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Abstract 

DEVELOPING AN ASPHALT PAVEMENT CRACK DETECTION AND 

CLASSIFICATION MODEL BY USING BEAMLET TRANSFORM 

ALGORITHM. 

Hassan Idow MOHAMED, Assist. Prof. Dr. Mustafa ALAS  

MSc, Department of Civil Engineering, Faculty of Civil and Environmental 

Engineering, Near East University, Nicosia. 

October, 2023, 77 Pages 

Pavement cracking is a common road infrastructure issue which significantly affects 

road performance, safety and longevity. This thesis employed a Beamlet Transform 

algorithm to detect and classify different types of flexible asphalt concrete pavement 

cracks.  Additionally, a dedicated crack segmentation network was employed for 

precise segmentation of pavement crack. This approach incorporates advancements 

that has improve precision in crack classification and segmentation. Based on the 

results of the beamlet transform, significant improvements in the gray scale 

representation of crack, enhanced crack detection, reduced noise in crack images and 

a more precise measurement of cracks length were achieved. Computations were 

performed to determine the length of linear cracks and the area of block cracks. A 

total of 1000 pavement images were used for training and testing the accuracy of 

asphalt pavement crack detection and classification models. The research results 

showed that block cracking, alligator cracking, transverse cracking, and longitudinal 

cracking can all be recognized with a remarkable accuracy. Alligator cracks and 

block cracks achieved detection rates more than 90%, while detection rates for the 

longitudinal and transverse cracks reached more than 95% accuracy. 

 

Keywords: Pavement crack detection, Crack classification, Longitudinal crack, 

Alligator crack, Block crack, Transverse crack, Beamlet transform.  
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CHAPTER I 

Introduction 

1.1 Background  

Pavement cracks represent one of the most important issues in road maintenance, 

significantly affecting the structural integrity and service life of the road. These cracks, 

being the preliminary signs of various types of pavement diseases, are capable of 

inducing potential structural damages to the pavement, thus requiring early 

identification and timely repair (Ying & Salari, 2010). The current traditional methods 

of crack detection, while efficient to a certain extent, are marred by their inherent time-

consuming nature, labor-intensive characteristics, and lack of accuracy, urging a 

necessity for more advanced methods for crack detection (Safaei et al., 2021). 

In response to this need, recent years have seen a proliferation of scientific research 

aimed at leveraging modern technological advancements to achieve accurate and 

efficient extraction of crack information from images (Zhang et al., 2017). Numerous 

techniques for detecting pavement cracks have been published in the literature, 

including the valley bottom boundary extraction approach (Safaei et al., 2022) and the 

Prim minimal spanning tree-based crack connection algorithm (Localization & 

Techniques, 2022). However, in changing circumstances, these conventional 

procedures, which were created expressly for particular databases or scenarios, may 

not deliver satisfactory results. 

Due to advancements in artificial intelligence, deep learning techniques are becoming 

increasingly frequently applied in the field of pavement crack detection (Hu et al., 

2021). Although these techniques have significantly increased the effectiveness and 

accuracy of pavement crack detection (Zhang et al., 2017), a number of issues still 

exist, such as the dependence on complex feature extraction methods, the inability to 

adapt to different image sources or road sections, the impact of environmental factors 

on the stability and accuracy of algorithms, and the inability of current models to 

directly access road conditions (Alayat & Omar, 2023). 

The current study proposes a novel strategy based on the combination of deep Beamlet 

transform Algorithm for pavement crack recognition in order to address these 
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drawbacks, with the aim of offering a general solution that can be applied in various 

crack detection circumstances. The simultaneous fracture detection and segmentation 

provided by this approach is a special benefit that boosts model (Zhao & Wang, 2010). 

The need of creating complex image processing algorithms to facilitate pavement 

crack inspection is underscored by the growing issues regarding pavement distresses. 

The use of moment invariant and neural networks (Zhao & Wang, 2010), the 

application of histogram projection (Ouyang et al., 2014), and the use of neural 

networks for crack detection and classification (Safaei et al., 2022) are just a few of 

the previous studies that have contributed to the field that are covered in-depth in this 

study. 

1.2 Aim of the Study 

The aim of this study is to developing an asphalt pavement crack detection and 

classification model by using beamlet transform algorithm. The objective is to improve 

crack detection's accuracy and effectiveness while also permitting classification of 

various pavement fracture kinds, facilitating prompt maintenance and repair activities. 

1.3 Objectives of the Study 

The study's particular goals are as follows: 

1) Develop an image preprocessing technique to improve the visibility of pavement 

cracks. 

2) Implement the Beamlet Transform Algorithm to effectively detect and segment 

pavement cracks in preprocessed images. 

3) Extract pertinent features from detected cracks to enable classification into 

distinct types, including block cracks, alligator cracks, longitudinal cracks, and 

transverse cracks. 

1.4 Problem Statement 

Road maintenance is significantly hampered by pavement cracks, which also 

compromise the overall structural integrity of the infrastructure. Conventional crack 

detection techniques can take a long time, require a lot of labor, and are imprecise, 

which makes it difficult to plan effective maintenance. Furthermore, it is still difficult 

to classify various pavement crack kinds precisely. To enhance road maintenance and 
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increase the lifespan of asphalt pavements, it is urgently necessary to develop an 

advanced algorithm capable of accurately recognizing and classifying pavement 

fractures. 

1.5 Research Question 

How does the study use the Beamlet Transform Algorithm for accurate crack 

detection, feature extraction, model design, and evaluation on diverse asphalt 

pavement crack images? 

1.6 Scope of the Study 

The Beamlet Transform Algorithm is used in this study to construct a crack detection 

and classification model for asphalt pavement. The model's performance will be 

measured based on how well it can precisely identify and categorize various pavement 

fractures in the dataset used for the study.   

1.7 Limitations 

The accuracy and generalizability of the created model for detecting and classifying 

asphalt pavement cracks may be constrained by this study's limitations. The quality 

and diversity of the dataset used for training and evaluating the model may have an 

impact on how well it performs. The Beamlet Transform Algorithm may only be 

useful in detecting very narrow or minute cracks. Additionally, the effectiveness of 

the model may be impacted by outside variables like the illumination during image 

capture, and more investigation is required to determine whether it can be applied to 

other road and environmental changes. 
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CHAPTER II 

Literature Review 

2.1 Introduction 

This chapter aims to review the previous studies and current practices in the domain 

of asphalt pavement crack detection and the classification model using the beamlet 

transform algorithm. The focus is on a broad range of methodologies, technologies, 

and systems that have been developed and used for applying the beamlet transform 

algorithm to classify asphalt pavement cracks. Additionally, the chapter will explore 

factors contributing to pavement cracks and potential strategies for prevention and 

maintenance. 

2.1 Background in digital image processing 

Digital image processing (DIP), which focuses on the manipulation, improvement, and 

interpretation of digital images to extract relevant information, has become a crucial 

area within computer vision and image analysis. DIP approaches have found use in a 

variety of fields, including medical imaging, remote sensing, surveillance, and 

infrastructure assessment, thanks to the growth of image capturing devices and the 

growing demand for automated analysis in numerous domains. The creation of reliable 

algorithms for crack identification and classification in various materials, particularly 

asphalt pavements, is one key difficulty that DIP addresses. (Ying and Salari 2010) 

Digital image processing techniques have been intensively investigated by researchers 

in recent years as sophisticated tools to identify and categories cracks in asphalt 

pavements. The necessity of maintaining the integrity of the road infrastructure for 

reasons of economic and public safety is what motivates these efforts. There is a 

demand for automated ways because conventional manual inspection techniques take 

a long time and frequently lack precision. The use of DIP techniques, including as 

segmentation, texture analysis, and edge detection, has showed promise in more 

accurately and effectively locating and classifying fractures. (Ying and Salari 2010) 

The Beamlet Transform (BT) is a novel method that has attracted interest in crack 

identification. Due to its capacity to record localized information in both the spatial 

and frequency domains, the Beamlet Transform, which was initially created for 
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seismic signal analysis, has been applied to a number of image processing tasks. This 

quality fits quite nicely with how uneven and varied pavement cracks are. By 

highlighting minute differences in texture, width, and direction, the BT method is 

intended to improve the accuracy of classification and better fracture detection 

(Ouyang et al., 2014). 

