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Abstract 

 

Fractional Modeling and Analysis on Optimal Control Policies 

 

HADI, Mohammed Subhi Hadi 

PhD, Department of Electrical and Electronic Engineering 

September, 2022, 84 pages 

 

In this thesis, fractional-order modeling was implemented to create a COVID-19 

epidemic model which takes awareness and vaccination into consideration. The model 

was formulated based on Caputo – Fabrizio's form of fractional differential equations. 

The main goal of the thesis is to investigate the effect of applying different control 

policies using optimal control on the created model. The epidemiological model used 

in this study consisted of five classes where awareness about the epidemic and 

vaccination against the epidemic has been introduced; susceptible unaware, 

susceptible aware, susceptible vaccinated, infected, and recovered. Equilibrium points 

of the model were established and the basic reproduction rate was calculated afterward. 

The existence and uniqueness property of the fractional model was determined.  

The fractional optimal control problem was formulated and investigated based on the 

fractional model of COVID-19. The control policies used to control the COVID-19 

model were three time-dependent functions; awareness campaign for the unaware 

population, vaccination for the aware population, and optimal vaccination. Using 

numerical simulation, the effects of a different combination of these policies were 

performed. Results showed drastic decay in the infected population when a 

combination of all three control polices was applied.  

The study shows the importance of implementing successive policies on controlling 

the spread of epidemic, especially public awareness and vaccination.  

Keywords: Optimal control; mathematical model; fractional order model; fractional 

optimal control; COVID-19 
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Özet 

 

Fractional Modeling and Analysis on Optimal Control Policies 

 

HADI, Mohammed Subhi Hadi 

PhD, Elektrik-Elektronik Mühendisliği Bölümü 

September, 2022, 84 pages 

 

Bu tezde, farkındalık ve aşılamayı dikkate alan bir COVID-19 salgın modeli 

oluşturmak için kesirli sıralı modelleme uygulanmıştır. Model, kesirli diferansiyel 

denklemlerin Caputo – Fabrizio formuna dayalı olarak formüle edilmiştir. Tezin temel 

amacı, optimal kontrol kullanılarak farklı kontrol politikalarının uygulanmasının 

oluşturulan model üzerindeki etkisini araştırmaktır. Bu çalışmada kullanılan 

epidemiyolojik model, salgın konusunda farkındalığın ve salgına karşı aşılamanın 

tanıtıldığı beş sınıftan oluşmaktadır; duyarlı farkında değil, duyarlı farkında, duyarlı 

aşılanmış, enfekte olmuş ve iyileşmiş. Modelin denge noktaları belirlenmiş ve daha 

sonra temel yeniden üretim hızı hesaplanmıştır. Kesirli modelin varlık ve teklik 

özelliği belirlendi. 

Kesirli optimal kontrol problemi, COVID-19'un kesirli modeline dayalı olarak formüle 

edildi ve analiz edildi. COVID-19 modelini kontrol etmek için kullanılan kontrol 

politikaları, zamana bağlı üç işlevdi; bilinçsiz nüfus için bilinçlendirme kampanyası, 

bilinçli nüfus için aşılama, optimal aşılama. Sayısal simülasyon kullanılarak, bu 

politikaların farklı kombinasyonlarının etkileri gerçekleştirilmiştir. Sonuçlar, üç 

kontrol politikasının tümünün kombinasyonu uygulandığında, enfekte olmuş 

popülasyonda ciddi bir bozulma olduğunu gösterdi. 

Çalışma, başta halkın bilinçlendirilmesi ve aşılama olmak üzere, salgının yayılmasını 

kontrol altına almak için birbirini takip eden politikaların uygulanmasının önemini 

göstermektedir. 

Anahtar kelimeler: Optimal kontrol; matematiksel model; kesirli sıra modeli; kesirli 

optimal kontrol; COVID-19 
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CHAPTER 1  

 Introduction 

1.1 Introduction 

A mathematical model is a way of describing a system through the use of mathematical 

equations and notations, with the goal of making it simpler to analyze the effects of 

different modules of a system or to provide a proper explanation of a system 

(Abramowitz and Stegun, 1968). Mathematical modeling describes the procedure for 

creating such a model (Press et al., 1987). Engineering, biological sciences, health, 

economics, and the social sciences are only a few of the fields where mathematical 

modeling has become increasingly significant in the research and design of solutions 

to modern challenges. Mathematical modeling has been a mainstay in public health 

field research for the past several decades, and it has been used as a crucial tool in the 

field of studying and controlling of infectious diseases. 

 

Since December 2019, COVID-19 infection started and spread worldwide. Still, there 

is continued transmission in many countries in the world. Epidemiologists’ experience 

in dealing with Ebola, TB, cholera, HIV, etc. pandemics extremely aided the 

government in conferring measures that include isolating the infected patients, border 

closures, lockdown, and disinfecting of contaminated surfaces on a regular basis, 

consecutively, to face the menace caused by the disease. Many state-of-the-art 

technologies were used to accelerate the mitigation process, these include; next-

generation gene sequencing for pathogen identification, artificial intelligence-based 

algorithms for the classification of infected cases, mathematical model-based analysis 

for characterization of the spread dynamics of the disease, and big-data methods to 

trail the mobility of the population (He et al., 2020; Jiang et al., 2021; Mohamadou et 

al., 2020; Tang et al., 2020;  Vaishya et al., 2020). Particularly, mathematical models 

are used in characterizing stages of disease spread in a specified populace and also 

help to optimize disbursement related to involvement and management of hospital 

facilities. On this matter, this thesis examined the applications of successive optimal 

control policies on the COVID-19 epidemic to create disease control strategies. To aid 

public health authorities, this research can be used to suggest initiatives to stem the 

spread of an epidemic. 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/cholera
https://www.sciencedirect.com/topics/medicine-and-dentistry/horizontal-disease-transmission
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1.2 Background of Study 

By December 31, 2019, World Health Organization (WHO) was informed by Chine’s 

health authorities in Wuhan City of the occurrence of several cases of unknown 

pneumonia etiology. By January 7, 2019-nCoV as originally abbreviated by WHO was 

screened by a sample of throat swabs from certain patients (RT, 2020). After that, some 

study groups renamed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), and afterward WHO renamed the disease coronavirus disease 2019 (COVID-19). 

By January 30, statistics showed that 7736 and 12167 confirmed and supposed cases 

had been respectively counted in China. Similarly, 18 other countries reported 

confirmed cases reached 82. WHO on the same day gave the status of Public Health 

Emergency of International Concern (PHEIC) to the SARS-CoV-2 epidemic 

(Transmission, 2020).  

 

Considering the epidemiological aspects that cause to the pandemic, evidence from Li 

et al. report where the SEIR model was used for analysis shows that about 86% of the 

infections that occurred before Jan 23, 2020, in China, were not documented (Li et al., 

2020). Although executing random and rapid testing policies reduced the percentage 

of unreported cases but still, a substantial proportion of the cases have gone 

undetected. Hence it is concluded that the core cause of the recurrence of the disease 

when restrictions are lifted is the hidden asymptomatic patients (Fang et al., 2020; 

Kassa et al., 2020). To substantiate the occurrence of both asymptomatic and pre-

symptomatic disease transmission, the Cluster busting approach has been used (Fang 

et al., 2020). Fang et al. also show that super is responsible for almost 80% of the 

spread of the disease (Fang et al., 2020). To facilitate the effective implementation 

of containment strategies it is important to recognize hidden asymptomatic 

transmission nodes or unreported infections. Values of R0 and Re show that 

involvement responses such as closures of borders, lockdowns, social distances, and 

verdicts to lift or reduce restrictions have a major bearing on how the epidemic 

develops (University JH).  

 

A comprehensive understanding of the dynamics of the disease spread between 

populations is vital for predicting infectious diseases and their future characteristics 

and planning for reliable programs to implement control interventions for preventing 

https://www.sciencedirect.com/topics/medicine-and-dentistry/covid-19
https://www.sciencedirect.com/topics/medicine-and-dentistry/pandemic
https://www.sciencedirect.com/topics/computer-science/containment-strategy
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disease breakout (Lin et al., 2020; Yang et al., 2020). The theory of mathematical 

modeling and optimal control play a central role in studying the dynamics of infectious 

diseases and their management (Lin et al., 2020; Sofia et al., 2015). Yet, because of 

the parameter uncertainties, complexity and inherent non-linearity related to 

epidemical models modeling and control analysis of such systems is a tough and 

complex process. Moreover to the financial constraints of minimizing the cost of 

achieving the control goal and maximizing the efficiency with which they are 

achieved, this also has to be taken into account (Djouima et al., 2017; Gambhire et al., 

2020). 

 

Optimal control theory is another useful tool for studying mathematical models and 

learning more about the dynamics of a disease, especially contagious ones. The theory 

was first introduced in 1986, after the development of the well-known Pontryagin 

Maximum Principle (PMP) (Pontryagin and Boltyanskii, 1986). These days, optimal 

control theory is practically required for all models of infectious diseases (Okyere et 

al.; Mojaver and Kheiri, 2016; Karrakchou et al., 2006; Adams et al., 2004; Gul et al., 

2008; Mukandavire et al., 2009b; Makinde and Okosun, 2011; Yusuf and Benyah, 

2012; Mwanga et al., 2014; Choi et al., 2015; Rihan et al., 2014). 

 

Because the majority of physical phenomena, such as biological systems, have an 

after-effect or a persistent memory property, it is possible that fractional differential 

equations could more accurately describe these phenomena. This is because fractional 

differential equations also have an after-effect memory built into their structure. Thus, 

fractional model is considered in this thesis. 

 

Fractional optimal control problem (FOCP) is the general form of the classic optimal 

control problem (OCP) and arise when optimal control theory is applied to fractional 

order models (models formed using fractional calculus). In FOCP, integer order 

differential equation is replaced by fractional differential equation (FDE), and the 

performance index is expressed as a fractional integration operator (Ali et al., 2016). 

Various articles were published concerning the theory of FOCPs and their 

formulations using analytical and numerical methods (Agrawal, 2004; Agrawal and 

Baleanu, 2007; Agrawal, 2008; Jelicic and Petrovacki, 2009; Agrawal et al., 2010; 

Odzijewicz et al., 2012; Kamocki, 2014; Chinnathambi et al., 2019; Al-Mdallal and 
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Abu Omer, 2018; Al-Mdallal and Hajji, 2015; Hajji and Al-Mdallal, 2018). The 

FOCPs are often used in modern infectious disease models for their nature of memory 

dependence due to the fractional-order model, which allows for faster and more 

accurate disease control. As a result, we can conclude that the FOCPs has all the 

makings of the most suitable instrument that can be used to model infectious diseases 

and other biologically linked systems that possess memory in their very nature.  

 

1.3 Research Problem and Statement 

Discrimination, anxiety, and poverty are only some of the negative outcomes of 

COVID-19. Collapsed public health programs, inadequate funding in underdeveloped 

nations, widespread public ignorance, and exogenous re-infection, where new strains 

are constantly evolving, have all been blamed for the uptick in reported cases.  

Significant strides have been completed in creating a framework for theory involving 

the dynamics and control strategies of COVID - 19, but many difficult and detailed 

open questions remained unanswered and uninvestigated. For example, integrating 

public awareness on COVID – 19 model for controlling its spread is rare. Many 

researchers have suggested that COVID – 19 occurrences could be evaded by 

considering awareness and isolation in the control method. Optimal control 

applications also require more research that compares and contrasts various control 

strategies to demonstrate the relative impact of each.  

There has been significant development of a theoretical framework for analyzing the 

dynamics and control approaches of COVID - 19, but many difficult and crucial open 

questions remain. For instance, public awareness models for preventing COVID - 19 

are uncommon. Isolation and awareness have been suggested as potential prevention 

strategies for COVID - 19 by numerous researchers. More research is required on 

optimal control applications to deliver cost-effectiveness analysis and comparison 

control techniques for demonstrating the relative importance of one control method 

over another. 

This study will consider the implementation of fractional optimal control problem 

theory to analyze the COVID-19 epidemic by incorporating awareness and vaccination 

into the mathematical model of the disease.    
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1.4 Research Aim and Objectives 

This thesis aims to study the use of successive optimal control policies applied to the 

fractional order model. COVID – 19 epidemics will be modeled using fractional order 

differential equations and subsequently analyzed and optimal control theory will be 

applied to it using different control policies. To demonstrate the performance of the 

applied policies numerical simulations will be carried on. 

The following objectives of research would finally accomplish the main aim of this 

thesis: 

• To explore the nature of the COVID – 19 epidemics 

• To formulate a novel fractional order model of the COVID – 19 epidemics 

incorporating awareness. 

• To find the existence and uniqueness of the Solutions for the fractional order 

model. 

• To formulate the successive optimal control problem for the fractional order 

model. 

• Investigate the effects of applying different control policies using optimal control 

for different susceptible epidemiological model classes. 

 

1.5 Scope of the Study 

The core scope of this study is on carrying out an examination of the dynamics of 

COVID – 19 epidemics with fractional optimal control policies. The research 

considered a five-compartmental COVID – 19 model consisting of (susceptible 

unaware - susceptible aware - susceptible vaccinated - infected - recovered).  With this 

model the population has been divided into five classes namely; susceptible unaware 

(healthy people but can contract the disease who are unaware of the disease), 

susceptible aware (healthy people but can contract the disease who are aware of the 

disease), susceptible vaccinated  (healthy people but can contract the disease who are 

vaccinated against the disease), infected (afflicted people who have reached the latter 

stages of the disease),  recovered (recovered individuals from the disease). Three time-

dependent control policies were applied to the fractional-order model; a susceptible 

class of unaware population with awareness control is detected, a susceptible class of 

aware population with vaccine control is found, and a susceptible class with a 
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vaccinated population with optimal vaccination control is found. 

