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Abstract 

 

Hybrid Physical-artificial Intelligence-based Modeling for Rainfall-runoff-sediment 

Process, Case of Katar Catchment, Ethiopia 

Gebre Gelete Kebede 

PhD, Department of Civil Engineering 

Supervisors:   Prof. Dr. Hüseyin Gökçekuş (supervisor) 

               Prof. Dr. Vahid Nourani (Co-supervisor) 

June, 2022, 146 pages 

 

The study aimed to develop a hybrid physically-artificial intelligence (AI)-based ensemble 

model for modeling the rainfall-runoff-sediment process of Katar catchment, Ethiopia. 

The study used an adaptive neuro-fuzzy inference system (ANFIS), Hydrologic 

Engineering Center-Hydrologic Modeling System (HEC-HMS), Hydrologiska Byråns 

Vattenbalansavdelning (HBV), soil and water assessment tool (SWAT), support vector 

machine (SVM) and Feedforward neural network (FFNN). The study used ten years of 

climate and hydrological data. Five steps were followed in this study. In the first step of 

the study, sensitivity analysis was performed to identify the dominant inputs that have a 

significant influence on the output.  In the second step, the rainfall-runoff and suspended 

sediment load (SSL) were simulated using single models. In this step, rainfall-runoff was 

modeled via SWAT, HEC-HMS, HBV, ANFIS, ANN and SVM. Also, SSL estimation 

(strategy 1) was conducted via ANFIS, SVM, FFNN and multilinear regression (MLR) 

using different combinations of lagged SSL and discharge as input. In the third step, the 

runoff result of each physically-based and AI-based model was combined using a simple 

average ensemble (SE), weighted average ensemble (WE), neural network ensemble (NE) 

and ANFIS ensemble (AE) (for SSL only) technique in three scenarios. In step four of the 

study, strategy 2 of SSL modeling, the runoff values of the best ensemble technique from 

the third step together with lagged runoff were used as input for the AI-based and MLR 
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model. Finally, the SSL output from the fourth step was ensembled using SE, WE, AE 

and NE (separately for each scenario) to boost the overall accuracy of the simulation. The 

performances of the individual and ensemble techniques applied for rainfall-runoff and 

SSL modeling were evaluated using root means square error (RMSE), Nash-Sutcliffe 

efficiency (NSE) and mean absolute error (MAE). According to the result, the ANFIS 

model provided better performance (NSE=0.913/0.884/0.88/0.92, 

RMSE=6.018m3/s/1943.67ton/day/1628.259 ton/day and MAE= 2.847m3/s/ 897.37 

t/day/1018.312 t/day) in rainfall-runoff/SSL (strategy 1)/hybrid SSL (strategy 2), 

respectively in the validation period. From the three ensemble techniques, NE provided 

more accurate results in modeling rainfall-runoff and improved the individual models by 

5.8%-27.6%. From the four ensemble techniques in SSL modeling, AE produced better 

results and improved the individual models by 9.73% to 37% for the first strategy of SSL 

modeling and by 3.59%-41.8% for hybrid SLL modeling (strategy 2) in the validation 

phase. In general, the finding of this research showed that the employed ensemble 

technique especially nonlinear ensemble techniques provided the most accurate result in 

both rainfall-runoff and SSL modeling. 

Keywords: rainfall-runoff-sediment, AI-based, physically-based, ensemble technique, 

Katar catchment 
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CHAPTER I 

Introduction 

Hydrology is the study of the cycle and movements of water between the 

atmosphere, hydrosphere and earth surface (Hadi and Tombul, 2018). Surface runoff 

occurs when the rate of precipitation is greater than the rate of infiltration of the soil. A 

higher runoff rate results in accelerated soil erosion and transport of eroded soil to 

downstream rivers (Chen et al., 2011). The rainfall-runoff-sediment process is 

characterized by their highly complex and degree of spatial and temporal variability. 

Therefore, hydrologists are always dealing with the problem of determining these 

nonlinear, complex, dynamics and  nonstationary relationships of the hydrological process 

(Nourani, 2017). Accurate modeling of rainfall-runoff  and SSL is therefore a very crucial 

issue in designing, management, and planning of water resource ( Anusree and Varghese, 

2016; Kisi et al., 2013), in mitigating drought, designing and planning flood control work 

(Nourani and  Komasi, 2013). Thus, for the last couple of decades modeling of the rainfall-

runoff and suspended sediment load has gotten great attention and becomes the main 

hydrological research areas. Thus, accuracy in runoff and SSL modeling have a direct 

influence on water resource management decision making (Noori and Kalin, 2016). The 

relationship between rainfall-runoff and SSL is very complex due to the spatial and 

temporal variation in precipitation and watershed characteristics as well as the number of 

parameters included in the modeling process (Rezaeianzadeh et al., 2013). There have 

been many hydrological models that are being still developed to model these complex and 

stochastic  hydrological process (Rajurkara et al, 2005; Shoaib et al., 2014). These models 

include AI, physically-based and statistical hydrological models. 

Statistical methods (e.g., linear regression models) are too simplistic and are 

limited to a functional form between the input and response parameters before analysis 

(Noori and  Kalin, 2016). These models work based on the assumption that a linear 

relationship exists between the input and output. Consequently, poor result is obtained 

from these models as there exist a strong nonlinear relationship in the rainfall-runoff 

process (Adnan et al., 2019). Semi-distributed physical models, on the other hand, can 

better simulate rainfall-runoff in a watershed because they take into account various 
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spatial and hydro climatological inputs through mathematical formulations. Physically-

based models used mathematical equations and construct simplified watershed system and 

have mechanisms to represent the actual physics of the process (Young et al., 2017). These 

models account for the contribution of groundwater, the effect of non-uniform distribution 

of evapotranspiration, rainfall and watershed characteristics such as land use, soil 

characteristics and slope (Kisi, 2012). To date, various physically-based, semi-distributed 

models such as SWAT, HEC-HMS and HBV have been used in modeling rainfall-runoff 

process. 

The SWAT model is a physically based hydrological model (Arnold et al., 1998),  

developed to predict land use impacts on agricultural chemical yield, sediment and water 

in a complex and large catchment with different land use and soil for a long period of time 

(Eckhardt et al., 2005). In this model, the watershed is divided into sub-watersheds which 

are further subdivided into units with distinct land use, soil type and slope called 

hydrological response units (HRUs). Surface runoff is then estimated for each sub-

watershed and routed to compute the watersheds’ total runoff. The SWAT model was used 

for rainfall-runoff modeling and gave acceptable results in different studies (e.g., Iskender 

and Sajikumar, 2016;  Jeong et al., 2010; Noori and Kalin, 2016; Vilaysane et al., 2015;  

Zhang et al., 2008). 

 HEC-HMS is another semi-distributed physically-based model which is 

extensively used in modeling rainfall-runoff process. It  was originally developed for 

rainfall-runoff simulation of dendritic watersheds and later its applicability was expanded 

to address a variety of problems related to flood hydrograph and natural watersheds runoff 

(Shekar and Vinay, 2021). This model has successfully been used for rainfall-runoff  

modeling in different catchments (e.g., Abushandi and Merkel, 2013; Gebre, 2015; 

Gumindoga et al., 2017; Halwatura and Najim, 2013; Verma et al. 2010). 

The third model, HBV, is a semi-distributed conceptual rainfall-runoff model in 

which the catchment is divided into a maximum of twenty elevation zone and three 

vegetation zone. HBV model was used for simulation of rainfall-runoff and gave suitable 

results (Bizuneh et al., 2021; Esmaeili-gisavandani et al., 2021; Ouatiki. et al., 2020).   
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Physically-based models requires large temporal and spatial data as well as long 

time to run.  As it becomes difficult to consider all the physical parameters in the 

modelling (Nourani and Komasi, 2013) and limitation of physically based models to 

achieve the required accuracy, artificial intelligence (AI) which converts the inputs to 

output values is lately found applicable in accurate modeling of rainfall-runoff  and SSL 

process (Kisi et al., 2012). AI-based models provide more accurate modeling result in 

rainfall-runoff and SSL modeling because they are able to handle spatial and temporal 

irregularities and the nonlinearity of rainfall-runoff-sediment process. These models 

detect the hidden relationship between the inputs and response variables from the 

historical data without prior knowledge of the underlying physics of the phenomena (Yang 

et al., 2020). AI models such as adaptive neuro-fuzzy inference system (ANFIS) support 

vector machine (SVM) and artificial neural networks (ANNs) such as FFNN  are 

commonly used  for modeling of complex hydrological processes such as rainfall-runoff-

sediment from historical data due to their simplicity, efficiency and popularity (Kisi et al., 

2013; Kumar et al., 2011).  

FFNN , a black-box   AI-based model, is extensively used in water resource and 

hydrology studies as a forecasting tool (Nourani et al., 2011). In recent decades, FFNN 

become popular and has been successfully used in modeling different hydrologic process. 

This is due to its ability in solving the complex nonlinear hydrological problems by 

identifying the relationship from a given pattern (Sahoo et al., 2017). This model imitates 

the human brain, learns rules naturally by training using large historical observed data 

without prior knowledge of the characteristics of the catchment (Young et al., 2017). A 

detailed review of the application and theories of ANNs in hydrological modeling are 

provided by Govindaraju and Rao (2000). The modeling accuracy of FFNN depends on 

the selection of suitable network structure and its internal parameters which is solved by 

using a simple trial-and-error method (Young et al., 2017).  So far, many research have 

been done and published on the applicability of FFNN in modeling rainfall-runoff (e.g.,  

(Dounia et al., 2014; Melesse et al., 2011)) and SSL  (e.g., Kalteh, 2013; Khan et al., 2018; 

Nourani, 2017; Shoaib et al., 2014). 
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ANFIS, another AI model,  developed by Jang (1993) is a hybrid of neural network 

and fuzzy inference system (FIS). Complex and dynamic  process such as  rainfall-runoff  

and SSL can be accurately modeled by ANFIS due to  advantage of combining the learning 

features of neural network and approximation  ability of a fuzzy inference system 

(Tahmoures et al., 2015). Due to this reason it has been successfully used in the area of 

hydrology and water resource management specifically in rainfall-runoff process 

modeling (Kwin et al, 2018; Nawaz et al. , 2016; Nourani and Komasi, 2013; Kisi and 

Shiri, 2013) and SSL (Cobaner et al., 2009; Kaveh et al., 2017) because of handling of 

uncertainties by fuzzy theory. 

SVM which was developed by Vapnik (2013) is a supervised learning method 

from structural risk minimization and machine learning theory. It is relatively recent 

artificial intelligence-based model has been widely used for time series modeling as 

alternative to ANFIS and FFNN.  This method can be applied both in regression and 

classification.  It is basically derived from the concept of the hypothesis of risk 

minimization and thus it helps in producing good generalization. In recent years SVR are 

widely used in modeling of hydrological process (Mirabbasi et al., 2018; Okkan and 

Serbes, 2012; Raghavendra and Deka, 2014; Sharma et al., 2015 Yu et al., 2018).  

Although the mentioned physical and AI based models can give reliable results, it is clear 

that one of the models performs better than the others for a given data set and when 

different data sets are used the result may entirely be opposite (Nourani et al., 2019). No 

single model is superior in providing rainfall-runoff and suspended sediment load 

modeling for all kind of catchment under all conditions than those of other competing 

models. This could be due to the fact that a given hydrological process evolves exclusively 

over time, whereas modeling methods based on time series and finite data sets are variable 

in structure and governed by parametric forms that vary from one model to another. In 

past few decades different attempts have been made to achieve better accurate rainfall-

runoff and SSL modeling in catchment. Their key objective was to develop more efficient 

model by combining the single models because different models capture specific features 

of the phenomena. According to Fenicia et al. (2007), the accuracy of rainfall-runoff and 

SSL modeling can be improved by modifying the existing models by combining the output 
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of different models instead of using a single model. Ensemble approach has increasingly 

gained popularity in hydrological modeling as an alternative for improving the reliability 

and accuracy of individual models (Fernando et al., 2012). For example, Young et al. 

(2017) improved the performance of rainfall-runoff modeling using HEC-HMS in 

conjunction with SVM and ANN. Esmaeili-gisavandani et al. (2021) used the gene 

expression programming method to combine the outputs of five different models to get 

improved runoff prediction. Therefore, it is important to develop an ensemble technique 

to benefit from the high predictive efficiency of AI-based and physically-based models 

that incorporate the effect of catchment characteristics in the modeling of the rainfall-

runoff-SSL process. It is noteworthy that the physically-based and AI-based models in the 

ensemble unit, which have different philosophies, complement each other with regard to 

their inherent drawbacks and strengths. The weak simulation accuracy of physically-based 

models can be mitigated by powerful AI-based models, specifically for poorly gauged 

watersheds. Thus, ensemble techniques is believed to improve the modeling performance 

by combining the strength of the individual  in the rainfall-runoff-SSL modeling. 

Statement of the problem 

Even though water is essential for all life forms, it can also be destructive when it 

is too much and create a problem when it is too low.  Water can trigger and cause soil 

erosion, landslide, flooding, and sediment flow when it is excess (Badrzadeh et al., 2015). 

Nowadays many countries are vulnerable to disasters and damage related to water and the 

causalities are on the increase (Badrzadeh et al., 2015; Bates et al., 2008). Thus, the 

number of people affected by the increased water related disaster such as flooding and 

drought is increasing (Bates et al., 2008). Reliable information on rainfall-runoff-sediment 

is critical to water resources management and planning. Anthropogenic and natural water-

related environmental hazards, especially droughts, floods and sedimentation of reservoir 

are becoming more frequent. Rapid population growth is increasing the need for 

agricultural land, and associated deforestation is causing soil erosion and sedimentation 

problems. As a result of these, environmental problems, deterioration of water quantity 

and quality, health problems and food insecurity are exacerbated. 
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The current study is conducted in Katar catchment, Ethiopia. The catchment 

contains Katar River and its tributaries draining into Lake Ziway.  This lake serves as the 

source of water supply for Ziway town, irrigation and income source for the fishing 

community and hence contributes to food security and economic development (Desta and 

Fetene, 2020). Inside the catchment soil erosion, sedimentation, land degradations soil 

fertility loss is common due to erosive rainfall, poor land management system and 

marginal land cultivation (Aliye et al., 2020). These causes sedimentation of the Lake and 

flood plain along the bank of the river and siltation of the irrigation canal (Aga et al.,  

2018).  Katar catchment was chosen as a case study because of the above-mentioned 

problems and availability of data. This catchment is a good case study to evaluate the 

performances of the applied models in the rainfall-runoff-sediment modeling. 

Objective  

The general objective of this study is to model the rainfall-runoff-sediment process of 

Katar catchment using combined artificial intelligence and physically-based models. 

Specific objectives 

The specific objectives of this study are: 

• To compare the performance of AI-based (ANFIS, FFNN and SVM) and 

physically based models (SWAT, HEC-HMS and HBV) in modeling the rainfall-

runoff process in Katar catchment. 

• To develop an ensemble model for the prediction of runoff-rainfall process using 

the outputs of AI-based and physically-based models in Katar catchment 

• SSL modeling by AI-based (FFNN, ANFIS and SVM) and MLR models 

• To develop AI-based ensemble models for the estimation of SSL in Katar 

catchment 

• To estimate the suspended sediment load in Katar catchment by a hybrid 

Physically–AI based models 
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Significant of the study 

Accurate modeling of suspended sediment load and rainfall-runoff in a catchment 

could be a good tool for water management, planning and policy making. Runoff and 

suspended sediment are therefore the two most important factors for water resources 

planning (Kumar et al., 2019).  Thus, rainfall-runoff and SSL modeling using reliable 

model is necessary for operation and optimization of water resources (Noori and Kalin, 

2016) and essential for managing water resources such as dam operation, flood control, 

irrigation, water quality and water supply (Chen et al., 2011; Doroudi et al., 2021). 

Moreover, reliable SSL modeling in a catchment is important to hydrology as it affects 

water management and hydraulic structure. It is fundamental for various water 

management classifications, such as reservoir sedimentation and capacity reduction, 

river morphology, water quality demonstration and increasing maintenance costs of 

dams and irrigation canals (Kumar et al., 2019). Therefore, the capabilities and accuracy 

of runoff and SSL simulation can have a direct impact on water resource management 

decisions (Noori and Kalin, 2016). In this regard, this study used a hybrid physical and 

AI-based models for rainfall-runoff-sediment process modeling. To further improve the 

modeling accuracy ensemble techniques were applied by combining the output of single 

models applied for rainfall-runoff and SSL modeling. Therefore, the results of this study 

could provide valuable information for water management, flood protection and 

drought, design and operation of hydraulic structure.  

Limitation of the study 

Financial constraints, travel restrictions due to COVID-19 and the associated time 

constraints were the limitations encountered in this study.  
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 CHAPTER II 

Literature review 

This part provides a literature review related to the study presented in this thesis. 

Firstly, it introduces the background of different modeling approach which is relevant in 

the field of rainfall-runoff-suspended sediment modelling. Secondly, it introduces 

background about ensemble approaches which is applied in the context of rainfall runoff 

and suspended sediment modeling. 

Hydrological models 

In the land and surface systems evapotranspiration, precipitation, surface runoff 

and suspended sediment load are the dominant processes (Singh, 1989). Therefore, the 

main aims of hydrological models are to quantify and model these processes that govern 

the transfer of moisture through different systems. From many hydrological processes, 

modeling of rainfall-runoff-sediment process are highly important from a different 

perspective. 

There have been many efforts made to better understand and model the complex 

rainfall-runoff and SSL during the past decades. Researchers developed various models 

and  these hydrological models are generally categorized in two groups as:  data-driven 

(e.g.,  AI models)  and physical-based models (Bourdin et al, 2012; Solomatine and  Dulal, 

2003). Physicaly-based models can highly enhance better understanding of the factors 

affecting the process of hydrological systems, but they are time consuming and require 

large input data that covers diverse aspects of the system including hydro-meteorological 

and spatial data. These data are not easily available and the model requires high computing 

power to prepare and process the input data. 

To overcome this drawback, data driven artificial intelligence (AI) approaches 

such as fuzzy logic (FL), ANNs, SVM, genetic programming, ANFIS, ant colony 

optimization, and other hybrid methods are developed which are more feasible and 

accurate for a hydrological process like rainfall-runoff and SSL  (Yaseen et al., 2015). 

These AI models has the capacity to accurately model the complex and nonlinear rainfall-
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runoff-sediment process without requiring prior knowledge of the underlying physical 

process of the system (Kwin et al., 2018; Mehr and Nourani, 2018).  AI models are 

preferable in modelling of the complex and nonlinear hydrological process (e.g., rainfall-

runoff and SSl ) as it discovers the complex relationship between input and output data’s 

even under the condition when the users do not have a complete understanding and 

knowledge of the underlying physical process (Asadi et al., 2013; Sudheer et al., 2010). 

However, this type of model are black-box, they ignore the underyling physics of the 

phenomena.   

