AHSAN MEHBOOB	NEAR EAST UNIVERSITY INSTITUTE OF GRADUATE STUDIES DEPARTMENT OF MECHANICAL ENGINEERING
ANALYSIS OF WIND ENERGY POTENTIAL IN SELECTED REGIONS IN PAKISTAN	ANALYSIS OF WIND ENERGY POTENTIAL IN SELECTED REGIONS IN PAKISTAN
MASTER THESIS	M.Sc. THESIS Ahsan MEHBOOB
2023	Nicosia January, 2023

NEAR EAST UNIVERSITY INSTITUTE OF GRADUATE STUDIES DEPARTMENT OF MECHANICAL ENGINEERING

ANALYSIS OF WIND ENERGY POTENTIAL IN SELECTED REGIONS IN PAKISTAN

M.Sc. THESIS

Ahsan MEHBOOB

Supervisor

ASSOC. PROF. DR. YOUSSEF KASSEM

Nicosia January, 2023

Approval

We certify that we have read the thesis submitted by Ahsan Mehboob titled "(ANALYSIS OF WIND ENERGY POTENTIAL IN SELECTED REGIONS IN PAKISTAN)" and that in our combined opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Mechanical Engineering.

Examining Committee

Name-Surname

Signature

Head of the Committee:Assist. Prof. Dr. Elbrus Bashir İMANOV Committee Member*: Assoc. Prof. Dr. Hüseyin ÇAMUR

Approved by the Head of the Department

Assoc. Prof. Dr. Hüseyin ÇAMUR Head of Department

Approved by the Institute of Graduate Studies

Prof. Dr. Kema Hüsnü Can Baser ead of the Institute

Declaration

I hereby declare that all information, documents, analysis and results in this thesis have been collected and presented according to the academic rules and ethical guidelines of Institute of Graduate Studies, Near East University. I also declare that as required by these rules and conduct, I have fully cited and referenced information and data that are not original to this study.

> Ahsan Mehboob 31/01/2023

Acknowledgments

I would like to express my deep and sincere gratitude to my research supervisor, Assoc. Prof. Dr. Youssef KASSEM, for giving me the opportunity to do research and providing invaluable guidance throughout this research. I am extremely grateful for what he has offered me.

I would like to especially thank my thesis advisor, Assoc. Prof. Dr. Hüseyin ÇAMUR, for his useful guidance and supporting me with valuable information and discussions that assisted me in working through many problems.

I am very much thankful to my parents for their love, prayers and support. I would like to express my thanks to my wife for her love, Patience, understanding, prayers, and continuing support to complete this research work.

Ahsan Mehboob

Abstract

Analysis of wind energy potential in selected regions in Pakistan

Mehboob, Ahsan MA, Department of Mechanical Engineering January, 2023, 87 pages

The Weibull Distribution is used assessing wind speed observations and calculating wind energy potential. Wind density, speed, and energy potential may all be anticipated using the Weibull probability density function.. Measurements were gathered for wind speed at the height of 10m of 100 different locations across whole Pakistan from the year 1981 to year 2021. during this study; mean monthly wind speed, wind power density, energy, and the scale (c) and shape (k) parameters are calculated for all these cities using Weibull distribution, for the future research, academics and investing in renewable energy specially wind potential study of this paper can be helpful. NASA Satellite data is used at the selected location for wind speed data. Finally, it is determined that utilizing small-scale renewable energy systems will aid in lowering the usage of fossil fuels, reducing the impact of global warming, and advancing the nation's sustainable technological advancement. And global wind atlas map is used just to see the wind power density and mean wind speed in Pakistan

Keywords: Pakistan, Wind energy potential, NASA software, renewable energy, wind power density.

Table of Contents

Approval	2
Declaration	3
Acknowledgments	4
Abstract	5
Table of Content	6
List of Tables	8
List of figures	9
List of abbreviation	10

CHAPTER I

Introduction	11
Background	11
Electricity consumption	11
Economic analysis	
Types of energies	
Details of fossil fuel (What are fossil fuel)	14
Purpose of study	14
Aim of Study	15

CHAPTER II

Literature Review	
Types of energy resources	
Solar energy	
Wind energy	17
Types of wind turbine	
(Horizontal axis wind turbine) HAWT	
VAWT	

Biomass and biogas	. 20
Geothermal energy	. 21
Pakistan population, area covered and energy resources consumption	. 22
wind potential analysis in Pakistan	. 24

CHAPTER III

Methodology	26
Material and method	26
Wind Energy Potential in Pakistan	27
Weathers in Pakistan and wind potential	30
Mathematical equations	33
Pakistan electricity prices	34

CHAPTER IV

Findings and Discussion	
Mean wind speed	
Wind power density and parameters analysis	

CHAPTER V

Conclusion and recommendation	
REFERENCES	59
APPENDICES	65

List of Tables

Page

Table 1: price per unit	
Table 2: units usage rate	
Table 3: fuel price	
Table 4: bill tariff contribution	
Table 5: minimum and maximum wind speed	
Table 6: shape and scale parameters	51
Table 7: international wind power generation classification	57

List of Figures

Page

Figure 1: global electricity production	11
Figure 2: electricity of continents	12
Figure 3: solar panel in Germany (Turgeon & Morse, 2022)	16
Figure 4: Electricity generation trend in energy	17
Figure 5: wind turbine	18
Figure 6: wind turbine mechanism	19
Figure 7: Different Types of VAWTs	20
Figure 8: biogas production cycle	21
Figure 9: geothermal mechanism	22
Figure 10: map of pakistan	26
Figure 11: mean wind power density of Pakistan	27
Figure 12: Pakistan wind frequency rose	28
Figure 13: mean wind speed	28
Figure 14: wind speed rose of Pakistan	28
Figure 15: baluchistan wind speed rose	28
Figure 16: NWFP wind speed rose	29
Figure 17: Punjab wind speed rose	29
Figure 18: Sindh wind speed rose	29
Figure 19: Installed wind masts in three provinces of Pakistan	30
Figure 20: average renewable electricity generation cost in U.S in 2020	31
Figure 21: wind energy installed capacity in MW from 2015-2020	32
Figure 22: actual bill	37
Figure 23: monthly mean speed of different cities	46
Figure 24: mean wind power density at 10m	46
Figure 25: shape and scale comparison of cities	47
Figure 26: wind power density of different cities	53

List of Abbreviation

PDF:	PDF: Probability Density Function	
CDF:	Cumulative Distribution Function	
WPD:	Wind Power Density	
NASA:	National Aeronautics and Space Administration	
RE:	Renewable Energy	
RES:	Renewable Energy Sources	
HAWT:	Horizontal Axis Wind Turbines	
VAWT:	Vertical Axis Wind Turbines	
USD:	United States of America Dollar	

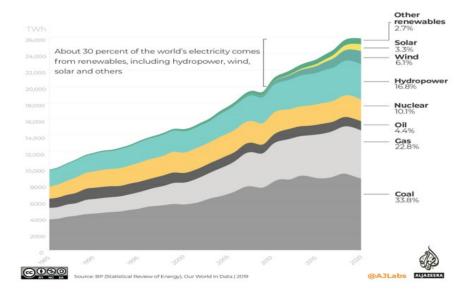
CHAPTER I

Introduction

This chapter includes the background, purpose of the study, limitations related descriptions of the research

Background

With an increasing population, demand for energy also increases .we cannot ignore the use of energy. Continuing the advancement in industrialized countries and to develop the standard of living in developing countries whole world all the countries are looking for different options and ways to overcome the energy crises which they are facing.


Fossil fuels are the leading source for the energy which cannot be ignored. The usage of it have an adverse effect on the ecosystem and will be ended soon. So there is an urge need to make a plan and system for the usage of renewable energy

The demand for energy is growing fast. From 63 thousand terawatt-hours (TWh) to 173 thousand TWh between the years 1969 to 2019, the world's yearly energy consumption almost boosted 3 times.

Electricity consumption

About 60 percent of the world electricity comes from burning fossil fuels, including coal, gas and oil

Figure 1

Global Electricity Production

Figure 2 Electricity of Continents

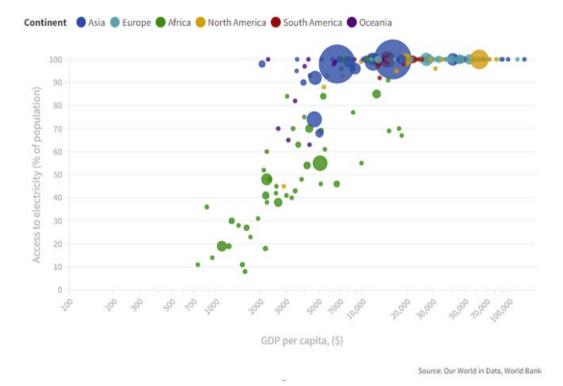


Figure 2 shows the electricity consumption of different countries combined on the basis of components. Fossil fuel is the main reason for the making energy, around 89 percent are met by non- renewable fossils fuels which includes gas, coal, oil. 9% is renewable energy and remaining is nuclear power in 2014

Economic analysis

In last 10 years, there is an increase in the investment of renewable energy worldwide (2007 to 2017). It was estimated to be \$104 billion in 2007, but by 2017 it had increased to \$279.8 billion. The installed renewable power generation capacity expanded to more than double from 1070 GW in 2007 to 2195 GW in 2017, thanks to this sharp increase. For sustainable vitalization and a pollution-free environment, this tendency is likely to continue. As a result, several nations have set ambitious goals for the field of renewable energy for the future years. It is necessary to develop a plan or algorithm for renewable energy sources' (RES) efficient integration into power systems due to the instability and unpredictability of meteorological conditions. In order to do this, various research articles (Amamra et al., 2017) and (Denholm et al., 2018) have been released recently.

Over \$2.6 trillion was invested in renewable energy between 2010 and 2019. In two-thirds of the world, solar and wind is now more cheaper when compared with gas and coal options. Investment has increased wind and solar energy to almost 9% and more than 8%, respectively, of the world's producing capacity. (Eric Roston, Mira Rojanasakul, Paul Murray, Brittany Harris & Rutkoff, 2019).

Data released by the International Renewable Energy Agency (IRENA) states that new renewable energy project is around 163 gigawawtts much higher than any other coal options in 2021 in G20. According to IRENA usage of R.E will lower the production cost of energy globally for around 55 billion usd, the price of fossil fuel remains high .

A severe environmental issue that compromises life on Earth's surface is global warming (L. D. Burton, 2019). Another name for this process is global warming. It signifies that the planet is warming considerably and becoming more like a greenhouse, retaining heat and raising its surface temperature (Daniels, 2009). Since the middle of the 20th century, this phenomena has been plainly seen, and major efforts have been made to develop measures to stop it and lessen its detrimental effects (Caglayan et al., 2019)

Types of energies

The universe cannot exist without energy. Energy is divided into 2 categories, normal and abnormal sources. Normal energy that depends on normal sources, and abnormal energy, which depends on abnormal sources but develops over time and is influenced by a number of different elements. (Nazir et al., 2019; Paletto et al., 2019; Topcu & Tugcu, 2020). The extraction and exploitation of all of these forms of energy for human advantage requires the development of unique mechanisms, apparatus, and methods. We shall discuss renewable energy and all of its connected topics in this research topic.

R.E is energy that is utilized from the environmentals natural sources and never finishes. Wind sun and water are some options for sustainable energy. Petroleum and fossil fuels causes global warming, and also have disposable problems that causes danger to all living organisms on the earth causing them to experience numerous health issues and the emergence of numerous diseases that were not previously present, renewable energy is an environmentally friendly source of energy. Fossil fuels are the primary source of energy demand and are essential to the global energy supply. Fossil fuels, on the other hand, have a harmful impact on the environment and are few. Therefore, it is crucial to use renewable energy sources and manage energy sources carefully. (Aynur.U 2010)

If a proper infrastructure implementation is chosen as a prospective alternative, similar to those of Ireland and Denmark, Pakistan offers a huge potential for usage of R.E sources. (Lund & Salgi, 2009) and (Lund, 2007)

U.N and world bank are working together for many years, trying to finish scarcity and reduce change of the climate around globe by using Sustainable Energy (United Nations, 2020), Here, it is evaluate how the making of non-hydro renewable sources influences the usage of nuclear power and fossil fuels and nuclear power in electrical sector, statistics of 109 countries (between 1960 to2015) is used to determine the trajectory of world where it is , it discovered that the use of fossil fuels has been only very slightly impacted by renewable energy, with an growth of 5 units of R.E being required on average to replace one unit of fossil energy. (Greiner et al., 2022).

Details of fossil fuel (What are fossil fuel)

Decomposition of animals and plants makes up the fossil fuel, found inside the core of the earth that are used to make energy. Its types are natural gas coal and oil. Coal is presented in the growth of silty rock (mixture of rock, dead plant and animal materials). In coal at least half or more must be a plant material (fossilized). Shale is another rock which have oil in its natural form after heating it we get the thick layer of gasoline. Name of natural gas is methane. (Society, 2022)

Purpose of study

Grid-connected systems are a desirable option to enhance electricity output from renewable energy sources, in addition to lowering electricity use and dependency on utility power. Examples of sustainable energy sources for home power include solar and wind energy. The results of the literature review show that Pakistani individuals hardly ever use wind and solar power.

