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Abstract 

Mild and Severe COVID Detection Using Deep Learning 

Balla Moussa Traore 

MSc, Department of Electrical Electronic Engineering 

June, 2022, 70 pages 

The coronavirus disease of 2019 caused most countries worldwide to go into 

lockdown due to its highly contagious nature. It had a lot of economic ramifications 

that are still felt to this day. The first step to fighting a disease is to recognize it. 

Radiography imagery is one of the methods used to detect COVID-19, and allows 

doctors to act quickly on it upon discovery.  

Machine Learning has come a long way during the last decade, and make use of deep 

convolutional learning network to recognize everyday objects of images with high 

accuracy, comparable with that of human beings. With that in mind, the objective is 

to train deep learning networks to recognize COVID cases. Knowing the fact that 

computer have faster processing power than human being it allows for faster course 

of action.  

This thesis describes how a deep convolutional neural network was built and trained 

to detect two different progressions of COVID, that is, mild COVID and severe 

COVID. Three main questions were to be answered during the study. First, can the 

network detect COVID? Second, can the network differentiate between a mild 

COVID case and a severe COVID case? Thirdly, can the network differentiate 

between COVID and other diseases? The way in which overfitting and vanishing 

gradient problems were dealt with is also mentioned and talked about in the 

document. The resulting network contains 25 layers, including multiple 

convolutional layers with ReLU (Rectified Linear Unit), and some fully connected 

layers. Five experiments have been set up to test the network performance and 

answer the previously raised questions. As a result, the non-pretrained network that 

was designed achieves an accuracy of 88.20 % when classifying X-ray scans of 

COVID or healthy patients. the model is also quite adept at recognizing CT-scans, as 

it is able to differentiate between severe and mild cases of COVID with a 93.7% 

accuracy. Some experiments involved cases of cancer and Pneumonitis in order to 
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check if the network could also differentiate between cases of COVID and 

potentially other disease.   
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CHAPTER I: Introduction 

As reported by the World Health Organization, on December 31st 2019, they 

received reports about several cases of an unknown viral pneumonia from Chinese 

province of Wuhan (World health Organization). It would be found to be a novel 

corona virus that would soon be declared to be a pandemic that would trigger an 

unprecedented wave of confinement around the world. Needless to say, countless 

lives were lost, businesses were shut down, and the economic ramifications are still 

present.    

Among the testing method available for the COVID-19, X-ray imaging is of 

particular interest in this study. It provides a visual and fast way for physicians to 

identify infected individuals, and it providing easily accessible materials for deep 

learning among other fields. Today, artificial intelligence and deep learning are an 

integral part of many field sectors, such as industrial, military, medicinal applications 

and more. Convolutional Neural Networks (CNN) are well suited for imaging related 

classifications, that is, their architecture is easier to train and allows them to reliably 

find information and features relevant to the pictures through the use of kernels and 

filters. Their flexibility allows for users to use pre-trained networks and adapt them 

to suit various situations or needs. 

There is a significant amount of pre-trained networks, and one model of interest is 

AlexNet (Krizhevsky,2012). AlexNet is the topic of multiple studies and will be the 

main reference for this one. Using transfer learning, the network will be adapted to 

complete our task our classifying an X-Ray image as COVID case or a Healthy one. 

Nowadays, a lot research about deep learning in diagnosing COVID-19 is happening 

with new papers being published every month, and a lot of optimistic results are 

being found (Nayak et al, 2021; Yi et al, 2021). Therefore, this study aims to bring 

its own contribution in the research field. It is imperative that physicians are able to 

quickly and accurately determine the state of a patient, thus making this kind of 

document relevant for the medicinal and the engineering literature.  

This study will be one of many that tries to make use of deep learning to classify 

visual data into useful diagnosis. It goes without saying that finding fast and accurate 

ways of detecting COVID cases is of upmost importance in the medical landscape. 

Finding new and various models and alternative gives more options to the parties 
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concerned in helping patients being quickly diagnosed in various conditions. The 

presented model was built to classify X-rays images and CT-scans to help find 

concerned patient even when operating different tasks. 

While data showing images of patient is not scarce, it can be a limitation to find out 

how the images were obtained and treated. At times during the study, it will be seen 

that images retrieved from different sources have proved to be a serious challenge in 

properly measuring the effectiveness of the model. It led to sometimes to almost 

unrealistically high results, however, it also showed how effective the network was at 

discerning pictures. 

This study will aim at finding if the model presented can provide accuracy and 

flexibility using different sources of visual data. By the time the reading of this 

document is done, some interesting questions should have an answer. 

• Is the network able to distinguish between two X-Rays involving a COVID 

case and a healthy one? 

• Is the model able to work with both CT-Scan and X-Rays? 

• Is the model able to distinguish between a mild COVID case and a severe 

COVID case using CT-scans? 

• Is the model able to distinguish between a case of cancer and a healthy one? 

• Is the model able to distinguish between two different diseases? 

• Is the model able to distinguish between a case of COVID or a different 

disease? 

We will first take a look at the literature and find more about the work done on our 

subject; the next section of the chapter will detail a lot more about the related work in 

the field. It will be seen that there are some already encouraging and already 

effective models that can be deployed for use, as they show real accuracy sometimes 

close or better than human test. Secondly, the method used in this model will be 

explained. A network built from scratch will be employed, that is a model that was 

not pretrained nor that makes uses of transfer learning. A random weight 

initialization method will be used, taking advantages of Rectified Linear Unit 

activation. Our convolutional model will also make use of techniques such as 

dropout in order to fight against overfitting problems that were definitely 

encountered during the training process. The document will detail the structure of the 
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layers forming the network, and extensively discuss AlexNet’s model that served as 

the basis of our model. Finally, the training phase and process of the network will be 

discussed alongside the results obtained after training, before swiftly bringing a 

conclusion to this paper.  
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CHAPTER II: Background and Literature Review 

Overview 

This part of the chapter will explain the theoretical framework that was followed 

while building our model. Some important concept related to deep learning and 

possessing relevance in the context of thesis will be described. It will then include 

some of the work found in the literature relating to this study. 

Theoretical Framework 

2.1 Deep Convolutional neural networks 

Artificial Neural Networks (ANN), based on the human nervous system, are the main 

component in the Artificial Intelligence topic. They possess multiples layers which 

brings complexity in their architecture, allowing them to learn how to perform a wide 

variety of tasks. One type of neural network is of interest in this document, Deep 

Convolutional Neural Networks (DCNN). They get their name from the fact that 

their learning process is based on convolutions between matrices. Their overall 

architecture includes the combination of one more convolutional layers, pooling 

layers, and fully connected layers. DCNNs are excellent at dealing with image 

related problems. They not only require less parameters than ANNs to function, but 

they are adept are recognizing patterns and extracting features that are propagated 

through the layers in order to fish for more higher complexity features which are 

relevant to classify the input or any other image related operations. 

2.2 DCNN Architecture 

DCNNs are typically made out of three main types of layers. Those mentioned layers 

are: the convolutional layers, the pooling layers and the fully connected layers. To 

that we can include the input and output layers, activation layers and other types of 

layers needed to improve the learning performance of the network. Figure 1 shows a 

simple layout of the architecture of a CNN. 
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Figure 1 

Simplified CNN Architecture Layers (M. Guruchan, 2020) 

 

The input layer is usually the recipient for the image data which usually comes with a 

size of a H×W×3 matrix (H being the height, W being the width, and 3 representing 

the number of color channels). The convolution layer, as it will be seen later, is 

produced through the convolution of filters with the input matrix. An activation 

function will be then be applied and produce new inputs for the pooling layer, which 

will then sample them down, which will reduce the number of parameters. The fully 

connected layer will perform as it would in a standard ANNs by providing scoring 

value for the classes that are going to be used for the classification purpose.  

