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ABSTRACT 

Application OF Floquet Theory on Hill’s Equation 

John Olugbenga EDUNJOBI 

M Sc., Department of Mathematics 

January 2023, 62 pages 

 

As an effective method of solving linear systems with periodic coefficients and obtaining 

stability properties of periodic solutions of linear and nonlinear systems with periodic 

coefficients, the Floquet theory was presented, which relies on the computation of 

monodromy matrices for solving linear and nonlinear systems with periodic coefficients. 

Periodic coefficient type of differential equations were studied for their linear stability in 

floquet theory. A central concept in this theory are the Floquet exponents, which are 

similar to eigenvalues of variational matrices (Jacobians) at a state of equilibrium. 

Non-autonomous periodic differential equations can be analyzed using Floquet theory. 

The stability or non-stability of the Hill’s equation under some cases were considered. 

Key Words: floquet exponents, fundamental matrix, stability, eigen value, differential 

equation 
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Özet 

Application OF Floquet Theory on Hill’s Equation 

John Olugbenga EDUNJOBI 

M Sc., Department of Mathematics 

January 2023, 62 pages 

 

Periyodik katsayılı lineer sistemleri çözmenin ve periyodik katsayılı lineer ve lineer 

olmayan sistemlerin periyodik çözümlerinin stabilite özelliklerini elde etmenin etkili bir 

yöntemi olarak, periyodik katsayılı lineer ve lineer olmayan sistemleri çözmek için 

monodromi matrislerinin hesaplanmasına dayanan Floquet teorisi sunuldu. . 

Periyodik katsayılı türdeki diferansiyel denklemler, floket teorisinde doğrusal 

kararlılıkları için incelenmiştir. Bu teorideki merkezi bir kavram, bir denge durumunda 

varyasyonel matrislerin (Jacobians) özdeğerlerine benzeyen Floquet üstelleridir. 

Otonom olmayan periyodik diferansiyel denklemler, Floquet teorisi kullanılarak analiz 

edilebilir. 

Bazı durumlarda Hill denkleminin kararlı olup olmadığı dikkate alınmıştır. 

 

Anahtar Kelimeler: floquet üsleri, temel matris, kararlılık, özdeğer, diferansiyel denklem 
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CHAPTER I 

1.1 Introduction 

A study of differential systems with periodic data is commonly used in physical and 

natural sciences (such as elasticity, astronomy, ecology) for studying multiple phenomena 

dynamics interactions (or interactions of multi-species). Thus, fundamental questions such 

as existence, uniqueness and stability arise when dealing with systems of periodic 

(ordinary) differential equations. 

An important tool for the study and management of time-varying systems, the 

Floquet Theory is specifically examined in this thesis. Based on Floquet's (1883) 

pioneering work and Lyapunov's (1892) contribution, this theory is a systematic way of 

studying linear systems including periodic coefficients. Further, it provides a formula for 

resolving the resolution of a linear differential system with constant coefficients as well 

as a modification of the variables that result in a linear differential system with periodic 

coefficients. 

The purpose of this thesis is to demonstrate the Floquet theory for assessing the 

stability of periodic results whether linear or nonlinear to differential systems. 

We will now look at some definitions and generalities 

Definition 1.1. An ordinary differential equation (ODE) is simply a differential 

equation that involves the derivatives of one or more functions of one variable as its 

unknown. 

Definition 1.2. A linear differential equation is an equation defined by a linear 

polynomial in the unknown function and its derivatives, or one that has the following 

form: 

𝑎0(𝑝)𝑞 + 𝑎1(𝑝)𝑞
′ + 𝑎2(𝑝)𝑞

′′ +⋯+ 𝑎𝑛(𝑝)𝑞
𝑛 = 𝑏(𝑝) 

where 𝑎0(𝑝),..., 𝑎𝑛(𝑝) and 𝑏(𝑝) are arbitrary differentiable functions that do not need to 

be linear, and 𝑞,… , 𝑞(𝑛) are successive derivatives of the unknown function 𝑞 of the 

variable 𝑝. 