MATLAB/SIMULINK 2019b will be used to perform all the numerical simulations. 

1.6 Thesis Organization 

This thesis was arranged into five chapters. All chapters have been organized as 

follows: 

Chapter 1: This chapter contains the introduction and background of the study. Also, 

discusses the problem statement, aim and objective finally, the scope of the study. 

Chapter 2: This chapter provides a literature review on the basic theories of optimal 

control and fractional calculus. Also, reviews other related studies. 

Chapter 3: This chapter demonstrates the development of a new model of COVID – 

19 dynamics, and analysis of the proposed model.  

Chapter 4: This chapter studies optimal control development and its analysis as well 

as numerical simulations of the solutions of the fractional-order model.  

Chapter 5: This chapter presents the summary and the conclusion of the thesis.  
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CHAPTER 2 

 Literature Review 

A method used in trading off among stability, fuel or time optimality, transient and 

steady state performance, etc., is termed as control. When there are mutual constrains, 

then the way of finding a balance among various performance indices under some 

factors is termed as Control.  It is one of the most essential fields in modern technology. 

The research space about Control is still advancing greatly over the period of time. 

The area has been receiving serious attention in many research fields. For about 2000 

years ago, Arabs, Greeks, and Ancient Rome carried out research based on the 

principle of feedback. This leads to many significant projects of control systems, which 

were built. They include shower systems in the imperial palace, the float valve level 

regulator for water clocks, and the automatic gates in the temples (Lewis, 1990). Zhang 

Heng, a Chinese polymath use the principle of a “suspended pendulum” to invent the 

seismograph in 132 A.D. (Han Dynasty), which is one of the most profound 

applications of control. The official adoption of the automatic control system in the 

modern sense was first about the speed regulator of the steam engine that was invented 

by James in the year 1788 (Nof, 2009). 

Going by history, the area of control has a significant contribution in almost all aspects 

of our day-to-day activities, including healthcare, military services, Agriculture, 

industries, etc. The application of controls can be as simple or difficult as launching a 

rocket, depending on the situation. 

 

2.1 Optimal Control 

Optimal Control which is usually abbreviated as OC can be defined as a method or 

policy for obtaining an optimal outcome in a given system. OC can also be termed as 

the way in which some of the parameters in a model are controlled in order to obtain 

optimized output through obtaining control and the state of trajectory in a dynamic 

system within a given time frame after minimizing a performance index (Bryson Jr., 

1996). 

The history of Optimal Control is traced back to the augmentation of the calculus of 

variations. This started in the 17th century when the first result for the calculus of 

variations was publicized. This is due to the challenge made by Bernoulli to the entire 
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world of renown mathematicians, which says that “in case of a very small body which 

is traveling under the effect of gravity, what will happen?  Which of the sides between 

the two fixed sides of the body will allow it to travel in the smallest possible time?’’ 

Lagrange and Euler found and formulated solutions to some specific problems in the 

calculus of variations. This idea of the calculus of variations was applied to the area of 

Hamiltonian’s Principle or the Least Action Principle in the field of Theoretical 

physics. In the late 1920s and early 1930s, the idea was extended to applications to 

economics, and thereafter, more and more applications were published occasionally 

by people like Hotelling, Evans, Ross, and Ramsey, (Sussmann and Willems, 1997). 

Since the year 1950 Optimal control theory emerged from the calculus of variations as 

a generalization form of it. This was inspired by its tremendous applications in the 

military. Russian mathematician by the name Lev S. Pontryagin and his team came up 

with the first and most notable result between the years 1908 to 1988 by coming with 

the famous Pontryagin Maximum Principle (Pontryagin and Boltyanskii, 1986). This 

important result gave rise to the most important results needed in optimizing problems 

related to differential equations (Leitmann, 1997). 

Bellman discovered that Dynamic Programming uses the optimal control principle and 

it is the most proper tool that can be used to solve discrete problems because it allows 

a momentous reduction in the time and complexity involved in finding the optimal 

controls. After this discovery, the theory provides a new technique of Dynamic 

Programming in mathematics (Kirk, 1998). The idea of the Hamilton-Jacobi-Bellman 

equation which was used sometimes to solve partial differential equations came as a 

result of the optimal control principle which allows the possibility of obtaining 

different techniques for continuous problems. This gives rise to the relationship 

between the OCP and Lyapunov’s stability theory. 

The applications of OCP were limited to simple problems before the generation of 

computers, but with the arrival of the computer, it became possible to apply the OC 

theory to more sophisticated problems.  

It is now possible to apply the idea of OC in order to get the desired result in different 

types of equations, be it ODE, PDE, Stochastic DE, discrete DE, integral – differential 
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equations, the merger of discrete and continuous systems, or even fractional order 

differential equations (FODE).  

2.1.1 Optimal Control Problem 

A traditional optimal control problem must have a performance index or cost function 

(𝐽[𝑥(𝑡), 𝑢(𝑡)]), a set of state variables (𝑥(𝑡) ∈ 𝑋), a set of control variables (𝑢(𝑡)  ∈

𝑈) within a time t, while 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓. Its main aim is to find a continuous piecewise 

control 𝑢(𝑡) together with the associated state variable 𝑥(𝑡) that maximize the given 

objective functional. Below is an example of a typical OCP in Lagrange formulation. 

Definition 2.1 (Lagrange formulation): The optimal control problem in Lagrange form 

is given in the form: 

max 
𝑢

 𝐽[𝑥(𝑡), 𝑢(𝑡)] =  ∫ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡
𝑡𝑓

 𝑡0

,                                   

 𝑠. 𝑡.              �̇�(𝑡) = 𝑔 (𝑡 , 𝑥(𝑡) , 𝑢(𝑡)),                                                (2.1) 

𝑥(𝑡0) =  𝑥0.                                         

The value 𝑥(𝑡𝑓) is not restricted, this means, it can take any value, and it can also be 

fixed as  𝑥(𝑡𝑓) = 𝑥𝑓. 

Here, the functions 𝑓 and 𝑔 are continuous and differentiable, and the control set 𝑈 is 

a Lebesgue measurable function which will make the control(s) and related states 

variables to be piecewise continuous. 

It is always possible to swap either back or forth between either maximizing or 

minimizing a given function by directly reversing the cost function, hence in most of 

the OCP notes emphasis is been given on maximizing a function. See below: 

𝑚𝑖𝑛{𝐽} = −𝑚𝑎𝑥{−𝐽}.                                                                                         (2.2) 

 

2.1.2 Optimal Control Formulation 

The formulation of the OCP given above is termed as Lagrange. The other two 

methods that can be used to formulate OCP problems are; the Bolza and Mayer 

methods (Chachuat, 2007). 
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Definition 2.2 (Bolza method):  The formulation of optimal control problem in Bolza 

form is given as: 

max
𝑢
 𝐽 [ 𝑥(𝑡) , 𝑢(𝑡)] =  ∅(𝑡0 , 𝑥(𝑡0), 𝑡𝑓 , 𝑥(𝑡𝑓)) + ∫ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡

𝑡𝑓

 𝑡0

,  

𝑠. 𝑡.        �̇�(𝑡) = 𝑔 (𝑡 , 𝑥(𝑡), 𝑢(𝑡)),                                                     (2.3) 

𝑥(𝑡0) =  𝑥0.                                          

𝑤ℎ𝑒𝑟𝑒 ∅ 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

Definition 2.3 (Mayer method): The formulation of optimal control problem in Mayer 

form is given as: 

max
𝑢
 𝐽 [𝑥(𝑡) , 𝑢(𝑡)] =  ∅(𝑡0, 𝑥(𝑡0 , 𝑡𝑓 , 𝑥(𝑡𝑓) )) 

𝑠. 𝑡.              �̇�(𝑡) = 𝑔 (𝑡 , 𝑥(𝑡) , 𝑢(𝑡)),                                       (2.4) 

𝑥(𝑡0) =  𝑥0.                                                                                

2.1.3 Pontryagin’s Maximum Principle (PMP) 

Pontryagin and his team in the 20th century constructed the most useful result in OCP 

that is paramount in finding the optimal control. The result, which was termed the 

greatest achievement in the era, gives an idea on how to use an adjoint function of a 

DE to fix to the objective function. These Adjoint functions attached constraints to the 

function that will either be optimized. 

Definition 2.4 (Hamiltonian Equation): Given an optimal control problem in Lagrange 

form then the function: 

𝐻(𝑡, 𝑥(𝑡) , 𝑢(𝑡) , λ (t)) =  𝑓(𝑡 , 𝑥(𝑡) , 𝑢(𝑡)) +   λ(t)𝑔(𝑡 , 𝑥(𝑡) , 𝑢(𝑡)),      (2.5) 

is termed as Hamiltonian function while  λ(t) is the adjoint variable. 

Theorem 2.1 (Pontryagin’s Maximum Principle (PMP)): If 𝑢∗(𝑡) and 𝑥∗(𝑡) are 

optimal values for a given OCP then, there must be piecewise and differentiable adjoint 

variable λ(t) with: 
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𝐻(𝑡, 𝑥∗(𝑡), 𝑢(𝑡), λ(t)) ≤  𝐻(𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡), λ(t)).                    (2.6) 

all control functions 𝑢 at each time 𝑡.  

where 𝐻 is the Hamiltonian which was described previously and 𝜆′(𝑡) given as 

follows: 

𝜆′(𝑡) =
𝜕𝐻(𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡), λ(t))

𝜕𝑥
,                                                                 (2.7) 

λ(𝑡𝑓) = 0.                                                                                                                       

 (Pontryagin and Boltyanskii, 1986). 

Remark: The above condition,λ(𝑡𝑓) = 0 is known as the transversality condition, 

which is used when the OCP does not have terminal values in its state variables.  

The most significant contribution of PMP is its ability to change the problem of finding 

a control value which optimizes the objective function in the state ODE and specified 

initial conditions to become a problem of optimization of Hamiltonian. Hence 

considering the Hamiltonian and the adjoint equation, we have: 

𝜕𝐻

𝜕𝑢
= 0.                                                                                                                (2.8) 

Hence, using the Hamiltonian alone, we can get our necessary conditions by 

calculating the integral in the objective function. 

2.1.4 Optimal Control along Payoff Terms 

In some instances, we need to optimize the terms in the entire time interval, in some 

other instances we only need to optimize our function in a specified time interval. 

Certain cases warrant that the state values must be taken into consideration by the 

objective function (Lenhart and Workman, 2007). 

Definition 2.5 (OCP for payoff term): An OCP alongside a payoff term can be given 

in the following form: 

max 
𝑢
 𝐽 [𝑥(𝑡), 𝑢(𝑡)] =  ∅ (𝑥 (𝑡𝑓)) + ∫ 𝑓(𝑡 , 𝑥(𝑡) , 𝑢(𝑡)) 𝑑𝑡

𝑡𝑓

 𝑡0

,                   
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𝑠. 𝑡.          �̇�(𝑡) = 𝑔(𝑡 , 𝑥(𝑡) , 𝑢(𝑡)),                                                  (2.9) 

𝑥(𝑡0) =  𝑥0.                                                                                                 

 

𝑤ℎ𝑒𝑟𝑒 ∅(𝑥(𝑡𝑓))is the desired result with respect to the level of the population  𝑥(𝑡𝑓) 

and it is known to be the payoff or salvage. 

The necessary conditions of the OCP with payoff can be derived by applying PMP to 

be: 

Proposition 2.1(The conditions needed): If 𝑢∗(𝑡) and 𝑥∗(𝑡) are the optimal values of 

a given OCP (like the one in definition 5) then, there must be a differentiable and 

piecewise adjoint variable λ(t) with: 

𝐻(𝑡, 𝑥∗(𝑡) , 𝑢(𝑡) , λ (t)) ≤  𝐻(𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡) , λ(t)).                   (2.10) 

when all controls 𝑢 at every time 𝑡,  

where 𝐻 is the Hamiltonian parameter which was well-defined previously and  

𝜆′(𝑡) =
𝜕𝐻(𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡), λ(t))

𝜕𝑥
(𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛),                      

𝜕𝐻

𝜕𝑢
= 0                                 (𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛),               (2.11) 

λ(𝑡𝑓) = ∅′(𝑥(𝑡𝑓))(𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛).                         

2.1.5 Optimal Control for Bounded Control 

Definition 2.6 (OCP for bounded control). An OCP alongside bounded control can be 

summarized by the following: 

max
𝑢
𝐽[𝑥(𝑡), 𝑢(𝑡)] = ∫ 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡

𝑡𝑓

 𝑡0

,                                    

𝑠. 𝑡.          �̇�(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡)),                                              (2.12) 

𝑥(𝑡0) =  𝑥0,                                            

𝑎 ≤ 𝑢(𝑡) ≤ 𝑏.                                                                                               

𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 𝑎𝑟𝑒 𝑓𝑖𝑥𝑒𝑑 𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑎𝑛𝑑 𝑎 < 𝑏. 
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For problems with bounds on their controls, there is a need for different required 

conditions. 