The proposed model for asphalt pavement crack detection and classification using the 

Beamlet Transform algorithm addresses the limitations of conventional methods and 

offers the potential for more accurate, reliable, and automated assessment of pavement 

conditions. This research contributes to the broader field of digital image processing 

by showcasing the adaptability of sophisticated techniques like the Beamlet Transform 

in solving real-world infrastructure challenges. (Ouyang et al., 2014) 

A 2D function with the notation f (x, y) can be used to describe an image, where x and 

y stand for spatial coordinates. The coordinate pair (x, y) determines the location of a 

point or pixel within the image, while the value of f denotes the intensity (or colour) 

magnitude of the pixel (x, y). The finite and discrete character of pixels and intensity 

levels establish the nature of images as digital data. (Gonzalez et al., 2002) describes 

the field of "Digital Image Processing" as including computer-based processing of 

digital images in the book "Digital Image Processing." 

There is a divergence of opinions among scholars regarding the differentiation 

between image processing and allied fields such as image analysis and computer 

vision. the notion that images function as both input and output in image processing is 

a common one regarding these distinctions. However, Gonzalez et al. regarded this 

concept as "a limiting and somewhat artificial boundary" (Gonzalez et al., 2002). 

Building upon (Gonzalez et al., 2002), this dissertation explores these concepts. 

It can be difficult to distinguish clearly between image processing and computer 

vision. Low-level, mid-level, and high-level processes are all types of computerized 

operations. At the lowest level, fundamental procedures that change images as inputs 

to produce equivalent outputs include contrast enhancement, noise reduction, and 

image sharpening. Mid-level procedures operate on image inputs to extract features 

like edges and contours. High-level processing, on the other hand, comprises complex 
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tasks like object recognition and detection that resemble the field of picture analysis 

(Zhao & Ning, 2017). 

The three levels of computerized processes described previously are used in this 

dissertation to address various goals, including computer vision, complete image 

analysis, and image pre-processing. These endeavors encompass diverse undertakings 

such as object detection, segmentation, noise reduction, and the extraction of image 

features. The terminology "digital image processing" within this thesis pertains to 

procedures wherein images function as inputs and outputs, as well as procedures in 

which images serve as inputs, yielding outputs encompassing image features or feature 

recognition. The primary objective of these processes in this study is image analysis 

and recognition, utilizing state-of-the-art techniques such as machine learning 

(Eisenbach et al., 2017). 

2.1 Cracking phenomenon understanding 

The assessment of road conditions encompasses various metrics (Shahin & Kohn, 

1979), with the cracking index serving as a vital instance that underscores the 

deterioration resulting from the emergence of fissures within the road surface. 

According to a definition provided by the American Association of State Highway and 

Transportation Officials (AASHTO et al., 2018), a road crack is characterized as: "An 

interruption in the pavement surface with at least 1 mm width and 25 mm length." An 

alternate interpretation of crack, put forth by the PIARC Technical Committee 

Road/Vehicle Interaction, designates it as: "A disruption in the road surface marked 

by specified minimum measurements for length, width, and depth." Miller's technical 

report (Miller et al., 2014) comprehensively covers various crack types, encompassing 

facets like crack direction factor. These delineations collectively underscore that road 

surface cracks can be defined by four key attributes: length, width, depth, and 

orientation. 

(Nguyen et al., 2009), in their exploration of crack identification and categorization, 

depicted road cracks in image representations based on the following attributes: 

 Darker in comparison to the surrounding areas (attributed to the crack's form 

impeding the reflection of numerous light rays from the crack to the camera). 
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 Continuous in nature (with the crack potentially being lengthier or thinner than 

the particles around it). 

 Predominant orientation (indicating a prevailing alignment that spans the entire 

crack or its individual segments). 

Figure 2.1 

Crack analysis on road images. 

 

In subfigure (a), a graph illustrates the luminosity of an image featuring a crack within 

a three-dimensional coordinate system (x, y, intensity). Subsequently, subfigure (b) 

demonstrates two distinct lighting scenarios: one where light approaches the crack's 

edge and another where it emanates from the crack's bottom. Finally, subfigure (c) 

denotes the crack's orientation. 

In his doctoral research, Oliveira defined various features of fractures in photographs 

based on crack direction, diameter, and length (Oliveira et al., 2013). Cracks should: 

 Demonstrate linear progression in the specified direction. 

 Display a specific width, such as equal to or greater than 2 mm. 

 Have a significant length. 

This article introduces a definition of cracks in pavement images, which applies to 

images with a spatial resolution of 1 pixel = 1 square millimeter or higher. 

A crack can be defined by: 

Length: Branch fractures or unconnected cracks have a minimum length of 25 pixels.  
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Intensity: For a 256-grey level - 8-bit image, a crack is darker than its surroundings 

by at least 5 grey levels. 

Identifying whether a fracture is part of the interconnected network of road fractures 

or stands alone holds significant importance for maintenance endeavors. According to 

(Miller and Bellinger, 2014), an isolated crack with a length less than 300 mm (or 300 

pixels in images) will not register as detectable. 

Road maintenance methods, such as segmentation and fracture detection, are essential. 

To address this issue, a range of image processing techniques, both conventional and 

cutting-edge, are available. While conventional methods for fracture detection use 

edge detection or other low- or mid-level procedures, these techniques are susceptible 

to noise and undesirable artifacts in the road. Preprocessing image processes are 

necessary to improve accuracy before applying these procedures. Recently, systems 

utilizing machine learning approaches, such as deep learning, have been reported for 

identifying fractures in images. Some of these techniques demonstrate good 

performance, while others require preprocessing or involve non-standardized data 

collection approaches, and some are highly complex (Oliveira et al., 2013). 

Even with substantial research efforts, the precision of existing methods for crack 

analysis, which aim to ascertain vital crack attributes like width, length, and 

orientation, frequently falls short. Moreover, these present techniques can 

inadvertently classify unrelated visual components as cracks, primarily due to the 

absence of a meticulous crack delineation. Addressing these constraints is complicated 

by the scarcity of reliable ground truth data of superior quality (Oliveira et al., 2013).  

The subsequent portions will explore the current status of crack partitioning, 

categorization, and identification through the utilization of both two-dimensional (2D) 

and three-dimensional (3D) information, encompassing data formats like point clouds 

and visual representations. A range of techniques, spanning from conventional digital 

manipulation to advanced neural networks integrating machine learning 

methodologies, can be harnessed within crack analysis frameworks. The classification 

of road cracks can be conducted by considering their degree of seriousness or extent 

of deterioration (Oliveira et al., 2013). 

 



9 
 

 
 
  
  

2.3 Crack classification based on types of cracks 

Crack occurrence represents a prevalent manifestation of degradation across road 

surfaces, encompassing both asphalt and concrete compositions, as expounded in the 

handbook for the long-term pavement performance program (Miller et al., 2014). 

Cracks can be systematically classified into six well-defined groupings (Miller et al., 

2014). 

2.3.1 Fatigue cracks 

Fatigue fractures, also known as alligator cracks due to their interconnected and 

alligator-skin-like appearance, are caused by traffic loading. These cracks often appear 

in areas where heavy trucks frequently traverse, leading to their development. The 

number of cracks per square meter can be used to calculate the density of these cracks. 

Several instances of fatigue cracks are illustrated in Figure 2.2. It is evident from the 

examples that the severity of distress escalates with an increasing number of 

interconnections among the cracks. 

Figure 2.2 

Fatigue crack examples. 

 

When cracks are closely related, it indicates a high level of severity. This specific type 

of crack lines up with the flow of traffic. 
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2.3.2 Block cracks 

Figure 2.3 

Block cracks.  

 

Cracks that form longitudinally and transversely on the road surface tend to give rise 

to square-like segments. These segments, referred to as "block cracks," can vary in 

size, spanning from as compact as 0.3m×0.3m to as extensive as 3m×3m. 

Block cracks result in the division of the road's surface into rectangular sections, where 

each rectangle covers an area spanning from 0.1 to 10 square meters. The emergence 

of block cracks is predominantly attributed to the "fatigue" phenomenon experienced 

by roads. Two instances of block cracks are depicted in Figure 2.3. On the left side, 

there are block cracks measuring 0.3m×0.3m, while on the right side, there are block 

cracks measuring 3m×3m. Smaller block crack sizes are indicative of more 

pronounced road distress. 

2.3.3 Edge cracks 

Edge cracks are characterized by their crescent-shaped pattern, originating from the 

road's edge and extending towards the shoulder. The extent of pavement edge 

influenced by these cracks can be quantified through length measurements. A 

representative instance of edge cracks is illustrated in Figure 2.10. It is plausible that 

the emergence of edge cracks is linked to the material fatigue experienced by the road 

surface. 
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Figure 2.4  

Edge cracks  

 

Edge cracks are indications of fissures near the unpaved road shoulder. The edge stripe 

and the outer edge of the pavement are connected by these fissures. 