Definition 1.3. A periodic function is a function whose values repeat every so often. 

The trigonometric functions, which repeat every two radians, provide a suitable 

https://en.wikipedia.org/wiki/Linear_differential_equation
https://en.wikipedia.org/wiki/Differentiable_function
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illustration. Oscillations, waves and other periodic phenomena are described by these 

functions across science. Any function that is not periodic is called aperiodic. 

Definition 1.4.  In matrix algebra, a fundamental matrix of a system 

of n homogeneous linear ODE:  

�̇� = 𝐴(𝑡)𝑥(𝑡) 

is a matrix-valued function 𝜓(𝑡) whose columns are systems of linearly 

independent solutions. We can write every solution to this system as 𝑥(𝑡) = 𝜓(𝑡)𝑐, for 

some constant vector c (written as a column vector of height n). 

Definition 1.5. A linear space (or vector space) consists a set of vectors 𝑉, a scalar 

field ℱ and two operations + and ∗ called vector addition and multiplication respectively 

and complies with the following conditions:.  

i. (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑉 .  

ii. 𝑥 + 0 = 𝑥 ∀ 0 ∈ 𝑉 and  𝑥 ∈ 𝑋. 

iii. For every 𝑥 ∈ 𝑋, there is a vector in 𝑋 written −𝑥 and called the negative of 𝑥 such 

that 𝑥 + (−𝑥) = 0. 

iv. (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧)∀ 𝑥, 𝑦 ∈ ℱ and 𝑧 ∈ 𝑋.  

v. (𝑎 + 𝑏)𝑝 = 𝑎𝑝 + 𝑏𝑝 and 𝑎(𝑝 + 𝑞) = 𝑎𝑝 + 𝑎𝑞 ∀ 𝑎, 𝑏 ∈ ℱ and 𝑝, 𝑞 ∈ 𝑋. 

vi. 1𝑝 = 𝑝 ∀ 𝑝 ∈ 𝑋. 

Definition 1.6. A mapping 𝑝(. ) = ‖. ‖: 𝑋 → ℝ where 𝑋 is a linear space over a field 

ℱ and ℱ holds either for ℝ𝑛 or ℂ is said to be a norm if the following hold: 

i) ‖𝑝‖ ≥ 0 ∀ 𝑝 ∈ 𝑋 and ‖𝑝‖ = 0 ⟺ 𝑝 = 0 

ii) ‖𝑐𝑝‖ = |𝑐|‖𝑝‖ ∀ 𝑐 ∈ ℱ, 𝑝 ∈ 𝑋 

iii) ‖𝑝 + 𝑞‖ ≤ ‖𝑝‖ + ‖𝑞‖ ∀ 𝑝, 𝑞 ∈ 𝑋 

Definition 1.7. A linear space on a mapping 𝑝(. ) = ‖. ‖: 𝑋 → ℝ over a field ℱ is a 

normed space provided the following conditions hold: 

i) ‖𝑎𝑝‖ = |𝑎|‖𝑝‖ ∀ 𝑎 ∈ ℱ, 𝑝 ∈ 𝑋 

ii) ‖𝑝 + 𝑞‖ ≤ ‖𝑝‖ + ‖𝑞‖ ∀ 𝑝, 𝑞 ∈ 𝑋 

A pair of a linear space 𝑋 and a norm ‖. ‖ on 𝑋 written as (𝑋, ‖. ‖) is referred to as 

normed linear space over field ℱ. 

https://en.wikipedia.org/wiki/Linear_independence
https://en.wikipedia.org/wiki/Linear_independence
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Example 1.8. The examples below define a norm on the vector space ℝ𝑛: 

i) Absolute norm: 