Artificial intelligence 

Over the last couples of decades, there has been an increasing tendency of using 

different AI models in time series forecasting and hydrological modeling. Many 

researchers used various types artificial techniques such as SVM, ANN, ANFIS, and 

regression model (e., MLR) for rainfall-runoff modeling. Rainfall-runoff and SSL have a 

nonlinear and complicated relationship. Moreover, the process by which rainfall changed 

in to runoff and causing sediment transport is dependent on various catchment 

characteristics such as soil type, temperature, soil moisture, topography, slope 

evaporation, shape, etc. Physically-based models usually consider all these parameters and 

needs prior knowledge about them. Whereas, black box models like AI-based models have 

a great ability to find a complex relation between rainfall and runoff from historical data. 

Some of the commonly used artificial intelligence models used in rainfall-runoff and SSL 

modeling’s are presented as follows. 

ANN in Rainfall-runoff and SSL modeling 

ANN is a model usually designed to mimic the function of the human brain (Abba 

and Elkiran, 2017). ANN models are nonlinear statistical and mathematical modeling tool 

which is very useful in solving several engineering and hydrological problems. This model 

contains a large number of high processors and neurons which can solve the problem of a 

highly complex and large amount of spatially and temporal variable data (Dogan et al., 

2008). In hydrological modeling diffrent ANNs such as multilayer perceptron (MLP) and 

radial basis function neural network (RBFNN) and feed forward neural network (FFNN) 

are commonly used ( Kumar et al., 2005). Many studies compare these models based on 
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their capability in simulating nonlinear process (Singh et al., 2013). Generally, based on 

many studies all ANNs model performs well in any hydrological process even though it 

depends on network type and number of input variables (Mutlu et al. , 2008). 

ANN models have numerous advantages although they have some drawback such 

as over training, getting trapped in local minima, subjectivity in model parameter 

determination and the components of its structure (Okkan and  Serbes, 2012). Regardless 

of some drawbacks, ANN is one of the most widely used soft computing techniques which 

contains interconnected dense nodes (Alp and Cigizoglu, 2007; Kalteh, 2013). ANN has 

the ability to store and extract information from the few data during training by learning. 

It has gained great recognition especially in the modeling of sediment load, rainfall-runoff, 

precipitation and ground water modeling (Sharma et al. , 2015). 

 Wu  Chau (2011) studied the rainfall-runoff relation in the two basins of china 

using ANN coupled with singular spectrum analysis (SSA).  This study has eliminated the 

lag effect in predicting runoff by using singular spectrum analysis and modular artificial 

neural network for data processing. They used daily collected data for training and testing 

of the model. The result of this study showed that ANN provides better performance in 

runoff prediction when it is coupled with singular spectrum analysis. 

Melesse et al. (2011) used ANN for modeling the SSL of three major rivers in the 

USA and compare the result with multiple linear regression (MLR), autoregressive 

integrated moving average (RIMA) and multiple nonlinear regression (MNLR). They 

used precipitation, current-day discharge, antecedent discharge and antecedent SSL values 

to predict the current-day SSL. They used R2 model efficiency (E) and mean absolute 

percent error (MAPE) to evaluate the performance of the models. The result showed the 

superiority of the ANN model over the other models. Kisi et al. (2012)  compared ANN, 

SVM, GP and ANFIS in modeling suspended sediment in Cumberland River ,U.SA using 

different combination of antecedent suspended sediment load  and discharge as an input. 

Rajaee et al. (2011) applied a ANN, combined Wavelet–ANN(WANN), sediment rating 

curve and multilinear regression (MLR) method for estimating the river suspended 

sediment load and found that WANN showed a good fit between observed and predicted 

data. 
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 Afan et al. (2014) two different ANNs (FFNN and RBF) to predict SSL using 

sediment and flow data of Johor River, Malaysia. A good result was obtained from both 

models, but FFNN performed better than the RBF. Nourani et al. (2012) used 

geomorphology ANN and multi-station data trained ANN for simulation of suspended 

sediment concentration of the Eel River, California and concluded that the 

geomorphological ANN approach led to a better result than the integrated model. 

Aytek et al. (2008) apply the ANNs (both feeds forward back propagation and 

generalized regression neural network) and compared it with gene expression 

programming (GEP) in rainfall-runoff. They have used daily hydro meteorological data 

from three rainfall stations as input for the models Juniata River basin, USA. The 

determination coefficient (R2) and root mean square error (RMSE) was used to evaluate 

the performance of these models. The result of this study showed that ANN gave very 

good result but not as good as GEP and GEP was proposed as an alternative to ANN 

models. 

 Dounia et al.( 2014) used ANN for rainfall-runoff process modeling and compare 

the result with GR2M model by using monthly rainfall and runoff data. The result of this 

study revealed that ANN gave better performance with NSE value of 0.955 compared to 

GR2M (NSE=0.873). Kumar et al. (2005) applied the two commonly used ANNs 

multilayer perceptron (MLP) and radial basis function neural network (RBFNN) for 

rainfall-runoff modeling of Malaprabha catchment, India. The study investigated about 18 

different combinations of lag rainfall and discharge values. The study found that RBFNN 

provided an accurate prediction with R2 value of 0.99 than that of the MLP model. Many 

studies compare these two forms of ANN based on their capability in simulating rainfall-

runoff and SSL modeling. Generally, based on many studies both model performs good 

in any hydrological process even though it depends on network type and number of input 

variable (Singh et al., 2013). 

ANFIS for rainfall-runoff and SSL modeling 

The ANFIS model, developed by Jang (1993), is a hybrid of neural network and 

fuzzy logic. According to Jang et al. (1997), ANFIS model being as a combination of 
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ANN and FIS, can provide reasonable solutions while providing qualitative and heuristic 

information about the obtained solution. Fuzzy logic (FL) is used to change the linguistic 

concepts to mathematical and computational architecture. The if-then rule in the FL could 

provide a better understanding of the nonlinear relationships that may exist between 

rainfall-runoff-suspended sediment load. FL is to the methods of solving and computing 

complex problems based on the reasoning ability of   human brain (Chandwani et al., 

2015). In Fuzzy logic problems are defined without fixed boundaries or unique numbers 

and uses a set of logical values from sets of numbers ranging from 0 (completely false) to 

1 (completely true) called membership functions (MFs) on which the numbers are 

represented. In ANFIS model, different MFs are available. Among them trapezoidal, 

Gaussian, triangular and sigmodal functions are the most widely used in hydrological 

modeling. Fuzzy logic uses the logical operation functions AND /OR and IF-THEN fuzzy 

rules, each of which has its own definition based on membership concepts. However, it 

learns physical procedures imprecisely and affecting boundary circumstances. ANFIS, as 

a combination of ANN and fuzzy inference system improves the learning procedure and 

detection capacity and known to handle nonlinear and complex phenomenon. ANFIS has 

been used extensively to solve nonlinear and nonstationary hydrologic such as rainfall-

runoff and suspended sediment load modeling.  

 Babanezhad et al. (2021) applied ANFIS model for prediction of the SSL of 

different rivers in US. The study applied ANFIS with different membership function and 

compared with the ant colony optimization technique. They used different statistical 

indices such as R2, RMSE, MSE and correlation coefficient (r) to compare the 

performance of the models. The result revealed that the ANFIS model with trimf gave 

best result with R2 value of 0.981. 

 Bartoletti et al. (2018) studied the rainfall-runoff process with a combination of 

ANFIS and principal component analysis (PCA). The model used historical rainfall and 

runoff data as input to produce effective and simplified runoff prediction in the catchment. 

In this study, a combination of PCA and ANFIS was also used for modeling of the rainfall-

runoff process. The study found out that the combined ANFIS-PCA model gives a more 

accurate prediction of runoff compared to traditional ANFIS model. 
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 Folorunsho et al. (2012) modeled the stream flow of Kuduna River using ANFIS 

model. The study used 30 years of climatic and discharge data on monthly step. They used 

70% of the data for model calibration and 30% for mode verification testing. The 

performance of the model was assessed using RMSE and correlation coefficient (r). The 

result of this study revealed that ANFIS-based model performs with high accuracy (r value 

of 0.86) for predicting the river discharge. (Zakhrouf et al., 2014)also compare ANFIS, 

ANN and MLR for modeling the rainfall-runoff process in Algerian costal basin. The 

study used 10 years daily precipitation and discharge data for.  The performances of the 

applied model were evaluated using NSE and MSE and r. The result of this study showed 

that ANFIS performs better than the other models by giving the highest NSE (0.9364) and 

r and lowest MSE. 

 Cobaner et al. (2009) also used ANFIS model for estimation river suspended 

sediment load in Mad River catchment, USA.  The study used historical daily SSL, 

discharge and precipitation data as input variable to estimate the current day sediment 

load. The study compares the performance of ANFIS with MLP, GRNN and different 

sediment rating curve. They concluded that ANFIS model outperforms the other models 

estimating daily SSL for the particular data they used in the study. 

 Kaveh et al. (2017) tested different learning algorism of ANFIS model such as 

hybrid, Levenberg-Marquardt (LM) and backpropagation for SSL prediction using 

different combination of discharge and previous day SSL. The obtained result of this study 

showed that the all the training algorithm gave good result however network trained with 

Levenberg-Marquardt algorism gives better accuracy in prediction sediment.  

 Kottuvayal et al. (2014) applied ANFIS and ANN for rainfall-runoff modeling of 

Vamanapuram river basin. The accuracy of the models was compared using RMSE and 

DC. The result of this study showed that the ANFIS model provides more accurate 

prediction than ANN by providing lower RMSE and higher DC.  The performance of 

ANN and ANFIS was also compared by Panchal et al. (2016) in modeling  rainfall-runoff 

process in Dharoi sub basin, India. The study used 10 years of monthly precipitation and 

discharge data for validation and calibration. The result revealed that the ANFIS model 

provided more accurate in rainfall-runoff prediction compared to ANN. 
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SVM for rainfall-runoff and SSL modeling 

In recent years engineering research had directed towards intelligent system 

development that can automatically model a complex hydrological process. This process 

has high dimensional nature, non-uniform and data for them are limited. This problem had 

resulted in the literature to use machine learning techniques for building models. SVM is 

one of AI model developed by (Vapnik, 1995) which is gaining popularity due to its 

promising performance and attractive features. 

In recent years SVM has extensively used in modeling of many hydrological 

processes and water management.  Okkan and Serbes (2012) applied least square support 

vector machine (LSSVM) and ANN for forecasting runoff process in Tahtali and Gordes 

watersheds, Turkey. They also compared the accuracy of SVM and ANN with other 

autoregressive moving average and multiple linear regression models.  The result of this 

study indicated that LSSVM and ANN give better prediction performance than the 

conventional statistical models. LSSVM also provided better performance compared with 

ANN. 

 Kisi et al. (2012)used Genetic programming (GP), ANFIS, SVM and ANN in 

estimating suspended sediment load. According to this study, SVM gives a good modeling 

result.  Kişi and  Çimen (2009) also applied SVM in the modeling of reference 

evapotranspiration. In this study, the accuracy of SVM was compared with ANN and 

many other empirical models. The result revealed that SVM out performs and can be 

successfully used in modeling of reference evapotranspiration. Another study by Tabari 

et al.( 2013) used ANFIS and SVM for modeling crop evapotranspiration and compared 

them with various empirical models. The result showed that SVM and ANFIS give better 

forecasting performance than the empirical model. 

 Sedighi et al. (2016) compared the performance of SVM and ANN to simulate the 

rainfall-runoff process in snow watershed in Iran. They used temperature, discharge, 

rainfall and snow water equivalent (SWE) data as input to predict runoff. The study used 

RMSE and R2 to evaluate the performance of the applied model. The study concluded that 

the ANN model performed better than the SMV. 
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Wang et al. (2013) estimated the SSL process using SVM, FFNN and particle 

swarm optimization (PSO) in Yellow River, China. To enhance the performance of the 

model, they proposed   ensemble empirical mode decomposition (EEMD) to decompose 

the annual the annual rainfall in rainfall runoff modeling based on SVM. The result of the 

study showed that the proposed PSO–SVM–EEMD model enhanced the overall rainfall-

runoff forecasting performance. 

Kakaei et al. (2013) used SVM (using four kernels) and ANN to predict the daily 

SSL of Doiraj River, Iran. The study used 11 years of rainfall and discharge as input to 

predict SSL. The best input identification was conducted using a combination of genetic 

programing and Gamma test and compared with the result of Pearson correlation analysis. 

The performance of SVM and ANN in SSL estimation was evaluated using NSE, R2, 

MAE and Efficiency Index (E). The result showed that ANN model led the best result and 

among different SVM model, radial basis function (RBF) give the best estimation 

performance. 

Meshram et al. (2020) applied SVM, FFNN, RBF, and multi-model ANNs for 

sediment yield modeling in the Manot and Shakkar watersheds in India. The study used 

10 and 25 years of rainfall, runoff, and sediment data for the Manot and Shakkar 

watersheds, respectively. The study evaluated the performance of the developed models 

based on the lowest relative absolute error (LARE), NSE, RMSE and correlation 

coefficient (r). Among the applied models, the multi-model ANN provided better 

prediction with LARE = 0.344 and 0.36, r= 0.883 and 0.921, RMSE= 269,671.5 and 

23,609.5 , NSE= 0.763 and 0.744 in testing period for Manot and Shakkar, respectively. 

Kumar et al. (2022) uses wavelet-based SVM (WSVM) and SVM and compares 

their results with other three data-driven models, namely MLR, wavelet-based ANN 

(WANN) and ANN for suspended sediment concentration (SSC) prediction in the 

Subernrekha catchment, India. For this purpose, 10 years of daily water levels (h), SSC 

and discharge (Q) were used for the analysis. They used different input combinations and 

sensitivity analysis was performed using gamma test. The performances of the models 

used were evaluated with RMSE, NSE, r and Wilmot index (WI). The result of the study 

showed that the WSVM model with NSE, RMSE, r and WI value of 0.861 and 0.541, 
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0.117 g/l and 0.095 g/l, 0.928 and 0.751, 0.962 and 0.859, respectively, led to a better 

result in the calibration and verification phase. 

Misra et al. (2009) also applied SVM and ANN were used to estimate SSL and 

runoff on a daily, weekly, and monthly basis. Multilinear regression pattern recognition 

(MLRPR) was also tested for modeling runoff. The result showed that SVM gave a better 

result than ANN for both SSL and runoff modeling. It also showed that MLRPR 

performed worse than the other models in runoff modeling. 

The SVM, random forest (RF) and ANN model were used by Al-Mukhtar (2019) 

to estimate suspended sediment load in Tigris river, Baghdad.  The study used 10 years of 

SSL and runoff data for model calibration and verification. In this study the data was 

divided as 75% and 25% for calibration and verification, respectively. Based on the 

RMSE, NSE and R2 values, RF provided the most accurate result than the other models. 

Linear regression models 

Linear regression models (LRM) is empirical model that is applicable in solving 

linear problem. One of the big problems in the statistical analysis is to find a suitable 

relationship between a dependent variable and a set of independent variables. Regression 

analysis is thus used to describe the quantitative relationship between dependent variable 

and one or more independent variables (Tabari et al., 2010; Tabari et al., 2011). Regression 

models have been applied in hydrology in forecasting time series hydrological process 

such as in evapotranspiration (Tabari et al., 2012), rainfall-runoff modeling (Lateef 

Ahmad, 2017) and reservoir operation. The physically-based models (e.g SWAT, HBV 

and HEC-HMS) can incorporate simple linear laws and assume time varying, non-linear 

and deterministic parameters in modeling. Therefore, in this study MLR is applied only 

for SSL modeling. 

Physical model 

The physic-based or water balance model uses equations to simulate the movement 

of water throughout the system until it leaves. There are many physically based 

hydrological models used in forecasting of the rainfall-runoff process. Among them, a 
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semi-distributed physically based hydrological model such as SWAT, HBV and HEC-

HMS were selected for this particular study. 

SWAT for rainfall-runoff modeling 

SWAT model is a semi-distributed physical model that operates on a daily time 

step (Arnold et al., 1998).  This model was first developed by the United states department 

of agriculture to simulate land management impacts on water, agricultural chemical and 

sediment yield of complex catchment over a long period of time. This days SWAT model 

has extensively been applied in hydrological study (Iskender and Sajikumar, 2016;  Jeong 

et al., 2010; Noori and Kalin, 2016; Vilaysane et al., 2015;  Zhang et al., 2008). In SWAT 

model the watershed is divided into subwaterseds and which is then devided into HRUs 

based on the soil type, land use and slope. Dividing the catchment into sub-watersheds 

enables the SWAT model to reflect the effect of hetrogenity of catchment characterstics 

and nonuniform distribution of climatic variables  on the output. 

 Ahmadi et al. (2019) compared IHACRES, SWAT and ANN for rainfall-runoff 

simulation of Kan watershed, Iran, on an annual, monthly and daily basis. The result of 

the study confirmed that three of the considered models are suitable for simulation of the 

rainfall-runoff process even though the ANN model outperformed the other two models. 

Hallouz et al. (2018) also used SWAT for a small agricultural watershed (Wadi 

Harraza’s), Algeria. Good result was obtained based on model evaluation criterias.  

SWAT model was also used for hydrological characterization and assessment of 

Lake Ziway sub-watersheds, Ethiopia.  Brighenti et al. (2019) also applied the SWAT 

model for runoff and sediment simulation with two different calibrations (simultaneous 

and sequential techniques. The result suggested that good result was obtained from the 

modes even though the simultaneous calibration method shows superiority over the other 

method. 

Bizuneh et al. (2021) used SWAT and HBV models to simulate the runoff from 

three watersheds in the upper Blue Nile basin, Ethiopia. The study used Nash-Sutcliffe 

Error (NSE) as a performance evaluation criterion and found that the two models used 

produced acceptable results in both calibration and validation phases. Biru and Kumar, 
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(2018) applied the SWAT model for runoff and suspended sediment load simulation of 

Mojo watershed, Ethiopia. They concluded that the model showed a good simulation 

performance of runoff with NSE of 0.7 in the verification phase. Melaku and Wang, 

(2019) applied a modified SWAT model to estimate the groundwater table of two 

locations (Barons and Lethbridge), Canada. The result showed the modified SWAT 

showed an improvement of modeling accuracy in the groundwater table. 

Ahmadi et al. (2019) compared IHACRES, SWAT and ANN for rainfall-runoff 

simulation of Kan watershed, Iran, on an annual, monthly and daily basis. The result of 

the study confirmed that three of the considered models are suitable for simulation of the 

rainfall-runoff process even though the ANN model outperformed the other two models.  

 Hallouz et al. (2018) also used SWAT for a small agricultural watershed (Wadi 

Harraza’s), Algeria. SWAT model was also used for hydrological characterization and 

assessment of Lake Ziway sub-watersheds, Ethiopia. Brighenti et al. (2019) also applied 

the SWAT model for runoff and sediment simulation with two different calibrations 

(simultaneous and sequential techniques. The result suggested that good result was 

obtained from the modes even though the simultaneous calibration method shows 

superiority over the other method. 