Proposition 2.2 (The conditions needed). If 𝑢∗(𝑡) and 𝑥∗(𝑡) are the optimal values of 

a given OC problem (like the one in definition 5) then, there must be a piecewise and 

differentiable adjoint variable λ(t) with: 

𝐻(𝑡, 𝑥∗(𝑡), 𝑢(𝑡), λ(t)) ≤  𝐻(𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡), λ(t)).                   (2.13) 

when all controls 𝑢 at every time 𝑡,  

where 𝐻 is Hamiltonian which was previously defined and  

𝜆′(𝑡) =
𝜕𝐻(𝑡, 𝑥∗(𝑡), 𝑢∗(𝑡), λ(t))

𝜕𝑥
(𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛),         (2.14) 

 λ(𝑡𝑓) = 0                          (𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛),                     

By using PMP, the optimal control must satisfy the following optimality condition: 

 𝑢∗ =

{
 
 

 
 𝑎,                            𝑖𝑓         

𝜕𝐻

𝜕𝑢
< 0,         

𝑎 <  �̌� < 𝑏           𝑖𝑓          
𝜕𝐻

𝜕𝑢
= 0,         

  𝑏,                             𝑖𝑓         
𝜕𝐻

𝜕𝑢
>  0.           

(𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

It means that the maximization may occur at all the allowed controls, and �̌� it can be 

found by using the following:  

𝜕𝐻

𝜕𝑢
= 0                                                                       (2.15) 

Precisely, the control  𝑢∗  maximizes 𝐻 pointwise optimally with regards to 𝑎 ≤ 𝑢 ≤

𝑏. 

 (Kamien and Schwartz, 1991). 

2.2 Solving Optimal Control Problems 

Recently there is development in the area of computational mathematics especially 

related to the methods of obtaining numerical solutions of both integral and differential 

equations. This gave rise to methods of solving highly complex real-world problems. 
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Similarly, optimal control problems and the numerical methods for obtaining their 

solutions as well as their algorithms have been enriched significantly.  

2.2.1 Numerical Solutions for Dynamical Systems 

Dynamical systems are described by a set of ODEs. It is usually presented as a system 

of n-ODEs for 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓, as: 

�̇� =

[
 
 
 
 
 
𝑦1̇
𝑦2̇
.
.
.
𝑦�̇�]
 
 
 
 
 

=  

[
 
 
 
 
 
𝑓1( 𝑦1(𝑡) , . . . 𝑦𝑛(𝑡) , 𝑡)

𝑓2( 𝑦1(𝑡) , . . . 𝑦𝑛(𝑡) , 𝑡)
.
.
.

𝑓𝑛(𝑦1(𝑡) , . . . 𝑦2(𝑡) , 𝑡) ]
 
 
 
 
 

                                             (2.16) 

ODE problems can be subdivided into two, namely: Initial Value Problems (IVP) and 

Boundary Value Problems (BVP). This is to do with the specification of conditions 

related to the margin in the domain.  While in IVP the specification of the conditions 

is made at the initial state, in BVP the specifications of the conditions are made at both 

the initial and final point. 

Some of the numerical techniques used in solving IVP in literature are, the Euler 

method and the Runge-Kutta method, for BVP one of the techniques, is the method of 

shooting. 

a. Euler method 

This is the most popular technique that is used for the numerical solution of dynamic 

systems. Given a differential equation in the following form: 

�̇� = 𝑓(𝑥(𝑡), 𝑡), then is possible to make an appropriate approximation as this: 

𝑥𝑛+1 ≅  𝑥𝑛 + ℎ𝑓(𝑥(𝑡𝑛), 𝑡𝑛).                                                    (2.17) 

Approximation of 𝑥𝑛+1 as 𝑥(𝑡) for time 𝑡𝑛+1 possesses an error with the order of ℎ2. 

This indicates that the accuracy of the calculation relies on the selected value of ℎ. 

Generally, a decrease in the value of ℎ leads to an increase in the accuracy of 

calculation but leads to elongation in time intervals. 

For systems with much higher orders, the Euler approximation method is not generally 

effective. Hence there is a need for bit more exact and complex methods. The Runge-

Kutta method is one of those techniques. 
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b. Runge-Kutta technique 

The Runge-Kutta technique is a multi-step technique, where at any time 𝑡𝑘+1  we find 

the solution from a set of preceding values 𝑡𝑗−𝑘, … ,  𝑡𝑘 where 𝑗 denotes the step 

number. Here, if the DE is in given as �̇� = 𝑓(𝑥(𝑡), 𝑡), we can make the following 

approximations using Runge-Kutta second order as follows: 

𝑥𝑛+1 ≅  𝑥𝑛 +
ℎ

2
[𝑓(𝑥𝑛(𝑡), 𝑡𝑛) + 𝑓(𝑥𝑛+1, 𝑡𝑛+1)],                       (2.18) 

Alternatively, using Runge-Kutta fourth order, we have 

𝑥𝑛+1 ≅  𝑥𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4).                                  (2.19) 

Where;  

 
𝑘1 =  𝑓( 𝑥(𝑡) , 𝑡),                                                                

𝑘2 =  𝑓 (𝑥(𝑡) +
ℎ

2
𝑘1 , 𝑡 +

ℎ

2
),  

𝑘3 =  𝑓 (𝑥(𝑡) +
ℎ

2
𝑘2 , 𝑡 +

ℎ

2
),  

𝑘4 =  𝑓 (𝑥(𝑡) + ℎ𝑘3 , 𝑡 + ℎ). 

The above approximation 𝑥𝑛+1 of 𝑥(𝑡) at the point 𝑡𝑛+1 has an error that depends on 

ℎ3 and ℎ5 for Runge-Kutta second-order and Runge-Kutta fourth-order techniques 

respectively. 

2.2.2 Solution of Optimal Control Problems by Numerical Means 

Bellman in the 1950s provided a means of solving OCP by numerical methods. From 

that period up to now, a lot of sophisticated techniques and many applications for the 

complexities exist in Literature (Rao, 2009). 

Indirect and direct techniques are the two main methods of solving OCP. OCP is 

indirectly solved by converting it to a BVP, with the help of the PMP in the indirect 

method. On the other hand, the optimal problem’s solution is found by directly 

duplicating the optimization problem with an infinite dimension to a problem with a 

finite dimension for the direct method. 

a. Indirect techniques 
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For an indirect technique, the optimal conditions in the first-order original OCP can be 

found by using PMP. This technique directs to a BVP with multiple point which can 

be solved to find a prospect of the optimal trajectory known as extremals. 

It is necessary to have control equations notably stated as well as the transversality 

conditions and all the adjoint equations provided they exist in case of an indirect 

method. Note that the formation of the problem and the technique employed in solving 

the problem do not have any direct relationship between the two. Is possible to 

consider any method of solving OCP to solve a problem formulated directly or 

indirectly. Example of a numerical approach using an indirect method of solving OC 

problems is the Forward-Backward sweep method. 

b. Direct methods 

Another class of numerical technique for optimization of dynamic systems has 

evolved, and it was called direct methods. 

This development was as a result of the demand of solving complex problems in 

optimization, the technique becomes popular by the help of the rapid increase in the 

computational world. 

In this technique an array of points 𝑥1 , 𝑥2 , … , 𝑥
∗ is constructed in such a way that the 

objective function is minimized, and typically, 𝐹(𝑥1) > 𝐹(𝑥2) > ⋯ > 𝐹(𝑥∗). In this 

method approximation of the state variables and/or control, variables are done by a 

suitable function of approximation (like piecewise constant parameterization or 

polynomial approximation). At the same time, the approximation cost function is done 

by the function of approximation. Then, the problem will be formulated again in a 

normal nonlinear optimization problem (NLP) form by treating the coefficients of the 

approximating function as variables of optimization as follows: 

min
𝑥,𝑢

𝐹(𝑥)                                                                                                       

𝑠. 𝑡.     𝐶𝑖(𝑥) = 0,                    𝑖 ∈ 𝐸                                                        (2.20) 

𝐶𝑗(𝑥) ≥ 0,                                𝑗 ∈ 𝐼                 

where  𝐶𝑖 , 𝑖 ∈ 𝐸 𝑖𝑠 the set of equality constraint  𝑎𝑛𝑑   𝐶𝑗 , 𝑗 ∈ 𝐼 is the set of 

inequality constraint. 
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The NLP is much simpler to solve compared to the BVP, because of its sparsity and 

the availability of too many notable software programs designed to deals with its 

features. Hence due to this, the number of different kind of problems that may be 

solved by the use of direct methods is far more than those that may be solved by the 

use of indirect methods. Therefore the direct methods becomes more famous these 

days and many research also written a highly developed software programs for the 

usage of these methods. 

 

 

2.2.3 Optimal Control Software 

Here we give examples of some software programs that are developed specifically for 

this purpose.  

a. OC-ODE 

In 2009, Optimal Control of Ordinary-Differential Equations (OC-ODE) was 

presented (Gerdts, 2009). This combines the routines of OCP in FORTRAN 77 with 

ODEs. It uses an automatic direct discretization method to change OCP to NLP. It 

contains some procedures that can be used to analyze the estimation for numerical 

adjoint and sensitivity analysis. 

b. DOTcvp 

This is a MATLAB toolbox for dynamic optimization (Hirmajer et al., 2009). It 

provides a space for the FORTRAN to build its files of the ordinary differental 

equation, sensitivities, and Jacobian. In calculating the profiles of the optimal control, 

it uses a method of vector parameterization, especially when a solution to the control 

is provided in the sense of piecewise.  

DOTcvp  is modified by the SUNDIALS tool (Hindmarsh et al., 2005). This can be 

used to solve IVP and Jacobian automatic generation and can also be used for the 

gradients. Furthermore, the Adams or BDF linear method can also be used in solving 

the initial value problem with Newton, Functional iteration module.  

c. Muscod-II 
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Muscod-II an acronym for Multiple Shooting CODe is one of the recent Optimal 

Control solvers (Kuhl et al., 2007). It is an advanced version of AMPL that can be used 

in solving a combination of integer nonlinear ODE and DAE constrained OCP. 

Fourier, Gay, and Kernighan introduced AMPL in 2002 (Fourer et al., 2002). It is a 

mathematical programming language for modeling. It possesses the ability of handling 

large amount of data. It can also be used as in machine solvers and independent solvers. 

TACO Toolkit was introduced to simplify the use of AMPL.  

2.3 Fractional Calculus 

The fractional calculus was originated nearly the same period as ordinary calculus was 

introduced. After the formulation of ordinary differentiation and integration by 

Newton and Leibniz in the 17th century, Leibniz received a letter from L’Hopital 

demanding his idea if the derivative has an order of  
1

2
 (Podlubny, 1999a).  This letter 

is what led to the eventual start of fractional integrals and derivatives theories.  

The advance of fractional calculus completes the theory of operation in Mathematics.  

Machado et al. give the recent history of fractional calculus (Machado et al., 2011). 

This is a remarkable tool that is used in explaining different phenomena of physics that 

couldn’t be explained by conventional mathematics. Phenomena that possess an 

extended memory, dependence on long ranges, etc are best explained by the theory of 

Fractional calculus.  

2.3.1 Preliminaries 

 

a. Definitions 

Definitions for fractional order integrals and differentiations exist in literature in more 

than 10 forms (Miller and Ross, 1993). Here we give some of the most commonly used 

definitions for convenience (Magin, 2006). 

Definition 2.7 (Qian and Wong, 2010): The fractional derivative of order 𝛼 ∈ [𝑛 −

1, 𝑛) of 𝑓(𝑥) for Rieman-Liouville can be defined as: 

𝐷𝑥
𝛼

𝑎
𝑅𝐿 𝑓(𝑥) =

1

Γ(n − α)

𝑑𝑛

𝑑𝑥𝑛
∫ (𝑥 − 𝑡)𝑛−𝛼−1𝑓(𝑡)𝑑𝑡
𝑥

𝑎

,      𝑛 = [𝛼] + 1.   (2.21) 
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Definition 2.8 (Qian and Wong, 2010): The fractional derivative of order 𝛼 ∈ (𝑛 −

1, 𝑛] of 𝑓(𝑥) for Caputo is defined as: 

𝐷𝑥
𝛼

𝑎
𝐶 𝑓(𝑥) =

1

Γ(n − α)
∫ (𝑥 − 𝑡)𝑛−𝛼−1𝑓𝑛(𝑡)𝑑𝑡
𝑥

𝑎

,       𝑛 = [𝛼] + 1.          (2.22) 

Definition 2.9 (Ortiz et al., 2013): (Linearity) 

 If 𝑓, 𝑔 are continuous and 𝑙, 𝑑 are scalars, then 

𝐷𝑥
𝛼

𝑎
𝑅𝐿 [𝑙𝑓(𝑥) + 𝑑𝑔(𝑥) ] = 𝑙 𝐷𝑥

𝛼
𝑎
𝑅𝐿 𝑓(𝑥) + 𝑑 𝐷𝑥

𝛼
𝑎
𝑅𝐿 𝑔(𝑥) ,            (2.23) 

𝐷𝑥
𝛼

𝑎
𝐶 [𝑙𝑓(𝑥) + 𝑑𝑔(𝑥) ] = 𝑙 𝐷𝑥

𝛼
𝑎
𝐶 𝑓(𝑥) + 𝑑 𝐷𝑥

𝛼
𝑎
𝐶 𝑔(𝑥).                               

 

Definition 2.10 (Baba, 2019): (Contraction) 

For an operator 𝑓: 𝑋 → 𝑋 which mapped a metric space onto itself, it is contractive 

for 0 < 𝑞 < 1 

𝑑 (𝑓(𝑥) , 𝑓(𝑦)) = 𝑞𝑑(𝑥 , 𝑦) ,                ∀ 𝑥, 𝑦 ∈ 𝑋.                     (2.24) 

b. Functions 

Here we give some of the most commonly used functions for convenience (Magin, 

2006). 