2.2.1 Convolutional Layer 

The convolutional layer is the most defining layer in the CNN and DCNN 

architectures. It essentially works through usage of filters or kernels convolving 

around the input image. The kernels are small in size but slide along the entire input 

to compute the scalar product that will build a two-dimensional activation map in the 

next layer (O’Shea, 2015).  

A. Convolution 

The significance of using convolutions using kernels can be understood if we 

consider the following example. For sake of our example, let’s assume an input 

image of size 64 × 64 × 3 going through the layers of our network. In a typical ANN, 

an efficient way of processing the information provided would for the next layer to 

have neurons matching the value of the height and width. The resulting number of 

parameters at this point of the network would be 64×64×3 by 64×64 which give us 
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50,331,648 weight connections. A more efficient method would be looking at local 

regions in the image instead of analyzing weighing every pixel of the picture. Figure 

2 shows the connection between a local region in a neuron in the following layer. If 

the filter window is size selected to be 3 × 3, we then go from having 50 million 

parameters to 5×5×3 by 64×64 neurons equaling 307,200 parameters. This holds true 

since the weight for the local region in the input layer is kept the same. This means 

that we go from each neuron having 12,888 weights to them having 75 weights, thus 

drastically reducing the number of parameters needed (Albawi, 2017). 

Figure 2 

Pixel Related Weight Connection of ANN(Albawi,2017) 

 

Figure 3 

Local Region Related Weight Connection 

 

Fixing the weights according the local region not only reduces the number of 

parameters needed, but also translate into a process similar to gliding a 5×5×3 
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window across the input and storing the output at its corresponding position. This 

allows the network to detect and retrieve features regardless of their position in the 

picture. As an example, figure 4 shows how an edge detector 3×3 matrix convolving 

around the image will detect the ‘edge’ features on the input regardless of their 

position the picture. 

Figure 4 

Edge Detection Through Convolution 

  

It can be seen that that the edge detecting filter has recognized edges all around the 

picture without having any limitation with location in the image. 

The mathematical expression for a pixel in the next layer is given by equation 1. 

 𝑃(𝑖, 𝑗) = (𝐼 ∗ 𝐾)[𝑖, 𝑗] = ∑  

𝑚

∑ 𝐼[𝑚, 𝑛]𝐾[𝑖 − 𝑚, 𝑗 − 𝑛]

𝑛

 
(1) 

We have the output in the next layer represented by 𝑃(𝑖, 𝑗), 𝐼 represents the input 

picture, 𝐾 is the kernel matrix, and the convolution operator is ∗. Figure 5 shows a 

visual description of the convolution operation between 2-D matrix and filter. 
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Figure 5 

Edge Detection through Convolution (Prijono,2018) 

 

(a) 

 

(b)  

As shown by figure 5(a), the filter will convolve with part of the input and produce a 

result in the corresponding position in the next layer. The convolution window will 

then slide across the picture with set stride as shown above until the whole image is 

covered.  

B. Stride 

The stride, along with other parameters such as depth and zero-padding will affect 

the size of the output produce in the next layer. With those parameters we can reduce 

or increase the amount data transmitted and processed by the next layers of the 

network. In actually, the stride controls the amount of overlap between subsequent 

parts of the input, as shown in figure 6. With heavy overlap the activation produced 
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in the next layer will get larger. Equation 2 shows how the output can be computed 

using the stride, the size of the input and the filter (Albawi,2017). 

 
𝑂 = 1 +

𝑁 − 𝐹

𝑆
 

(2) 

where N is the input size, F being the filter dimension, and S is stride window. 

Figure 6 

Stride Size 2 Convolution (Prijono,2022) 

 

When comparing figure 6 and figure 5, the size of the output window can be seen to 

have decreased. This shows how one can manipulate the output through changing the 

stride. 

C. Padding 

One might observe that the borders of the picture do not get many opportunities to 

have their information extracted. In order to avoid loss of information in that area, 

one parameter of the convolution can be altered, that is padding. For the purpose of 

our task, we use zero-padding to bring additional rows and columns made up of zeros 

on the matrix as shown in figure 7. As mentioned above, zero-padding is a parameter 

that affects the output size in the next layer, as can be seen in the equation 3. 

 
𝑂 = 1 +

𝑁 + 2𝑃 − 𝐹

𝑆
 

(3) 

where P is the number of row and column added to the input matrix. Figure 7 shows 

a case where P=1. 
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Figure 7 

2-D Convolution with Padding (Prijono,2022) 

 

It can be seen that the output size increased with the padding, and the borders 

features can be registered in the next layer.  

2.2.2 Pooling Layer 

A pooling layer’s main goal is to reduce the complexity of the input by down-

sampling it. This process leads to a reduction of parameters used in the network, 

further reducing the computing time. They are usually used to steadily lower the 

dimension of the output during the computation. 

 The most common pooling methods are Max Pooling and Average Pooling. A 

popular way of using the pooling layer is by setting its window size to 2×2 with 

stride set to 2, both horizontal and vertical. This means that the maximum value 

contained within that window will be returned in the case of max pooling (figure 8), 

and the average of all the values inside that window will be returned in an average 

pooling case (figure 9). Moreover, while setting the stride to be 2 and having the 

kernel size to 3×3, an overlap is created. It is an efficient way of reducing parameters 

while keeping extra spatial information.  
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Figure 8 

2×2 Kernel Max Pooling (Prijono,2018) 

 

The max pooling function will return 6 in the next layer as it is the maximum value 

in the window. The output position will match that of the previous layer so as to 

maintain location sensitive data. 

Figure 9 

2×2 Kernel Average Pooling (Prijono,2018) 

 

The average pooling layer will find the average value of the data inside the kernel 

and return it to the next layer. 
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Figure 10 

3×3 Kernel with Stride 2 Max Pooling (Prijono,2018) 

 

The kernel size matching the stride would have returned a 2×2 matrix as output, 

however by keeping the stride as 2 an overlap is formed; therefore, the output 

presents more information about the inner part of the matrix. 

2.2.3 Fully Connected Layer 

Reminiscent of the more traditional artificial neural networks, the fully connected 

layer is arranged by having each node of it connected to every one of those in the 

previous layer and potentially the next layer. The fully connected layer presents a lot 

of complexity because of the number of nodes and the number connections they each 

have, in other words the number of parameters to work out is quite significant.  

As mentioned previously, one of the main advantages of DCNN is the reduction of 

those parameters through the use of the processes discussed above, however fully 

connected layers are still used. AlexNet (Krizhevsky, 2012) is a popular example of a 

DCNN using the dropout technique as tool to reduce the number of parameters and 

therefore the computational requirements during training. 

2.2.4 Activation function 

An activation function or also called squashing function is used to “squash” or 

“activate” a node in the network. It defines the output of a given node and defines its 

“usefulness” in the next layers. The activation function also helps limits the value of 

data into norms. An example would the sigmoid function where the value of a node 

after activation ranges between 0 and 1. More than one activation function can be 

used in a network; typically, the output layer makes use of a different activation 



26 

 

function better suited for its purpose. the most commonly used activation functions 

are: 

• Sigmoid function 

• Hyperbolic Tangent 

• Rectified Linear Unit 

2.2.4.1 Sigmoid 

As mentioned before, after taking any real value from a node the sigmoid function 

outputs a value between 0 and 1, and is defined by equation 4. It is quite useful for 

assign a probability and boats effectiveness with binary classification. 

 
𝜎(𝑥) =

1

1 + 𝑒−𝑥
 

(4) 

Figure 11 shows the graphical representation of the sigmoid function. 

Figure 11 

Sigmoid Function 

 

The sigmoid function is shaped like an S. there is a sharp increase around the 

inflexion point and its value seems to plateau at its extremities. The downside with 

sigmoid is that it can tend to reach a local minimum and therefore get stuck during 

training. 
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2.2.4.2 Hyperbolic Tangent 

The Hyperbolic tangent or tanh also possess a S looking shape as sigmoid, however, 

it is on a bigger range. Tanh is defined by equation 5 and is represented graphically 

by figure 12. 

 
tanh (𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(5) 

Figure 12 

Hyperbolic Tangent(tanh) Function 

 

The bigger range allows for the values to be activated and seen as “strongly” 

negative or positive. 