HEC-HMS for rainfall-runoff modeling 

 HEC-HMS hydrological model was developed by the US Army Corps of 

Engineers (Feldman, 2000) for simulating many hydrological process. HECH-HMS 

model was origionaly developed for modeling rainfall-runoff process for dendric 

watershed in time and space. Latter,the applicability of this model was expanded and 

have been applied to model many hydrological studies due to its ability of providing 

acceptable runoff simulation, operational simplicity and use of commen methods 

(Tassew et al., 2019). Generally, different hydrological parameters can be simulated 

using HEC-HMS such as runoff, evapotranspiration, precipitation and groundwater 

discharge in which simulation of each parameter is done using separate method. In this 

model, the spatial and temporal distribution of the rainfall can be evaluated using 

different methods such as soil conservation service, grided precipitation, specified 

hyetograph etc. 
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HEC-HMS model comprises different components such as terrain data manager, 

basin model, control specification, meteorological model and time series data manager. 

This model is becoming increasingly popular because it is user friendly, can successfully 

simulate both continuous and event-based runoff. Also, it can be used to solve various 

hydrological problems such as rainfall-runoff modeling, flood prediction and warning, 

project planning and watershed management irrespective of the size of the catchment.  

For rainfall-runoff the model uses different inputs such as temperature LULC, 

precipitation, runoff and evapotranspiration. 

 Previous studies on the use of HEC-HMS on simulation and forcasting of  runoff 

proved its ability to give acceptable result on different catchment type and datasets. 

Those studies indicated that the simulation result of the model were location specific, in 

that runoff transform method, loss method and baseflow separation methods were found 

to be variable (Tassew et al., 2019). 

 The tudy conducted by Abushandi and Merkel (2013) on the Dhuliel arid 

catchment, Jourdan  used Hec-Hms and IHACRES to model rainfall-runoff process. The 

result of this study revealed that  HEC-HMS model can give more accurate result. 

 Aliye et al. (2020) evaluated the performance of HEC-HMS model and compared 

it with the SWAT model for rainfall-runoff simulation in data scarce region of Ethiopian 

rift valley lake basin. The result obtained in this study, using R2 and NSE, indicated that 

the rainfall-runoff simulation ability of the HEC-HMS model was better than the SWAT 

model for that specific catchment. 

 Zelelew and Melesse (2018) applied HEC-HMS model runoff estimation at 

Angereb catchment, Upper Blue Nile, Ethiopia. The objective of the study was to compare 

different loss method and transfer method and test it for ungauged catchment. For this 

they used two loss methods namely initial and constant method and soil conservation 

service methods and two transfer methods namely Clark unit hydrograph and SCS-unit 

hydrograph. The result of the study showed that constant and initial loss method with SCS 

unit hydrograph transform method gave best result. 
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HBV for rainfall-runoff modeling 

The HBV, developed by the Swedish Meteorological and Hydrological Institute, 

is a conceptual semi-distributed rainfall-runoff model. This model is simple and requires 

small number of inputs such as daily temperature, rainfall and evapotranspiration. It gives 

relatively good result and its structure is flexible in which the watershed is subdivided on 

different land use, elevation band and vegetation zones (Lindstrom et al., 1997). In last 

previous decades, this model has been widely used applied in rainfall-runoff simulation 

of ungauged watershed, design flood computation and water quality modeling. The HBV 

model for rainfall-runoff modeling has hydrologic routines namely snow routine, response 

routine, soil routine and routing routine. The threshold temperature (TT) in the snow 

routine defines the range of temperature at which the snow starts melting. The main 

routine, soil routine, controls the transformation of rainfall or snow melt to runoff.  The 

transformation function in the response routine converts the excess flow in the soil routine 

to runoff. At the outlet point, the runoff hydrograph can be obtained in the routing routine 

by transforming the runoff from the response routine. This model has been used for 

various hydrologic modeling and has demonstrated the best modeling capability in 

modeling climate change (Kazemi et al., 2019), runoff simulation (Esmaeili-gisavandani 

et al., 2021) and water level prediction (Pervin et al., 2021). 

Bizuneh et al. (2021) applied HBV model to simulate the stream flow of three 

watersheds in Blue Nile River basin. Based on the NSE value, the model gave acceptable 

result even though it shows unfactored result in the extreme too dry and too wet 

conditions. Also Esmaeili-gisavandani et al. (2021) used HBV model for rainfall-runoff 

modeling in Iran and compare the result with other models. They used NSE, RMSE and 

KGE to evaluate the performance of the models. The result of this model showed that 

HBV model gave acceptable result (NSE=0.55), but not as good as the SWAT model. 

Uhlenbrook et al. (2010) applied the HBV model for stream flow characterization 

of Koga and Upper Gilgel Abay catchments. They analyzed the model’s response for 

stream flow in lumped, lumped with various vegetation zone and semi-distributed with 

various elevation and vegetation zone condition. The study found that the HBV model 

applied for semi-distributed catchment gave very good result with NSE value of 0.8. Ren 
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et al. (2018) used combined HBV model and Bayesian neural network (BNN) for 

prediction of stream flow in Alpine region. In this study, in the first step, the stream flow 

was modeled by HBV and BNN. Then, a hybrid of the two models was then developed to 

further improve the stream flow prediction. The result of this study revealed that more 

accurate result was obtained from the hybrid model than the single models.  

Ensemble techniques rainfall-runoff and SSL modeling  

Ensemble technique is a kind of machine lernean in which the results of single 

models are combined using different technique to improve the overall modeling 

performance. To date, various ensemble methods have been applied in the field 

engineering. The methods employed in previous studies are either linear or non-linear 

ensemble methods. The linear ensemble methods include the weighted average ensemble 

(WE) and simple average ensemble (SE) whereas the non-linear combination methods 

include artificial neural network (NE), gene expression programming (GEP), symbolic 

regression, Bayesian model averaging method, and fuzzy based methods.  Generally, 

linear ensemble methods; namely SE and WE are most commonly applied for stream flow 

forecasting. These methods are also used as a benchmark for comparing the results with 

other ensemble techniques (e.g. ANN methods and regression methods). Many published 

studies showed that SAM ensemble method can provide forecasts that are better than those 

obtained by single models (Makridakis and Winkler, 2008; Nourani et al., 2019; Sharghi 

et al., 2018; Timmermann, 2005) 

The application of model combination techniques was first published by Bates and 

Grange (1969) in the field of economic forecasting.  This study used the weighted average 

method of combining the results from a different set of forecasting models. The result of 

this study revealed that the ensemble technique performs better than the individual 

forcasting models. Since then the advantage of ensemble technique has been demonstrated 

in different field of studies (Armstrong, 2001; Deutsch et al., 1994; Palm and Zellner, 

1992). The result from these studies showed that the ensemble technique could lead to 

significantly increased performance by reducing forecasting error as compared with the 

result of single models.  
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The first model combination methods in the field of hydrology were investigated 

by Cavadias and Morin (1986). They used ten hydrological models for simulating the 

discharge and combined the result of these models using three different combination 

methods. The result of this study showed that ensemble the simulated discharge improved 

the performance by 80% more than the individual model results. In rainfall-runoff 

forecasting, Shamseldin et al. (1997) compared three ensemble methods: WE, NE and SE 

to combine the obtained results from five different rainfall-runoff models. The result 

revealed that the ensemble output was more accurate than the best single model and the 

NE ensemble method outperforms as compared with another ensemble method. Later, a 

real-time model output combination method was developed and tested by Shamseldin and 

O’connor (1999) using three different rainfall-runoff models on five watersheds. Their 

result indicated that the ensemble streamflow output was better than that of the single 

outputs. Coulibaly et al. (2005) found that using WE for combining three different models 

can significantly improve the accuracy of the daily reservoir inflow forecast. 

Another study by See and Openshaw (2000) forecasted Ouse river’s flow in 

northern England by applying a hybrid multi-model approach. The study developed four 

different conventional and AI-based approaches namely: the ARIMA model, hybrid 

neural network, naïve prediction and simple rule-based fuzzy logic models to give a 

hybridized solution for flood and river level problem. These individual models were then 

combined through four approaches: Bayesian approaches, simple average, and two fuzzy 

logic models (fuzzification of crisp Bayesian method, and based current and past river 

flow condition). The result indicated that the proposed combined model provides better 

output than the individual models and crisp Bayesian model yielded results superior to 

other integrated(combined) methods. 

 Xiong et al. (2001) introduced and applied a novel combination method of first-

order Takagi-Sugeno fuzzy system (besides the neural network ensemble (NNM), 

weighted average method (WAM) and simple average method (SAE) to combine the 

output from five different rainfall-runoff models on eleven watersheds. The result showed 

that the output of the combined model was more accurate than the individual single models 

and the first-order Takagi-Sugeno fuzzy system as an efficient result as WAM and NNዕ.  
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Fernando et al. (2012) also applied Gene expression programing (GEP) to combine the 

output from four different conventional (two black boxes and two conceptual) rainfall-

runoff models on four different catchments. They found that GEP combination gives an 

improvement in forecasting rainfall-runoff process compared to an individual single 

model. They concluded that GEP can be used as an alternative to combine multi-models 

in rainfall-runoff modeling. 

The applicability of ensemble techniques for SSL estimation has not been reported 

in literature. Thus, this study was the first study which applied the two nonlinear (AE and 

NE) and two linear ensemble techniques (WE and SE) for SSL modeling in Katar 

catchment. 
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CHAPTER III 

Methodology 

 Description of the study area 

The study was conducted in the Katar catchment, a sub-catchment of Ethiopian central 

rift valley basin. The catchment is located at latitude 7.359° to 8.165°N and longitude 

38.899° to 39.41°E ( see Fig. 1), covering an area of 3350 Km2. In the study area, the main 

river (Katar River) and its tributaries originating from the eastern parts of Chilalo, Lalema 

and Kakka mountains drains to Lake Ziway. The catchment is characterized by complex 

topography where elevations vary between 1635 m to 4167 m above mean sea level.  

 

Figure 1  

Map of Katar catchment 
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Climate and hydrology of the study area 

Semiarid to sub-humid climates are the main characteristics of Katar catchment with 

average annual temperature of 16-20 °C.  The minimum and maximum annual rainfall of 

the area is 729.6 mm and 1231.7 mm, respectively. The dry period of the year extends 

from October - May and the wet season occurs from June to September (contribute about 

70% of the rainfall). In the catchment, six meteorological stations are available namely, 

Sagure, Assela, Bekoji, Arata, Kulumsa and Ogolcho (see Figure 1). The area has one 

stream gauging station (Abura), at the catchment outlet, which gets a maximum flow in 

August (152.033 m3/s) and a minimum flow in January (0.106 m3/s). 

Soil and land use 

The study area comprises six dominant soil types namely luvisols,  andosols, fluvisols, 

cambisols, nitisols and vertisols (Aga et al., 2018). The common land use type of the 

catchment is agriculture where both rainfed  and irrigated crops are grown. In addition to 

agriculture, other land use type includes afro-alpine, wetland, waterbody, shrublands and 

settlement (urban area).  

Methodology  

Data type and source 

In this work, 12 years (2006-2017) of daily rainfall, minimum and maximum 

temperature, runoff, and 2 years (2016-2017) of SSL data (due to data shortage) were used 

for rainfall-runoff-sediment modeling. For rainfall-runoff modeling, the first two years of 

data (2006-2007) were used for the warming period (for SWAT and HBV model), seven 

years of data (2008-2014) were used for calibration, and the remaining three years (2015-

2017) of data were used for validation. Due to data scarcity, only two years (2016-2017) 

SSL and runoff data were used for modeling SSL. In SSL modeling, from the two years 

of data, 70% was used for calibration and the remaining 30% of the data was used for 

validation. The climate data such as minimum temperature, daily rainfall, and maximum 

temperature from six meteorological stations were collected from the Ethiopian National 

Meteorological Agency. The runoff data recorded at the Abura gauging station were 

obtained from the Ethiopian Ministry of Water, Irrigation and Energy. The descriptive 

statistics of Thiessen polygon average rainfall, SSL, and runoff are shown in Table 1.  
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Table 1  

Statistics of Runoff, SSL and Rainfall Data 

Data type Period 

Statistical parameters 

Minimum Average Maximum 
Standard 

deviation 

Coefficient 

of 

variation 

Discharge 

(m3/s) 

Calibration 0.106 11.848 152.033 19.043 1.6073 

Validation 0.115 12.995 126.779 20.4354 1.57255 

Whole 0.106 12.192 152.033 19.47834 1.5976 

Calibration 0 71.2 2.1277 4.658 2.1891 

Rainfall 

(mm) 

Validation 0 2.6243 52.4 5.2445 1.9984 

Whole 0 2.2767 71.2 4.8467 2.1288 
 Calibration 0 1760.29 57335.524 5102.626 2.899 

SSL  Validation 0 3391.36 52947.35 5850.01 1.725 

(ton/day) Whole 0 2248.94 57335.52 5389.566 2.397 

 

Physically-based models require not only climatic and hydrological data, but also 

spatial data such as soil maps, land use maps, and digital elevation models (DEM). The 

soil map was prepared by downloading global soil map from the Food and Agriculture 

Organization (FAO) database and clipped it to the size of the Katar catchment. The other 

basic input for physically- based models to get terrain information, DEM with a 30m x 

30m resolution was obtained from the Shuttle Radar Topography Mission (SRTM) of 

https://earthexplorer.usgs.gov/. In the catchment, different process such as flow rate, 

evapotranspiration, infiltration rate and soil erosion are highly influenced by land use type. 

Therefore, Landsat image was downloaded from the United States Geological Survey 

website to prepare the land use map of the study area. Then, the satellite image was 

processed using ArcGIS 10.3 to generate the required land use information. 

Proposed models 

For this study two physically based model (SWAT and HEC-HMS), one conceptual 

semi-distributed (HBV) model and three AI models (SVM, ANFIS and FFNN,) was used 

for the  rainfall-runoff modeling in the Katar catchment. Similarly, three AI-based (SVM 

ANFIS and FFNN) and multilinear regression (MLR) models was employed for SSL 
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modeling. For AI-based models, the input data used was first normalized and partitioned 

in to training and validation sets in order to model the rainfall-runoff-sediment process. 

Moreover, for this study three ensemble techniques such as neural network ensemble 

(NE), weighted average ensemble (WE), simple average ensemble (SE) and ANFIS 

ensemble (AE) (for SLL only) was used to improve the overall modeling efficiency. A 

combination of different AI models (ANFIS, FFNN, and SVM), conceptual model (HBV) 

and physically model (SWAT, HEC-HMS) was examined in the modeling framework.  

The study was conducted in five steps. In the first step, a sensitivity analysis was 

performed to identify the most important inputs in modeling rainfall-runoff and SSL. 

Secondly, rainfall-runoff and SSL modeling was conducted via single models. In this step, 

three AI based (ANFIS, SVM, and FFNN) and three physical based models (SWAT, HBV 

and HEC-HMS) were used for rainfall-runoff modeling. For SSL modeling, only the AI-

based (ANFIS, SVM, and FFNN) and MLR models were used due to the complexity of 

the process and data scarcity. In the third step, the runoff results of each model from 

second step were combined using three ensemble techniques (SE, WE and NE) in three 

scenarios. In the first scenario, only the result of the three physically based models were 

combined using the proposed ensemble techniques. In the second scenario, only the 

outputs of the three AI-based models were considered in the ensemble unit. In the third 

scenario, all six models (both physically-based and AI-based models) were ensembled 

using the WE, SE and NE technique.  Similarly the SSL value obtained by the AI-based 

and MLR models in the second step was ensembled via SE, WE, AE and NE. In the fourth 

step, the runoff results obtained by the best ensemble technique in step three (from each 

scenario)  with lagged discharge were used as input for SSL modeling via ANFIS, SVM, 

FFNN and MLR. Finally, the SSL value obtained from each individual model in step four 

was ensembled via AE, NE, WE and SE. The results of each model and ensemble 

techniques were compared. The general procedure of the  proposed methodology is shown 

in Figure 2. 
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Figure 2 

Schematic Representation of the Proposed Methodology 

 

 

FFNN 

ANN is  one of the most widely used AI-based model which mimics the simulation and 

learning ability biological neural network operation performance. This model provides an 

outstanding methodology in handling with nonlinearity, nonstationary and noisy data 

particularly when the physical relationships are not fully understood. Its ability to learn 
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from training data makes ANN applicable and robust in areas of mathematics, 

engineering, science and business (Kumar et al., 2014). Among the different forms of 

ANN, the  FFNN trained by BP is the most widely applied because of its simplicity and 

convergence time. The name FFNN is derived from the way information is transmitted.  

In this method information flows only in forward direction (Umar et al., 2021).  The 

structure of FFNN is shown in Figure 3. The FFNN structure consists of nodes, a 

interconnected processing element having unique properties such as learning, 

nonlinearity, tolerance, and other data processing capabilities (Kumar et al., 2014). FFNN 

have different layer such as input, hidden and output layer as shown in Figure 3. In this 

model, weights connect progressing layers and neurons. The backpropagation algorithm 

was used  for the learning phase. For this particular study, FFNN was chosen because it 

has the unique advantage of providing exceptional solutions to various problems without 

the need to know the mathematical calculations of the parameters. In this model adjusted 

weight is applied to each input and transfer function is used to pass it in order to provide 

output for that node. Among transfer functions, sigmoid function, the most widely applied 

function, is then acts on sum of weight of input neuron (Ghaffari et al., 2006).  The neural 

network establishes the relationship between the data by iteratively adjusting the weight. 
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Figure 3   

The Structure of ANN Model (Tanty and Desmukh 2015) 

 

ANFIS 

ANFIS, the other important model, is universal approximator first developed by  

Jang (1993) as a hybrid of ANN and FIS to solve  the limitations of ANN and FIS. As a 

hybrid model, ANFIS combines the advantage of ANN learning ability and reasoning 

ability of rule-based FIS that can include past observation in to classification process. In 

this model, fuzzy logic definition is used to built the system and neural network 

automatically optimizes the system parameters as opposed to manual optimization  in 

building system in FIS (Rai et al., 2015). The flexibility and adaptability of ANFIS model 

makes it a proven approach in processing the uncertainty in the data that is as well as its  

high ability to handle large noisy data from dynamic and complex systems (Nourani et al., 

2020). 

According to  Nourani and Komasi(2013) fuzzy database fuzzifier and defuzzfier 

are the three parts of fuzzy system. Also, the inference engine and fuzzy rule are the two 

parts of the fuzzy database. As result most operational analysis is performed via Fuzzy 
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inference engine. Among different FIS, in the present study, the Sugeno first-order fuzzy 

model was used. In ANFIS, model calibration requires definition of fuzzy language rules. 

In this model, calibration of MF can be made using least square and or BP. The ANFIS 

structure consists of five layers each named after their operational functions with layer 1, 

layer 2, layer 3, layer 4 and layer 5 representing the input, input MF, the rule,  the output 

MF and the output, respectively as shown in Figure 4. 

 

Figure 4  

Structure of ANFIS Model  (Nourani et al., 2017) 

   

 

     After building the fuzzy system, if-then rule is used to establish the relationship 

between input and output variables. A Siguro system assuming a FIS containing only wo 

inputs (x and y) and one output (f), has the following rules (Eq. 1 and 2). 

  Rule (1): if μ(x) is A1 and μ(y) is B1: then f1 = p1x + q1y + r1              (1) 

  Rule (2): if μ(x) is A2 and μ(y) is B2: then f2 = p2x + q2y + r2              (2) 

Where A1, A2 , B1 and  B2 are MFs parameters for input x and y. Whereas, p1, q1, r1, p2, q2, 

r2, are outlet functions’ parameters of  f. 