2.3.4 Longitudinal cracks 

Longitudinal cracks are ones that follow the centerline of the road. These cracks must 

be positioned in the designated lane of the road since it is essential to distinguish 

longitudinal fractures from other kinds of cracks. Figure 2.5 shows two types of 

longitudinal cracks: those that are outside the wheel path and those that are found in 

the path of the wheels. 

Figure 2.5 

Longitudinal cracks.  
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These go from the perimeter of the road towards its center and are positioned in 

accordance with the direction of traffic. The road surface is covered in fissures of this 

type. 

2.3.5 Reflection cracks 

Reflection fractures form on the concrete pavement's top layer, typically above joints. 

Figure 2.6 shows an instance of a reflection fracture. These cracks are the result of 

"reflection" damage stemming from the layer beneath the road surface. As such, they 

are associated with the joint of that underlying layer. 

Figure 2.6 

Reflection cracks.  

 

Reflection cracks arise when damage originates from a subsurface layer and is then 

mirrored by the uppermost layer of the road. These cracks share a visual similarity 

with transverse cracks in their outward appearance 

2.3.6 Transverse cracks 

The majority of transverse cracks are oriented perpendicular to the road's centerline. 

As illustrated in Figure 2.7, the width of transverse cracks can vary along their length. 

Thus, specifying the crack width should encompass the minimum, maximum, and 

average widths observed at different locations along the transverse cracks. 

Engage in the practice of measuring road craters. 
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Figure 2.7 

Transverse cracks.  

  

The width of cracks can be measured. Transverse cracks can vary in width, spanning 

from 3 millimeters to 20 millimeters. 

2.4 Crack processing using traditional digital image processing 

In conventional road maintenance practices, the identification and assessment of 

cracks have conventionally relied upon the expertise of road specialists or technicians 

operating under the guidance of experts. Nonetheless, this manual approach consumes 

a substantial amount of time and labor resources. Hence, the integration of automated 

or semi-automated approaches utilizing imagery has emerged as a prospective 

solution, aiming to streamline the evaluation of crack severity and overall road 

condition. A multitude of studies have been conducted, investigating the automated 

identification of cracks present on road surfaces (Li & Liu, 2008; Zakeri, Nejad, & 

Fahimifar, 2017). These research efforts underline the formidable challenge in crack 

detection, primarily attributed to the prevalent image noise and undesired artifacts, 

encompassing shadows, debris, and road markings. Moreover, in practical road 

assessment scenarios, images are captured by cameras affixed to swiftly moving 

vehicles, subjected to diverse environmental conditions (Zakeri, Nejad, & Fahimifar, 

2017). Consequently, image quality fluctuates, posing a persistent challenge for 

reliable crack detection. It is important to note that a significant portion of advanced 
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methodologies addressing road crack concerns are confined to the realms of crack 

identification and categorization, often excluding the computation of crack indices. 

There are two broad categories of crack detection, segmentation, and classification 

methodologies: those based on traditional Digital Image Processing (DIP) techniques, 

and those based on neural networks and machine learning paradigms. This section will 

provide a review of common techniques such as edge detection, Gabor filters, and 

picture feature extraction. 

Figure 2.8 

Improved canny method result. 

 

The image on the left represents the original image, while the image on the right 

depicts the outcome generated by the Canny method. This approach effectively 

eliminates black-white dot noise present in the image; however, it falls short in 

maintaining the seamless continuity of cracks. 

2.4.1 Edge detection 

Traditional techniques in Digital Image Processing (DIP) commonly employ edge 

detection methods for identifying and categorizing cracks in asphalt pavements. Edge 

detection relies on the utilization of image gradients, specifically the first and second 

derivatives (Ziou & Tabbone, 1998). To enhance upon the Canny edge detection 

approach (Canny., 1987), various advancements have been proposed for detecting and 

characterizing cracks (Agaian et al., 2009; Zhao, Qin, & Wang, 2010). In the study by 



15 
 

 
 
  
  

(Huili Zhao and colleagues 2010), they enhanced road images by enhancing contrast 

before applying the Canny edge detection algorithm. This technique, suggested by 

Zhao, exhibits improved crack detection capabilities and is more effective in 

eliminating small noise artifacts compared to the conventional Canny method. 

Nevertheless, it struggles to eliminate other elements like zebra crossings or pavement 

signage. (Almuntashri and Papagiannakis, 2009) proposed an extension of the Canny 

method, known as AC test images, which fuses two edge detection outcomes. These 

images can be processed through a "Modified Canny kernel" or a combination of 

"Modified Canny kernel and Modified gradient Canny" to accentuate branch edges. 

However, the application of this technique to road images results in crack segments 

that are discontinuous, as illustrated in Figure 2.8. 

Regarding conventional segmentation methods, a research paper examining crack 

segmentation (Tsai, Kaul, & Mersereau, 2010) For fracture identification, seven 

different edge detection algorithms were investigated. On 30 images, these techniques 

were evaluated, revealing that dynamic optimization yields the most promising 

outcomes. The experiments demonstrated that segmentation struggles to differentiate 

authentic cracks from similar features like paint. Wavelet transform is another 

foundation for edge detection, as exemplified in the works of (Aydin and Sankur, 

1996) and (Porwik and Lisowska, 2004). Moreover, (Cuhadar and Tasdoken, 2019) 

harnessed wavelet transforms for assessing road conditions, building upon prior work 

in pavement condition evaluation using the same method (Cuhadar & Tasdoken, 

2002). The International Roughness Index (IRI) and numerous other types of pavement 

condition data were used in this technique to show how adaptable the wavelet 

transform is as a segmentation tool. 
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Figure 2.9 

Edge detection experimentation results for pavement image 

 

 

(a) Original image, (b) Robert edge detection, (c) Sobel edge detection, (d) Prewitt 

edge detection, (e) Laplacian of Gaussian (LOG) edge detection, (f) Canny edge 

detection, (g) Edges obtained using a trous algorithm with scaling 21, (h) Edges 

obtained using a trous algorithm with scaling 22, and (i) Edges obtained using a trous 

algorithm with scaling 23 

However, this endeavor solely addresses data noise removal and necessitates 

reinforcement from the Geographic Information System (GIS). Wavelet-transform-

based approaches were implemented as edge detection techniques for asphalt 

pavement images (Wang, Li, & Gong, 2007). (Wang and colleagues 2020) employed 

Mallat's algorithm (Mallat., 1989) as well as a trous algorithm to facilitate multi-

resolution analysis, achieving commendable outcomes in the identification of 

longitudinal cracks and potholes. Nevertheless, their accomplishments were limited to 

specific road conditions and did not encompass a broader spectrum. A trous algorithm 

also requires an excessive amount of memory and processing resources. In conclusion, 

edge recognition is important, but it struggles with the large amount of noise in road 

photos that could mistakenly be identified as fractures. The performance of traditional 

edge detection filters and a trous method at various scales are compared in Figure 2.9. 



17 
 

 
 
  
  

Undoubtedly, a trous algorithm is excellent at reducing noise, but how effective it is 

depending much on the scaling parameter that is selected. 

Figure 2.10 

Gabor filter applied to a road image. 

 

The image on the left represents the original image, while the image on the right 

illustrates the outcome obtained through the application of the Gabor filter technique 

(Salman et al., 2013). The identified cracks appear to be larger than their actual size. 

2.4.2 Gabor filters 

Gabor filters execute image filtering by relying on Gabor functions (Movellan et al., 

2002). These filters are also employed for the extraction of image features (Ma, Wang, 

Tan, et al., 2002; Kong, Zhang, & Li, 2003). Gabor filters showcase effectiveness in 

the realm of texture segmentation (Salman et al., 2013), and considering road images' 

texture-rich nature, they prove valuable in the detection and segmentation of pavement 

cracks (Salman et al., 2013; Zalaama et al., 2014). In a crack detection proposal by 

(Bhoi and Solanki 2011), Salman introduced a set of Gabor filters with diverse 

orientations. The quantity of filters within a Gabor filter bank affects the output 

quality. While employing a greater number of orientations enhances accuracy, it 

concurrently leads to extended computational time and an increased false positive rate. 

This approach holds the advantage of capturing a majority of crack pixels, facilitating 

precise crack line segmentation. However, its susceptibility to noise is a limitation. 
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The outcomes of the Gabor method, illustrated in Figure 2.10, reveal that certain subtle 

cracks might not be detected (Bhoi & Solanki, 2011). 

2.4.3 Adaptive thresholding 

Adaptive thresholding is a method widely utilized in various applications within 

computer vision and graphics (Bradley & Roth, 2007). This method includes the 

comparison of each pixel with the average of its neighboring pixels while ignoring 

minor gradient fluctuations. In their proposal from 2007, Bradley and Roth introduced 

a technique known as the "integral image" with the intention of reducing the 

computational effort needed to compute the sum of pixels inside a rectangular area of 

an image. This approach is also used in a face identification proposal (Viola & Jones, 

2004). A powerful image processing method that tackles fluctuations in lighting across 

space and removes noise is adaptive thresholding. 