Despite having a severe energy problem, Pakistan is one of the Asia-Pacific countries with a high wind power potential. The daily gap is thought to be between 4500 and 5500 MW despite an estimated daily demand for power of over 20,000 MW. There is a critical need for energy sources like wind energy given the widening

energy deficit, rising import costs for fossil fuels, and deteriorating air quality. Therefore, it's important to study wind energy availability, a potentially interesting source of R.E.

Aim of Study

This paper investigates wind potential for 100 cities all across Pakistan that are also densely to better grasp the possible applications for wind energy. wind speeds data were collected for a height of 10 meter. wind speed statistics (hourly), which is converted to mean monthly data and gathered throughout from 1990–2021, to examine wind speed characteristics. In addition, wind power densities were utilized to categorize wind energy means in the locations that were chosen.

In Pakistan there are huge reserves of wind potentials that needs to be studied in detail. This thesis targets to research, estimate and explain the following research objectives

- At particular location Wind potential and speeds
- Wind speed features based on the data of months and years.
- Is wind energy a good option for a given location?

CHAPTER II

Literature Review

Research related conceptual definitions, descriptions and information related to the subject that already exists in the literature are given in this chapter.

Types of energy resources

Types of energies are renewable and non renewable energy as we already talked about the non renewable energies in which fossil fuels plays an important part in meeting energy demand for most of the countries but in this chapter we will be seeing different types of the renewable energies which are as follow

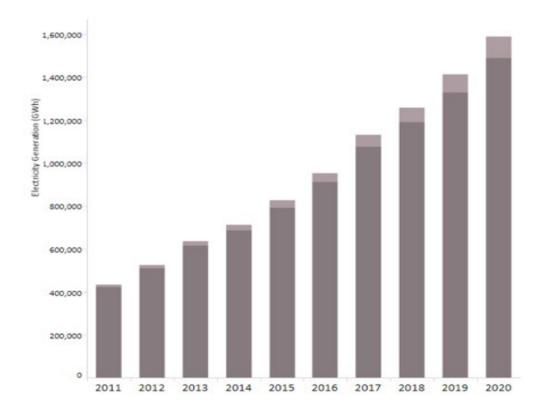
Solar energy

Energy produced by the sun is termed as solar energy. We can utilize it in many ways. Solar panels are placed at the open area (rooftop) to get more sunlight for making electricity.

Figure 3 Solar panel in Germany (Turgeon & Morse, 2022)

Wind energy

Transformation of kinetic energy by means of wind to electrical energy for generating power is the function of wind turbines. Blades of the wind turbine rotates which converts K.E to rotational energy. Circular motion is transformed into electricity by a shaft that is connected to the generator


Factors which effect the electricity production through wind are

- 1) Length of the blades
- 2) Size of turbine

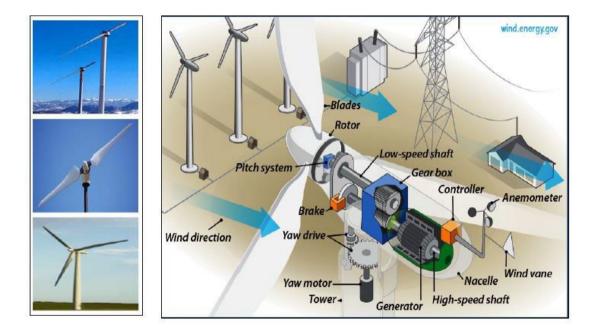
Final outcome is inversely proportional to both wind speed and size of the rotor. Hypothetically, a doubling of wind speed results in an eight-folding increase in the wind power potential .(Agency, 2020)

Figure 4

Electricity generation trend in energy

Types of wind power used in past were sails, windmills and wind pumps but now they are used for electricity production

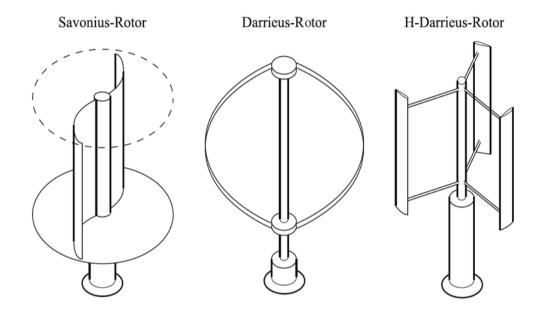
Figure 5 *Wind Turbine*


Types of wind turbine

Wind turbines are machines that use mechanical and then electrical energy to transform from wind energy. (Horizontal axis wind turbines) HAWT and (vertical axis wind turbines) VAWT are the two forms into which they fall.

(Horizontal axis wind turbine) HAWT

A mechanism with 1, 2 or more revolving blades is known as (HAWT). The hub assembly, which connects to a low speed shaft, has the blades attached to it. (Sørensen, 2016). As demonstrated in Figure 2.4, speed of the shaft is increased from low to high by the rotation from the gearbox linked to the generator which coverts it into electricity (Sørensen, 2016). Backing system plays an important role to start the machine when wind speed data is received by a controller. In HAWT maximum output power angles of blade are adjusted by pitch mechanism whereas function of yaw is to position it according to direction of wind. A typical horizontal turbine fixed on a 60 meter elevated tower and 70 meter diameter. At a wind of about 5.36 m/s generates 1.6 Mega-Watt, with the highest output power occurring in the range between 12.52 ms⁻¹ to 13.41 ms⁻¹. When wind speed hits 22.35 ms⁻¹, it stops the rotation of turbine Figure 6 shows the separation distance for HAWTs in a farm in the crosswind and downwind directions. (Sørensen, 2016)


Figure 6 Wind turbine mechanism

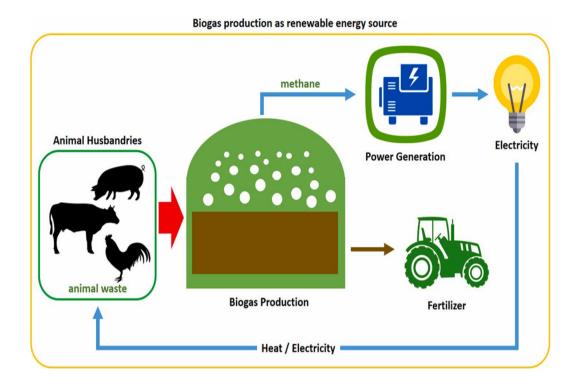
VAWT

In vertical axis wind turbines (VAWT) spinning shafts are fixed vertically, and all the other parts are placed at the bottom of the turbine (T. Burton et al., 2011). In this type gear box and generator are on the surface so its easy to repair and maintain, Because VAWTs don't need to be directed into the wind, wind sensor and orientation systems are unnecessary. 3 types of turbine are given below(T. Burton et al., 2011)However, drag type VAWTs (Savonius turbines) in high turbulence it shows more significant advantages

Figure 7 Different Types of VAWTs

Biomass and biogas

What is biomass?


Solid biofuels are collectively referred to as biomass. It usually comes from crop waste, wood, and particular resources that have been grown to burn in the presence of oxygen to provide energy. Using biomass is known as biomass energy. Biomasses are heated for the production of liquid fuel, heat and electricity when utilizing biomass energy.

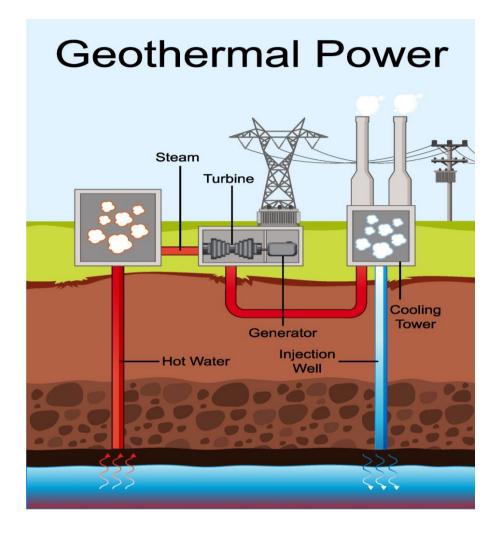
What is biogas?

One type of renewable energy is biogas. It is produced directly as a result of turning organic waste into energy and is a sustainable method of doing so as it is environmental friendly As the name suggests, It is a biofuel that is gaseous in form. It is a byproduct of the anaerobic digestion (AD) process, which converts organic waste—including food waste—in the absence of oxygen into energy.

Figure 8

Biogas production cycle

Animal dung, blood, and rumen content are all major sources of animal organic waste that might be used to produce a vast number of resources for biogas.In Indonesia also waste of the animals used for energy production (BioteCH4, 2020; M. Khalil et al., 2019)


Geothermal energy

Geothermal energy is the energy found inside the earth in the form of heat. It can be used for,

- a) simple heating and cooling
- b) for producing electricity.

Only a few amount of this type of energy is used but has a great potential future potential (Dickson & Fanelli, 2013). It is a renewable energy source, which could be used to solve current worldwide energy and environmental issues. (Muñoz et al., 2014)

Figure 9 Geothermal mechanism

Pakistan population, area covered and energy resources consumption

Pakistan is a country situated in Asia at a southern side, with a people living are of more than 180x10⁶. Around 22,800 MW of installed power generation capacity is currently available, with a mixture of mostly hydro, thermal, and nuclear sources. Due to a number of reasons, the power generation by the plants are very low and reaching a minimum of 9000 Mega Watt, whereas the usage is between 16.5Mega-Watt during summer time and 10,000 Mega-Watt in cold period. Pakistan have 4 provinces: 1)Punjab, 2)Sindh, 3)Balochistan, 4)Khyber Pakhtun Khwa (KPK), and Punjab. With almost 56% of the nation's population, Punjabs population is maximum as compared to provinces. Lahore serves as Punjab's capital. Punjab is home to almost 100 million people and covers more than 205 thousand km².so there is a more need of energy in this area. Kalarkahar area is around 20 km in width and 250km in length which has the maximum wind energy potential but average wind potential is not good in this area. Population of this area is very low, but has more forests and deserted areas. This region uses different types of energy resources like hydro energy, wind energy and solar energy to produce energy, this area is good for wind turbine on small scale (Shami et al., 2016). Pakistan is an evolving state that needs a lot of energy to meet its industrial and residential needs as well as to continue the nation's economic growth. However, the nation is having trouble ensuring a steady supply of electricity and is currently dealing with its biggest energy crisis ever.

Researchers calculated the country's theoretical RE potential (Ghafoor et al., 2016) (Raheem et al., 2016) (Mirza, Umar K. & Maroto-Valer, M. Mercedes & Ahmad, 2003) (Sheikh, 2010) (Sheikh, 2009) (Asif, 2009) and its application to capture the useful form of energy utilizing a variety of methods. The majority of them were solar energy-focused but also discussed the methodological probability for producing electricity from other sources like wind, biomass, solar, and hydro.

There has been concern and pressure to reduce the negative effects of carbon emissions while maintaining national development initiatives, particularly in developing countries. Let's utilize Pakistan as an example, a developing nation that can be used as a case study in disclosing some recorded facts about energy. In Pakistan, power outages can last up to 18 hrs in rural areas and 8 to 10 hrs in city areas (J. Khan & Arsalan, 2016). There is a difference between demand and supply which is causing these disruptions. With the growth in population, the need is also rising. By the end of 2016, gas (37.9%) and oil (34.4%) accounted for the majority of Pakistan's energy resources, which are based on fossil fuels, Therefore, less than 1% of the energy mix was made up of the power generated by renewable energy sources. (M.A, Sheikh, 2003)

According to reports, Pakistan produces 53.4 percent of its power from coal, 22.6 percent from hydropower, 10.6 percent from gas, 2.8 percent from atomic energy, 0.6 percent from oil, and 10 percent from nonconventional resources. It is essential to promote renewable energies as an additional energy resources in order to lower the supply of energy and its demand. The new revolution that has brought about new resolutions in today's industries and technology world is mostly to blame for the rise in energy demand. And because the usage of nonrenewable energy

sources contributes to the depletion of fossil fuels, the globe is now converting to this new technology.

The United Nations estimates Pakistan's population to be 229,489,000 up till July 2022, or 2.87 percent of the world's population source. Total data for Pakistan's electricity consumption in 2021 was given as 116,816,000 GWh. This is an increase from the prior figure for 2020 of 108,371.000 GWh. Pakistan Electricity Consumption: Over the period of June 1991 to June 2021, there were 31 observations, and the total data is updated yearly. The statistics peaked in 2021 at 116,816 GWh and the lowest in 1991 at 31,534 GWh. Pakistan's total electricity usage is reported by the Ministry of Finance and has an active status in CEIC. The information is arranged under Pakistan's Table PK.RB006: Electricity Generation and Consumption in the Global Database. (Finance, 2021)

Wind potential analysis in Pakistan

A thorough understanding of the local wind patterns and winds speed distribution is necessary for the effective consumption of wind energy. Installing a wind energy transformation system requires consideration of a number of variables, including speed, power, type of generator, and a achievability assessment. Researchers had carried out several studies on features of wind and wind potential in numerous nations across world.