2.2.4.3 Rectified Linear Unit 

ReLU is one of the most commonly used function in convolutional neural networks 

and deep learning. It is a simple function that presents advantages over the two 

previously mentioned activation functions, like its robustness to vanishing gradient 

where the model stops because it is unable to properly update the gradient. It is 

defined by equation 6 and is graphically represented by figure 13. 

 𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (6) 
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Figure 13 

Rectified Linear Unit (ReLU) Function 

 

The ReLU function sets all negative values to zero, which represents its strength but 

also its weakness since it creates “dead” units in the network. 

2.3 ALEXNET 

One the most important aspect of this project is AlexNet. It is a groundbreaking deep 

convolutional network that was entered in the ImageNet LSVRC-2010 contest that 

requires classifying 1.2 million images into one thousand different categories. The 

model produced a top-1 error rate of 37.5% and a top-5 error rate of 17%. Those 

results were outperforming their closest competitor by a substantial amount. When 

dealing with such large dataset, overfitting becomes a major issue, and as such 

AlexNet has ways of dealing with that problem. The resulting network has 8 layers 

where the removal of any particular one would reduce the performance despite 

consisting of 1% of the model’s total number of parameters. It is important to note 

that the model was trained on two GPU due to the large amount of data and the 

computational resource available at the time. 

2.3.1 Dataset 

The dataset used in the model consist of images of different size that were fixed to a 

256×256 resolution. The number of images used ranges in the million and should be 

classified into 1000 classes representing different objects or animals. 
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2.3.2 Architecture 

The model contains fire convolutional layers and 3 fully connected layers as seen in 

figure 14. the network uses ReLU as an activation function due to its significantly 

shorter training time compared to others like tanh or sigmoid function. Since 

overfitting represents the main problem of the model, making the choice of using 

ReLU makes that much more sense.  

Pooling layers often return output from adjacent regions without overlapping. 

However, in this case, it was found that overlapping the pooling area reduces the 

error rate by 0.4% and generally reduces overfitting. 

2.3.3 Overall Architecture 

AlexNet consists of five convolutional layers and three fully connected layers. The 

last fully connected layer returns an output given to a 1000-way Softmax that will 

classify into the equally numbered labeled classes. 

Figure 14 

AlexNet Architectural Map (Krizhevsky,2012) 

 

The layers following the input are divided into two GPUs operating in cross-

parallelization. Half of the parameters are deployed on each GPU, however they still 

communicate in some layers. Max pooling layers are set in conjunction with local 

response normalization on the first two convolutional layers, before being set on the 

fifth one right before the fully connected layers. 
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2.3.4 Overfitting 

Two ways are used to deal with overfitting this net, data augmentation and dropout. 

Data augmentation, being an easy way of diminishing overfitting, consists of 

artificially enlarging a dataset while conserving its properties. 

The “dropout” technique is another method used to deal with overfitting. It consists 

of dropping a certain number of hidden neurons in the fully connected layer, by 

setting their output to zero. In AlexNet’s case, the dropout probability is set to 50%. 

The neurons that are dropped, do not contribute in forwarding data in the subsequent 

layers nor are they involved in back-propagation. In principle, this forces the network 

to learn more solid features and stops any co-dependency between neurons since the 

presence of any particular becomes uncertain. The dropout technique in this way 

prevents substantial overfitting. 

Related Work 

The model proposed by Hilmizen et al. (2020) in their study uses the concatenation 

of two transfer learning models using two datasets being CT scans and X-Ray 

images. The idea is to use the different characteristics the two modalities can provide 

and find the complementarity they share. They used different pretrained ImageNet 

networks such as, ResNet50, DenseNet121, Xception for the CT-scans images and 

VGG16, MobileNet, and InceptionV3 for the X-Ray images. The concatenated 

network models were shown to perform better than the individual networks by 

themselves. The ResNet50-VGG16 and DenseNet121-MobileNet had the same score 

on accuracy, sensitivity and specificity and were overall the top performing network 

with the results being 99.87%, 99.74%, 100% respectively. 

Another model in the literature makes use of a three-stepped model that includes a 

feature extractor, followed an algorithm that sorts the said features and select the 

most important ones to be finally classified using an SVM classifier (Jin,2021). In 

the study, AlexNet is the network used for the feature extraction step. Using ReliefF 

the ten most important features extracted from the previous step are then sorted based 

on their importance. This results in reducing training time by removing unnecessary 

information. At the end, the SVM will handle the classification process the network. 

The proposed model showed a 98.642 ±0.398% overall accuracy which was the best 

performance when compared to five other models. 
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DeTraC is a process adopted by Abbas et al. (2020) in their study to improve on their 

previous deep convolutional neural network. DeTraC, in their work stands for 

Decompose, Transfer, and Compose. First, the pre-trained DCNN model of DeTraC 

is trained in order to extract local features of each element of the dataset. The 

decomposition layer is then applied, to provide simplification to the data structure. 

That process consists of partitioning each class in the input dataset in multiple sub-

classes. After training, a class composition layer is applied to reassemble the sub-

classes and to refine the last classification of the images. The results show significant 

improvement in accuracy, sensitivity, specificity in each of the DCNN models in 

which DeTraC was applied to. 

FCOD is another network model proposed by Panahi et al. (2020), in an objective to 

reduce the computational cost and the issues with overfitting common with DCNNs 

having a significant number of parameters, reducing the detection time for COVID 

cases while offering high accuracy, a “depth-wise” separation of convolutional layers 

seemed to be solution that made sense. Instead of adopting a standard convolution 

filter, the model instead divides the input into channels where each of them will be 

met with a convolutional filter. There, a point-wise convolution will occur, where the 

output channels will be mixed. 

The literature shows multiple other works, such as CVDNet from Ouchicha et al. 

(2020), where they propose a deep learning network based on two parallel paths with 

different kernel sizes aiming to study both local and global features of the images. 

ShuffleNet, built by Zhang (2017), is a DCNN which design is built for low 

computing devices such as mobile devices. Its architecture presents parameters that 

requires less complexity while maximizing the accuracy of the network. It serves as 

the basis for the model proposed by Ozyurt (2021) to provide automatic detection of 

COVID-19 cases. The model is designed by applying a feature extraction protocol 

using ReliefF and NCA in order to find and select the distinctive features. It also 

includes using transfer learning with ShuffleNet’s pretrained layers. Finally, the 

extracted features serve as input in the classifying layer of the network. 

Summary 

This chapter showed important concept such as the major layers that builds a deep 

neural network. The convolutional layer filters the images for important features 

while the pooling layer reduces the size and the complexity of the input. A controlled 
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use of padding and stride allows for one to control the dimension of the input into the 

next layers. The choice of an activation function is an essential step into building the 

network as it they offer different advantages but different cons that are to be 

considered when setting the network. 
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CHAPTER III: Methodology 

Overview 

This section of the document explores the method used in this project. It documents 

the datasets used in the network, its architecture and the experiment set in order to 

reach the goals set at the beginning of the document. 

3.1 Datasets 

This section of the document will describe the different datasets used in the 

experiments conducted in the study. In order to test the flexibility of the model, five 

different experiments will be conducted. The datasets in this study includes two 

categories that our network is going to classify into. Each category includes a 

training and testing set. 

The first dataset used in this document was obtained from Kaggle (Viradiya,2021) 

and includes thousands of radiography images showing x-ray scans of COVID 

afflicted patient and healthy ones. It includes patients of a wide range of age, gender, 

weight and body type picked at random. For the purpose of this study, the training 

sets include 3000 pictures to be examined while the testing or validation sets include 

500 images each. In an effort to reduce the number of parameters and through trial 

and error, the number of pictures selected per case was kept at 3000. 