A variety of computer vision and graphic applications frequently employ the adaptive 

thresholding technique (Bradley & Roth, 2007). This approach ignores minute 

variations in gradients and evaluates each pixel in relation to the local average of its 

neighbours' pixels. The calculation of summed values within rectangular image 

regions was streamlined by (Bradley and Roth 2007) using an approach known as the 

"integral image," which is also used in face detection investigations (Viola & Jones, 

2004). In image processing, adaptive thresholding shows to be a reliable approach for 

adjusting lighting fluctuations in space and reducing noise. In a separate study focused 

on crack detection (Fan et al., 2019), a deep Convolutional Neural Network (CNN) 

model was deployed by Fan and colleagues to identify regions containing cracks. 

Subsequently, an adaptive thresholding technique was implemented to segregate the 

detected cracks from the surrounding regions. This approach is notable for its 

simplicity and speed, boasting high accuracy particularly when handling images 

featuring prominent cracks. However, it remains limited in its inability to address dot-

like noise, which is often prevalent in road image data. 
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Figure 2.11 

The result of the NDHM method. 

 

The original image is on the left, while the NDHM result is on the right. The presence 

of numerous block dots in the result illustrates the sensitivity of the NDHM approach 

to noise. 

2.4.4 Crack detection based on image features 

In the field of crack identification, attributes of images, such as the Neighboring 

Difference Histogram Model (NDHM) (Li & Liu, 2008), are helpful. The weighted 

contrast between the number of probable crack pixels and the number of nearby pixels 

is determined by the NDHM approach. The likelihood of designating a pixel as a crack 

pixel increases as the number of adjacent crack pixels grows. (Li and Liu, 2008) 

conducted a comparative analysis between their proposed method and classical 

thresholding techniques, including Otsu (Otsu et al., 1979) and Kapur (Kapur, Sahoo, 

& Wong, 1985), establishing the superior efficacy of the NDHM technique. Despite 

its adeptness at capturing almost all crack pixels, this method exhibits a tendency to 

detect noise, manifesting as dots and salt-and-pepper noise, as evidenced in Figure 

2.11. 
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Figure 2.12 

Crack detection based on LBP features. 

 

The original images are displayed in the left column, the Hu result is displayed in the 

center column, and the Canny technique results are displayed in the right column. The 

Hu and Canny approaches classify the original image in the second row as a fracture 

even if it contains paint. 

2.4.5 Geography features 

Distinct geographic attributes have been harnessed for the purpose of detecting cracks 

in different materials (Nguyen, Kam, & Cheng, 2018). This approach has also been 

utilized in the context of road crack detection (Nguyen et al., 2014). In their work, 

(Nguyen and colleagues, 2014) conceptualized cracks as line-like structures exhibiting 

Gaussian cross-sectional intensity profiles, as depicted in Figure 2.13. Their 

methodology involves enhancing crack images using a Gaussian function-based filter 

and subsequently extracting the central crack line. Subsequent steps encompass the 

elimination of spurious cracks, including undesired edges. However, this technique 

necessitates preliminary and follow-up preprocessing stages to ensure accurate 

identification of authentic cracks. 
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In an effort to enhance crack detection, (Medina et al., 2014) proposed a technique that 

combines 2D images with 3D data processing methods. Their approach facilitates a 

detailed examination of cracks. The Median method employed by (Medina and 

colleagues 2014) involves extracting geometric information from road images. They 

achieved commendable balanced accuracies of 96% and 93% for transverse and 

longitudinal cracks, respectively. Prior approaches (Oliveira, 2013; Zou et al., 2012) 

have also employed crack attributes, such as width, curvature, and length, to 

distinguish crack pixels from non-crack pixels. 

Figure 2.13 

Geometric crack as a gaussian function. 

 

A Gaussian function can be used to represent the intensity of a crack, with the center 

of the crack being the darkest value (lowest intensity). 

In conclusion, these image characteristics are unsuccessful in fracture detection 

because road images are acquired under a variety of lighting and environmental 

situations. In essence, conventional image processing methods check differences in 

brightness between crack pixels and either the background or their nearby pixels. 

These techniques are frequently straightforward and demand little hardware. They are, 

nevertheless, sensitive to the noise and asymmetry found in images of roads. The 

methodologies that use neural networks in machine learning for object detection, road 

fracture detection, and segmentation are outlined in the next section. (Zou et al., 2012; 

Oliviera., 2013) 
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2.5 Background in machine learning 

Machine learning involves the creation of computer programs capable of improving 

their performance through experience (Mitchell., 2006). When implementing a 

machine learning algorithm, an anticipated result can be represented as a function y(x), 

where x represents the input data and y indicates the output vector, which is "encoded 

in the same way as the target vectors" (Svensén & Bishop, 2007). In the context of this 

thesis, specifically for detection and segmentation objectives, x takes the form of road 

crack data, including images or point clouds, while y assumes the shape of a [1 × 2] 

vector. The two values within the vector correspond to the two categories present in 

the input data, namely, crack and non-crack. 

Machine learning algorithms can be broadly classified into three main types: 

supervised learning, unsupervised learning, and reinforcement learning. In supervised 

learning, human experts guide the algorithms by providing them with data along with 

corresponding labels. Conversely, unsupervised learning involves training without the 

use of labeled data. On the other hand, reinforcement learning (Sutton & Barto, 2018) 

observes the interaction between a given situation and the environment to make 

decisions that optimize rewards or minimize risks. In the context of this thesis, 

supervised learning is predominantly employed, where labels or ground truth data are 

provided by civil engineering experts. 

Throughout this thesis, a wide range of machine learning algorithms are employed. 

However, the primary contributions arise from deep learning algorithms, specifically 

Convolutional Neural Networks (CNNs). The upcoming section provides a concise 

introduction to CNNs and their application in tackling object detection challenges. 

2.5.1 Crack processing based on machine learning with convolutional neural 

networks  

2.5.2 Crack detection 

Deep learning constitutes a collection of machine learning methodologies that hinge 

on intricate layers of artificial neural networks. In the realm of crack identification and 

partitioning, neural networks assume a pivotal role. In this context, these models offer 

distinct benefits in comparison to conventional machine learning models (Zhang et al., 
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2016; Fan et al., 2018; Nguyen et al., 2018). Deep learning models possess the inherent 

capability to autonomously grasp features embedded within images, a task that 

traditional machine learning methods necessitate users to manually engineer image 

features for. Moreover, deep learning excels in capturing subtle defects that prove 

arduous to train, such as minor aberrations in product labeling. Recently, the field of 

deep learning has emerged as a formidable approach employed to tackle the challenges 

of detection and segmentation. A comprehensive analysis of twelve techniques for 

crack detection unveiled that half of them are rooted in neural networks, encompassing 

both unsupervised and supervised methodologies (Oliveira et al., 2013). 

In the field of asphalt pavement crack detection and classification, two main 

methodologies are identified: pixel-based crack detection and block-based crack 

detection. Although the block-based approach achieves an approximate accuracy of 

90%, its efficacy is contingent on complex data preprocessing prior to training and 

testing (Zhang et al., 2016; Fan et al., 2018; Medina et al., 2014; Maeda et al., 2018). 

In a study presented at the International Conference on Image Processing (ICIP), 

(Zhang et al., 2016) employed a Convolutional Neural Network (CNN) to detect cracks 

in images. Notably, the images in this study were captured using smartphones, 

differing from data sourced from practical systems, which typically involve 

monochromatic images obtained using specialized high-speed cameras. According to 

Zhang's methodology, a positive sample is defined as a patch that is centered within a 

5-pixel radius of the crack centroid and a negative sample is a patch that is completely 

clear of cracks. 

To evaluate the performance of their proposed model, the authors conducted a 

comparative analysis of the Receiver Operating Characteristic (ROC) curve using a 

Support Vector Machine (SVM) (Chang & Lin, 2011), a Boosting algorithm (Freund, 

Schapire, & Abe, 1999), and their own model. The findings highlight their model's 

highest Area Under the ROC Curve (AUC) of 0.845. Nevertheless, the final F1 score 

of 89% achieved by the proposed model is relatively moderate for crack detection 

issues, with detected cracks often larger than actual cracks. It's noteworthy that Zhang's 

model employs a substantial number of kernels (48 kernels per CNN layer), potentially 

leading to prolonged CNN training times. 
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(Maeda et al., 2018) conducted a comprehensive study on various deep learning and 

convolutional network approaches for detecting road damage and cracks in images. 

