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ABSTRACT 

INCREASED DEPTH OF 3D RESIDUAL UNET NETWORK 

ARCHITECTURE WITH AN ATTENTION GATE FOR BRAIN TUMORS 

SEGMENTATION 

MOHAMUD ABDULLAHI JAMA 

Prof. Dr. FAHREDDIN SADIKOGLU 

M.S.c, Department of Electrical and Electronics 

Engineering August, 2022, 64 pages 

 

Gliomas are one the deadliest forms of brain tumor, often resulting in a short life when 

they reach a high grade. Early detection of glioma is critical for patient survival. 

Magnetic resonance images (MRI) are frequently used to evaluate brain malignancies. 

Segmenting tumors from Magnetic resonance images of the brain is one of the highest 

priorities areas of medical science. Semantic segmentation gives detection information 

and helps doctors know the disease's early stage. A convolutional neural network is 

highly effective in segmenting medical images. This study presents a new deep 

learning method for accurate brain tumor segmentation that can be modified and 

expand the residual unet architecture. It increases the network's depth while keeping 

an extremely high level of accuracy. This study proposes a deep learning network 

architecture called increased depth of 3D Residual UNET Network Architecture with 

an attention gate for Brain Tumors Segmentation, which contains an attention gate and 

advanced 3D Residual UNET. The proposed architecture has increased the depth of 

the normal attention residual unet from four layers to six layers. However, the network 

loses a corresponding amount of spatial information, lowering segmentation 

performance. The 3D UNet transmits contextual and spatial information from the 

encoder part to the decoder by using skip links. Consequently, critical spatial 

information lost during down sampling can be recovered more effectively. By allowing 

only activations from important areas on the encoder side using attention gates and 

creating better feature mappings at the decoder, these modifications to the network 

enhanced the process of learning. Furthermore, the use of a combination of dice loss 

and focal loss helped the model in resolving class imbalance challenges where brain 
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tumors have a significant imbalance between foreground and background classes. 

Because of this, the model has improved and got a better segmentation achievement. 

The model outperformed baseline models such as UNet, Residual UNet, and attention 

gates with Residual UNet. Three separate datasets are evaluated to demonstrate that 

the presented model is superior to its baseline models and the existing state-of-the-art 

segmentation approaches. The suggested model was tested on BraTS 2020, BraTS 

2019, and BraTS 2018 datasets. The model achieved the dice coefficient scores for 

WT, TC, and ET of 93.91%, 93.01%, and 89.21% on the BraTS 2020 dataset, 88.44%, 

75.11%, and 79.87% on the BraTS 2019 dataset, and 88.36%, 83.17%, and 78.19% on 

the BraTS 2018 dataset, respectively. 

Keywords 

Semantic segmentation; Brain tumor segmentation; Increased depth; Res-UNet; 

Attention gates; BraTS 2020; BraTS 2019; BraTS 2018. 
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ÖZ 
 

INCREASED DEPTH OF 3D RESIDUAL UNET NETWORK 

ARCHITECTURE WITH AN ATTENTION GATE FOR BRAIN TUMORS 

SEGMENTATION 

MOHAMUD ABDULLAHI JAMA 

Prof. Dr. FAHREDDIN SADIKOGLU 

M.S.c, Department of Electrical and Electronics 

Engineering August, 2022, 64 pages 

Yüz İfadesi Tanıma (FER), bilgisayarlı görü alanında iyi çalışılmış bir konu olduğu kadar 

zor bir konu olmuştur. Fac, insan vücudunun duyguları hakkında bilgi aktaran en dinamik 

parçasıdır. Yüz geometrisi ve yüz görünümündeki çeşitlilik düzeyi, farklı insan ifadelerinin 

tespit edilmesini mümkün kılar. Çok sayıda yüz ifadesi arasında ayrım yapabilmek için, yüz 

ifadelerinin sınıflarını belirlemek çok önemlidir. 

  Bu makalede kullanılan metodoloji,  Makine öğrenmesinde Konvolüsyonel Sinir Ağı 

(CNN)’e dayanmaktadır. Tezin ana katkısı, Alex Net mimarilerini  ve derin öğrenme 

evrişimli sinir ağları incelemektir.  Öğrenme aktarım yaklaşımı uygulanarak ve tam 

bağlantılı katman  (SVM) sınıflandırıcı ile değiştirilerek iyileştirmeler sağlandı. Sistem, icv-

MEFED veri tabanında incelenerek elde edilen sonuçlar  başarılı oldu. İyileştirilmiş 

modeller, seçilen ifadelerin sınıflandırılması için yaklaşık %64,29 tanıma oranlarına ulaştı. 

Elde edilen sonuçlar kabul edilebilir ve literatürdeki ilgili sistemlerle karşılaştırılabilir 

niteliktedir ve daha fazla iyileştirme için bir arka plan sağlar. 

 

Anahtar Kelimeler: Yüz ifadeleri, yüz ifadesi analizi, yüz ifadesi tanıma, icv-MEFED, derin 

öğrenme, Evrişimsel Sinir Ağları, Alex net, SoftMax, SVM. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Study 

A tumor is simply an unusual and excessive development of body tissue, while a brain 

tumor is an uncontrolled development of cancer cells in the brain. A brain tumor can 

also be called a mass of uncontrolled cells in the brain. For example, your skull is 

extremely hard, enclosing your brain. Any development inside such a constrained 

region might produce life-threatening problems (Wadhwa, Bhardwaj, & Verma, 

2019). A brain tumor could be divided into malignant and benign cells in the brain, 

which could also be cancerous and non-cancerous. Benign tumors do not include any 

cancerous cells; when they develop near essential organs, they push on the nerves, 

impede blood flow, and cause significant complications. Generally, benign tumors 

react positively to treatments. In contrast, malignant tumors contain a cancerous cell 

and have a non-uniform structure (Bahadure, Ray, & Thethi, 2017; Pietrangelo, 2019, 

October  23; Wadhwa et al., 2019). 

There are two different kinds of brain tumors which are primary and secondary. 

Primary tumors are composed entirely of the brain cells, while secondary tumors are 

composed entirely of cancer cells that have migrated to the brain from another affected 

body region. Meningiomas are quickly segment-able; however, glioblastomas and 

gliomas are difficult to detect and locate because of their large contrast and diffusion. 

Furthermore, its size, structure, and form are variable, making it difficult to spot (Maji, 

Sigedar, & Singh, 2022). The most popular type of tumor is known as glioma. They 

can range in grade from high-grade (H.G.) tumors named glioblastoma multiform 

(GBM) to low-grade (L.G.) tumors similar to oligodendrogliomas or astrocytoma’s. 

They are developing quickly for growth (Abd-Ellah, Awad, Khalaf, & Hamed, 2019; 

El-Dahshan, Mohsen, Revett, & Salem, 2014). 

Diseases were diagnosed using medical imaging such as X-rays, Computed 

Tomography scans, and Medical Resonance Imaging (MRI) (Saeed et al., 2021; 
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Wadhwa et al., 2019). MRI has been extensively employed to identify and cure brain 

cancers. It delivers high-quality brain pictures that contribute to identifying and 

treating tumors. Utilizing MRI to segment a brain tumor significantly improves 

detection, medication, and growth rate (Maji et al., 2022). It is crucial to correctly 

differentiate tumor areas from MRI pictures. The complicated form of the brain tumor 

makes it difficult to distinguish malignancy from the brain. Therefore, an automatic 

segmentation approach is necessary to precisely and efficiently identify and segment 

tumor locations. Segmenting brain tumors manually takes time, relying on the 

clinician's experience and skills, yet it can occasionally be inaccurate (Maji et al., 2022; 

Saeed et al., 2021). This causes segmenting tumor cells to be a very difficult process. 

In the past, a variety of segmentation approaches for brain tumors in MRI images have 

been established (Angulakshmi & Lakshmi Priya, 2017; Wadhwa et al., 2019). Some 

of the most popular segmentation techniques include region-growing algorithms 

(Chakraborty, Chatterjee, Das, & Mali, 2020), clustering-based algorithms (C. Singh 

& Bala, 2019; M. Singh, Venkatesh, Verma, & Sharma, 2020), and watershed methods 

(Rajinikanth, Palani Thanaraj, Satapathy, Fernandes, & Dey, 2019; Sivakumar & 

Janakiraman, 2020). But, due to their susceptibility to noise, the efficiency of these 

methods is restricted. Recent Discoveries in Deep learning Networks have made 

significant progress in pixel-level semantic segmentation problems with rich 

hierarchical functions and comprehensive learning structures (Minaee et al., 2001). 

Convolutional Neural Networks (CNNs) (He, Zhang, Ren, & Sun, 2016; Krizhevsky, 

Sutskever, & Hinton, 2012b; Simonyan & Zisserman, 2014) and Fully Convolutional 

Networks (FCNs) inspired Deep Learning models such as SegNet (Badrinarayanan, 

Kendall, & Cipolla, 2017), Deep Neural Network (Havaei et al., 2017), Unet 

(Ronneberger, Fischer, & Brox, 2015), QuickNAT (Roy, Conjeti, Navab, Wachinger, 

& Initiative, 2019), DenseNet (Huang, Liu, Van Der Maaten, & Weinberger, 2017) 

and its variations (Alqazzaz, Sun, Yang, & Nokes, 2019), (Kermi, Mahmoudi, & 

Khadir, 2018), (Noori, Bahri, & Mohammadi, 2019), (Xiao, Lian, Luo, & Li, 2018) 

have demonstrated impressive segmentation ability. 

This thesis presents a new deep learning design that increases the depth of the normal 

Residual Unet (Maji et al., 2022; Yang et al., 2019) and attention gates (Maji et al., 
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2022; Oktay et al., 2018) from four layers into six layers. Additionally, the present 

work uses a combination of dice loss and focal loss to assist deep learning models in 

resolving class imbalance challenges where there is a significant unbalance between 

foreground and background categories during model training of brain tumor 

segmentation. 

1.2 Problem Statement 

Semantic Segmentation gives information to detect and helps doctors to know the 

disease's early stage. When segmenting medical images on brain magnetic resonance 

imaging, A convolutional neural network (CNN) is highly effective in segmenting 

medical images. Due to its capacity for delivering high-accuracy of segmentations. 

Deep neural networks have a substantial influence on predicting the presence of 

tumors. Segmenting brain tumors manually takes time, relying on the clinician's 

experience and skills. As a result, using convolutional neural networks, image 

segmenting of various brain tumor sub-groups is essential for patient medication. This 

thesis proposes a convolutional neural network for segmenting brain tumor sub-areas 

into enhancing tumor (E.T.), whole tumor (W.T.), and tumor core (T.C.). 

1.3 Objectives 

One of the key objectives of the thesis is to study and analyze the relevant problems 

and evaluate residual unet network performances to meet the purposes of Semantic 

Segmentation implementations. 

The principal goals for this thesis can be concluded as follows: - 

I. To build a system capable of detecting, segmenting, and classifying mass areas 

in M.R. images for the identification of brain tumors. In addition, predict the 

molecular subtypes of masses based on segmented form characteristics. 

II. Modify and expand the residual net architecture such that it may be used with 

a small amount of training data and yet provide accurate segmentation. 

III. To study the performance of semantic segmentation utilizing Python based on 

TensorFlow. 
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The contribution of the proposed work is given below: 

➢ To build a model that increases the network's depth while keeping an extremely 

high level of accuracy. 