The second dataset was retrieved from Mendelay Data (Alyasriy,2020). This set 

includes CT-scans showing patient afflicted with lunger cancer and healthy patient. 

They were obtained by taking slices from DICOM format of pictures. They include 

slices from 110 patients with various age, gender and living conditions. The training 

set for the purpose of the study includes 511 images for malignant cancer cases and 

366 healthy cases, whereas the testing set includes 50 images each. Those number 

were selected due the limited number of pictures, but during training they proved to 

be enough. 

The third dataset in the study was retrieved form the Stoic Grand Challenge 2021 

database. This set has CT-scans of patient with mild cases COVID or severe cases of 

COVID. The inclusion of this set of images is to observe how precise our network 

can be to differentiate between two types of actual cases of COVID. The set is made 

up of 3D views of 1000 cases of COVID. However, for the purposes of this network. 
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The “.mha” format of the set was converted into DICOM images before going 

through another conversion of the pictures into “.png” images. Similar to the second 

dataset, the slices that were selected show different sides and angles of the scans. 

Once again, the number of images was selected in an effort to reduce computing 

power while maximizing the accuracy. The training set is made out of 1190 images 

for the mild COVID case and 1234 images for the severe COVID case. The testing 

set is made out of 150 images for each case. 

Finally, the fourth dataset used in the study from Kaggle (Lami,2021). This data 

involves patient suffering from radiation Pneumonitis as a result of their cancer 

treatment. The images show 1062 instances of CT-scan. They offer different angles 

and cuts much more similar to the previous dataset, which makes it a more 

interesting classification case for it. 

Table 1 offers clarity in the numbers of images used for each set of data used in our 

training. It can be seen that x-rays have the most available image number. The 

Medelay data has the lowest number of images available and Pneumonitis set has a 

number of images that matches the Stoic 2021 set. 

Table 1 

Training Samples Breakdown 

 Radiography 

Set 

Medelay Data  

Set 

Stoic 2021 

Set 

Pneumonitis 

Set 

 X-Ray CT-Scans CT-Scans CT-Scans 

 Healthy COVID Malignant Healthy Mild Severe Pneumonitis 

Training 3000 3000 511 366 1190 1234 952 

Test 500 500 50 150 150 150 110 

Total 

Training 

6000 877 2424  

Total 

Test 

1000 100 300  

Total 7000 977 2724 1062 
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Since the original dataset was made up of images with different and unfitting sizes 

from our network input layer, a resize of the pictures were made in order to obtain 

the required 227x227 size needed for training. Figure 15, figure 16 and figure 17 

show examples of the images used in the network. 

Figure 15 

Sample of the Radiography Training Dataset 
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Figure 16 

Sample of the Lung Cancer CT-Scan Training Set 
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Figure 17 

Sample of Severe and Mild COVID CT-Scan Training Set 

  

 

The similarity between the images is striking and would definitely require a medical 

license to properly observe and interpret.  
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3.2 Network architecture 

The network was designed personally coded with AlexNet as a base. As a result, the 

presented network while very similar to AlexNet has some differences. This network 

is not using pretrained data to improve its accuracy nor is it using transfer learning. 

The initial weights of the network have therefore been randomly initialized using a 

GPU array. The random initialization is a better choice since we use ReLU as an 

activation function which is an effective tool against problems that might arise like a 

vanishing gradient. All the convolutional layers are followed by a ReLU layer for 

better activation and optimization of the parameters. The first two fully connected 

layers are also connected to ReLU layers but the third is connected to a softmax layer 

that will classify into the two concerned classes.  

The Convolutional network was built with 25 layers designed as such: 

1. The first layer has a number of 227×227×3 inputs, as our input images need 

to be resized to 227 by 227 pixels.  

2. Convolutional layer with 96 filters of window size 227×227×3 with stride 

window 4×4. 

3. ReLU layer 

4. Cross Channel Normalization with 5 channels per element 

5. Maximum pooling layer of window size 3×3 with stride window 2×2. 

6. Grouped Convolutional Layer with 2 groups of 128 5×5 convolution 

windows with stride 1 and padding 2. 

7. ReLU layer 

8. Cross Channel Normalization with 5 channels per element 

9. Maximum pooling layer of window size 3×3 with stride window 2×2. 

10. Convolutional layer with 384 filters of window size 3×3 with stride 1 and 

padding 1. 

11. ReLU layer 

12. Grouped Convolutional Layer with 2 groups of 192 3×3 convolution 

windows with stride 1 and padding 1. 

13. ReLU layer 

14. Grouped Convolutional Layer with 2 groups of 128 3×3 convolution 

windows with stride 1 and padding 1. 

15. ReLU layer 
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16. Maximum pooling layer of window size 3×3 with stride window 2×2. 

17. Fully connected layer with 4096 outputs 

18. ReLU layer 

19. 50 % Dropout Layer 

20. Fully connected layer with 4096 outputs 

21. ReLU layer 

22. 50% Dropout Layer 

23. Fully connected Layer with 2 outputs 

24. SoftMax Layer 

25. Classification Output Layer 

The different activation map sizes and their learnable are detailed in table 2 in the 

next page of the document. A diagram showing the layout of the network can be seen 

in figure 18.  
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Table 2 

Activation Map and Learnables Size per Layers 

 

The table can be obtained from MATLAB by inputting a line of command. The 

enormous number of parameters can be observed from the table. 

  

 Name Type Activation Learneables

1 imageinput Image Input 227×227×3

2 conv_1 Convolution 55×55×96
Weights  11×11×3×96

Bias  1×1×96

3 relu_1 ReLU 55×55×96

4 crossnorm_1
Cross 

Channel Normaliztion
55×55×96

5 maxpool_1 Max Pooling 27×27×96

6 conv_2 Convolution 27×27×256
Weights  5×5×48×128×2

Bias  1×1×128×2

7 relu_2 ReLU 27×27×256

8 crossnorm_2
Cross 

Channel Normaliztion
27×27×256

9 maxpool_2 Max Pooling 13×13×256

10 conv_3 Convolution 13×13×384
Weights  3×3×256×384

Bias  1×1×384

11 relu_3 ReLU 13×13×384

12 conv_4 Convolution 13×13×384
Weights  3×3×256×384

Bias  1×1×192×2

13 relu_4 ReLU 13×13×384

14 conv_5 Convolution 13×13×256
Weights  3×3×192×128×2

Bias  1×1×128×2

15 relu_5 ReLU 13×13×256

16 maxpool_3 Max Pooling 6×6×256

17 fc_1 Fully Connected 1×1×4096
Weights  4096×9216

Bias  4096×1

18 relu_6 ReLU 1×1×4096

19 dropout_1 Dropout 1×1×4096

20 fc_2 Fully Connected 1×1×4096
Weights  4096×4096

Bias  4096×1

21 relu_7 ReLU 1×1×4096

22 dropout_2 Dropout 1×1×4096

23 fc_3 Fully Connected 1×1×2
Weights  2×4096

Bias   2×1

24 softmax Softmax 1×1×2

25 classoutput Classification Output _
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Figure 18 

Network Diagram 

 

As we can see in figure 18, the size of the input images changes multiple times in the 

network. At the start, the image input of 227×227×1 is input in the first layer of the 

network. The first convolutional layer, possessing 96 filters, changes the input 

dimension to 55×55×96. The ReLU and cross normalization layers throughout the 

network do not changes the size of the activation maps, which is why the figure does 

not display those layers in an effort to keep clarity and avoid redundance. The first 

maximum pooling layer will reduce the size to 27×27×96 before passing through the 

256 filters present in the next convolutional layer resulting in a 27×27×256 output 

size. The next max pooling layer and the third convolutional layer in net will further 

reduces the size to 13×13×384. The final convolutional layer in the network has 256 

filters with 3×3 windows, which results in the activation map to get a size of 

13×13×256. The next layer, called maxpool_3, decrease the size further to obtain a 

6×6×256 map. The first two fully connected layers of the net will keep the activation 

map at size 1×1×4096 before the final fully connected layer reduces it a final 1×1×2 

dimension.  
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3.3 Training 

This section of the study is going to describe the different experiments that were 

made using deep learning. The objective was to find how versatile, flexible and 

accurate the network can be.  

