.9805

The Sensitivity and specificity respectively 94.7% and 92% show a low occurrence

of false diagnostic.

58

Figure 28

Confusion Matrix (Experiment 3)

The confusion matrix highlights how many correct classifications were made in

relation to the whole test dataset.

Figure 29

Confusion Matrix (Experiment 3)

From the ROC we can infer a high value of AUC which is confirmed to be 0.9805.

59

D. Experiment 4

After completing the different training sessions, table 19 provides the results

obtained.

Table 19

Accuracy per training session (Experiment 4)

 Accuracy

Training Session 1 97.69

Training Session 2 96.54

Training Session 3 96.92

Training Session 4 97.31

Training Session 5 96.92

Average 97.07

Best 97.69

The best result obtained was 97.07%, as shown in figure 30 and table 20, the network

has really high sensitivity and overall performs really well.

The best results obtained during the training sessions are further expanded in table

20.

Table 20

Accuracy, Sensitivity, Specificity and AUC values (Experiment 4)

Accuracy Sensitivity Specificity AUC

0.9769 1 0.96 0.9861

When the best performance is obtained the network makes no mistake in determining

which case is exposed in the image fed to it.

60

Figure 30

Confusion Matrix (Experiment 4)

The confusion matrix shows how accurate the classifications were under the best

performing training session.

61

Figure 31

ROC Curve (Experiment 4)

An AUC of 0.9861 provided by the ROC curve show that the network performs in

excellent conditions.

E. Experiment 5

The results through multiple cycle of training for experiment 5 are shown in table 21

Table 21

Accuracy per training session (Experiment 5)

 Accuracy

Training Session 1 99.23

Training Session 2 99.23

Training Session 3 98.46

Training Session 4 97.69

Training Session 5 98.85

Average 98.69

Best 99.23

62

The average accuracy in experiment 5 (99.2%) is very similar to that of experiment

4. The reasons for such high accuracy are same as discussed in the previous

experiment above. The best result obtained is 100% which shows again that the

network is highly capable of classifying between two datasets from different sources.

Table 22

Accuracy, Sensitivity, Specificity and AUC values (Experiment 5)

Accuracy Sensitivity Specificity AUC

0.9923 0.993 0.991 0.9998

Table 22 shows that in its best conditions the model displays near perfect accuracy.

Figure 32 shows the confusion matrix.

Figure 32

Confusion Matrix (Experiment 5)

The confusion matrix shows exactly how accurately the network was able to

perform. It made only 2 mistakes, which shows excellent accuracy

63

Figure 33

ROC Curve (Experiment 5)

The ROC is similar to the one in experiment 4. The AUC is 0.9998 and can let us

conclude that the network is performing really highly.

Summary

Table 23 below shows the average accuracy and the best accuracy obtained from all

five experiments.

Table 23

Summary of the results from the experiments

 Average Best

Experiment 1 85.74% 88.20%

Experiment 2 98.6% 99%

Experiment 3 92.88% 93.7%

Experiment 4 97.07% 97.69%

Experiment 5 98.69% 99.23%

It can be seen from the table that even at its worst the network produces a 85.74%

accuracy. It comes from the only experiment performed with X-rays. It reinforces the

fact that CT are in fact a distinctly more accurate mean of detection.

64

CHAPTER V: Discussion and Conclusion

5.1 Discussion

The five experiments were designed in order to answer the questions asked at the

beginning of the document. Just as in any study involving deep learning, the goal is

to obtain the highest accuracy level possible.

When reviewing the results and finding provided above we can draw multiple

conclusions and most importantly we can provide answer to the aforementioned

interrogations had at first.

Aggregating all the results obtained throughout all the sessions in all the

experiments, the lowest reported accuracy value is 84.5%. This shows that even at

when performing at its worst, our model still displays satisfying accuracy in its

findings.

Experiment 1 provided an accuracy of 88.2%. As a reminder, experiment 1 presented

a situation where the model was provided chest X-rays images showing either cases

of COVID or healthy ones. The high accuracy obtained showed that the network is

indeed able to distinguish between a case of COVID and a normal X-ray scan, thus

answering one the questions provided.

During experiment 2, we find that the model is even better at treating CT-scans to

distinguish between a healthy patient and a cancer case. Therefore, not only is the

network able to recognize another disease than COVID when trained to but also

operates just as well on CT-scan and X-Rays.

The situation provided in experiment 3 is most interesting as it raises the question of

observe different state of the same disease, which surely would bring more

complexity to the task. However, since the network provided an accuracy of 92.8%

on average, we can conclude that the model is well suited to solve this kind of

problem.

Experiment 4 and 5, tries to provide answers as to whether the model can distinguish

between two different conditions, even with different progressions. The results

obtained showed the network’s high proficiency at accomplishing the given task.