‖𝑥‖1 = ∑ |𝑥𝑖|
𝑛
𝑖=1 , ∀ 𝑦 = (𝑥,… , 𝑥𝑛) ∈ ℝ

𝑛 

ii) Euclidean norm: 

‖𝑥‖2 = (∑ |𝑥𝑖|
2𝑛

𝑖=1 )
1

2, ∀ 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ
𝑛 

iii) Maximum norm: 

‖𝑥‖∞ = |𝑥𝑖|1≤𝑖≤𝑛
𝑚𝑎𝑥 , ∀ 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ

𝑛 

Example 1.9. We will consider 𝑋 = 𝐶([0,1]) as a vector space for all continuous 

real-valued functions on [0,1]. On the vector space 𝐶[0,1], each of the following 

expressions defines a norm which is commonly used: 

1)  ‖𝑓‖1 = ∫ |𝑓(𝑡)|𝑑𝑡
1

0
 for every 𝑓 ∈ 𝐶([0,1]). 

2) ‖𝑓‖2= (∫ (|𝑓(𝑡)|)
1

2
1

0
𝑑𝑡)

1

2 for every 𝐶([0,1]). 

3) ‖𝑓‖∞= 𝑚𝑎𝑥 {| 𝑓(𝑡)|: 𝑡 ∈ [0,1]}. 

Definition 1.10 (Equivalent norms). Let ‖. ‖1and ‖. ‖2 be two norms defined on 

the normed linear space 𝑋 and 𝛼, 𝛽 some constants. Then, ‖. ‖1and ‖. ‖2 are said to be 

equivalent if ∃ 𝛼 > 0 and 𝛽 > 0: 

𝛼‖𝑥‖1 ≤ ‖𝑥‖2 ≤ 𝛽‖𝑥‖1 ∀𝑝 ∈ 𝑋 

Definition 1.11. A metric 𝑑 defined on 𝐸 × 𝐸 is canonically endowed with every 

normed linear space 𝐸 by: 

𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ ∀ 𝑥, 𝑦 ∈ 𝑋 

Definition 1.12 (Cauchy sequence). Let (𝑥𝑛)𝑛≥1 be a sequence of elements of a 

normed vector space 𝑋. (𝑥𝑛)𝑛≥1 is Cauchy if: 

lim
𝑛,𝑚→∞

‖𝑝𝑛 − 𝑝𝑚‖ = 0, 

that is, for any 휀 > 0, ∃ an integer 𝑁 = 𝑁(휀) such that ‖𝑝𝑛 − 𝑝𝑚‖ < 휀 whenever 

𝑛 ≥ 𝑁 and m≥ 𝑁. 

Remark 1.13. Every Cauchy sequence (𝑥𝑛)𝑛≥1 in a normed linear space is 

enclosed; i.e. ∃ 𝑀 ≥ 0 (a constant) in such a way that ‖𝑥𝑛‖ ≤ 𝑀, ∀𝑛 ≥ 1. 

Definition 1.14 (Convergent sequence). The sequence (𝑥𝑛)𝑛≥1 is said to be 

convergent if its elements in the normed vector space 𝑋 converges to an element 𝑥 ∈ 𝑋 

where: 
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lim
𝑛→∞

‖𝑥𝑛 − 𝑥𝑚‖ = 0 

Remark 1.15. Any convergent sequence is Cauchy in a normed linear space. 

Definition 1.16. If every Cauchy sequence in a normed linear space (𝑋, ‖. ‖) 

converges, such a space is complete (i.e. has its limit in 𝑋). A complete normed linear 

space is called a Banach space. 

Example 1.17. The normed linear space (𝐶([0,1]); ‖. ‖∞) is a good example of a 

Banach space. 