The datasets include X-rays and CT-scans from different sources and complexity in 

classification. The first two experiment are straightforward and compare cases of 

patient afflicted with a disease or not. Meanwhile, the remaining experiments are 

about patient with either different diseases or different progression of the disease. 

The network was training multiple times or sessions in all those cases while trying to 

avoid major changes in parameters.  

In each of the experiments, the network was trained using the Stochastic Gradient 

Descent with Momentum method on an NVIDIA Geo Force GTX 1650i GPU. 

Initially, the maximum number of epochs for training was to 10 with initial learn rate 

factor of 0.0001. While no gradient threshold was set, the L2 normalization method 

was set to compute it. Changes made during training, if any will be mentioned in the 

next sections.  

The next section will document the layout of the training for each experiments done. 

A. Experiment 1: X-Ray: Healthy vs Covid 

The first experiment will involve X-Ray pictures comparing COVID patients and 

healthy patients. Table 3 show the number distribution of the images per case, where 

the positive class is “COVID”. 

 

Table 3 

Images Numbers per Case (X-Ray: Healthy vs COVID) 

 Healthy COVID 

Training Set 3000 3000 

Testing Set 500 500 
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Initially, 1000 images per case were chosen but, doing so lead to underwhelming 

results during training in the region of 60% - 70%. The training parameters did not 

require any changes but a gradual increase in training images through trial and error 

gave us the results that will be presented in the next section. 

Training parameters 

Table 4 shows the parameters used to train the network using this dataset. 

Table 4 

Training parameters selected (X-Ray: Healthy vs COVID) 

Mini-Batch Size 20 

Max Epochs 10 

Initial Learn Rate 0.0001 

Training Method Stochastic Gradient Descent with 

Momentum 

Normalization Method L2 

 

Under these conditions the training progress that occurred is documented by figure 

19. 

Figure 19 

Training progress (X-Ray: Healthy vs COVID) 
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We can observe a steady increase in the accuracy up until the end of the training 

session. 

B. Experiment 2: CT-Scan: Healthy vs Malignant 

Experiment 2 concerns CT-Scans of patient with malignant lunger cancer against 

healthy ones. Table 5 describes the number of images per cases. 

Table 5 

Images Numbers per Case (CT-Scan: Healthy vs Malignant) 

 Healthy Malignant 

Training Set 511 366 

Testing Set 50 50 

 

Almost the available data were using during this experiment and proved enough to 

produce really accurate results. 

Training parameters 

The training parameters are reflected in table 6. They produced the best overall 

results after multiple training sessions. 

Table 6 

Training parameters selected (CT-Scan: Healthy vs Malignant) 

Mini-Batch Size 20 

Max Epochs 15 

Initial Learn Rate 0.001 

Training Method Stochastic Gradient Descent with 

Momentum 

Normalization Method L2 

 

In figure 20 we can observe the training progress made in one of the sessions. 
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Figure 20 

Training progress (CT-Scan: Healthy vs Malignant) 

 

There is a steady increase in accuracy until around 200+ iterations. From there the 

accuracy stabilizes in the high 90%. 

C. Experiment 3: CT-Scan: Severe vs Mild 

The numbers shown in table 7 have shown to produce the best results. Initially, the 

number of images were chosen in an effort to match the number of available 

Malignant cancer images but, they were unable to provide satisfying results. 

Therefore, an increase in number was needed and ultimately proved to be successful. 

Table 7 

Images Numbers per Case (Severe vs Mild) 

 Severe Mild 

Training Set 1234 1190 

Testing Set 150 150 

 

Training parameters 

Table 8 

Training parameters selected (Severe vs Mild) 

Mini-Batch Size 20 
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Table 8 (continued) 

Max Epochs 15 

Initial Learn Rate 0.001 

Training Method Stochastic Gradient Descent with 

Momentum 

Normalization Method L2 

 

The training progress in one of the sessions of this experiment are provided by figure 

21. 

Figure 21 

Training progress (Severe vs Mild) 

 

After a steady increase, the network’s accuracy starts to stabilize around the 500 

iterations. 

D. Experiment 4: CT-Scan: Severe vs Pneumonitis 

The network has consistently produced high accuracy in any setting, parameters or 

image number throughout the multiple training processes. Therefore, the number of 

images from the previous datasets were kept the same. 
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Table 9 

Images Numbers per Case (Severe vs Pneumonitis) 

 Severe Pneumonitis 

Training Set 1234 952 

Testing Set 150 110 

 

Training parameters 

The training parameters for the training session are shown in table 10. 

Table 10 

Training parameters selected (Severe vs Pneumonitis) 

Mini-Batch Size 20 

Max Epochs 15 

Initial Learn Rate 0.001 

Training Method Stochastic Gradient Descent with 

Momentum 

Normalization Method L2 

 

Figure 22 shows the training progress of the experiment. 
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Figure 22 

Training progress (Severe vs Pneumonitis) 

 

We can observe a sharp increase in accuracy that stabilize itself as soon as the 100 

iterations. The network has quickly learnt and acquired really high accuracy from 

that point. 

E. Experiment 5: CT-Scan: Mild vs Pneumonitis 

This experiment operated almost identically in the same fashion as the previous one. 

The rationale behind the selected number of images is the same as in the previous 

experiment. The layout is shown in table 11. 

Table 11 

Images Numbers per Case (Mild vs Pneumonitis) 

 Mild Pneumonitis 

Training Set 1190 950 

Testing Set 150 110 

 

Training parameters 

The parameters are the same as previously mentioned in other experiments and 

shown in table 12. 
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Table 12 

Training parameters selected (Mild vs Pneumonitis) 

Mini-Batch Size 20 

Max Epochs 15 

Initial Learn Rate 0.001 

Training Method Stochastic Gradient Descent with 

Momentum 

Normalization Method L2 

 

These parameters gave the best results and the progress of the training in one of the 

sessions can be seen in figure 23. 

Figure 23 

Training progress (Mild vs Pneumonitis) 

 

A rapid increase in accuracy before the 100-iteration mark followed by a steady 

continuation is observed. These results and their implication will be discussed in the 

next section but, it is important to remember that this is the training progress made 

during one session out of many. 
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Summary 

The datasets were obtained from different sources and provide images of several 

lung conditions. The dataset in the study includes X-Rays and CT images. The 

network presents an architecture that, while very similar to AlexNet, is not a result of 

transfer learning, but instead built from scratch with the random initial biases along 

with it. It has 25 layers, five of which are convolutional. Five experiments were set 

up where different comparison cases were tested as such: 

• Experiment 1: Healthy vs COVID 

• Experiment 2: Healthy vs Cancer 

• Experiment 3: Severe COVID vs Mild COVID 

• Experiment 4: Severe COVID vs Pneumonitis 

• Experiment 5: Mild COVID vs Pneumonitis 
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CHAPTER IV: Results and Findings 

Overview 

In this part of the document, a review of the results obtained during the training 

sessions that occurred in each experiment will be provided.  

4.1 Results and Findings 

Firstly, a table showing the accuracy obtained during each of the training session will 

be presented. The table also shows the average accuracy and highlights the best 

results obtained. Afterwards, a second table will show more detailed results of the 

best training session. In addition to the accuracy, the other results that will be 

provided are: 

• Sensitivity 

• Specificity 

• Area-Under-Curve 

Equation 7 and equation 8 describe the sensitivity and the specificity. 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(7) 

where TP = True Positive 

FN = False Negative 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(8) 

where TN = True Negative 

FP = False Positive 

Finally, the confusion matrix and the ROC curve will be provided as figures to give 

further knowledge about the network.  