 The description and structural formula of each five layers of ANFIS are as follow: 
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Layer 1: Every node i is an adaptive node in this layer, which has a node function as Eq. 

(3). 

𝑄𝑖
1 = μAi(x)for i = 1,2 or 𝑄𝑖

1 = 𝜇𝐵𝑖(𝑥)𝑓𝑜𝑟 𝑖 = 3,4                                          (3) 

Where Qi
1 is membership grade for x or y.  

Layer 2: in this layer, T-norm operator connects each rule between inputs with “AND” 

operator as in Eq. (4). 

  𝑄𝑖
2 = wi = μAi(x). μBi(y) for i = 1,2                                                           (4) 

Layer 3:  Normalized firing strength is the output in this layer and calculated as: 

 𝑄𝑖
3 = �̅� =

𝑤𝑖

𝑤1+𝑤2
 𝑓𝑜𝑟 𝑖 =  1,2                    (5) 

Where �̅� is the output  

Layer 4: Each node i in this layer calculates the consequence of the rules on the output of 

the model: 

Qi
4 = �̅� (pix + qiy + ri) = �̅�fi                    (6) 

Layer 5: The total output of the model is computed by adding all incoming signals to this 

layer as: 

𝑄𝑖
5 = �̅�(𝑝𝑖𝑥 +  𝑞𝑖𝑦 +  𝑟𝑖) = 𝛴𝑤𝑖𝑓𝑖 =

∑𝑤𝑖𝑓𝑖

∑𝑤𝑖
                                        (7) 

SVM 

Support vector machine (SVM) , one of the AI-based model which is a proven 

solution for acceptable regression, prediction, and classification tasks (Kalteh, 2013). 

Statistical learning and structural risk minimization theory are the two important features 

that makes SVM different from other AI models such as ANN. Among different SVM-

based models, Support vector regression (SVR) is used for regression and employs 

structural risk minimization. SVR is a comparatively new model that can be used to 

successfully model complex, daynamic and nonlinear processes. As with other SVM-

based models, minimizing operational risk is the main goal of SVR. This distinguishes 

them from other AI models, where the main objective is to minimize the difference 

between observed and calculated values.  The SVR consists of two stages in which the 

data is first fitted to a linear regression and then the output goes through a nonlinear kernel 

to capture nonlinearity of the data (Umar et al., 2021). For a given data set, {(𝑥𝑖, 𝑑𝑖)}𝑖
𝑛

 



47 
 

 
 

(𝑥𝑖 , 𝑑𝑖and n denotes the actual value, input vector and number of data respectively), the 

general SVR function is given by Wang et al. (2013) as: 

𝑦 = 𝑓(𝑥) = 𝜔𝜙(𝑥𝑖) + 𝑏                                                                                  (8) 

Where ϕ, ω and b are nonlinear mapping function, weight vector and bias term, 

respectively.  The value of ω and b can be computed by giving positive values for the 

slack parameters of ξ and ξ*and minimizing objective function as: 

Minimize: ( )







 ++
n

i
iicw *||||

2

1 2
  

Subjected to:{

𝑤𝑖𝜑(𝑥𝑖) + 𝑏𝑖 − 𝑑𝑖 ≤ 𝜀 + 𝜉𝑖 ∗, 𝑖 = 1,2, … . . , 𝑛
𝑑𝑖 − 𝑤𝑖𝜑(𝑥𝑖) + 𝑏𝑖 ≤ 𝜀 + 𝜉𝑖 ∗ 𝑖 = 1,2, . . … . . , 𝑛
𝜉𝑖𝜉𝑖 ∗, 𝑖 = 1,2, … … . . , 𝑛

 

Where: 
1

2
||𝑤||2, c and 𝜀 are the weights vector norm, regularized constant and tube size, 

respectively. The general SVM model structure is given in Figure 5. 

Figure 5 

 The General Structure of SVM 
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A dual quadratic optimization problem is developed from the optimization 

problem indicated above by introducing 𝛼𝑖𝑎𝑛𝑑 𝛼𝑖 ∗  (langrage multipliers). This quadratic 

optimization problem is solved using inequality constant and weight vector (𝜔) can be 

computed as Wang et al. ( 2013). 

𝑤 ∗= ∑ (𝛼𝑖 − 𝛼𝑖 ∗𝑛
𝑖 )𝜑(𝑥𝑖)                                                                                (9) 

Thus, the final SVM regression formula is express as:  

𝑓(𝑥, 𝛼𝑖, 𝛼𝑖 ∗) = ∑ (𝛼𝑖 − 𝛼𝑖 ∗)𝐾(𝑥, 𝑥𝑖) + 𝑏𝑛
𝑖=1                                                   (10)                                      

Where 𝑘(𝑥1, 𝑥2) is the kernel function.  

Among various kernel functions, gaussian radial basis is the most extensively used and is 

expressed as:  

𝑘(𝑥1, 𝑥2) = 𝑒𝑥𝑝( − 𝛾||𝑥1 − 𝑥2||2)                                                                  (11) 

Where: 𝛾 is the kernel parmeter 

SWAT 

SWAT is a semi-distributed physical-based model that works on a daily time step 

(Arnold et al., 1998). In the last decades SWAT model has extensively been applied in 

simulation simulate erosion, infiltration, evapotranspiration, surface runoff, and 

groundwater flow, and to estimate storage in reservoirs over a long-term period  (Iskender 

and Sajikumar, 2016; Vilaysane et al., 2015). This model requires climate and spatial input 

data including rainfall, temperature, soil map, terrain data (DEM) and land use and land 

cover (LULC) map. Although it requires large number of input parameters, SAWT model 

can provide accurate estimation of runoff on seasonal, monthly and daily time scale 

(Demirel et al. 2014)  

In SWAT model the catchment is divid ed into multiple sub-catchments which are 

then further subdivided into hydrological response units (HRUs) depending on the soil, 

land use and slope of the catchment.  Surface runoff is then estimated separately for each 

sub-basin and routed to quantify the total surface runoff of the catchment. This mode 

comprises different components such as crop growth, sedimentation, hydrology, pesticide, 

agriculture management and nutrient. A good description of these components is 

presented by Srinivasan et al. (1998). 
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The hydrologic cycle (hydrologic component) is expressed in terms of the water balance 

as: 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑙𝑎𝑡 − 𝑄𝑔𝑤)𝑡
𝑖=1                   (12) 

Where: SWt is the final water content (mm), SWo is the initial soil water content on day 

i (mm), t is time in days, Rday is amount of precipitation on day i (mm), Qsurf  is the amount 

of surface runoff on day i (mm), Ea is the amount of evapotranspiration on day i (mm), 

Qlat is lateral flow from soil to channel, Wseep is the amount of water entering the vadose 

zone from the soil profile on day i and Qgw is the amount of ground water flow on day i 

(mm) 

Surface runoff is computed using Green–ampt infiltration equation or soil 

conservation service (SCS) curve number (CN). For this particular study, the SCS curve 

number method was used to calculate surface runoff as: 

𝑄 =
(𝑅−0.2𝑆)2

𝑅+0.8𝑆
, 𝑅 > 0.2𝑆                                                                                   (13) 

 𝑄 = 0, 𝑅 ≤ 0.2𝑆 

Where: Q, S, R represents daily runoff (m3/s), retention papameter (mm) and  rainfall 

(mm), respectively 

The value of S is calculated using  CN as: 

𝑆 = 254 (
100

𝐶𝑁
− 1)                                                                                           (14) 

Where: CN is curve number(ranging between 1 and 100) 

In SWATmodel penman monteith or Hargreaves method will be used to calculate 

the potential evaporation in the catchment (Arnold et al., 1998). The stream flows are 

adjusted for evaporation diversions, transmission losses, and return flow. A complete 

description of all the procedure and components in SWAT can be found in the literatures 

(Arnold et al., 1998; Neitsch et al., 2011) as shown in Figure 6.  
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Figure 6   

Schematic of SWAT Model Simulation 

 

 

In the catchment, rate of infiltration, soil erosion, evaporation and runoff all 

affected by soil type and LULC. Thus, LULC information is one of the required inputs for 

SWAT model. For this purpose, a Landsat image was downloaded from the United States 

Geological Survey website and then processed and clipped to fit the size of the study area 

using ArcGIS as shown in Figure 7. 
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Figure 7 

 Land Use Map of the Study Area 

 

The other required input for SWAT model, the soil data in which global soil map 

was downloaded from the database of FAO. Then the downloaded global soil map was 

processed and clipped to the size of Katar catchment using ArcGIS, as shown in Figure 8. 
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Figure 8 

Soil map of Katar catchment 
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Figure 9 

 The Slope Classification of Katar Catchment

 

Figure 10  

Sub-watershed Delineated by the SWAT Model for Katar Catchment  

 



54 
 

 
 

HEC-HMS 

This model is a semi-distributed physically-based model which has been 

extensively applied for different watersheds using different dataset for streamflow 

simulation. The model was initially developed for simulation of the rainfall-runoff in 

dendric watershed. Later, its applicability is expanded to solve problems such as flood 

hydrograph, large drainage basin water distribution and runoff in small catchment (Shekar 

and  Vinay, 2021). Like other physically-based hydrological models, HEC-HMS model 

can simulate rainfall-runoff process with acceptable accuracy (Abushandi and Merkel, 

2013). In this model, the excess rainfall in the catchment is computed by considering 

pervious characteristics of the connected surfaces. The direct runoff in the stream is then 

formed by the combination of overland flow and near-surface flow (Young et al., 2017).  

The input data for HEC-HMS in rainfall-runoff modeling includes DEM, weather 

data, discharge, soil type and  LULC (Scharffenberg and  Fleming, 2010). Like other semi-

distributed physically based models, HEC-HMS divides the catchment into different sub-

catchments connected by channels to represent the effects of spatial variability of the input 

data in the output. In the current study the catchment was divided in 17 sub basins (see 

Figure 11).  
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Figure 11 

Sub-basins for HEC-HMS Model 

 

In this study, HEC-HMS 4.7.1 was used and it has several components such as the 

basin model manager, terrain data manager, time series manager, and control specification 

manager. The DEM prepared using ArcGIS was imported into the HEC-HMS model for 

terrain processing and create basin model.  In the HEC-HMS model, the GIS component 

is available and is used for drainage processing, sink preprocessing, stream identification 

and element delineation. In element identification, an outlet is selected and the model 

automatically delineates and divides the catchment in to sub-basines. Although the HEC-

HMS model has been tested and calibrated on a global scale, few efforts have been made 

in the context of Katar catchments. 

Runoff, in this model, is computed by deducting the interception, 

evapotranspiration, storage and infiltration from total rainfall. Different loss methods are 

available in this model, some of which are used for event simulation and others are 

appropriate for continuous process simulation. In addition, some of these methods are 
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complex and require multiple inputs that are not readily available. Therefore, in this study, 

the SCS-CN loss method was used for direct runoff estimation because it is efficiency 

reported and tested in different environment, simple, data, require limited input and is well 

supported by empirical data. According to Tassew et al. (2019), SCS-CN method 

calculates that the accumulated rainfall-excess depends on soil type, land use and 

cumulative rainfall as shown in eq.. 

Pe =
(P−Ia)2

P+Ia+S
                                                                                                         (15) 

Where Pe and P are the accumulated excess rainfall and accumulated rainfall depth, 

respectively both at time t (mm). The maximum retention (S) can be computed from curve 

number (see Eq. 14). 

HEC-HMS model computes the direct runoff from the watershed by transforming 

excess precipitation to point runoff using a variety of methods Tassew et al. (2019). In 

this study, the SCS Unit hydrograph transfer method was used to convert the excess 

precipitation to runoff. This method was preferred over the other methods because it 

requires only one input (lag time). The lag time (Tlag) is the time from the center of the 

excess precipitation to the peak of the hydrograph and is calculated for each sub-basine 

using the concentration time (Tc) as: 

𝑇𝑙𝑎𝑔 = 0.6𝑇𝑐                                                                                                     (16) 

Where Tlag and Tc are in minutes. 

Tc is calculated based on each sub-basin characteristics as:  

𝑇𝑐 = 0.0078 (
𝐿0.77

𝑆0.385)                                                                                         (17) 

Where L and S are the length of reach (feet) and slope, respectively 

As water flows through a river, it is attenuated due to storage effects in the river 

channel. HEC-HMS model has several routing methods in rainfall-runoff modeling to 

account for the effect of this attenuation. Among different methods, this study used 

Muskingum routing approach. This method is preferred over the others because it is 

straightforward, simple and successfully tested in many areas of river engineering 

(Tewolde and Smithers, 2006). It requires only two parameters: dimensionless weight (X) 

and travel time (K). 
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HBV 

HBV model is a semi-distributed conceptual model. In this method the whole 

catchment is divided in to sub catchments based on different vegetation and elevation 

zones.  The structure of this model is simple and requires small input for rainfall-runoff 

of the catchment. The input for this method includes rainfall, runoff, air temperature and 

estimated evaporation on daily step. In this study, HBV light, an updated version of the 

original model, was used because considers the contribution of groundwater in rainfall- 

runoff modeling process. The general structure of the HBV model is shown in Figure 12. 

Figure 12 

Schematic of the HBV Model 

 

HBV model consists of four subroutines such as snow routine, response routine (K0, UZL, 

K1, PERC, and K2), soil routine (FC, LP and BETA) and routing routine (MAXBAS). The 

snow component represents the contribution of snow melt to runoff generation and it is 
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not relevant in this study as there is no snow available on the Katar catchment. Soil routine 

measures the contribution of groundwater and soil moisture (SM) variation based on the 

amount of flow coming from the earlier routine (P) and field capacity (FC) as: 

𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒

𝑃𝑡
= [

𝑆𝑀𝑡

𝐹𝐶
]

ᵦ

                                                                                               (18) 

If the ratio of SM to FC is greater than the value of LP, the actual evapotranspiration 

(ETact) and potential evapotranspiration (ETpot) are equal. Otherwise, AET is could be 

minimized as: 

𝐸𝑇𝑎𝑐𝑡 = 𝐸𝑇𝑝𝑜𝑡 𝑥 𝑚𝑖𝑛 (
𝑆𝑀𝑡

𝐹𝐶𝑥𝐿𝑃
, 1)                                                                      (19) 

In HBV model, two reservoir model is considered for the study catchment and surface 

runoff is computed by subtracting losses from the precipitation which represents the flows 

in to the first reservoir.  The outflow of the first reservoir are direct flow (Q0) and 

intermediate flow (Q1) while groundwater flow (Q2) is the outflow of the second reservoir. 

Therefore, the groundwater flow (Qgw) flow is computed by the summation of the two or 

three flows, based on upper zone storing (SUZ) is located above or below the threshold 

zone (UZL) as: 

𝑄𝑔𝑤 = 𝐾2 𝑥 𝑆𝐿𝑍 𝑥 𝐾1 𝑥 𝑆𝑈𝑍 𝑥  𝐾0 𝑥 max(𝑆𝑈𝑍 − 𝑈𝑍𝐿, 1)                             (20) 

Where K0, K1, and K2 are the recession coefficients for Q0, Q1 and Q2, respectively. 

Then runoff is simulated using the MAXBAS parameter and triangular weighting function 

as: 

𝑄𝑠𝑖𝑚(𝑡) = ∑ 𝐶(𝑖) 𝑥 𝑄𝑔𝑤(𝑡 − 𝑖 + 1)𝑀𝐴𝑋𝐵𝐴𝑆
𝑖=1                                                     (21) 

Where Qsim is simulated runoff and C(i) can be calculated as: 

𝐶(𝑖) = ∫
2

MAXBAS 
− |𝑈 −

𝑀𝐴𝑋𝐵𝐴𝑆 

2
|  𝑥 

4

𝑀𝐴𝑋𝐵𝐴𝑆 2
𝑑𝑈

𝑖

𝑖−1
                                      (22) 

 

In order to incorporate the influence of heterogeneity of watershed characteristics 

on run off, HBV accepts a maximum of three vegetation and twenty elevation zones. For 

this study, the Katar catchment was divided into three vegetation zones and five 

elevation zones (see Figure 13). 
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Figure 13 

 Elevation Map of the Study Area 

 

Sensitivity analysis, calibration and validation 

The first step in hydrologic modeling is identification the most important parameters 

having significant effect on the output.  According Ouatiki. et al. (2020), sensitivity 

analysis allows to identify the significant of each parameter in the final model output. In 

SWAT, the SUFI-2 algorithm using SWAT-CUP software was used for sensitivity 

analysis and calibration. In the process global sensitivity analysis using trial and error 

method is applied to automatically adjust different parameters until the best agreement 

between measured and predicted runoff is achieved. Likewise, in HEC-HMS model, 

sensitivity analysis was carried out using one-at-a-time method in which the value of one 

parameter was repeatedly varied at a time while other parameters were held constant. 

Then, the change in RMSE value between the measure and computed runoff value at the 

outlet is then compared. Thus, in this study, the identification of sensitive parameters was 

performed by changing the range of the parameters between ±25% intervals until the best 
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match between observed and simulated data was achieved. The parameters used for 

sensitivity analysis include CN, initial abstraction, the Muskingum k and x coefficient. In 

HBV model, Monte Carlo technique was used for sensitivity analysis and calibration. In 

this method, by setting the objective function the optimal value of the parameters was 

automatically provided within the predefined value range. 

Similarly, the accuracy of black-box AI-based models is highly influenced by the 

quality of input and its relevance with respect to the output. This is because too many 

inputs may cause overfitting problem, make the modeling complex and may give 

unrealistic results. An insufficient number of inputs, on the other hand, can reduce the 

accuracy of the modeling. Therefore, it is very important to select optimum number of 

inputs to get good result. So far different methods have been used for identification of 

sensitive parameters such as partial derivative (PaD), neural network and Pearson 

correlation. The sensitivity analysis using linear technique (e.g., PaD and Pearson 

correlation) may not capture the nonlinearity of complex process such as rainfall-runoff 

and SSL and also inappropriate for high-dimensional data. Nonlinear methods (e.g., neural 

network), on the other hand, are known in their ability in capturing the nonlinear 

relationship between input and output of a complex and nonlinear problem. Therefore, in 

this study FFNN was used to identify the key inputs to the AI-based models. This method 

is a single-input single-output sensitivity analysis technique in which each input variable 

was fed independently into the FFNN model to simulate runoff and SSL. In this way, the 

relationship between the input variable and the output was determined without considering 

the other input variable’s influence. 