• Gamma function 

Gamma function s is the essential factor in practically all fractional integral definitions. 

It is defined as the factorial of non-integer numbers as follows; 

The integral formula of the gamma function is written as: 

Γ(𝑝) = ∫ 𝑥𝑝−1𝑒−𝑥𝑑𝑥
∞

0

, 𝑝 > 0.                                                     (2.25) 

Some gamma function properties to remember include: 

Γ (1) = 1;                                             Γ (𝑛 + 1) = 𝑛!  (𝑛 = 0,1,2… ) 

Γ (1 2⁄ ) =  √ 𝜋 ;                                  Γ (𝑥 + 1)   = 𝑥 Γ(𝑥).            (2.26) 



32 
 

 
 

The fractional order derivative of a variable that has the same fractional order power 

as the variable in question is a constant, much like the integer derivative, 

𝑑𝛼

𝑑𝑥𝛼
𝑥𝛼 = 

Γ ( 𝛼 + 1)

Γ ( 𝛼 − 𝛼 + 1)
𝑥𝛼−𝛼 =  Γ ( 𝛼 + 1).                             (2.27) 

• Mittag-Leffer function 

The exponential function acts a vital part in the solution of ordinary differential 

equations.  This is the case for Mittag-Leffer function (M-L) as it is the generalized 

form of an exponential function. The two most common forms of Mittag-Leffer 

function (M-L) are given below (Prajapati and Shukla, 2012; Chaurasia and Pandey, 

2010).  

𝐸𝛼(𝑥) =  ∑
𝑥𝑘

Γ(𝛼𝑘 + 1)

∞

𝑘=0
(𝛼 > 0)                                            (2.28) 

𝐸𝛼,𝛽(𝑥) =  ∑
𝑥𝑘

Γ(𝛼𝑘 + 𝛽)

∞

𝑘=0
(𝛼 > 0, 𝛽 > 0).                           (2.29) 

Properties of the M-L function that need to be mentioned as follows; 

𝐸1,1(𝑥) =  𝑒
𝑥;                                                                                                                   

𝐸1,2(𝑥) =  
𝑒𝑥 − 1

𝑥
                                                                             (2.30) 

• Error function 

Another special function that needs to be mentioned is the error function which can be 

defined as follow: 

𝑒𝑟𝑓(𝑥) =  
2

√𝜋
∫ 𝑒−𝑢

2
𝑑𝑢, −∞ < 𝑥 < ∞.

𝑥

0

                                           (2.31) 

It has the following properties; 

𝑒𝑟𝑓(0) = 0                                                                                                                       

𝑒𝑟𝑓(∞) = 1                                                                                                         (2.32) 

𝑒𝑟𝑓(𝑥) +  𝑒𝑟𝑓𝑐(𝑥) = 1                                                               
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Where 𝑒𝑟𝑓𝑐(𝑥) 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑖𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑒𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

• Confluent hypergeometric function 

This function is used to get the solution for the equations of confluent hypergeometric, 

and is represented as follows; 

𝐹11 (𝑎 ; 𝑐 ; 𝑥) =  ∑
(𝑎)𝑛𝑥

𝑛

(𝑐)𝑛𝑛!

∞

𝑛=0

,      − ∞ < 𝑥 < ∞                          (2.33) 

Where the Pochhammer symbols are defined (𝑎)𝑛 𝑎𝑛𝑑 (𝑐)𝑛 . 

(𝑎)𝑛 = 
Γ ( 𝑎 + 1)

Γ (𝑎)
, 𝑎𝑛𝑑                                                          (2.34) 

(𝑐)𝑛 =
𝛤 ( 𝑐 + 1)

Γ (𝑐)
. 𝑛 = 0,1,2… 

Below are some of the hypergeometric function's most popular characteristics: 

𝐹11 (1; 1; 𝑥) =   𝑒𝑥,                                                                  (2.35) 

1

Γ(𝛼 + 1)
𝐹11 (𝑎; 𝛼 + 1; 𝑎𝑡) =  𝐸1,2(𝑎𝑡). 

c. Important theorems 

Theorem 2.2 (Baba, 2019): (Principle of Banach contraction mapping) 

Any operator of contractive that mapped a metric space against the operator itself and 

will create a unique fixed point. Moreover, when  𝑓: 𝑋 → 𝑋 is an operator of 

contractive that mapped a metric space onto itself with its fixed point 𝑎: 𝑓(𝒂) = 𝒂; 

then for any continual sequence: 

𝑥0, 𝑥1 = 𝑓(𝑥0), 𝑥2 = 𝑓(𝑥1),… , 𝑥𝑛+1 = 𝑓(𝑥𝑛),…,                 (2.36) 

that converges to 𝒂. 
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Then we said that 𝒂 is a solution or equilibrium for the continuous dynamical system 

and the discrete dynamical system is a fixed point. 

Theorem 2.3 (Matignon, 1996):  For the equilibrium solutions 𝑥∗ of a given system 

say (∗) to be asymptotically stable locally, then all its eigenvalues 𝜆𝑖 in its Jacobian 

matrix 
𝜕𝑓

𝜕𝑥𝑖
 which is evaluated for the equilibrium points must satisfy the condition 

below: 

| arg (𝜆𝑖)| >
𝛼𝜋

2
,                     0 < 𝛼 < 1.                                    (2.37) 

Theorem 2.4 (Delvari et al., 2012): If 𝑥 = 0 is an equilibrium solution of system (∗), 

and Ω ⊆ ℝ𝑛 is a domain comprising 𝑥 = 0. 

If 𝑉(𝑡, 𝑥): [𝑡0, ∞] × Ω → ℝ is a continuously differentiable function given as: 

𝑊1(𝑥) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑊2(𝑥)   and                                              (2.38) 

𝐷𝑡
𝛼

0
𝐶 𝑉(𝑡 , 𝑥) ≤ −𝑊3(𝑥),                    𝑓𝑜𝑟  𝑡 ≥ 0, 𝑥 ∈ Ω. 

where, 𝑊1(𝑥),𝑊2(𝑥) 𝑎𝑛𝑑 𝑊3(𝑥) are definite functions that are continuous and 

positive on Ω and 𝑉 is a contender function of Lyapunov, then 𝑥 = 0 is globaly 

asymptoticaly stable.  

Theorem 2.5 (Vergas-De-Leon, 2015): Let 𝑥(𝑡) ∈ ℝ+be a derivable and continuous 

function. Then, for any time instant 𝑡 ≥ 𝑡0 and 𝛼 ∈ (0, 1) 

𝐷𝑡
𝛼

0
𝐶 [𝑥(𝑡) − 𝑥∗ − 𝑥∗ ln (

𝑥(𝑡)

𝑥∗
)] ≤ (1 −

𝑥(𝑡)

𝑥∗
) 𝐷𝑡

𝛼
0
𝐶 𝑥(𝑡),      𝑥∗ ∈ ℝ+.     (2.39)  

2.3.2 Fractional Order Differential Equations (FODEs) 

These are some of the essential tools that are used to describe fractional-order dynamic 

systems. Hence, they are very important and need to be studied. Here we give the 

definitions of linear and nonlinear Fractional order differential equations.  

a. Linear Fractional order differential equations 

These are the most used as per as fractional order controls are concerned. This is due 

to their simplicity and regularity. For their general expression, see below: 



35 
 

 
 

𝑎1 𝐷𝑡
𝛼1

0
𝐶 𝑦(𝑡) + 𝑎2 𝐷𝑡

𝛼2
0
𝐶 𝑦(𝑡) + ⋯+ 𝑎𝑛 𝐷𝑡

𝛼𝑛
0
𝐶 𝑦(𝑡) = 𝑏1 𝐷𝑡

𝛽1
0
𝐶 𝑢(𝑡) +

𝑏2 𝐷𝑡
𝛽2

0
𝐶 𝑢(𝑡) +⋯+ 𝑏𝑛 𝐷𝑡

𝛽𝑛
0
𝐶 𝑢(𝑡),                                         (2.40) 

𝑤ℎ𝑒𝑟𝑒𝑡ℎ𝑒𝑜𝑟𝑑𝑒𝑟𝑠, 𝛼𝑖, 𝛽𝑗    (𝑖, 𝑗 = 1,2, … ) can be arbitrary real numbers, i.e., 𝛼𝑖 , 𝛽𝑗    ∈

ℝ. If 𝛼𝑖 and 𝛽𝑗    are integer multiples of a common factor, the equation is considered 

to have a commensurate order; and if there is no common factor occurs it is supposed 

to be of non-commensurate order (Vinagre and Feliu, 2000).  

b. Nonlinear Fractional order differential equations 

This is defined as Fractional order differential equations that are not linear.  

2.4 Fractional Order Controllers 

Since the solutions of fractional order models can be found now by either analytic or 

numerical means, people frequently use them to model real-world problems. This leads 

to the many usages of fractional calculus in different areas of applications like control 

theory and electrical circuits theory. Chen explains about four situations for a 

fractional control of closed-loop control systems (Chen, 2006). These are; Integer 

order (IO) model with Integer order (IO) controller, the Integer order (IO) model with 

the Fractional order (FO) controller, the Fractional order (FO) model with Integer 

order (IO) controller, and Fractional order (FO) model with Fractional order (FO) 

controller.  

Many shreds of evidence showed that a controller designed from the best fractional 

order model performs better than the one designed from the corresponding integer 

order model. A lot of researchers gave reasons as to why is better to use fractional 

order control than integer order control (Monje, 2006; Monje et al., 2008).  

It was also discovered that using fractional order controllers gives a higher chance of 

adjustability in changing both gain characteristics as well as the phase characteristics 

of the controller. This flexibility makes fractional order (FO) controllers one of the 

greatest tools used to design a robust control system. This indicates that a fractional 

order controller designed with a few tuning knobs can have almost the same robustness 

as that of an integer order (IO) design with very high tuning knobs.  

Different types of controllers designed with fractional order exist in the literature, here 

we give examples of some of these controllers.   
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2.4.1 Proportional Integral and Derivative (PID) Controllers 

Examples of these controllers can be found in many industrial process control 

applications. It was estimated that 95% of controllers used in this regard are PID 

controllers. PID controllers consist of a combination of three different controllers 

logically that give rise to a single controlled output.  

Elmer Sperry was the pioneer of the PID controller in 1911. He invented the basic 

Proportional controller. In 1933 the Taylor Instrumental Company (TIC) developed 

the first Pneumatic controller which is fully tunable. After some years, control 

engineers put their heads together to find a way of removing the error that was in the 

steady state of the Proportional controllers. They achieved that through bringing back 

some of the false values until the mistake is not zero. The method of eliminating the 

error gives what is called Proportional Integral (PI) controller. Using derivative action 

to decrease the overshooting problems, the Pneumatic PID controller was invented in 

1940.  

Fractional order PID controllers are of the form 𝑃𝐼𝜆𝐷𝜇. These controllers were studied 

by (Podlubny, 1999b) in the time domain and by (Petras, 1999) in the frequency 

domain. Its general form is given as: 

𝐶(𝑆) =
𝑈(𝑆)

𝐸(𝑆)
= 𝐾𝑝 + 𝑇𝑖𝑆

−𝜆 + 𝑇𝑑𝑆
𝜎.                                           (2.41) 

with 𝜆 and 𝝈 being real numbers (positive),  𝐾𝑝is the gain of proportional, 𝑇𝑖 is the 

constant of integration while 𝑇𝑑  is the constant of differentiation. It can be seen that 

by taking 𝜆 = 1 and 𝝈= 1, we have the traditional (IO)  𝑃𝐼𝐷 controller when 𝜆 =

0 (𝑇𝑖 = 0)we have the 𝑃𝐷𝜎 controller, and when 𝜎 = 0 (𝑇𝑑 = 0) we have the 𝑃𝐼𝜆 

controller etc.  

All the above classes of controllers are distinct classes of the 𝑃𝐼𝜆𝐷𝜎𝑡ℎ𝑒 controller that 

has output formula given as: 

𝑈(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝑇𝑖𝐷𝑡
−𝜆𝑒(𝑡) + 𝑇𝑑𝐷𝑡

𝜎𝑒(𝑡).                               (2.42) 

Some of the works on fractional order PID controllers found in (Axtell and Bise, 1990; 

Blas et al., 2002; Manabe, 1961; Mehaut et al., 2004; Monje et al., 2008; Monje et al., 

2008; Oustaloup, 2006; Xue and Chen, 2002). 
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2.4.2 Fractional Order Model Predictive Controllers 

Model predictive control (MPC) is defined as optimal control theory using the 

numerical optimization method. Plan responses and future control efforts can be 

predicted by the use of a system model predictive control. This can be done by 

optimizing the system at given intervals of time with regard to a given performance 

function. Recently, predictive control is among the popular progressive control 

techniques that are used in many industries (Rawlings, 2000; Muske and Rawlings, 

1993; Bemporad, 2006; Morari and Lee, 1999; Garcia et al., 1989). 

For MPC, models are mainly used to predict the possible output and also the control 

efforts needed to obtain the earmarked trajectory. Hence, in the case of MPC, the 

model’s accuracy always gives the control as well as the exact prospect trajectory of 

the input. This provides the basic principle of the operation of MPC. Therefore, MPC 

is not a single technique but more of a methodology. Hence, it possesses many names; 

Model Predictive Control (MPC), Receding Horizon Control (RHC), Model Based 

Predictive Control (MBPC), Internal Model Control (IMC), Moving Horizon Control 

(MHC), etc. 