A. Experiment 1 

Table 13 show the results of the training session performed under the conditions 

already provided earlier. 
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Table 13 

Accuracy per training session (Experiment 1) 

  Accuracy 

Training Session 1 0.852 

Training Session 2 0.882 

Training Session 3 0.845 

Training Session 4 0.85 

Training Session 5 0.858 

Average 0.8574 

Best 0.882 

 

The average accuracy obtained during the training session is 85.74% and the best 

validation accuracy as seen in table 13 is shown to be 88.20%.  

More details about the best result are given in table 14. 

Table 14 

Accuracy, Sensitivity, Specificity and AUC values (Experiment 1) 

Accuracy Sensitivity Specificity AUC 

0.882 0.886 0.878 0.9525 

 

This result is confirmed using the mean from the diagonal of the confusion matrix 

shown in figure 24. The positive class in the confusion matrix is ‘COVID’, while the 

negative one is ‘Normal’. 
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Figure 24 

Confusion matrix (Experiment 1) 

 

It is interesting to note that the network performs better when finding true negatives 

showing an 87.8% accuracy in that class, whereas it increases to an 88.6% accuracy 

when trying to find true positives. 
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Figure 25 

ROC Curve (Experiment 1) 

 

The ROC has provided an Area Under the Curve value of 0.9525. 

B. Experiment 2 

The results obtained during the five training sessions are shown in table 15. 

Table 15 

Accuracy per training session (Experiment 2) 

 Accuracy 

Training Session 1 0.99 

Training Session 2 0.98 

Training Session 3 0.98 

Training Session 4 0.99 

Training Session 5 0.99 

Average 0.986 
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Table 15 (Continued) 

Best 0.99 

 

The best result obtained is 99% accuracy, while the average accuracy is 98.6%. Even 

when perform at its worst the network is highly accurate in its predictions. Table 16 

offers more detailed information about the best result. 

  

Table 16 

Accuracy, Sensitivity, Specificity and AUC values (Experiment 2) 

Accuracy Sensitivity Specificity AUC 

0.99 0.98 1 1 

 

The numbers on table 16 show that the network can hardly perform better. The AUC 

and the specificity are maximum meaning the network only on very rare occasion 

produce a false positive. 

Figure 26 

Confusion Matrix (Experiment 2) 
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The confusion matrix illustrates how accurately the network performed when testing. 

Figure 27 

ROC Curve (Experiment 2) 

 

The ROC produces an area of 1. The network performs as best as it can. 

C. Experiment 3 

The training session conducted during experiment 3 lead to the results provided by 

table 17. 

Table 17 

Accuracy per training session (Experiment 3) 

 Accuracy 

Training Session 1 93.7 

Training Session 2 93 

Training Session 3 93.3 

Training Session 4 92.7 
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Table 17 (Continued) 

Training Session 5 91.7 

Average 92.88 

Best 93.7 

 

The network achieved 92.88% accuracy on average which shows great performance. 

The best performance obtained 93.7% accuracy. 

Table 18 provide additional details about the best outcomes during training. 

Table 18 

Accuracy, Sensitivity, Specificity and AUC values (Experiment 3) 

Accuracy Sensitivity Specificity AUC 

0.93.7 0.947 0.92 0.9805 

 

The Sensitivity and specificity respectively 94.7% and 92% show a low occurrence 

of false diagnostic. 
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Figure 28 

Confusion Matrix (Experiment 3) 

 

The confusion matrix highlights how many correct classifications were made in 

relation to the whole test dataset. 

Figure 29 

Confusion Matrix (Experiment 3) 

 

From the ROC we can infer a high value of AUC which is confirmed to be 0.9805. 
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D. Experiment 4 

After completing the different training sessions, table 19 provides the results 

obtained. 

Table 19 

Accuracy per training session (Experiment 4) 

 Accuracy 

Training Session 1 97.69 

Training Session 2 96.54 

Training Session 3 96.92 

Training Session 4 97.31 

Training Session 5 96.92 

Average 97.07 

Best 97.69 

 

The best result obtained was 97.07%, as shown in figure 30 and table 20, the network 

has really high sensitivity and overall performs really well. 

The best results obtained during the training sessions are further expanded in table 

20. 

Table 20 

Accuracy, Sensitivity, Specificity and AUC values (Experiment 4) 

Accuracy Sensitivity Specificity AUC 

0.9769 1 0.96 0.9861 

 

When the best performance is obtained the network makes no mistake in determining 

which case is exposed in the image fed to it. 
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Figure 30 

Confusion Matrix (Experiment 4) 

 

The confusion matrix shows how accurate the classifications were under the best 

performing training session. 
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Figure 31 

ROC Curve (Experiment 4) 

 

An AUC of 0.9861 provided by the ROC curve show that the network performs in 

excellent conditions. 

E. Experiment 5 

The results through multiple cycle of training for experiment 5 are shown in table 21 

Table 21 

Accuracy per training session (Experiment 5) 

 Accuracy 

Training Session 1 99.23 

Training Session 2 99.23 

Training Session 3 98.46 

Training Session 4 97.69 

Training Session 5 98.85 

Average 98.69 

Best 99.23 
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The average accuracy in experiment 5 (99.2%) is very similar to that of experiment 

4. The reasons for such high accuracy are same as discussed in the previous 

experiment above. The best result obtained is 100% which shows again that the 

network is highly capable of classifying between two datasets from different sources. 

Table 22 

Accuracy, Sensitivity, Specificity and AUC values (Experiment 5) 

Accuracy Sensitivity Specificity AUC 

0.9923 0.993 0.991 0.9998 

 

Table 22 shows that in its best conditions the model displays near perfect accuracy. 

Figure 32 shows the confusion matrix. 

Figure 32 

Confusion Matrix (Experiment 5) 

 

The confusion matrix shows exactly how accurately the network was able to 

perform. It made only 2 mistakes, which shows excellent accuracy  
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Figure 33 

ROC Curve (Experiment 5) 

 

The ROC is similar to the one in experiment 4. The AUC is 0.9998 and can let us 

conclude that the network is performing really highly. 

Summary 

Table 23 below shows the average accuracy and the best accuracy obtained from all 

five experiments.  

Table 23  

Summary of the results from the experiments 

 Average Best 

Experiment 1 85.74% 88.20% 

Experiment 2 98.6% 99% 

Experiment 3 92.88% 93.7% 

Experiment 4 97.07% 97.69% 

Experiment 5 98.69% 99.23% 

 

It can be seen from the table that even at its worst the network produces a 85.74% 

accuracy. It comes from the only experiment performed with X-rays. It reinforces the 

fact that CT are in fact a distinctly more accurate mean of detection.  
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CHAPTER V: Discussion and Conclusion 

5.1 Discussion 

The five experiments were designed in order to answer the questions asked at the 

beginning of the document. Just as in any study involving deep learning, the goal is 

to obtain the highest accuracy level possible.  

When reviewing the results and finding provided above we can draw multiple 

conclusions and most importantly we can provide answer to the aforementioned 

interrogations had at first.  

Aggregating all the results obtained throughout all the sessions in all the 

experiments, the lowest reported accuracy value is 84.5%. This shows that even at 

when performing at its worst, our model still displays satisfying accuracy in its 

findings.  

Experiment 1 provided an accuracy of 88.2%. As a reminder, experiment 1 presented 

a situation where the model was provided chest X-rays images showing either cases 

of COVID or healthy ones. The high accuracy obtained showed that the network is 

indeed able to distinguish between a case of COVID and a normal X-ray scan, thus 

answering one the questions provided. 

During experiment 2, we find that the model is even better at treating CT-scans to 

distinguish between a healthy patient and a cancer case. Therefore, not only is the 

network able to recognize another disease than COVID when trained to but also 

operates just as well on CT-scan and X-Rays. 