Definition 1.18. Let 𝑋 be a normed linear space. The sets: 

𝐵𝑟(𝑝) = {𝑝 ∈ 𝑋: ‖𝑝‖ < 𝑟} and �̅�𝑟(𝑝) = {𝑝 ∈ 𝑋: ‖𝑝‖ ≤ 𝑟} 

are referred to as open balls and closed balls respectively, with radius 𝑟 > 0 and centered 

at a point 𝑥 ∈ 𝑋. If ∀ 𝑥 ∈ 𝐴, there exists 𝑟 > 0 such that 𝐵𝑟(𝑥) ⊆ 𝐴, a nonempty subset 

𝐴 of normed linear space 𝑋 is said to be an open set. Furthermore, if 𝑋\𝐴 is open, then 𝐴 

is a closed set. 

Proposition 1.19. Let 𝑋 be a normed linear space. A subset 𝐴 of 𝑋 is closed if every 

convergent sequence (𝑎𝑛)𝑛≥1 of elements of 𝐴 has its limit in 𝐴. 

Definition 1.20. For a subset 𝐴 of a normed linear space 𝑋, the interior of 𝐴 (written 

as 𝑖𝑛𝑡(𝐴)) is the union of all open sets in 𝐴. The intersection of all closed sets in 𝐴 is 

called the closure of 𝐴 (written as 𝑐𝑙(𝐴) or �̅�). 

Theorem 1.21. Let 𝐴 a normed linear space 𝑋 and 𝐴 a subset of 𝑋. Then 

a) 𝑝 ∈ 𝑖𝑛𝑡(𝐴) iff ∀ 𝑟 > 0, 𝐵(𝑝, 𝑟) ⊆ 𝐴. 

b) 𝑝 ∈ 𝑐𝑙(𝐴) iff ∀ 𝑟 > 0, 𝐵(𝑝, 𝑟) ∩ 𝐴 ≠ ∅. 

Remark 1.22. In a given subset 𝐴 and normed linear space 𝑋, 

𝑥 ∈ �̅� ⟺ ∃(𝑎𝑛)𝑛 ⊂ 𝐴| lim
𝑛→∞

𝑎𝑛 = 𝑥  

Definition 1.23 (Neighbourhood). In a given normed linear space 𝑋, with 𝑥 ∈ 𝑋 

and 𝑉 a subset of 𝑋 containing 𝑥. 𝑉 is called a neighbourhood of 𝑥 if ∃ open set 𝑈 of 𝑋 

containing 𝑥 and enclosed in V. The collection of all neighbourhoods of 𝑥 is denoted by 

𝑁(𝑥). 

Theorem 1.24: A normed linear space is finite dimensional iff its closed unit ball is 

compact, that is, every bounded sequence of the closed unit ball has a convergent 

subsequence. This is called Riesz/Heine-Borel theorem. 
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1.2 Linear operators 

Given two normed linear spaces 𝑋 and 𝑌, over a field ℱ,  

Definition 1.25 (Linear operators). A ℱ-linear operator 𝑇 from 𝑋 into 𝑌 is a map 

𝑇: 𝑋 → 𝑌: 

𝑇(𝛼𝑥 + 𝛽𝑦) = 𝛼𝑇𝑥 + 𝛽𝑇𝑦 

∀ 𝛼, 𝛽 ∈ ℱ and 𝑥, 𝑦 ∈ 𝑋. 

When 𝑌 = ℱ, the map is known as a linear functional. 

Proposition 1.26. A set of ℱ-linear operators from 𝑋 into 𝑌 has a natural structure 

of linear space over ℱ and can be written as 𝐿(𝑋, 𝑌). 𝐿(𝑋, 𝑋) can simply be denoted as 

𝐿(𝑋). 

Proposition 1.27. If 𝑍 is a linear space, then 

𝑓 ∈ 𝐿(𝑋, 𝑌) and 𝑔 ∈ 𝐿(𝑌, 𝑍)  ⟹ 𝑔𝑜𝑓 ∈ 𝐿(𝑋, 𝑍). 