➢ Instead of 2D input, the provided model employs 3D input of MRI data, which 

provides more contextual and spatial information. 

➢ The present work uses a combination of dice loss and focal loss to assist deep 

learning models in resolving class imbalance challenges. 

➢ Three separate datasets are evaluated to demonstrate that the presented model 

is superior to its baseline models and many of the existing state-of-the-art 

segmentation approaches. 

1.4 Organizations Of The Thesis 

This thesis includes these chapters 

➢ The first chapter is an introduction to the thesis. It consists of several sections, 

including the overview of the study, problem statements, objective of the 

project, and lastly, the organization of the study. 

➢ Chapter two gives an overview of this project and the literature available on 

the evolutions of the arising semantic segmentation technology and residual 

unet network architecture. It also overviews the convolutional neural network 

architecture. The significance of semantic segmentation technology is briefly 

discussed as well. 

➢ Chapter three contains the methods for implementing semantic segmentation 

and system designs. A detailed 3D residual unet design architecture will be 

used in this study. 

➢ Chapter four focuses on and shows the results of the segmented image and will 

be discussed. 

➢ Lastly, chapter five will establish the conclusions depending on the previous 

chapter's findings and provide recommendations for future work. 
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Chapter 2  

LITERATURE REVIEW 

2.1 Overview 

The human brain is a critical organ of the body as it regulates all the activities of the 

human body. Numerous disorders, including infections, strokes, and tumors, can affect 

the brain. Additionally, a brain tumor can be a malignant or non-cancerous mass of 

aberrant cell proliferation in the brain. The most critical technology for detecting a 

brain tumor is MRI. Recently, MRI medical image analysis has drawn attention to the 

need to efficiently and objectively evaluate huge amounts of data (Bauer et al., 2013). 

Magnetic resonance imaging (MRI) is critical for patients' medical care and human 

brain research since it allows for the detection of brain cancers and the automated 

categorization of brain tissue. Segmentation, which splits and isolates the image's 

objects for processing, is the most vital step in the medical imaging processing of a 

magnetic resonance image. 

This chapter gives basic information on brain tumors and the procedures used to detect 

tumors. Additionally, this chapter addresses the fundamentals of MRI. The 

Convolutional neural networks are described. In addition, this chapter also summarizes 

several related studies about this thesis. 

2.2 Brain Tumor 

The brain is a sophisticated organ that manages every physical activity, such as 

intellect, creativity, feelings, and memory. The cerebrum, cerebellum, and brainstem 

are the three parts of the brain encased inside the skull. In addition, the brain is linked 

to the spinal cord through the brainstem (Al-Qazzaz, 2020). The brain's largest 

structure is the cerebrum, which comprises the right and left hemispheres. It is in 

charge of vital functions, including touching, vision, hearing interpretations, voice 

production, thinking, feelings, learning, and fine motor control. In addition, muscle 

control, posture, and balancing are controlled by the cerebellum, positioned 
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underneath the cerebrum. The midbrain, pons, and medulla make up the brainstem, a 

relay center for communication between the cerebrum and cerebellum, and the spinal 

cord (Al-Qazzaz, 2020). The cerebral cortex is the surface tissue of the cerebrum's 

outer layer. The cerebral cortex is a greyish, foldable region in the brain that contains 

over 70% of the mind's 100 billion nerve cells (Al-Qazzaz, 2020; Miller, Wittek, & 

Joldes, 2010). Axons, lengthy nerve fibers that link neurons and extend under the 

cortex to create the white matter, are also found in the brain (Miller et al., 2010). The 

central nervous system is split into four hollow parts in the brain, referred to as 

ventricles. These ventricles carry cerebrospinal fluid (CSF), responsible for fluid 

circulation throughout the central nervous system (Al-Qazzaz, 2020). When looking 

at the photos, the most noticeable and recognized sections of the brain are the grey 

matter (G.M.), white matter (W.M.), and cerebral spinal fluid (CSF). 

In the brain or surrounding the brain, a brain tumor is a cluster of aberrant cells that 

have grown out of control. Because of their structure, these cells may be recognized 

from those in the neighboring tissue (Al-Qazzaz, 2020; Azhari, Hatta, Htike, & Win, 

2014; thebraintumourcharity). Brain tumors are malignant tumors that begin in the 

brain and then migrate to other parts of the body. In other words, when tumor cells 

from another part of the body migrate via the bloodstream to the brain, a process 

known as metastasis. Secondary or spreading brain tumors are more common in older 

people (thebraintumourcharity). The four types of brain tumors include gliomas, 

meningiomas, pituitary adenomas, and nerve sheath tumors. Tumors are graded on a 

scale of 1 (least progressed) to 4 (most advanced) by the World Health Organization 

(WHO) (Louis et al., 2007). The World Health Organization (WHO) published a 

revised tumor categorization depending on histology and molecular criteria in 2016 

(Louis et al., 2016). 

2.2.1 Low Grade Glioma 

LGGs are the main tumor that starts in the brain or spinal cord's glial (supporting) cells. 

Even though gliomas of grades 1 and 2 were formerly classed as low tumors, the World 

Health Organization reclassified this kind of tumor as a high tumor in 2016, according 

to the World Health Organization. Several researchers (Louis et al., 2016). Even 



7 
 

 
 

though low-grade gliomas may develop over the years, they often progress to high-

grade gliomas throughout the period. In 2007, the World Health Organization (WHO) 

classified gliomas according to their histological subtypes (Louis et al., 2007). The 

2016 categorization includes astrocytic and oligodendroglial tumors, which were 

separated into two categories based on the presence or absence of IDH mutations and 

the 1p/19q codeletion (Stieber, 2001). LGG tumors have a variety of imaging 

characteristics that may be used to distinguish them from their histological subtypes. 

For example, LGG shows hyperintense on T2 images and may have diffuse, 

undetectable edges or focused forms with clear margins. This view might reveal cysts, 

often associated with moderate edema (swelling). It is possible to enhance the 

appearance of LGG tumors by adjusting the contrast of the images. LGG tumors are 

shown in Figure 2.1 using a variety of MRI methods. 

 

Figure 2.1: Magnetic resonance imaging of low-grade gliomas: A) FLAIR, B) T1 

image, C) T1-ce image, D) T2weighted, E) ground truth. 

2.2.2 High Grade Glioma 

The fatal intra-axial glial tumor of the central nervous system is high-grade glioma. 

HGG is in charge of the great number of malignant primary brain tumors that fall into 

the WHO grade 3 and 4 classifications according to the World Health Organization 

(Louis et al., 2007). It is estimated that glioblastomas (GBMs) make up around 60 and 

70 percent of all HGG, with anaplastic astrocytomas and anaplastic 

oligodendrogliomas coming in second and third place, respectively (Eftimov, Ivanov, 

Petkov, & Nakov, 2007). The outlook for people who have been diagnosed with HGG 
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remains bad. On magnetic resonance imaging (MRI), the HGG appears as a 

heterogeneous tumor with neighboring edema. The core portion frequently has 

necrosis and significant edema in the surrounding area (see Figure 2.2).  

 

Figure 2.2: Magnetic resonance imaging of high-grade glioma: A) FLAIR, B) T1 

image, C) T1-ce image, D) T2weighted, E) ground truth 

2.3 Magnetic Resonance Images 

MRI is an advanced medical imaging method for detecting and visualizing structural 

and functional aspects of the body's internal structure (Azhari et al., 2014; Hassan & 

Aboshgifa, 2015). The essential ideas of Nuclear Magnetic Resonance (NMR), a field 

of science that has been around and dates back to the early part of the twentieth century, 

are discussed here. Magnetic resonance imaging does not utilize X-rays to create 

images of the human body; rather, it employs a strong magnetic field and radio waves. 

After that, the images may be viewed on a computer's monitor or printed on 

photographic films. Because MRI gives substantially better brightness than C.T., it is 

particularly beneficial in diagnosing and treating neurological disorders. In addition, 

there are various benefits of MRI over other medical imaging modalities, including the 

fact that it is non-invasive and flexible, provides great tissue contrast, and is sensitive 

to flow and diffusion. 

Several modalities are often acquired during a clinical M.R. examination. It is usual in 

clinical practice to acquiring the following M.R. modalities for patients with brain 

tumors: 1) a T1 picture, 2) a T1 image with contrast agent (T1c),3) a FLAIR image, 

and 4) a T2 image. These four modalities (T1, T1c, T2, and FLAIR) are a globally 



9 
 

 
 

acknowledged imaging strategy for acquiring brain tumor MRI and are particularly 

prevalent in brain tumor segmentation (Menze et al., 2014). It would be highlighted 

that some organizations may acquire and further study an additional set of M.R. 

modalities for brain tumor patients, for example, as part of medical research initiatives 

or to get more insight into tumor metabolism. (See Figure 2.3) 

2.3.1 T1-Weighted 

In situations where both the T.E. and the T.R. are short, a T1-weighted protocol is 

obtained. This has therapeutic relevance since tissues with low T1 values look bright 

on T1-weighted imaging, whereas tissues with high T1 values seem dark. The contrast 

between fluids, water-based tissues, and fat-based tissues is frequently superior to 

other methods when using this process. This method creates a great contrast between 

grey matter and white matter in brain images. To use a low T.R. number of around 500 

ms, 3 unique tissue kinds (i.e., CSF, brain tissue, and fat) may be easily 

distinguishable. When viewing a T1-weighted image, the Cerebrospinal fluid seems to 

be hypo-intense, whilst the brain tissues (G.M. and W.M.) appear to be moderately 

intense, and fat appears to be significantly hyper-intense. As an alternative to contrast 

agents, patients can be given injections of contrast agents to help in enhancing 

specificity by delivering numerous images with different contrast levels (Al-Qazzaz, 

2020). 

2.3.2 Contrast-Enhanced T1-Weighted   

It is possible to increase the contrast of a T1-weighted image (T1ce) by employing a 

contrast agent derived from low-molecular-weight compounds like gadolinium. 

Contrast-enhancing drugs benefit brain tumor images due to their molecules do not 

cross through the blood vessel walls found in normal brain tissues and stay within the 

vessels. The blood-brain barrier is breached in the case of malignant primary brain 

tumors, allowing the contrast agent to exit the arteries and enter the intracranial area. 

Damaged tissue will have a shorter T1 on T1-weighted imaging, creating a strange 

appearance of hyperintensity in the surrounding healthy tissue (Bauer et al., 2013). 
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2.3.3 T2-Weighted 

When both the T.E. and the T.R. are long enough, a T2-weighted procedure may be 

achieved. This approach makes it possible to distinguish between different types of 

brain cells (G.M., W.M., CSF) and scalp fat when analyzing the T2 values of brain 

tissues (Roberts & Mikulis, 2007). Specifically, spin interactions occur more quickly 

in more mobile tissue fluid areas, with a slower loss of transverse coherence. This 

results in a longer T2 duration in fluid regions of more mobile tissues. Furthermore, 

more restricted structures, such as those containing a dense population of cells, have 

longer spin interactions and faster transverse coherence loss, resulting in a shorter T2 

time than more expansive ones. Fluids look bright on T2-weighted scans, but water- 

and fat-based tissues appear mid-grey on the same scans, respectively. Tumors often 

cause harm to the brain's microstructures, causing the T2 levels in the damaged tissue 

to rise as a result. 