Data normalization and Model evaluation criteria 

In AI-based modeling, data should be normalized to avoid dimensions and ensure 

that all variables receive equal attention. Thus, both the output and input variables was 

normalized before training the modelt to bring the data in a range between  0 to 1 using 

the following equation: 

𝑋 =
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋 𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
;  i= 1,2,3….n                                                                         (23) 
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Where: X, Xi, Xmin and Xmax represents the normalized, actual(measure), minimum and 

maximum values respectively 

The predictive performance of hydrological models needs to be evaluated in both 

calibration and validation phase (Sharghi et al, 2018). According to Nourani (2017) and 

Nourani et al. (2018) , at least one goodness of fit and one absolute error measure should 

be included to have a good model performance evaluation. The accuracy of the ensemble 

technique and individual models used were compared using three performance indicators 

such as mean squared error (MAE), Nash-Sutcliffe efficiency (NSE) and root mean square 

error (RMSE). These performance measure methods have been widely used for evaluating 

accuracy of hydrologic modeling (Jimeno-Sáez et al., 2021; Young et al., 2017) 

𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑜𝑏−𝑋𝑝𝑟)

2𝑁
𝑖=1

∑ (𝑋𝑜𝑏−𝑋𝑜𝑏

−
)

2
𝑁 
𝑖=1

                - ∞ < NSE ≤ 1                                         (24) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋𝑜𝑏 − 𝑋𝑝𝑟)

2𝑛
𝑖=1          0 ≤ RMSE < ∞                                      (25) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑋𝑂𝑏 − 𝑋𝑝𝑟|𝑁

𝑖=1                 0 ≤ MAE < ∞                                        (26)   

Where 𝑋𝑂𝑏, 𝑋𝑜𝑏

−

,  𝑋𝑝𝑟 and N are Observed, average observed, predicted values and number 

of observations, respectively    

The value of NSE ranges between -∞ and 1 and it is a performance measure that shows 

how well the predicted value of SSL and runoff fits the measured value. A NSE value of 

1 indicates that the model is perfect and the accuracy of the model decreases as the NSE 

value deviates far from 1(Nourani et al., 2020). According to Moriasi et al. (2007), the 

performance of a model can be interpreted considering its NSE value as unsatisfactory 

when the NSE value is below 0.5, satisfactory when the NSE value is between 0.5 and 

0.65, good when the NSE value is between 0.65 and 0.75 and very good if the NSE value 

is above 0.75.  RMSE, the other best model accuracy measurement method was used in 

this study. Its value is between 0 to +∞ and the perfect model is the one which have a 

value of 0. Similar to RMSE, the MAE construct the goodness-of-fit of the model 

irrespective of the error between the measured and predicted runoff or SSL value. RMSE 

is appropriate for a set of predictive errors with normal distribution and this may not be 
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fulfilled by all the used models (Bonakdari et al., 2019). Therefore, in this study, MAE 

was used to evaluate the deviation of the simulated runoff and SSL from the observed 

values in equivalent way regardless of the sign.  

Ensemble techniques 

Ensemble technique is  machine learning method where  the results of various models 

are combined so as to increase the overall model accuracy (Sharghi et al., 2018). 

Combining the output of different model produces results which are more accurate than a 

single model (Nourani et al., 2018). For a particular dataset, one of the techniques used 

may give more accurate result than the others and entirely opposite result may be obtained 

when the data set is changed. Therefore, an ensemble technique is used to benefit from 

the strengths of all individual models and without losing generality (Kiran and Ravi, 

2008). Ensemble technique have been used in different prediction studies  such as 

regression, time series and classification (Kazienko et al., 2013), modeling dissolved 

oxygen concentration (Abba et al., 2020), modeling groundwater level (Sharafati et al., 

2020), quality of river water (Asadollah et al., 2020) and modeling of wastewater quality 

(Sharafati et al., 2020). However, as far as we know, there was no study conducted on the 

applicability of ensemble techniques in hybrid rainfall-runoff and SSL modeling. Hence, 

this study used two linear and two nonlinear ensemble techniques to boost the accuracy 

of the individual models applied for rainfall-runoff and SSL modeling. Shamseldin et al. 

(1997) were probably the first to investigate the applicability of model combination for 

modelling rainfall-runoff processes.  According Kiran and Ravi (2008), to ensemble 

technique are categorized as: (1) linear ensemble (e.g., simple, weighted and median 

averaging) and (2) nonlinear ensemble technique such as FFNN trained using the results 

of individual model as input to genrate improved result. Due to the simplicity of the 

methods, two linear (SE and WE) and two non-linear ensemble techniques (NE and AE) 

were developed to improve the accuracy of the single models. In the rainfall-runoff 

modeling, the ensemble technique was performed in three scenarios. In the first scenario, 

an ensemble was performed by amalgamation of the runoff results of the three physically-

based models. In the second scenario, only the runoff output FFNN, SVR and FFNN were 

used as input for each ensemble techniques. In the third scenario, the runoff values of all 
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the six models (SWAT, HVB, HEC-HMS, FFNN, SVR and ANFIS) were used as input 

for the three ensemble techniques. The runoff value obtained from the best ensemble 

technique in each scenario was used as input (separately) for the SSL modeling using 

ANFIS, FFNN and SVM and MLR models. The general ensemble procedure of the 

methodology is shown in Figure 14. 

Figure 14 

Schematic of Hybrid Rainfall-runoff-sediment Ensemble Process 

 

 

Linear ensemble technique 

Simple average ensemble (SE): In this technique, the outputs (SSL and runoff) of single 

models were arithmetically averaged and compared with the observed values as: 

𝑂 =
1

𝑁
∑ 𝑂𝑖

𝑁
𝑖=1                                                                                                    (27) 

Where O , Oi, N are  SE result (runoff or SSL),  result of single ith model and  the number 

of single models (for rainfall-runoff modeling, N= 6 whereas N=4 for SSL modeling), 

respectively. 
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Weighted average ensemble (WE): This technique calculates a weighted average of the 

runoff and SSL by assigning different weights to the results of each model based on their 

relative significance (NSE value). WE is done as via: 

𝑂 = ∑ 𝑤𝑖𝑂𝑖
𝑁
𝑖=1                                                                                                   (28) 

Where   is the assigned weight for  the ith model’s output and calculated as: 

𝑤𝑖 =
𝑁𝑆𝐸𝑖

∑ 𝑁𝑆𝐸𝑖
𝑁
𝑖=1

                                                                                                    (29) 

Where: NSEi represents the performance of the ith individual model. 

Nonlinear ensemble technique 

In this type of ensemble technique, nonlinear averaging is done by using the 

outputs of single models as input to train the AI-based models. 

Neural network ensemble (NE): It this non-linear ensemble technique, non-linear 

averaging is performed by training another neural network. In this technique the runoff 

and the SSL values obtained from the considered individual models were used to train 

FFNN and to get ensemble output. Similar to the single FFNN, trial and error approach 

was used to define the maximum number of epoch and hidden layer neurons. 

ANFIS ensemble (AE): In AE, the SSL values obtained from the individual MLR, 

ANFIS, FFNN and SVM models were used to train the ANFIS model using different 

membership functions and epoch numbers. 
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CHAPTER IV 

Findings and Discussion  

This study was conducted in five steps. In the first step of this study, a sensitivity 

analysis was performed to identify the most sensitive and important inputs. In the second 

step, rainfall- runoff and SSL were modeled using single models. In this regard, three 

physically- based (SWAT, HBV and HEC-HMS) and three AI models (ANFIS, FFNN 

and SVM) were used to model the rainfall-runoff. In addition, three AI models (FFNN, 

ANFIS, and SVM) and linear regression (MLR) were used for SSL estimation. In the third 

step, the rainfall-runoff and SSL values obtained by each model in the second step were 

combined by four ensemble techniques, namely NE, SAE, WE, and AE (for SSL modeling 

only). In the fourth step of the study, the runoff results of the best ensemble technique 

from the second step were used as input for SSL modeling using ANFIS, FFNN, SVM 

and MLR. Finally, the SSL values obtained in the fourth step were combined using NE, 

SE, AE and WE. The results of the individual models and ensemble technique for rainfall-

runoff and SSL modeling are presented and discussed in the following sub-sections. 

Sensitivity analysis result  

In this section the result of the sensitivity analysis for single AI-based and physically-

based models are presented in subsections. 

Dominant input selection for single AI-based rainfall-runoff  and SSL modeling 

Selection of relevant and dominant inputs is a very important step in AI-based 

modeling of hydrological processes to achieve accurate prediction. This is because the 

inclusion of insufficient inputs can lead to inaccurate results, while too many inputs can 

lead to overfitting and unrealistic results, making the modeling process complex. There 

are different methods used for sensitivity analysis in order to identify dominant inputs. 

Among them, Pearson correlation (linear sensitivity method) has been previously applied 

to select sensitive input parameters in rainfall-runoff modeling (e.g., Kisi et al., 2013) and 

SSL modeling (e.g., Sharafati et al., 2020). However, the applicability of the Pearson 

correlation method to identify the most sensitive inputs has been criticized in previous 
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studies because in nonlinear complex rainfall-runoff and SSL processes, there may be a 

stronger nonlinear relationship between output and input variables than their linear 

relationship (Nourani et al., 2020). For this reason, in this study, the identification of most 

dominant inputs for rainfall-runoff and SSL modeling was performed considering single-

input single-output using FFNN model. This method is a single-input-single-output 

technique in which one input variable at a time was fed into the FFNN model to simulate 

runoff and SSL (individually). In this way, the relationship between the input variable and 

the output was determined without considering the other input variable’s influence. 

The current value of hydrologic parameters (e.g., runoff and SSL) correlates strongly 

with their past values. Factors such as rainfall, watershed characteristics and runoff (for 

SSL) are involved in the modeling of rainfall-runoff and SSL. According to Nourani et al. 

(2019), the effect of the above factors on SSL and runoff can be indirectly considered by 

including the antecedent values as inputs. In this study,  for modeling the current day 

runoff (Qt), various lagged (up to 6 days in the past) of discharge, temperature and rainfall 

data were evaluated as inputs to AI-based models and ranked based on their NSE value in 

the validation phase, as shown in Table 2. 

Table 2 

Sensitivity Analysis Result for AI-based Rainfall-Runoff Modeling 

Inputs NSE Rank 

Qt-1 0.875 1 

Qt-2 0.827 2 

Qt-3 0.777 3 

Pt 0.544 4 

Pt-1 0.539 5 

Qt-4 0.519 6 

Qt-5 0.4603 7 

Pt-2 0.4266 8 

Pt-3 0.2594 9 

Tt-1 0.2027 10 

Tt-2 0.1834 11 

Tt-3 0.1134 12 
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From the sensitivity result in Table 2, the most sensitive input has a high NSE 

value. Therefore,  Qt-1, Qt-2 and Qt-3 were identified as the most relevant inputs and 

temperature was considered as the least relevant input. The result  is supported by of 

Nourani et al. (2021). After ranking the inputs based on their NSE value, less relevant 

inputs were removed. It was found that Pt-2, Pt-3, Qt-5, Tt, Tt-1, Tt-2, and Tt-3 were identified 

as less relevant and were not included in the different input combinations. After removing 

the less important variables, different input combinations with significant inputs, i.e., Qt-1 

,Qt-2, Qt-3, Pt, Pt-1, and Qt-4 were used to model the rainfall-runoff process with the proposed 

AI-based models, and only the combination that led to the best result is discussed. 

Similarly, discharge (Qt, Qt-1,…Q6)  and antecedent SSL ( SSlt-1, SSLt-2,…and 

SSLt-6) were used as input  to estimate  the current day SSLt and  ranked based on their 

validation phase NSE value as in Table 3.  

Table 3 

Sensitivity Analysis Result for AI-based SSL Modeling 

Input variable  NSE Rank  

Qt 0.8208 1 

SSt-1 0.7964 2 

Qt-1 0.7605 3 

SSt-2 0.6338 4 

Qt-2 0.60438 5 

Qt-3 0.5188 6 

SSt-3 0.4966 7 

Qt-4 0.3594 8 

SSt-4 0.3027 9 

Qt-5 0.2934 10 

SSt-5 0.2134 11 

St-7 0.383 12 

Qt-5 0.362 13 

Qt-6 0.293 14 

Qt-7 0.271 15 

 

In Table 3, the most dominant and relevant input had the highest NSE. Thus, Qt, 

SSt−1 and Qt−1 are the most dominant inputs and ranked first, second and third, 



68 
 

 
 

respectively. After ranking the input variables based on their NSE value, a Student t-test 

was performed to select the dominant input and remove inputs that are less important to 

the modeling result. Based on the student t-test, the inputs such as Qt−4, SSt−4, SSt−5 Qt−5, 

SSt−6, Qt−6, SSt−7 and Qt−7 were identified as less relevant and removed from the input 

combination set. Afterwards, the current day SSL (SSt) was modeled using different 

combinations of the dominant inputs such as Qt, SSt−1, Qt−1, SSt−2, Qt−2, SSt−3, Qt−2 and 

Qt−3 by the proposed AI-base and MLR model. 

Similarly, sensitivity analysis was performed to identify the most sensitive 

parameters for the conceptual (HBV) and physically-based models (SWAT and HEC-

HMS). After watershed delineation, HRU analysis and weather definition, the SWAT 

model simulation was made and saved. Then, the SWAT model’s simulated result was 

imported in to SWAT-CUP software to conduct sensitivity analysis, calibration and 

validation. In hydrological modeling using SWAT model, calibration is an important step 

for reducing uncertainties during simulation and to achieve better parameterization for a 

given condition. Therefore, global sensitivity analysis was conducted using SUFI-2 

algorithm in the SWAT-CUP software to where selection of the most sensitive parameters 

was carried out based on the absolute p-value and the maximum t-stat. For sensitivity 

analysis many parameters were tried and only nine parameters were found to be more 

sensitive. The maximum and minimum values of the parameters selected for model 

calibration was collected from the literature and SWAT-CUP manual while their fitted 

value was obtained after several iterations during calibration process. Then, the 

parameters were ranked based on their t-stat value obtained after the global sensitivity 

analysis (see Table 5).  After model calibration was completed, model validation was 

performed without changing the model input parameters. 
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Table 4 

Most Sensitive Parameters Optimized Value and Rank for SWAT Model 

Parameter Description Min 

Value  

Max 

value 

Fitted 

value 

Rank 

CN2.mgt SCS runoff curve number 35 98 61.14 1 

ALPHA_BF.gw Base flow alpha factor 0 1 0.875 2 

GW_DELY.gw Groundwater delay 0 500 262 3 

SOL_K.sol Saturated hydraulic conductivity 0 2000 41 4 

GW_REVAP.gw Groundwater “revap” coefficient 0.02 0.2 0.18 5 

GWQMN.gw A threshold minimum depth of water in the 

shallow aquifer for base flow to occur 

0 5000 267.5 6 

SOL_AWC.sol Available water capacity of the soil layer 0 1 0.55 7 

HRU_SLP.hru Average slope steepness 0 1 0.59 8 

SURLAG.bsn Surface runoff lag time 0.05 24 0.845 9 

In sensitivity analysis result shown in Table 4, CN2, (ALPHA _BF) and 

GW_DELY  were found the first, second and third sensitive parameter, respectively.The 

second physically-based model employed in this study was HEC-HMS. According to 

Shekar and Vinay (2021), runoff in this model is simulated by analyzing hydro-

meteorological data through open-channel routing. Like other hydrological models, 

identification of most sensitive parameters for rainfall-runoff modeling using sensitivity 

analysis technique is an important step HEC-HMS model. In this regard, a one-at-a-time 

method was used in this study to identify the most sensitive parameters that have 

significant effect on the model output. In this method, the value of one parameter was 

changed (by decrease and increasing by 25%) while the value of others kept constant and 

sensitive parameters are selected based on their effect on the RMSE value between the 

actual and computed runoff value at outlet. This sensitivity analysis method was chosen 

due to simplicity and its successfully applicability by previous studies (e.g., Fanta and  

Sime, 2022; Tassew et al., 2019; Zelelew and Melesse, 2018).  In this model, the most 

sensitive parameters identified during model optimization were ranked as shown in Table 

5. 
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Table 5 

Parameter Sensitivity Rank for HEC-HMS Model 

Parameter Description Value 

range 

Optimum 

value 

Rank 

 CN SCS_Curve Number 35-99 * 1 

Tlag Lag time  0.1-30000 * 2 

Ia SCS-CN initial abstraction 0.001-500 * 3 

K (hr) Flood wave travelling time 0.005-150 * 4 

x Weighted coefficient of 

discharge 

0.005-0.5 * 5 

 

Table 5 shows that curve number (CN), lag time (Tlag) and initial abstraction (Ia) 

were identified as the first, second, and third most sensitive parameters, respectively. 

Significant deviation of computed runoff from its previous value was observed when the 

value of these parameters was varied (specially CN) during sensitivity analysis. According 

to Fanta and Sime (2022), this could be due to the fact that runoff-forming factors such as 

topography, LULC and soil are combined into a single CN value. Similar result was 

obtaind in sensitivity analysis by Fanta and Sime (2022) and  Zelelew and Melesse (2018) 

where CN is identified as the most sensitive parameter and Tlag is ranked second.  

The third semi-distributed model used for this study was HBV, which requires 

only temperature, evapotranspiration, runoff, rainfall, information on LULC and 

elevation. The runoff and weather data (evapotranspiration, rainfall and temperature) were 

prepared in text file format as required by the HBV model. The HBV model can accept 

up to twenty elevation zones and three vegetation zones. Thus, the LULC map of Katar 

catchment prepared and used for the SWAT model was combined into three class 

considering vegetation similarity classification (as forest land, agricultural land and water 

body). In addition, the study area was divided into five elevation zones. In this study, the 

HBV model was configured with different model parameters, three vegetation zones, and 

five elevation zones. After adjusting the catchment and model settings, the Monte Carlo 
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optimization method was used for sensitivity analysis and model calibration. In this 

method, the optimal values of the parameters (within their range of values) were 

automatically generated by setting the objective function. The result of the sensitivity 

analysis showed that the field capacity (FC) was the most sensitive input parameter and 

also the parameter controlling the contribution of precipitation to runoff (β) and the 

storage coefficient 1 (K1) were identified as  the second and third sensitive parameters. 

Rainfall-runoff modeling result using single models 

As mentioned earlier, in the second step of this study, three physically-based 

(HEC-HMS, SWAT, and HBV) and three black-box AI-based (SVM, ANFIS and FFNN) 

models were used to model the rainfall-runoff of Katar catchment. The modeling accuracy 

of each model during the calibration and validation phases are shown in Table 5. Different 

input combinations using the identified dominant inputs were used for calibration 

(training) and validation through the AI-based models, and only the best results of the 

models are presented in Table 5. Different input combinations were tried and the best 

results were obtained by Qt-1, Qt-2, Qt-3 and Pt. 

FFNN model, in this study was trained with the LM algorithm was developed with 

four inputs and one hidden layer for rainfall-runoff modeling.  When modeling with the 

FFNN, determination of the optimal number of hidden neurons is an important task to 

achieve better results. The reason is that too many neurons can lead to overfitting, while 

too few neurons can give an unacceptable result. To determine the best structure of FFNN, 

a trial- and- error method was used by varying the number of hidden neurons until the 

desired accuracy was achieved. In this study, an FFNN with 7 neurons in the hidden layer 

using the identified input combination trained by 21 epochs provides the best result. In 

Table 5, d-e-f is to represents the number of inputs, hidden neurons and the output in the 

best structure of the FFNN model. 

SVM, the second nonlinear AI-based model used in this study, was built using 

radial basis function (RBF) kernel. The reason for choosing the RBF kernel for the SVM 

model is that it requires fewer tuning parameters than polynomial kernels and sigmoid. 