They curated a novel dataset using a smartphone mounted on a moving vehicle, 

spanning eight categories of road damage, including five types of cracks. 

Regarding another study by (Fan et al., 2018), a CNN model was employed to analyze 

two publicly available road crack datasets, CFD and AigleRN. The datasets were used 

without preprocessing to address the challenge posed by imbalanced data. Fan's 

architectural design consisted of nine layers, including two CNN layers with 16 kernels 

each, max-pooling, two CNN layers with 32 kernels each, and three fully-connected 

layers. The model achieved a commendable final score exceeding 90%. However, it 

relied on a multi-label classification model, requiring post-processing for crack 

differentiation, and its limited training images carried the risk of model instability. 

(Zhang et al., 2017) introduced a CNN model for 3D pavement crack data, displaying 

impressive accuracy on sound data but struggling with faint cracks and input 

disturbances. On a similar note, the model presented by (Fan et al., 2018) might not 

adapt well to noisy and artifact-ridden low spatial resolution images. 

In the realm of automated crack detection and classification, YOLO v2 (Mandal et al., 

2018) was employed, achieving an F1 score of 0.87 but lacking pixel-level 

segmentation. RetinaNet (Ale et al., 2018), another deep learning-based model, also 

tackled road damage detection, albeit with limitations in recognizing certain artifacts 

as cracks. 

In a bid to rapidly identify cracks, (Park et al., 2019) proposed a two-module model 

that demonstrated impressive precision and recall. However, challenges arose when 

processing images containing both cracks and road markings or border-placed cracks. 

In conclusion, CNN designs for fracture detection share the following common 

characteristics: 

• Input data comprises both affirmative and negative instances. Positive instances 

encompass crack pixels positioned at the center, while negative instances lack any 

crack characteristics. 
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• Architectures for Convolutional Neural Networks (CNNs) with three to five 

convolutional layers are frequently used for crack detection. Each convolutional 

layer's kernel count can either stay constant over time or gradually rise from the 

first to the last. 

• Incorporating max-pooling layers aids in reducing the number of parameters 

within the network. 

• The ultimate layer utilizes a SoftMax activation function. This fully connected 

layer consists of two neurons, tasked with classifying the input image into either 

the crack (positive) or non-crack (negative) category. 

Prior studies can be regarded as sample-level crack detection, where evaluations are 

conducted at the visual region level rather than assessing pixel-level categorization 

accuracy. To pinpoint fractures at the pixel level, specific segmentation techniques at 

the image's smallest unit are recommended. The subsequent section will cover the 

methodologies employed for pixel-level crack detection and crack segmentation. 

2.5.3 Crack segmentation 

This section provides an overview of certain studies that initially employed CNNs for 

general object segmentation, followed by an exploration of research focused on crack 

segmentation. 

An initial investigation delves into CNN utilization for comprehensive object 

segmentation. Subsequently, the inquiry shifts to studies specifically addressing crack 

segmentation. 

A study by (Girshick et al., 2014) introduced the Region-Based Semantic 

Segmentation (R-CNN) technique. This innovative approach employs CNN features 

to detect and segment images based on distinctive regions. R-CNN is made up of three 

main parts: the first stage produces about 2000 category-neutral region proposals; the 

second stage uses a large CNN to extract feature vectors from each region; and the 

third and final stage uses a linear algorithm, like a Support Vector Machine (SVM), to 

classify regions. On the VOC2012 dataset, Girshick's model achieves a mean Average 

Precision (mAP) of 53.3%. Nevertheless, Girshick's proposal highlights certain 

drawbacks, including substantial memory requirements and sluggishness during 

training and testing phases (Girshick et al., 2014). 



26 
 

 
 
  
  

Fast R-CNN, an advancement over R-CNN by (Girshick et al., 2015), streamlines 

computation by sharing resources during object proposal convolutional network 

forward passes. Fast R-CNN introduces two notable improvements. In order to extract 

feature vectors from the feature map, it first incorporates regions of interest (RoI) into 

the pooling layer. Two sibling layers are included in the output, one for predicting 

object classes and the other for fine-tuning object bounding box placements. In 

contrast to R-CNN and SPPNet, the training and testing phases are noticeably 

shortened (He & Sun, 2015). However, the use of selective search computing remains 

essential for enhancing training speed (Girshick et al., 2015). 

Mask R-CNN, an extension of Faster R-CNN, was introduced by (He et al., 2017) to 

facilitate pixel-level segmentation. A distinctive feature of Mask R-CNN is the 

simultaneous integration of a mask component alongside the existing branch for 

bounding box recognition. He et al. also introduces RoIAlign, a pixel-to-pixel 

alignment method that mitigates the issues associated with RoI pooling layer 

quantization and aligns extracted features with input data. While Mask R-CNN 

achieves precise pixel localization for objects, it remains less effective in segmenting 

small objects (He et al., 2017). 

Building on the information from VGG16 (Simonyan & Zisserman, 2014), (Long et 

al., 2015) presented Fully Convolutional Networks (FCN) for semantic segmentation. 

VGG16's fully connected layers are converted into convolutional layers by FCN using 

a 1x1 convolutional layer, allowing the classification network to produce low-

resolution heatmaps. These semantic feature maps serve as input for up-sampling via 

transposed convolutions. This up-sampling process is progressively refined across 

stages. FCN accommodates inputs of varying sizes and yields corresponding-sized 

outputs. Although FCN excels in spatial information extraction and attains a higher 

mean Intersection over Union (IoU) compared to other segmentation nets like R-CNN, 

its complexity and time-consuming training due to the numerous convolutional layer 

kernels are noteworthy (Long et al., 2015). 

In the beginning, U-Net was developed to segment biological images (Ronneberger et 

al., 2015). Its use has been expanded to include numerous additional image 

segmentation tasks. A contracting segment for feature computation and an expanding 

segment for localizing patterns in the image make up the two main components of the 
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U-Net architecture. The contracting section employs max-pooling layers to decrease 

parameters and picture dimensions while the expanding section uses up-pooling layers 

to increase image size, producing an output image that is the same size as the original 

image. Concat layers integrate feature maps at the same level in both components of 

the U-Net design, improving object localization precision. There are a total of 23 

convolutional layers in the network. The cornerstones of Ronneberger's methodology 

are the overlap title and separation of touching items procedures. While the remaining 

technique trains the network to recognize minute borders separating adjacent cells, the 

Overlap Title strategy uses the U-Net model to anticipate various portions of the entire 

image. On the ISBI cell tracking task, Ronneberger's U-Net earns a remarkable 

Intersection over Union (IoU) score of 0.9203 (Ronneberger et al., 2015). 

SegNet is a deep convolutional encoder-decoder architecture developed for image 

segmentation, according to (Badrinarayanan et al., 2017). Both indoor and outdoor 

scene prediction have been done using it. The first 13 levels of the VGG16 network 

are replicated in the encoder network's 13 convolutional layers (Simonyan & 

Zisserman, 2014). This produces a collection of feature maps, which the relevant 

decoders then up-sample. Notably, SegNet uses a method that reduces the number of 

parameters by just storing max-pooling indices. SegNet performs equally well as FCN 

while consuming less RAM. For the majority of objects, it outperforms other 

techniques in border delineation. 

Another convolutional neural network (CNN) that is used for the segmentation of 

medical X-ray images is XNet (Bullock et al., 2019). The encoder-decoder architecture 

used by XNet is typical for applications involving picture segmentation. XNet 

manages to achieve a remarkable overall accuracy of 92% and an AUC of 0.98 despite 

training on a relatively small dataset of 108 photos encompassing 10 body parts. The 

serial down-sampling component of the X-Net encoder is smaller than that of other 

segmentation networks, which makes it unique. Two encoder-decoder modules are 

also used by the authors to improve feature extraction without significantly lowering 

image resolution. Over three categories of X-ray images, XNet routinely achieves F1-

Score and AUC scores above 90%. XNet has a higher F1 score overall than SegNet, 

although using fewer parameters, according to a comparison study comparing the two 

networks (Bullock et al., 2019). 
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As per (Liu et al., 2019), Deep Crack represents a distinct model employing a deep 

hierarchical neural network for fracture segmentation. The researchers propose the 

utilization of a deep hierarchical CNN for the segmentation of fractures at the pixel 

level. To generate substantial side-outputs across different scales, Deep Crack employs 

the initial 13 layers, akin to VGG-16, while omitting fully connected layers and the 

fifth pooling layer, thus leading to reduced memory usage and computational time. 