2.3.4 FLAIR 

The FLAIR image is created by using a 180o R.F. pulse rather than a 90o R.F. pulse to 

generate a fluid-attenuated inversion recovery (FLAIR) image; this contributes to the 

expansion of the dynamic range in T1-weighted pictures. When an R.F. pulse is used 

to completely invert the longitudinal magnetization of all tissue under B0, it is referred 

to as an "inverting pulse." Consequently, the magnetization starts with a negative 

number and decreases until it reaches zero. It is the most extensively used method for 

identifying brain cancers with non-enhancing lesions. It gives a T2-weighted image 

with a diminished Cerebrospinal fluid signal, which is then compared to other 

procedures. (See Figure 2.3) 
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Figure 2.3:  Magnetic resonance imaging of a brain tumor: (left to right) FLAIR, T1-

weighted, T1-ce, T2- images 

2.3.5 Ground Truth 

The MR pictures in the Virtual Skeleton Database (VSD) system are augmented with 

handwritten annotations, referred to as ground truths. It is possible to obtain 

information on the locations of different tumor kinds from the ground truth. 

Intratumoral developments can be classified into edema, necrosis, and a larger tumor. 

These tumor types were identified by a group of radiologists and 7 radiographers who 

had received specialized training. The tumor structures were identified and tagged on 

each third axial slice of MRI. Additionally, morphological operators (region growth) 

were employed to interpolate the segmentation findings, and the outcomes were 

visually inspected to determine if any human changes were required (Menze et al., 

2014). 

The following approach was used to manually annotate tumor structures in both low- 

and high-grade instances in the BRATS challenge (Menze et al., 2014) (see Figure 

2.4): 

1- Segmentation of edema was performed using T2 and FLAIR images. The initial 

segmentation was performed using T2. Then, FLAIR was utilized to determine the 

extent of edema and differentiate it from other tissues such as necrosis and ventricles. 
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2- The whole tumor core, which contained all three tumor structures, was segmented 

utilizing the hyper-intense areas in T1-ce and the inhomogenous area of hyper-intense 

and hypointense lesions in T1. 

3- The tumor's enhanced core was segmented utilizing T1-ce by thresholding on the 

whole tumor core region, which resulted in the gadolinium being retained and the 

necrotic tissue is removed. Visual inspection was used to determine the threshold 

levels for each case. 

4- T1-ce was defined as necrosis or a fluid-filled core within the increased tumor's 

low-intensity structures. For the rare hemorrhages, the same designation was 

suggested. 

5- The remaining portion of the whole tumor core was the non-enhanced core. They 

were derived by removing the corresponding areas from the whole tumor, as they were 

not detected in lists 3 and 4. 

 

Figure 2.4: (a) Complete tumor visible in FLAIR; (b) tumor core visible in T2; (c) 

enhanced and necrotic tumor component structures visible in T1ce; (d) final labels of 

the observable tumor structures noticeable: edema (yellow), necrotic/cystic core 

(light blue), enhanced core (red).  

2.4 Artificial Neural Network Model 

A neural network is a consider obtained of how the human brain processes data. It 

simulates a huge number of linked processing units that simulate abstract 

representations of neurons in order to function. The processing units are organized 
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hierarchically. In a neural network, there are generally three layers: an input layer with 

units representing the input fields, one or more hidden layers, and an output layer with 

units representing the target field (Modeler, 2021). 

2.4.1 Basics In Artificial Neural Networks 

Artificial neural networks (ANNs) are mathematical or computational models that may 

be used to approximate or estimate functions in various situations. ANNs are artificial 

neural networks intended to imitate the biological neural networks that make up animal 

brains. Like biological neural networks, artificial neural networks (ANNs) are 

composed of many nodes (artificial neurons) that may be used to mimic complex data 

interactions. Modern artificial neural networks (ANNs) are a nonlinear dynamic 

system that is often enhanced through a mathematical statistics-based learning 

procedure. We may acquire many local structural spaces that functions can 

characterize by employing standard statistical mathematics techniques. However, in 

the realm of artificial perception, automatic decision-making may be accomplished by 

using quantitative statistics. In other words, artificial neural networks (ANNs) can 

make fundamental decisions and judgments, much like humans, utilizing statistical 

methodologies. This method outperforms formal logical deductions in most situations 

(Sze, Chen, Yang, & Emer, 2017; J. Wang, 2019). ANNs, along with other machine 

learning methodologies, have been used for a variety of problems that are difficult to 

solve with standard rule-based algorithms, such as computer vision, natural language 

processing, and recommendation systems. 

2.4.1.1 Artificial Neurons 

Artificial neurons are the basic unit of ANNs. They mainly simulate the structures and 

characteristics of biological neurons by accepting a set of input signals and producing 

outputs. Assume a neuron accepts d inputs 𝑥1, 𝑥2, ⋯ , 𝑥𝑑, we use vector  𝐱 =

[𝑥1; 𝑥2;⋯ ; 𝑥𝑑] To denote this group of input, and the net input 𝑧 ∈ ℝ to denote the 

weighted sum of x. 

 𝑧 = ∑  𝑑
𝑖=1 𝑤𝑖𝑥𝑖 + 𝑏 = 𝐰⊤𝐱 + 𝑏……………………………………… (2.1) 
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Where 𝐰 = [𝑤1; 𝑤2;⋯ ;𝑤𝑑] ∈ ℝ𝑑 is the weight vector, and 𝑏 ∈ ℝ is the bias. 

The net input z is then passed into a nonlinear function 𝑓(⋅)and yields the activation 

of this neuron, a, 

𝑎 = 𝑓(𝑧)……………………………………………………………… (2.2) 

Where 𝑓(⋅) is called the activation function. 

Activation functions are critical for neurons, as they provide the non-linearity for the 

whole ANN model. To enhance the presentation and learning capabilities of the 

network, activation functions need to have the following properties:  

• They are continuous and differentiable (allowed to be undifferentiable at a few 

points) nonlinear functions. The differentiability enables the network 

parameters to be learned by numerical optimization. 

• The activation functions and their derivative functions should be as basic as 

feasible since this will aid in the improvement of the efficiency of network 

computing operations. 

• The range of the derivatives functions must be within a reasonable range, 

neither too big nor too tiny nor else the training's efficiency and stability would 

decrease. 

Basic activation functions include the sigmoid function 𝜎(𝑥) =
1

1+exp⁡(−𝑥)
 hyperbolic 

tangent function tanh⁡(𝑥) =
exp⁡(𝑥)−exp⁡(−𝑥)

exp⁡(𝑥)+exp⁡(−𝑥)
 and their approximations using first-order 

Taylor expansion. However, the computational complexity of these functions is 

relatively high, and the gradient may vanish quickly since these functions become 

saturated easily (Goodfellow, Bengio, & Courville, 2016), which may thwart the 

network's learning process. 

The rectified linear unit (ReLU)  is now the most frequently applied activation 

function (Oro, Fernández, Martorell, & Hernando, 2016).  ReLU is a ramp function, 

defined as 
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 ReLU⁡(𝑥) − 𝑚𝑎𝑥(0, 𝑥)……………………………………………….. (2.3) 

ReLU requires only additions, multiplications, and comparing operations from 

neurons, which is more computationally efficient. In addition, compared to other 

activation functions mentioned in the last paragraph that squashes the output range, 

ReLU is only left saturated, which alleviates the vanishing gradient problem and 

accelerates the learning process to some extent. One disadvantage of ReLU is that 

sometimes a neuron may never get activated during training if its output is zero for all 

data, which leads to the “dying ReLU” problem (Chen, Sathe, Aggarwal, & Turaga, 

2017). To address this issue, several variants of ReLU have been proposed and widely 

used in practice, such as leaky ReLU (Maas, Hannun, & Ng, 2013), parametric ReLU 

(PReLU) (He, Zhang, Ren, & Sun, 2015), and exponential linear unit (ELU) (Clevert, 

Unterthiner, & Hochreiter, 2015). 

2.4.1.2 Feedforward Neural Network 

When neurons receive information in a feedforward neural network (FNN), they are 

divided into groups based on the sequence in which they receive it. Each group may 

be regarded as a layer of the brain on which to operate. Each layer's neurons receive 

the previous layer's output and calculate outputs used as inputs by the following 

neurons. The input layer is the first layer, the output layer is the last, and the hidden 

layers are the intermediate levels between these two levels of representation. The data 

is only delivered in one direction, and there is no way to get feedback. To explain the 

FNN model, a directed acyclic graph might be employed. Figure. 2.5 displays the 

construction of a fully connected FNN (Nielsen, 2015), which has no intra-layer 

connections and links every pair of neurons in nearby layers. This FNN has no intra-

layer connections and connects every pair of neurons in neighboring layers. 

The feedforward network as a whole can be perceived as a function. Multiple 

compounds of simple nonlinear functions accomplish the complicated mapping from 

the input to the output space. This network topology is simple and quick to construct. 
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Figure 2.5: Feedforward neural network 

Source: (Nielsen, 2015) 

We use the following notations to describe an FNN: 

• L: the number of layers in the network 

• M(l): the number of neurons in layer l 

• 𝑓(⋅): activation function of the neurons in layer l 

• 𝐖(𝑙) ∈ ℝ𝑚(𝑙) × 𝑚(𝑙−1) : weight matrix from layer 𝑙 − 1 to layer l 

• 𝐛(𝑙) ∈ ℝ𝑚(1)  : bias vector in layer l 

• 𝐳(𝐼) ∈ ℝ𝑚(𝑙)
 : net inputs of neurons in layer l 

• 𝐚(𝑙) ∈ ℝ𝑚(𝑙)
 : outputs of neurons in layer l 

Signals are determined according to these equations: 

𝐳(𝑙) = 𝐖(𝑙) ⋅ 𝐚(𝑙−1) + 𝐛(𝑙)

𝐚(𝑙) = 𝑓𝑙(𝐳
(𝑙))

……………………………………………. (2.4) 

In this way, information is transmitted layer by layer until the final output 𝐚(𝐿) Is 

computed. The whole network can be expressed as a compound function 𝜑(𝐱;𝐖, 𝐛): 

𝐱 = 𝐚(0) → 𝐳(1) → 𝐚(1) → 𝐳(2) → ⋯ → 𝐳(𝐿) → 𝐚(𝐿) = 𝜑(𝐱;𝐖, 𝐛)… (2.5) 

Where W and b represent the weights and biases of all layers, respectively. 
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For simplicity, in the following discussion, we omit the parameters Wand b in the 

notation of the compound function. In classification problems, the output of the 

network j(x) is passed into a classifier 𝑔(⋅), then the output of the classifier is 𝐲̂ =

𝑔(𝜑(𝐱)). Depending on the specific task, one can choose an appropriate loss function 

ℒ(𝐲, 𝐲̂), where y is the label corresponding to the input x. The objective of the network 

is to learn a parametric function that can fit the data well, which is achieved by 

minimizing the loss function during the training process. Therefore, after being trained, 

the network can be used for performing predictions with input data that have not been 

shown to it. The parameters in the network are updated by stochastic gradient descent 

(Bottou, 2010), which calculates the partial derivatives of the loss function with respect 

to the parameters. In neural networks, this is approached by backpropagation (Chauvin 

& Rumelhart, 2013). I will not discuss these algorithms in this thesis. For more details, 

please refer to the references. 

2.4.2 Convolutional Neural Networks 

CNNs are a deep FNN model with local connections and weight sharing. CNNs are 

mainly used in many tasks related to image or video processing (J. Wang, 2019). 