Theorem 1.28. Let 𝑇 ∈ 𝐿(𝑋, 𝑌). Then the following are equivalent: 

i) At the origin, T is continuous if {𝑥𝑛}𝑛is a sequence in 𝑋 such tha 𝑥𝑛 → 0 as 𝑛 → ∞, 

then 𝑇(𝑥𝑛) → 0 in 𝑌 as 𝑛 → ∞. 

ii) 𝑇 is Lipschitz, that is, ∃ a constant 𝐾 ≥ 0 and for every 𝑥 ∈ 𝑋, 

‖𝑇(𝑥)‖ ≤ 𝐾‖𝑥‖ 

iii) Image of 𝑇(�̅�1(0)) is enclosed, 𝑇(�̅�1(0)) being a closed unit ball. 

Definition 1.29: If ∃ some 𝑘 ≥ 0 such that 

‖𝑇(𝑥)‖ ≤ 𝑘‖𝑥‖ ∀ 𝑥 ∈ 𝑋, 

Then the linear operator 𝑇: 𝑋 → 𝑌 is bounded 

If 𝑇 is bounded, the norm of  𝑇 is defined as: 

‖𝑇‖ = 𝑖𝑛𝑓{𝑘: ‖𝑇(𝑥)‖ ≤ ‖𝑥‖, 𝑥 ∈ 𝑋} 

We denote the set of linear bounded operators from 𝑋 to 𝑌 as 𝐵(𝑋, 𝑌). We simply 

write 𝐵(𝑋) if 𝑋 = 𝑌. 

Proposition 1.30. Suppose 𝑌 ≠ {0} and 𝑇 ∈ 𝐵(𝑌), then: 

‖𝑇‖ = ‖𝑇(𝑦)‖‖𝑦‖≤1
𝑠𝑢𝑝 = ‖𝑇(𝑦)‖‖𝑦‖=1

𝑠𝑢𝑝 = ‖𝑇(𝑦)‖

𝑦‖𝑦‖≠0

𝑠𝑢𝑝
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1.3 Matrix Concept and Basic Operator Theory 

Definition 1.31. An 𝑥 × 𝑦 matrix 𝐴 is a rectangular array of numbers that has m 

rows and n columns and 𝑥, 𝑦 ∈ ℝ or ℂ. Let 𝑎𝑖𝑗 denote numbers that appear in the row 𝑖 

and column 𝑗 of 𝐴. A can be written in its extended form as: 

(

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑥1 𝑎𝑥2 ⋯ 𝑎𝑥𝑦

) 

or in more compact form as: 

(𝑎𝑖𝑗)𝑥,𝑦 

Let’s denote 𝐴 = (𝑎𝑖𝑗)𝑥,𝑦 and 1 ≤ 𝑗 ≤ 𝑦, 1 ≤ 𝑖 ≤ 𝑥. 

Definition 1.32. If the rows and columns of 𝐴 are interchanged, a matrix 𝐴𝑡 that is 

known as the transpose of 𝐴 is created. Thus, if 𝐴 = (𝑎𝑖𝑗)𝑥,𝑦, then 𝐴𝑡 = (𝑎𝑗𝑖)𝑦,𝑥.  

Definition 1.33. The trace of 𝐵 denoted by 𝑡𝑟(𝐵) is the sum of diagonal elements 

of matrix 𝐵 i.e. 

𝑡𝑟(𝐴) =∑𝑎𝑖𝑖

𝑛

𝑖=1

 

Definition 1.34.  