The situation provided in experiment 3 is most interesting as it raises the question of 

observe different state of the same disease, which surely would bring more 

complexity to the task. However, since the network provided an accuracy of 92.8% 

on average, we can conclude that the model is well suited to solve this kind of 

problem. 

Experiment 4 and 5, tries to provide answers as to whether the model can distinguish 

between two different conditions, even with different progressions. The results 

obtained showed the network’s high proficiency at accomplishing the given task. 
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It is also interesting to note that while network could not break the 90% accuracy 

barrier when classifying x-rays images, it did so in every experiment involving CT-

scans. This leads to two conclusions that can be both true. First, the network is more 

proficient at dealing with CT-scans. Second, CT-scan provide more information on 

the different conditions they are used for detection. In any case, CT-scans provide 

more accurate diagnostics than X-rays. 

5.2 Conclusion 

Today, fortunately, vaccines have been developed and are already in the distribution 

phase thanks to the work of various health professionals. However, there still is huge 

number of cases to be treated or even found, and since it is highly contagious disease, 

new cases are still bound to emerge. Therefore, a fast and accurate detecting tool is a 

must in this fight against the pandemic. The goal of this study is to provide such tool 

that helps discovering and acting quick against the disease. Using AlexNet’s design 

as the backbone of the project, we adapted it to our study case and managed to obtain 

good results.  

Earlier in the study, some questions, which served as goals, were asked. After 

designing the deep convolutional neural network, some experiment or situation were 

set up in order to answer those questions. The findings show that the net is indeed 

capable of classifying normal cases from COVID. The net is indeed capable of 

classifying normal cases from cancer cases. It is indeed capable of classifying 

COVID cases from cancer cases. It is also capable of distinguishing different 

progression of COVID. The presented model is able to realize those operations using 

chest x-rays and CT-scan.  

Despite the quality of our non-pre-trained model, the results and findings provided 

leave room for improvement. An accuracy of 88.2% is still a good result but, can be 

improved. Perhaps, with the use of transfer learning or by pre-training or by setting 

more appropriate initial biases higher results can be obtained. The data sources were 

limitations in study that could be overcome by finding more uniform sources. One 

could also collect their set of images to suit their model better. The fact that images 

were altered in order fit the model or in an effort to reduce computing cost is also to 

be considered, as under more optimal condition the model would undoubtedly 

produce better and more consistent results.  



66 

 

REFRENCES 

“Stoic Grand Challenge” [Online]. Available: https://stoic2021.grand-challenge.org/  

“World Health Organization”. [Online]. Available: 

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-

timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-

F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_098533

7f3255677663f83f9a092187756d179d0f-1628061763-0-

gqNtZGzNA02jcnBszQb6#event-16  

Abaas, A., Abdelsamea, M. M., Gaber, M. M., “Classification of COVID-19 in Chest 

X-Ray images using DeTraC deep convolutional neural network”, Applied 

Intelligence (2021) 51:854-864, September 2020. 

Pahani, A. H., Rafiei, A., Rezaee, A., “FCOD: Fast COVID-19 Detector based on 

Deep Learning Techniques”, Informatics in Medicine Unlocked 22 (2021)100506, 

December 2020. [Online]. Available: https://doi.org/10.1016/j.imu.2020.100506  

Krizhevsky, A., Sutskever, I., Hinton, G. E., “ImageNet Classification with Deep 

Convolutional Neural Networks”, Advances in Neural Information Processing 

Systems 25 (NIPS 2012), 2012. [Online]. Available: 

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-

Abstract.html  

Olimov, B., Karshiev, S., Jang, E., Din, S., Paul, A., Kim, J., “Weight initialization 

based-rectified linear unit activation function to improve the performance of a 

convolutional neural network model”, Concurrency and Computation: Practice and 

Experience, Vol. 33, Issue 22, December 2020. [Online]. Available: 

https://doi.org/10.1002/cpe.6143  

Prijono, B., “Student Notes: Convolutional Neural Networks (CNN) Introduction”, 

Indoml. March 2018. [Online]. Available: https://indoml.com/2018/03/07/student-

notes-convolutional-neural-networks-cnn-introduction/  

Ouchicha, C., Ammor, O., Meknassi, M., “CVDNet: A novel deep learning 

architecture for detection of corona virus (COVID-19) from chest x-ray images”, 

https://stoic2021.grand-challenge.org/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_0985337f3255677663f83f9a092187756d179d0f-1628061763-0-gqNtZGzNA02jcnBszQb6#event-16
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_0985337f3255677663f83f9a092187756d179d0f-1628061763-0-gqNtZGzNA02jcnBszQb6#event-16
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_0985337f3255677663f83f9a092187756d179d0f-1628061763-0-gqNtZGzNA02jcnBszQb6#event-16
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_0985337f3255677663f83f9a092187756d179d0f-1628061763-0-gqNtZGzNA02jcnBszQb6#event-16
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=EAIaIQobChMIxuaF1eqW8gIV1-F3Ch3OuwKhEAAYASAAEgI6WPD_BwE&__cf_chl_captcha_tk__=pmd_0985337f3255677663f83f9a092187756d179d0f-1628061763-0-gqNtZGzNA02jcnBszQb6#event-16
https://doi.org/10.1016/j.imu.2020.100506
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1002/cpe.6143
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/


67 

 

Chaos, Solitons and Fractals 140 (2020) 110245, September 2020.[Online]. 

Available: https://doi.org/10.1016/j.chaos.2020.110245  

Ozyurt, F., “Automatic Detection of COVID-19 Disease by Using Transfer Learning 

of Light Weight Deep Learning Model”, Traitement du Signal, Vol. 38, No. 1, 

February 2021, pp. 147-153.  

Hamdalla, F. K., The IQ-OTH/NCCD lung cancer dataset, Kaggle. [Online]. 

Available: https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-lung-cancer-

dataset/discussion  

Brownlee, J., “Weight Initialization for Deep Learning Neural Networks”, Machine 

Learning Mastery, February 2018. [Online]. Available: 

https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-

networks/  

Koushik, J., “Understanding Convolutional Neural Networks”, ArXiv e-prints, Other 

Statistics (stat.OT), May 2016. [Online]. Available: 

https://arxiv.org/abs/1605.09081v1  

Nayak, J., Nail, B., Dinesh, P., Vakula, K., Byomakesha, P., Pelusi, D., “Significance 

of deep learning for COVID-19: state-of-the-art review”, Research on Biomedical 

Engineering (2021), March 2021. [Online]. Available: 

https://doi.org/10.1007/s42600-021-00135-6  

Wu, J., “Introduction to Convolutional Neural Networks”, National Key Lab for 

Novel Software Technology, May 2017. [Online]. Available: 

https://cs.nju.edu.cn/wujx/paper/CNN.pdf  

Yi, J., Kang, H. K., Kwon, J-H., Kim, K-S., Park, M. H., Seong, Kim, Y. K. D. W., 

Ahn, B., Ha, K., Lee, J., Hah, Z., Bang, W-C., “Technology trends and applications 

of deep learning in ultrasonography: image quality enhancement, diagnostic support, 

and improving workflow efficiency”, Ultrasonography 2021, 40(1): 7-22. [Online]. 

Available: https://doi.org/10.14366/usg.20102  

Dev, K., Khowaja, S. A., Bist, A. S., Saini, V., Bhatia, S., “Triage of potential 

COVID-19 patients from chest X-ray images using hierarchical convolutional 

networks”, Neural Computing and Applications, 2021. [Online]. Available: 

https://link.springer.com/article/10.1007/s00521-020-05641-9#citeas 

https://doi.org/10.1016/j.chaos.2020.110245
https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-lung-cancer-dataset/discussion
https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-lung-cancer-dataset/discussion
https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/
https://arxiv.org/abs/1605.09081v1
https://doi.org/10.1007/s42600-021-00135-6
https://cs.nju.edu.cn/wujx/paper/CNN.pdf
https://doi.org/10.14366/usg.20102
https://link.springer.com/article/10.1007/s00521-020-05641-9#citeas


68 

 

O’Shea, K., Nash, R., “An Introduction to Convolutional Neural Networks”, ArXiv 

e-prints, Neural and Evolutionary Computing (cs.NE), December 2015. [Online]. 