For an instance, in (Ullah et al., 2010)The Weibull functions were utilized to examine viability of wind energy at Pakistan's Kati Bandar. They determined that this location, with an typical power density of around 410 (W/m²) at 50 meters above ground, is graded as excellent (Shami et al., 2016) investigated the features of wind speed in several Pakistani areas (Jiwani region, KPK Province, Sindh Province). The result showed that Pakistan's plans to produce electricity through wind farm projects could be advantageous.

Pakistan is one of the Asia-Pacific nations with one of the emerging market for wind power despite having a serious energy crisis.Daily electricity consumption is anticipated to be around 20000 Mega-Watt, with an everyday shortage of average 5000 Mega-Watt. immediate need of alternate energy resource is required for example wind, that is necessary due to the significant disparity between the supply and demand of electricity, rising import costs for fossil fuels, and deteriorating air pollution(Shoaib et al., 2017). Thus, it's essential for researchers to study wind energy availability as a potentially appealing renewable energy source.

Pakistan is capable of producing electricity through wind. Utilizing wind energy resources can assist Pakistan in achieving its ecological and policies related to energy with lowering energy imports.

Pakistan has a very large wind potential to produce energy, particularly in 3 provinces: Khyber Pakhtunkhwa (KPK), Sindh, Baluchistan, Wind energy potential is quite limited in the fourth Punjab province. These four cities—Gujranwala, Khanewal, Multan, and Sialkot—are all in the Punjab region. Punjab's Provence has relatively little potential for wind energy and is therefore not a viable option. Focus is on wind energy. Pakistan has good wind potential

Wind is R.E source with no emissions. It also relies less on fossil fuels. 3 Benefits:

- It is an economical source of energy;
- Does not require large area;
- It may be used whenever there is wind.

Cons:

- Blades are harmed by centrifugal forces.
- Without wind, there can be no power production;

CHAPTER III

Methodology

This chapter provides information about the research design, participants/sample, data collection and analysis procedures as well as how the findings are analysed

Material and method

No study has been done which uses 100 location from 1981 until 2021. This research selected the 100 location based on the population and Nasa data is used to see the average daily wind speed of different cities which were then converted to monthly wind potential at 100 locations in Pakistan and used the nasa data to do further calculations and find the wind power density by using mathematical equations to predict the wind power class.

Pakistan has great wind potential only if we consider 10% of the maximum windy areas so the mean wind speed there is around 7.87ms⁻¹

Figure 10 Map of Pakistan

The above map of Pakistan shows all the locations which is studied in this paper and data collected from the satellite for a long period of time

Pakistan is generating power at some areas in Sindh through wind (e.g at keti Bandar, BinQasim, Gharo and Jimphir. Near Karachi FFEC constructed a wind power plant of 50MW. 347,190km2 is the land area of Balochistan which makes it the largest province accordind to area wise which is 44 percent of Pakistan's area. Here population density due to uneven mountains, hills and shortage of water is very low. Notably, Balochistan have a quite suitable locations for the wind corridors for wind farms. These are more efficient and around 50% better matched to that of the project at Gharo in Sindh

Wind Energy Potential in Pakistan

Figure 11 Mean Wind Power Density of Pakistan

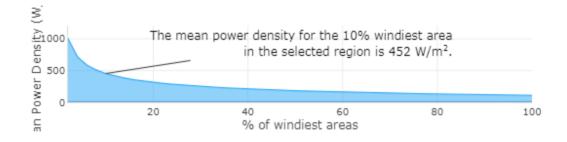


Figure 12 Pakistan wind frequency rose

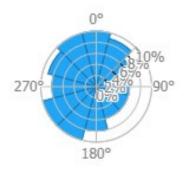


Figure 13 Mean wind speed

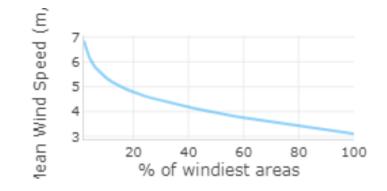


Figure 14 Wind speed rose of Pakistan

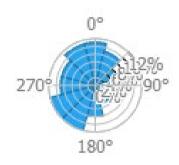


Figure 15 Baluchistan wind speed rose

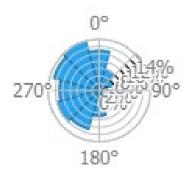


Figure 16 *NWFP wind speed rose*

Figure 17 Punjab wind speed rose

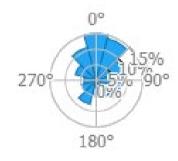
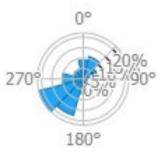
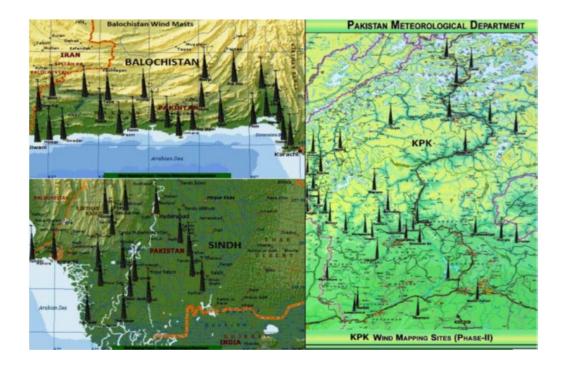



Figure 18 Sindh wind speed rose



Total 26 papers on Pakistan in which different type of renewable energies are dicussed at different location in Pakistan which are summarized in the table 1 Having different types of renewable energies when compared, so the wind energy was the most beneficial. The country has in total 346,000 MW installable wind power potential capacity (M. Z. Malik et al., 2020).

According to the research done by paper in (M. Baloch et al., 2017) they predicted that by 2030 Pakistan's wind power potential would be around 40 to 70 %, different types of method, techniques and tools are used to gather wind data.

Figure 19

Installed wind masts in three provinces of Pakistan

Weathers in Pakistan and wind potential

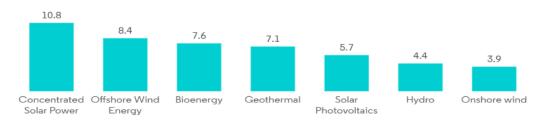
NREL carried out the assessment of wind resource around the whole country using GST.If we exclude the area covered by water so the over-all area of land is around 7.7 x 10^5 km² out of the total area of Pakistan 796,095 km². 5MW wind power plant can be installed in the areas where wind potential is maximum. (NREL, 2015) global wind atlas data is just used to see the wind potential of whole Pakistan

shown in the diagram, with that we can also see the 12 stations that are place at the location, the scale on the diagram shows the wind speed across whole Pakistan.

Wind speed data for 100 cities in Pakistan is taken out online from nasa website and utilizes that data to find different parameter. Pakistan has variable temperature, weather and climates; on seashore it is usually dry and hot and around river but cooler at upper area. 4 different weathers can be seen

- A chill and dry winter.
- A hot and dry spring.
- Hot rainy season.
- Decreasing rainy season.

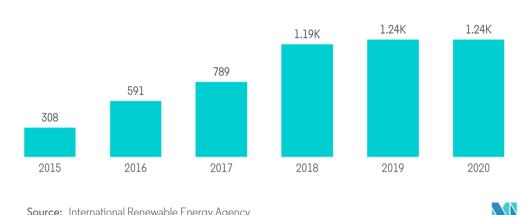
In evaluation with all renewable energies, wind is the most cheapest way to produce energy, claimed by IRENA. The mean cost of producing electricity using onshore wind energy was USD 0.039/kWh in 2020.


Pakistan offers a wealth of natural resources, including wind corridors with sufficient and constant wind speeds. For instance, the Gharo-Jhimpir wind corridor in Sindh has a total potential for wind energy of 43000 MW over an area of 9700 square kilometers. Phase 2 of the renewable energy mapping project, which will discover new wind energy-harnessing corridors, will begin in January 2022.

Additionally, Din Energy Pvt. Limited began operating the Jhimpir wind power station commercially in March 2022. The project's overall cost was USD 65 million, and the power plant has the ability to produce 50 MW of electricity. Thus, technological advancements that are resulting in reduced wind energy costs and higher efficiency,

Figure 20

Average renewable electricity generation cost in U.S in 2020



Source: International renewable energy market

Until 2022 national grid was provided with 1,335MW of energy from wind by plants, Whereas 10 more wind plants are currently in progress to provide around 500MW of power

Figure 21 Wind energy installed capacity in MW from 2015-2020

Wind Energy Installed Capacity, in MW, 2015-2020

In addition, numerous researchers uses NASA information to project several potential locations for wind farms. For example, (Arreyndip et al., 2016) he uses NASA data from (1983-2013) to assess the potential for wind in various Cameroonian locations and build wind farms.

(Rafique et al., 2018) RETScreen software was used to research the viability for 100 Mega-Watt wind farms joined with grid station in Saudi Arabia. Additionally, utilizing NASA's average mean wind speed data many papers describes the wind speed features for chosen locations. For example, (Gökçeku's et al, 2019). Examined 8 different locations of Lebanon and gathered data, real data and NASA's average monthly wind statistics from 1982 until 2019. These data were made available through NASA's data

Source: International Renewable Energy Agency

The WPD numbers are computable assessment for the amount of wind power that is accessible somewhere uses to find wind potential, other factors of wind speed are as follows:

wind speed forecast (Vmp):

$$V_{mp} = c \left(1 - \frac{1}{k}\right)^{1/k} \tag{3.1}$$

Maximum energy-carrying wind speed (VmaxE):

$$V_{maxE} = c \left(1 + \frac{2}{k}\right)^{1/k} \tag{3.2}$$

WPD shows information about wind (Mohammadi et al., 2017). It is expressed as:

$$\frac{P}{A} = \frac{1}{2}\rho v^3 \tag{3.3}$$

$$\frac{P}{A} = \frac{1}{2}\rho v^3 f(v) \tag{3.4}$$

Furthermore, considering a Weibull it can be computed as a function of the Weibull factors it can be written as the equation (Keyhani et al., 2010):

$$\left(\frac{P}{A}\right)_{W} = \int_{0}^{\infty} \frac{1}{2} \rho v^{3} f(v) dv = \frac{1}{2} \rho c^{3} \Gamma\left(1 + \frac{3}{k}\right). \tag{3.5}$$

Furthermore, Equation (5) is used to find mean WPD (Keyhani et al., 2010):

$$\frac{P}{A} = \frac{1}{2}\rho\bar{\nu}^3 \tag{3.6}$$

where P is WPD in Wattm⁻², \overline{P} is the average WPD in Wattm⁻², A is the area in m², ρ is air density in kgm⁻³ and \overline{v}^3 is the average wind speed (ms⁻¹).

The Weibull is like a probability distribution which can be used to see product analyze life statistics, dependability and failure rate. It may also accommodate a broad range of data from numerous other disciplines, including engineering sciences, hydrology, biology, and economics.

As mentioned earlier shape and scale values also effects the distribution in many ways like how the curve will look, how much reliable it is and it's failing ratio. The Weibull slope is another name for the Weibull shape parameter which can also be called Weibull slope

Pakistan electricity prices

Table 1Price per unit

Pakistan electricity prices	Household, kwh	Business, kwh
Pakistan Rupee	12.100	35.910
U.S Dollar	0.054	0.160

The energy cost of Pakistan in March 2022 was compared between normal consumers like household utilization and for industrialize areas. Table 1 above shows the tariffs, but the prices for day times were different 0.146 USD was fixed for consumers and 0.140 USD for business.