Moreover, more modeling accuracy is achieved by this kernel compared to the others 

(Sharghi et al., 2018). 
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The third AI-based model, the ANFIS model, known to be a robust method in 

nonlinear relationship modeling, was used to model rainfall-runoff in this study. The 

ANFIS model is a hybrid of ANN and FIS which gives it a strong capability in handling 

complex nonlinear hydrologic problems such as rainfall-runoff and the SSL process. In 

this study, the ANFIS model’s membership functions (MFs) parameters calibration was 

performed using the Sugeno Fuzzy Inference System through the hybrid algorithm. In 

order to obtain the best result, the method of trial-and-error was applied by changing the 

type of MF and the number of epochs. The study investigated different MF such as 

Trapezoidal, Triangular and Gaussian because they are suitable for modeling complex 

hydrologic processes (Nourani et al., 2020). The best ANFIS model result was obtained 

with Triangular MF trained with 60 epochs.   

In addition to the AI-based models described above, three semi-distributed models 

such as HBV, HEC-HMS and SWAT models were applied to simulate rainfall-runoff. For 

the SWAT model, a DEM with a resolution of 30 x 30m was used to configure the model 

and delineate the watershed using SWAT interfaces in ArcGIS. In SWAT model, to 

account for the watershed heterogeneity, the catchment is subdivided into sub-catchments 

which are in turn subdivided into small units (HRUs) with unique soil, slopes and LULC 

characteristics. Then, HRU analysis was performed by overlaying the slope map, LULC 

map and soil map. In this study, the study area Katar catchment was sub-divided into 17 

catchments and 156 HRUs. After watershed delineation, HRUs analysis and introducing 

the weather data (weather definition), the model was run and saved. Then, the simulated 

result was imported into the SWAT-CUP software and the SUFI-2 algorithm was used to 

perform sensitivity analysis, calibration and validation. Using sensitivity analysis, the 

modelers can able to compute the change in model output in relation to the change in 

model parameters and thus identifying the most influential parameters controlling rainfall- 

runoff process (Jimeno-Sáez et al., 2018). Model calibration is important for better 

parameterization for a given local condition and to reduce modeling uncertainty. First, the 

minimum and maximum values of the considered parameters were collected from the 

literature and the SWAT-CUP manual and several iterations were performed until the best 

agreement between the observed and computed discharge was obtained. The performance 

of the models was measured using RMSE, NSE and MAE as shown in Table 6. 
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HEC-HMS was the second physically-based semi-distributed model used for 

rainfall-runoff modeling in this study. This model was calibrated and validated using 10 

years of (2008 to 2017)  runoff data. Based on the performance measures, HEC-HMS 

model provided acceptable results, but not as good as the other physically-based and AI 

models. 

The HBV model is the other semi-distributed conceptual model used in this study. 

Rainfall-runoff modeling with the HBV model requires spatial information (e.g., LULC), 

runoff and climatic data on evapotranspiration and temperature. Average temperature, 

rainfall, runoff and evapotranspiration data for the study area were prepared in text file 

format as required by the HBV model. The LULC map prepared for the SWAT model 

was merged in three LULC types in the view of the similarity of vegetation characteristics, 

as the model only accepts a maximum of three vegetation zones. Model calibration was 

performed using Monte Carlo optimization method by setting the objective function 

(NSE). The predictive performances of the single AI-based and physically-based models 

are shown in Table 6. 

Table 6 

The Results of Single Models for Rainfall-Runoff Modeling 

Model  Model Calibration Validation 

Structure RMSE MAE NSE RMSE MAE NSE 

SWAT - 7.44  3.628 0.847 8.811 6.464 0.809 

HEC-HMS - 8.771 5.35  0.788 10.002 6.914 0.757 

HBV - 8.287 5.313 0.811 9.238 6.556 0.786 

SVM RBF 6.336 2.946 0.889 7.229 3.541 0.878 

ANFIS Triangular 5.229 2.432 0.925 6.018 2.847 0.913 

FFNN 4-7-1 5.859 3.547 0.905 7.291 4.317 0.873 

*RMSE and MAE are in m3/s 

Table 6 shows the performances of the AI-based models and the physically-based 

model employed for rainfall-runoff modeling. As shown in the table, the AI-based models 
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outperformed all the physically-based models by providing the lowest RMSE and MAE, 

and the highest NSE value. Moreover, compared to the other AI-based models, ANFIS 

achieved the best result in modeling rainfall-runoff with RMSE = 7.018 m3/s, NSE=0.913 

and MAE= 2.847 m3/s, followed by SVM and FFNN, respectively. The goodness- of- fit 

(NSE, RMSE and MAE) of the best model (ANFIS) clearly shows the ability of this model 

to handle the nonlinearity and complexity of the rainfall-runoff process. Among the semi-

distributed models, the SWAT model provided the best result with RMSE = 8.811m3/s, 

NSE=0.809 and MAE= 6.464m3/s in the validation phase. The HEC-HMS model gave the 

worst prediction with RMSE = 10.002m3/s, NSE=0.757and MAE= 6.914m3/s in the 

validation phase. Although they gave lower prediction accuracy compared to the AI-based 

models, the physically-based (SWAT and HEC-HMS) and conceptual (HBV) models 

performed very well in simulating rainfall-runoff. According to Table 5, the application 

of ANFIS (the best models) could improve the performance of HEC-HMS, HBV and 

SWAT by up to 20.6%, 16.16% and 12.86%, respectively, based on the NSE value in the 

verification phase. Based on Moriasi et al. (2007) model performance classification 

guideline, the performance of a model is very good if its NSE value is above 0.75. In this 

regard, all the models used showed very good performance in modeling rainfall-runoff. In 

addition to the statistical model performance indices, boxplots, scatter plots and Taylor 

plot were also used in this study to provide a better overview of the modeling efficiency 

of the models used. Figure 13 shows the scatter plot of the results of each AI-based and 

physically-based model compared to the actual runoff value in the verification phase. 

The scatter plot of actual runoff versus the computed runoff for each of the 

physically-based and AI-based models in the validation phase is shown in Figure 15. As 

it can be seen in Figure 13, the points are less scattered for AI models especially in ANFIS 

model compared to the other competing models. This could be due to the strong ability of 

the ANFIS model to deal with the nonlinearity and uncertainty of the rainfall-runoff 

process. 
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Figure 15 

Scatter plot of Observed versus Predicted Runoff, at Verification Phase by a) HEC-HMS, 

b) SVM, c) HBV, d) FFNN, e) SWAT and f) ANFIS 
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Figure 16 

Radar Plot Comparison of Physical and AI Based Models 

       

Figure 17a shows the time series of each of the physically-based and AI models 

used in this study for modeling rainfall-runoff during the validation phase. As can be seen 

in Figure 17a, the hydrograph of the AI-based models was more similar to the observed 

runoff hydrograph than that of the physically-based models. In addition, not all models 

were able to perform equally well at all points in the time series. Figure 17b shows a 

section of the time series (June 10 to September 17, 2015) from the validation phase to 

better illustrate the predicted runoff by both the AI and physically-based models. To 

further investigate the prediction accuracy of the models, six different points were 

randomly selected and designated as points 1,2,3,4,5 and 6 in the time series. The 

predicted runoff value obtained from each model was then compared to the actual runoff 

values at each of the selected points. For point 1, observed= 28.832 m3/s, FFNN= 

34.687m3/s, ANFIS= 31.931 m3/s, SVM= 32.052 m3/s, HBV= 27.72 m3/s, HEC-HMS = 
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41.217 m3/s and SWAT = 38.3 m3/s. This shows that the runoff value obtained by HBV 

model is closer to the observed value than the other models. At point 2, observed= 

29.445m3/s, FFNN= 33.456m3/s, ANFIS= 29.187m3/s, SVM= 26.636m3/s, HBV= 23.96 

m3/s, HEC-HMS = 39.77 m3/s, and SWAT = 43.85 m3/s. This shows that the best 

agreement was observed between the observed runoff value and the ANFIS model. At 

point 3, observed runoff = 28.832m3/s, ANFIS= 19.734m3/s, FFNN= 22.81 m3/s, SVM= 

19.063m3/s, HBV= 12.9m3/s, HEC-HMS = 33.101m3/s and SWAT = 38.89m3/s. This 

shows that the runoff value obtained with the HEC-HMS model is closer to the observed 

value than the other models. For point 4, observed= 47.867m3/s, ANFIS= 28.266 m3/s, 

FFNN= 34.58m3/s, SVM= 21.2m3/s, HBV= 29.309 m3/s, HEC-HMS = 65.57m3/s and 

SWAT = 47.45m3/s, this means that the difference between the observed runoff value and 

the value obtained by SWAT model was less than the other models. At point 5, observed 

runoff = 56.086 m3/s, ANFIS= 64.589 m3/s, FFNN= 64.306m3/s, SVM= 55.65m3/s, 

HBV= 72.819 m3/s, HEC-HMS = 69.926 m3/s and SWAT = 77.4 m3/s. This shows that 

SVM deviates less from the observed discharge than the other models. For point 6, 

observed= 52.322m3/s, SVM= 58.754m3/s, FFNN= 53.394 m3/s, ANFIS= 63.7m3/s, HEC-

HMS = 63.873m3/s, HBV= 45.637m3/s and SWAT = 72.9m3/s, this shows that the FFNN 

model gives a more accurate result than the other models. 
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Figure 17 

Times series of Observed Versus Predicted Runoff Value in the Validation Phase, (a) from 

January 1, 2015-December 31, 2017 and (b) from June10,2015 to Sep. 17, 2015 

 

From the selected points it is clear that different models could gave different 

predictive performance at different time points. Although, the AI models led to a bit better 

result but they ignore physics of the problem. Therefore, a reliable ensemble technique 

that combines the results of individual AI-based and physically-based models could be 

used to boost the overall modeling performance and led to more accurate result. To this 
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end, in this study developed two linear (WA and SA) and one nonlinear (NE) ensemble 

technique were proposed to improve rainfall-runoff modeling in three scenarios. 

Results of ensemble techniques for rainfall-runoff modeling 

As mentioned earlier, in the third step of the study, the runoff values obtained from 

the individual AI-based and physically-based models were combined into three scenarios 

using three ensemble techniques, namely NE, SA, and WAE, to increase the overall 

efficiency of rainfall-runoff modeling. Ensemble modeling was conducted in three 

scenarios as described in chapter three. In the NE technique, the runoff values of each 

model (in different scenarios) were fed into the input layer and the model was trained 

using the LM algorithm. Through trial and error, the best result was obtained with a neuron 

number of 7, 5 and 9 for scenarios 1, 2 and 3, respectively. Thus, a-b-c in the NE mode 

structure shown in Table 7 represents the number of inputs, hidden neurons and outputs, 

respectively. In this study, two nonlinear ensemble techniques (WE and SE) were also 

developed to compare the performance of NE and the results are presented in Table 5. For 

the current study, FFNN was chosen as the nonlinear ensemble technique due to its 

popularity, compatibility and accuracy in model combination studies in different fields 

(Elkiran et al., 2018; Nourani et al., 2018; Nourani et al., 2020).  In Table 6, d, e, f, g  (e.g.,  

in scenario 3) in the WE technique stands for the weights of ANFIS, SVM, FFNN, SWAT, 

HBV and HEC-HMS, respectively. Similarly, x-y in the SA model structure stands for the 

number of inputs and output, respectively. 
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Table 7 

Results of Ensemble Rainfall-Runoff Techniques 

Scenarios 

  

Ensemble 

method 

Model structure 

  

Calibration Validation 

NSE MAE RMSE NSE MAE RMSE 

  

Scenario 

1 

  

SE 3-1 0.833 5.613 7.779 0.80 7.73 8.948 

WE 0.322, 0.334, 

0.344 

0.85 6.28 7.382 0.823 7.485 8.356 

NE 3-7-1 0.885 4.675 6.465 0.862 5.77 7.6 

  

Scenario 

2 

  

SE 3-1 0.923 2.755 5.299 0.906 6.27 6.199 

WE 0.33, 0.328, 0.343 0.923 2.753 5.294 0.916 3.19 5.921 

NE 3-5-1 0.954 2.173 4.09 0.95 2.42 4.26 

  

Scenario 

3 

  

SE 6-1 0.929 2.929 5.067 0.912 4.282 5.955 

WE 0.18,0.175,0.174, 

0.16, 0.157,0.15 

0.93 2.89 5.044 0.929 3.482 5.132 

NE 6-9-1 0.971 1.672 3.215 0.966 2.375 3.79 

*RMSE and MAE in m3/s 

It can be infered from Table 7 that best result was obtained using scenario 3 and  

in the all senarios, NE performs better than the SE and WE techniques. In scenario three, 

the NE technique  gave NSE, RMSE  and MAE values of 0.966, 3.79 m3/s and 2.375 m3/s,  

respectively in verification phase. WE is the second best ensemble technique follwing NE 

technique with NSE, RMSE and MAE values of, 0.929, 5.132 m3/s and 3.482 m3/s, 

respectively in the verification verification phase. SAE ensemble gave the least acurate 

result compared to the others. SAE gave the lowest value of NSE than the ANFIS model 

(the best single model). This could be due to the fact that in the arithmetic averaging, the 

result is greater than the lowest number and less than the highest value in the data set. The 

RMSE and MAE value of the NE technique is lower than the single models and the linear 

ensemble techniques (SA and WE) in both the calibration and validation phases, showing 

an error reduction in the nonlinear ensemble technique. 

As shown in the table, in scenario 1, NE improved the performance of HEC-HMS, 

HBV , and SWAT by 13.87%, 9.67%, and 6.55%, respectively, based on the verification 

phase of NSE values. In scenario 2, the NE technique improved the performance of FFNN, 

SVR, and ANFIS by 8.2%, 8.8%, and 4%, respectively. In scenario 3, the NE ensemble 

technique improved the accuracy of ANFIS, SVR, FFNN, SWAT, HBV, and HEC-HBV 
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by 5.8%, 10.02%, 10.65, 16.4%, 22.9%, and 27.61%, respectively. The result and 

discussion in this section focus on scenario 3 (the best scenario). 

The scatter plot, a visual investigation, of the three ensemble techniques  (for 

scenario 3) is shown in Figure 18. The best ensemble technique was found to be NE, where 

the points are less scattered and close to the bisector line. For the linear ensemble 

techniques, especially SE, the values are comparatively dispersed, as can be seen in Figure 

18. 

Figure 18 

Scatter plot of Ensemble Technique Runoff and Observed runoff  by a) SE, b) WE and 

c)NE in the Verification phase 

 

In addition, the time series plot was used to compare the similarity between the 

observed and predicted hydrographs, as shown in Figure 19.  From the figure, it can be 

seen that NE achieves better agreement between the predicted values and the observed 
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discharge values in both calibration and validation phase, while WE and SE rank second 

and third, respectively. In addition, the SE method overestimates the peak discharge. 

Figure 19 

Timeseries of Observed Runoff and Computed Runoff by Ensemble Technique a) 

Calibration and b) Validation phase 

 

 

(a) 

(b) 
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Figure 19 shows the boxplot of observed runoff and predicted runoff using the 

three ensemble techniques. As can be seen from the figure, the performance of the 

nonlinear ensemble (NE) technique is better in modeling rainfall-runoff. In this study, the 

variation between the observed runoff and predicted runoff value obtained by the three 

ensemble techniques was compared using different quartiles as shown in the boxplot 

(Figure 20). For example, the median value of runoff for  observed=3.22 m3/s , 

SAE=6.8161 m3/s, NE=4.168 m3/s and WE = 6.031 m3/s. This shows that the value of NE 

was closer to the observed value than the other methods. 

Figure 20 

Boxplot of Observed Runoff and Ensemble Technique 

 

The performances of WE, SE and NE were also demonstrated by  two-dimensional 

Taylor diagram (see Figure 1), which shows the observed runoff and the computed runoff 

by each ensemble technique for better comparison. In this diagram, standard deviation 

(SD) and correlation coefficient (r) were combined to form multiple performance indices 

in a single diagram to analyze how close the computed value is to the observed value. 
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Figure 21 

Taylor Diagram Showing the Performance of Ensemble Technique 

 

The Taylor diagram of SE, NE and WE technique is indicated in Figure 21. In this 

chart, the model is best when its value is closer to the observed value. In this regard, as 

depicted in the figure, the NE technique  is the closest to the observed runoff than the WE 

and SE, and hence more accurate than the other ensemble techniques. 

Results of SSL modeling using single AI-based and MLR models  

In the first strategy of SSL modeling, the current day SSL was estimated using 

different combination of lagged discharge and SSL value as input.  For each of the input 

combination, the MLR, FFNN, SVM and ANFIS models were calibrated and verified and 

only the best result of each of the models was presented in Table 8. The best input 

combination that gave the best result was Qt, Qt-1, Qt-2, SSt-1 and SSt-2.  Determining the 

best model structure (e.g., hidden neuron’s number) is the crucial step in modeling with 

the FFNN model to obtain an accurate result. The reason is that if too small neurons are 
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used, incorrect information may be captured and an overfitting problem may occur if many 

neurons are included. Therefore, the best FFNN structure was determined by a trial-and-

error method. The FFNN model with 8 hidden neurons and five inputs trained with the 

LM algorithm gave the best result in SSL modeling. The SVM, the second AI-based 

model, was build using RBF kernel to model SSL. Compared to the other kernels used in 

the SVM model, the RBF provided the better result (Sharghi et al., 2018). 

The other Black-box AI-based model was the ANFIS model, which has strong 

ability to process the nonstationary and uncertain data using the fuzzy concept. For this 

study, the MFs of the ANFIS model were calibrated using hybrid algorithm. The type and 

number of MFs and the epoch number were iteratively changed until the best agreement 

between observed and predicted SSL was achieved. Among the analyzed MFs in the 

ANFIS model, the best result was obtained with Gaussian MFs calibrated with 55 epochs. 

Lastly, the MLR model which shows the linear relationship between dependent and 

independent parameters was applied for modeling the SSL and compared with the other 

AI-based models using the performance measures as shown in Table 8. In the structure of 

FFNN (Table 8), the number 5-3-1 represents the number of inputs, hidden neurons and 

output. In the same way, in MLR, the number 4-1 represents the number of input and 

output variables. 

Table 8 

Single AI-based and MLR Mode’s Result for SSL Modeling (in strategy 1) 

Model Best 

structure 

Calibration           Validation   

NSE MAE RMSE NSE MAE RMSE 

SVM RBF 0.867 630.69 1857.67 0.815 1376.05 2517.03 

FFNN 5-8-1 0.876 597.114 1799.25 0.834 1032.04 2382.29 

ANFIS Gaussian 0.918 563.56 1462.06 0.884 897.37 1943.67 

MLR 5-1 0.755 688.026 2528.5 0.708 2121.41 3170.65 

*RMSE and MAE are in ton/day 

The results of each model in SSL modeling are shown in Table 8. As, indicated in 

the table, the ANFIS model gave the best result with NSE=0.884, RMSE=1943.67 t/day 
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and MAE= 897.37 t/day and FFNN and SVM being the second and third respectively, in 

the validation phase. The MLR model gave the least accurate result compared to the other 

AI based black-box models with NSE=0.708, RMSE= 3170.65 t/day and MAE= 2121.41 

t/day. This could be due to the fact that for complex, nonlinear and dynamic problem like 

SSL, nonlinear models’ (e.g., ANFIS) estimates more accurately than the linear models. 

