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Abstract 

Noise Factor Analysis in Medical Imaging 

Mirzaei, Omid 

Ph.D., Department of Biomedical Engineering 

January, 2023, 62 pages 

 

The statistical properties in various medical images demonstrate uncorrelated noise 

fluctuations. The signal noise fluctuations are generally due to physical imaging 

processes and have nothing to do with the tissue textures. Adding the noise types (e.g., 

quantization, electronics, photon) usually degrade medical images. The noise variation 

is usually assumed to be additive with zero-mean, constant variance Gaussian 

distribution. However, close consideration of different medical images indicates the 

need for better model representation to minimize the noise that can be vital in decision-

making. This research pro-posed a probabilistic method to represent all real-type noise 

in general medical images. The method aims to cover most classical statistical models 

such as Gaussian, lognormal, Rayleigh, Weibull, and Nakagami without a prior 

examination to test for fitness. The proposed model was applied to actual clinical 

images to test the performance of the noise originating from the physical processes. 

The noise is assumed to be additive white Gaussian type with a zero mean and constant 

variance. The theoretical literature indicates that a non-linear function can better 

represent noise. This research helps to form a relationship between the image intensity 

and the noise variance that yields the fitting parameters in the introduced nonlinear 

function. The validity of the proposed method was proved mathematically and tested 

using the well know Kolmogorov–Smirnov (K-S) and Akaike Information Criteria 

(AIC) tests. The method was successfully applied to various clinical images such as 

magnetic resonance, x-ray, and panoramic images. The model's performance is com-

pared with the classical models using root mean squared error (RMSE), relative error 

(RE), andR2as the evaluation matrices. The presented model has outperformed all 

classic models. 

Keywords: image noise, medical image, noise distribution, probabilistic noise model, 

statistical noise 
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Özet 

Tıbbi Görüntülerde Gürültü Analizi İçin Güçlü Bir Olasılık Modeli 

Mirzai, Omid 

Doktora, Biyomedikal Mühendisliği Bölümü 

Ocak, 2023, 62 sayfa 

 

Çeşitli tıbbi görüntülerdeki istatistiksel özellikler, ilişkisiz gürültü dalgalanmalarını 

gösterir. Sinyal gürültü dalgalanmaları genellikle fiziksel görüntüleme işlemlerinden 

kaynaklanır ve doku dokularıyla hiçbir ilgisi yoktur. Gürültü türlerinin eklenmesi (ör. 

kuantizasyon, elektronik, foton) genellikle tıbbi görüntülerin kalitesini düşürür. 

Gürültü değişiminin genellikle sıfır ortalamalı, sabit varyanslı Gauss dağılımı ile 

toplamsal olduğu varsayılır. Bununla birlikte, farklı tıbbi görüntülerin yakından 

incelenmesi, karar vermede hayati öneme sahip olabilecek gürültüyü en aza indirmek 

için daha iyi model sunumuna ihtiyaç duyulduğunu gösterir. Bu araştırma, genel tıbbi 

görüntülerdeki tüm gerçek tip gürültüleri temsil etmek için olasılıksal bir yöntem 

önermiştir. Yöntem, önceden uygunluğu test etmek için bir inceleme yapmadan 

Gaussian, lognormal, Rayleigh, Weibull ve Nakagami gibi klasik istatistiksel 

modellerin çoğunu kapsamayı amaçlar. Önerilen model, fiziksel süreçlerden 

kaynaklanan gürültünün performansını test etmek için gerçek klinik görüntülere 

uygulandı. Gürültünün, sıfır ortalamalı ve sabit varyanslı toplamsal beyaz Gauss tipi 

olduğu varsayılır. Teorik literatür, doğrusal olmayan bir fonksiyonun gürültüyü daha 

iyi temsil edebileceğini göstermektedir. Bu araştırma, tanıtılan doğrusal olmayan 

fonksiyonda uydurma parametrelerini veren görüntü yoğunluğu ile gürültü varyansı 

arasında bir ilişki oluşturmaya yardımcı olur. Önerilen yöntemin geçerliliği 

matematiksel olarak kanıtlanmış ve iyi bilinen Kolmogorov-Smirnov (K-S) ve Akaike 

Bilgi Kriterleri (AIC) testleri kullanılarak test edilmiştir. Yöntem, manyetik rezonans, 

röntgen ve panoramik görüntüler gibi çeşitli klinik görüntülere başarıyla uygulandı. 

Modelin performansı, değerlendirme matrisleri olarak ortalama hatanın karesi 

(RMSE), bağıl hata (RE) ve R2 kullanılarak klasik modellerle karşılaştırılır. Sunulan 

model, tüm klasik modellerden daha iyi performans gösterdi. 

Anahtar Kelimeler: görüntü paraziti, tıbbi görüntü, gürültü dağılımı, olasılıksal 

gürültü modeli, istatistiksel gürültü 
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CHAPTER I 

 

Introduction 

 

In this chapter, some concepts and definitions are introduced that support our 

work through this dissertation. These discussions cover a wide range of definitions, 

from medical imaging to some probability concepts. 

 

Preliminary 

In order to diagnose, monitor, or treat medical disorders, the term "medical 

imaging" refers to a number of different technologies that are used to view the 

human body. Each technology type provides distinct information regarding the part 

of the body being investigated or treated in relation to potential disease, injury, or the 

efficacy of medical treatment. These medical technologies such as Magnetic 

resonance imaging (MRI), Computed tomography (CT), Xray, Ultrasound and etc. 

are increasingly used by the medical community for the diagnosis, staging, and 

treatment of many diseases as a result of the intrinsic advancement in low-cost 

imaging and computational technologies. In addition to being a prospective subject 

for atomic physics study, the field of medical imaging is quickly becoming a vital 

diagnostic tool in both conventional and cutting-edge hospitals around the globe 

(Zhou et al., 2021; Chen et al., 2022).  

In order to better diagnose any pathological symptoms, medical images must 

be free of any artifacts and noises that do not cause serious consequences to the 

patient. One of the most important factors in the field of medical image processing is 

to reduce artifacts and noise as much as possible without damaging the main 

information of the image. 

 

Noise in biomedical image processing  

In this section, some definitions are introduced about the noises that can be 

seen in the medical area. Noise in biomedical signals: Any unwanted signal that 

tampers with the signal of interest is considered biomedical noise. Indeed, the noise 

is an unwanted interruption in the original data, and this can be seen in any 

modification to the original image or signal (Ferdjallah & Barr, 1994). For instance, 

consider the following figure that determines the effect of noise in the original signal: 
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Figure 1. 

Effect of noise in signals  

 

 

 

As it can be seen in the above figure, the original signal can be expressed as a 

function of x, where x denotes the location on the horizontal axis. By implementing 

the noise on this signal, the result will be another signal where any value can again 

be expressed in terms of x. Here, V(x) denotes the value of the signal at x, after 

which the noise is applied. Therefore, the modified signal V(x) can be written as the 

original value u(x) plus the effect of noise at X or N(x) (Sundararaj, 2019).  

Noise comes from a variety of sources. Some of the sources of noise are heat 

produced by the electronics, static electrical signals in the surroundings, and 

movement between the subject and the sensors (Kher, 2019). 

Noise in medical imaging Undesired information that taints the image is 

referred to as noise. Noise is an important factor that degrades the quality of medical 

images and is known as the random change in the optical density of the image (Mohd 

Sagheer & George, 2020; Prabu et al., 2019). The most significant impact of noise in 

medical imaging is the determination of observed object boundaries. This may make 

diagnostic characterization or object size more challenging (Karimi et al., 2020). 

In addition, these images are grayscale, and the effect of the noise can be seen 

as a modification in the gray level. In other words, the noise can affect the image by 

interfering with the gray level of some pixels, and as a result, a blurred image can be 

seen. The gray level of the image is categorized and scaled with a real number in the 

interval [0, 255]. This number indicates the brightness of the specific pixel. The 

minimum gray level is 0, and the maximum gray level depends on the digitalization 

depth of the image. For an 8-bit-deep image, it is 255. In a binary image, a pixel can 
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only take on either the value 0 or the value 255. By this explanation, the noise can be 

seen as a modification of the original image's colors (gray level) in the blur image 

(Nitta et al., 2019). 

The smoother the image, the less noise there is (Mohd Sagheer & George, 

2020). Information on the type of noise present in the original image is crucial during 

the denoising process. The nature of the noise can be expressed with different 

methods. The statistics tools may can be considered to determine the noise. In this 

case, the noise can be characterized by the probability distribution related to the 

defined random variable. These concepts briefly introduced in the next section.  

Medical diagnosis accuracy can be affected by noise in medical images, and 

as a consequence the diagnostic value of the imaging modality is questioned. It was 

mentioned before that the noise can be expressed by probability distribution function. 

Thus, the different medical imaging devices with their related noise distribution can 

be listed as follows: 

 

1) X-Ray: Gaussian and Poisson (Kiran et al., 2019; Göreke, 2023) 

2) CT: Gaussian, Quantum noise (Heylen et al., 2022; Zhang & Wang, 

2022) 

3) Positron emission tomography (PET): Gaussian (Yu & Muhammed, 

2016) 

4) single-photon emission computerized tomography (SPECT): Gaussian 

(Nikolov et al., 2022) 

5) MRI: Gaussian, Rician, Rayleigh (Elaiyaraja et al., 2019; Pankaj et al., 

2021; Zhang et al., 2022) 

6) US: Gaussian, Sound waves (Wang et al., 2022; Guan et al., 2021) 

The technique used to remove the noise from the image depends on the type 

of image and the noise model. Several techniques exist to filter noise without 

impairing crucial aspects of images (Pal et al., 2017). 
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Some definitions and concepts in probability 

In this section, some definitions and concepts are introduced about 

probability and statistics. The onset of the probability concept can be traced back to 

gambling games. Every day, people face unexpected events with uncertain results. 