Compared to the fully connected network discussed previously, CNNs have two major 

advantages: 

1. The size of convolution kernels in each layer is much smaller than the inputs, 

and the weights can be shared in the same layer. At the same time, in fully 

connected networks, the number of connections can be huge, especially when 

the input signal is high-dimensional and the network becomes deeper. 

Therefore, the number of parameters in CNNs is much smaller, which boosts 

the training efficiency and reduces the chance of overfitting. 

2. The architecture of CNNs allows them to capture the local invariance of objects 

in images. For example, zooming, translating, or rotating images should not 

change the semantic information. It is very difficult for fully connected 

networks to achieve this, as spatial information is absent. 
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Generally, convolutional blocks in modern CNNs are formed by stacking 

convolutional layers and pooling layers, in which high-level features are extracted. 

Depending on the inference objective, fully connected or transpose convolutional 

layers are used after convolutional blocks. The entire network can be trained end-to-

end through backpropagation. 

2.4.2.1 2D Convolution 

The 2D convolution is equivalent to the cross-correlation operation in deep learning, 

which does not involve flipping the kernel. Given an image 𝑋 ∈ ℝ𝑀×𝑁 And a filter 

𝑊 ∈ ℝ(m×n) (usually 𝑚 ≪ 𝑀,𝑛 ≪ 𝑁), the convolution is computed by 

 𝑦𝑖𝑗 = ∑  𝑚
𝑤=1 ∑  𝑛

𝑣=1 𝑤𝑤𝑣 − 𝑥𝑖+𝑢−1,𝑗+𝑣−1……………………….….. (2.6) 

The spatial step that the convolution kernel jumps during sliding is called the stride. 

The size of the output decreases as the stride increases. We use the notation to denote 

the convolution operation in the following discussion. Figure 2.6 shows an example of 

2D convolution with a stride of 1. 

 

Figure 2.6: 2D convolution  

Source: (Wang, 2019) 

As shown in Figure 2.6, the convolution operation causes the size of the output to 

shrink. To keep the output size the same as the input, zero padding is often applied in 
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CNNs. In a one-dimensional example, assume the input size is M, the size of the kernel 

is m (m is usually an odd number for simplicity in CNNs), and we pad p zeros to both 

ends of the input. Then, in the scenario of unit stride, set 𝑝 = (𝑚 − 1)/2 will maintain 

the output size equal to M. This is called the equal-width convolution, which is the 

default type of convolution used in CNNs. 

2.4.2.2 Convolution Layer 

The purpose of the convolutional layer is to obtain information from a local region. 

Different kernels of convolution relate to distinct feature extractors. Normally, the 

input X of a convolution layer is organized into a 3D tensor with shape 𝑀 ×𝑁 × 𝐷, 

which can be interpreted as D feature maps, each with a size of height 𝑀 × width N. 

In the input layer, the feature map is the input image itself; therefore D = 1 for 

grayscale pictures, and D = 3 for natural Color-coded images. Generally, the structure 

of a convolution layer can be decomposed as follows: 

The 3D representation of a convolution layer is shown in Figure 2.7. 

 

Figure 2.7: 3D representation of a convolution layer. 

Source: (Nielsen, 2015) 

To compute feature map Yp, we use kernel 𝑊𝑝,1,𝑊𝑝,2,⋯ ,𝑊𝑝,𝐷 to convolve with 

feature map 𝑋1, 𝑋2, ⋯ , 𝑋𝐷 Respectively. The outputs of the convolutions are summed 
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up and then added with a scalar bp to get the net input Zp. The final output feature map 

Yp is produced by passing Zp into an activation function. 

 
𝑍𝑝 = 𝐖𝑝 ⊗𝐗+ 𝑏𝑝 = ∑  𝐷

𝑑=1 𝑊
𝑝−𝑑 ⊗𝐗𝑑 + 𝑏𝑝

𝑌𝑝 = 𝑓(𝑍𝑝)
…………………….. (2.7) 

To get P output feature maps, the operation above is repeated P times using P distinct 

kernels 𝐖𝑝 ∈ ℝ𝑚×𝑛×𝐷 A convolution layer requires 𝑃 × 𝐷 ×𝑚 × 𝑛 + 𝑃 parameters 

if both the weights and biases are counted. 

2.4.2.3 Pooling Layer 

Pooling layers are also called subsampling layers, whose role is to perform feature 

selection. This operation reduces the number of features; thus, the network's number 

of parameters is reduced to minimize overfitting. Each feature map in the inputs to a 

pooling layer can be parsed into many regions (non-overlapping in most CNN 

applications). The pooling operation refers to down sampling the region to a single 

value, which is the abstract of this region. Max pooling is the most common type of 

pooling operation in CNNs. It should be noted that pooling also makes the network 

invariant to some small morphological changes and enlarges the receptive field. 

Figure 2.8 shows an example of a max-pooling operation using a sampling window 

size of 2 × 2. The input 2D feature map is downsampled by a factor of 2 both 

horizontally and vertically. The sampling window size is usually small; otherwise, it 

will cause excessive loss of information. 

 

Figure 0.8: 2×2 max-pooling  
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Source: (Wang, 2019) 

2.4.2.4 Transposed Convolution 

We can generally convert high dimensional features to low dimensional features 

through convolutions. However, in some tasks, it is demanded to map low dimensional 

features to high dimensional features, and we still want to achieve this through 

convolution operations. This type of convolution is called the transposed convolution. 

Given a high dimensional vector 𝐱 ∈ ℝ𝑑 And a low dimensional vector 𝐳 ∈ ℝ𝑃, 𝑝 <

𝑑. The mapping from the high dimension to the low dimension can be expressed as an 

affine transformation 𝐳 = 𝑊𝐱, where 𝑊 ∈ ℝ𝑝×𝑑 The inverse mapping can be simply 

accomplished by transposing 𝑊, i.e., 𝐱 = 𝑊⊤𝐳. Similarly, in CNNs, the 2D 

convolution operation can be viewed as an affine transformation; therefore, the 

mapping from low dimensional feature maps to high dimensional feature maps is 

named the transposed convolution. Note that the purpose of the transposed convolution 

is not to restore the previous high dimensional feature maps but up sample the features 

back to higher dimensions. Therefore, the weights in transposed convolutional layers 

can also be learned. 

The operation of transposed convolutions is the same as convolutions. Assume the size 

of the input is p, and the size of the convolution kernel is m. If we pad m-1 zeros to 

both input ends, we can get an output with size 𝑝 +𝑚 − 1. A more efficient 

upsampling approach is to increase the stride s, which pads zeros between the elements 

in the input feature maps. Figure 2.9 shows the effect of using different strides 

(Nielsen, 2015). For a 2 × 2 input feature map and a 3× 3⁡kernel, by increasing s from 

1 to 2, the size of the output feature map expands from 4× 4 to 5× 5. 
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Figure 2.9: Transposed convolution  

Source: (Nielsen, 2015) 

2.4.2.5 Dilated Convolution 

Many CNN architectures adopt pooling layers to enlarge the receptive field of each 

unit in the output feature maps without introducing excessive parameters (Krizhevsky, 

Sutskever, & Hinton, 2012a; Long, Shelhamer, & Darrell, 2015; Simonyan & 

Zisserman, 2014). However, this engenders a loss of information, which is negative 

for some tasks requiring dense spatial information. The dilated convolution reduces 

this loss while expanding the receptive field with the same number of parameters. 

The dilated convolution operation inserts “holes” between the adjacent entries in the 

convolution kernels. Assume the size of the kernel is m. If 𝑑 − 1 holes are inserted, 

then the effective size of the kernel𝑚′ is given by  

 𝑚′ = 𝑚 + (𝑚 − 1) × (𝑑 − 1)……………………………………….. (2.8) 

Where d is the dilation rate, note that if 𝑑 = 1, the operation is a regular convolution. 

Figure 2.10. shows examples of the dilated convolution. The original kernel size is 

3 × 3. The effective kernel size is 5 × 5 and 7 × 7, respectively, with 𝑑 = 2 and 𝑑 =

3. 
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Figure 2.10: Dilated convolution  

Source: (Nielsen, 2015) 

2.5 Previous Work  

There are various computer-aided methods for medical imaging segmentations, 

including threshold-based, region-based, model-based, and artificial neural network 

(ANN) approaches (Fu et al., 2018; Wenlu Zhang et al., 2015), which are discussed 

below. However, using a convolutional neural network (CNN) for medical image 

segmentation has been particularly effective in recent studies (Fu et al., 2018; Wenlu 

Zhang et al., 2015). Deep learning may be accomplished by using a convolutional 

multi-layer neural network with a large number of hidden layers and free parameters. 

The ultimate decision-making stages are reached after each Magnetic resonance 

imaging input image has been processed through several convolutional layers and a 

pooling layer, filters, and fully linked layers (Patterson & Gibson, 2017). 

Several designs for deep learning networks, such as CNN, are utilized, including the 

deep residual Network (DRN), the deep feed-forward network, the deep convolutional 

neural network (DCNN), and the Unet. Deep learning networks, such as CNN, are 

used in several applications. When comparing these deep learning approaches, CNN 

has proven to be the most commonly used in image processing due to its distinctive 

framework, which contains an input layer, extracting features using convolutional 

layers. This activation layer uses a rectified linear unit (ReLU), different pooling 
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layers, and classifying layers (Patterson & Gibson, 2017). As a result, CNN has lately 

acquired prominence as a resource for evaluating medical images. 

Because of the convolutional layers of CNNs, they can capture a considerable degree 

of non-linear matching between inputs and outputs (Maharjan, Alsadoon, Prasad, Al-

Dalain, & Alsadoon, 2020; Mlynarski, Delingette, Criminisi, & Ayache, 2019; Qamar, 

Jin, Zheng, Ahmad, & Usama, 2020). As a result, CNN can extract complex 

characteristics from pictures of the brain. First, MRI brain images are recovered and 

fed into the CNN as inputs, with patches of information extracted from each image. 

Next, trainable convolutional filters and local subsampling extract the difficult features 

(Işın, Direkoğlu, & Şah, 2016; Mohan & Subashini, 2018). 

Semantic segmentation is, without a doubt, among the most important medical image 

processing techniques since it provides extensive information on essential diseases 

such as brain tumors. The extraction of a precise tumor structure has proven to be a 

tough task, despite the various studies that have been undertaken on brain tumor 

segmentation. In this context, it presents a concise summary of numerous important 

results on brain tumor segmentation: - 

Sérgio Pereira et al. (Pereira, Pinto, Alves, & Silva, 2016). Proposed an automatic 

segmentation system based on Convolutional Neural Networks (CNN) that analyzed 

tiny 3×3 kernels of information. It was shown that using intensity normalization as a 

pre-processing step for brain tumor segmentation in MRI images, which is unusual in 

CNN-based segmentation algorithms, was extremely successful when paired with data 

augmentation. The suggested approach was tested on the BRATS 2013 and 2015 

databases, and both were successful. The BRATS 2013 data set was able to acquire 

0.88, 0.83, and 0.77 for the full region, the core area, and the enhancing region, 

respectively. The BRATS 2015 data set achieved 0.78, 0.65, and 0.75 for the complete, 

core, and enhancing regions.  