Fractional order MPC refers to those systems that are fractional in nature and possess 

fractional MPC controllers. To design MPC there is a need for a state space model. 

The general form of the FOTF is given as: 

𝐺(𝑠) =
𝑎

𝑆𝛼 + 𝑏
 ,       𝑎, 𝑏 ∈ ℝ.                                                     (2.43) 

with, 𝛼 < 1. 

 

2.4.3 Fractional Order Sliding Mode Controllers 

The sliding mode control popularly known as SMC is non–linear in nature and changes 

the dynamics of the system by using a non – continuous control signal. This induces 

the system to slide through a transition of the initial behavior of the systems. SMC has 

a peculiarity of activating control law that forces the states of the systems to change 

from their original states to a new sliding surface. Sliding Mode Controllers are one of 

the most successful control methods, hence their application to many complex systems 

in engineering and sciences. Many problems concerning fractional order models use 
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SMC methodology in literature (Hosseinnia et al., 2010; Tavazoei and Haeri, 2008). 

Some of the applications of FO SMC have been given by (Yin et al., 2013; Yin et al., 

2014). 

2.4.4 Fractional Order Optimal Controllers 

Fractional Optimal Control Problems (FOCPs) are those problems of optimal control 

that contains fractional order models, they can be termed as the universal form of 

traditional optimal control problems (OCPs). The differential equations in FOCP are 

of fractional order that is FDEs, and its performance index is represented with the 

fractional operator of integration (Choi et al., 2015). Several works in the literature 

give basic theories and essential foundation for FOCPs, many of them studied in detail 

the procedure of designing FOCPs and found the conditions of the optimal control for 

different states variables by the use of both numerical technique and analytical 

techniques (Agarwal, 2004; Agarwal and Baleanu, 2007; Agarwal, 2008; Jelicic and 

Petrovacki, 2009; Agarwal et al., 2010; Odzijewicz et al., 2012; Kamocki, 2014; 

Chinnathambi et al., 2019; Al-Mdallal and Abu Omer, 2018; Al-Mdallal and Hajji, 

2015; Hajji and Al-Mdallal, 2018).  

The general method of forming and solving the problem of fractional optimal control 

(FOCP) is given by (Agrawal et al., 2004). In their formulation, they use the left and 

right R-L definitions of FO derivatives as in the form expressed below: 

𝐽(𝑢) = ∫ 𝐹(𝑥, 𝑢, 𝑡)
𝑇

0

𝑑𝑡.                                                               (2.44) 

Based on the following constraints of the dynamic system. 

𝐷𝑡
𝛼

𝑎
𝐶 𝑥 = 𝐺(𝑥, 𝑢, 𝑡 )(0 < 𝛼 < 1),                                               (2.45) 

and the initial conditions: 

𝑥(0) = 𝑥0 

where 𝑥(𝑡)is the state variable. 

The cost criteria for the integral in the quadratic form are given below: 

𝐽(𝑢) =
1

2
∫ [ 𝑞 ( 𝑡)𝑥2(𝑡) + 𝑟( 𝑡)𝑢2 ]
1

0

𝑑𝑡.                                     (2.46) 
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Subject to the following: 

𝐷𝑡
𝛼

𝑎
𝐶 𝑥 = 𝑎(𝑡)𝑥 + 𝑏(𝑡)𝑢.                                                                 (2.47) 

Using the derivation given in (Agrawal et al., 2004), then the Euler-Lagrange 

equations for the above FOCP can be obtained as: 

𝐷𝑡
𝛼

𝑎
𝐶 𝑥 = 𝐺(𝑥 , 𝑢 , 𝑡 ),  

𝐷1
𝛼

𝑡
𝐶 𝜆  =

𝜕𝐹

𝜕𝑥
+ 𝜆

𝐺

𝜕𝑥
                                                                        (2.48) 

0 =
𝜕𝐹

𝜕𝑥
+ 𝜆

𝐺

𝜕𝑢
 

with   𝑥(0) =  𝑥0  and λ(1) = 0. 

The solution of the fractional Euler-Lagrange equation and many more methods of 

FOCPs with their results were all available in the literature. 

2.5 COVID – 19 Mathematical Models 

Since the beginning of COVID –19 pandemic many researchers collaborated to 

provide mathematical models of the disease dynamics to analyze the effect of the 

pandemic on susceptible populations some of the models are presented as follows; 

• SIR Model 

The SIR model is one of the most common structures to model diseases the basic idea 

of the model is to create 3 classes or compartments of the population the first one is a 

susceptible population which the letter ‘S’ stand for, and then the infected population 

which ‘I’ stand for, lastly ‘R’ is the recovered population. The model dynamic of 

disease transmission will be added through these parameters and equations would be 

derived subsequently (Gul et al., 2008).  

• SEIR Model 

This model is similar to the SIR model but one extra compartment is added which is 

the exposed population which ‘E’ stand for. This model was used frequently to model 

COVID -19 since the exposed population was important to be analyzed especially in 

lockdown phases (Guihua, and Zhen, 2005; Alqahtani and Yusuf, 2022).  

• Modified Compartment Model 
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These models’ compartments were modified by adding new classes to the model and 

changing the methods of disease transmission rates. For example, adding quarantine 

population in SUQC and SEIQR models. In this thesis, a unique modified model was 

used for modeling COVID-19 which more specified classes were added regarding 

awareness and vaccination.  
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CHAPTER 3  

Fractional COVID – 19 Modeling and Analysis on Successive Optimal Control 

Policies 

3.1 Introduction 

Many sectors of life were heavily impacted by the damaging effects of COVID-19 

which started by the end of December 2019. The world economy still recovering from 

the effect of that pandemic. Many people die from the pandemic, while many have 

been infected and are battling for their lives. The COVID -19 outbreak lifts many 

unanswered questions for researchers to answer. Some critical biological information 

about COVID-19 is still unknown. Many research works were dedicated to finding 

new and adequate vaccines for the disease. Many items such as ventilators were used 

to help infected individuals in many countries. The main target is to reduce the number 

of infected individuals and subsequently deaths due to the pandemic which is why 

many countries adopt non–pharmaceutical measures such as lockdowns, Airport 

closures, use of sanitizers, and social distancing. Many studies from theoretical to 

practical points of view about the pandemic are carried out (Al-sheikh et al., 2011; 

Owolabi and Atanga, 2019; Do and Lee, 2016; Chowell et al., 2015; Liu et al., 2020; 

Chen et al., 2020; Khan and Atanga, 2020; Chen et al., 2020; Coccia, 2021a; Coccia, 

2021b). 

While 75% of the infected individuals recover without falling seriously sick, most of 

the infected individuals recover naturally (Ivorra et al., 2020). Throat infection, chest 

pain, runny nose or nasal congestion, losing smell and taste, vomiting, diarrhea, and 

nausea are some of the symptoms of COVID – 19.  In most cases, these symptoms 

appear slowly. Older age suffers major complications compared to younger age. In 

general, an infected person takes two days to two weeks to show symptoms of the 

disease (Zamir et al., 2021). Mostly mild cases take two weeks to recover, whereas 

critical cases take three to six weeks to recover (Gomes, 2020). Now that COVID –19 

vaccine is available and the non–pharmaceutical interventions to avert the 

transmission of the outbreak such as; quarantine, self-isolation, social distancing, and 

use of  (PPE) personal protective equipment (face masks, hand gloves, etc.) Also, using 

sanitizer and washing hands regularly, avoiding contact with people showing the 

symptoms, and reporting any suspected case. There is a need to increase awareness 
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levels among people. This will help in total compliance and subsequent eradication of 

the disease. 

Since the inception of the pandemic in 2019, it caused millions of infections and 

thousands of deaths. It also caused a predicament in the socio-economic growth of the 

entire world. Hence, there is an urgent need to clearly understand the transmission 

dynamics of the disease. This leads to the need of developing mathematical models 

that study the dynamics of the disease and the impact of the control measures in 

curtailing the spread of the disease. 

 

Because the majority of physical phenomena, such as biological systems, have an 

after-effect or a persistent memory property, it is possible that fractional differential 

equations could more accurately describe these phenomena. This is because fractional 

differential equations also have an after-effect memory built into their structure. This 

is why many researchers about real-life phenomena use fractional order differential 

equations (Escalante et al., 2018a; Escalante et al., 2018b; Ullah et al., 2018; Gomez, 

2018). Caputo-Fabrizio (CF) fractional-order derivative is one of the recent senses of 

fractional-order differential equations that was introduced in 2015.  The CF derivative 

is based on a kernel of 1 exponential more details of the equation are found in (Caputo, 

2015). Caputo-Fabrizio sense was implemented in modeling many systems in various 

fields (Saad and Gomez, 2018; Abdeljawad, 2017; Abdeljawad and Baleanu, 2017), 

also used in modeling COVID -19 pandemic (Thabet et al., 2021; Bonyah et al., 2022; 

Pandey et al., 2022; Kumar et al., 2022a). The Caputo–Fabrizio fractional derivative 

introduces fewer noises than the Riemann–Liouville fractional derivative (Atanga, 

2018). Therefore, Caputo–Fabrizio fractional derivative was selected to be used in this 

research. 

 

Most mathematical models of COVID – 19 that studied control in literature did not 

consider time-dependent control strategies which are the most realistic approach (Baba 

et al., 2022; Baba et al., 2021; Baba et al., 2020; Baba and Nasidi, 2021; Baba et al., 

2020; Baba and Nasidi, 2020; Baba and Baleanu, 2020; Ahmed et al., 2020).  

However, very little research in this direction does exist, such as (Jajarmi et al., 2019; 

Baleanu et al., 2019; Sweilam et al., 2019; Yildiz et al., 2018a; Yildiz et al., 2018b; 

Baleanu et al., 2016) and this sort of policy could be used to propose or design 

programs of epidemic controls (Baba et al., 2020; Treesatayapum, 2022). Many 
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researchers consider different parameters such as geolocation in different countries as 

(Pandey et al., 2022) for India, (Kumar et al., 2022b) for Japan, and (Batiha et al., 

2022) for Saudi Arabia. The global and local dynamics of COVID - 19 may be 

completely characterized by mathematical models operating under fractional order 

derivatives. In addition, models of this type that make use of fractional calculus are 

superior in terms of their ability to precisely and accurately represent the observed 

occurrences (Nunez et al., 2021; Saha et al., 2020; Batiha et al., 2022; Nana-kyere et 

al., 2022; Ghosh et al., 2021; Khan et al., 2022; Dhar et al., 2022; Mohammadi and 

Rezapour, 2022; Nadim et al., 2021). The researchers utilize models to track the 

evolution epidemic over a period such as SEIR in (Alqahtani and Yusuf, 2022) which 

consider four compartments as follows; Susceptible, Exposed, Infected, and 

Recovered. 

In (Zeb et al., 2022; Benati and Coccia, 2022; Coccia, 2022a) researchers developed 

models and applied optimal control for vaccination or restriction methods. In (Coccia, 

2022b) conclude that regardless of control measures and the vaccination process 

COVID – 19 is pretentious by environmental and seasonal factors. 

 

3.2 Formation of the Model 

Consists of a system of fractional order differential equations the model was formed 

by Caputo – Fabrizio sense with five compartments. The compartments are; Us (t), As 

(t), Vs (t), I(t), and R(t) stand for susceptible unaware compartment, Susceptible aware 

compartment, Susceptible vaccinated compartment, Infected compartment, and 

recovered compartment respectively. The model is given below; 

 

𝐷𝑡
𝛼

0
𝐶𝐹 𝑈𝑠(𝑡) = 𝜋

𝛼 − 𝛽1
𝛼𝑈𝑠(𝑡)𝐼(𝑡) − 𝜇

𝛼𝑈𝑠(𝑡), 

𝐷𝑡
𝛼

0
𝐶𝐹 𝐴𝑠(𝑡) = −𝛽2

𝛼𝐴𝑠(𝑡)𝐼(𝑡) − 𝜇
𝛼𝐴𝑠(𝑡), 

𝐷𝑡
𝛼

0
𝐶𝐹 𝑉𝑠(𝑡) = −𝛽3

𝛼𝑉𝑠(𝑡)𝐼(𝑡) − 𝜇
𝛼𝑉𝑠(𝑡), 

𝐷𝑡
𝛼

0
𝐶𝐹 𝐼(𝑡) = 𝛽1

𝛼𝑈𝑠(𝑡)𝐼(𝑡) + 𝛽2
𝛼𝐴𝑠(𝑡)𝐼(𝑡) + 𝛽3

𝛼𝑉𝑠(𝑡)𝐼(𝑡) − (𝜇
𝛼 + 𝛾𝛼 + 𝛿𝛼)𝐼(𝑡), 

𝐷𝑡
𝛼

0
𝐶𝐹 𝑅(𝑡) = 𝛿𝛼𝐼(𝑡) − 𝜇𝛼𝑅(𝑡), 

The initial conditions used for this model are presented below; 
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𝑈𝑠(0) = 𝑎1, 𝐴𝑠(0) = 𝑎2, 𝑉𝑠(0) = 𝑎3, 𝐼(0) = 𝑎4𝑎𝑛𝑑𝑅(0) =  𝑎5.  

Table 1 below shows the parameters used in the model and their respective 

meanings. 