Here, the main deal and purpose is statistical experiments with many possible 

outputs. If the collect of all possible outcomes of a single statistical experiment into a 

set is considered, then the resulting set is called sample space. If the noise is 

interpreted as a change in the gray level of all pixels in an image, then the sample 

space is all pixels in the original image. An event is defined as a subset of sample 

space. In this way, the events are a set of sample points that involve some specific 

happenings. 

 

When there is a discussion about the probability, our purpose is the 

probability of an event. The probability system is an axiomatic system that assigns a 

numerical value to each event. The probability of an event is a real number between 

zero and one that determines its possibility of occurring. Certain events have a 

probability of 1, and impossible events have a probability of zero. There are three 

axioms in probability that are listed here: 

1) The probability of the sample space should be equal to one. 

2) The probability of an event is a numerical value between zero and one. 

3) If 𝐴1, 𝐴2, . . . , 𝐴𝑛 are mutually exclusive events (i. e. 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖 ≠ 𝑗) then 

𝑃(∪ 𝐴𝑖) = ∑ 𝑃(𝐴𝑖)
𝑛
𝑖=1 . 

With the aid of these axioms, It can be seen that the probability of an event, if all 

sample points have the same chance of occurring, is equal to the cardinality of the 

event over the cardinality of the sample points. The cardinality of the set is simply 

defined as the number of elements in that set. Therefore, the probability of getting 

heads in the experiment of tossing a coin is equal to half if the coin is unbiased.  

In addition, the definition of conditional probability arises from considering the 

happening of an event in relation to another event. To illustrate the situation, one 

may consider the probability of bringing an umbrella. This event is contingent on the 

outcome of other events. For instance, if the forecast indicates a rainy day, then the 

probability of bringing an umbrella is increased. The conditional probability can be 

defined as follows: the expression on the left is read as “the probability of A given 

B”. 
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𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
,       𝑃(𝐵) ≠ 0 

The multiplicative rule will result if both sides of the conditional probability are 

multiplied by P (B). Roughly speaking, two events are independent if the occurrence 

of one does not affect the occurrence of another. In other words, two events are 

independent if the following condition is satisfied: 

𝑃(𝐴|𝐵) = 𝑃(𝐴) & 𝑃(𝐵|𝐴) = 𝑃(𝐵) → 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴). 𝑃(𝐵) 

This condition can be generalized to many events. i.e., the events 𝐴1, 𝐴2, … , 𝐴𝑛  are 

independent if and only if 𝑃(⋂ 𝐴𝑖
𝑛
𝑖=1 ) = ∏ 𝑃(𝐴𝑖)

𝑛
𝑖=1 .  

Furthermore, numerical value can be assigned to each element of sample space 

(sample points). This corresponding mapping is called the random variable. Two 

types of random variables can be considered. 1) discrete: If sample points are 

countable or finite, then the corresponding random variable is discrete. In this case, 

the gap between the sample points can be found. 2) continuous: If the sample space 

is homomorphic with the real-valued interval and the sample points are uncountable, 

then the random variable is continuous.  

For example, in the coin toss experiment, the sample space contains two elements, or 

sample points, and 𝑆 = {𝐻𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙}. In this case, the corresponding random variable 

is discrete, and any two numbers can be assigned to express the sample points. As an 

example of a continuous random variable, consider the experiment in which a 

computer selects a random real number through the interval [0, 1]. Now the sample 

space contains all real numbers in that interval, which is uncountable. It is obvious 

that there is no bijection between the integers and all real numbers in [0, 1]. In this 

case, the random variable can be defined as a value that has occurred.  

Another related topic is the probability distribution function (PDF) or probability 

mass function (PMF). Here, the probability of each sample point is plugged. The 

PDF determines how the probability is distributed for each sample point. In the 

discrete case, the PDF is a function, let say 𝑓𝑋(𝑥) with the following properties: 

1) 𝑓𝑋(𝑥𝑖) = 𝑃(𝑋 = 𝑥𝑖) 

2) 0 ≤ 𝑓𝑋(𝑥) ≤ 1 

3) ∑ 𝑓𝑋(𝑥) = 1𝑥  

The variance of a given random variable can be defined as an average of 

(𝑥𝑖 − 𝜇𝑋)2. Thus,  
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𝑉𝑎𝑟(𝑋) = 𝜎𝑋
2 = ∑(𝑥𝑖 − 𝜇𝑋)2 . 𝑓𝑋(𝑥𝑖) 

This measurement determines the average of the squared deviations of a 

random variable. Here, the expected value is subtracted from each value of the 

random variable and then square it and multiply it by the corresponding probability. 

Similarly, the PDF of the continuous random variable can be defined as well. Here, it 

is important to care about the probability of one specific value. Due to the size of the 

sample space, which is even uncountable, the probability of one specific value being 

chosen will be zero. Therefore, for a continuous random variable, PDF cannot 

represent the probability of that sample point, and instead, the probability of one 

interval has a meaning. The PDF of a continuous random variable has the following 

properties: 

1) 𝑃(𝑎 < 𝑋 < 𝑏) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑏

𝑎
 

2) 0 ≤ 𝑓𝑋(𝑥) ≤ 1 

3) ∫ 𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
= 1 

Now, let us consider the previous example of a continuous random variable. In that 

statistical experiment, a random number would be selected from the interval [0, 1]. 

Let X represent the number that occurred, and all numbers in the given interval have 

the same chance of occurring. As a result, the distribution function will be uniform, 

and the probability of each sample point will be equal. Since the integral of PDF over 

the real line should be equal to one, the given PDF should be equal to 0.5 in the 

interval [0, 1] and zero elsewhere. It is notable that the integral expresses the area 

under the curve in the given region. The following figure determines the situation: 

 

Figure 2.  

Diagram of Continuous distribution function 
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Can define the expected value and variance of this random variable with the 

aid of integration instead of summation. The result will be  

𝐸(𝑥) = 𝜇𝑋 = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥

∞

−∞

 

𝑉𝑎𝑟(𝑋) = 𝜎𝑋
2 = 𝐸(𝑥 − 𝜇𝑋)2 = ∫ (𝑥 − 𝜇𝑋)2𝑓𝑋(𝑥)𝑑𝑥

∞

−∞

 

The cumulative probability of any given function below, above, or between 

two points is expressed by a cumulative distribution function (CDF). The CDF tracks 

the cumulative probabilities up to a specific threshold, much like a frequency table 

counts the total frequency of an occurrence up to a certain value. The cumulative 

distribution function is denoted by 𝐹𝑋(𝑥), and the related function for discrete and 

continuous random variables is defined as 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑓𝑋(𝑥𝑖)

𝑥𝑖≤𝑥

 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓𝑋(𝑡)𝑑𝑡

𝑥

−∞

 

The idea of a probability distribution function can be generalized to higher 

dimensions. Indeed, a function can be considered a machine, rule, or mapping of 

some inputs to some outputs, and the PDF is not an exemption. Most uncertain 

happenings in real life can be expressed by more than one random variable. 

Therefore, the input of the PFD can be expressed as an ordered pair of real numbers, 

and the given function in this case is called the joint probability distribution.  

Therefore, the joint probability distribution function of two continuous 

random variables can be expressed as a function 𝑧 =  𝑓𝑋,𝑌 (𝑥, 𝑦) with the shape of a 

surface. This function satisfies the following properties: 

1) 𝑃((𝑥, 𝑦)𝜖𝑅) = ∬ 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝐴,       𝑅 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖𝑛 ℝ2
𝑅

 

2) ∫ ∫ 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝐴
∞

−∞
= 1

∞

−∞
 

3) 𝑓𝑋,𝑌 (𝑥, 𝑦) ≥ 0 

Note that, due to the nature of a continuous random variable, the probability 

of one specific point in 2-dimensional space should be equal to zero. Here, it is 

possible to discuss the probability of one region (instead of an interval in one 
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dimension). Similarly, the expected value of X and Y, can be defined respectively, as 

follows: 

𝐸(𝑋) = ∫ ∫ 𝑥. 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝐴,   
∞

−∞

∞

−∞

𝐸(𝑌) = ∫ ∫ 𝑦. 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝐴,
∞

−∞

∞

−∞

 

Since the variance can be interpreted as an average of the squared deviation 

of a random variable from the mean, the variance of X is defined as 

𝑉𝑎𝑟(𝑋) = 𝜎𝑋
2 = 𝐸(𝑋 − 𝜇𝑋)2 = ∫ ∫ (𝑥 − 𝜇𝑋)2. 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝐴,   

∞

−∞

∞

−∞

 

Another important concept is covariance, which shows the relationship 

between two random variables. Indeed, the average of the production of the deviation 

of X from the mean of X and the deviation of Y from the mean of Y is covariance. 

This parameter's normalization is the correlation coefficient, which is done by 

making the constant between -1 and 1. Therefore, the covariance and correlation 

coefficients are respectively defined as 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸((𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌)

= ∫ ∫ 𝑥𝑦𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝐴
∞

−∞

∞

−∞

− ∫ ∫ 𝑥. 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝐴 ∫ ∫ 𝑥. 𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝐴,   
∞

−∞

∞

−∞

 
∞

−∞

∞

−∞

 

 

𝜌𝑋,𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

√𝑉𝑎𝑟(𝑋)√𝑉𝑎𝑟(𝑌)
=

𝜎𝑋,𝑌

𝜎𝑋𝜎𝑌
 

As mentioned before, the correlation coefficient has a value between -1 and 

1. This value determines the linear relationship between X and Y. In other words, as 

long as the absolute value of this constant is close to one, a strong linear relationship 

between two random variables can be considered. The marginal distributions can be 

defined by the integrals and can also be assumed as a PDF of X and Y. Thus, the 

following definitions for marginal distribution with respect to X and Y, can be 

considered respectively as 

ℎ𝑋(𝑥) = ∫ 𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑦,    𝑔𝑌(𝑦) = ∫ 𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑥  

X and Y as random variables are independent if the multiplication of 

marginal distribution functions yields the joint probability distribution. In this case, 

the covariance of X and Y will be equal to zero. However, the inverse is not correct, 

i.e., if the covariance of X and Y is equal to zero, then it is not necessary that this 
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leads to the independence of X and Y. This property is used several times in this 

thesis.  