Two 𝑚× 𝑛 matrices A and B are said to be equal if 𝑎𝑖𝑗 = 𝑏𝑖𝑗 for each 𝑖 and 𝑗 

Let 𝐷 = (𝑑𝑖𝑗)𝑚,𝑛, 𝐴 = (𝑎𝑖𝑗)𝑚,𝑛 and 𝐵 = (𝑏𝑖𝑗)𝑛.𝑝 be matrices. 

i)      𝐷 + 𝐴 = (𝑑𝑖𝑗 + 𝑎𝑖𝑗)𝑚,𝑛
 

Similarly, 

𝐷 − 𝐴 = (𝑑𝑖𝑗 − 𝑎𝑖𝑗)𝑚,𝑛 

ii) Matrix A multiplied by a scalar 𝛼 gives: 𝛼𝐴 = (𝛼𝑎𝑖𝑗)𝑚,𝑛 

iii) An  𝑚 × 𝑛 matrix A multiplied by an 𝑥 × 𝑦 matrix B gives: 

𝐴𝐵 = (∑𝑎𝑖𝑘𝑏𝑘𝑗

𝑥

𝑘=1

)

𝑚𝑝

 

Some special matrices 

i) A matrix with one (1) row is called a row-vector 𝐵 or 1 × 𝑚 matrix i.e. 
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𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛), 

where the 𝑎𝑖
1𝑠 are scalars. 

ii) A matrix with only one (1) column is called a column-vector 𝐵 or 𝑛 × 1 matrix i.e.  

𝐵 = (
𝑏1
⋮
𝐵𝑛

), 

where the 𝑎𝑖
1𝑠 are scalars. 

iii) A matrix whose entries are all zero (0) is called a zero matrix is. It also serves as the 

additive identity of 𝑛 matrices. The zero 𝑚 × 𝑛 matrix is denoted by 0𝑚,𝑛 or simply as 0. 

iv) A matrix whose number of rows and columns are equal is called a square matrix i.e. 

(𝑛 × 𝑛). 

v) An identity matrix with order n has zeros everywhere else and one along its principal 

diagonal, which runs from top left to bottom right. It is denoted by 𝐼𝑛 = (𝛿𝑖𝑗). 

For a square matrix 𝐵, we have that 

𝐵𝐼 = 𝐼𝐵 = 𝐵 

vi) A non-singular matrix is a square matrix whose column vectors are independent along 

linear axes or the determinant is not equal to zero, i.e. 𝑑𝑒𝑡 (𝐵) ≠ 0. 

If 𝑑𝑒𝑡(𝐵) = 0, then 𝐵 is said to be singular or degenerated. 

vii) A diagonal matrix is a square matrix whose non-zero elements lie on the principal 

diagonal. 

viii) A square matrix 𝑀 in which ∃ 𝑘 ∈ ℤ+ such that 𝑀𝐾 = 0 is referred to as nilpotent. 

Definition 1.35. Two 𝑛 × 𝑛 matrices C and D are said to be similar (denoted by 

𝐶~𝐷) if ∃ a nonsingular matrix 𝑇 such that 𝑇−1𝐶𝑇 = 𝐷. 

Definition 1.36. A scalar 𝜆 of a square matrix 𝐵 is an eigenvalue of I if ∃ 𝑣 ∈

ℝ𝑛: 𝐵𝑣 = 𝜆𝑣 (𝑣 ≠ 0), where 𝑣 is a vector. The roots of the characteristic polynomial 

𝑝(𝜆) = 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) with 𝑝(𝜆) which has degree 𝑛 are the eigenvalues 𝜆 of 𝐵. 

Remark 1.38. When the matrix A contains repeated eigenvalues, diagonalization 

cannot be achieved. As a result, it is important to generalize the eigenvectors. 

Definition 1.39. An eigenvector ranked 𝑘 of 𝐵, is a nonzero vector v associated with 

an eigenvalue 𝜆 iff: 

(𝐵 − 𝜆𝐼)𝑘𝑣 =  0 𝑎𝑛𝑑 (𝐵 − 𝜆𝐼)𝑘−1𝑣 ≠ 0 
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Lemma 1.40. The vectors 𝑣, (𝐵 − 𝜆𝐼)𝑣,… , (𝐵 − 𝜆𝐼)𝑘−1𝑣 are linearly independent 

if v is a generalized eigenvector of rank k. 