Mohammad Havaei et al. (Havaei et al., 2017) presented a fully-automatic brain tumor 

segmentation approach based on Deep Neural Networks developed in their laboratory 

(DNNs). The networks that have been proposed are customized to high and low grades 
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that have been identified using magnetic resonance imaging (MRI). Brain tumors can 

occur anywhere and can be of any size, form, and contrast. Their CNN uses both local 

features and more global contextual elements simultaneously, which is unique. The 

last layer of their networks is a convolutional version of a fully connected layer, 

resulting in a 40-fold increase in runtime compared to most standard CNN 

applications. BRATS 2013 online assessment system results suggest that their best 

model outperformed the presently published state-of-the-art technique in terms of 

accuracy and speed, as demonstrated in MICCAI 2013 and BRATS 2013.(Havaei et 

al., 2017) 

Peter D. Chang created and developed an (FCR-NN) utilizing convolutional residuals 

for medical image segmentation using linear identity mappings. FCR-NN is an image 

segmentation architecture that mixes optimization improvements from residual 

identification maps with a fully convolutional model that successfully accommodates 

low & high-level picture properties. When two different models were trained, one for 

complete tumor classification and the other for cells within a cell sub-region 

classifying, the serial FCR-NN architecture outperforms the state-of-the-art with Dice 

coefficients of 0.87, 0.81, and 0.72 for complete tumor classification, core tumor 

classification, and enhancing tumor validation, respectively.(Havaei et al., 2017) 

Dinthisrang Daimary et al. (Daimary, Bora, Amitab, & Kandar, 2020) conducted 

hybridized convolutional neural networks using a mixture of U-SegNet, Seg-UNet, 

and Res-SegNet methods. To capture fine and detailed information, the Unet 

architecture uses skip connections. However, it requires more processing time for 

training than the SegNet design. As a result, the proposed hybrid models offer more 

effective outputs than other CNN models that are already accessible. The U-SegNet, 

Res-SegNet, and Seg-UNet each achieved a mean accuracy of 91.6 percent, 93.3 

percent, and 93.1 percent, respectively, compared to the other networks. Because 

hybrid architectures include more layers and trainable parameters than traditional 

designs, training is no longer required once the model has been trained. However, the 

system can separate brain tumors from MRI images in seconds. 
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Salma Alqazzaz et al. (Alqazzaz et al., 2019) suggested a SegNet for automatic brain 

tumor segmentation, with each modality being trained separately and the SegNet 

output integrated during post-processing. Pre-processing begins with the inputs being 

pre-possessed to remove unwanted artifacts while also improving segmentation 

outcomes via normalization and bias field correction. The SegNet network was then 

used to train each of the four MRI modalities on its own, independently of the others 

(Alqazzaz et al., 2019). The architecture is comprised of two components: an encoder 

(for downsampling) and a decoder (for up-sampling) (upsampling). To achieve this, 

the encoder includes 13 convolutional layers with three-by-three filters, batches of 

normalization layers and ReLU, and, lastly, max-pooling layers with two-by-two 

filters. In addition, the decoder has 13 convolutional layers that are used to correlate 

with the encoder's output. The enhanced characteristics of the decoder are passed to 

SoftMax layers, which classify each class pixel individually based on its location in 

the image. The segmentation approach had an accuracy of 85 percent for the overall 

tumor, an accuracy of 81 percent for the core tumor, and an accuracy of 79 percent for 

the expanding tumor (Alqazzaz et al., 2019). 

Muhammad Saeed et al. (Saeed et al., 2021). Recommended a New Residual Mobile 

Unet model for BraTS from Magnetic Resonance Images; RMUnet is a hybrid deep 

learning model capable of segmenting tumors with high accuracy. The MobileNetV2, 

ResNet, and Unet networks are all included in the design. The inclusion of residual 

blocks to MobileNetV2 has allowed it to learn more in-depth features, which has 

improved its performance. The proposed network uses a modified Mobile Net V2 as 

an encoder and up-sampling layers of Unet s as a decoder, with the modified Mobile 

Net V2 serving as the encoder. In the BraTS 2020 dataset, the RMUnet accomplished 

dice coefficient scores of 0.91, 0.88, and 0.83 for complete, core, and enhancing 

tumors, respectively. On the BraTS 2019 dataset, the RMUnet achieved dice 

coefficient scores of 0.91, 0.91, and 0.83; on the BraTS 2018 dataset, the RMUnet 

achieved dice coefficients of 0.90, 0.86, and 0.79.  
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2.6 Semantic Segmentation 

Image segmentation is currently the most widely used technology in predictive images. 

Indeed, most computer vision tasks above need intelligent image segmentation to 

completely comprehend the image's content and facilitate easier analysis between 

different parts of the image. The image segmentation technology based on deep 

learning employs convolutional neural networks to understand the real-world objects 

represented by each pixel in the image, which was unimaginable before. Image 

segmentation techniques based on deep learning are mainly divided into semantic 

segmentation and instance segmentation. 

Semantic segmentation of images is an essential and difficult computer vision topic 

that researchers have been tackling for a long period. Essentially, it is the challenge of 

comprehending the contents of an image at the pixel level. Semantic segmentation is 

a classic computer vision problem, which takes some raw data as input (such as a two-

dimensional (2D), Three-dimensional (3D)) and converts it into a mask defining an 

area of interest. More precisely, semantic image segmentation categorizes each pixel 

in an input image into a predetermined category, with each category corresponding to 

a particular object or portion of the image. This problem of per-pixel prediction is also 

known as a dense prediction. Semantic segmentation enables the identification of the 

categories of items contained in an image and their shapes and contours. But objects 

in the same category will not be distinguished. This provides an in-depth analysis of 

the problem. As a result, developing an automated semantic segmentation system is a 

high-priority topic of research in robotic vision, autonomous driving, and medical 

image processing, among other fields.  

Figure 2.11 illustrates a semantic segmentation example. Each pixel in the input image 

is labeled with one of the labels from the collection (human, Purse, Plants, sidewalk, 

building) (Lamba, 2019, Feb 17; Mody, 2018, August 7; Mwiti, 2019, July 29; J. 

Wang, 2019). The objective is to take an image and generate an output that contains a 

segmented image in which each number of pixels (between 0 and 255) in the input 

image is converted to a class label value (0, 1, 2,.., n) (Jordan, 2018). Semantic 

segmentation in medical imaging is frequently associated with the label imbalance 
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problem. For instance, tumors can be extremely small in tasks involving tumor 

segmentation, and abnormal cases may account for only a small portion of the dataset. 

There are significantly fewer tumor samples than non-tumor samples in this scenario, 

which complicates capturing tumor characteristics. 

 

Figure 2.11:  Example of semantic image segmentation  

Source: (Jordan, 2018) 

The purpose of semantic segmentation technology is to understand the image content 

from the pixel level and to output a segmentation map of an RGB image or a single-

channel grayscale image, which tells the category of each pixel in the image in a class 

label. 
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Chapter 3  

METHODOLOGY 

3.1 Introduction 

This section describes the network architecture specifics of the proposed model, which 

is an increased depth of 3D Residual Unet Network Architecture with an attention gate 

for brain tumor segmentation and the loss functions used in the training process. In 

addition, this part explains implementation details, and model training. 

3.2 Network Architecture 

The design of the suggested architecture is shown in Figure 3.3. The various 

components of the model, especially the attention gate and residual block, are 

described below. 

3.2.1 Attention Gates 

The attention mechanism concentrates on a certain portion of the image while paying 

less attention to the rest of the image. As with human visual attention, it can be trained 

to concentrate on a specified location or region while ignoring nearby areas in order to 

maximize performance. In addition, attention gates can help limit the number of false 

positives by reducing feature activation in unimportant image areas. As part of the 

current work, they support parameter updates in a model in geographical locations that 

are significant for tumor segmentation. As shown in Figure 3.1, the skip link utilizes 

an attention gate to establish a link between both the encoder and its equivalent 

decoder. The attention gate receives two parameters: The first input is from the 

appropriate encoder, which includes all of the contextual and spatial information for 

that layer, while the other comes from the below decoder layer, which acts as the gated 

signal.  For concatenation purposes, the attention gate's output is also sent into the 

decoder through the attention gate's output. 
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Figure 3.1: Attention gate representation 

Every attention stage receives inputs from the last attention layer and the equivalent 

resolution of the mainstream. For example, let sl and ml represent the attention and 

mainstream layers inputs at level l. First, sl and ml are connected, followed by a 1 × 1 

convolution layer C1×1 and a sigmoid function σ to produce an attention map: 

 𝛼𝑙 = 𝜎(𝐶1×1(𝑠𝑙 ∥ 𝑚𝑙))……………………………………………….. (3.1) 

The outcome of the attention layer is then obtained by performing an element-wise 

multiplying on the input to the attention layer, written as:-  

 𝑜𝑙 = 𝑠𝑙 ⊙𝛼𝑙…………………………………………………………… (3.2) 

3.2.2 Residual Unet 

It is an encoder-decoder design for semantic segmentation created by Zhengxin Zhang 

et al. (S. Wang, Zhang, & Wu, 2019). In remote sensing, data analysis; was originally 

applied to the extraction of roads from high-resolution satellite photos. Afterward, 

researchers used it for numerous other applications, including brain tumor 

segmentation and human image segmentation. With a growing number of 

classification tasks and the complexity of recognizing, individuals have developed 

increasingly stringent criteria for the depth of convolutional neural network layers as 

convolutional neural networks have progressed through the development and study of 

the technology. It was introduced in 2015, and it connects two neural layers via a skip 

link, known as the residual network (Wilber, 2016). Figure. 3.2 shows how a skip link 

could perform this multi-layer identity function and learn the succeeding levels of a 

deep network's identity mapping. As a result, the network's ability to express features 
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can be maintained even as the depth of the network increases, gently resolving the 

issue of gradient disappearing or explosion caused by layer depth increase. 

If one of the link layers is H (x), the residual network block could be described as 

follows: 

 H(x) = F(x) + x⁡……………………………………………………… (3.3) 

Where x represents the network-passed value, F (x) is the residual parameter, and H 

(x) is the predicted output. 

 

Figure 3.2: Residual block. 

3.3 Increased Depth Of 3D Attention Residual Unet 

Tumors must be segmented into distinct subregions to estimate their development and 

plan treatment, which is critical. On the other hand, Tumor classification is time-

consuming and requires expertise. More complicated characteristics must be learned 

from data, and deeper networks must be used to accomplish this. However, with 

increasing depth, the network loses a corresponding amount of spatial information, 
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reducing segmentation accuracy. The UNet transmits contextual and spatial 

information between the encoder and the decoder using skip links. 

Consequently, critical spatial information lost during down sampling can be recovered 

more effectively. However, all data is transmitted through skip links on the UNet 

network. Therefore, attention gates must be employed to combine only the decoder's 

relevant feature activations. Furthermore, each layer's characteristics are enhanced 

thanks to residual blocks, which help the UNet extract more information from each 

layer. Furthermore, to improve the accuracy of segmentation. This paper proposes the 

increased depth of 3D Residual Unet Network Architecture with an attention gate for 

brain tumor segmentation, as shown in Figure 3.3. 

 

Figure 3.3: An increased depth of 3D Residual Unet Network Architecture with an 

attention gate. 