In the study of probability, one may face different distributions with different 

properties. However, some distributions have the same attitude, and can be unified as 

a single formula. For example, the bell-shaped functions arise severally in the 

investigation of PDF. The bell-shaped distribution with a symmetrical shape and 

maximum at the expected value is called "normal distribution," or more generally, 

"Gaussian distribution." The given PDF can be formulated as  

𝑓𝑋(𝑥) =
1

𝜎√2𝜋
𝑒−

1
2

(
𝑥−𝜇

𝜎
)

2

 

In this case, 𝜇 represents the mean or expected value, and 𝜎 represents the 

standard deviation. The form of this function shows how changes in the value of the 

mean or standard deviation can affect the behavior of PDF. Indeed, the Guassian 

distribution determines a family of bell-shaped distributions with two parameters 𝜇 

and 𝜎. The following figure shows the value of Guassian PDF with different means 

and variances: 

 

Figure3. 

The Gaussian distribution function with different standard deviations  
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Let us now examine the relationship between these distributions and noise. 

As it mentioned before, the medical images are grayscale, and the noise can affect 

the gray level of each pixel of the image. In this case, one can think of an original 

image's pixels as a sample space. Therefore, there is a continuous random variable 

that determines the level of gray of each point. This number ranges between 0 and 

255 in an 8-bit-deep image. In the next figure, the image with 4 pixels is considered, 

and the effect of noise can be seen as modifying the level of gray for these pixels.   

 

Figure4.  

Windows and gray -level modification  

  

 

Based on practical experiments, the likelihood of changing the level of gray 

of a given pixel can be discussed. The probability of changing the pixel's color can 

follow the Gaussian distribution. For instance, if the Gaussian distribution with a 

mean of 145 is assumed, then the probability of the color being affected by noise 

with the code of 145 (close enough to pure black) is higher than for other colors. In 

this case, the noise is Gaussian, or that the noise is distributed with Gaussian PDF. 

Therefore, the distribution function determines the attitude of noise in the original 

image.  

It is remarkable that the noise can affect the original image, and the 

distribution of X as a grey level of image can be expressed with different PDFs. To 

determine the type of distribution of the studied noise, finding the constants of these 

distributions is necessary. One of these methods will be introduced in the next 

section. In addition, considering the shape of the distribution and related parameters 

is important. Another considerable distribution of noise is the Rayleigh distribution, 

which is named after the British mathematician Lord Rayleigh. The PDF for x > 0 is 

given as a multiplication of x as a polynomial with the exponential function. i. e.  
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𝑓𝑋(𝑥) = {
𝑥

𝜎2
𝑒𝑥𝑝 (−

1

2
(

𝑥

𝜎
)

2

)                𝑥 > 0,    

0                                              𝑥 < 0.

     

The Rayleigh distribution with different values for a is plotted in the next 

figure. For the case a = 1, the shape is similar to the Gaussian distribution, which is 

skew-right. In the given figure, the mean is greater than the mode and lies to the left 

of the mode. The mean and variance can be calculated as follows:  

𝐸(𝑋) = ∫ 𝑥.
∞

0

𝑥

𝜎2
𝑒𝑥𝑝 (−

1

2
(

𝑥

𝜎
)

2

) 𝑑𝑥 = 𝜎√
𝜋

2
 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))
2

=
𝜎2(4 − 𝜋)

2
 

Figure 5. 

 Rayleigh distribution with different standard deviations 

 

 

 

This distribution is part of a more general family of distributions named the 

Weibull distribution. More parameters and variables could be considered to 

generalize the Rayleigh distribution. 

The Poisson distribution is another distribution whose function is important 

in the study of image noise. This distribution is discrete. However, the continuous 

type can be generalized and derived from this formula. This function has a parameter 

called lambda, which describes the mean of the distribution. The PDF of this random 

variable is given by 

𝑃(𝑋 = 𝑥) = 𝑓𝑋(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
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Here, x follows the Poisson distribution. The discrete outcome is the number 

of times an event occurs. This distribution is used to predict or explain the number of 

events occurring within a given interval of time or space. The interval can be any 

specific amount of time or space, such as 7 square inches or 2 days. The individual 

events happen at random and independently here, and the random variable should 

satisfy this condition. The graph of this distribution for different lambdas is sketched 

in the next figure. The peak of the function describes the most probable number in 

the figure, which is called the mode. For non-integer lambda, the mode is the closest 

integer smaller than lambda. For integer lambda, two modes can be considered, and 

the modes are lambda and lambda minus one. For the big lambda, the attitude of this 

distribution and the Gaussian distribution will be the same. i.e., for a large enough 

lambda, the distribution is bell-shaped. Both the mean and variance of this 

distribution are equal to the parameter lambda. This distribution can be used as an 

approximation of the binomial distribution as well. 

Figure 6. 

Poison distribution with different lambda  

 

In order to extend the Poisson distribution to the continuous PDF, the 

factorial of the natural number should be extended. The generalization of the 

factorial operator of any natural number is the gamma function, which was 

introduced by Euler. Indeed, different approaches can only yield one unique 

extension of the factorial function with some specific properties. The definition of 

the Gamma function is given by 

Γ(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡       
∞

0

    𝑡 > 0 
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This function can be generalized to any complex number with a positive real 

part. Using the integral by part leads to the following interesting property: 

Γ(𝑥 + 1) = 𝑥Γ(𝑥) 

It is easy to see that Γ(1) = 1, then, by using the recurrence formula, the 

factorials of natural numbers can be derived. i. e., 

Γ(2) = 1. Γ(1) = 1! ,   Γ(3) = 2. Γ(2) = 2!,

Γ(4) = 3. Γ(3) = 3!, … Γ(𝑛) = (𝑛 − 1)!  

After using some trigonometric substitution and applying the polar coordinate 

in this integral, the value of Γ (
1

2
) can be evaluated and Γ (

1

2
) = √𝜋. 

In this section, a few types of PDFs were introduced. However, there are 

numerous distributions that result from various aspects of research. One critical 

question is determining the unknown parameters of PDF with the aid of given 

observations. i.e., if the type of distribution can be estimated, such as Gaussian or 

Rayleigh, then based on the given observation, find the unknown parameters as the 

mean or standard deviation. One of the essential methods for finding the parameters 

of an estimated PDF is MLE, or maximum likelihood estimation, which is introduced 

in the next section (Bertsekas & Tsitsiklis, 2002). 

 

Maximum Likelihood Estimation (MLE) 

In this section, the maximum likelihood estimation method is described and a 

simple example is investigated to help understand the procedure (Meijer et al., 2019). 

In the study of noise in image processing, the frequency of noise for different levels 

of grey can be plotted. This graph shows the frequency of noise for each grey level as 

a histogram graph. Based on the shape of the distribution, the type of distribution can 

be approximated. In the next step, the parameters of distribution should be 

determined. For instance, suppose a simple sampling of 10 observations from some 

statistical experiment The following figure shows the dot plot of these observations. 

Here, X denotes the random variable, which can be interpreted as noise at the grey 

level. For instance, X = 9 indicates that noise at grey level is 9. In reality, the number 

of observations is not that small, of course.  
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Figure7. 

The dot plot diagram of 10 observations  

 

 

The first step is choosing the model of distribution. This part is very important 

and crucial. At the very least, it should be clear about the model to utilize. This 

procedure needs some investigation about the domains of data. The observations can 

be seen to be accumulated at one specific point, with some scattered values at the right 

and left sides of the center. This form of distribution suggests the bell-shaped form or 

Gaussian distribution. However, making this sort of decision on the fly based only on 

10 observations is ill-advised, given that the observed values were constructed by a 

Gaussian distribution. 

As it was mentioned before, the Gaussian distribution has two significant 

factors. The mean and standard deviation of the Gaussian distribution determine the 

shape of this PDF. The maximum likelihood estimation determines these factors such 

that the joint probability distribution of observations will be maximized. Here, since 

there is a produced of values using a Gaussian distribution generator, it can be seen 

that  𝜇 = 10, 𝜎 = 2.25, so 𝑋 ∼ 𝑁(10,2.25). (i. e., 𝑋 follows the Gaussian (Normal) 

distribution with 𝜇 = 10, 𝜎 = 2.25.)  
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Figure 8. 

The 10 data points and possible Gaussian distributions from which the data 

were drawn(f1 is normally distributed with mean 10 and variance 2.25 this is also 

denoted f1 ∼ N (10, 2.25). f2 ∼ N (10, 9), f3 ∼ N (10, 0.25) and f4 ∼ N (8, 2.25). The 

goal of maximum likelihood is to find the parameter values that give the distribution 

that maximize the probability of observing the data)

 

To understand the MLE method, let us examine three different observations 

with a Gaussian distribution. Assume that the numbers 9, 9.5, and 11 are our 

observations with a Guamanian distribution. Moreover, assume that they are 

independent. i.e., their joint probability distribution is the same as the product of their 

marginal distributions. Therefore, their joint probability distribution can be evaluated 

as follows: 

𝑃(𝑋1 = 9, 𝑋2 = 9.5, 𝑋3 = 9; 𝜇, 𝜎 )

= 𝑃(𝑋1 = 9; 𝜇, 𝜎 )𝑃(𝑋2 = 9.5; 𝜇, 𝜎 )𝑃(𝑋3 = 11; 𝜇, 𝜎 )

=
1

𝜎√2𝜋
𝑒−

1
2

(
9−𝜇

𝜎
)

2 1

𝜎√2𝜋
𝑒−

1
2

(
9.5−𝜇

𝜎
)

2 1

𝜎√2𝜋
𝑒−

1
2

(
11−𝜇

𝜎
)

2

 

 

Now, the mean and standard deviation should be calculated, such that the 

given joint probability distribution will be the maximum. To find the maximum of 

this expression, the partial derivative of it can be calculate with respect to the mean 

and standard deviation and make it equal to zero. In this way, the critical point of this 
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function can be found. Since the calculation of the derivative with the aid of natural 

logarithm is simpler, let us calculate the logarithm of both sides. 