The information in Table 6 displays the average daily usage hours, watt ratings, and annual electricity consumption in kWh for various appliances. The majority of respondents acknowledged that they only use air conditioning during the summer (May to September), whereas ceiling fans are still in use from April to October. (Amber et al., 2021)

During the summer, water coolers are used in homes without air conditioning. Washing machines are typically used for 7 hours per week, or 1 hour per day. Following is how the annual electricity consumption was determined:

Annual Usage Hours x (Watt/1000) x 0.75 (1), where "0.75" denotes the scaling factor, indicating that appliances operate at 75% of their capacity. (Amber et al., 2021)

Domestic connection per unit rate

Tariffs for the electricity solely depends upon the amount of units you consume and at what hours they are consumed sometimes peak hour unit consumption of electricity is more table below shows the breakdown of units consumed and accordingly there price

Table 2

Units usage rate

Number of Units	Rate per 1 Unit (kwl	
1-50	Rs. 2	
1-100	Rs. 7.36	
101-200	Rs. 9.68	
201-300	Rs. 12.15	
301-700	Rs. 20.82	
Above 700	Rs. 23.92	

The most recent money per liter of octane-95 gasoline, diesel and other fuels are shown in the table below, these prices are of pump level that includes all the fees and taxes, the prices ae updated weekly

Per kWh electricity rates are shown in the table below, mean annual household electricity utilization and for business, 1000 000 kWh consumption is used

Table 3 *Fuel price*

Fuels, price per liter	Date	PKR	USD
Gasoline price	10.10.2002	224.8	1.035
Diesel price	10.10.2002	235.3	1.084
Kerosene price	10.10.2002	202.02	0.93

Per kWh electricity rates are shown in the table below, mean annual household electricity utilization and for business, 1000 000 kWh consumption is used

Table 4Bill tariff contribution

Total Bill	8498
Units:	433
Cost of electricity	6245.15
A(QTA/dmc)	697.13
FC-surcharge	186.19
Total Tariff Charges	7232.6042
Ele. Duty 1.5% of cost of electricity	104.1342
G.S.Tax @ 17%	1230
PTV-Fee	35
Meter Rent	0
Service Rent	0

The table above shows how the different expenses contributes towards the total bill

Figure 22

Actual bill

کاحیاب Your Current Bill Calculation			يهوجودهل كاح	آپ ک		صارف کی معلومات Customer Information			
The electricity you have used			Me	Bill Charge Mode :NORM Meter No. Reading Date 21-Feb-20		Account No	Sanc. Load Conn. Load Tariff A	9 9 A1-R	
		Previous Reading	Curren Readin		Units (KWh)	MDI (KW)			
Energy Energy	/ /-Peak	7890.395	8135.9	34	245.539 118.961	2.552 2.906	ىلى كەنسىل Billing Statement		
	Energy Off Peak Energy Peak				461.933 0.667		Carry Forward Balance	4.5	41.76
You	r electricity ch		<u> </u>		No. of Mo	onth(s):1	Payments/Adjustment	-7,45	52.00
		U	nits	Rate / Un	it	Amount			97.78
	ble Charges ble Charges eak		245.54 118.96	14.3 20.7	8	5,993.34 3530.85 2462.49	Late Payment Surcharge		-0.49 21.87

CHAPTER IV

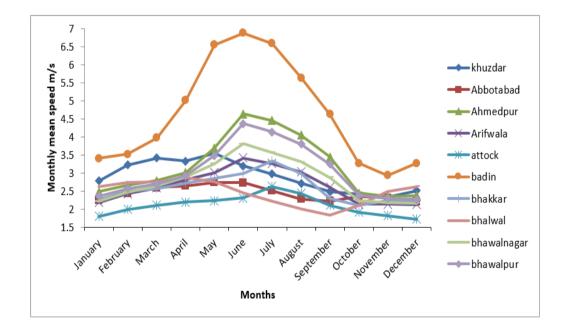
Findings and Discussion

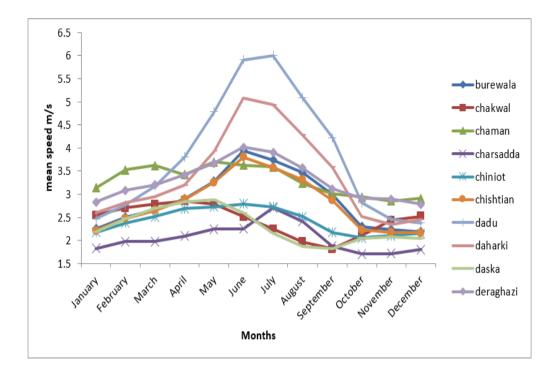
This chapter presents the findings based on the collected data.

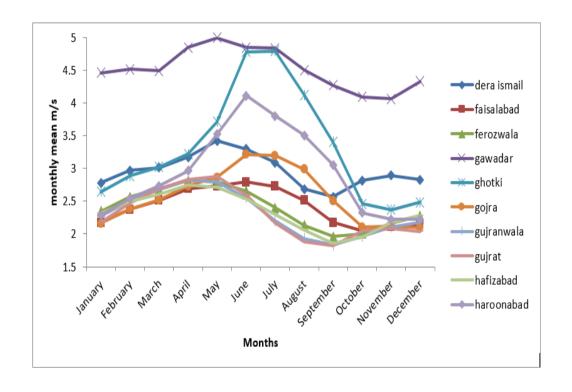
Mean wind speed

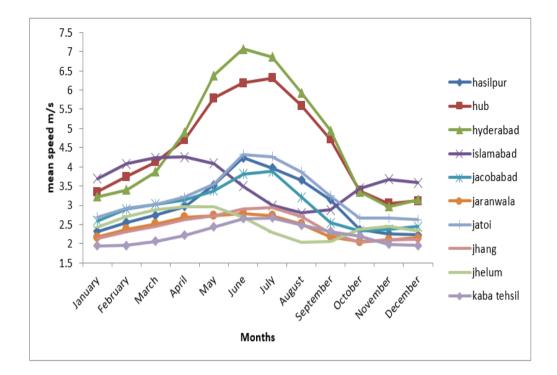
Range of wind speed of Pakistan which can be concluded from the nasa data lies between 1.7 to 7.06 ms⁻¹ for location that was selected

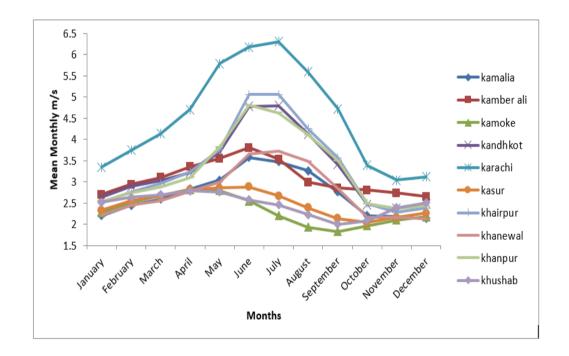
Mimimum average speed of wind was found in Peshawar, nowshera, mardan, charsadda in the month of October which is around 1.70878 m/s by nasa data

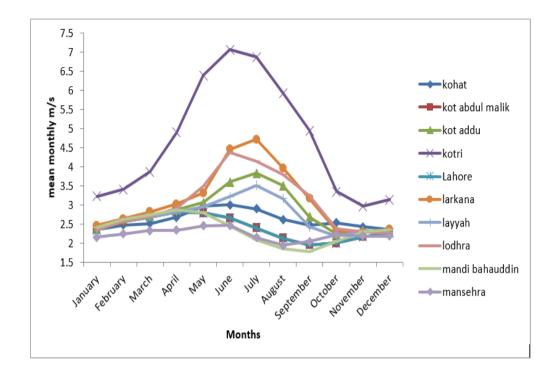

Maximum average which was recorded at height of 10 meter in Pakistan is 7.063171 m/s of Hyderabad in the month of june.

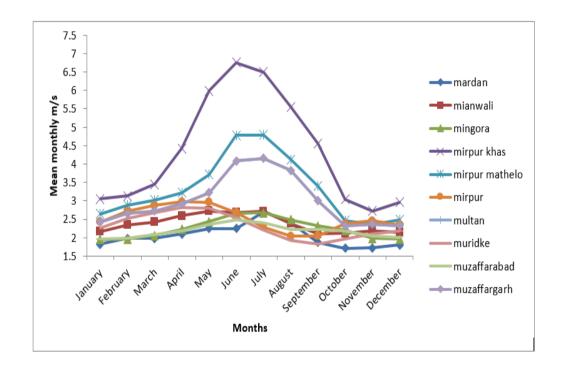

From the nasa source it could be concluded that on average basis speed of wind in Pakistan is around 2.9 m/s on monthly basis

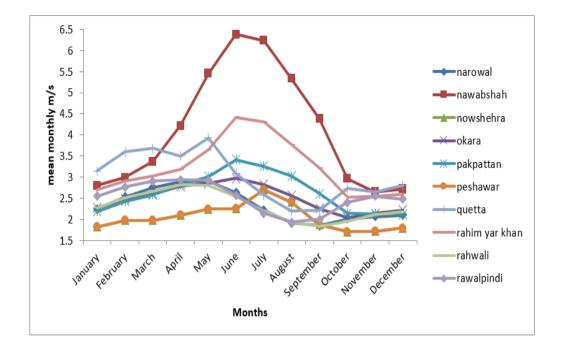

Figure below shows the graphical representation of monthly wind speed of different locations

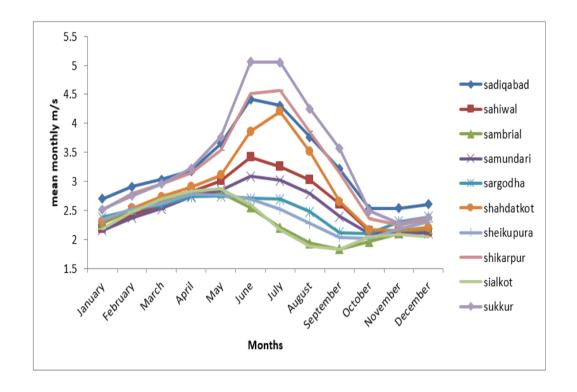

Figure 23

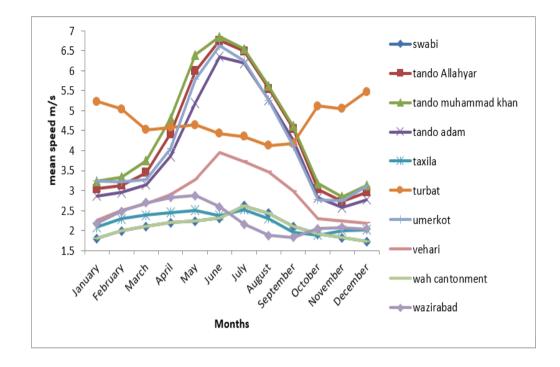

Monthly mean speed of different cities









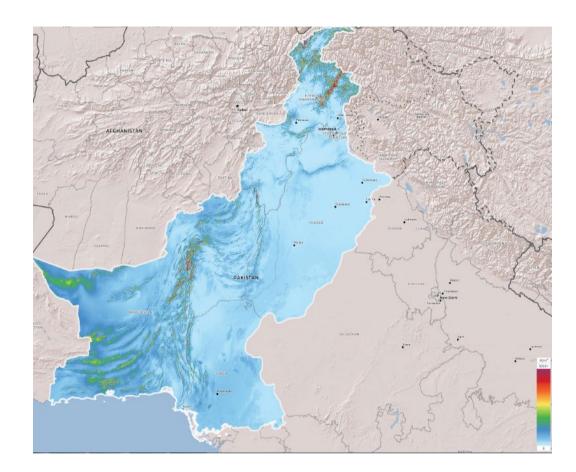


On the basis of monthly mean speed for every location maximum and minimum value for each city is summed up in the table 8 below, most cities wind speed has the value greater than 2 m/s reaching to the maximum as around 8 m/s

Table 5Minimum and Maximum wind speed

Location	MIN	MAX
khuzdar	2.326098	3.534634
Abbotabad	2.202927	2.744146
Ahmedpur	2.354878	4.636585
Arifwala	2.12439	3.414878
attock	1.723415	2.623659
badin	2.93561	6.879512
bhakkar	2.106829	3.334878
bhalwal	1.833415	2.860732
bhawalnagar	2.163902	3.80439
bhawalpur	2.266098	4.368293
burewala	2.19122	3.946098

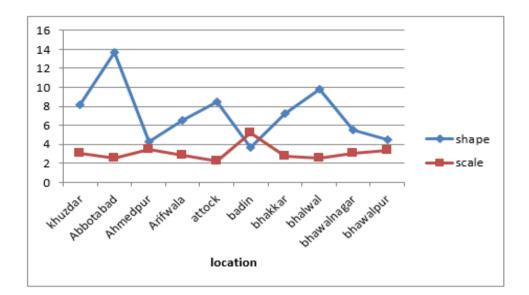
Table 5 (Continue)

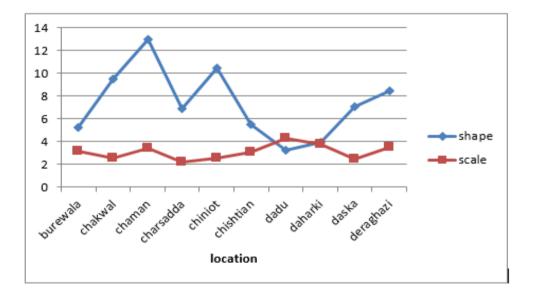

location	MIN	MAX
chakwal	1.818537	2.85439
chaman	2.857805	3.700732
charsadda	1.70878	2.707073
chiniot	2.052439	2.791951
chishtian	2.163902	3.80439
dadu	2.383171	6.003659
daharki	2.342683	5.077073
daska	1.826098	2.876829
deraghazi	2.783171	4.015122
dera ismail	2.566341	3.42
faisalabad	2.052439	2.791951
ferozwala	1.960976	2.817317
gawadar	4.061463	4.993659
ghotki	2.369512	4.793415
gojra	2.099268	3.213902
gujranwala	1.828293	2.816341
gujrat	1.826098	2.876829
hafizabad	1.856585	2.747317
haroonabad	2.220488	4.10878
hasilpur	2.230488	4.23561
hub	3.043415	6.309512
hyderabad	2.966829	7.063171
islamabad	2.801463	4.259756
jacobabad	2.323902	3.883659
jaranwala	2.052439	2.791951
jatoi	2.619756	4.320488
jhang	2.041951	2.937317
jhelum	2.042439	2.969512
kaba tehsil	1.945122	2.673902
kamalia	2.12878	3.573659