From the result shown in the table, the best AI-based model (ANFIS) increased the 

performance of SVM, FFNN and MLR by up to 8.47%, 6% and 24.86%, respectively 

based on validation phase NSE value. Moreover, various graphical performance indicators 

such as boxplots, scatter plots and Taylor diagrams were applied to provide a better view 

each model’s predictive performance. Figure 22 shows the scatter plots of the MLR and 

AI-based model compared to the actual SSL value. 
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Figure 22 

The Scatter Plots of the Measured and Computed SSL, a) MLR, b) SVM, c) FFNN and d) 

ANFIS, in Validation phase 

 

   

 Figure 22 shows the scatter plot to compare the predictive accuracy of 

ANFIS, MLR, FFNN and SVM models in modeling SSL. The Figure shows that the data 

points of ANFIS model and observed SSL are close to each other and to the diagonal line. 

Whereas, more spread datapoints was observed in the MLR model. 
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Figure 23 

 Boxplot of Observed vs Estimated SSL in Validation Phase 

 

The performance of the models was also analyzed using box-plot (see Figure 23). 

As shown in the figure the median value (Q50%) for the MLR = 2014.4 t/day, the ANFIS 

model = 1,497.3 t/day, the FFNN = 1,562.8 t/day, the SVM = 1,672.7 tons/day and the 

actual runoff = 1,482 t/day. This indicates that the best predictive performance was 

obtained with the ANFIS model and FFNN was  the second most accurate model, while 

the worst estimation result was obtained with MLR.  Kumar et al. (2019) applied ANN 

and ANFIS to estimate the current-day runoff and SSL of the Godavari basin by using 

different combinations of previous day SSL and discharge data as input. In this study, it 

was found that better estimation performance was obtained using ANFIS model than 

ANN. Nourani and Andalib (2015) applied ANN and LSSVR to predict the SSL in daily 

and monthly time steps and found that LSSVR perform better than ANN.  Buyukyildiz 

and Kumcu (2017) applied ANFIS and SVM, and ANN for SSL estimation using different 

combinations of lagged Q and SSL as inputs. The result of this model showed that better 
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accuracy was obtained using ANN than the others.  From these model comparison studies, 

it is clear that each AI-based model performs differently when applied to different 

catchments. As stated by Salih et al., (2020) this could be due to the stochasticity of the 

SSL data of the catchment and also the AI-based model’s ability to deal with the non-

linearity and non-stationarity in the data set. The time series of the observed SSL and the 

individual models were used to compare the performances of the applied AI-based and 

MLR models in different time spans (see Figure 24) 

Figure 24 

Observed and Predicted Value of SSL in the Validation Phase; (a) January, 2016-

December, 2017 and b) July 26 to September 14, 2017 
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As can be seen in Fig.24b, four points (1, 2, 3, and 4) were randomly selected on 

July 29, August 08, August 24, and August 31, respectively. For point 1; MLR= 3857.018 

t/day, ANFIS= 5752.136 ton/day, SVM=6573.967 ton/day, FFNN=4620.326 ton/day and 

observed =3831.348 ton/day. This shows that the MLR model gave more a closer value 

to the observed SSL value indicating that even the worst model can provide more accurate 

prediction at some point in the data span. Regarding point 2, MLR=4563.506 t/day, 

ANFIS=6313.366ton/day, FFNN=6695.642 ton/day SVM=8595.878 ton/day and 

observed =6245.252 ton/day. At this point, the ANFIS model provide the best result. For 

point 3, MLR= 4190.825 ton/day, ANFIS= 6181.81ton/day, FFNN= 5424.629 ton/day, 

SVM= 6270.75 ton/day and observed = 5249.579 ton/day. This shows that the deviation 

of the predicted SSL from the observed value is smaller for the FFNN model. Also, SVM 

model perform better than the other models at point 4. From thee points selected, it can be 

inferred that different models may lead to different accuracy at different times in the data 

span. Therefore, the goal of better accuracy in modeling SSL could be achieved by 

ensemble techniques. In this context, four ensemble techniques such as AE, SE, NE and 

WE were applied to enhance the overall SSL modeling. 

SSL modeling results using ensemble techniques 

In order to increase the accuracy of the SSL modeling, the outputs of the individual 

MLR and AI models were combined using four different ensemble techniques and the 

result is shown in Table. The prediction performances of the ensemble techniques (SE, 

AE, WE and NE) for modeling SSL is shown in Table 9.  From the table, it can be seen 

that the ANFIS ensemble (AE) led to the most accurate result among the other model 

combination methods due to the robustness it has in its framework by combining ANN 

and FIS. 

The SE improved the performance of FFNN, MLR and SVM, but it provided less 

accurate results than the best model (ANFIS). According to Nourani et al. (2020), 

arithmetical averaging produces a result that is between the minimum and maximum 

values in the data set. WE gave better performance than SE due to the weights assigned 

to each model in the ensemble unit based on its NSE value. 
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Table 9  

Results of the Proposed Ensemble Methods for SSL Modeling (strategy 1) 

Ensemble 

technique 

Best structure Calibration    validation 

MAE RMSE NSE   MAE NSE   RMSE 

SE 4-1 498.56 1391.2 0.922  1191.4  0.879 2089.46 

AE Gausian 241.8 713.93 0.98  496.78  0.97  1009.29 

WE 

0.26, 0.27,0.25, 

0.22 498.56 1391.2 0.926 1092.57 0.888 1873.87 

NE 
4-7-1 

485.55 1105.9 0.953  741.92  0.924   1610.1 

*RMSE and MAE are in ton/day 

The performance of each ensemble technique in SSL modeling are shown in Table 

9. As shown in the table, the AE technique provided the best result with NSE=0.97, 

RMSE=1009.29 ton/day and MAE= 496.78 ton/day while the NE is the second best 

accurate ensemble technique, in the validation phase. The SE technique gave the least 

accurate result compared to the other ensemble techniques with NSE=0.879, RMSE= 

2089.46 ton/day and MAE= 1191.4 ton/day. The higher performance of AE could be due 

to its ability to deal with the complex, nonlinear and dynamic problem like SSL.  

As it is shown in the Table 9, the nonlinear ensemble techniques i.e., AE and NE 

greatly improved the performances of the single models. The comparison of the modeling 

performance improvement of the nonlinear ensemble technique with the performances of 

each MLR and AI models considering their NSE value in the calibration and validation 

phase is presented in the table. 
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Table 10 

Performance Comparison Between Nonlinear Ensemble and Individual Models  

Model Calibration validation 

AE vs MLR 29.85% 37% 

AE vs SVM 13.08% 19.02% 

AE vs FFNN 11.9% 16.3% 

AE vs ANFIS 6.8% 9.73% 

NE vs ANFIS 3.8% 4.5% 

NE vs MLR 26.22% 30.5% 

NE vs FFNN 8.8% 10.79% 

NE vs SVM 9.92% 13.37% 

 

The comparison result in Table 10 shows the ability of the nonlinear ensemble 

technique to increase the prediction accuracy of each model considering the NSE values 

of the calibration and validation phase. As can be seen from the result of this study, both 

the linear and nonlinear ensemble techniques can be used as a model combination method 

to boost the individual model’s performance in SSL modeling. However, AE and NE 

technique were superior to the linear ensemble techniques (SE and WE). This could be 

because the SE and WE methods, unlike the nonlinear ensemble techniques (NE and AE), 

are not able to go through another black-box learning process. The NE improved the 

accuracy of the FFNN, SVM, MLR and ANFIS models by up to 10.79%, 13.37%, 30.5% 

and 4.5%, respectively in the validation phase (based on NSE value). Similarly, by using 

AE, the accuracy of FFNN, SVM, MLR and ANFIS models could be improved by 16.3%, 

19%, 37 and 9.73%, respectively, in the validation phase. 

The SSL estimation result of each ensemble techniques and the observed values in 

the validation phase was also presented in scatter plot. Figure 25 compares the scatter plots 

of the four-ensemble technique versus the observed SSL in validation phase. As can be 

seen in the figure, AE shows a less scattered estimate and points are closer to the 1:1 

bisector line, while more scatter points are seen in the WE  and  SE technique. 
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Figure 25 

Scatter Plots of Observed SSL Versus a) SAE, b) WE, c) NE and d) AE, in the Validation 

Phase 

 

Comparison of the performance of the ensemble technique developed against the 

observed SSL   was made using the boxplot (see Figure 26) considering different quartiles 

and higher accuracy was achieved using AE technique. 
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Figure 26 

 Boxplot of Predicted SSL by Ensemble Technique and Observed Value 

 

The time series of predicted SSL by each ensemble technique (AE, NE, WE and SE) 

and the observed SSL in validation phase is shown in the Figure. As it can be depicted 

from the Figure 27, AE and SE gave less accurate result as wide fluctuation is seen 

between them and the observed times series in both dry and wet season. In nonlinear 

ensemble technique (AE and NE) in the other hand, the predicted SSL agreed better with 

the actual value. 
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Figure 27 

 Time Series of Ensemble Technique and Observed SSL in a) Calibration Phase and b) 

Validation Phase 
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The performance of single and ensemble models used in the first strategy of SSL 

modeling was also compared using the Radar plot based on the NSE value shown in Figure 

28. 

Figure 28 

Radar Plot Comparison of a) single, b) Ensemble Technique for SSL Modeling 

 

Taylor diagram was also used to evaluate the performance of each ensemble 

techniques. In this graphical comparison technique, a model is best when its result is closer 

to the observed SSL value.  In this context, from the Figure 29 it can be inferred that 

ANFIS model showed better performance with r=0.985 while SE gave least accurate result 

with r =0.927.   

 

 

 

 

 

 

 

 

     
(a) 

(b) 
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Figure 29 

Tayler diagram Comparing Ensemble Techniques in SSL Modeling 

 
 

Hybrid runoff-SSL modeling 

In step four of this study (i.e., in the strategy 2 of SSL modeling), due to SSL data 

scarcity, only two years of (2016-2017) runoff result of the best ensemble technique (NE 

in the three scenarios separately) with lagged runoff and SSL were used as input for SSL 

modeling using ANFIS, FFNN, SVM, and MLR. In this SSL modeling process, the input 

layer of ANFIS, SVM, FFNN and MLR was fed by the runoff outputs of ensemble 

techniques (NE) in three scenarios, which was considered as input variable. Similar to 

rainfall-runoff modeling, LM algorithm was used to train FFNN for SSL modeling using 

the runoff value resulted from the best ensemble technique in three scenarios separately 
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in step three of this study. As too many neurons or too small neurons may cause unrealistic 

result, selecting optimum neuron number is important in FFNN modeling. Thus, in all 

scenarios, trial and error method, by varying neuron numbers was used until the best 

agreement between observed and predicted SSL value is reached. FFNN with 6, 7and 7 

hidden neurons was found to give the best result in scenario 1, 2 and 3, respectively. The 

other AI based model used in the SSL modeling was the ANFIS model in which hybrid 

training algorithm was used for MF function calibration. To get best result, different types 

of MF was trained with different epoch number by trial-and-error method. ANFIS model 

with gaussian MF trained by 50 epochs gave the best result. SVM is the third AI model 

applied for SSL modeling in the current study using radial basis function (RBF) kernel. 

The fourth model used for SSL modeling in this study was MLR. This model was used to 

see the linear relationship between the inputs and the outputs. The performance of ANFIS, 

SVM FFNN and MLR models were evaluated using NSE, MAE and RMSE and presented 

in Table 11. 

 

Table 11 

Performances of AI-based and MLR Models for Hybrid SSL Modeling (strategy 2) 

 Scenario 

Ensemble 

Method 

Calibration  Validation 

 

NSE 

  

MAE 

(ton/day)  

RMSE 

(ton/day)  

NSE 

  

MAE 

(ton/day) 

RMSE 

(ton/day) 

  

Scenario 1 

  

  

MLR  0.702  905.72  2786.27  0.649  1801.3  3464.93 

FFNN  0.854  1460.02  1952.55  0.816  1871.59  2506.25 

SVM  0.861  728.27  1902.45  0.803  1454.87  2597.55 

ANFIS  0.887  665.7  1717.37  0.85  1282.31  2273.41 

  

  

Scenario 2 

  

MLR  0.741  1488.7  2587.19  0.681  1702.72  3305.25 

FFNN  0.883  932.03  1821.41  0.858  1748.29  2208 

SVM  0.902  673.34  1516.36  0.868  1344.55  2124.44 

ANFIS  0.914  583.81  1496.07  0.898  1137.96  1865.19 

  

  

Scenario 3 

  

MLR 0.756  1389.2 2519.54 0.691  1698.47 3250.6 

FFNN 0.892 863.91 1674.88 0.87 1694.16 2110.88 

SVM 0.924 635.41 1402.29 0.894 1239.39 1905.54 

ANFIS 0.948 522.99 1125.83 0.92 1018.31 1628.26 
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The efficiency of the applied models was evaluated using NSE, RMSE and MAE 

(see Table 11). In this regard, ANFIS is the best model in SSL modeling with NSE=0.85, 

0.898 and 0.92, RMSE=2273,41t/day,1865.19 t/day and 1881628.259 t/day and 

MAE=1282.31 t/day, 1137.96 t/day and 1018.312 t/day in scenario 1, scenario 2 and 

scenario 3, respectively. Similar to the rainfall-runoff modeling, the ANFIS model showed 

its superiority over the applied models in the hybrid rainfall-runoff-sediment modeling.  

Moreover, in all models, best result was obtained from scenario 3 and therefore, the 

discussion in this section focuses on this scenario.  

Scatter plot, another model performance evaluation tool was used to compare the 

predicted and observed SSL values as shown in Figure 30. According to Jimeno-Sáez et 

al. (2021), the least accurate models give more scattered data points. The model with 

higher NSE value gives the better data fit to the 1:1 line. In this regard, ANFIS model 

provided the best fit between computed and observed SSL. In scatter plot shown in Figure 

30, the ANFIS model with NSE value of 0.92 shows that the data points are very close to 

each other and the diagonal line. 
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Figure 30 

The Scatter of Observed SSL and Individual Models in the Verification Phase  

 
 

Time series plot of the observed SSL versus predicted SSL values in the validation 

phase are shown in Figure 31a. In the figure, high agreement between predicted and 

observed values is seen in the ANFIS model. A section of the time series plot of observed 

SSL value versus computed SSL values by MLR, ANFIS, SVM and FFNN is shown in 

Figure 29b. To have better visibility of the SSL values, only 58 days (from July 24, 2017 

to September 19, 2017) were included in Figure 31b. 
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Figure 31 

Time series of Observed and Predicted SSL in Validation Phase a) June 27,2017 and b) 

from July 24, 2002 to September 19, 2017 

  

As shown in Figure 31b, four points on August 13, August 16, August, 27 and 

September 27 were randomly chosen and named as points 1, 2, 3 and 4, respectively. For 

point 1, SVM= 5,685.497 t/day, FFNN= 6,141.208 t/day, ANFIS = 6,000.747 t/day, 
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MLR= 8,269.8095 t/day and observed SSL value = 5,626.669 t/day. It shows that the SSL 

value predicted by SVM is closer to the observed SSL value than the other models. For 

point 2, MLR= 5,586.05 ton/day, SVM= 3,769.007 ton/day, ANFIS= 2,979.931 ton/day, 

FFNN= 4,721.752 ton/day and observed SSL value = 6,555.725 ton/day. This shows that 

the SSL value of MLR is close to the observed value than the values of the other models. 

It is also clear from point 2 that even the least accurate model can give the best result at a 

particular point in the time series. Regarding point 3, FFNN= 8,803.296 ton/day, MLR= 

12,063.97 ton/day, SVM= 10,049.6439 ton/day, ANFIS= 7,365.95and observed SSL 

value = 8,382.12t/day. For point 4, ANFIS= 21,327.973ton/day, SVM= 

23,537,739ton/day, MLR= 24, 093.617 ton/day, FFNN= 23,211,713 ton/day and observed 

SSL value = 21,333.43ton/day.  This indicates that ANFIS gave better result than the other 

models. It could be seen from the randomly selected points that different models might 

gave different prediction accuracy at different points of the time series. Hence, more 

accurate prediction of SSL could be achieved by using different ensemble technique. In 

this regard, this study developed three ensemble technique for SSL modeling to enhance 

the overall accuracy and the result is discussed in the next sub-sections. 

Results of runoff-SSL by model combination technique 

In the last step of the current study, to improve the overall modeling accuracy of 

the hybrid runoff-SSL modeling, the SSL value resulted from each single models such as 

ANFIS, MLR, SVM and FFNN were combined and used as input for the four ensemble 

techniques (NE, AE, WE and SE). The procedure is the same as the ensemble process 

followed in the rainfall-runoff and SSL (strategy 1) modeling. The SSL values of ANFIS, 

SVM, FFNN and MLR obtained in step four was fed to NE, SA, AE and WE technique 

as input.  Table 12 shows the performance measure of results of ensemble techniques in 

hybrid SSL model. 
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Table 12 

Results of Ensemble Technique for SSL Modeling 

Ensemble 

Method 

Best structure Calibration Validation 

NSE MAE RMSE NSE MAE RMSE 

SE 4-1 0.923  795.67 1414.95 0.887 1332.16 1970.82 

WE 0.205, 0.258, 
0.265, 0.273 

0.927 790.15 1378.8 0.893 1312.94 1915.74 

AE gbell 0.984 649.32 300.111 0.981 383.63 685.497 

NE 4-7-1 0.964 496.03 963.78 0.953 830.44 1221.08 

*MAE and RMSE in ton/day 

Table 12 shows the ability of ensemble techniques especially the AE and NE, to 

improve the performance of all individual models in both calibration and validation phase. 

The best ensemble technique, the AE improved the efficiency of ANFIS, FFNN, SVM 

and MLR up to 6.22%, 12.76%, 9.73% and 41.8%, respectively. The other ensemble 

technique, the NE improved the efficiency of ANFIS, FNN, SVM and MLR by up to 

3.59%, 9.54%, 6.6% and 37.9%, respectively in the validation phase based on NSE value. 

This indicated the nonlinear ensemble technique are more efficient in increasing the 

accuracy of nonlinear black-box models. The high performance of ANFIS model over the 

other AI-based models employed in SSL estimation was confirmed by the AE technique. 

Figure 32 compares the scatter plots of the four ensemble techniques used for 

hybrid SSL modeling in the validation phase. As can be seen in the figure, the AE and NE 

technique has points close to each other (more dense data point) and closer to the 1:1 

bisector line, while the SE and WE produced the most widely scattered estimates. 
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Figure 32 

Scatter plot of Observed Versus Predicted SSL, at Verification Phase by a) SE b) WE 

and c) NE and d) AE 

 

Figure 33 depicts the time series of observed versus predicted SSL values of the 

applied ensemble technique (WE, SE, AE and NE) in the validation phase. From Figure 

33 it can be seen that the linear ensemble techniques (SE and WE) led to a less accurate 

result than nonlinear ensemble techniques. The SSL value of nonlinear ensemble 

techniques (especially AE) agreed better with the observed value, while larger variation 

is observed between the observed value and the predicted SSL values of SE and WE 

technique. 
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Figure 33 

Time series of Observed Versus Predicted SSL Value by Ensemble Techniques in the a) 

Calibration Phase and b) Verification phase 

 

 

(a) 

(b) 
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Another graph, boxplot, is often used to compare the actual value and the predicted 

value resulted from different models (Sharafati et al., 2020). Boxplot was also used in this 

study to compare the performances of ensemble techniques for rainfall-runoff and SSL 

modeling as shown in Figure 34. 