Available: https://arxiv.org/abs/1511.08458  

Guruchan, M K., “Basic CNN Architecture: Explaining 5 Layers of Convolutional 

Neural Network”, UpGrad, December 2020. [Online]. Available: 

https://www.upgrad.com/blog/basic-cnn-architecture/  

Hilmizen, N., Bustamam, A., Sarwinda, D., “The multimodal Deep Learning for 

Diagnosing COVID-19 Pneumonia form Chest CT-Scan and X-Ray Images”, 2020 

3rd International Seminar on Research of Information Technology and Intelligent 

Systems (ISRITI), 2020. 

Viradiya, P., “Kaggle”. [Online]. Avalaible: 

https://www.kaggle.com/datasets/preetviradiya/covid19-radiography-dataset  

Khartik, R., Menaka, R., Hariharan, M., “Learning distinctive filters for COVID-19 

detection from chest X-ray using shuffled residual CNN”, Applied Soft Computing 

Journal 99 (2021) 106744, 2021. [Online]. Available: 

https://www.sciencedirect.com/science/article/pii/S1568494620306827  

Albawi, S., Mohammed, T. A, Al-Zawi, S., "Understanding of a convolutional neural 

network," 2017 International Conference on Engineering and Technology (ICET), 

2017, pp. 1-6. [Online]. Available: https://ieeexplore.ieee.org/document/8308186  

Yadav, S., “Weight Initialization Techniques in Neural Networks”, Towards Data 

Science, November 2018. [Online]. Available: 

https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-

26c649eb3b78  

Wang, S.-H., Nayak, D. R., Guttery, D. S., Zhang, X., Zhang, Y.-D., “COVID-19 

classification by CCSHNet with Deep fusion using transfer learning and discriminant 

correlation analysis”, Information fusion, Vol 68, February 2021, pp. 131-148. 

[Online]. Available: 

https://www.sciencedirect.com/science/article/pii/S1568494620306827  

Jin, W., Dong, S., Dong, C., Ye, X., “Hybrid ensemble model for differential 

diagnosis between COVID-19 and common viral pneumonia by chest X-Ray 

https://arxiv.org/abs/1511.08458
https://www.upgrad.com/blog/basic-cnn-architecture/
https://www.kaggle.com/datasets/preetviradiya/covid19-radiography-dataset
https://www.sciencedirect.com/science/article/pii/S1568494620306827
https://ieeexplore.ieee.org/document/8308186
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://www.sciencedirect.com/science/article/pii/S1568494620306827


69 

 

radiograph”, Computer in Biology and Medicine 131 (2021) 104252, February 2021. 

[Online]. Available: https://doi.org/10.1016/j.compbiomed.2021.104252  

Zhang, X., Zhou, X., Lin, M., Sun, J., “ShuffleNet: An Extremely Efficient 

Convolutional Neural Network for Mobile Devices”, Computer Vision and Pattern 

Recognition (cs.CV), December 2017. [Online]. Available: 

https://arxiv.org/abs/1707.01083  

  

https://doi.org/10.1016/j.compbiomed.2021.104252
https://arxiv.org/abs/1707.01083


70 

 

APPENDICES 

Appendix A: Binary Classification Code 

 

Loading Data 

%TRAINING DATA 

categories = {'COVID','Normal'}; 

 

rootfolder = 'trainData'; 

imds = imageDatastore(fullfile(rootfolder,categories),... 

    'labelSource','foldernames'); 

%TEST DATA 

rootfolder = 'testData'; 

imds_test = imageDatastore(fullfile(rootfolder,categories),... 

    'labelSource','foldernames'); 

 

Network Architecture 

 

%% NETWORK ARCHITECTURE 

conv1 = convolution2dLayer(11,96,'Stride',4); 

conv1.Weights = gpuArray(single(randn([11 11 3 96])*0.01)); 

Layers = [ 

    imageInputLayer([227 227 3]) 

    conv1; 

    reluLayer(); 

    crossChannelNormalizationLayer(5); 

    maxPooling2dLayer(3,'Stride',2); 
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    groupedConvolution2dLayer(5,128,2,'Stride',1,'Padding',2); 

    reluLayer(); 

    crossChannelNormalizationLayer(5); 

    maxPooling2dLayer(3,'Stride',2); 

    convolution2dLayer(3,384,'Padding',1,'Stride',1); 

    reluLayer(); 

    groupedConvolution2dLayer(3,192,2,'Stride',1,'Padding',1); 

    reluLayer(); 

    groupedConvolution2dLayer(3,128,2,'Stride',1,'Padding',1); 

    reluLayer(); 

    maxPooling2dLayer(3,'Stride',2); 

    fullyConnectedLayer(4096,'BiasLearnRateFactor',20); 

    reluLayer(); 

    dropoutLayer(0.5) 

    fullyConnectedLayer(4096,'BiasLearnRateFactor',20); 

    reluLayer(); 

    dropoutLayer(0.5); 

    fullyConnectedLayer(2,'BiasLearnRateFactor',20) 

    softmaxLayer; 

    classificationLayer()] 

Training 

 

% TRAINING 

opts = trainingOptions('sgdm', ... 

    'MiniBatchSize',20, ... 

    'MaxEpochs',15, ... 

    'InitialLearnRate',1e-3, ... 
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    'ValidationData',imds_test, ... 

    'ValidationFrequency',3, ... 

    'ValidationPatience',Inf, ... 

    'Verbose',true, ... 

    'Plots','training-progress'); 

 

[lexnet,info] = trainNetwork(imds,Layers,opts); 

 

%% Testing Data 

labels = classify(lexnet, imds_test); 

 

ii = randi(35); 

im = imread(imds_test.Files{ii}); 

imshow(im); 

if labels(ii) == imds_test.Labels(ii) 

   colorText = 'g';  

else 

    colorText = 'r'; 

end 

title(char(labels(ii)),'Color',colorText); 

 

%Computing Accuracy 

YPred = classify(lexnet,imds_test); 

YTest = imds_test.Labels; 

accuracy = sum(YPred == YTest)/numel(YTest); 
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Test Network 

confMat = confusionmat(imds_test.Labels,labels); 

confMat = confMat./sum(confMat,2); 

mean(diag(confMat)) 

figure,plotconfusion(imds_test.Labels,labels) 

 

 

Plot ROC 

[predVal,scores] = classify(lexnet,imds_test); 

[X,Y,T,AUC,OPTCOCPT,SUBY,SUBYNAMES] = 

perfcurve(imds_test.Labels,scores(:,1),'COVID'); 

figure,plot(X,Y) 

xlabel('False Positive Rate') 

ylabel('True Positive Rate') 

title('ROC for COVID and Normal Classification') 

 

Appendix B: Code for Resizing Images in the Dataset 

Read Folder 

inputFolder = 

'C:\Users\DELL\Documents\MATLAB\DeepLearning\Medical 

Radiography Images\COVID-19_Radiography_Dataset\COVID'; 

outputFolder = 

'C:\Users\DELL\Documents\MATLAB\DeepLearning\Medical 

Radiography Images\Resized\3ch\trainData\COVID'; 

filenames = dir(fullfile(inputFolder,'*.png')); 

numimages = numel(filenames); 
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Resize and save 

for n = 1:numimages 

    f = fullfile(inputFolder,filenames(n).name); 

    fimg = imread(f); 

    fimgr = cat(3,fimg,fimg,fimg); 

    reimg = imresize(fimgr,[227 227]); 

    fullOutputFileName = 

fullfile(outputFolder,filenames(n).name); 

    imwrite(reimg,fullOutputFileName); 

end 

 

 