This is achieved through the incorporation of a guide filter inspired by guided 

feathering, enhancing final predictions and diminishing noise in low-level predictions 

(He et al., 2012). The dataset comprises over 500 images sourced from the internet and 

the authors' personal collection, introducing real-world challenges owing to variations 

in spatial resolutions and features among these images. The effectiveness of the Deep 

Crack model in fracture segmentation is evident from its mean Intersection over Union 

(IoU) of 85.9 and an F1 score of 86.5% (He et al., 2012). 

In conclusion, the image segmentation architectures mentioned above frequently 

exhibit the following characteristics: 

• The methods incorporate the network architecture's backbone. The two 

symmetrical components of this backbone often involve encoding and decoding 

or contracting and expanding. 

• Some approaches introduce a novel design for the decoding portion while utilizing 

existing networks for the encoding portion, such as VGG16 (Simonyan & 

Zisserman, 2014). 

• These methods utilize concatenation layers. 

• The techniques employ the projection layer or feature map pooling, also known 

as the convolutional 1x1 layer, for channel-wise pooling. 

While a limitation of crack detection techniques is their tendency to identify only 

portions or limited regions containing cracks, resulting in the detection of cracks larger 

than their actual size (Nguyen et al., 2018; Zhang et al., 2016), crack segmentation 

methods face challenges due to the varying resolutions of road images and the presence 

of numerous artifacts, notably challenging-to-remove noise. As a solution, recent 

advancements have adopted a two-stage framework, combining both crack detection 

and segmentation within a single architecture. The following section will delve into an 

exploration of these novel approaches that leverage a two-stage design. 
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CHAPTER III 

Methodology 

3.1 Overview 

This chapter discusses the method used. in the asphalt pavement crack detection using 

beamlet transform algorithm method. The methodology specifies a step-by-step 

process for precisely recognizing and classifying pavement cracks. It encompasses 

image preprocessing, crack detection, and crack classification.  

3.2 Crack classification standard 

This thesis utilizes images procured from cement and asphalt roads, which are 

accessible at https://github.com/cuilimeng/CrackForest-dataset. A quantitative 

analysis of 1000 images' worth of data was conducted. Generally, images of asphalt 

pavement crack detection display linear attributes and are often discontinuous due to 

considerable environmental interference. This aspect makes it challenging for 

traditional pixel-based methods to effectively detect and categorize these cracks. 

However, the Beamlet algorithm proves robust in its line detection capabilities, 

making it suitable for crack detection and classification tasks (Ouyang et al., 2014). 

When acquiring images for the purpose of detecting cracks in asphalt pavement, the 

cracks are projected onto both horizontal and vertical planes, thereby facilitating 

measurements. By assessing the count of branches and their orientation in the 

horizontal dimension, it becomes feasible to classify a given crack. As indicated in 

Table 3.1, the cracks fall into four primary categories: block cracks, alligator cracks, 

longitudinal cracks, and transverse cracks. The angle of each crack is calculated from 

its initiation point to its termination point. Irrespective of its angle, the presence of a 

branch identifies a block crack. The summation of the lengths of individual blocks 

along a crack corresponds to the overall crack length, with the length of a block crack 

being defined as the highest value of the Beamlet transform within each cell block of 

a crack image (Ouyang et al., 2014). 
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Table 3.1  

The characteristics of different types of cracks 

Types of cracks   𝐂𝐫𝐚𝐜𝐤 𝐚𝐧𝐠𝐥𝐞 𝛀 Branches 

Block 𝛺 ≥ 60° NO 

Longitudinal 𝛺 ≤ 30° NO 

Transverse 60° > 𝛺 > 30° NO 

Alligator - YES 

 

3.3 Method 

The Beamlet Transform Algorithm is used to analyze images of pavement cracks in 

the recommended method. The images are preprocessed to enhance crack visibility 

and then subjected to the Beamlet Transform for detection and segmentation of cracks. 

Relevant features are extracted from the detected cracks, and a classification model is 

trained to classify the cracks into four main types. 

Table 3.2 

Four main types of cracks used 

Crack Types Images 

Block 250 

Longitudinal 250 

Transverse 250 

Alligator 250 

 

3.3.1 Beamlet transform algorithm image processing 

Image preprocessing is a critical preliminary step in the process of detecting and 

characterizing cracks in asphalt pavement images. The journey begins with the original 

image, capturing the real-world pavement conditions. To facilitate focused analysis, 

the next step involves converting the image into grayscale. The method then simplifies 

processing by isolating the intensity variations that include crucial information about 

characteristics like cracks. (Safaei et al., 2021) 
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Image enhancement techniques are used to further improve the image's quality. These 

methods alter brightness and contrast to make sure that minute details, like cracks, 

stand out against the background. This phase is essential to enhancing the algorithm's 

capacity to recognize elements precisely even in poor lighting situations. (Safaei et al., 

2021) 

The programme then continues by applying thresholding techniques to segment the 

image. By dividing the image into multiple zones, this makes it easier to separate 

interesting areas possibly cracks from the background. The algorithm can concentrate 

its efforts on the important areas of the image thanks to this segmentation, which 

provides a framework for further research. (Ying & Salari, 2010) 

Real-world photographs invariably contain noise, which can make accurate analysis 

difficult. The program me uses noise reduction techniques to lessen its effects. These 

methods purge the image of undesired artefacts and disruptions, enhancing the signal-

to-noise ratio. The program me improves its capacity to precisely identify and 

characterize cracks by reducing noise. (Duc et al., 2018) 

As a crucial result, the program me measures crack lengths. The findings help with 

assessment and management of the pavement by offering useful information about its 

state. The technique sets the foundation for accurate and reliable crack identification 

and characterization through meticulous preprocessing procedures, enabling more 

informed decisions about pavement management and maintenance. (Duc et al., 2018) 

3.4 Beamlet algorithm 

3.4.1 Beamlet dictionary 

The implementation of the beamlet transform occurs within image sections that are 

dynamically divided into squares. Visual representations of images occur within the 

continuous square [0, 1] ², in this scenario, pixels are arranged in a grid of 1/n by 1/n 

squares throughout the [0, 1] ² area. The compilation of beamlets constitutes a 

diverse range of line segments, encompassing a broad spectrum of orientations, 

positions, and scales. This variation is visually portrayed in Figure 3.1 

 



32 
 

 
 
  
  

3.4.2 Beamlet transform 

The beamlet transform is characterized as the summation of line integrals calculated 

across the entirety of the beamlet set. Consider f (x1, x2) to be perceived as a continuous 

function within a two-dimensional space, where x1 and x2 denote coordinates (Ouyang 

et al., 2014). The beamlet transform Tf of the function f is outlined as follows: 

Tf(b) = ∫ 
b

f(x(l))dl, b ∈ BE 

Here, BE represents the total collection of beamlets. 

Figure 3.1  

Different in size, location, and orientation, four beamlets 

 

In the context of digital images, the beamlet transform evaluates the line integral within 

the discrete domain. As depicted in Figure 3.2, the depiction of the beamlet transform 

for all points along beamlet b is articulated in the following manner: 

f(x1, x2) = ∑  

i1 ,i2

fi1 ,i2
Φi1 ,i2

(x1 , x2) 
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Figure 3.2 

A weighted sum of pixel values along the lines' direction represents the 

beamlet transform. 

 

Where fi1,i2
 refers to the gray level value of the pixel located at (i1, i2) and 

Φi1,i2
(x1, x2) stands for the pixel's related weight function. Multiple options are 

available for the selection of. Φi1,i2
(x1, x2), and In this study, the average 

interpolation function is the one we choose. (Ouyang et al., 2014). 

If p(x1, x2) represent [i1/n, (i1 + 1)/n] × [i2/n, (i2 + 1)/n], choose function Φi1,i2
 

fulfill the equation: 

n2 ∫  
P(x1,x2)

Φi1,i2
(x1, x2)dx1dx2 = δi1 ,i2
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3.4.3 Algorithm flow 

Beamlet transform can be used to identify images based on pavement crack features; 

Figure 3.3 shows the fundamental method. 

 

Figure 3.3 

Processing steps algorithm flowchart 
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CHAPTER IV 

Result and Discussion 

Asphalt pavement crack detection image was treated using the steps of image 

enhancement, segmented image, thresholding, eliminated denoising processing, and 

image improvement according to the algorithm flow (figure. 3.4). The results are 

displayed below. The following images display the outcomes of applying the 

Beamlet algorithm to the various types of pavement crack images. 