65

It is also interesting to note that while network could not break the 90% accuracy

barrier when classifying x-rays images, it did so in every experiment involving CT-

scans. This leads to two conclusions that can be both true. First, the network is more

proficient at dealing with CT-scans. Second, CT-scan provide more information on

the different conditions they are used for detection. In any case, CT-scans provide

more accurate diagnostics than X-rays.

5.2 Conclusion

Today, fortunately, vaccines have been developed and are already in the distribution

phase thanks to the work of various health professionals. However, there still is huge

number of cases to be treated or even found, and since it is highly contagious disease,

new cases are still bound to emerge. Therefore, a fast and accurate detecting tool is a

must in this fight against the pandemic. The goal of this study is to provide such tool

that helps discovering and acting quick against the disease. Using AlexNet’s design

as the backbone of the project, we adapted it to our study case and managed to obtain

good results.

Earlier in the study, some questions, which served as goals, were asked. After

designing the deep convolutional neural network, some experiment or situation were

set up in order to answer those questions. The findings show that the net is indeed

capable of classifying normal cases from COVID. The net is indeed capable of

classifying normal cases from cancer cases. It is indeed capable of classifying

COVID cases from cancer cases. It is also capable of distinguishing different

progression of COVID. The presented model is able to realize those operations using

chest x-rays and CT-scan.

Despite the quality of our non-pre-trained model, the results and findings provided

leave room for improvement. An accuracy of 88.2% is still a good result but, can be

improved. Perhaps, with the use of transfer learning or by pre-training or by setting

more appropriate initial biases higher results can be obtained. The data sources were

limitations in study that could be overcome by finding more uniform sources. One

could also collect their set of images to suit their model better. The fact that images

were altered in order fit the model or in an effort to reduce computing cost is also to

be considered, as under more optimal condition the model would undoubtedly

produce better and more consistent results.

66

REFRENCES

“Stoic Grand Challenge” [Online]. Available: https://stoic2021.grand-challenge.org/

“World Health Organization”. [Online]. Available:

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-

timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-

F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_098533

7f3255677663f83f9a092187756d179d0f-1628061763-0-

gqNtZGzNA02jcnBszQb6#event-16

Abaas, A., Abdelsamea, M. M., Gaber, M. M., “Classification of COVID-19 in Chest

X-Ray images using DeTraC deep convolutional neural network”, Applied

Intelligence (2021) 51:854-864, September 2020.

Pahani, A. H., Rafiei, A., Rezaee, A., “FCOD: Fast COVID-19 Detector based on

Deep Learning Techniques”, Informatics in Medicine Unlocked 22 (2021)100506,

December 2020. [Online]. Available: https://doi.org/10.1016/j.imu.2020.100506

Krizhevsky, A., Sutskever, I., Hinton, G. E., “ImageNet Classification with Deep

Convolutional Neural Networks”, Advances in Neural Information Processing

Systems 25 (NIPS 2012), 2012. [Online]. Available:

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-

Abstract.html

Olimov, B., Karshiev, S., Jang, E., Din, S., Paul, A., Kim, J., “Weight initialization

based-rectified linear unit activation function to improve the performance of a

convolutional neural network model”, Concurrency and Computation: Practice and

Experience, Vol. 33, Issue 22, December 2020. [Online]. Available:

https://doi.org/10.1002/cpe.6143

Prijono, B., “Student Notes: Convolutional Neural Networks (CNN) Introduction”,

Indoml. March 2018. [Online]. Available: https://indoml.com/2018/03/07/student-

notes-convolutional-neural-networks-cnn-introduction/

Ouchicha, C., Ammor, O., Meknassi, M., “CVDNet: A novel deep learning

architecture for detection of corona virus (COVID-19) from chest x-ray images”,

https://stoic2021.grand-challenge.org/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_0985337f3255677663f83f9a092187756d179d0f-1628061763-0-gqNtZGzNA02jcnBszQb6#event-16
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_0985337f3255677663f83f9a092187756d179d0f-1628061763-0-gqNtZGzNA02jcnBszQb6#event-16
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_0985337f3255677663f83f9a092187756d179d0f-1628061763-0-gqNtZGzNA02jcnBszQb6#event-16
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_0985337f3255677663f83f9a092187756d179d0f-1628061763-0-gqNtZGzNA02jcnBszQb6#event-16
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_0985337f3255677663f83f9a092187756d179d0f-1628061763-0-gqNtZGzNA02jcnBszQb6#event-16
https://doi.org/10.1016/j.imu.2020.100506
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1002/cpe.6143
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

67

Chaos, Solitons and Fractals 140 (2020) 110245, September 2020.[Online].

Available: https://doi.org/10.1016/j.chaos.2020.110245

Ozyurt, F., “Automatic Detection of COVID-19 Disease by Using Transfer Learning

of Light Weight Deep Learning Model”, Traitement du Signal, Vol. 38, No. 1,

February 2021, pp. 147-153.