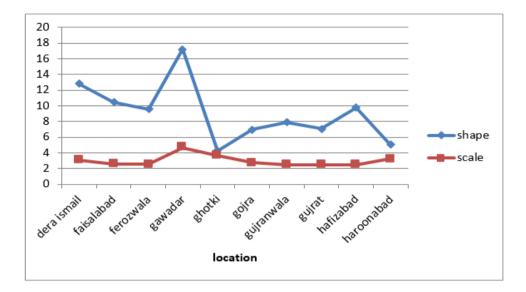
location	MIN	MAX
kamber ali	2.650244	3.807561
kamoke	1.828293	2.816341
kandhkot	2.369512	4.793415
karachi	3.043415	6.309512
kasur	2.035854	2.879512
khairpur	2.273902	5.057317
khanewal	2.124146	3.717805
khanpur	2.370488	4.80122
khushab	1.993659	2.788537
kohat	2.362683	2.999268
kot abdul malik	1.960976	2.817317
kot addu	2.237073	3.826098
kotri	2.966829	7.063171
Lahore	1.960976	2.817317
larkana	2.297561	4.71878
layyah	2.187561	3.515366
lodhra	2.266098	4.368293
mandi bahauddin	1.773659	2.873659
mansehra	1.942439	2.461707
mardan	1.70878	2.707073
mianwali	2.095854	2.721707
mingora	1.945122	2.673902
mirpur khas	2.725854	6.752439
mirpur mathelo	2.369512	4.793415
mirpur	2.042439	2.969512
multan	2.312439	4.153171
muridke	1.828293	2.816341
muzaffarabad	1.960732	2.480732
muzaffargarh	2.312439	4.153171
narowal	1.847317	2.907073

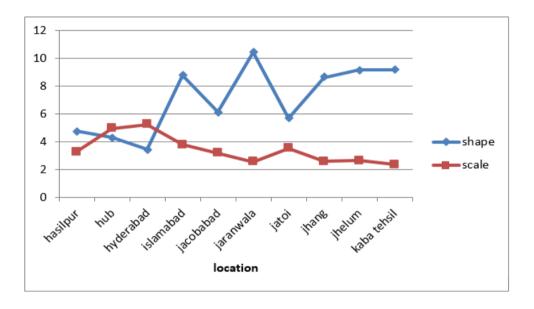
Location	MIN	MAX
nawabshah	2.650244	6.382439
nowshehra	1.70878	2.707073
okara	2.049024	2.974146
pakpattan	2.12439	3.414878
peshawar	1.70878	2.707073
quetta	2.190488	3.927805
rahim yar khan	2.530976	4.417805
rahwali	1.828293	2.816341
rawalpindi	1.937561	2.935366
sadiqabad	2.530976	4.417805
sahiwal	2.12439	3.414878
sambrial	1.828293	2.816341
samundari	2.091463	3.088293
sargodha	2.100732	2.743902
shahdatkot	2.15561	4.204634
sheikupura	2.022927	2.775854
shikarpur	2.243171	4.566098
sialkot	1.826098	2.876829
sukkur	2.273902	5.057317
swabi	1.723415	2.623659
tando Allahyar	2.725854	6.752439
Tando		
muhammad khan	2.848537	6.847073
tando adam	2.569024	6.346585
taxila	1.882439	2.525854
turbat	4.130488	5.471707
umerkot	2.753415	6.634634
vehari	2.19122	3.946098
wah cantonment	1.723415	2.623659
wazirabad	1.826098	2.876829

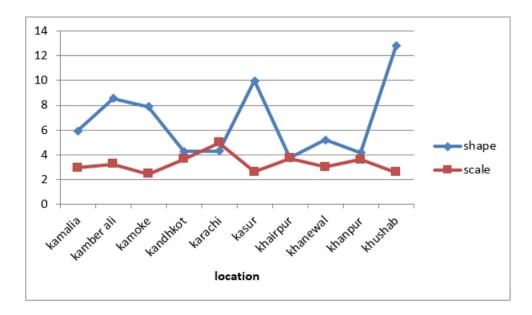
Wind power density and parameters analysis

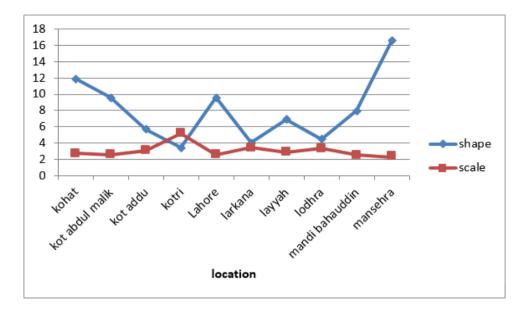

Figure 24 Mean wind power density at 10m

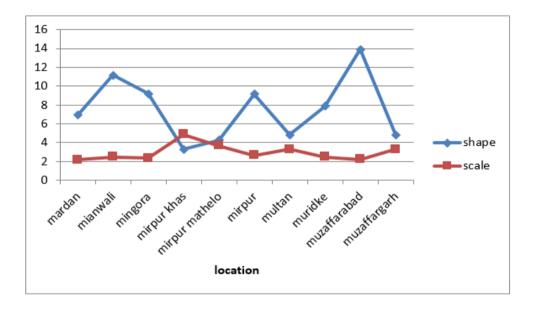


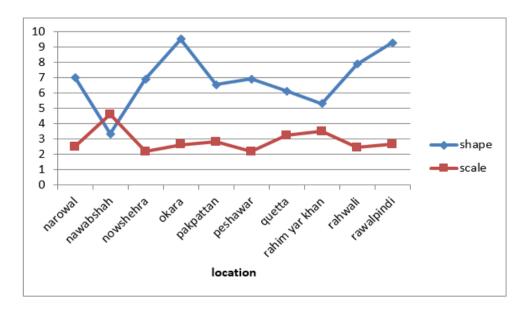

Minitab software computed the values for shape and scale parameter, on the basis of monthly mean speed for all the cities which is shown by the graphical representation below shows how the values of shape and scale parameters are changing simultaneously for all the cities selected the shape parameter is all the time greater than the scale parameter. Shape and scale parameter can be easily compared for different cities


Figure 25


Shape and scale comparison of cities







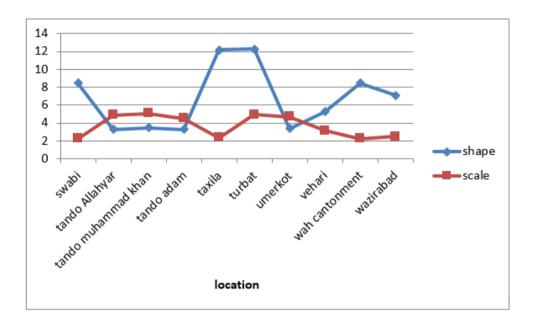
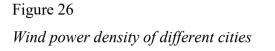


Table 6

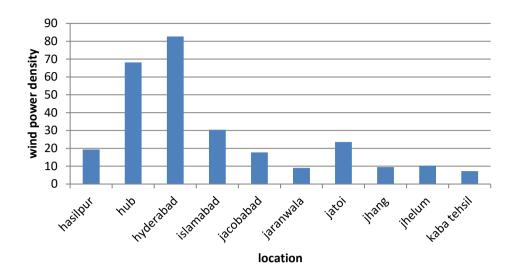
Shape and scale parameters

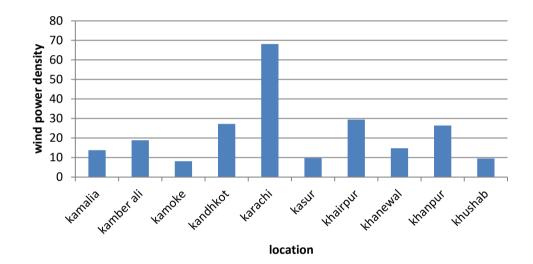
Locations	Shape	Scale	Locations	Shape	Scale
khuzdar	8.145	3.085	jhang	8.637	2.586
Abbotabad	13.68	2.529	jhelum	9.167	2.654
Ahmedpur	4.29	3.514	kaba tehsil	9.187	2.36
Arifwala	6.558	2.834	kamalia	5.922	2.935
attock	8.453	2.221	kamber ali	8.565	3.255
badin	3.664	5.155	kamoke	7.884	2.463
bhakkar	7.272	2.753	kandhkot	4.259	3.653
bhalwal	9.77	2.589	karachi	4.304	4.96
bhawalnagar	5.48	3.032	kasur	9.99	2.606
bhawalpur	4.519	3.331	khairpur	3.744	3.719
burewala	5.232	3.119	khanewal	5.19	2.998
chakwal	9.494	2.578	khanpur	4.19	3.61
chaman	12.97	3.436	khushab	12.81	2.575
charsadda	6.934	2.181	kohat	11.93	2.715
chiniot	10.45	2.537	kot abdul malik	9.583	2.529
chishtian	5.48	3.032	kot addu	5.677	3.065
dadu	3.225	4.28	kotri	3.465	5.21
daharki	3.902	3.746	Lahore	9.583	2.529
daska	7.094	2.462	larkana	4.052	3.444
deraghazi	8.465	3.468	layyah	6.931	2.893
dera ismail	12.8	3.075	lodhra	4.519	3.331
faisalabad	10.45	2.537	mandi bahauddin	7.95	2.511
ferozwala	9.583	2.529	mansehra	16.59	2.297
gawadar	17.18	4.657	mardan	6.934	2.181
ghotki	4.259	3.653	mianwali	11.15	2.491
gojra	6.999	2.75	mingora	9.187	2.36
gujranwala	7.884	2.463	mirpur khas	3.302	4.857
gujrat	7.094	2.462	mirpur mathelo	4.259	3.653

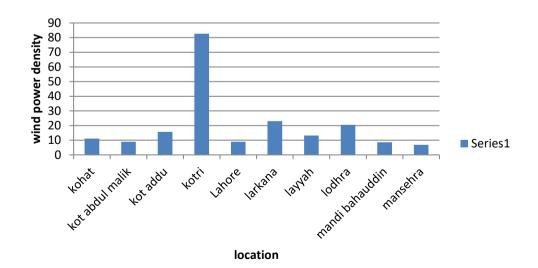
Locations	Shape	Scale	Locations	Shape	Scale
hafizabad	9.773	2.461	mirpur	9.167	2.654
haroonabad	5.018	3.201	multan	4.824	3.27
Hasilpur	4.772	3.272	muridke	7.884	2.463
hub	4.304	4.96	muzaffarabad	13.9	2.225
hyderabad	3.465	5.21	muzaffargarh	4.824	3.27
islamabad	8.799	3.813	narowal	7.029	2.504
jacobabad	6.14	3.193	nawabshah	3.34	4.611
jaranwala	10.45	2.537	nowshehra	6.934	2.181
jatoi	5.71	3.508	okara	9.517	2.634
pakpattan	6.558	2.834			
peshawar	6.934	2.181			
quetta	6.142	3.239			
rahim yar khan	5.334	3.505			
rahwali	7.884	2.463			
rawalpindi	9.302	2.655			
sadiqabad	5.334	3.505			

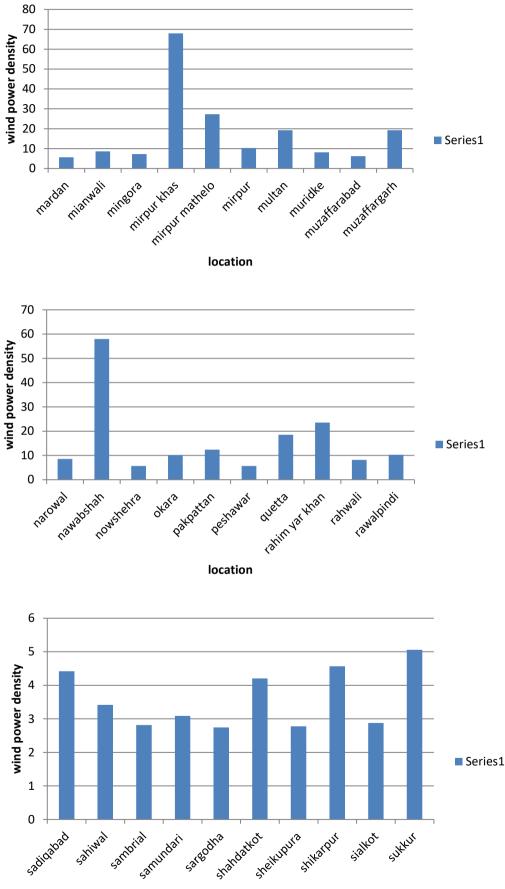

Table 6 shows the values of (shape) k and (scale) c of Pakistan's 100 densely populated areas

Minimum value of shape is 3.225 of dadu Location: Latitude 26.7325 Longitude 67.7792 and maximum value is 17.18 of Gwadar Location: Latitude 25.1264 Longitude 62.3225

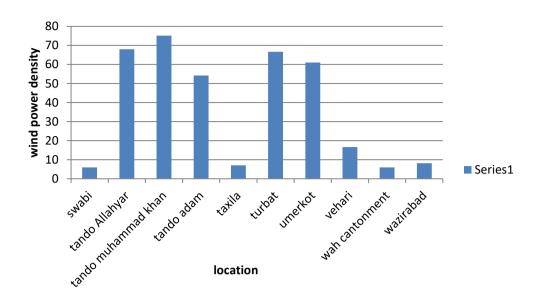

Minimum value of scale is Peshawar 2.181 Location: Latitude 34.0144 Longitude 71.5675 and maximum value is 5.21 Kotri Location: Latitude 25.374 Longitude 68.3013 and Hyderabad


Furthermore, the bar charts below shows WPD of selected cities calculated from WPD equation Values fluctuates around 5.65274448 ms⁻¹ to 82.66915 ms⁻¹


Minimum mean wind power density were seen in the cities like Peshawar, nowshera, mardan and charsadda., Maximum mean wind power density was seen in region of kotri



SUKKUY


shikarpur

randated their the stand

location

sambrial samundari sangodha

55

About 18 wind Independent Power Projects (IPPs) have received land allocations from AEDB for 50 MW each of wind power producing projects. Most of these distributions are in the Sindh province especially in the villages of interior Sindh. Feasibility studies for 12 wind plants, each with a 50 Mega-Watt capacity, For eight wind plants (NEPRA) gives the approval and a license. Additionally, NEPRA has released information about the tariffs for four IPPs that use wind energy (Green Power, Dawood Power, Zorlu Enerji Pakistan, and Arabian Sea. One IPP, Fauji Fertilizer Company Ltd., is seeking authorization of its tariff petition). Additionally, reports on feasibility from other IPPs have been provided. This development suggests that the province of Sindh's wind potential is close to being utilized.