𝑙𝑛(𝑃(𝑥; 𝜇, 𝜎)) = 𝑙𝑛 (
1

𝜎√2𝜋
) (−

1

2
(

9 − 𝜇

𝜎
)

2

−
1

2
(

9.5 − 𝜇

𝜎
)

2

−
1

2
(

11 − 𝜇

𝜎
)

2

)

= −3𝑙𝑛(𝜎) −
3

2
𝑙𝑛(2𝜋) −

1

2𝜎2
((9 − 𝜇)2 + (9.5 − 𝜇)2 + (11 − 𝜇)2) 

Now if the partial derivative respect to mean is taken then 

𝜕

𝜕𝜇
𝑙𝑛(𝑃(𝑥; 𝜇, 𝜎)) =

1

𝜎2
(9 + 9.5 + 11 − 3𝜇) 

To find the critical point, The derivative should be equal to zero or undefined. 

Here, making the derivative equal to zero leads to the value of this parameter (mean)  

𝜇 =
9 + 9.5 + 11

3
= 9.833 

 

Therefore, the MLE method is used to estimate the parameters of the guessed 

distribution. As mentioned, the joint probability of given observations can be 

expressed as a product of their probabilities by summing the independence of 

random variables. The result will be an equation with unknown parameters, and a 

partial derivative helps find their critical points. The parameters are found based on 

maximizing the given joint probability distribution. 

 

Another important issue in the study of noise in medical images is filtering. 

After determining the type of noise in medical images, the noise should be removed. 

There are three methods introduced in the next section. The three methods are 

median filtering, mean filtering, and the combination of these two methods, hybrid 

filtering.  

 

Noise Extraction Methods, Medical Image Filtering Methods 

As it was mentioned before, the noise is a source of interference in medical 

images. Denoising results in a sharp and clear medical image after extracting the 

noise. This can be done with the aid of filtering. There are two types of medical 

image filters based on the format of the filtering function: linear and non-linear 

(Punarselvam & Suresh, 2019; Denysiuk & Prokopenko, 2020). Despite nonlinear 

filters, there is a matrix representation for linear or convolution filters. Some 
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examples of nonlinear filters are threshold, equalization image, and median filters. In 

this section, the filtering of medical images is studied with some examples.  

Median filtering is one of the nonlinear techniques used in medical image 

filtering to eliminate noise from the images. This technique is popular because it 

successfully reduces noise while maintaining the edges. It works very well to 

eliminate "salt and pepper" noise. The median filter operates by going pixel-by-pixel 

across the image and replacing each value with the median value of nearby pixels. 

The entire image can be meshed and divided into pixels or slides, yielding patterns 

known as "windows." A piece of data that is exactly in the middle of an observation 

when they are sorted is known as its median. In other words, the median is greater 

than half and less than the rest of the observations. Therefore, the median of the grey 

level can be computed by sorting the observations of the neighbors into numerical 

order and replacing them in their place (Erkan et al., 2020).  

The following figure determines the procedure of the median filter in an array 

of 10 observations. The median of a group of three observations in each neighbor is 

calculated and transformed to the new array. For the initial and terminal values in the 

array, the beginning observation is repeated to progress the method. There are two 

distinguishing features in the given figure. First, the given array is in 1-dimension, 

and extending it to 2-dimensions can be controversial due to the debates on 

neighbors as 8 pixels. Second, the values of boundaries, which were repeated in the 

given figure and can be extended and replaced by, for example, 0, or any assumed 

value.  

 

Figure 9. 

median filter for the array of observations  
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The results for 2D median image filtering with a matrix of 3 by 3 and two 

different boundary strategies are given in the following figure. 

 

Figure 10. 

 median filter for the matrices of observations  

 

 

 

Let us talk about the reason for naming this filter "salt and paper noise 

removing." At first glance, observations with significantly large or small values in 

comparison to their neighbors are eliminated. Indeed, the effects of salt (pure white) 

or paper (pure black) in the original image can be expressed as a window with a 

significantly large or small value in comparison to its neighbors and are removed by 

this filter. In contrast with this filter, a "smooth" image can be obtained by equating 

the values of neighbors. This filter is named the "mean" (or "average") filter. The 

same procedure should be implemented to lead to the method. i.e., this time the 

average or mean of the neighbors should be calculated instead of the median, and the 

output should normalize the intensity variation between neighboring pixels. The 

following figure shows the effect of this filter on some observed data (Sonali et al., 

2019). 
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Figure 11. 

mean filter for the matrices of observation  

 

 

Figure 12. 

 effect of median filter in given image  

 

 

 

Figure 13. 

 effect of mean filter in given image  
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Let's fix the value of n, the dimension of the matrix that would be modified 

by filtering. 𝑀𝑛(ℝ) is a set of all square matrices with real numbers as elements. A 

given set with two operators, i.e., matrix multiplication and the scalar product of real 

numbers, is a vector space. That means square matrices with the fixed dimension n, 

with the given operators, have full-filled properties of vector space. Because 𝑀𝑛(ℝ) 

is a vector space, this modification in the values of the matrix can be interpreted as a 

transformation from Mn(R) to itself. If the transformation is linear, then it can be 

represented by a matrix. The noise distribution can be used to express the 

transformation matrix. Instead of applying the multiplication of matrices in the given 

vector space, the special multiplication, convolution, could be used. Therefore, many 

filtering methods arise in the order of noise distribution as Gaussian filters. However, 

each of these filtering methods, specifically for medical images, has its own 

advantages and disadvantages. There are many different filtering methods, such as 

the Sobel filter for edge detection, the Prewitt filter, the hybrid method, which is a 

combination of the mean and median methods, is used in this thesis. There are many 

benefits to this choice, such as following the Gaussian distribution due to the central 

limit theorem. 

Roughly speaking, the central limit theorem states that if a sufficiently large 

number of samples are selected from the population with a mean of 𝜇 and a standard 

deviation of 𝜎 then the distribution of means of the samples follows the Gaussian 

distribution with the same mean and standard deviation of 
𝜎

√𝑛
. Here, 𝑛 denotes the 

number of samples, and repetition is allowed. As a result, if the grey level of pixels 

in the input images follows any distribution with a mean of 𝜇 and a standard 

deviation of 𝜎, then after applying the mean filtering, the distribution of the same 

random variable follows the Gaussian distribution with the same mean. 

The studied model of filtering in this thesis is the hybrid method, which is a 

combination of mean and median filter methods. The hybrid model determines the 

required value after applying the median value to the individual pixels in the 

window. Details of the processing stages are to follow. 

The median value is determined by considering an odd-sized rectangular sub-

image window. The simple consideration would be to select a sub-image window 

size of 3 × 3. The construction of the median filter s completed by taking the vectors 

within the window and sorting the magnitudes. The operation is repeated by moving 
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through the image pixel by pixel, and the median value of neighboring pixels 

replaces the pixel value under consideration. The calculation is performed as follows: 

𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑠,𝑡)𝜖𝑆𝑋𝑌
{𝑔(𝑠, 𝑡)} 

The variable 𝑆𝑋𝑌 denotes the coordinates in a rectangular sub-image window, 

and the Median refers to the value of the window. 

The sub-image window with coordinates 𝑆𝑋𝑌 determines the average and the 

median values used during the noise removal process. This process improves the 

accuracy of the pixel values and affects the neighborhood pixels. The moving 

window enables the total pixel values to be more accurate. The average pixel values 

can be determined as follows: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑠,𝑡)𝜖𝑆𝑋𝑌
{𝑔(𝑠, 𝑡), 𝑀𝑒𝑑𝑖𝑎𝑛} 

The sub-image window is denoted with the variable 𝑆𝑋𝑌, and  

𝑔(𝑠, 𝑡) represents the pixel values within the sub-image. A subwindow size of 3 × 3 

has a total of 9 average pixel values. 

The additional accuracy of the hybrid model is due to the use of the mean 

filter operating on all average values of the sub-image window. The operation adds 

more accuracy to the pixel values to replace the existing noisy values. The mean 

pixel values are calculated as follows: 

𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 =
∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒𝑖

𝑛
𝑖=1

𝑁
, 

Where 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠. 

To compare the accuracy of filter methods, some quantities are defined. One 

of the most famous scales is the mean square error, or MSE. This quantity describes 

the average of the square of the absolute error, the difference between the original 

value and the value after the noise. i. e.,  

𝑀𝑆𝐸 =
∑(𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑆𝑛𝑜𝑖𝑠𝑦)

2

𝑛
 

The square root of the MSE value is denoted by RMSE, and root mean square 

error is 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 

In the end, the peak signal-to-noise ratio, PSNR, is computed based on the 

maximum number of observations. For instance, the 8-bit image, as mentioned, has a 

maximum grey level of 255. This value is denoted by 𝑚𝑎𝑥 in the following equation 

of PSNR: 
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𝑃𝑆𝑁𝑅 = 10 log10 (
𝑚𝑎𝑥2

𝑀𝑆𝐸
) = 20 log10 (

𝑚𝑎𝑥

𝑅𝑀𝑆𝐸
) 

PSNR is expressed in decibels (dB), which range from 0 to infinity. The 

image quality is high if the value is high.  
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CHAPTER II 

 

Literature Review 

 

The purpose of a literature review in image noise reduction is to provide an 

overview and critical analysis of the existing research and methods related to the 

topic. This review will encompass studies and techniques developed in the field of 

image processing to address the issue of noise in images, which can significantly 

impact the quality and interpretation of the image. The literature review will focus on 

the various types of noise present in images, their sources and characteristics, and the 

existing methods for reducing or removing them. The review will also provide 

insights into the advantages, limitations, and evaluation metrics used for assessing 

the effectiveness of these methods. By conducting a comprehensive literature review, 

we aim to gain a deeper understanding of the state-of-the-art techniques in image 

noise reduction and identify potential avenues for future research. 