Figure 4.1 

Original of block crack image 

 

Figure 4.2 

Gray scale of block crack image 
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Figure 4.3 

Enhancement of block crack image 

 

Figure 4.4 

Segmented of block crack image and threshold  
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Figure 4.5 

Removed noise of block crack image 

 

Figure 4.6  

Crack Area result for block crack  
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Figure 4.7 

Residuals result for block crack 

 

Table 4.1  

Block crack classification 

Number Crack angle Ω Crack Area Threshold Branches Crack 

types 

1 - 0.72035 m2 0.84 Yes Block 

 

The original image was changed into a single-channel image to create the grayscale 

image in Figure 4.2. This conversion facilitates better feature extraction and 

streamlines the future stages of image processing. 

An image enhancement technique was used, as illustrated in Figure, to improve the 

fracture details. The fractures became more visible and distinct from the background 

thanks to this technique, which also increased their visibility and clarity. 

The fractures were then represented as a binary image by segmenting the image using 

a thresholding technique with a threshold value of 0.84 m Figure 4.4. By segmenting 

the pavement, the fracture sections were separated from the remainder of the pavement 

surface. 
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A denoising technique was used to eliminate noise and artifacts from the segmented 

image, creating the denoised image depicted in Figure 4.5. The accuracy of the 

succeeding fracture detection and classification phases was enhanced by the 

elimination of noise. 

The block crack under study has a final crack Area measurement of 0.72035 m2 as a 

consequence of the fracture detection and classification process. It was discovered that 

the crack. These measurements were made by looking at the denoised image and using 

the right crack feature extraction tools. 

An overview of the block crack classification findings is shown in Table 4.1. For each 

crack, the analysis's threshold values, crack length, and crack angle are provided. 

Based on the acquired measurements and threshold criteria, the fracture in this instance 

was identified as a block crack. 

The beamlet transform algorithm was used to construct an algorithm for the detection 

and classification of block cracks in asphalt pavement, and the results showed great 

promise. During the image processing processes, the model successfully preserved the 

fracture information and correctly separated the cracks from the background. In order 

to determine the model's generalizability and dependability in practical circumstances, 

additional testing and validation of its performance on a bigger dataset would be 

beneficial. 

Figure 4.8 

Original of longitudinal crack image 
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Figure 4.9 

Gray scale of longitudinal crack image 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 

Enhancement of longitudinal crack image 
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Figure 4.11 

Segmented of longitudinal crack image and thresholding 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 

Removed noise of longitudinal crack image  
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Figure 4.13 

Crack length result for longitudinal crack 

 

Figure 4.14 

Residuals result for longitudinal crack 
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Table 4.2 

Longitudinal crack classification 

Number Crack 

angle Ω 

Crack 

length 

Threshold Branches Crack types 

1 66° 0.61304 m 0.89 Yes Longitudinal 

 

A single longitudinal crack was visible in the initial crack image in Figure 4.8. Noise 

reduction was successfully carried out during the image processing steps, producing 

a clear fracture edge that permitted precise crack detection and classification. 

To make the remaining processing processes simpler, the original image was 

changed into a single-channel image in Figure 4.9. This produced the grayscale 

image shown in Figure 4.9. 

Figure 4.10 illustrates the application of an image enhancement technique to 

improve fracture details and visibility. The crack became clearer as a result of this 

procedure, making it easier to discern from the nearby pavement. 

Using a thresholding technique with a threshold value of 0.89 m, the image was then 

segmented Figure 4.11. By separating the crack zone from the rest of the pavement, 

this segmentation process made it easier to conduct additional analysis. 

A denoising technique was used to reduce noise and increase the accuracy of crack 

detection, creating the denoised image that can be seen in Figure 4.12. The crack was 

more clearly depicted in the denoised image, which improved crack classification 

later. 

The longitudinal crack was identified as having a length of 0.61304 m and a crack 

angle of 66° during the crack classification method. By analyzing the denoised image 

and using the beamlet transform algorithm to extract crack features, these 

observations were made. 

An overview of the longitudinal crack classification findings is shown in Table 4.2 

The threshold value, crack length, crack angle, and crack number are all included. 

Based on the acquired measurements and the established criteria, the fracture in this 

instance was appropriately identified as a longitudinal crack. 
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The suggested asphalt pavement crack detection and classification model, which 

successfully identified and categorizes longitudinal cracks in asphalt pavement, 

utilized the Beamlet transform technique. The model produced accurate 

measurements of the cracks, noise reduction, and enhanced crack visibility. It would 

be beneficial to do additional research using a larger dataset in order to assess the 

model's performance in various crack scenarios. It is critical to remember that the 

focus of our work was on a single longitudinal fracture case. 

The accuracy of the suggested beamlet algorithm was examined in order to assess the 

crack classification model's efficacy. Table 4.2 provides an in-depth understanding of 

the crack classification's performance and accuracy by presenting the complete 

statistical results. 

Figure 4.15 

Original of transverse crack image 
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Figure 4.16 

Gray scale of transverse crack image 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 

Enhancement of transverse crack image 
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Figure 4.18 

Segmented of transverse crack image and thresholding 

 

Figure 4.19 

Removed noise of transverse crack image  
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Figure 4.20 

Crack length result for transverse crack 

 

Figure 4.21 

Residuals result for transverse crack 
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Table 4.3 

Transverse crack classification 

 

The original crack image in Figure 4.15 showed both the transverse crack and the 

lengthy crack. The original image was successfully modified to provide a distinct 

depiction of the alligator crack using image enhancement, segmented image 

thresholding, and denoising processing techniques. 

The grayscale image created by down sampling the source image to a single-channel 

format in order to streamline processing is shown in Figure 4.16. 

As shown in Figure 4.17, the image enhancement technique was used to improve the 

sharpness of the fracture details and make them stand out more. By using this 

technique, it was straightforward to separate the alligator crack from the nearby 

pavement, enabling precise identification and classification. 

A thresholding technique was used for segmentation with a threshold value of 0.97 m 

Figure 4.18. By successfully separating the crack spots from the rest of the pavement 

during this phase, additional studies were made easy. 

The denoised image shown in Figure 4.19 was produced using a denoising technique 

to lessen noise and increase the precision of fracture detection. The denoised image 

accurately represented the alligator crack, which aided in fracture classification 

afterward. 

The transverse crack was measured and classified as having a length of 0.58902 m 

with a crack angle of 7°. By analyzing the denoised image and using the beamlet 

transform algorithm to extract crack features, these observations were made. 

The results of the transverse crack classification are summarized in Table 4.3. The 

threshold value, crack length, crack angle, and crack number are all included. Based 

Number Crack angle 

Ω 

Crack 

length 

Threshold Branches Crack types 

1 7° 0.58902 m 0.94 Yes Transverse 
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on the collected measurements and the established criteria, the fracture in this 

instance was appropriately identified as a transverse crack. 

The Beamlet transform technique was used to construct the produced asphalt 

pavement crack detection and classification model, which successfully identified and 

classified transverse cracks. The model's ability to discern between various crack 

types was made possible by the efficient denoising procedure and the retention of 

fracture data. The performance of the model in various fracture scenarios would need 

to be evaluated using a wider dataset, it should be highlighted, as this study only 

looked at one transverse crack case. 

Number 1 was classified as a transverse crack since it had a crack angle of 7°, which 

was less than the required value of 30°. This result confirms the model's capability to 

classify transverse cracks accurately based on measured data. 

Figure 4.22 

Original of alligator crack image 
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Figure 4.23 

Gray scale of alligator crack image 

 

Figure 4.24 

Enhancement of alligator crack image 
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Figure 4.25 

Segmented of alligator crack image and thresholding 

 

Figure 4.26 

Removed noise of alligator crack image  
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Figure 4.27 

Crack length result for alligator crack 

 

Figure 4.28 

Residuals result for alligator crack 
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Table 4.4 

Alligator crack classification 

 

The first crack image in Figure 4.22 showed an alligator fracture with four branches. 

The original image was processed using a number of efficient methods, such as 

segmented image thresholding, denoising, and image enhancement, which produced a 

distinct depiction of the alligator crack. As shown in Figure 4.23, the use of these 

techniques produced a separate grayscale image by converting the original image into 

a single-channel format to enable subsequent processing stages. As seen in Figure 

4.24, image enhancement was used to highlight the crack features even further. This 

improvement made it simple to distinguish the alligator crack from the nearby 

pavement, allowing for accurate identification and classification. 

As shown in Figure 4.25, segmentation was carried out using a thresholding technique 

with a threshold value of 0.97 m. The crack areas were successfully separated by this 

approach, which streamlined additional analytical steps. A denoising approach was 

used to increase the accuracy of fracture detection, producing the denoised image 

shown in Figure 4.26. The alligator crack could be clearly seen in the denoised image, 

which aided crack classification efforts in the future. 

Using the crack classification method, it was determined that the alligator crack had a 

length of 1.2484 m and a crack angle of 10°. By analyzing the denoised image and 

using the beamlet transform algorithm to extract crack features, these observations 

were made. 