Wind energy potential of KPK

A significant amount of wind energy is present in Pakistan's KPK province's northwest (e.g Sakhakot, Totakan and Batkhela). Area of KPK is around 74,500 square kilometers. Table 3 KPK portion shows that 15.71% of the land is classified as having wind power which can be classified in moderate and some have excellent class. KPK is producing around 58,545 MW of power. Not many concrete steps have been taken so far to exploit the wind power potential in KPK. To take advantage of the tremendous potential wind energy here, effective efforts must be made immediately.

Wind potential of Balochistan

Balochistan province in Pakistan's southwest has a significant amount of wind power potential. Balochistan has an overall 347 thousand square kilometers area of land. Balochistan has an excellent wind potential which could be categorized in class 6 and 7. Unfortunately, no significant action has been taken to date to fully use this enormous potential area. Currently wind power plants which are in class 4 (good) are producing 63,700 MW of energy. Due to its isolated border location and the unstable and insecure political situation, this high potential windy area may have been overlooked. Exploring and using all locations with stron g wind potential is urgently needed given the nation's ongoing energy problem. Jiwani in Balochistan

Table7 shows different classes according to average wind speed and wind power density at the height of 10 meter.

Table 7

International wind power generation classification at 10m height

number	Resource class	Speed (m/s)	WPD (W/m ²)
1	poor	0-4.4	0-100
2	marginal	4.4-5.1	100-150
3	moderate	5.1-5.6	150-200
4	Good	5.6-6.0	200-250

CHAPTER V Conclusion

Due to the country's expanding industrial sector and population, the demand for power has been rising quickly. Therefore, using renewable energy, such as wind and solar energy, can help to reduce GHG emissions and may be the greatest way to address the country's energy challenges.

Therefore, the purpose of this study was to look into the possibilities for wind energy in 100 different location in Pakistan

The features of wind speed were examined using the Weibull distribution function for the estimation of the wind energy potential. Furthermore, at a height of 10 meters, Weibull parameters and then WPD were calculated. Small-scale wind turbines may be viable for generating electricity in the regions, according to the report.

Future research will decide if it is necessary to also look at how financial factors like discount rates and inflation rates affect investment. In order to comprehend the impact, it is also important to investigate how the distribution and wind turbine system interact.

With this, price for the electricity will also decrease, for small scale systems where electricity is not reached or other sources are not feasible for power production

References

- Agency, I. R. E. (2020). *Wind energy*. https://www.irena.org/Energy-Transition/Technology/Wind-energy
- Ali, S. M. H., Zuberi, M. J. S., Tariq, M. A., Baker, D., & Mohiuddin, A. (2015). A study to incorporate renewable energy technologies into the power portfolio of Karachi, Pakistan. *Renewable and Sustainable Energy Reviews*, 47, 14– 22. https://doi.org/10.1016/j.rser.2015.03.009
- Amamra, S.-A., Meghriche, K., Cherifi, A., & Francois, B. (2017). Multilevel Inverter Topology for Renewable Energy Grid Integration. *IEEE Transactions on Industrial Electronics*, 64(11), 8855–8866. https://doi.org/10.1109/TIE.2016.2645887
- Amber, K., Ahmad, R., Farmanbar, M., Bashir, M., Mehmood, S., Khan, M., & Saeed, M. (2021). Unlocking Household Electricity Consumption in Pakistan. *Buildings*, 11(11), 566. https://doi.org/10.3390/buildings11110566
- Amjad, F., & Shah, L. A. (2020). Identification and assessment of sites for solar farms development using GIS and density based clustering technique- A case of Pakistan. *Renewable Energy*, 155, 761–769. https://doi.org/10.1016/j.renene.2020.03.083
- Arreyndip, N. A., Joseph, E., & David, A. (2016). Wind energy potential assessment of Cameroon's coastal regions for the installation of an onshore wind farm. *Heliyon*, 2(11), e00187. https://doi.org/10.1016/j.heliyon.2016.e00187
- Asif, M. (2009). Sustainable energy options for Pakistan. *Renewable and Sustainable Energy Reviews*, 13(4), 903–909. https://doi.org/10.1016/j.rser.2008.04.001
- Baloch, M., Abro, S., Sarwar Kaloi, G., Mirjat, N., Tahir, S., Nadeem, M., Gul, M.,
 Memon, Z., & Kumar, M. (2017). A Research on Electricity Generation
 from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal
 for Remote Zones. *Sustainability*, 9(9), 1611.
 https://doi.org/10.3390/su9091611
- Baloch, M. H., Kaloi, G. S., & Memon, Z. A. (2016). Current scenario of the wind energy in Pakistan challenges and future perspectives: A case study. *Energy Reports*, 2, 201–210. https://doi.org/10.1016/j.egyr.2016.08.002
- BioteCH4. (2020). What is the Difference Between Biomass & Biogas?
- Burton, L. D. (2019). Agriscience: Fundamentals and Applications (6th editio).

Delmar Cengage Learning.

- Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind Energy Handbook. Wiley. https://doi.org/10.1002/9781119992714
- Caglayan, D. G., Ryberg, D. S., Heinrichs, H., Linßen, J., Stolten, D., & Robinius, M. (2019). The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe. *Applied Energy*, 255, 113794. https://doi.org/10.1016/j.apenergy.2019.113794
- Daniels, P. (2009). *The new solar system: ice worlds, moons, and planets redefined.* Washington, D.C. : National Geographic Society, [2009.
- Denholm, P., Brinkman, G., & Mai, T. (2018). How low can you go? The importance of quantifying minimum generation levels for renewable integration. *Energy Policy*, 115, 249–257. https://doi.org/10.1016/j.enpol.2018.01.023
- Dickson, M. H., & Fanelli, M. (2013). *Geothermal Energy*. Routledge. https://doi.org/10.4324/9781315065786
- Eric Roston, Mira Rojanasakul, Paul Murray, Brittany Harris, D. P. and A. T., & Rutkoff. (2019). Global Trends in Renewable Energy Investment 2019. https://www.bloomberg.com/graphics/climate-change-datagreen/investment.html?leadSource=uverify wall
- Finance, M. of. (2021). Pakistan Electricity Consumption.
- Ghafoor, A., Rehman, T. ur, Munir, A., Ahmad, M., & Iqbal, M. (2016). Current status and overview of renewable energy potential in Pakistan for continuous energy sustainability. *Renewable and Sustainable Energy Reviews*, 60, 1332–1342. https://doi.org/10.1016/j.rser.2016.03.020
- Greiner, P. T., York, R., & McGee, J. A. (2022). When are fossil fuels displaced? An exploratory inquiry into the role of nuclear electricity production in the displacement of fossil fuels. *Heliyon*, 8(1), e08795. https://doi.org/10.1016/j.heliyon.2022.e08795
- Kamran, M. (2018). Current status and future success of renewable energy in Pakistan. *Renewable and Sustainable Energy Reviews*, 82, 609–617. https://doi.org/10.1016/j.rser.2017.09.049
- Kamran, M., Fazal, M. R., & Mudassar, M. (2020). Towards empowerment of the renewable energy sector in Pakistan for sustainable energy evolution: SWOT analysis. *Renewable Energy*, 146, 543–558. https://doi.org/10.1016/j.renene.2019.06.165

- Keyhani, A., Ghasemi-Varnamkhasti, M., Khanali, M., & Abbaszadeh, R. (2010).
 An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran. *Energy*, 35(1), 188–201. https://doi.org/10.1016/j.energy.2009.09.009
- Khalil, H. B., & Zaidi, S. J. H. (2014). Energy crisis and potential of solar energy in Pakistan. *Renewable and Sustainable Energy Reviews*, 31, 194–201. https://doi.org/10.1016/j.rser.2013.11.023
- Khalil, M., Berawi, M. A., Heryanto, R., & Rizalie, A. (2019). Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. *Renewable and Sustainable Energy Reviews*, 105, 323– 331. https://doi.org/10.1016/j.rser.2019.02.011
- Khan, J., & Arsalan, M. H. (2016). Solar power technologies for sustainable electricity generation – A review. *Renewable and Sustainable Energy Reviews*, 55, 414–425. https://doi.org/10.1016/j.rser.2015.10.135
- Khan, K. S., & Tariq, M. (2018). Wind resource assessment using SODAR and meteorological mast – A case study of Pakistan. *Renewable and Sustainable Energy Reviews*, 81, 2443–2449. https://doi.org/10.1016/j.rser.2017.06.050
- Lund, H. (2007). Renewable energy strategies for sustainable development. *Energy*, 32(6), 912–919. https://doi.org/10.1016/j.energy.2006.10.017
- Lund, H., & Salgi, G. (2009). The role of compressed air energy storage (CAES) in future sustainable energy systems. *Energy Conversion and Management*, 50(5), 1172–1179. https://doi.org/10.1016/j.enconman.2009.01.032
- M.A, Sheikh. (2003). Pakistan energy yearbook: hydrocarbon development Institute of Pakistan. Ministry of Petroleum and Natural Resources.
- Makkawi, A., Tham, Y., Asif, M., & Muneer, T. (2009). Analysis and intercomparison of energy yield of wind turbines in Pakistan using detailed hourly and per minute recorded data sets. *Energy Conversion and Management*, 50(9), 2340–2350. https://doi.org/10.1016/j.enconman.2009.05.017
- Malik, M. Z., Ali, A., Kaloi, G. S., Soomro, A. M., Baloch, M. H., & Chauhdary, S. T. (2020). Integration of Renewable Energy Project: A Technical Proposal for Rural Electrification to Local Communities. *IEEE Access*, 8, 91448–91467. https://doi.org/10.1109/ACCESS.2020.2993903

Malik, S. N., & Sukhera, O. R. (2012). Management of natural gas resources and

search for alternative renewable energy resources: A case study of Pakistan. *Renewable and Sustainable Energy Reviews*, *16*(2), 1282–1290. https://doi.org/10.1016/j.rser.2011.10.003

- Mirza, Umar K. & Maroto-Valer, M. Mercedes & Ahmad, N. (2003). Status and outlook of solar energy use in Pakistan. *Renewable and Sustainable Energy Reviews*, 501–514. https://ideas.repec.org/a/eee/rensus/v7y2003i6p501-514.html
- Mirza, I. A., Khan, N. A., & Memon, N. (2010). Development of benchmark wind speed for Gharo and Jhimpir, Pakistan. *Renewable Energy*, 35(3), 576–582. https://doi.org/10.1016/j.renene.2009.08.008
- Mohammadi, K., Alavi, O., & McGowan, J. G. (2017). Use of Birnbaum-Saunders distribution for estimating wind speed and wind power probability distributions: A review. *Energy Conversion and Management*, 143, 109– 122. https://doi.org/10.1016/j.enconman.2017.03.083
- Muñoz, Y., Guerrero, J., & Ospino, A. (2014). Evaluation of a hybrid system of renewable electricity generation for a remote area of colombia using homer software. *TECCIENCIA*, 9(17), 57–67. https://doi.org/10.18180/tecciencia.2014.17.6
- Nazir, M. S., Mahdi, A. J., Bilal, M., Sohail, H. M., Ali, N., & Iqbal, H. M. N. (2019). Environmental impact and pollution-related challenges of renewable wind energy paradigm – A review. *Science of The Total Environment*, 683, 436–444. https://doi.org/10.1016/j.scitotenv.2019.05.274
- NREL. (2015). Geospatial Data Science.
- Paletto, A., Bernardi, S., Pieratti, E., Teston, F., & Romagnoli, M. (2019). Assessment of environmental impact of biomass power plants to increase the social acceptance of renewable energy technologies. *Heliyon*, 5(7), e02070. https://doi.org/10.1016/j.heliyon.2019.e02070
- Rabbani, R., & Zeeshan, M. (2020). Exploring the suitability of MERRA-2 reanalysis data for wind energy estimation, analysis of wind characteristics and energy potential assessment for selected sites in Pakistan. *Renewable Energy*, 154, 1240–1251. https://doi.org/10.1016/j.renene.2020.03.100
- Rafique, M., Rehman, S., Alam, M., & Alhems, L. (2018). Feasibility of a 100 MW Installed Capacity Wind Farm for Different Climatic Conditions. *Energies*, 11(8), 2147. https://doi.org/10.3390/en11082147