 

Related Works 

Some of the related works are briefly described in this section. As mentioned 

before, medical imaging techniques are used in the diagnosis of many diseases. 

Medical image processing is essential in making the raw data obtained from imaging 

techniques meaningful. Current medical image processing technologies are required 

further investigation. The medical images obtained from different devices can be 

affected by various noises, and these noises in images are a factor that complicates 

the diagnosis of the disease (Prabu et al., 2019). Successful noise removal operations 

are vital for the accurate analysis of medical images and accurate quantitative 

assessments. 

The efficiency of removing noise in images depends on the correct estimation 

of noise and signal variance. Sijbers & den Dekker (2004) proposed maximum 

likelihood estimation (MLE), a noise removal method based on the statistical 

approach. The proposed method estimates the Rician noise level in MRI images. 

Baselice et al. (2019) introduced a new method for Rician distribution of 

noise removal in MRI, the main innovative aspect of the proposed method consists of 

the criteria adopted for finding similar pixels across the image: it is based on the 

statistics of the points rather than the widely adopted weighted Euclidean distance. 
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More in details, the CDF of different pixels are evaluated and compared in order to 

measure their similarities, exploiting a stack of images of the same slice acquired 

with different acquisition parameters.  

Maza-Quiroga et al. (2021) and Chaudhari & Kulkarni (2021) and Augustin 

et al. (2022) introduced different methods for the Rician noise distribution where a 

low signal-to-noise ratio (SNR) exists in MRI applications. The proposed model in 

Chaudhari & Kulkarni (2021)   is derived using the Maximum Á Posterior estimator. 

Noise follows a gaussian distribution at (SNR) ratio and a Rician distribution at low 

SNR. In the MAP framework, the Gaussian noise model and local statistics of 

the noisy image are instrumental in the estimation of noise at high SNR. And in the 

research Augustin et al. (2022) proposed a robust MR image denoising approach 

based on the concept of memory persistence. Accordingly, improvised and optimized 

the deep model of memory networks by introducing a data sensitive activation 

function and a robust cost function, resulting in a compact design with improved 

noise filtering, feature preservation and enhanced performance. 

 Karthick & Jayasheela (2021) used a neural network as a probabilistic model 

to remove the noise in MRI; this research focused on effectively resolving this 

problem by developing a hybrid classification algorithm of Probabilistic Neural 

Network whose parameters are optimized using the Firefly Optimization algorithm. 

In the pre-processing stage, median and wiener filters are used to remove noise, 

followed by fuzzy clustering by the local approximation of memberships algorithm 

for segmentation, and finally the gray level co-occurrence matrix and histogram of 

oriented gradient feature extraction processes.  

Recently, Dorjsembe et al. (2022) applied the denoising diffusion 

probabilistic model to show better performance for noise reduction in MRI.  

The analysis of noise distribution was further extended to apply to the single-

shot MRI using the segmentation method (Ding et al., 2021). In the research by Ding 

et al. (2021), they developed a data augmentation method for one-shot brain 

magnetic resonance imaging (MRI) image segmentation that exploits only one 

labeled MRI image (named Atlas) and a few unlabeled images. In particular, it is 

proposed to learn the probability distributions of deformations (including shapes and 

intensities) of different unlabeled MRI images with respect to the atlas via 3D 

variational autoencoders (VAEs). In this manner, the research method is able to 

exploit the learned distributions of image deformations to generate new authentic 
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brain MRI images, and the number of generated samples will be sufficient to train a 

deep segmentation network. The research introduced a new standard segmentation 

benchmark to evaluate the generalization performance of a segmentation network in 

a cross-dataset setting (collected from different sources). 

 Sijbers et al. (2007) focus on automatic histogram-based estimation 

techniques for the estimation of noise variance in the MRI.A new method based on 

maximum likelihood (ML) is presented. Using Monte Carlo simulation experiments 

as well as experimental MR data sets, the noise variance estimation methods are 

compared in terms of the root mean squared error (RMSE). The obtained results 

show the superiority of the method. 

 Lili He & Greenshields (2009), it is aimed at estimating the noise-free signal 

in MRI images. The nonlocal maximum likelihood estimation method (NLME) 

removes Rician noise in the images. This paper defended that the NLME method 

used to extract the actual signal from the Rician noise gives optimum results and 

outperforms MLE. 

According to the paper by Rajan et al. (2014), the nonlocal maximum 

likelihood (NLML) method, which has been successful in removing noise in medical 

images recently, uses a nonlocal selection of samples and a fixed sample size. This 

paper proposes an NLML estimation method in which samples are selected by being 

statistically supported by the Kolmogorov–Smirnov (KS) similarity test. The noise 

removal performance has been demonstrated by simulating and testing the proposed 

method with actual data. 

 Pizurica et al. (2003) proposed the wavelet field method to suppress noise in 

medical images. The wavelet field estimation approach is based on the joint detection 

and estimation theory. The proposed algorithm estimates statistical distributions 

representing useful features and noise in images. 

 The separation of white Gaussian noise from MRI images is the goal of the 

research by Sahu et al. (2018) For this purpose, wavelet transform and Bayesian 

estimator features are used together. MLE and median absolute deviation estimators 

are used to find noise and signal variances. A probability density function (PDF) is 

used to obtain the wavelet transform coefficients. The proposed method is based on 

the statistical modelling of wavelet transform coefficients and is applied to medical 

images. 



26 
 

 Rabbani et al. (2009) proposed a new noise suppression algorithm to 

improve the image properties of various medical images. The proposed algorithm 

uses a combination of two variable Laplacian probability density functions. This 

combination distribution allows for the simultaneous characterization of important 

statistical features. Various shrinkage functions are obtained using the Maximum a- 

Posterior (MAP) estimator and the mean square error (MMSE) estimator. An 

effective noise reduction success for medical images of the proposed method is 

demonstrated with simulations. 
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Chapter III 

METHODOLOGY 

 

PROPOSED PROBABILISTIC METHODOLOGY 

The goal of this study proposed is to represent actual noise types existing in 

medical images without requiring knowledge of the source's characteristics. The 

introduced model creates a probability density function that can successfully depict 

random varying noise that can be implemented for noise cancellation during real-

time processing applications. It combines the existing classical models and provides 

a facility to represent the noise with less computational complexity accurately. The 

introduced model uses an exponential base, as in all classical models, and the 

parameter values are retrieved from the collected data. The parameters give a 

versatile method for fitting a wide range of noise existing in medical images. 

Parameter values extracted from the data provide an accurate representation of the 

noise that classical models cannot fully represent. Another feature of the parameter 

values is that they represent various types instead of a single type of noise. The 

exponential function is also of great importance in the introduced probability model. 

The function is targeted to match the existing probability functions as the parameter 

values (α, β, q) are altered. The probability density function (pdf) can be introduced 

as an incomplete gamma function that helps the integration function converge. The 

point to note when using the gamma function is that the result of the integration 

process must reach the value 1 to satisfy the condition as the probability density 

function. The stated basic facts help to introduce the statistical probability function as 

follows. 

Definition: Let X represent an exponentially distributed random variable such 

that it satisfies X~GE 

𝑓(𝑥;  𝛼, 𝛽, 𝑞) =  
1

Г(q + 1)
(2𝛼𝑥 + 𝛽)(𝛼𝑥2 + 𝛽𝑥)𝑞 . 𝑒−(𝛼𝑥2+𝛽𝑥) 

(1) 

Such that 𝑥> 0, 𝛼, 𝛽 ≥ 0, Re (𝑞) >-1 

Eq. (1) with the parameters α, β ≥ 0, Re (q) >-1 possess a universal 

representation for probability density function. 

Theorem 1: The function f(x;  α, β, q) is the probability density function on                         

0 < x < ∞. 
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Proof: The definite integral of the function  𝑓(𝑥;  𝛼, 𝛽, 𝑞) over 0 < 𝑥 < ∞ is  

1

Г(q + 1)
∫ (2𝛼𝑥 + 𝛽)(𝛼𝑥2 + 𝛽𝑥)𝑞. 𝑒−(𝛼𝑥2+𝛽𝑥)

∞

0

𝑑𝑥

=
1

Г(q + 1)
∫ 𝑢𝑞𝑒−𝑢𝑑𝑢

∞

0

 

(2) 

The function (αx2+βx) in Eq. (2) is represented as u. The eq. (2) yields the 

gamma function as 

Г(q + 1) = ∫ 𝑢𝑞𝑒−𝑢𝑑𝑢
∞

0

 (3) 

Substitution of eq. (3) in eq. (2) gives the result as 1, which is sufficient 

criteria in theory to validate eq. (1) as the probability density function. 

It is important to note that the selection of the exponentially distributed 

random variable X has some significant properties that represent most classical 

distributions beyond medical image processing. Some of the exceptional cases are 

listed below. 

If  𝑋~𝐺𝐸 (
1

2𝛼2  , 0, −
1

2
), X represents a half-normal distribution 

If 𝑋~𝐺𝐸 (0,
1

𝛽
, 0), X represents exponential distribution. 

If 𝑋~𝐺𝐸 (
1

2𝛼2  , 0, 0), X represents the Rayleigh distribution. 