The resulting alligator crack classification findings are listed in Table 4.4 The 

threshold value, crack length, crack angle, and crack number are all included. Based 

on the gathered measurements and the established standards, the crack in this instance 

was appropriately identified as an alligator crack. 

Number Crack 

angle Ω 

Crack 

length 

Threshold Branches Crack types 

1 10° 1.2484 m 0.97 Yes Alligator 
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The Beamlet transform method was used to construct the produced asphalt pavement 

crack detection and classification model, which successfully identified and classified 

alligator cracks. The method successfully revealed that the alligator crack has several 

branches, making it easy to distinguish it from other crack types. The model also 

demonstrated stability against noise interference, correctly recognizing the crack's 

genuine weak edge. 

The results showed that the Beamlet algorithm can accurately identify pavement 

crack images into longitudinal, Transverse block, and Alligator.  As in table 3 the 

result of success rate percentage was identified by Using the percentage change 

formula: dividing the success rate number by the total crack tested number and then 

multiplying by 100. 

Table 4.5  

The Classification of success rate 

Types of 

Cracks  

Number  Longitudinal Transverse Alligator Block 

Alligator 250  5 226 6 

Block 250   2 234 

Longitudinal 250 238    

Transverse 250 8 243 13  

Success rate  95.2% 97.2% 90.4% 93.6% 
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CHAPTER V 

Conclusion 

The beamlet transform algorithm was effectively used in the study to construct an 

enhanced asphalt pavement crack detection and classification model. In this study, 

the proposed model demonstrated a high level of accuracy in effectively detecting 

and categorizing diverse forms of pavement fractures. These included alligator 

cracks, block cracks, longitudinal cracks, and transverse cracks. The outcomes 

obtained were highly encouraging, indicating the potential of the model in this 

context. The model successfully conserved crack information, enhanced crack 

visibility, and produced precise crack measurements by utilizing the Beamlet 

Transform Algorithm. 

The research introduced an innovative methodology that is effective, accurate, and 

adaptable to various fracture detection settings to solve the shortcomings of 

conventional crack detection methods. To improve road safety and infrastructure 

integrity, timely maintenance and repair operations depend on the model's capacity to 

identify and categorize cracks. 

The study does, however, acknowledge its shortcomings, which could include 

restrictions on the precision and generalizability of the model. The Beamlet 

Transform Algorithm's ability to detect very small or minute cracks may be 

constrained, and outside influences like lighting conditions can affect the model's 

performance. To determine the model's applicability to various road conditions and 

environmental variables, more research is required. 

Recommendation  

The following suggestions are made to improve the proposed asphalt pavement crack 

Detection and classification model: 

Enriching dataset: Elevating the model's performance and adaptability could be 

achieved through the utilization of an expanded and diverse collection of pavement 

crack images. This augmentation would empower the model to excel in identifying 

fractures across a broader spectrum of environments. 
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Fine-tune parameters: The accuracy and sensitivity of the beamlet transform 

algorithm can be improved by carefully adjusting the threshold settings and other 

parameters. Validation and testing iteratively can help with this. 

Convolutional neural networks (CNNs) are one deep learning technology that you 

would want to incorporate if you want to automatically extract useful information 

from crack photos. By doing so, the model's adaptability may increase and the 

dependency on human feature extraction may be decreased. 

Practical testing to evaluate the model's performance in various scenarios, test it in 

the real world under various environmental and road conditions. This will guarantee 

that the model can be used in real-world scenarios involving road maintenance. 

While the study concentrated on block fractures, longitudinal cracks, transverse 

cracks, and alligator cracks, there may be additional types of cracks that need to be 

classified and discovered. The identification and classification of other crack types 

can be explored in further research. 

Integration with Road Inspection Systems: To make real-time crack detection and 

maintenance planning easier, think about combining the generated model with 

mobile applications or road inspection systems. 

By following these suggestions, the suggested model can be improved and further 

optimized, resulting in pavement crack detection and classification techniques that 

are more accurate and efficient for better road maintenance and infrastructure 

management. 
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Appendix A MATLAB code  

 

% Clear memory and command window 

clc,clear,close all; 

warning off 

  

%% Uploading input image 

[filename,pathname] = uigetfile('*.*','Choose the 

input image'); 

im = imread([pathname,filename]); 

% set the image size to suitable value 

scale = 600/(max(size(im(:,:,1))));         

im = imresize(im,scale*size(im(:,:,1))); 

% % Image resize 

[m,n,~] = size(im); 

  

%% Image processing 

% Convert image from RGB to gray scale 

I = rgb2gray(im); 

  

% Image enhancment 

% First) 9*9 low pass filter 

[f1,f2]=freqspace(size(I),'meshgrid'); 

D=100/size(I,1); 

LPF = ones(9);  

r=f1.^2+f2.^2; 

for i=1:9 

    for j=1:9 

        t=r(i,j)/(D*D); 

        LPF(i,j)=exp(-t); 

    end 

end 

% Second) applying filter 

Y=fft2(double(I)); Y=fftshift(Y); 

Y=convn(Y,LPF); Y=ifftshift(Y); 

I_en=ifft2(Y); 

% Third) blurr image 

I_en=imresize(I_en,size(I));  

I_en=uint8(I_en); 

I_en=imsubtract(I,I_en); 

I_en=imadd(I_en,uint8(mean2(I)*ones(size(I)))); 

  

% Segmentation of image 

level = roundn(graythresh(I_en),-2); % Calculate 

threshold using  Otsu's method 



74 
 

 
 
  
  

BW = ~im2bw(I_en,level);  % Convert image to binary 

image using threshold 

BW = double(BW); 

  

% Removing noise and conecting image 

i = 25; BW1 = BW; 

while 1 

    BW2 = BW1; i = i + 1; 

    BW1 = imdilate(BW1,strel('disk',i));  % dialate 

image 

    BW1 = bwmorph(BW1,'bridge',inf);      % 

connecting close parts 

    BW1 = imfill(BW1,'holes');            % filling 

small spaces 

    BW1 = imerode(BW1,strel('disk',i-1));   % erode 

image 

    tmp = bwareafilt(BW1,1);              % get size 

of biggest connected shape 

    tmp = fix(0.05*sum(sum(tmp)));        % size 

considered noise 

    BW1  = bwareaopen(BW1,tmp);           % remove 

isolated pixels 

    CC = bwconncomp(BW1); 

    if CC.NumObjects<2,break;end          % break 

the loop at convergence 

end 

B = bwboundaries(BW1); % Cracks boundaries 

  

%% Claculating cracks dimensions 

Dist = zeros(length(B),1); % Preallocation 

a = Dist; b = Dist; % Preallocation 

for i=1:length(B) 

    tmp = B{i}; 

    D = pdist2(tmp,tmp); % Euclidean distance 

between each 2 points 

    % Value and position of farthest 2 points 

    [D,tmp] = max(D); [Dist(i),b(i)] = max(D); a(i) 

= tmp(b(i)); 

end 

  

  

%% Showing results 

figure('Position',[76,84,1249,578]) 

subplot(2,2,1),imshow(I,[]); 

title('Gray scale Image'); 
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subplot(2,2,2),imshow(I_en,[]); 

title('Enhancement image'); 

  

subplot(2,2,3),imshow(BW,[]); 

title(['Segmented Image -- Threshold = 

',num2str(level)]); 

  

subplot(2,2,4),imshow(BW1,[]); 

title('Removed noise Image'); 

  

x = inputdlg('Enter the area of image in M^2:',... 

             'Sample', [1 50]); 

A = str2double(x{:});  

Dist = Dist*sqrt(A/(n*m)); % convert distances into 

meters 

  

figure,imshow(im);hold on 

for i=1:length(B) 

    tmp = B{i}; 

    plot(tmp(:,2),tmp(:,1),'r','LineWidth',2); 

    plot([tmp(a(i),2),tmp(b(i),2)],[tmp(a(i),1),... 

        tmp(b(i),1)],'*-b','LineWidth',2); 

    

text(1+0.5*sum([tmp(a(i),2),tmp(b(i),2)]),1+0.5*sum(

[tmp(a(i),1),... 

        

tmp(b(i),1)]),num2str(Dist(i)),'Color','k','FontSize

',20); 

end 

hold off,title('Final Result'); 

warning on 
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will be used the project, it does not need to go through the ethics committee. You 

can start your research on the condition that you will use only secondary data. 

 

 

 

Prof. Dr. Aşkın KİRAZ 

 

Rapporteur of the Scientific Research Ethics Committee 
 

 

 

 

 



77 
 

 
 
  
  

Appendix C Turnitin Similarity Report 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