Table 3.1. Meaning of Parameters 

Parameter Meaning 

π Recruitment rate 

𝛽1 The transmission rate of COVID–19 in a susceptible unaware 

compartment 

𝛽2 < 𝛽1 The transmission rate of COVID–19 in a susceptible aware 

compartment 

𝛽3 < 𝛽2

< 𝛽1 

The transmission rate of COVID–19 in a susceptible 

vaccinated compartment 

μ Natural death rate 

γ Recovery rate 

δ Disease-induced death rate 

0 < 𝛼 < 1 Fraction order 

 

 

3.3 Analysis of the Model 

Here Equilibria, basic reproduction number, existence, and uniqueness analysis of the 

solution of the model are carried out. 

3.3.1 Equilibria Analysis and Deriving the Basic reproduction number 

The method of finding equilibrium solutions is straightforward, whereby equating the 

equations in the model to zero afterward the system should simultaneously be solved. 

five equilibrium solutions were attained; 

    

i. Disease-free equilibrium (𝐸0) 

𝐸0 = {𝑈𝑠
0, 𝐴𝑠

0, 𝑉𝑠
0, 𝐼0, 𝑅0} = {

𝜋𝛼

𝜇𝛼
, 0,0,0,0}. 

ii. Endemic with respect to 𝑈𝑠 only (𝐸1) 



45 
 

 
 

𝐸1 = {𝑈𝑠
1, 𝐼1, 𝑅1}

= {
𝜇𝛼 + 𝛾𝛼 + 𝛿𝛼

𝛽1
𝛼 ,

𝜋𝛼𝛽1
𝛼 − 𝜇𝛼(𝜇𝛼 + 𝛾𝛼 + 𝛿𝛼)

𝛽1
𝛼(𝜇𝛼 + 𝛾𝛼 + 𝛿𝛼)

,
𝛿𝛼[𝜋𝛼𝛽1

𝛼 − 𝜇𝛼(𝜇𝛼 + 𝛾𝛼 + 𝛿𝛼)]

𝜇𝛼𝛽1
𝛼(𝜇𝛼 + 𝛾𝛼 + 𝛿𝛼)

}. 

iii. Endemic with respect to 𝐴𝑠 only (𝐸2) 

This equilibrium point doesn’t exist as we have; 

𝐼2 =
−𝜇𝛼

𝛽1
𝛼 , 

which is not biologically meaningful as we don’t have a negative population. 

 

iv. Endemic with respect to 𝑉𝑠 only (𝐸3) 

This equilibrium point doesn’t exist as we have; 

𝐼3 =
−𝜇𝛼

𝛽2
𝛼 , 

which is not biologically meaningful as we don’t have a negative population. 

 

v. Endemic with respect to 𝑈𝑠, 𝐴𝑠𝑎𝑛𝑑𝑉𝑠 (𝐸4) 

This equilibrium point doesn’t exist as we have; 

𝐼4 =
−𝜇𝛼

𝛽1
𝛼 𝑜𝑟𝐼3 =

−𝜇𝛼

𝛽2
𝛼 , 

which is not biologically meaningful as we don’t have a negative population. 

 

Hence the only feasible endemic equilibrium solution is 𝐸1. 

Now 𝐸1 only exists if  

𝜋𝛼𝛽1
𝛼 − 𝜇𝛼(𝜇𝛼 + 𝛾𝛼 + 𝛿𝛼)

𝛽1
𝛼(𝜇𝛼 + 𝛾𝛼 + 𝛿𝛼)

> 0 

This implies; 
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𝜋𝛼𝛽1
𝛼

𝜇𝛼(𝜇𝛼 + 𝛾𝛼 + 𝛿𝛼)
> 1. 

Let, 

𝜋𝛼𝛽1
𝛼

𝜇𝛼(𝜇𝛼 + 𝛾𝛼 + 𝛿𝛼)
= 𝑅0, 

where𝑅0 is the basic reproduction ratio. 

3.3.2 Existence and Uniqueness of a Solution of The Model 

In this section, a fixed-point result is applied to check the existence and uniqueness of 

the solution of the model. Let the system be rewritten as; 

𝐷𝑡
𝛼

0
𝐶𝐹 𝑈𝑠(𝑡) = 𝐹1(𝑡, 𝑈𝑠), 

𝐷𝑡
𝛼

0
𝐶𝐹 𝐴𝑠(𝑡) = 𝐹2(𝑡, 𝐴𝑠), 

𝐷𝑡
𝛼

0
𝐶𝐹 𝑉𝑠(𝑡) = 𝐹3(𝑡, 𝑈𝑠), 

𝐷𝑡
𝛼

0
𝐶𝐹 𝐼(𝑡) = 𝐹4(𝑡, 𝐼), 

𝐷𝑡
𝛼

0
𝐶𝐹 𝑅(𝑡) = 𝐹5(𝑡, 𝑅). 

Applying the Caputo – Fabrizio operator, the system becomes; 

𝑈𝑠(𝑡) − 𝑈𝑠(0) =
2 (1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
𝐹1(𝑡, 𝑈𝑠) +

2𝛼

(2 − 𝛼)𝑀(𝛼)
∫𝐹1(𝜂, 𝑈𝑠)𝑑𝜂,

𝑡

0

 

𝐴𝑠(𝑡) − 𝐴𝑠(0) =
2 (1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
𝐹2(𝑡, 𝐴𝑠) +

2𝛼

(2 − 𝛼)𝑀(𝛼)
∫𝐹2(𝜂, 𝐴𝑠)𝑑𝜂,

𝑡

0

 

𝑉𝑠(𝑡) − 𝑉𝑠(0) =
2 (1 − 𝛼)

(2 − 𝛼) 𝑀(𝛼)
𝐹3(𝑡, 𝑉𝑠) +

2𝛼

(2 − 𝛼) 𝑀(𝛼)
∫𝐹3(𝜂, 𝑉𝑠)𝑑𝜂,

𝑡

0

 

𝐼(𝑡) − 𝐼(0) =
2 (1 − 𝛼)

(2 − 𝛼) 𝑀(𝛼)
𝐹4(𝑡, 𝐼) +

2𝛼

(2 − 𝛼) 𝑀(𝛼)
∫𝐹4(𝜂, 𝐼)𝑑𝜂,

𝑡

0
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𝑅(𝑡) − 𝑅(0) =
2 (1 − 𝛼)

(2 − 𝛼) 𝑀(𝛼)
𝐹5(𝑡, 𝑅) +

2𝛼

(2 − 𝛼) 𝑀(𝛼)
∫𝐹5(𝜂, 𝑅)𝑑𝜂.

𝑡

0

 

Now, we need to prove 𝐹1, … , 𝐹5 satisfy Lipschitz continuity and contraction. See the 

theorem below; 

 

Theorem 3.1:𝐹1 is Lipschitz and if 

0 ≤ 𝛽1
𝛼ℎ1 + 𝜇

𝛼 < 1, 

it is a contraction. 

 

Proof of Theorem 3.1:  

‖𝐹1(𝑡, 𝑈𝑠) − 𝐹1(𝑡, 𝑈𝑠1)‖

= ‖𝜋𝛼 − 𝛽1
𝛼𝑈𝑠(𝑡)𝐼(𝑡) − 𝜇

𝛼𝑈𝑠(𝑡) − 𝜋
𝛼 − 𝛽1

𝛼𝑈𝑠1(𝑡)𝐼(𝑡) − 𝜇
𝛼𝑈𝑠1(𝑡)‖ 

= ‖−𝛽1
𝛼𝐼(𝑡)(𝑈𝑠(𝑡) − 𝑈𝑠1(𝑡)) − 𝜇

𝛼(𝑈𝑠(𝑡) − 𝑈𝑠1(𝑡))‖ 

≤ 𝛽1
𝛼‖𝐼(𝑡)‖‖𝑈𝑠(𝑡) − 𝑈𝑠1(𝑡)‖ + 𝜇

𝛼‖𝑈𝑠(𝑡) − 𝑈𝑠1(𝑡)‖ 

≤ (𝛽1
𝛼ℎ1 + 𝜇

𝛼)‖𝑈𝑠(𝑡) − 𝑈𝑠1(𝑡)‖ 

     ≤ 𝐿1‖𝑈𝑠(𝑡) − 𝑈𝑠1(𝑡)‖, 

Where, 

𝐿1 = 𝛽1
𝛼ℎ1 + 𝜇

𝛼𝑎𝑛𝑑ℎ1 ≥ ‖𝐼(𝑡)‖. 

 

In the same way, the Lipschitz continuity and contraction were shown for 𝐹2, … , 𝐹5, 

where we obtain 𝐿2, … , 𝐿5 respectively as their Lipschitz constants.  

In recursive form, let 
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𝑞1𝑛(𝑡) = 𝑈𝑠𝑛(𝑡) − 𝑈𝑠𝑛−1(𝑡)

=
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
(𝐹1(𝑡, 𝑈𝑠𝑛−1) − 𝐹1(𝑡, 𝑈𝑠𝑛−2))

+
2𝛼

(2 − 𝛼)𝑀(𝛼)
∫(𝐹1(𝜂, 𝑈𝑠𝑛−1) − 𝐹1(𝜂, 𝑈𝑠𝑛−2)) 𝑑𝜂,

𝑡

0

 

𝑞2𝑛(𝑡) = 𝐴𝑠𝑛(𝑡) − 𝐴𝑠𝑛−1(𝑡)

=
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
(𝐹2(𝑡, 𝐴𝑠𝑛−1) − 𝐹2(𝑡, 𝐴𝑠𝑛−2))

+
2𝛼

(2 − 𝛼)𝑀(𝛼)
∫(𝐹2(𝜂, 𝐴𝑠𝑛−1) − 𝐹2(𝜂, 𝐴𝑠𝑛−2)) 𝑑𝜂,

𝑡

0

 

𝑞3𝑛(𝑡) = 𝑉𝑠𝑛(𝑡) − 𝑉𝑠𝑛−1(𝑡)

=
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
(𝐹3(𝑡, 𝑉𝑠𝑛−1) − 𝐹3(𝑡, 𝑉𝑠𝑛−2))

+
2𝛼

(2 − 𝛼)𝑀(𝛼)
∫(𝐹3(𝜂, 𝑉𝑠𝑛−1) − 𝐹3(𝜂, 𝑉𝑠𝑛−2)) 𝑑𝜂,

𝑡

0

 

𝑞4𝑛(𝑡) = 𝐼𝑛(𝑡) − 𝐼𝑛−1(𝑡)

=
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
(𝐹4(𝑡, 𝐼𝑛−1) − 𝐹4(𝑡, 𝐼𝑛−2))

+
2𝛼

(2 − 𝛼)𝑀(𝛼)
∫(𝐹4(𝜂, 𝐼𝑛−1) − 𝐹4(𝜂, 𝐼𝑛−2))𝑑𝜂,

𝑡

0

 

𝑞5𝑛(𝑡) = 𝑅𝑛(𝑡) − 𝑅𝑛−1(𝑡)

=
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
(𝐹5(𝑡, 𝑅𝑛−1) − 𝐹5(𝑡, 𝑅𝑛−2))

+
2𝛼

(2 − 𝛼)𝑀(𝛼)
∫(𝐹5(𝜂, 𝑅𝑛−1) − 𝐹5(𝜂, 𝑅𝑛−2))𝑑𝜂,

𝑡

0

 

 

with initial conditions; 

𝑈𝑠
0(𝑡) = 𝑈𝑠(0), 𝐴𝑠

0(𝑡) = 𝐴𝑠(0), 𝑉𝑠
0(𝑡) = 𝑉𝑠(0), 𝐼0(0) = 𝐼(0)𝑎𝑛𝑑𝑅0(0) =  𝑅(0). 
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Taking norm of 𝑞1𝑛, we have; 

‖𝑞1𝑛(𝑡)‖ = ‖𝑈𝑠𝑛(𝑡) − 𝑈𝑠𝑛−1(𝑡)‖

= ‖
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
(𝐹1(𝑡, 𝑈𝑠𝑛−1) − 𝐹1(𝑡, 𝑈𝑠𝑛−2))

+
2𝛼

(2 − 𝛼)𝑀(𝛼)
∫(𝐹1(𝜂, 𝑈𝑠𝑛−1) − 𝐹1(𝜂, 𝑈𝑠𝑛−2)) 𝑑𝜂

𝑡

0

‖. 

 

Applying triangular inequality, we have; 

‖𝑞1𝑛(𝑡)‖ = ‖𝑈𝑠𝑛(𝑡) − 𝑈𝑠𝑛−1(𝑡)‖

=
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
‖𝐹1(𝑡, 𝑈𝑠𝑛−1) − 𝐹1(𝑡, 𝑈𝑠𝑛−2)‖

+
2𝛼

(2 − 𝛼)𝑀(𝛼)
‖∫(𝐹1(𝜂, 𝑈𝑠𝑛−1) − 𝐹1(𝜂, 𝑈𝑠𝑛−2)) 𝑑𝜂

𝑡

0

‖ 

≤
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
𝐿1‖𝑈𝑠𝑛−1 − 𝑈𝑠𝑛−2‖ +

2𝛼

(2 − 𝛼)𝑀(𝛼)
𝐿1∫‖𝑈𝑠𝑛−1 − 𝑈𝑠𝑛−2‖𝑑𝜂.

𝑡

0

 

This implies; 

‖𝑞1𝑛(𝑡)‖ ≤
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
𝐿1‖𝑞1𝑛−1(𝑡)‖ +

2𝛼

(2 − 𝛼)𝑀(𝛼)
𝐿1∫‖𝑞1𝑛−1(𝑡)‖𝑑𝜂.