Figure 34 

Boxplot of Observed and Predicted SSL Value by Ensemble Techniques in the Verification 

Phase 

 

In Figure 34 it is revealed that the better performance of nonlinear ensemble 

technique for SSL modeling. In this study, the variation between the observed SSL and 

predicted SSL value obtained by the four ensemble techniques was compared using 

different quartiles as shown in the boxplot (Figure 33). Fore example, Figure 33, the 

median (Q50%) value of SSL for observed= 1,481.9544 t/day, NE=2,395.85 t/day, SE 

2,960.337 t/day, WE=2,953.691t/day and AE=1,933.067 ton/day. This shown that the 

nonlinear especially AE technique performs better than the linear ensemble technique as 

there is a closest match between the nonlinear ensemble technique result and observed 

value in SSL modeling. For a clearer comparison of NSE values the single models and 

ensemble techniques, a radar plot was used as shown in Figure 35. 
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Figure 35 

Radar Plot Comparison of a) Single, b) Ensemble technique for Hybrid SSL Modeling 

(strategy 2) 

 

For a more comprehensive comparison of the models used, another graphical 

comparison method, the Taylor diagram, was used in this study. This graph shows how 

close the predicted value is to the actual value by considering the standard deviation (SD) 

and the NSE (Taylor, 2001). This diagram combines different performance indicators of 

the models (e.g., NSE and SD) into a single diagram and statistically quantify the 

similarity between the observed and predicted values of SSL the different models, as 

shown in Figure 36.  In this Figure it can be inferred that AE provides the best prediction 

accuracy with r= 0.988 in the verification phase. Among, linear ensemble technique, WE 

provided slightly higher performance than the SE technique with r= 0.948 and 

SD=0.11675 ton/day in the verification phase. A perfect model is one that yields an r-

value of 1 (Yaseen et al., 2018). 

 

 

   (a) 
(b) 
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Figure 36 

Taylor diagram of Ensemble Techniques for Hybrid SSL Modeling in Verification Phase 
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CHAPTER V 

Discussions 

In rainfall-runoff and SSL modeling, the incorporating of all inputs in the 

simulation may not be necessary in the same time. Some inputs may be more important 

than the others. Therefore, selection of optimum and most influential inputs is very 

important to get acceptable result as incorporating too many parameters may cause 

overfitting and too small parameter may not represent the reality of the process.  For 

rainfall-runoff modeling via physical models, different physical components can be 

considered in modeling that could affect the output. As it is very difficult to include all 

the possible physical components, sensitivity analysis was conducted to identify the most 

sensitive parameters during calibration of the physical models. There are different 

methods that can be used for sensitivity analysis. For this particular study, only some 

parameters and commonly used approach is applied for sensitivity analysis. 

The current value of runoff and SSL correlates strongly with their past values. 

Runoff and SSL forming factors such as precipitation, watershed characteristics, and 

runoff (for SSL) are involved in modeling precipitation-runoff and SSL. According to 

Nourani et al. (2019), the effect of these factors on the current day SSL and runoff value 

can be considered indirectly by including the antecedent values as inputs. In this study, 

for modeling current daily runoff (Qt) by AI-based models, various lags (up to 6 days in 

the past) of runoff, temperature, and precipitation data were evaluated as inputs to AI-

based models and ranked based on their NSE value in the validation phase. Similarly, for 

SSL modeling different lags (up to 6days in the past) of runoff and SSL were considered 

as input, and evaluated and ranked using FFNN model. 

 In this study, three physically-based and three AI-based models were used for 

rainfall-Ruoff models. Also, three AI-based and one linear model (AI) were used for SSL 

modeling. In HEC-HMS model, selection of sensitive parameter was conducted using 

one-at-a- time approach in which the assigned value of each parameter is changed 

sequentially (±25%) and the modeling result was compared. The result of sensitivity 

analysis for HEC-HMS model showed that curve number (CN), lag time (Tlag), initial 
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abstraction (Ia) and Muskingum k were ranked first, second, third and fourth, respectively. 

During the sensitivity analysis, varying the value of CN led a significant change in the 

value of runoff from its previous value. According to Fanta and Sime (2022), it could be 

due to the fact that most runoff forming factors such as soil, LULC and topography are 

lumped in a single CN value. 

The second semi-distributed model used for rainfall-runoff modeling was the 

SWAT model in which sensitivity analysis, calibration and validation was performed 

using SWAT-CUP software. This software used different approach for sensitivity analysis 

and model calibration. This includes Generalized Likelihood Uncertainty Estimation 

(GLUE), Particle Swarm Optimization (POS), Parameter Solution (ParaSol), Markov 

Chain Monte Carol (MCMC) and SUFI -2 algorithm. In the current study sensitivity 

analysis for SWAT model was performed using SUFI -2 algorithm. The main reason for 

choosing this algorithm was its efficiency, better performance for selecting parameter and 

fast learning speed (Zakizadeh et al., 2020). Various parameters were selected for 

sensitivity analysis and ranked after global sensitivity based on their significance and 

contribution for generating runoff (see Table 5). The result of the global sensitivity 

analysis showed that CN, ALPHA _BF, and GW_DELY were identified as the first, 

second, and third most sensitive parameters, respectively. Similar to the HEC-HMS 

model, soil curve number was identified as the most sensitive parameter because it is a 

function of runoff generating factors such as land use, hydrological soil group and soil 

type. Nearly similar result was obtained  by previous studies (e.g., Aliye et al., 2020; Fanta 

and Sime, 2022). The Katar watershed is predominantly composed of agricultural land, 

which increases runoff. This could be the main reason why the curve number is the most 

sensitive parameter. 

The other semi-distributed model used in this study was HBV in which sensitivity 

analysis was performed using automated Monte Carlo method. The sensitivity analysis 

result revealed that field capacity (FC) was the most sensitive parameter. Similar study 

was found in different studies that used HBV for rainfall-runoff simulation(Bizuneh et al., 

2021; Ouatiki. et al., 2020).The maximum soil water holding capacity (FC) is one of the 

parameters in the soil routine which greatly influences the initiation of runoff. Under wet 
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soil condition the contribution of FC to runoff could be high and its contribution could be 

low under dry soil condition. 

In this study, three physically-based (SWAT, HEC-HMS and HBV) and AI 

models (SVM, FFNN and ANFIS) were used for rainfall-runoff modeling. Afterwards, 

the result of these single models was combined using three ensemble techniques. 

Comparison was made between performance of physically-based and AI models.  

According to  Moriasi et al. (2007) guideline, a model performance is acceptable when 

the NSE value is above 0.5 and very good when its NSE >0,75. Based on this criteria all 

the applied models provide  very good result though they didn’t gave the same 

performance. In general, the AI-based models outperformed the physically-based models 

in both calibration and validation phase. The finding is supported by other studies that 

have compared the performance of AI-based and physically-based models for predicting 

rainfall-runoff process (Senent-Aparicio et al., 2019; Young et al., 2017). From the 

proposed physically based models, the SWAT model led better simulation performance 

than the HBV and HEC-HMS models in both the calibration and validation phase. This 

could be due to the ability of the SWAT model to better discretize the study watershed 

into more detailed sub-watershed that have similar hydrological and spatial 

characteristics. The HEC-HMS model showed the least modeling performance with 

fluctuation in both low and high flow periods.  

The study used three AI model ANFIS, SVM and FFNN for rainfall-runoff 

modeling.  All the applied AI-based model gave excellent result in rainfall-runoff models. 

From the applied AI models, the ANFIS (with the NSE=0.913) model gave better 

prediction accuracy than the SVM and FFNN model rainfall-runoff modeling in both 

calibration and validation phase. The better accuracy obtained from the ANFIS model 

could be due to its structure as it is a hybrid of ANN and FIS. It benefits from the advantage 

of learning ability of ANN and reasoning ability of fuzzy system. Also, to further improve 

the modeling accuracy, three ensemble techniques were applied in rainfall-runoff 

modeling. The main idea behind ensemble modeling is to combine the results of two or 

more simple and complex rainfall-runoff models with different information to increase 

the overall accuracy of the simulation and obtain unique information. According to 
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Tegegne et al. (2017), the main advantage of ensemble modeling is that the random and 

systematic errors in the results of the individual models tend to canceled out in the 

aggregate since different information is obtained from each model. Therefore, in this 

study, three ensemble techniques (NE, WE and SE) were developed in three scenarios. In 

the first scenario, only the results of the three physically-based models were considered in 

the ensemble unit. In scenario 2, only the results of the three AI-based models (FFNN, 

ANFIS, and SVM) were considered for ensemble modeling, while in scenario 3, all results 

of each model were combined. Based on the performance indicators, the best result was 

obtained in scenario 3, while scenario 1 provided the least accurate result (see Table 7). 

The result in Table 6 showed that the physically based models gave less accurate 

than the AI-based models. However, when the physically-based models were used 

together with AI-based models in the multi-model combination system, they made a 

significant contribution to the generation of the improved ensemble outputs (scenario 3) 

(see Table 7). This is a strong justification for the argument that the worst performance of 

the complex model, which contains many parameters based on complex laws of physical 

elements, can improve the performance of the ensemble technique. According to Young 

et al. ( 2017), the physically-based and AI-based models when combined in the ensemble 

unit, which follow different philosophies, complement each other in terms of their inherent 

drawbacks and strengths. The weak simulation accuracy of the physically-based models 

can be mitigated by powerful AI-based models, especially for poorly gauged watersheds. 

Similarly, the important hydrologic process in the physically-based models can make up 

the back-box function of the AI-based models. This could be the reason for best 

performance of ensemble technique in the scenario 3 which combines both the AI and 

physically-based models. In all scenarios, the NE technique surpassed the linear ensemble 

techniques (WE and SE). The high performance of the NE technique may be due to the 

fact that when the FFNN model is used as an ensemble technique, the nonlinear behavior 

of the rainfall-runoff process is simulated more accurately with the nonlinear kernel than 

with the linear ensemble technique. The NE technique showed its superiority over the 

linear ensemble techniques in previous studies (e.g., Nourani et al., 2021; Sharghi et al., 

2018). Also, in the best scenario (scenario 3), it was found the nonlinear ensemble (NE) 

technique improved the accuracy of ANFIS, SVM, FFNN, SWAT, HBV and HEC-HMS 
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by 5.8%, 10%, 10.65%, 19.4%, 22.9% and 27.6% (based on NSE value), respectively in 

validation phase. Similarly, the NE technique improved the performance of the ANFIS, 

SVM, FFNN, SWAT, HBV and HEC-HMS models by 4.9%, 9.2%, 7.29%, 14.64%, 

19.73% and 23.2%, respectively in the calibration phase. 

Four black box models were used in the SSL modeling, namely FFNN, ANFIS, 

SVM, and MLR. Two strategies were followed for SSL modeling by each AI-based and 

MLR models. In the first strategy, SSL was estimated by ANFIS, SVM, FFNN and MLR 

model using different lagged value of discharge and suspended sediment load as input. 

Due to large data requirement of physically-based models and data scarcity, the SSL was 

estimated using only the AI-based (FFNN, SVM and ANFIS) and MLR models. For this 

study only two years of SSL and discharge data were used as input for estimating the 

suspended sediment load of Katar catchment. The second strategy used in this study for 

modeling SSL was to use the runoff result of the best ensemble technique (from each 

scenario separately) and lagged discharge and SSL as input for estimating SSL using 

FFNN, MLR, SVM and ANFIS model. There are only two years (2016-2017) of SSL data 

were available and therefore not enough to use for physically-based models. To benefit 

from the contribution of physically-based models, this study used the ensemble runoff 

from physical and AI-based models as input for SSL modeling. In this modeling process, 

the runoff values from NE (the best ensemble) together with the lagged runoff and SSL 

were fed into the input layer of the SVM, MLR, FFNN, and ANFIS models (in three 

scenario). It can be seen that using the best ensemble runoff (from step 3) result as input 

for SSL modeling significantly improved the performance of the SSL modeling compared 

to the first stage modeling. In both strategies of SSL modeling the ANFIS model led to 

best result than the other black-box models. The result showed that the ANFIS model 

outperformed all other individual models with NSE=0.884 and RMSE=1943.67t/day and 

NSE=0.92 and RMSE=1628.259 t/day in strategy 1 and 2, respectively in the verification 

phase. From this result, it is clear that the hybrid modeling (strategy 2) improved the 

accuracy of the best model in strategy 1 by 4.1 % (based on NSE value) and reduces the 

error by 16.23% (based on the validation phase RMSE value). The ANFIS model when 

developed using the best ensemble runoff as input (in the second strategy) increased the 
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performance of MLR, FFNN, SVM and ANFIS (in the first strategy of SSL modeling) 

model by 29.9%, 10.3%, 12.9% and 4% , respectively in the verification phase. 

In this study, the nonlinear (AE and NE) and linear ensemble (WE and SE) 

techniques were applied in both strategies of SSL modeling to further improve the 

modeling capacity. It was believed that the ensemble technique could be used to improve 

SSL modeling by combining the strengths of each model into a single unit. It was found 

that the nonlinear ensemble technique (AE and NE) resulted in more accurate SSL 

predictions than the linear ensemble techniques (SE and WE). This could be due to the 

ability of the nonlinear models to better understand the complex and nonlinear relationship 

between runoff and SSL. WE and SE, on the other hand, perform well when there is a 

direct linear relationship between the input and output variables of the model. Also, linear 

averaging gave a result smaller than the best model and larger than the worst individual 

model. In this regard, the SA technique provided the lowest performance than the best 

single model (ANFIS) in both strategies of SSL modeling. The AE improved the 

performance of the least performing model (MLR) by 37% and 42% in the first strategy 

and hybrid SSL modeling (strategy 2), respectively in the verification phase.  
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CHAPTER VI 

Conclusions and Recommendations 

Conclusions 

The current study evaluates the predictive performances of SWAT, HEC-HMS, HBV, 

ANFIS, FFNN, SVM and MLR (for SSL only) for rainfall-runoff-sediment modeling. For 

this purpose, Katar catchment, Ethiopia was chosen as a case study and twelve years of 

hydrological and climatic data (2006-2017) was considered. In addition, LULC map, soil 

data and DEM were also used for physically based models. For AI-based modes, relevant 

inputs were selected by using nonlinear sensitivity analysis. Less relevant inputs were 

removed after conducting a t-student test and different combinations of dominant inputs 

were applied for rainfall-runoff modeling. Similarly, sensitivity analysis was carried out 

to identify the most sensitive parameters for physically-based models. In this regard, 

global sensitivity was conducted using the SUFI-2 algorithm to identify the most sensitive 

parameters for the SWAT model. The result showed that CN was the most sensitive 

parameter, ALPHA_BF and GW_DELEY being the second and the third sensitive 

parameters, respectively. For the HEC-HMS model, based on a one-a-time approach, CN 

was the most sensitive parameter, whereas Tlag (lag time) and initial abstraction (Ia) were 

the second and third sensitivity parameter, respectively. For the HBV model, FC, LP, 

BETA and K1 were identified as the most sensitive parameters. 

A comparison of the results obtained with each model showed that the AI-based 

models especially the ANFIS model were able to achieve the highest predictive 

performance over SVM, FFNN, SWAT, HEC-HMS and HBV in rainfall-runoff modeling. 

This could be due to the strength of the ANFIS model in processing the complex, dynamic 

and nonlinear rainfall-runoff processes using the fuzzy concept. Following the 

development of individual physically-based and AI models, three ensemble techniques 

(SE, NE, and WE) were developed using the results of the individual models as input to 

improve the overall accuracy of rainfall-runoff modeling. The ensemble technique 

improved the accuracy of the individual models in rainfall-runoff modeling. The NE 
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technique resulted in the highest prediction accuracy with an NSE value of 0.966 and an 

RMSE of 3.79 m3/s in the validation phase due to its strong ability to handle the 

uncertainties of the non-stationary and complex nature of the rainfall-runoff process. It 

increases the performance of SWAT, HBV and HEC-HMS by up to 19.4%, 22.9% and 

27.6% (based on NSE value), respectively in the validation phase.  

SSL was also modeled using SVM, ANFIS, MLR and FFNN in strategy 2.  Due to 

limited data availability, only two years of data were used. In strategy 2 of SSL modeling, 

different combinations of the previous and current day discharge and the previous day’s 

SSL were used as input. In strategy 2, two years (2016-2017) of runoff results from the 

best ensemble technique (NE) were used as input for SSL modeling using SVM, ANFIS, 

MLR and FFNN.  For both strategies, the ANFIS model provided better accuracy. The 

MLR model, on the other hand, provided the worst modeling performance than the AI-

based mode in SSL modeling.  This could be due to the fact that linear models (e.g., MLR) 

are not able to capture a highly nonlinear and complex process such as SSL. To further 

increase the SSL modeling accuracy in both strategies, the NE, AE, WE and SE techniques 

were developed using the single models’ SSL result as input. In ensemble modeling the 

nonlinear ensemble techniques outperformed the linear techniques. AE increased the 

performances of ANFIS, FFNN, SVM and MLR (based on the validation phase NSE 

value) by 3.59%, 9.54%, 6.6% and 37.9%, respectively in the validation phase. For both 

runoff and SSL modeling, the SA technique resulted in lower NSE values than the ANFIS 

model (best single model). This could be due to the fact that the result of linear averaging 

is always higher than the lowest number, but lower than the highest number. 

In general, the results of the current study show a promising effect of ensemble 

techniques in rainfall-runoff-sediment modeling. The ensemble technique in general, 

especially the nonlinear ensemble method, showed that better accuracy can be achieved 

by combining the results of the individual models than by using individual models in 

rainfall-runoff and SSL modeling. This study used two linear ensemble (SE and WE) and 

one nonlinear ensemble (NE) technique for both rainfall-runoff and SSL modeling.  
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Recommendation 

Based on the result of this study the following recommendation are suggested for future 

study: 

✓ The result of this study would be used as pioneering steps towards using model 

combination technique in rainfall-runoff-suspended sediment modeling in data 

scarce catchment. 

✓ This study used only two linear ensemble (SE and WE) and two nonlinear 

ensembles namely NE and AE (for SSL only) technique for both rainfall-runoff and 

SSL modeling. Therefore, future studies should test the use of other nonlinear 

kernel such as SVM as ensemble technique.  

✓ Also, the applied models should be tested to analyze the impact of climate change 

on the hydrological process (e.g., runoff and SSL). 

✓ For this study only two years (2016-2017) of data were used for SSL modeling. 

Therefore, more input data should be used for future studies. 
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Appendix B 

Additional time series 

Figure 38 

Time Series of Suspended Sediment Load  

 

Figure 39 

Time Series of Runoff from 2006-2017 
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Figure 40 

Time Series of the AI-based and Physically-based Models in the Calibration Phase 

 

Figure 41 

Time Series of the Theisen Polygon Average Rainfall 
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