3.3.1 Encoder Path 

The encoder pathway is made up of six layers, each of which includes a Residual block 

and a 2×2×2 kernel size of a maximum pooling layer. There are four channels in the 
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proposed network, which correspond to the four modalities of the Magnetic resonance 

imaging datasets (Flair, T1, T1ce, and T2). The proposed network accepts an input of 

shape 128×128×128×4, where 128×128×128 is the image resolution of the input 

shape. The residual blocks are made up of 3×3×3 dilated convolutional layers, each of 

which follows a Batch Normalization (B.N.) layer and an activation function for the 

Leaky Rectified Linear Unit (Leaky ReLU). The first residual block contains 32 

feature maps with a dimension of 128×128×128. During the down-sampling block, the 

amount of kernels doubles, allowing the framework to learn complex structures 

efficiently, and the size of each feature map is reduced by half. As a result, the residual 

block at the sixth layer contains 1024 feature maps with a dimension of 4×4×4. 

3.3.2 Bottleneck 

The encoder and decoder of the suggested architecture are connected through the 

bottleneck layer. It possesses a residual block that has a dimension of 2×2×2. And 

contains 2048 feature mappings. The convolution layers that make up the residual 

block each have a dilation rate of three. The output of the bottleneck layer is split 

between two distinct pathways. The first path goes into the decoder channel, followed 

by the convolutional transpose layer, while the second is the attention gate's gated 

signal. 

3.3.3 Decoder Path 

Additionally, the decoder route comprises six layers, followed by a 3×3×3 

convolutional transpose layer. Each decoder layer is linked to its matching encoder 

layer using a skip link and an attention gate. 3×3×3 convolutional transposition is used 

to achieve up sampling in this case. The outcome of the attention gate is combined 

with the up sampled output of the previous decoder layer. After that, the output is 

concatenated and distributed to the residual blocks. The exact residual blocks used in 

the encoder route are also used in this route. The number of feature maps in each 

decoder layer has been reduced by half, while the size of the feature maps has been 

increased. The output of the residual block is up-sampled to a resolution of 

128×128×128 at the final layer, and the output is sent via a SoftMax activation 
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function. SoftMax activation transforms feature maps into probabilistic 

representations. The outputs are then evaluated to the ground truth to calculate the 

amount of loss. 

3.4 Loss Function 

In order to obtain a decent model, it is required to build a suitable loss function that 

measures the degree of similarity between the model's anticipated outcome and the 

actual value in the training data. The present work segments MRI scans using a mix of 

dice loss and focal loss. 

3.4.1 Focal Loss 

Focal loss is a loss function suggested by Lin et al. (Lin, Goyal, Girshick, He, & Dollár, 

2017) to assist deep learning models in resolving class imbalance challenges where 

there is a significant imbalance between foreground and background classes during 

model training (e.g., 1:1000). 

The focused loss function was offered as a solution to the issue of a severe imbalance 

between the classes. It was achieved by adding weights to the majority and the 

minority samples. For frequent occurrences of majority data, the weight was lowered 

by a minor amount. For minority data, the weight was comparatively increased. By 

adjusting the value, it was possible to manage the contribution of the shared weight of 

different sample numbers to the overall loss. The addition of a modulating factor then 

regulated the weight of the easy-to-classify samples and the difficult-to-classify 

samples. This component decreased the weight of easy-to-classify data, allowing the 

model's training to place greater emphasis on difficult-to-classify samples.  

The following are some descriptions of focus loss: 

 F. L. (𝑝𝑡) = −𝛼t(1 − 𝑝t)
𝛾log⁡(𝑝t) …………………………………… (3.4) 

Where  
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 𝑝𝑡 = {
𝑝    𝑦 = 1
1 − 𝑝    𝑦 = 0

 ………………………………………………….. (3.5) 

And 

 𝛼t = {
𝛼    𝑦 = 1
1 − 𝛼    𝑦 = 0

 …………………………………………………. (3.6) 

Equations. (3.4)-(3.6), 𝑦 ∈ (0,1)is the real labeling of a patch, and 𝑝 ∈ [0,1]is the 

model's predicted probabilities for the class labeled 𝑦 = 1. 

During recent decades, focus loss has been utilized extensively in image identification 

and categorization domains. For example, Lin et al. (Lin et al., 2017) used focus loss 

to develop a dense detector, RetinaNet, which produced impressive detecting 

performance. Furthermore, by implementing focus loss in their suggested neural 

network, Shu et al. (Shu et al., 2019) were able to tackle the problem of class imbalance 

during training and achieve improved classification performance for breast cancer. In 

light of the achievement of focused loss in the aforementioned disciplines, it feels that 

the potential of focal loss in clustering tasks is likewise deserving of inquiry and 

discussion; this is the driving force for this work. 

3.4.2 Dice Loss 

The dice coefficient is a commonly employed statistic for assessing segmentation 

output. It has also been adapted for use as a loss function, satisfying the segmentation 

objective's mathematical description. Later in 2016, it was also implemented as the 

Dice Loss function (Yeung, Sala, Schönlieb, & Rundo, 2022). 

 𝐷 =
2∑  𝑁

𝑖 𝑝𝑖𝑔𝑖

∑  𝑁
𝑖 𝑝𝑖

2+∑  𝑁
𝑖 𝑔𝑖

2 ……………………………………………………… (3.7) 

Demonstrates the Dice coefficient equation, where pi and gi indicate pairs of pixel 

numbers assigned to the predictions and ground truth, respectively. For example, in a 

boundary detection situation, the values of pi and gi are either 0 or 1, indicating 

whether or not the pixel is a boundary (value of 1) or not (value of 0). a consequence 
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of this, the number of total border pixels serves as the denominator for both ground 

truth and prediction. On the other hand, the numerator is the total of correctly predicted 

border pixels, and this amount can only grow when pi and gi are in a match. 

 𝐷(𝑥, 𝑦) =
2|𝑥∩𝑦|

|𝑥|+|𝑦|
 ………………………………………………… (3.8) 

Dice coefficient (DSC) quantifies the overlap of two different sets. For instance, if two 

sets A and B completely overlap, DSC's highest value is 1. Otherwise, DSC decreases 

until it reaches its minimum value of 0 if the two sets do not overlap. Therefore, the 

DSC range is between 0 and 1, and the higher it is, the better. 

Designers are aware that the loss values require low values to fix the backpropagation 

weights. Therefore, 1-DSC may be used as the Dice loss to optimize the overlap 

between two sets. 

 𝐷𝑖𝑐𝑒⁡𝑙𝑜𝑠𝑠 = 1 − 𝐷𝑆𝐶 ……………………………………………….. (3.9) 

This equation can determine that the dice loss decreases while the dice value increases. 

When the dice value reaches its maximum, the loss equals zero, indicating that the 

model is accurate. 

3.5 Implementation Details  

The suggested network goes through 100 training iterations with a batch size of 4. 

TensorFlow was utilized as the backend for this project. It utilized the Adam optimizer 

with a learning rate of 0.0001, batch normalization, and a learning rate of 0.0001 to 

boost the network's stability and normalize the model at each layer. Using a dilation 

rate of 1 reveals how much the kernel is expanded. The training for the network was 

done on the NVIDIA Tesla K80 GPU hosted in Google Colab. 

3.6 Data Pre-Processing 

Every modality of the Magnetic resonance imaging scans includes a three-

dimensional, volumetric scan of the brain (240, 240, 155). As the 4 types of Magnetic 
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resonance images are utilized simultaneously to locate distinct parts of cancer, the 

study has integrated the slices from the four sequences into channels for each volume 

(128 slices). Training a model with an input image of (240,240,155,4) is 

computationally heavy and makes memory insufficient. So, to improve memory 

requirements. All the images were cropped (128,128,128,4). The input data size 

becomes (X,128,128,128, 4), where X is the number of images in each dataset, 

128×128×128 is the dimension of every picture, and four are the channels. The dataset 

is then separated into a training data set consisting of 75% images, a validation set 

consisting of 15% images, and a testing set consisting of 10% images. 

3.7 Model Training  

After normalizing, cropping, and resampling the pictures, the model was trained to 

automatically identify multiclass tumor segments. Due to the dimension of the data, 

samples were handled individually instead of in batches. The training dataset is 

separated into 75%, 15%, and 10% training, validation, and test samples. The training 

time for all three network models is 100 epochs long, and the learning rate is 0.0001. 

The Adam method [73], which is an adjustable first-order gradient optimizing 

methodology, is utilized when training the model. The model uses early stopping, 

which means the training process will be terminated if there is no improvement after 

twenty iterations on the validation data. The loss function for the project utilizes a 

combination of focused loss and dice loss.
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Chapter 4  

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter discusses the performance of the proposed models. Several tests were 

undertaken to determine the model's improvements. In this chapter, a detailed 

description of experiments and an overview of the research's investigations are 

provided; after that, the selection of the optimal model configuration, BraTS 2020, 

BraTS 2019, and BraTS 2018 datasets were obtained. 

4.2 Segmentation Evaluation Metrics 

Data processing, pattern identification, and deep learning all require classification. 

Additionally, it permits rational decision-making (Norouzi et al., 2014). Classification 

is a method of building a network or classifiers in order to anticipate class labels. The 

objective of classifications is to properly anticipate the target class for each data 

instance (Kesavaraj & Sukumaran, 2013). The simplest kind of classification is binary 

classification, in which there are only two potential values for the desired 

characteristic. Multiclass targets include several parameters. In order to employ the 

automated classification approach, training data must be specified, which consists of 

a collection of observations for which the desired value has already been defined. This 

data must also include the inputs and outputs intended to be produced. In order for a 

diagnostic test to be accurate, it must be able to discriminate between individuals with 

and without illness (Kesavaraj & Sukumaran, 2013). 

Generally, test findings are either positive or negative for a specific problem. These 

phrases of the terms positive and negative may be traced back to older medical uses in 

which persons who had a recognized health phenomenon (e.g., a sickness) were 

described as positive and all others as negative. A true positive (TP) occurs whenever 

a person has the disease and is classified as positive by the test. A false negative (F.N.) 

happens whenever the classifier projects a negative outcome. Likewise, a false positive 
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(F.P.) is identified if a person is negative for the disease. Still, the algorithm's forecast 

is positive; however, a true negative (T.N.) is established if both predictions are 

negative. Additionally, accuracy, sensitivity, and specificity are employed to evaluate 

clinical conditions. Sensitivity is the portion of true positives accurately detected. 

(Harefa, Alexander, & Pratiwi, 2017; Orru, Pettersson-Yeo, Marquand, Sartori, & 

Mechelli, 2012). 

On the other hand, specificity relates to the fraction of real negatives that were 

accurately detected (Harefa et al., 2017; Orru et al., 2012). Often, the sensitivity of a 

binary test is stated as its precision (Kesavaraj & Sukumaran, 2013). Accuracy, 

precision, sensitivity, specificity, and the balanced error rate (BER) are the five 

measurements used to evaluate binary categorization (Majnik & Bosnić, 2013). 

Several researchers have employed varied combinations of tumor components to 

assess the approaches, making comparisons difficult. Therefore, the BRATS challenge 

organizers have supplied the most often mentioned tumor components. Several 

segmentation techniques include the Dice (DSC), sensitivity, and positive predictive 

value (PPV). Figure 4.1. Illustrates the segmented regions utilized to evaluate the 

segmentation technique in this study. According to Dvořák and Menze. (Dvořák & 

Menze, 2015), the tumor area was evaluated, which included the entire tumor, the core 

tumor excluding "edema," and the increasing tumor, which contained the increased 

tumor shape. 