𝑡

0

 

Similarly, 

‖𝑞2𝑛(𝑡)‖ ≤
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
𝐿2‖𝑞2𝑛−1(𝑡)‖ +

2𝛼

(2 − 𝛼)𝑀(𝛼)
𝐿2∫‖𝑞2𝑛−1(𝑡)‖𝑑𝜂,

𝑡

0

 

‖𝑞3𝑛(𝑡)‖ ≤
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
𝐿3‖𝑞3𝑛−1(𝑡)‖ +

2𝛼

(2 − 𝛼)𝑀(𝛼)
𝐿3∫‖𝑞3𝑛−1(𝑡)‖𝑑𝜂,

𝑡

0

 

‖𝑞4𝑛(𝑡)‖ ≤
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
𝐿4‖𝑞4𝑛−1(𝑡)‖ +

2𝛼

(2 − 𝛼)𝑀(𝛼)
𝐿4∫‖𝑞4𝑛−1(𝑡)‖𝑑𝜂,

𝑡

0

 

‖𝑞5𝑛(𝑡)‖ ≤
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
𝐿5‖𝑞5𝑛−1(𝑡)‖ +

2𝛼

(2 − 𝛼)𝑀(𝛼)
𝐿5∫‖𝑞5𝑛−1(𝑡)‖𝑑𝜂.

𝑡

0
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Subsequently, we have; 

𝑈𝑠𝑛(𝑡) =∑𝑞1𝑖(𝑡)

𝑛

𝑖=1

, 𝐴𝑠𝑛(𝑡) =∑𝑞2𝑖(𝑡), 𝑉𝑠𝑛(𝑡) =∑𝑞3𝑖(𝑡),

𝑛

𝑖=1

𝑛

𝑖=1

𝐼𝑛(𝑡)

=∑𝑞4𝑖(𝑡),

𝑛

𝑖=1

𝑅𝑛(𝑡) =∑𝑞5𝑖(𝑡).

𝑛

𝑖=1

 

 

To show the existence of the solution, the following theorem was proven; 

 

Theorem 3.2: The solution exists if there exist 𝑡1 such that the following inequality is 

true, 

2 (1 − 𝛼)

(2 − 𝛼) 𝑀 (𝛼)
𝐿𝑖 +

2𝛼𝑡1
(2 − 𝛼) 𝑀 (𝛼)

𝐿𝑖 < 1,     𝑖 = 1,… , 5. 

Proof of Theorem 3.2: Recursively, we have 

‖𝑞1𝑛(𝑡)‖ ≤ ‖𝑈𝑠𝑛(0)‖ [
2 (1 − 𝛼)

(2 − 𝛼) 𝑀 (𝛼)
 𝐿1 +

2𝛼

(2 − 𝛼) 𝑀 (𝛼)
 𝐿1]

𝑛

, 

‖𝑞2𝑛(𝑡)‖ ≤ ‖𝐴𝑠𝑛(0)‖ [
2 (1 − 𝛼)

(2 − 𝛼) 𝑀(𝛼)
𝐿2 +

2𝛼

(2 − 𝛼) 𝑀(𝛼)
𝐿2]

𝑛

, 

‖𝑞3𝑛(𝑡)‖ ≤ ‖𝑉𝑠𝑛(0)‖ [
2 (1 − 𝛼)

(2 − 𝛼) 𝑀(𝛼)
𝐿3 +

2𝛼

(2 − 𝛼) 𝑀(𝛼)
𝐿3]

𝑛

, 

‖𝑞4𝑛(𝑡)‖ ≤ ‖𝐼𝑛(0)‖ [
2 (1 − 𝛼)

(2 − 𝛼) 𝑀(𝛼)
𝐿4 +

2𝛼

(2 − 𝛼) 𝑀(𝛼)
𝐿4]

𝑛

, 

‖𝑞5𝑛(𝑡)‖ ≤ ‖𝑅𝑛(0)‖ [
2 (1 − 𝛼)

(2 − 𝛼) 𝑀(𝛼)
𝐿5 +

2𝛼

(2 − 𝛼) 𝑀(𝛼)
𝐿5]

𝑛

. 

 

Hence solutions are existed and continuous. To demonstrate that the above functions 

construct the solutions, consider; 

𝑈𝑠(𝑡) − 𝑈𝑠(0) = 𝑈𝑠𝑛(𝑡) − 𝐾1𝑛(𝑡), 

𝐴𝑠(𝑡) − 𝐴𝑠(0) = 𝐴𝑠𝑛(𝑡) − 𝐾2𝑛(𝑡), 

𝑉𝑠(𝑡) − 𝑉𝑠(0) = 𝑉𝑠𝑛(𝑡) − 𝐾3𝑛(𝑡), 

𝐼(𝑡) − 𝐼(0) = 𝐼𝑛(𝑡) − 𝐾4𝑛(𝑡), 
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𝑅(𝑡) − 𝑅(0) = 𝑅𝑛(𝑡) − 𝐾5𝑛(𝑡). 

Hence, 

‖𝐾1𝑛(𝑡)‖ = ‖
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
(𝐹1(𝑡, 𝑈𝑠𝑛−1) − 𝐹1(𝑡, 𝑈𝑠𝑛−2))

+
2𝛼

(2 − 𝛼)𝑀(𝛼)
∫(𝐹1(𝜂, 𝑈𝑠𝑛−1) − 𝐹1(𝜂, 𝑈𝑠𝑛−2)) 𝑑𝜂

𝑡

0

‖ 

≤
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
‖𝐹1(𝑡, 𝑈𝑠𝑛−1) − 𝐹1(𝑡, 𝑈𝑠𝑛−2)‖

+
2𝛼

(2 − 𝛼)𝑀(𝛼)
‖∫(𝐹1(𝜂, 𝑈𝑠𝑛−1) − 𝐹1(𝜂, 𝑈𝑠𝑛−2)) 𝑑𝜂

𝑡

0

‖ 

≤
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
𝐿1‖𝑈𝑠 − 𝑈𝑠𝑛−1‖ +

2𝛼

(2 − 𝛼)𝑀(𝛼)
𝐿1‖𝑈𝑠 − 𝑈𝑠𝑛−1‖𝑡. 

Carrying out the procedure, we get 

‖𝐾1𝑛(𝑡)‖ ≤ [
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
+

2𝛼𝑡

(2 − 𝛼)𝑀(𝛼)
]
𝑛+1

𝐿1
𝑛+1𝑘. 

At 𝑡 = 𝑡1, we get 

‖𝐾1𝑛(𝑡)‖ ≤ [
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
+

2𝛼𝑡1
(2 − 𝛼)𝑀(𝛼)

]
𝑛+1

𝐿1
𝑛+1𝑘. 

Taking the limit as 𝑛 → ∞, we get 

‖𝐾1𝑛(𝑡)‖ → 0. 

Similarly, we get 

‖ 𝐾2𝑛(𝑡) ‖, ‖ 𝐾3𝑛(𝑡) ‖, ‖ 𝐾 4𝑛(𝑡) ‖, ‖ 𝐾5𝑛(𝑡) ‖ → 0. 

Finally, to show uniqueness, assume there exists some solutions say, 

𝑈𝑠
1(𝑡), 𝐴𝑠

1(𝑡), 𝑉𝑠
1(𝑡), 𝐼1(𝑡) 𝑎𝑛𝑑 𝑅1(𝑡),  then 

 

‖𝑈𝑠(𝑡) − 𝑈𝑠
1(𝑡)‖ (1 −

2 (1 − 𝛼)

(2 − 𝛼) 𝑀 (𝛼)
𝐿1 −

2𝛼𝑡

(2 − 𝛼) 𝑀 (𝛼)
𝐿1) ≤ 0. 

The following theorem completes the result. 
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Theorem 3.3: If 

(1 −
2(1 − 𝛼)

(2 − 𝛼)𝑀(𝛼)
𝐿1 −

2𝛼𝑡

(2 − 𝛼)𝑀(𝛼)
𝐿1) > 0, 

then the solution is unique. 

 

 

Proof of Theorem 3.3: Consider 

‖𝑈𝑠(𝑡) − 𝑈𝑠
1(𝑡)‖ (1 −

2 (1 − 𝛼)

(2 − 𝛼) 𝑀(𝛼)
 𝐿1 −

2𝛼𝑡

(2 − 𝛼) 𝑀(𝛼)
 𝐿1) ≤ 0. 

Since, 

(1 −
2 (1 − 𝛼)

(2 − 𝛼) 𝑀 (𝛼)
 𝐿1 −

2 𝛼𝑡

(2 − 𝛼) 𝑀 (𝛼)
 𝐿 1) > 0, 

then 

‖𝑈𝑠(𝑡) − 𝑈𝑠
1(𝑡)‖ = 0. 

This implies, 

𝑈𝑠(𝑡) = 𝑈𝑠
1(𝑡). 

This applies to the remaining functions. 
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CHAPTER 4 

Optimal Control and Numerical Simulation 

4.1 Optimal Control Analysis 

This chapter follows the next phase of research which includes formulating the optimal 

control problem and finding the existence of a solution for the problem. Furthermore, 

the numerical simulation will be presented with a detailed discussion and 

interpretation.  

 

4.1.1. Formation of Optimal Control Problem 

The dynamics of the control system can be described by the following system of 

Fractional-order differential equations in the Caputo–Fabrizio sense; 

𝐷𝑡
𝛼

0
𝐶𝐹 𝑈𝑆(𝑡) = 𝜋𝛼 − 𝛽1

𝛼𝑈𝑆𝐼 − 𝜇
𝛼𝑈𝑆 − 𝜃𝑢1𝑈𝑆+∈ 𝐴𝑆, 

𝐷𝑡
𝛼

0
𝐶𝐹 𝐴𝑆(𝑡) = 𝛽2

𝛼𝐴𝑆𝐼 − 𝜇
𝛼𝐴𝑆−∈ 𝐴𝑆 − ∅𝑢2𝐴𝑆 + 𝜌𝑢3𝑉𝑆,                       (4.1) 

𝐷𝑡
𝛼

0
𝐶𝐹 𝑉𝑆(𝑡) = ∅𝑢2𝐴𝑆 − 𝛽3

𝛼𝑉𝑆𝐼 − 𝜇
𝛼𝑉𝑆 − 𝜌𝑢3𝑉𝑆, 

𝐷𝑡
𝛼

0
𝐶𝐹 𝐼(𝑡) = 𝛽1

𝛼𝑈𝑆𝐼 + 𝛽2
𝛼𝐴𝑆𝐼 + 𝛽3

𝛼𝑉𝑆𝐼 − (𝜇
𝛼 + 𝛾𝛼 + 𝛿𝛼)𝐼, 

𝐷𝑡
𝛼

0
𝐶𝐹 𝑅(𝑡) = 𝛿𝛼𝐼 − 𝜇𝛼𝑅 

Where, 

𝑢1 = 𝐴𝑤𝑎𝑟𝑒𝑛𝑒𝑠𝑠 𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛 𝑎𝑏𝑜𝑢𝑡 𝐶𝑂𝑉𝐼𝐷 − 19 

𝑢2 = 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑎𝑤𝑎𝑟𝑒 𝑐𝑙𝑎𝑠𝑠 

𝑢3 = 𝑡𝑎𝑘𝑖𝑛𝑔 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑐𝑐𝑖𝑛𝑒 

The following objective function will be minimized: 

𝐽(𝑢1 , 𝑢2, 𝑢3) =  ∫ (𝑎𝑈𝑆 + 𝑏𝐴𝑆 + 𝑐𝑉𝑆 + 𝑑𝑢1 
2 +

𝑡𝑓

0

𝑒𝑢2
2 + 𝑓𝑢3 

2 ) 𝑑𝑡 ,           (4.2)     

The objective here is minimizing 𝑈𝑆 , 𝐴𝑆  and 𝑉𝑆at the same time to minimize the cost 

of the three controls 𝑢1, 𝑢2 𝑎𝑛𝑑 𝑢3. Hence, we need to get the optimal 

control 𝑢1 
∗ ,𝑢2 

∗  𝑎𝑛𝑑 𝑢3 
∗  such that: 

𝐽(𝑢1 
∗ , 𝑢2 

∗ , 𝑢3 
∗ ) =  min

𝑢1,𝑢2
{𝐽(𝑢1 , 𝑢2, 𝑢3)|𝑢1, 𝑢2, 𝑢3 ∈ 𝛺}.              (4.3)                       

The set of control as: 
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Ω = {(𝑢1, 𝑢2, 𝑢3)|𝑢𝑖: [0, 𝑡𝑓] → [0,∞)𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒, 𝑖 = 1,2,3}.     

The expenses of minimizing 𝑈𝑆 is represented by the term 𝑎𝑈𝑆, and that of minimizing 

𝐴𝑆is represented by 𝑏𝐴𝑆, while the one for minimizing 𝑉𝑆is represented by 𝑐𝑉𝑆. 