If 𝑋~𝐺𝐸 (
1

𝛼
 , 0,

𝑞

2
− 1), X represents a generalized gamma distribution. 

If 𝑋~𝐺𝐸(𝛼2, 0,   0), X represents the Weibull distribution. 

 

The introduced function in eq. (1) requires the mean µ, 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎2 

relation with the 𝛼, 𝛽 parameters. The relationship can be derived using the 

theoretical expectation formulation: 

 

 

𝐸(𝑥2) = 𝜎2 + 𝜇2, (4) 
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The expectation of 𝛼𝑥2 + 𝛽𝑥 can be calculated as 

𝐸(𝛼𝑥2 + 𝛽𝑥) =
1

Г(q + 1)
∫ (2𝛼𝑥 + 𝛽)(𝛼𝑥2

∞

0

+ 𝛽𝑥)𝑞+1𝑒−(𝛼𝑥2+𝛽𝑥)(𝑑𝑥) 

=
1

Г(q + 1)
∫ 𝑢𝑞+1𝑒−𝑢𝑑𝑢

∞

0

 

=
Г(q + 2)

Г(q + 1)
 

(5) 

 

where   𝑢 = (αx^2 + βx) 

Eq. (5) produces the following relationship. 

α(𝜇2 + 𝜎2) + 𝛽. 𝜇 =
Г(q+2)

Г(q+1)
. (6) 

Hoffman & Karst (1975), the authors solved the mean, standard deviation and 

𝛼 using Rayleigh distribution: 

𝜇 = √
𝜋

2
𝛼; 𝜎2 = 𝛼2 (2 −

𝜋

2
) (7) 

 

The eq. (1) also reduces to Rayleigh distribution, and the same process can be 

applied. Furthermore, the function in eq. (1) can be defined entirely if the moment 

properties are derived. 

The introduced model applies to any randomly varying data satisfying the 

cumulative distribution function requirements, such as to be bounded below by 0 and 

bounded above by 1. This has been proved in Theorem 1. The application is not 

restricted to images but can represent data obtained from various fields. Some typical 

applications may be the channel loss of wireless communication networks, noise in a 

radar signal, and noise generated in medical sensors. The model only represents if 

data is random, not limited between 0 and 1, and not strictly monotonic. 

Moment Properties 

The moment properties of a function identify the expected variance, the 

skewness, and the kurtosis. These parameters are sufficient to process eq. (1) in real 

applications. 
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Let X denotes the random variable with pdf of eq. (1). Then the nth moment 

of X can be determined using the confluent hypergeometric function of second kind 

U (a; c; x) defined as: 

𝑈(𝛼, 𝑐, 𝑥) =
1

Г(𝛼)
∫ 𝑡𝛼−1(1 + 𝑡)𝑐−𝛼−1 exp(−𝑥) 𝑑𝑡

∞

0

. 
(8) 

So 

𝐸(𝑋𝑛) =
1

Г(q + 1)
∫ (2𝛼𝑥 + 𝛽)(𝛼𝑥2 + 𝛽𝑥)𝑞𝑒−(𝛼𝑥2+𝛽𝑥)(𝑑𝑥)

∞

0

. (9) 

Let 𝑦 be a positive function and  

𝑦 =
4𝛼(𝛼𝑥2+𝛽𝑥)

𝛽2 . Then the integral (9) can be written as 

𝐸(𝑋𝑛) =
1

Г(q + 1)
∫ (

𝛽

2𝛼
)

𝑛

(−1 + (1
∞

0

+ 𝑦
1
2)𝑛 (

𝛽2

4𝛼
𝑦)

𝑞
𝛽2

4𝛼
𝑒−

𝛽2

4𝛼
𝑦𝑑𝑦. 

(10) 

 

 

Recalling the formula  

(f(x) − 1)𝑛 = ∑ (𝑛
𝑘

)𝑓(𝑥)𝑘𝑛
𝑘=0 (−1)𝑛−𝑘, the integral can be written as  

𝐸(𝑋𝑛) =
1

Г(q + 1)
∑ (

𝑛

𝑘
)

𝑛

𝑘=0

(−1)𝑛−𝑘
𝑏𝑛+2𝑞+2

2𝑛+2𝑞𝑎𝑛+𝑞+1
∫ 𝑦𝑞(1

∞

0

+ 𝑦)
𝑘
2𝑒−

𝛽2

4𝛼
𝑦𝑑𝑦. 

(11) 

Hence, the 𝑛th moment of the generalized exponential random variable is 

𝐸(𝑋𝑛) = ∑ (
𝑛

𝑘
)

𝑛

𝑘=0

(1)𝑛−𝑘
𝛽𝑛+2𝑞+2

2𝑛+2𝑞𝛼𝑛+𝑞+1
𝑈 (𝑞 + 1,

𝑘

2
+ 𝑞 + 2,

𝛽2

4𝛼
). (12) 

It is possible to use the eq. (12) to determine the mean, variance, skewness, 

and kurtosis.  
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Table1. 

Median E(X), E(X2) and Vɑr(X) of random variable X for some values of α, β and q. 

α β q  E(X) E(X2) Var (X) 

0.1 0.1 0.9 3.62027 15.379 2.27338 

0.5 -0.9 0.158051 0.20974 0.18476 

0.1 -0.9 0.340613 0.65938 0.054337 

0.5 0.9 2.35891 7.20546 1.64102 

0.5 0.1 0.9 1.72978 3.45404 0.4619 

0.5 -0.9 0112933 0.08706 0.07431 

0.1 -0.9 0.181403 0.16371 0.13081 

0.5 0.9 1.40423 2.39577 0.42391 

1 0.1 0.9 1.2427 1.77573 0.23142 

0.5 -0.9 0.092539 0.05373 0.04516 

0.1 -0.9 0.134691 0.08653 0.06838 

0.5 0.9 1.06961 1.36519 0.22112 

2 0.1 0.9 0.888672 0.90556 0.11582 

0.5 -0.9 0.0736988 0.03157 0.02614 

0.1 -0.9 0.988766 0.04505 0.03527 

0.5 0.9 0.798308 0.75042 0.11312 
 

Figure 14. 

Characteristic plots 

 

 

Furthermore, one needs to show the robustness of the parameters. Therefore, 

arbitrarily selected 𝛼, 𝛽, and 𝑞 values are tested using eq. (12), and the results are 

listed in Table 1.   

The results in Table 2 show the selected fixed values of 𝛽 and 𝑞, the first two 

moments, and X's variance decreases as α increases. The same can be said for any 
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other parameters. The other important point is that for any fixed value of α and 𝛽, 

increasing the value of 𝑞 also increases the 𝐸(𝑋), 𝐸(𝑋2) and the Var(X).  

The characteristic of eq. (1) examined with the selected parameter values of α 

and β, with varying values of q. Results are plotted in Fig. 13. 

The plots in Fig. 1. indicate convergence for eq. (1) for all values of q.   

Parameter values derived directly from the data increase the convergence of 

the function to classical methods and their success. A possible processing method 

may be to extract parameter values using the probability expectation process and 

apply Kolmogorov- Smirnov (K-S) theorem to achieve Re (q) >-1. This method 

employs a hybrid process that reduces the sensitivity of parameter values. Therefore, 

a well-known maximum likelihood estimation method was applied to derive all 

parameters α, β, and q within the same workspace. 

The next task is to extract the parametric values for α, β ≥ 0, Re(q) >-1 as 

stated in Eq. (1). The calculation process uses the maximum likelihood estimation 

method to discover the accurate parametric values. The parameter extraction process 

solves the mathematical differential equations generated by the log-likelihood 

function of L (α, β, q). The extension of random data values of X from 1 to n such 

that X~GE (α, β, q) defines the log-likelihood function as: 

L(𝛼, 𝛽, 𝑞) = −𝑛 𝑙𝑛(𝛤(𝑞 + 1)) + ∑ 𝑙𝑛(2𝛼𝑥𝑖 + 𝛽) +𝑛
𝑖=1

∑ 𝑙𝑛(𝛼𝑥𝑖
2𝛽𝑥𝑖)𝑞 − ∑ 𝑙𝑛(𝛼𝑥𝑖

2𝛽𝑥𝑖)
𝑛
𝑖=1

𝑛
𝑖=1  

(13) 

 

The unknown parameter values of α, β, and 𝑞 can be determined by 

differentiating eq. (13) for each unknown parameter as: 

𝜕𝐿

𝜕𝛼
= ∑

2𝑥𝑖

2𝛼𝑥𝑖 + 𝛽
+ ∑

𝑞𝑥𝑖

𝛼𝑥𝑖 + 𝛽
− ∑ 𝑥𝑖

2,

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 (14) 

 

𝜕𝐿

𝜕𝛽
= ∑

1

2𝛼𝑥𝑖 + 𝛽
+ ∑

𝑞

𝛼𝑥𝑖 + 𝛽
− ∑ 𝑥𝑖,

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

 
(15) 

𝜕𝐿

𝜕𝑞
= −𝑛

𝛤′(𝑞 + 1)

𝛤
(𝑞 + 1) + ∑ 𝑙𝑛

𝑛

𝑖=1

(𝛼𝑥𝑖
2𝛽𝑥𝑖) = 0 (16) 
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The solution of eq. (14), (15), and (16) yield the parameter values of α, β, and 

𝑞 that can be substituted into eq. (1) to represent the probability density function of 

random data. 

The introduced probability density function can theoretically be verified 

using the statistical moment properties. The variable X denotes the random variable 

as stated in eq. (1). The confluent hypergeometric function of the second kind can be 

stated as eq. (17). 