Hamdalla, F. K., The IQ-OTH/NCCD lung cancer dataset, Kaggle. [Online].

Available: https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-lung-cancer-

dataset/discussion

Brownlee, J., “Weight Initialization for Deep Learning Neural Networks”, Machine

Learning Mastery, February 2018. [Online]. Available:

https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-

networks/

Koushik, J., “Understanding Convolutional Neural Networks”, ArXiv e-prints, Other

Statistics (stat.OT), May 2016. [Online]. Available:

https://arxiv.org/abs/1605.09081v1

Nayak, J., Nail, B., Dinesh, P., Vakula, K., Byomakesha, P., Pelusi, D., “Significance

of deep learning for COVID-19: state-of-the-art review”, Research on Biomedical

Engineering (2021), March 2021. [Online]. Available:

https://doi.org/10.1007/s42600-021-00135-6

Wu, J., “Introduction to Convolutional Neural Networks”, National Key Lab for

Novel Software Technology, May 2017. [Online]. Available:

https://cs.nju.edu.cn/wujx/paper/CNN.pdf

Yi, J., Kang, H. K., Kwon, J-H., Kim, K-S., Park, M. H., Seong, Kim, Y. K. D. W.,

Ahn, B., Ha, K., Lee, J., Hah, Z., Bang, W-C., “Technology trends and applications

of deep learning in ultrasonography: image quality enhancement, diagnostic support,

and improving workflow efficiency”, Ultrasonography 2021, 40(1): 7-22. [Online].

Available: https://doi.org/10.14366/usg.20102

Dev, K., Khowaja, S. A., Bist, A. S., Saini, V., Bhatia, S., “Triage of potential

COVID-19 patients from chest X-ray images using hierarchical convolutional

networks”, Neural Computing and Applications, 2021. [Online]. Available:

https://link.springer.com/article/10.1007/s00521-020-05641-9#citeas

https://doi.org/10.1016/j.chaos.2020.110245
https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-lung-cancer-dataset/discussion
https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-lung-cancer-dataset/discussion
https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
https://arxiv.org/abs/1605.09081v1
https://doi.org/10.1007/s42600-021-00135-6
https://cs.nju.edu.cn/wujx/paper/CNN.pdf
https://doi.org/10.14366/usg.20102
https://link.springer.com/article/10.1007/s00521-020-05641-9#citeas

68

O’Shea, K., Nash, R., “An Introduction to Convolutional Neural Networks”, ArXiv

e-prints, Neural and Evolutionary Computing (cs.NE), December 2015. [Online].

Available: https://arxiv.org/abs/1511.08458

Guruchan, M K., “Basic CNN Architecture: Explaining 5 Layers of Convolutional

Neural Network”, UpGrad, December 2020. [Online]. Available:

https://www.upgrad.com/blog/basic-cnn-architecture/

Hilmizen, N., Bustamam, A., Sarwinda, D., “The multimodal Deep Learning for

Diagnosing COVID-19 Pneumonia form Chest CT-Scan and X-Ray Images”, 2020

3rd International Seminar on Research of Information Technology and Intelligent

Systems (ISRITI), 2020.

Viradiya, P., “Kaggle”. [Online]. Avalaible:

https://www.kaggle.com/datasets/preetviradiya/covid19-radiography-dataset

Khartik, R., Menaka, R., Hariharan, M., “Learning distinctive filters for COVID-19

detection from chest X-ray using shuffled residual CNN”, Applied Soft Computing

Journal 99 (2021) 106744, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1568494620306827

Albawi, S., Mohammed, T. A, Al-Zawi, S., "Understanding of a convolutional neural

network," 2017 International Conference on Engineering and Technology (ICET),

2017, pp. 1-6. [Online]. Available: https://ieeexplore.ieee.org/document/8308186

Yadav, S., “Weight Initialization Techniques in Neural Networks”, Towards Data

Science, November 2018. [Online]. Available:

https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-

26c649eb3b78

Wang, S.-H., Nayak, D. R., Guttery, D. S., Zhang, X., Zhang, Y.-D., “COVID-19

classification by CCSHNet with Deep fusion using transfer learning and discriminant

correlation analysis”, Information fusion, Vol 68, February 2021, pp. 131-148.

[Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1568494620306827

Jin, W., Dong, S., Dong, C., Ye, X., “Hybrid ensemble model for differential

diagnosis between COVID-19 and common viral pneumonia by chest X-Ray

https://arxiv.org/abs/1511.08458
https://www.upgrad.com/blog/basic-cnn-architecture/
https://www.kaggle.com/datasets/preetviradiya/covid19-radiography-dataset
https://www.sciencedirect.com/science/article/pii/S1568494620306827
https://ieeexplore.ieee.org/document/8308186
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://www.sciencedirect.com/science/article/pii/S1568494620306827

69

radiograph”, Computer in Biology and Medicine 131 (2021) 104252, February 2021.