Likewise, all the expenses associated with the control 𝑢1 is represented by 𝑑𝑢1 
2 , all the 

expenses associated with the control 𝑢2 are represented by 𝑒𝑢2 
2 and also all the 

expenses associated with the control 𝑢3 is represented by 𝑓𝑢3 
2The sufficient conditions 

required for the optimal control to be fulfilled can be found by using the most popular 

PMP. The said principle can be used to turn (4.1) and (4.3) equations to a point-wise 

minimizing problem of the Hamiltonian H for( 𝑢1, 𝑢2𝑢3) stated as follows: 

𝐻 =  𝑎𝑈𝑆 + 𝑏𝐴𝑆 + 𝑐𝑉𝑆 + 𝑑𝑢1 
2 + 𝑒𝑢2

2 + 𝑓𝑢3 
2 + 𝜆𝑈𝑆{𝜋

𝛼 − 𝛽1
𝛼𝑈𝑆𝐼 − 𝜇

𝛼𝑈𝑆 −

𝜃𝑢1𝑈𝑆+∈ 𝐴𝑆} + 𝜆𝐴𝑆{𝛽2
𝛼𝐴𝑆𝐼 − 𝜇

𝛼𝐴𝑆−∈ 𝐴𝑆 − ∅𝑢2𝐴𝑆 + 𝜌𝑢3𝑉𝑆} + 𝜆𝑉𝑆{∅𝑢2𝐴𝑆 −

𝛽3
𝛼𝑉𝑆𝐼 − 𝜇

𝛼𝑉𝑆 − 𝜌𝑢3𝑉𝑆}+𝜆𝐼{𝛽1
𝛼𝑈𝑆𝐼 + 𝛽2

𝛼𝐴𝑆𝐼 + 𝛽3
𝛼𝑉𝑆𝐼 − (𝜇

𝛼 + 𝛾𝛼 + 𝛿𝛼)𝐼} +

𝜆𝑅{𝛿𝛼𝐼 − 𝜇𝛼𝑅  }                                                                    (4.4) 

where,𝜆𝑈𝑆  , 𝜆𝐴𝑆  , 𝜆𝑉𝑆  , 𝜆𝐼 , 𝑎𝑛𝑑𝜆𝑅  are the adjoint variables or co-state variables. 

−
𝑑𝜆𝑈𝑆
𝑑𝑡

=
𝜕𝐻

𝜕𝑈𝑆
=  𝑎 + 𝜆𝑈𝑆{−𝛽1

𝛼𝐼 − 𝜇𝛼 − 𝜃𝑢1} + 𝜆𝐼𝛽1
𝛼𝐼, 

−
𝑑𝜆𝐴𝑆

𝑑𝑡
=

𝜕𝐻

𝜕𝐴𝑆
=  𝑏 + 𝜆𝑈𝑆 ∈ +𝜆𝐴𝑆{𝛽2

𝛼𝐼 − 𝜇𝛼−∈ −∅𝑢2} + 𝜆𝐼𝛽2
𝛼𝐼,           (4.5) 

−
𝑑𝜆𝑉𝑆
𝑑𝑡

=
𝜕𝐻

𝜕𝑉𝑆
=  𝑐 + 𝜆𝐴𝑆𝜌𝑢3 + 𝜆𝑉𝑆{−𝛽3

𝛼𝐼 − 𝜇𝛼 − 𝜌𝑢3} + 𝜆𝐼𝛽3
𝛼𝐼, 

−
𝑑𝜆𝐼

𝑑𝑡
=

𝜕𝐻

𝜕𝐼
= −𝜆𝑈𝑆𝛽1

𝛼𝑈𝑆 + 𝜆𝐴𝑆𝛽2
𝛼𝐴𝑆 + 𝜆𝑉𝑆𝛽3

𝛼𝑉𝑆 + 𝜆𝐼{𝛽1
𝛼𝑈𝑆 + 𝛽2

𝛼𝐴𝑆 + 𝛽3
𝛼𝑉𝑆 −

(𝜇𝛼 + 𝛾𝛼 + 𝛿𝛼)}, 

−
𝑑𝜆𝑅
𝑑𝑡

=
𝜕𝐻

𝜕𝑅
=  −𝜆𝑅𝜇

𝛼𝑅 

The transversality conditions are 𝜆𝑈𝑆(𝑡𝑓) = 𝜆𝐴𝑆(𝑡𝑓) =  𝜆𝑉𝑆(𝑡𝑓) =  𝜆𝐼(𝑡𝑓) =

  𝜆𝑅(𝑡𝑓) = 0 , for 0 <𝑢𝑖<1, for 𝑖= 1, 2,3, 

From the interior of the controls, we have: 

𝜕𝐻

𝜕𝑢1
= 2𝑑𝑢1 − 𝜆𝑈𝑆𝜃𝑈𝑆 = 0,                                                                            

𝜕𝐻

𝜕𝑢2
= 2𝑒𝑢2 − 𝜆𝐴𝑆∅𝐴𝑆 + 𝜆𝑉𝑆∅𝐴𝑆 = 0.                                      (4.6)               

𝜕𝐻

𝜕𝑢3
=  2𝑓𝑢3 + 𝜆𝐴𝑆𝜌𝑉𝑆 − 𝜆𝑉𝑆𝜌𝑉𝑆 = 0                                                        
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From where; 

𝑢1 =
1

2𝑑
𝜆𝑈𝑆𝜃𝑈𝑆,                                                                                                      

𝑢2 =
1

2𝑒
∅𝐴𝑆[𝜆𝐴𝑆 − 𝜆𝑉𝑆],                                                                    (4.7)          

𝑢3 =
1

2𝑓
𝜌𝑉𝑆[𝜆𝑉𝑆 − 𝜆𝐴𝑆].                                                                               

 

4.1.2. Existence of Optimal Solutions 

We give the following theorem for the existence of the optimal controls; 

 

Theorem 4.1: The control values ( 𝑢1 
∗ , 𝑢2 

∗ , 𝑢3 
∗ ) which can minimize(𝑢1 , 𝑢2, 𝑢3) over 

𝑈 are given by, 

𝑢1 
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 [1,

1

2𝑑
𝜆𝑈𝑆𝜃𝑈𝑆]},                                                             

𝑢2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 [1,

1

2𝑒
∅𝐴𝑆[𝜆𝐴𝑆 − 𝜆𝑉𝑆]]},                               (4.8)   

𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 [1,

1

2𝑓
𝜌𝑉𝑆[𝜆𝑉𝑆 − 𝜆𝐴𝑆]]},                                               

Where,𝜆𝑈𝑆  , 𝜆𝐴𝑆  , 𝜆𝑉𝑆  , 𝜆𝐼 , 𝑎𝑛𝑑𝜆𝑅are, co-state variables that satisfy(4.1- 4.8)as well as 

the transversality conditions that follow𝜆𝑈𝑆(𝑡𝑓) = 𝜆𝐴𝑆(𝑡𝑓) =  𝜆𝑉𝑆(𝑡𝑓) =  𝜆𝐼(𝑡𝑓) =

   𝜆𝑅(𝑡𝑓) = 0 and 

𝑢1 
∗ = {

0,           𝑖𝑓𝑢1 ≤ 0,       
𝑢1,         𝑖𝑓               0 < 𝑢1 < 1,     

  1,         𝑖𝑓𝑢1 ≥  0,           
 

                                         𝑢2 
∗ = {

0,           𝑖𝑓𝑢2 ≤ 0,       
𝑢2,         𝑖𝑓               0 < 𝑢2 < 1,     

  1,         𝑖𝑓𝑢2 ≥  0.           
(4.9) 

𝑢3 
∗ = {

0,           𝑖𝑓𝑢3 ≤ 0,       
𝑢3,         𝑖𝑓               0 < 𝑢3 < 1,     

  1,         𝑖𝑓𝑢3 ≥  0.           
 

Proof of Theorem 4.1: To prove the existence of the optimal control solution we use 

the convexity of the integrand of 𝐽 to controls𝑢1, 𝑢2 and  𝑢3 for the boundedness of the 
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solutions of the state and the Lipschitz properties of the state concerning the variables 

of the state. Hence, we apply PMP and get the following: 

𝐷𝑡
𝛼

0
𝐶𝐹 𝜆𝑈𝑆(𝑡) =  

𝜕𝐻

𝜕𝑈𝑆
;       𝐷𝑡

𝛼
0
𝐶𝐹 𝜆𝐴𝑆(𝑡) =  

𝜕𝐻

𝜕𝐴𝑆
;                        (4.10) 

𝐷𝑡
𝛼

0
𝐶𝐹 𝜆𝑉𝑆(𝑡) =  

𝜕𝐻

𝜕𝑉𝑆
;   𝐷𝑡

𝛼
0
𝐶𝐹 𝜆𝐼(𝑡) =  

𝜕𝐻

𝜕𝐼
; 𝐷𝑡

𝛼
0
𝐶𝐹 𝜆𝑅(𝑡) =  

𝜕𝐻

𝜕𝑅
; 

with, 𝜆𝑈𝑆(𝑡𝑓) = 𝜆𝐴𝑆(𝑡𝑓) =  𝜆𝑉𝑆(𝑡𝑓) =  𝜆𝐼(𝑡𝑓) =    𝜆𝑅(𝑡𝑓) = 0  

The conditions for the optimality can be gotten after differentiating the Hamiltonian 

𝐻with respect to 𝑢1, 𝑢2  and𝑢3: 

𝜕𝐻

𝜕𝑢1
= 0 ;         

𝜕𝐻

𝜕𝑢2
= 0   ;      

𝜕𝐻

𝜕𝑢3
= 0                                                              (4.11) 

The adjoint system (4.4) and (4.5) come from the solution of (3.1), and the optimal 

controls (4.7) can be gotten from (4.8). The optimal system is comprised of the 

controlled system (4.1) and its initial conditions, the system of adjoint (4.4), and 

conditions for transversality. 

 

4.2. Numerical Simulation 

The numerical simulations were done by Matlab 2021b software. Variable and 

parameter values are given as, 𝜋 = 1, 𝛽1 = 0.0007, 𝛽2 = 0.00007, 𝛽3 =

0.000007, 𝜇 = 0.02, 𝛾 = 0.2, 𝛿 = 0.01, 𝜃 = 0.002, ∅ = 0.0012, р = 0.001.  

 
Figure 1. Dynamics of the model 
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Figure 1 depicts the dynamics of the model. It can be seen that without any control, 

the susceptible unaware population, susceptible aware population, and susceptible 

vaccinated populations all go to extinction, whereas infected and recovered 

populations proliferate. This clearly shows the need for the application of various 

control measures to control the pandemic. 

 

Figure 2. Dynamics of the infected population for various values of α 

Figure 2 shows the variation of biological behavior of the infected population when 

fractional-order α is varied. It can be noticed that the population of the infected class 

was reduced when α  the fraction order is decreased from 1 to 0.2. Hence, the memory 

effect can be seen clearly. 

 

Figure 3. Comparing the dynamics of the infected population without control and with 

control 𝑢1 
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Figure 4. Comparing the dynamics of the infected population without control and with 

control 𝑢2 

 

 

Figure 5. Comparing the dynamics of the infected population without control and with 

control 𝑢3 

Figures 3,4 and 5 compare the effect of controls 𝑢1, 𝑢2&𝑢3 respectively on the 

dynamics of the infected population. It is clear that when any control is observed, the 

population of the infected individuals is reduced. This is a positive effect and hence 

there is a need for compliance with the control measures.  
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Figure 6. Comparing the dynamics of the infected population without control and with 

control 𝑢1 &𝑢2 

 

 

Figure 7. Comparing the dynamics of the infected population without control and with 

control 𝑢1&𝑢3 
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Figure 8. Comparing the dynamics of the infected population without control and with 

control 𝑢2&𝑢3 

Figures 6, 7, and 8 compare the effect of two controls, i.e.  𝑢1&𝑢2, 𝑢1&𝑢3,

𝑎𝑛𝑑𝑢2&𝑢3respectively on the dynamics of the infected population. It is clear that 

when two controls are applied the drastic change in the population of infected 

individuals is seen more than in the application of a single control. Hence to control 

the pandemic there is a need for the application of more than one control measure. 

However, the economic implication of combining and applying more than one control 

measure must be taken into consideration. 

 

Figure 9. Comparing the dynamics of the infected population without control and with 

control 𝑢1, 𝑢2&𝑢3. 

Figure 9 compares the effect of the three controls, i.e.  𝑢1,   𝑢2&𝑢3on the dynamics of 

the infected population. The application of all the control measures in the partitioned 
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susceptible population leads to the desired outcome. The effect is seen clearly.  Hence 

to obtain the desired result, there is a need for awareness, and not only vaccinating the 

susceptible population but making sure that full dosage is given. 

These results show the significant impact of awareness about COVID – 19 and the 

vaccination process, other models investigate the optimal control of vaccination or the 

restriction measures applied to susceptible classes which do not reflect the social 

awareness about infections.     
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CHAPTER 5 

Conclusion 

In this thesis, Caputo – Fabrizio's sense is used to develop the fractional-order COVID 

-19 model, which consists of five compartments: susceptible unaware compartment, 

susceptible aware compartment, susceptible vaccinated compartment, infected 

compartment, and recovered compartment. Three types of susceptible classes are 

studied in this paper: a susceptible class of an unaware population with awareness 

control is detected, a susceptible class of an aware population with vaccine control is 

found, and a susceptible class of the vaccinated population with optimal vaccination 

control is found. The calculation of equilibrium points leads to the determination of 

the basic reproduction ratio. The model's properties of existence and uniqueness are 

confirmed. Also, the optimal control formula was developed and consequently 

analyzed the presence of an optimal solution was achieved. The biological significance 

of fractional order modeling is established by the use of numerical simulations, which 

are conducted. By utilizing a variety of control functions, it is evident that combining 

the three control methods has a significant impact on decreasing the number of infected 

individuals. This study approach incorporates both vaccination and awareness into 

consideration about the COVID-19 epidemic. For further studies, it’s suggested to 

utilize the environmental conditions with the awareness of the susceptible class to see 

the impact of optimal control on such a model. 
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