 

Figure 4.1: Demonstrates True Positive, False Positive, True Negative, and False 

Negative. The green circle shows the findings, whereas the yellow circle indicates 

the ground truth. 
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Comparing segmented pictures to measure accuracy is crucial for measuring the neural 

network's performance. The segmentation of brain tumors is severely affected by class 

imbalance difficulties. In addition to Intersection over Union (IoU), the Dice Score 

(D.S.) coefficient was used as the assessment measure for all the experiments since it 

addresses the problem of class imbalance. 

The dice coefficient (DSC) (Yeghiazaryan & Voiculescu, 2015) is the largest frequent 

and widely used assessment metric for evaluating a segmented picture to its ground 

truth. It compares two sets, x, and y, by normalizing the sizes of their overlaps 

according to their average sizes. The following formula denotes the DSC formula: 

 𝐷(𝑥, 𝑦) =
2|𝑥∩𝑦|

|𝑥|+|𝑦|
  …………………………………………………….. (4.1) 

Dice coefficient (DSC) (Yeghiazaryan & Voiculescu, 2015) quantifies the overlapping 

of two components. For instance, if two sets x and y fully overlapped, DSC's highest 

score is 1. Otherwise, DSC decreases until it reaches its minimum value of 0 if the two 

sets do not overlap. Hence, the DSC range is between 0 and 1, and the higher it is, the 

greater. 

The Jaccard coefficient (Jaccard) (Yeghiazaryan & Voiculescu, 2015) is a 

segmentation technique assessment metric. For instance, Jacquard provides the below 

equation to compute the match between two x and y sets by normalizing the area of 

their intersection over their union: 

 Jaccard =
|𝑥∩𝑦|

|𝑥∪𝑦|
 …………………………………………………. (4.2) 

Statistical decision concept metrics sensitivity and specificity are calculated using the 

following formulas: 

 Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ………………………………………………. (4.10) 

 Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 ……………………………………………….. (4.11) 
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The effectiveness of the proposed model was evaluated using the Jaccard score, dice 

coefficient score, sensitivity, and specificity. 

4.3 Data Sets 

The clinical magnetic resonance imaging scans image data represent low-grade 

gliomas and high-grade gliomas. 

The dataset images utilized in the investigation all contain the 4 MRI scans listed 

below. 

➢ T1 is a T1-weighted, native image that may be acquired in sagittal or axial 

2D, and it has a cell size between 1 to 6 mm. 

➢ T1-ce: The majority of patients will get a T1-weighted, contrast-enhanced 

(with gadolinium), three-dimensional image with a voxel size of 1 millimeter 

isotropic. 

➢ T2: T2-weighted picture, acquired in axial 2D, having a 2- and 6-mm cell 

size. 

➢ FLAIR: T2-weighted FLAIR images can be acquired in axial, coronal, or 

sagittal planes, with a cell size between 2 and 6 mm. 

4.3.1 BraTS 2018 

BraTS 2018 [39, 80, 81] was utilized in this experiment, which delivers multimodal 

3D brain MRIs and ground truth brain tumor segmentations labeled by clinicians, with 

4 MRI modalities for each patient (T1, T1c, T2, and FLAIR). The MRI volumes were 

manually segmented by one to four reviewers, and professional neuroradiologists 

validated their labels. The annotations include three subregions of the tumor: the 

increasing tumor, the edema, and the necrotic and non-increasing tumor core. In 

addition, the annotations were grouped into three subgroups: the complete tumor, the 

core tumor, and the increasing tumor. MRI scanners from 19 organizations were used 

to acquire the data. The BraTS 2018 training data includes a total of 285 pictures, of 

which 210 are HGG, and 75 are LGG. The validation data includes 66 unique MRI 
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scans. Therefore, 240 × 240 × 155 is the volume dimension for each MRI in the BraTS 

2018 dataset.  

4.3.2 BraTS 2019 

The BraTS 2019 data set (Bakas et al., 2017b; Bakas et al., 2018; Menze et al., 2014) 

comprises a total of 259 high-grade gliomas (HGG) MRI scans and 76 low-grade 

gliomas (LGG) MRI images. This dataset was provided from the BraTS website and 

is utilized to analyze suggested designs. The MRI performed on each person includes 

the following order: FLAIR, T1, contrast-enhanced T1, and T2. The ground truth of 

each image was manually constructed using the same annotation technique. 

Professional neuroradiologists accepted the annotations (Bakas et al., 2017a), which 

include enhancing tumor (E.T. labeled 4), peritumoral edema (E.D. labeled 2), and 

necrotic or non-increasing tumor core (NCR/NET labeled 1). This research examines 

both HGG and LGG MRI images. 

4.3.3 BraTS 2020 

This research uses the BraTS 2020 dataset (Bakas et al., 2017a; Bakas et al., 2017b; 

Bakas et al., 2018; Menze et al., 2014) to evaluate the effectiveness of the presented 

network. There are 125 for validating and 369 training research related to the 

multimodal brains of M.R. T1-image, T1ce, T2-image, and FLAIR sequences are 

included in every dataset. The dimension of every MRI picture is 240 × 240 × 155 

pixels. Furthermore, professionals analyzed every study's increasing tumor (E.T.), 

peritumoral edema (E.D.), and necrotic and non-increasing tumor core (NET). Labels 

for training experiments are publicly available for online assessment, but validation 

and test trial annotations are kept private. 

4.4 Pre-Processing 

The first step in any data-driven study is to pre-process the raw images. First, the 

images of all three datasets are resized to 128 × 128 × 128 for feeding as input to UNet. 

In every dataset, each subject contains four images with annotated masks. Next, all the 
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images are given to the networks by considering each image separately as W.T., E.T., 

and T.C. classes. 

4.5 Comparison Of The Proposed Models 

This section evaluates the results of the proposed model against the baseline models 

to show the performance. 

4.5.1 Increased Depth Of 3D Unet Model 

First, the BraTS datasets have been used for training the increased depth of 3D UNet 

architecture. Tables 4.1 and 4.2 provide the findings of the model, which could be 

found below. When compared to the performance of other models, UNet's 

performance is rated lower in terms of the dice coefficient value. Check out Tables 4.3 

and 4.5. 

Table 4.1: Dice coefficient score and Jaccard score for the Increased depth of 3D UNet 

model on the BraTS 2020, 2019, and 2018 datasets 

Configuration Dataset 

Dice Coefficient Score Jaccard Score 

WT ET TC WT ET TC 

Increased Depth 

Of 3D Unet 

BraTS 

2020 
0.9277 0.8792 0.9180 0.8652 0.7844 0.8484 

BraTS 

2019 
0.8280 0.7763 0.7993 0.7064 0.6344 0.6657 

BraTS 

2018 
0.8318 0.7720 0.8121 0.7121 0.6287 0.6836 

Table 4.2: Sensitivity and specificity for Increased depth of 3D UNet on BraTS 2020, 

2019, and 2018 datasets. 
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Configuration Dataset 

Sensitivity Specificity 

WT ET TC WT ET TC 

Increased 

Depth Of 3D 

Unet 

BraTS 

2020 
0.9005 0.9356 0.9373 0.9980 0.9990 0.9990 

BraTS 

2019 
0.7650 0.7556 0.8124 0.9964 0.9980 0.9964 

BraTS 

2018 
0.8844 0.7280 0.7803 0.9873 0.9976 0.9968 

4.5.2 Increased Depth Of 3D Residual-Unet Model 

To increase the dice score, a hybrid deep learning model Residual-UNet is used in 

which the Residual block is used as an encoder part for feature extraction. The 

utilization of residual blocks allows for building a bigger network to be accomplished, 

not need to be concerned with the issue of disappearing gradients or exploding 

gradients (Maji et al., 2022). It also helps in easy training of the network. In addition, 

the Residual UNet's skip links contribute to a more efficient transfer of information 

across the various layers, which also, in turn, contributes to a more effective transfer 

of gradients during training. RESNET (Maji et al., 2022) was developed to achieve 

great efficiency by having a reduced number of parameters. It is an advancement in 

UNET architecture. The increased depth of 3D Residual-UNet are presented in Table 

4.3 and Table 4.4. 

Table 4.3: Dice coefficient score and Jaccard score for the Increased depth of 3D 

Residual-UNet model on BraTS 2020, 2019, and 2018 datasets 

Configuration Dataset 

Dice Coefficient Score Jaccard Score 

WT ET TC WT ET TC 

BraTS 

2020 
0.9361 0.8919 0.8833 0.8977 0.8045 0.7910 
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Configuration Dataset 

Dice Coefficient Score Jaccard Score 

WT ET TC WT ET TC 

Increased 

Depth Of 3D 

Residual-UNet 

BraTS 

2019 
0.8914 0.7578 0.7365 0.8040 0.6100 0.5828 

BraTS 

2018 
0.8484 0.7127 0.8033 0.7367 0.5537 0.6713 

Table 4.4: Sensitivity and specificity for the Increased depth of 3D Residual-UNet on 

BraTS 2020, 2019, and 2018 datasets. 

Configuration Dataset 

Sensitivity Specificity 

WT ET TC WT ET TC 

Increased 

Depth Of 3D 

Residual-Unet 

BraTS 

2020 
0.9551 0.9392 0.9608 0.9964 0.9992 0.9979 

BraTS 

2019 
0.8426 0.6286 0.7046 0.9979 0.9997 0.9965 

BraTS 

2018 
0.8338 0.5703 0.7047 0.9931 0.9995 0.9989 

4.5.3 Increased Depth of 3D Attention Residual UNet 

This model is a combination of attention mechanism and residual UNet. The attention 

function concentrates on a certain portion of the picture whilst overlooking the rest of 

the image. As with human visual attention, it may be trained to concentrate on a 

particular region while overlooking nearby areas in order to maximize performance 

(Maji et al., 2022). In addition, attention gates can help limit the number of false 

positives by reducing feature activation in unimportant image areas. 

Table 4.5: Dice coefficient score and Jaccard score for Increased depth of 3D 

Attention Residual-UNet on BraTS 2020, 2019, and 2018 datasets. 
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Configuration Dataset 

Dice Coefficient Score Jaccard Score 

WT ET TC WT ET TC 

Increased 

Depth Of 3D 

Attention 

ResNet 

BraTS 

2020 
0.9391 0.8921 0.9301 0.8851 0.8052 0.8694 

BraTS 

2019 
0.8844 0.7987 0.7511 0.7927 0.6649 0.6014 

BraTS 

2018 
0.8836 0.7819 0.8317 0.7914 0.6419 0.7119 

Table 4.6: Sensitivity and specificity for Increased depth of 3D Attention Residual-

UNet on BraTS 2020, 2019, and 2018 datasets. 

Configuration Dataset 

Sensitivity Specificity 

WT ET TC WT ET TC 

Increased 

Depth Of 3D 

Attention 

ResNet 

BraTS 

2020 
0.9484 0.9090 0.9375 0.9966 0.9993 0.9992 

BraTS 

2019 
0.8160 0.7752 0.7248 0.9987 0.9985 0.9966 

BraTS 

2018 
0.8569 0.7053 0.7758 0.9957 0.9985 0.9979 

4.6 Using Dropout Regularization  

A training method known as a dropout involves ignoring a certain number of neurons 

at random. They simply "disappear" for no apparent reason. It suggests that their 

impact on the activity of neurons farther downstream is removed temporarily during 

the forward transit of the pathway. On the reverse pass, any weight modifications are 

not transmitted to the neuron (Saeed et al., 2021). This experiment uses a combination 

of dropout values of 0.1 and 0.2; the results are revealed in Table 4.7 and Table 4.8. 