- Raheem, A., Abbasi, S. A., Memon, A., Samo, S. R., Taufiq-Yap, Y. H., Danquah, M. K., & Harun, R. (2016). Renewable energy deployment to combat energy crisis in Pakistan. *Energy, Sustainability and Society*, 6(1), 16. https://doi.org/10.1186/s13705-016-0082-z
- Saulat, H., Khan, M. M., Aslam, M., Chawla, M., Rafiq, S., Zafar, F., Khan, M. M., Bokhari, A., Jamil, F., Bhutto, A. W., & Bazmi, A. A. (2021). Wind speed pattern data and wind energy potential in Pakistan: current status, challenging platforms and innovative prospects. *Environmental Science and Pollution Research*, 28(26), 34051–34073. https://doi.org/10.1007/s11356-020-10869-y
- Shah, S. A. A., & Solangi, Y. A. (2019). A sustainable solution for electricity crisis in Pakistan: opportunities, barriers, and policy implications for 100% renewable energy. *Environmental Science and Pollution Research*, 26(29), 29687–29703. https://doi.org/10.1007/s11356-019-06102-0
- Shaikh, F., Ji, Q., & Fan, Y. (2015). The diagnosis of an electricity crisis and alternative energy development in Pakistan. *Renewable and Sustainable Energy Reviews*, 52, 1172–1185. https://doi.org/10.1016/j.rser.2015.08.009
- Shakeel, S. R., Takala, J., & Shakeel, W. (2016). Renewable energy sources in power generation in Pakistan. *Renewable and Sustainable Energy Reviews*, 64, 421–434. https://doi.org/10.1016/j.rser.2016.06.016
- Shami, S. H., Ahmad, J., Zafar, R., Haris, M., & Bashir, S. (2016). Evaluating wind energy potential in Pakistan's three provinces, with proposal for integration into national power grid. *Renewable and Sustainable Energy Reviews*, 53, 408–421. https://doi.org/10.1016/j.rser.2015.08.052
- Sheikh, M. A. (2009). Renewable energy resource potential in Pakistan. *Renewable* and Sustainable Energy Reviews, 13(9), 2696–2702. https://doi.org/10.1016/j.rser.2009.06.029
- Sheikh, M. A. (2010). Energy and renewable energy scenario of Pakistan. *Renewable* and Sustainable Energy Reviews, 14(1), 354–363. https://doi.org/10.1016/j.rser.2009.07.037
- Sher, H. A., Murtaza, A. F., Addoweesh, K. E., & Chiaberge, M. (2015). Pakistan's progress in solar PV based energy generation. *Renewable and Sustainable Energy Reviews*, 47, 213–217. https://doi.org/10.1016/j.rser.2015.03.017
- Shoaib, M., Siddiqui, I., Amir, Y. M., & Rehman, S. U. (2017). Evaluation of wind

power potential in Baburband (Pakistan) using Weibull distribution function. *Renewable and Sustainable Energy Reviews*, 70, 1343–1351. https://doi.org/10.1016/j.rser.2016.12.037

- Society, N. G. (2022). Fossil fuels.
- Sørensen, J. N. (2016). *The General Momentum Theory* (pp. 43–58). https://doi.org/10.1007/978-3-319-22114-4 4
- Stökler, S., Schillings, C., & Kraas, B. (2016). Solar resource assessment study for Pakistan. *Renewable and Sustainable Energy Reviews*, 58, 1184–1188. https://doi.org/10.1016/j.rser.2015.12.298
- Tahir, Z. R., & Asim, M. (2018). Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review. *Renewable and Sustainable Energy Reviews*, 81, 2839–2861. https://doi.org/10.1016/j.rser.2017.06.090
- Tahir, Z. ul R., Azhar, M., Blanc, P., Asim, M., Imran, S., Hayat, N., Shahid, H., & Ali, H. (2020). The evaluation of reanalysis and analysis products of solar radiation for Sindh province, Pakistan. *Renewable Energy*, 145, 347–362. https://doi.org/10.1016/j.renene.2019.04.107
- Topcu, M., & Tugcu, C. T. (2020). The impact of renewable energy consumption on income inequality: Evidence from developed countries. *Renewable Energy*, 151, 1134–1140. https://doi.org/10.1016/j.renene.2019.11.103
- Turgeon, A., & Morse, E. (2022). *solar energy*. https://education.nationalgeographic.org/resource/solar-energy
- Ullah, I., Chaudhry, Q.-Z., & Chipperfield, A. J. (2010). An evaluation of wind energy potential at Kati Bandar, Pakistan. *Renewable and Sustainable Energy Reviews*, 14(2), 856–861. https://doi.org/10.1016/j.rser.2009.10.014
- United Nations. (2020). Ensure Access to Affordable, Reliable, Sustainable and Modern Energy for All. https://www.seforall.org/who-we-are.
- Wakeel, M., Chen, B., & Jahangir, S. (2016). Overview of Energy Portfolio in Pakistan. *Energy Procedia*, 88, 71–75. https://doi.org/10.1016/j.egypro.2016.06.024

APPENDICES

Appendix A

Table 8 summary of renewable energies in Pakistan

Reference	City	Type of	Result, conclusion,
		energy	suggestion
(Asif, 2009)	5 projects in Punjab	Hydropower	In last two eras only
Sustainable energy		Solar	hydropower power plant
options for Pakistan.		Biomass	produces 1450MW of
			energy
			After that solar has also a
			good potential then
			comes biogass with
			minimum of wind
			potential
The evaluation of	Karachi, Hyderabad	Solar	Results were better in
reanalysis and analysis		radiation	clear sky months. In
products of solar			summer the results were
radiation for Sindh			better as compared to
province, Pakistan			winters.
(Z. ul R. Tahir et al.,			The clearness indices
2020)			was matched with
			Karachi and Hyderabad
			Some changes need to be
			made in climate topology
			for better solar energy

Reference	City	Type of	Result, conclusion,
		energy	suggestion
(Kamran et al., 2020)	Wind at 50m height	Wind	with better
Towards	is around 7ms ⁻¹ at	energy	aerodynamics.
empowerment of the	coast of Sindh and		By using mini and micro
renewable energy	balochistan. Good		wind turbines, off-grid
sector in Pakistan for	results were at		wind energy system can
sustainable energy	Jamshoro, Mirpur		be best PCRET has
evolution: SWOT	Sakro, Keti-Bandar,		installed 155 small wind
analysis	Thatta, Shah		turbines of capacity 161
	Bandar, Gharo,		kW.
	Nooriabad, Kotri,		
	Thar, Hyderabad,		
	and Matli.		
	However, in		
	Baluchistan,		
	Gawadar, Ormara,		
	Chowki, Pasni,		
	Liari, Gadani,		
	Jiwani, and Hub are		
	the best sites of		
	wind potential		
	Operational bagasse	Bio energy	Can be used for heating
	based project		and cooking purposes.
	Mainly Punjab area		The by-product of the
			biogas is asource of
			fertilizer, anaerobic can
			increase the efficiency by
			60%

Reference	City	Type of	Result, conclusion,
		energy	suggestion
	The micro-hydro	Hydro	9 micro/small hydro
	potential is mostly	power	projects of cumulative
	available on canal		capacity
	falls, natural falls		98.41MWare
	and canal flow in		operational.
	Gilgit Baltistan,		
	Punjab and Khyber		
	Pakhtun Khawa		
(Amjad & Shah, 2020)	solar irradiance in	Solar energy	Complete scanning of
Identification and	Killa Saifullah and		the data (1466 solar
assessment of sites for	Kalat districts with		sites) yielded 23 dense
solar farms	a size of 10 km ² ,		clusters of sizes in the
development using	Muslim Bagh, and		range of 10 km ² to 289
GIS and density based	Surab Town near		km ²
clustering technique-	Kharan		uses solar irradiance and
A case of Pakistan	Similarly,		terrain ruggedness to
	Panjgur,		reduce the development
	Mangocher,		cost
	Kalat, between		of the solar farm, a
	Panjgur and Nag,		terrain ruggedness
	and halfway		criterion was applied
	between Surab and		
	Besima,		
	respectively.		
	Prominent among		
	the solar farm sizes		
	is		
	289 km2 near Nag		
	village		

Reference	City	Type of	Result, conclusion,
		energy	suggestion
(Sheikh, 2009)	In 2007, the annual	Wind	The survey of coastal
	power densities of	energy	areas of Pakistan has
Renewable energy	Khungipayan		indicated that
resource potential in	(Dir/NWFP) and		tremendous potential
Pakistan	Shaheed Gali		exists for harnessing
	(AJK) remained		wind energy
	27.49 W/m^2 and		
	208.19 W/m ² with		
	highest		
	wind speed of 2.61		
	m/s and 6.53 m/s		
	respectively		
	Jamshoro,		
	Katibandar,		
	Nooriabad Thatta		
	and Gharo are some		
	locations		
(Sheikh, 2010)	Kohat (NWFP),	Solar energy	providing 80Wpanel
Energy and renewable	D.G. Khan,		with lighting system to
energy scenario of	Rawalpindi		each
Pakistan	(Punjab),		house hold. PCRET
	Tharparkar (Sindh),		electrified more than
	Turbat/Kalat		500 schools, mosques,
	(Balochistan),		houses through PV
			power with total
			generation capacity of
			more
			than 80 kW

Reference	City	Type of	Result, conclusion,
		energy	suggestion
	4 MW grid	Wind	PCRET installed 130
	interactive wind	energy	units of total generating
	power station at		capacity of 143 kW with
	Gharo, Sindh		wind turbines of 0.5–10
	gul muhammad		kW capacity/unit while
	village in sindh		electrifying 1430
			houses.
	at Azad Jammu and	Hydropower	AEDB is having
	Kashmir.		financial and technical
	-at Northern Areas.		co-operation with Agha
			Khan Foundation,
			UNDP, GEF, ADB and
			GTZ, etc. for its
			hydropower projects.
			PCRET has installed
			microhydel power plants
			of total generation
			capacity more than 5
			MW through units of
			5–50 kW each

Reference	City	Type of	Result, conclusion,
		energy	suggestion
	Biogas plants are	Biogas	AEDB is working on
	gaining high		biogas project at Landhi
	popularity among		cattle colony, Karachi
	farmers of Punjab		(NZAID). project will
	province especially		generate 250 kW of
	in Bahawalpur area.		electricity through
			biogas
			whereas generation
			capacity will be
			extended to 30MW
			along with production of
			1500 ton of organic
			fertilizer per day
			Another biogas power
			generating plant with a
			capacity of 8.25 MW is
			under construction in
			Shakarganj Mill with the
			technical assistance of
			AEDB.

Reference	City	Type of	Result, conclusion,
		energy	suggestion
(S. N. Malik &	The four large	Hydro	development of medium
Sukhera, 2012)	Hydro	power/	scale projects requiring
Management of	Dams are: (i)	Hydro	low gestation period and
natural gas resources	Kalabagh – 3800	energy	low capital cost, hydel
and search for	MW, (ii) Bhasha –		stations having
alternative renewable	4600 MW, (iii)		characteristics to
energy resources: A	Bunji – 5400 MW,		generate more power
case study of Pakistan	(iv) Dasu – 3800		during April to June and
	MW		development of small
			hydel projects for
			isolated areas
(H. B. Khalil & Zaidi,	China power	Solar energy	solar energy better than
2014)	investment crop		wind energy in major
Energy crisis and	(CPI Group) has		cities of Pakistan. In
potential of solar	shown keen		over all conditions the
energy in Pakistan	interest in four		wind turbines are not
	power projects.		feasible and produced
	Projects of 660		sufficient energy in most
	MW and 300 MW		of the cities. Wind
	will be installed in		turbines are only
	Lahore and		applicable in coastal and
	Bahawalpur		desert areas of
	respectively		Baluchistan.
	Gilgit–Baltistan		
	Lahore,		
	Faisalabad,		
	Sialkot, Islamabad,		
	gilgit, Karachi,		

Reference	City	Type of	Result, conclusion,
		energy	suggestion
(Ali et al., 2015)	Karachi	Wind	It is suggested to offset
A study to incorporate		And solar	10% of the total power
renewable energy			output for the peak load
technologies into the			condition using a power
power portfolio of			portfolio that includes a
Karachi, Pakistan			2.9% and 4.4% share of
			PV and PTC, a 2.0%
			share of wind and 0.7 %
			share of
			biomass.
(Sher et al., 2015)	deserts of Sindh,	Solar energy	Peak load management
Pakistan's progress in	Cholistan desert of		during day time can be
solar PV based energy	Punjab and		accomplished by
generation	Balochistan offers		efficiently utilizing the
	exquisite		solar PV based systems.
	possibilities of		Shifting lighting load of
	installing mega		public parks and street
	solar PV power		lights on solar PV is also
	plants. In these		recommended.
	areas the sun		
	shines in the range		
	of 2300–2700h per		
	year		

Reference	City	Type of	Result, conclusion,
		energy	suggestion
(Shaikh et al., 2015)	desert area of	Solar	large hydro and nuclear
The diagnosis of an	Cholistan in the		power plants can be
electricity crisis and	Punjab province		sustainable and secure
alternative energy	QASPC project,		energy options for the
Development in	and in the cities of		long-term energy needs
Pakistan	Lodhran (30 MW),		of the country. The
	Cholistan (50		potential of roof top
	MW), Kasur (10		solar projects for
	MW) and		electricity and heating
	Muzaffurgarh (50		purposes. The potential
	MW Concentrated		of the Bagasse-basedco-
	Solar Power)		generation of electricity
			from sugarmills in the
			country should be
			studied.