𝑈(𝑎, 𝑐, 𝑥) =
1

𝛤(𝑎)
∫ 𝑡𝑎−1(1 + 𝑡)𝑎−1

∞

0

𝑒−𝑥𝑑𝑡 (17) 

So that eq. (18) can be defined as: 

𝐸(𝑥𝑛) =
1

Г(q + 1)
∫ 𝑥𝑛

∞

0

(2𝛼𝑥 + 𝛽)(𝛼𝑥2 + 𝛽𝑥)𝑞 . 𝑒−(𝛼𝑥2+𝛽𝑥)𝑑𝑥 

(18) 

Simplify eq. (18) and let  𝑧 =
4𝛼(𝑎𝑥2+𝛽𝑥)

𝛽2  produce eq. (19) 

𝐸(𝑥𝑛) =
1

Г(q + 1)
∫

𝛽

2𝛼
(−1 + (1 + 𝑧)

1
2)𝑛 (

𝛽2

4𝛼
𝑧)

𝑞
𝛽2

4𝛼
𝑒−

𝛽2

4𝛼
𝑧𝑑𝑧

∞

0

 
(19) 

The eq. (19) is a result of the theoretical formulation given as 

(𝑓(𝑥) − 1)𝑛 = ∑ (
𝑛

𝑘
)

𝑛

𝑘=0

𝑓(𝑥)𝑘(−1)𝑛−𝑘 
(20) 

The introduced model successfully satisfies the process of determining the 

moments, skewness and shaping parameters. Several classical distributions rely on 

the shape parameter to indicate the suitable distribution for the data. The Tukey 

lambda distribution is beneficial for symmetric distributions, and different lambda 

values indicate one of the classical models such as exact uniform, U-shape, logistic 

etc. distribution. However, the generally introduced model allows extraction of the 

most suitable parameters directly from the randomly varying data. Based on the 

parameter values, the model can reduce to one of the classical distributions within 

the same work frame.  
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The accuracy of the calculated parameter values can be tested with various 

statistical tools. This research uses the most popular statistical tools, such as the 

Kolmogorov–Smirnov (K-S) and Akaike Information Criteria (AIC) tests. 

 

The adopted test procedure 

Assuming that the probability density function 𝐹𝑥(𝑥) represents the empirical 

samples shown as 𝐸𝑛(𝑥), it is possible to state the K-S test as in eq. (21). 

𝐹[ lim
𝑛→∞

𝑠𝑢𝑝|𝐸𝑛(𝑥) − 𝐹𝑥(𝑥)| = 0] = 1, 

for all x.  

(21) 

 

The eq. (21) represents the probability function and is known as the 

Glivenko-Cantelli theorem in the literature. The purpose of the theorem is to verify 

the fitness of the introduced probability density function to the recorded samples. 

The critical condition of the test is that the large recorded sample values n should 

produce small enough values (between 0 and 1) due to |𝐸𝑛( 𝑋) − 𝐹𝑥(𝑥)|. The K-S 

test is generally defined as eq. (22). 

𝐷𝑛 = 𝑠𝑢𝑝|𝐸𝑛(𝑥) − 𝐹𝑥(𝑥)|, 
for all x and n.  

(22) 

The testing procedure of eq. (22) includes some critical steps that need to be 

explained in detail. 

The following algorithm is to explain the details of the practical test 

procedure. 

Step 1: The initial step is to define the generated function in Eq. (1).  

Step 2: Solve the three equations with three unknowns, eq. (14, 15, 16) to produce 

parameter values for 𝛼, 𝛽, 𝑎𝑛𝑑 𝑞.  

Step 3: Substitute the parameter values in eq. (1). 

Step 4: Calculate the cumulative distribution of the proposed and the theoretical 

functions using the recorded medical image noise. The results are plotted on the same 

graph for visual comparison.  

Step 5: The scientific validity of the proposed method is tested with both the K-S and 

the AIC tests. 

Step 6: The critical and necessary conditions for both tests are verified.  

Step 7: The performance analysis tools Root mean squared error (RMSE), relative 

error (RE), and R-squared error (R2) are used to evaluate the accuracy.  
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Step 8: Results were tabulated. 

The K-S test uses a critical value evaluation as a necessary condition. There 

are different formulations to use depending on the sample size. The recorded noise 

data was more than 50. Therefore, the stated formula can be used as follows: 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 =
1

√𝑛
 =  

1

√80
 =  0.112 

 

The prime check is to evaluate eq. (22) to determine  𝐷𝑛 and compare the 

value with 0.112. The most suitable fitting distribution has the lowest value of  𝐷𝑛. 

The quality of the distributions can further be tested with several methods. 

This research paper uses the AIC method to justify the goodness of fit and allows a 

relative test between the distributions.  

The AIC test was applied to justify the results obtained with the K-S method. 

The AIC method is a personal selection, and any other goodness of fit test can be 

used for such an application. AIC test estimates the quality of each distribution 

model relative to each other. The AIC formulation is defined as: 

 

𝐴𝐼𝐶 =  2𝑘 − 2𝐿𝑛(𝐿) 

The variable k denotes the number of parameters used in the model L denotes 

the highest value of the likelihood function under test. The lowest value of the AIC 

test is classified as the most suitable distribution function. 

The algorithmic steps in section Moment Properties can be followed quickly 

with the flowchart in Figure. 15. 
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Figure 15.  

Flowchart representation 

 

 

Figure 15 is the implementation of the algorithm for the proposed model. The 

processing part is the same for both the theoretical and the proposed model. The 

results are tabulated, and scientific performance evaluations are tabulated. The noise 

was extracted from real medical images.  
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Chapter IV 

 

RESULTS 

 

Noise is an important factor that degrades the quality of radiographs and is 

known as the random change in the optical density of the image, that is, it can also be 

expressed as fluctuations in the optical density. 

Radiologists have difficulties with image noise in all modalities since it might 

mislead clinicians when making diagnoses. For soft tissue lesions, for example, form, 

margin features, and overall density are crucial distinguishing factors between benign 

and malignant lesions. Number, shape, and distribution of calcifications are crucial 

aspects to take into account while interpreting them. Therefore, the depiction of the 

anatomical structure's characteristics, such as contrast, can affect the visibility of soft 

tissue lesions, whereas the presence of noise, such as random quantum noise, usually 

limits the visibility of small structures, can affect the detectability of calcifications. 

However, the ability to distinguish between benign and malignant soft tissue lesions 

may also be limited by an image's relative increased noise level brought on, for 

instance, by a lower radiation dosage. Given the connection between these image 

quality characteristics and the image acquisition process, image quality problems like 

relatively higher noise levels may be the result of poor acquisition settings, poor 

automatic exposure control settings, or issues with the system's x-ray. 

The noisy image filtered using a hybrid model. This model successfully 

separates the random noise from the medical image. The performance of the 

proposed hybrid model can be determined by calculating the RMSE, SNR, and 

PSNR values. The comparison has been made with classical mean, median, and 

midpoint filters. The results are listed in Table 2. 
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Table 2. 

 Comparison results. 

Filtering method SF MF MPF HFM 

MR brain image     

SNR (dB) 3.81 3.71 3.6 3.8 

PSNR (dB) 43.43 43.64 42.08 43.68 

RMSE 441.58 431.33 515.75 429 

Abdominal CT image      

SNR (dB) 5.58 5.26 4.06 5.53 

PSNR (dB) 19.67 19.79 19.26 27.78 

RMSE 26.48 26.12 27.78 25.66 

 

The results in Table 2 demonstrate the success of the hybrid model. It has 

lower RMSE, higher values of SNR, and PSNR to verify its superiority over the 

other methods. 

It is worth studying the histogram graph and its properties in different 

sections. Roughly speaking, the histogram is a graphical presentation of data points 

organized into user-specified ranges. The histogram, which resembles a bar graph in 

appearance, condenses a data series into an intuitive visual by collecting numerous 

data points and organizing them into logical ranges or bins. The histogram graph 

determines the frequencies of observations, and in our case, the X values denote the 

level of grey color and Y determines the frequency of repetition in the noise effect. 

In this situation, the discrete forms of data, as a sample, can be formed into a similar 

continuous distribution if the number of samples is considerable. 

The hybrid model applied to various medical images for generalization 

purposes. The random noise data fitted with the introduced generalized probabilistic 

distribution function. To test the generalized probabilistic distribution function, 

several samples of different medical devices from different parts of the body were 

selected. 

The first sample is the image of the panoramic radiography machine. A two-

dimensional dental x-ray examination called as panoramic radiography, commonly 

known as a panoramic x-ray, captures the complete mouth in a single image, 

including the teeth, upper and lower jaws, surrounding structures, and tissues. The 
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jaw has a curved shape like a horseshoe. The curving structure, though, appears flat 

in the panoramic x-ray, like figure 16. Usually, it gives specifics about the teeth and 

bones. 

The proposed distribution function was tested with a selected sample in 

Figure 16 the histogram of the random noise is plotted in Figure 17, and the 

cumulative distribution functions are applied to compare the performance of the 

introduced distribution function in Figure 18. 

 

Figure 16.  

Oral panoramic radiograph image 
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Figure 17.  

Histogram of the random noise in OPG  

 

 

 

Figure 18.  

Comparison of the distribution plots of the OPG image  
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The plots in Figure 18 show the proposed model to be the most suitable to 

represent the noise in such medical images. The parameter values are: 

𝛼 = 2.3198  

𝛽 = 1.7930 

𝑞 =0.087 

The scientific validity of the generated function was carried out with the K-S 

and the AIC tests. The test results are listed in Table 3. 

Table3. 

The goodness-of-fit test results of the oral panoramic radiograph image 

Statistical Model Name K-S Test AIC 

New 0.0504 96.6825 

Normal 0.1275 108.8812 

Weibull 0.1527 163.6614 

Rayleigh 0.3541 175.6832 

Nakagami 0.0874 208.9138 

LogNormal 0.1663 298.5882 

 

The introduced model produces the lowest value in the fit. Therefore, using 

the K-S and the AIC tests confirms the applicability of the introduced model.  