The findings for this dropout number indicate that the model's predictive accuracy did 

not significantly increase as a consequence of the changes made. 
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Table 4.7: Dice coefficient and Jaccard score for Increased depth of 3D Attention 

Residual-UNet with and without dropout regularization on BraTS 2020, 2019, and 

2018 datasets. The best scores are in bold. 

Configuration Dataset 

Dice Coefficient Jaccard Score 

WT ET TC WT ET TC 

Increased Depth Of 3D A-

ResNet (without dropout) 

BraTS 

2020 

0.9391 0.8921 0.9301 0.8851 0.8052 0.8694 

Increased Depth Of 3D A-

ResNet (with dropout) 
0.92 0.8899 0.9539 0.8518 0.8016 0.9119 

Average Improvement 0.08% 0.29% 

Increased Depth Of 3D A-

ResNet (without dropout) 

BraTS 

2019 

0.8844 0.7987 0.7511 0.7927 0.6649 0.6014 

Increased Depth Of 3D A-

ResNet (with dropout) 
0.8942 0.7714 0.7970 0.8087 0.6279 0.6625 

Average Improvement 0.97% 1.34% 

Increased Depth Of 3D A-

ResNet (without dropout) 

BraTS 

2018 

0.8836 0.7819 0.8317 0.7914 0.6419 0.7119 

Increased Depth Of 3D A-

ResNet (with dropout) 
0.8413 0.7357 0.8078 0.7261 0.5819 0.6775 

Average Improvement −3.75% −5.32% 

Table 4.8: Sensitivity and specificity for Increased depth of 3D Attention Residual-

UNet with and without dropout regularization on BraTS 2020, 2019, and 2018 

datasets. The best scores are in bold. 
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Configuration Dataset 

Sensitivity Specificity 

WT ET TC WT ET TC 

Increased Depth Of 3D A-

ResNet (without dropout) 

BraTS 

2020 

0.9484 0.9090 0.9375 0.9966 0.9993 0.9992 

Increased Depth Of 3D A-

ResNet (with dropout) 
0.9797 0.894 0.9478 0.9928 0.9996 0.9994 

Average Improvement 0.89% -0.11% 

Increased Depth Of 3D A-

ResNet (without dropout) 

BraTS 

2019 

0.8160 0.7752 0.7248 0.9987 0.9985 0.9966 

Increased Depth Of 3D A-

ResNet (with dropout) 
0.8928 0.6665 0.7883 0.9955 0.9994 0.9969 

Average Improvement 1.05% -0.067% 

Increased Depth Of 3D A-

ResNet (without dropout) 

BraTS 

2018 

0.8569 0.7053 0.7758 0.9957 0.9985 0.9979 

Increased Depth Of 3D A-

ResNet (with dropout) 
0.8831 0.6169 0.7565 0.9886 0.9991 0.9973 

Average Improvement −2.72% −0.237% 
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4.7 Predicted Image Results of The Proposed Model 

This section displays the predicted image results of the suggested model. 

4.7.1 BraTS 2018 

Figure 4.2 displays some sample images taken from the BraTS 2018 dataset. These 

images include the ground truth and the predicted image of the proposed model. 

 

 

 

 

 

Figure 4.2: Predictions of the proposed model on BraTS 2018 
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4.7.2 BraTS 2019 

Figure 4.3 displays some sample images taken from the BraTS 2019 dataset. These 

images include the ground truth and the predicted image of the proposed model. 

 

 

 

 

 

Figure 4.3: Predictions of the proposed model on BraTS 2019 
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4.7.3 BraTS 2020 

Figure 4.4 displays some sample images taken from the BraTS 2020 dataset. These 

images include the ground truth and the predicted image of the proposed model. 

 

 

 

 

 

Figure 4.4: Predictions of the proposed model on BraTS 2020 
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4.8 Comparison Of Increased Depth Of 3D Attention Residual-Unet With Other 

Deep Learning Segmentation Models 

The results obtained from different segmentation models are shown in Tables 4.9-

4.11, including a brief explanation and the models’ size. 

Table 4.9: Comparing the presented model and state-of-the-art segmentation models 

regarding model size and the number of parameters using BraTS2020. The best two 

scores are in bold. 

References 
Dataset 

Used 
Architecture Information 

Dice Coefficient Score 

Whole 

Tumor 

(WT)% 

Enhanced 

Tumor 

(ET)% 

Tumor 

Core 

(TC)% 

(Fidon, 

Ourselin, & 

Vercauteren, 

2020) 

BraTS 

2020 

3D Unet architecture with additional 

layers 
88.9 81.4 84.1 

(Y. Wang et 

al., 2020) 

BraTS 

2020 

Modality pairing architecture like 3D 

Unet  architecture 
89.1 81.6 84.2 

(Jia, Cai, 

Huang, & 

Xia, 2020) 

BraTS 

2020 
Single and cascaded HNF-Net 91.29 78.75 85.46 

(Isensee, 

Jäger, Full, 

Vollmuth, & 

Maier-Hein, 

2020) 

BraTS 

2020 

nnUnet  architecture with 

augmentation and modification 
88.95 82.03 85.06 

(Wenbo 

Zhang et al., 

2021) 

BraTS 

2020 

Multi-encoder architecture with 

Categorical dice score 
70.24 73.86 88.26 

(Silva, 

Pinto, 

Pereira, & 

BraTS 

2020 

Three deep layer aggregation neural 

networks using previous outputs as 

input 

88.58 79 82.97 
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References 
Dataset 

Used 
Architecture Information 

Dice Coefficient Score 

Whole 

Tumor 

(WT)% 

Enhanced 

Tumor 

(ET)% 

Tumor 

Core 

(TC)% 

Lopes, 

2020) 

(Ahmad, 

Qamar, 

Shen, & 

Saeed, 

2020) 

BraTS 

2020 

Modified Unet  architecture with 

densely connected blocks 
89.12 79.12 84.74 

(Henry et 

al., 2020) 

BraTS 

2020 

Ensemble model with multiple Unet  

networks 
91 81 85 

(Russo, Liu, 

& Ieva, 

2020) 

BraTS 

2020 

Lesion encoder framework with 

DCNN network 
86.87 78.98 80.66 

(Messaoudi 

et al., 2020) 

BraTS 

2020 

Efficient network as an encoder with 

the three-dimensional network for 

segmentation 

80.68 69.59 75.20 

Proposed 

Model 

BraTS 

2020 

Increased depth of 3D Residual 

UNET Network Architecture with 

an attention gate 

93.91 89.21 93.01 

 

Table 4.10: Comparing the presented model and state-of-the-art segmentation models 

regarding model size and the number of parameters using BraTS 2019. The best two 

scores are in bold. 
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References 
Dataset 

Used 
Architecture Information 

Dice Coefficient Score 

Whole 

Tumor 

(WT)% 

Enhanced 

Tumor 

(ET)% 

Tumor 

Core 

(TC)% 

(Li, Luo, & 

Wang, 2019) 

BraTS 

2019 

A multi-step cascaded model with 

hierarchical topology 
88.60 77.10 81.30 

(F. Wang, 

Jiang, Zheng, 

Meng, & 

Biswal, 

2019) 

BraTS 

2019 

3D Unet based deep learning model using 

brain-wise normalization and patching 

strategies 

85.20 77.80 79.80 

(Kim, Luna, 

Chikontwe, 

& Park, 

2019) 

BraTS 

2019 

Two-Step Unet for Brain Tumor 

Segmentation and Random Forest 
85.80 74.30 80.40 

(Amian & 

Soltaninejad, 

2019) 

BraTS 

2019 

Multi-resolution 3D CNN for MRI Brain 

Tumor Segmentation and Survival 

Prediction 

84 71 74 

(Islam et al., 

2019) 

BraTS 

2019 

Brain Tumor Segmentation and Survival 

Prediction Using 3D Attention Unet 
86.89 77.80 77.71 

Proposed 

Model 

BraTS 

2019 

Increased depth of 3D Residual UNET 

Network Architecture with an 

attention gate  

88.44 79.87 75.11 

 

Table 4.11: Comparing the presented model and state-of-the-art segmentation models 

regarding model size and the number of parameters using BraTS 2018. The best two 

scores are in bold. 
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References 
Dataset 

Used 
Architecture Information 

Dice Coefficient Score 

Whole 

Tumor 

(WT)% 

Enhanced 

Tumor 

(ET)% 

Tumor 

Core 

(TC)% 

(Weninger, 

Rippel, 

Koppers, & 

Merhof, 

2018) 

BraTS 

2018 

Two 3D Unet were used. One for finding 

tumor location and the second for 

detecting subtle tumor 

84.40 62.10 72.80 

(Kermi et al., 

2018) 

BraTS 

2018 

Modified Unet architecture based on 2D 

deep neural network 
86.80 78.30 80.50 

(Kong & 

Zhang, 2021) 

BraTS 

2018 

Multi-modal Brain Tumor Segmentation 

Using 

Cascaded 3D Unet 

88.30 74.60 83.40 

(Puch, 

Sánchez, 

Hernández, 

Piella, & 

Prc̆kovska, 

2018) 

BraTS 

2018 

Global Planar Convolutions for improved 

context aggregation 
89.70 75.20 79.07 

(Myronenko, 

2018) 

BraTS 

2018 

Ensemble of ten deep learning models 

with auto-regularization 
88.39 76.64 81.54 

Proposed 

Model 

BraTS 

2018 

Increased depth of 3D Residual UNET 

Network Architecture with an 

attention gate 

88.36 78.19 83.17 
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Chapter 5  

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Segmentation of brain tumors is a key diagnostic technique. This research proposes 

the increased depth of 3D Residual UNET Network Architecture with an attention gate 

for brain tumor segmentation. The presented model has increased the depth of the 

normal attention residual unet from four layers into six layers. By allowing only 

activations from important areas on the encoder side using attention gates and creating 

better feature mappings at the decoder, these modifications to the basic network of 

attention Res-UNet enhanced the process of learning. The use of a combination of dice 

loss and focal loss helped the model in resolving class imbalance challenges where 

brain tumors have a significant imbalance between foreground and background 

classes. Because of this, the model has improved and got a better segmentation 

achievement. The datasets from the BraTS 2020, BraTS 2019, and BraTS 2018 

competitions are used throughout the training and testing of the suggested model. The 

proposed model has gained dice coefficient scores for WT, TC, and ET as 93.91%, 

93.01%, and 89.21% on BraTS 2020, 88.44%, 75.11%, and 79.87% on BraTS 2019, 

88.36%, 83.17%, and 78.19% on BraTS 2018 datasets, respectively. As shown in 

tables 4.9,4.10, and 4.11, the results of the experiments revealed that the suggested 

design is superior to most of the existing models that are considered to be state-of-the-

art. 

5.2 Future Research 

The study described in this thesis and the results obtained enable the prediction of 

future research directions. Some research was excluded from the thesis because of 

the time limitations, while others are new forecasts based on concerns during the 

experiment's result.  It is feasible that an increased depth of 3D Attention Residual 

UNET Network with a guided decoder could be done at some point in the future. 
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On the other hand, the training of the recommended model is computationally 

intensive; as a result, more work can be done to cut down on the amount of memory 

and processing time required. In addition, however, many manually labeled data 

relating to brain tumors are required for the proposed model to be trained. As a result, 

future research may concentrate on developing unsupervised and semi-supervised 

methods for segmenting brain tumors. 
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