Reference	City	Type of	Result, conclusion,
		energy	suggestion
(Shakeel et al., 2016)	Generally	Solar, wind,	Sixty per cent
Renewable energy	discussed about	hydro	electricity from hydel
sources in power	the different		sources Cheap and
generation in Pakistan	provinces sindh,		emissions free
	balochistan and		electricity generation
	punjab		The matter of load
			shedding can be
			resolved by addressing
			the issue of circular
			debt and upgrading the
			transmission network
			on the priority basis.
			T&D losses ought to be
			brought down, revenue
			collection must be
			increased, and the
			investment should be
			made in the
			transmission
			infrastructure.

Reference	City	Type of	Result, conclusion,
		energy	suggestion
Wind resource	Kallarkahar	Wind energy	Wind farm deployment
assessment using	region of		is moving from flat to
SODAR and	Pakistan		complex terrains
meteorological mast –	Sardi		because of the
A case	Chakwal		availability of stronger
study of Pakistan (K.			winds there.
S. Khan & Tariq,			SODAR being a
2018)			cheaper option as
			compared to expensive
			mast installation
			methods. In the end,
			the wind energy
			community also needs
			to define standard
			parameters for
			Accuracy checks.
Surface measured	The solar	Solar energy	Some of the locations
solar radiation data	potential of		have high solar
and solar energy	Pakistan		potential
resource assessment	(especially Sindh		
of Pakistan: A review	and Baluchistan		
(Z. R. Tahir & Asim,	provinces) is		
2018)	among the second		
	highest around		
	the world.		

Reference	City	Type of	Result, coclusion,
		energy	suggestion
Current status and			The view of ongoing
future success of			projects and accelerated
renewable energy in			R&D in RE
Pakistan (Kamran,			organizations RE will
2018)			get grounds in the future
			energy mix of Pakistan
			making it dominant with
			solar, wind and biomass
			energy and accordingly
			will mitigate energy
			import bills and the
			generation of CO ₂ in the
			atmosphere.
Overview of energy	Punjab especially	solar, wind	According to this report,
portfolio in Pakistan	Sialkot, Jung etc.	biogas and	coastal belt of Sindh and
(Wakeel et al., 2016)	Some biomass	small	Baluchistan has more
	plants, for	hydropower.	than 50,000MW Wind
	example SSJD		Baluchistan and Sindh
	(12MW) in		are also used for water
	Sindh, Lumen		pumping at small levels.
	Energy (12MW)		There is also a great
	Shahkot,		potential of renewable
	Biomass power		energy,
	generation limited		
	in Faisalabad in		
	Punjab and in		
	Mardan in KPK,		

Reference	City	Type of	Result, conclusion,
		energy	suggestion
Current scenario of the	Pakistan has	Wind	a German company
wind energy in	around 1100	energy	GmbH
Pakistan challenges	kilometers (km)		constructed a wind
and future	coastal line for the		turbine Bonus
perspectives: A case	wind energy		600/44MKIV type,
study (M. H. Baloch et	potential, but in		if wind speed
al., 2016)	this manuscript,		ranges in between 7.2–8
	we have chosen		m/s and 8–8.8 m/s at 30
	one of the most		m and 50 m height that
	suitable wind		would be an excellent
	corridors of the		zones for installing wind
	southern part of		turbines respectively.
	the country		Thermal/gas power
	selected wind		plants are too old and
	corridor of		their efficiency is <15%
	Jamshoro city		such as Uch Power Plant
			located in Punjab
			Province having
			capacity is around 800
			MW, but due to aging it
			generates only few MW.

Reference	City	Type of	Result, conclusion,
		energy	suggestion
Analysis and inter-	wind speed data	Wind	sea breeze is the prime
comparison of energy	have been	energy	source of wind resource
yield of wind turbines	measured over		in monsoon months.
in Pakistan	a period of 4 years		producing the most
using detailed hourly	at a minute's		significant energy
and per minute	frequency for		yields.
recorded data sets	Southern Pakistan		
(Makkawi et al., 2009)	at Gharo. The		
	period of		
	measurement		
	was May 2002–		
	June 2006.		
An evaluation of wind	Kati bandar a	Wind	The site is class 4 wind
energy potential at	small	energy	power site likely to be
Kati Bandar, Pakistan	village east of		suitable for wind farms
(Ullah et al., 2010)	Karachi on the		as well as small, stand-
	coast of Sindh.		alone systems.
			Rayleigh and Weibull
			distributions are
			considered to be the
			most suitable for
			representing wind speed
			variations.
			In addition, the air
			density, the height of the
			turbine tower, and the
			design of turbine affect
			the power

Reference	City	Type of	Result, conclusion,
		energy	suggestion
Renewable energy	Balochistan=	Wind	significant wind speeds
deployment to	swat	Solar	were identified in the
combat energy crisis	Thar, cholistan	Hydropower	costal part of
in Pakistan (Raheem et	two solar		Baluchistan, particularly
al., 2016)	plants in		in Swat and some of the
	Gawadar,		Northern areas. Out of
	Bunji (7100		42 examined sites, seven
	MW), Tarbela		have a capacity factor
	fourth extension		ranging from 10 to 18 %
	(1399 MW),		and are appropriate for
	Kohala (1095		Bonus wind turbines
	MW), Lower		(Model 600/44 MK IV).
	Palas Valley (660		Solar desalination is a
	MW), Mahl (599		new and cost-effective
	MW), and Lower		technology that can be
	spat		used Sindh is endowed
	Gah (495 MW)		with wind potential in
	large-scale		the South, Baluchistan is
	reservoir projects		rich with solar potential
	(dams) including		in the West, and Khyber
	Diamer Basha		Pakhtunkhwa is rich
	(4400 MW), Dasu		with hydro in the
	(4250 MW),		northeast area
	Munda (735		
	MW), Kurram-		
	Tangi (80 MW),		
	and Kalabagh		
	dam (KB)		
	(3600 MW).		

Reference	City	Type of	Result, conclusion,
		energy	suggestion
Exploring the	Bahawalpur,	Wind	Four locations with high
suitability of MERRA-	Punjab		wind power densities,
2 reanalysis data for	Chakri, Punjab		namely Sujawal,
wind energy	Gwadar,		Sanghar, Tando Ghulam
estimation, analysis of	Balochistan		Ali and Umerkot
wind characteristics	Haripur, KPK		showed good potential
and energy potential	Peshawar, KPK		to add wind share to
assessment for	Quaidabad,		global energy mix.
selected sites in	Punjab		Assuming a Vestas
Pakistan	Quetta,		2MWturbine, and
(Modern-Era	Balochistan		without the
Retrospective analysis	Sadiqabad,		consideration of losses,
for Research and	Punjab		the annual energy
Applications)	Sanghar, Sindh		production per turbine
(Rabbani & Zeeshan,	Sujawal, Sindh		were calculated. The
2020)	Tando Ghulam		energy output values for
	Ali, Sindh		S10, S9 and S11 were
	Umerkot, Sindh		found to be 10,082
			MWh, 9753 MWh and
			9154 MWh per year
			per turbine, which were
			considerably higher than
			those for the rest of
			sites.

Reference	City	Type of	Result, conclusion,
		energy	suggestion
Wind speed pattern	South-eastern	Wind	South-eastern area of
data and wind energy	area of Sindh	energy	Sindh province,
potential	province,		northwestern
in Pakistan: current	northwestern		area of Khyber
status, challenging	area of Khyber		Pakhtunkhwa (KPK)
platforms and	Pakhtunkhwa		province and south
innovative	(KPK) province		western area of
prospects (Saulat et	and south western		Balochistan province
al., 2021)	area of		hold a great potential for
	Balochistan		harnessing wind energy.
	province hold a		Wind power production
	great potential		capacity of 88460 MW
	for harnessing		exists in the province of
	wind energy		Sindh with
	Karachi		potential sites like
			Hyderabad, Kotri,
			Jerruck, Gharo, Jhimpir,
			Lakha, Khuttikun and
			Bhambore, Wind power
			park in Karachi has been
			announced by AEDB
			having a capacity of
			2500MW

Reference	City	Type of	Result, conclusion,
		energy	suggestion
A sustainable solution	Pakistan	Biomass	Sugarcane residue
for electricity crisis in		(biogass)	produces an estimate
Pakistan:			of more than 18 million
opportunities,			tons of bagasse every
barriers, and policy			year,
implications for 100%			high-pressure
renewable energy			cogeneration plants at 84
(Shah & Solangi,			sugar mills in the country
2019)			can produce 1844 MW.
		Solar energy	The 10-year averaged
			data of Pakistan shows
			that the average
			insolation in the country
			varies from 5 to 7
			kWh/m2/day, whereas
			30% of areas in Pakistan
			receive solar insolation
			of more than 6
			kWh/m2/day the
			government of

Reference	City	Type of	Result, conclusion,
		energy	suggestion
Solar resource	Northern part of	Solar	There are 8–10 mean
assessment study for	balochistan	energy	hours of sunshine a day,
Pakistan (Stökler et			equating to 15×1014
al., 2016)			kWh solar radiation
			annually. These values are
			enough to harness 1600
			GW power in a year. In
			March 2015, the World
			Bank conducted
			a solar assessment survey
			of Pakistan and
			determined
			that almost 90% of areas
			receive 2000 kWh/m2 of
			global horizontal
			irradiance annually.

Reference	City	Type of	Result, conclusion,	
		energy	suggestion	
	Gharo, jimphir.	Wind	The trend of wind speeds	
Development of	The wind power	The wind power energy canno		
benchmark wind speed	projects currently		without having long term	
for Gharo and Jhimpir,	being pursued lie		reliable wind speed data.	
(Mirza et al., 2010)	in (i) the area		The project developers	
	between towns		find it	
	of Gharo and		difficult to make power	
	Mirpur Sakro,		production estimates and	
	and (ii) Jhimpir		calculation of financial	
	area. The land		returns without analyzing	
	allocated to wind		wind speeds and knowing	
	power project		wind power density. Wind	
	developers in		farm developers can make	
	Gharo area is in		their financial models	
	two clusters,		considering the annual	
	Bhambore and		energy production (AEP)	
	Khuttikun.		on benchmark wind speed	
			values. The wind risk	
			approach has minimized	
			the financial risks	

Reference	City	Type of	Result, conclusion,		
		energy	suggestion		
Evaluating wind	southeastern	Wind	Balochistan has the		
energy potential in	region of Pakistan	energy	highest wind power		
Pakistan's three	located in Sindh		potential among the three		
provinces, with	has high wind		provinces evaluated		
proposal for	power potential.				
integration into	This region		About 12,000 sq. km area		
national power grid	includes coastal		is available in Balochistan		
(Shami et al., 2016)	areas of Sindh as		with good-to-excellent		
	well as some		wind power classes for		
	locations in		power generation of up to		
	interior Sindh.		64,000 MWafter meeting		
	Some of the		all area utilization		
	cities/towns		constraints.		
	located within the		small scale micro grids		
	windy region with		can be powered up		
	their geographic		through wind farms like		
	locations are:		that of 50 MW Gharo		
	Hyderabad, kotri,		wind corridor in Sindh.		
	jerruck				
	wind power				
	potential exists in				
	southwestern				
	region of Pakistan				
	located in the				
	province of				
	Balochistan				
	Koh-i-Dalil,				
	Tozghi, Juzzak,				
	Jiwani				

Appendix X Similarity Report

🔁 turnitin											
Assignment	s Students	Grade Book	Libraries	Calendar	Discussion	Preferences					
NOW VIEWING	NOW VIEWING: HOME > PAPER > AHSAN MEHBOOB										
This is your as	About this page This is your assignment indox. To view a paper, select the paper's the. To view a Similarity Report, select the paper's Similarity Report icon in the similarity column. A ghosted icon indicates that the Similarity Report has not yet been generated. AHSAN MEHBOOB INBOX [NOW VIEWING: NEW PAPERS +										
Submit File Online Grading Report Edit assignment settings Email non-submitters											
	AUTHOR		TITLE			BINILARITY	GRADE	RE8PON8E	FILE	PAPER ID	DATE
	Ahsan Mehboob		CHAP	TER 5		D%	-		0	2024955813	28-Feb-2023
	Ahsan Mehboob		ALL T	HESIS		4%	-		0	2024958042	28-Feb-2023
	Ahsan Mehboob		CHAP	TER 1		4%	-		0	2024952350	28-Feb-2023
	Ahsan Mehboob		CHAP	TER 2		4%			0	2024953187	28-Feb-2023
	Ahsan Mehboob		CHAP	TER 3		5%			0	2024953822	28-Feb-2023
	Ahsan Mehboob		CHAP	TER 4		5%		-	0	2024954695	28-Feb-2023
0	Ahsan Mehboob		ABST	RACT		7%			0	2024957194	28-Feb-2023

-you'set