The second, third, and fourth samples are used from MRI images. A magnetic 

field and radio waves produced by a computer are used in the MRI device, a type of 

medical imaging method, to provide accurate images of the body's organs and 

tissues. Breast cancer, brain tumours, abnormalities in the spinal disk, bone 

infections, rotator cuff tears, and other disorders can all be found using an MRI. 

In the second sample, brain MRI images were selected. Brain imaging is very 

important because it can aid medical professionals in their search for disorders like 

bleeding, swelling, issues with how the brain evolved, tumours, infections, 

inflammation, damage from an accident or a stroke, or blood vessel issues. The MRI 

can aid medical professionals in their search for headache or seizure reasons. The 

noise in the MRI image representing the human brain in Figure 19 is filtered, the 

histogram of the random noise is plotted in Figure 20, and the comparison of the 

distribution is plotted in Figure 21. 
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Figure 19.  

MR image of human brain  

 

Figure 20.  

Histogram of the random noise in MR image of human brain  
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Figure 21.  

Comparison of the distribution plots of the MR image of human brain 

 

 

The histogram plot does not indicate a suitable probability distribution 

function. The proposed and classical distribution functions are computed and plotted 

in Figure 21 and show the proposed distribution function to be the most suitable 

model for this test. The parameter values are extracted from the noise data as 

follows: 

𝛼 = 3.1833 

𝛽 = 1.9223 

𝑞 = 0.9829 

The validity of the proposed model was carried out with the K-S and AIC 

tests. The test results are listed in Table 4. 
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Table4. 

The goodness-of-fit test results of the MR image of human brain 

Statistical Model Name K-S Test AIC 

New 0.0363 2.1621 

Normal 0.1200 12.0259 

Weibull 0.1366 22.1061 

Rayleigh 0.0902 10.2718 

Nakagami 0.0882 6.7303 

LogNormal 0.1910 30.2558 

 

The K-S and the AIC test results in Table 4 indicate the proposed model to be 

the best among the others.  

The third and fourth samples were selected from the shoulder images of MRI 

devices. These images are controlled by a radiologist and an orthopedic specialist in 

order to confirm the diagnosis of a rotator cuff tear. For these reasons, two images 

were selected: a healthy image and a pathological image. 

The proposed distribution function was tested with an MRI healthy shoulder 

image in Figure 22. The histogram plot in Figure 23 represents all recorded random 

variations. The plots do not indicate the most suitable cumulative distribution type to 

apply. The cumulative distribution functions are applied to compare the performance 

of the introduced distribution function in Figure 24.  

 

Figure 22.  

MR healthy shoulder image 
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Figure 23.  

Histogram of the random noise in MR healthy shoulder image 

 

 

Figure 24.  

comparison of the distribution plots of the MR healthy shoulder image 
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The plots in Figure 24 show the proposed distribution function to be the most 

suitable for such an application. The parameter values are derived as: 

𝛼 = 2.1188  

𝛽 = 1.5920 

𝑞 =0.065 

The scientific validity of the generated function was tested using the K-S and 

the AIC tests. The test results are listed in Table 5. 

 

Table5. 

The goodness-of-fit test results of the MR shoulder image 

Statistical Model Name K-S Test AIC 

New 0.0402 94.5821 

Normal 0.1365 106.7610 

Weibull 0.1618 172.5523 

Rayleigh 0.3661 182.5725 

Nakagami 0.0886 203.7026 

LogNormal 0.1765 286.3674 

 

The introduced model produces the lowest value in the fit. Therefore, using 

the K-S and the AIC tests verify the application of the introduced model.  

The proposed model was further tested with a clinical MRI of the 

pathological shoulder image in Figure 25 the histogram plot in Figure 26, and the 

cumulative distribution functions in Figure 27.  

Figure 25.  

Pathological shoulder MRI image  
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Figure 26.  

Histogram of the random noise in pathological shoulder MRI image  

 

 

 

Figure 27.  

comparison of the distribution plots of the pathological shoulder MRI image 
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The plots in Figure 27 show the proposed model to be the most suitable to 

represent the noise in such medical images. The parameter values are: 

𝛼 = 2.2525  

𝛽 = 0.0070 

𝑞 =0.5095 

The scientific validity of the generated function was carried out with the K-S 

and the AIC tests. The test results are listed in Table 6. 

 

Table6. 

The goodness-of-fit test results of the pathological shoulder MRI image 

Statistical Model Name K-S Test AIC 

New 0.0505 93.4731 

Normal 0.2870 105.6350 

Weibull 0.1838 170.2183 

Rayleigh 0.4052 191.9412 

Nakagami 0.0923 202.3146 

LogNormal 0.1565 292.4635 

 

The introduced model once again produces the lowest value in the fit. 

Therefore, using the K-S and the AIC tests confirms the applicability of the 

introduced model.  

The last sample was chosen from the CT device. CT is a type of imaging that 

creates cross-sectional images of the body using x-rays. Measurements of the 

attenuation coefficients of x-ray beams passing through the volume of the object 

under study are used to reconstruct cross-sections. CT imaging is also useful for: 

Diagnosing skeletal and muscular conditions, such as bone cancer and 

fractures. Determine the location of a tumour, infection, or blood clot. 

Help with surgical, biopsy, and radiation therapy procedures. 

Detect and monitor for diseases and conditions like cancer, heart disease, 

lung nodules, and liver masses. 

Monitor the effectiveness of specific treatments, such as cancer treatment 

Identify internal bleeding and injuries. 
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The proposed model was further tested using an abdominal CT image in 

Figure 28. The histogram plot is shown in Figure 29. The random noise from the 

abdominal CT image fits used classical, and the proposed cumulative distribution 

functions are plotted in Figure 30. 

Figure 28.  

Abdominal CT image  

 

 

 

 

Figure 29.  

Histogram of the random noise in the abdominal CT image  
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Figure 30.  

comparison of the distribution plots of the abdominal CT image  

 

 

The plots in Figure 30 show the proposed distribution function favourably 

applied in the medical image. The extracted parameter values are: 

𝛼 = 4.1366  

𝛽 = 3.7945 

𝑞 =0.801 

The scientific validity of the proposed model was determined using the K-S 

and the AIC tests. The test results are listed in Table 7. 

Table7. 

The goodness-of-fit test results of the Abdominal CT image 

Statistical Model Name K-S Test AIC 

New 0.0789 105.1426 

Normal 0.1395 145.4564 

Weibull 0.1063 134.3499 

Rayleigh 0.1063 136.5451 

Nakagami 0.2163 151.4718 

LogNormal 0.1808 147.4212 
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The proposed function produces the lowest value in the fit. Therefore, using 

the K-S and the AIC tests, it is possible to verify the proposed model's applicability 

to represent the medical image's noise.  

 

Validation procedure for the best-fitting model 

The validation procedure helps to evaluate different models under the test. 

The maximum likelihood estimation method was adopted to calculate the shape and 

scale parameters for the distribution models. The performance of the distribution 

models is based on the close representation of the noise data values. The 

performance of the individual distribution models was evaluated using the statistical 

analysis tools such as root mean square error (RMSE), relative error (RE) and R2.  

The performance of the distribution models using the noise data, as in Figure 

24, is listed in Table 8. 

 

 Table8. 

Fitness verification for the distribution models of the MR shoulder image 

Possible Distributions RMSE RE (%) R2 

Rayleigh 1.6029 1.8778 0.9328 

Normal 3.5731 6.4912 0.9443 

Nakagami 1.1459 1.4671 0.9707 

Weibull 1.8860 5.7903 0.9770 

Lognormal 1.3999 7.3367 0.9419 

New 0.4212 0.1909 0.9871 

 

The best-performing candidate is the proposed model with RMSE of 0.4212, 

RE of 0.4101, and R^2 Error of 0.9953 (closest to 1 is the best performance).     

The performance was performed further on the data related to Figure 18. The 

results are listed in Table 9. 
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Table9. 

Fitness verification for the distribution models of the Oral panoramic radiograph 

image 

Possible Distributions RMSE RE (%) R2 

Rayleigh 3.1431 14.9964 0.8076 

Normal 7.4426 10.9925 0.9179 

Nakagami 10.2414 14.8770 0.8573 

Weibull 8.3480 15.2716 0.8739 

Lognormal 18.2340 18.8968 0.5524 

New 0.0119 0.4101 0.9953 

 

The results in Table 9 indicate the best-performing distribution as the 

proposed model.  

The introduced model has exponential bases and performs best for the 

images, including Gaussian, Rayleigh, and Rician type distributions. The analysis of 

this research article includes images in Chapter I. Test results in Chapter IV support 

the presented argument. MRI images include mostly Gaussian, Rayleigh, and Rician 

distributed random noise. The MRI image in Figure16 and Figure18 was tested using 

two different models. The results prove that the new model is the best distribution for 

MRI images. 
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Chapter V 

 

CONCLUSION 

 

Medical images are essential to the medical sciences, so their correct 

readability is imperative. However, image noise negatively affects it in analysis and 

interpretation. Noise also continuously degrades the readability of images when sent 

over distances. Therefore, noise analysis and its precise representation are vital. This 

article analyses the types of noise that may occur in medical images to determine an 

accurate representation of the random variations. The accurate representation helps to 

improve the image-capturing devices, filters and wireless channel modelling. The 

random variation of the noise is examined using statistical tools. The contribution of 

the proposed model is that it covers most classical probability distribution functions 

with varying parameters. The parameter values are directly extracted from the 

recorded data. These parameters allow the introduced function to fit the data better 

than the classical models. The newly introduced general function can be used 

successfully on random values, which provides validity for the cumulative 

distribution function. The model does not require further analysis to test for fitting. It 

is directly applied to MRI, CT, and panoramic images. The proposed model was 

compared with the classical models and produced high accuracy with the actual 

medical images under the test. The model also proved valid scientifically and is 

promising to be applied in the analysis of medical images.  
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