[Online]. Available: https://doi.org/10.1016/j.compbiomed.2021.104252

Zhang, X., Zhou, X., Lin, M., Sun, J., “ShuffleNet: An Extremely Efficient

Convolutional Neural Network for Mobile Devices”, Computer Vision and Pattern

Recognition (cs.CV), December 2017. [Online]. Available:

https://arxiv.org/abs/1707.01083

https://doi.org/10.1016/j.compbiomed.2021.104252
https://arxiv.org/abs/1707.01083

70

APPENDICES

Appendix A: Binary Classification Code

Loading Data

%TRAINING DATA

categories = {'COVID','Normal'};

rootfolder = 'trainData';

imds = imageDatastore(fullfile(rootfolder,categories),...

 'labelSource','foldernames');

%TEST DATA

rootfolder = 'testData';

imds_test = imageDatastore(fullfile(rootfolder,categories),...

 'labelSource','foldernames');

Network Architecture

%% NETWORK ARCHITECTURE

conv1 = convolution2dLayer(11,96,'Stride',4);

conv1.Weights = gpuArray(single(randn([11 11 3 96])*0.01));

Layers = [

 imageInputLayer([227 227 3])

 conv1;

 reluLayer();

 crossChannelNormalizationLayer(5);

 maxPooling2dLayer(3,'Stride',2);

71

 groupedConvolution2dLayer(5,128,2,'Stride',1,'Padding',2);

 reluLayer();

 crossChannelNormalizationLayer(5);

 maxPooling2dLayer(3,'Stride',2);

 convolution2dLayer(3,384,'Padding',1,'Stride',1);

 reluLayer();

 groupedConvolution2dLayer(3,192,2,'Stride',1,'Padding',1);

 reluLayer();

 groupedConvolution2dLayer(3,128,2,'Stride',1,'Padding',1);

 reluLayer();

 maxPooling2dLayer(3,'Stride',2);

 fullyConnectedLayer(4096,'BiasLearnRateFactor',20);

 reluLayer();

 dropoutLayer(0.5)

 fullyConnectedLayer(4096,'BiasLearnRateFactor',20);

 reluLayer();

 dropoutLayer(0.5);

 fullyConnectedLayer(2,'BiasLearnRateFactor',20)

 softmaxLayer;

 classificationLayer()]

Training

% TRAINING

opts = trainingOptions('sgdm', ...

 'MiniBatchSize',20, ...

 'MaxEpochs',15, ...

 'InitialLearnRate',1e-3, ...

72

 'ValidationData',imds_test, ...

 'ValidationFrequency',3, ...

 'ValidationPatience',Inf, ...

 'Verbose',true, ...

 'Plots','training-progress');

[lexnet,info] = trainNetwork(imds,Layers,opts);

%% Testing Data

labels = classify(lexnet, imds_test);

ii = randi(35);

im = imread(imds_test.Files{ii});

imshow(im);

if labels(ii) == imds_test.Labels(ii)

 colorText = 'g';

else

 colorText = 'r';

end

title(char(labels(ii)),'Color',colorText);

%Computing Accuracy

YPred = classify(lexnet,imds_test);

YTest = imds_test.Labels;

accuracy = sum(YPred == YTest)/numel(YTest);

73

Test Network

confMat = confusionmat(imds_test.Labels,labels);

confMat = confMat./sum(confMat,2);

mean(diag(confMat))

figure,plotconfusion(imds_test.Labels,labels)

Plot ROC

[predVal,scores] = classify(lexnet,imds_test);

[X,Y,T,AUC,OPTCOCPT,SUBY,SUBYNAMES] =

perfcurve(imds_test.Labels,scores(:,1),'COVID');

figure,plot(X,Y)

xlabel('False Positive Rate')

ylabel('True Positive Rate')

title('ROC for COVID and Normal Classification')

Appendix B: Code for Resizing Images in the Dataset

Read Folder

inputFolder =

'C:\Users\DELL\Documents\MATLAB\DeepLearning\Medical

Radiography Images\COVID-19_Radiography_Dataset\COVID';

outputFolder =

'C:\Users\DELL\Documents\MATLAB\DeepLearning\Medical

Radiography Images\Resized\3ch\trainData\COVID';

filenames = dir(fullfile(inputFolder,'*.png'));

numimages = numel(filenames);

74

Resize and save

for n = 1:numimages

 f = fullfile(inputFolder,filenames(n).name);

 fimg = imread(f);

 fimgr = cat(3,fimg,fimg,fimg);

 reimg = imresize(fimgr,[227 227]);

 fullOutputFileName =

fullfile(outputFolder,filenames(n).name);

 imwrite(reimg,fullOutputFileName);

end