The vectors 𝑣1, 𝑣2, … , 𝑣𝑘 are linearly dependent if ∃ some scalars 𝑐1, 𝑐2, … , 𝑐𝑘 (not 

necessarily zero) and 

𝑐1𝑣1 + 𝑐2𝑣2 +⋯+ 𝑐𝑘𝑣𝑘 = 0. 

If the set of vectors 𝑣1, 𝑣2, … , 𝑣𝑘is not linearly dependent, then it is linearly 

independent. 

Definition 1.41 (Jordan form). We build a new basis for ℂ𝑛 as a result of the 

aforementioned lemma such that the matrix representation of 𝐵 with regard to that new 

basis is what we call the Jordan canonical form (𝐽). 

Theorem 1.42. For each 𝑛 × 𝑛 complex matrix 𝐵 with eigenvalues 𝜆1, … , 𝜆𝑠  of 

multiplicities 𝑛1, … , 𝑛𝑠 respectively, ∃ a non-singular 𝑛 × 𝑛 matrix P such that 

𝑃−1𝐵𝑃 = 𝐽 = 𝑑𝑖𝑎𝑔(𝐽1, … , 𝐽𝑠), 

where each of block matrices 𝐽1, … , 𝐽𝑠 has the form: 

𝐽𝑘 =

(

 
 

𝜆𝑘 1 0 … 0
0 𝜆𝑘 1 … 0
⋯ … ⋱ … ⋮
0 ⋯ … 𝜆𝑘 1
0 ⋯ … 0 𝜆𝑘)

 
 
,  

𝑘 = 1,… 𝑠 and ∑ 𝑛𝑘 = 𝑛
𝑠
𝑘=1 . 

The Jordan blocks, where 𝐽 is the Jordan canonical form of 𝐴, are represented by the 

block matrices 𝐽1, … , 𝐽𝑠. It is noteworthy that any Jordan block 𝐽𝑘(𝜆) may be expressed as 

𝐽𝑘 = 𝜆𝑘𝐼 + 𝑁𝑘, where 𝑁𝑘 is a nilpotent of order 𝑘 and 𝐴 is similar to 𝐽 i.e. 𝐴~𝐽. 

 

1.4 Limits on operator of sequences 

Limits in the norm and strong limits of operator sequences are introduced in this 

section. As part of our discussion of series of operators, we shall introduce derivatives and 

integrals of operators that depend on a criterion. 

Definition 1.43 (Convergence). In a Banach space X and sequence (𝐴𝑛)  of 

operators in ℒ(𝑋), 𝐴𝑛 is said to converge in norm to an operator 𝐴 ∈ ℒ(𝑋) if 

lim
𝑛→∞

‖𝐴𝑛 − 𝐴‖ = 0      (1.1) 

If, for each element 𝑥 ∈ 𝑋, 
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  lim
𝑛→∞

‖𝐴𝑛𝑥 − 𝐴𝑥‖ = 0,     (1.2) 

then 𝐴𝑛 strongly converges to 𝐴 ∈ ℒ(𝑋). 

Hence, (1.1) ⇒ (1.2), but in general, the converse is not true.  

However, it is true for finite dimensional Banach spaces, if we put 𝑥 = 𝑒(𝑖).  

From (1.2), we have that: 

lim
𝑛→∞

‖𝑎𝑖1
(1)
, … , 𝑎𝑖𝑘

(𝑘)
‖ = 0  𝑓𝑜𝑟 𝑖 = 1,… , 𝑘. 

The limit is uniform since there are only a finite number of components, and as a 

result, all components tend to zero. 

Now, we may define the series ∑ 𝐴𝑠
∞
𝑠=1 . 

The series ∑ 𝐴𝑠
∞
𝑠=1  is said to be convergent if the partial sums ∑ 𝐴𝑠

𝑁
𝑠=1  form a 

sequence that converges in ℒ(𝑋). 

Matrix ∑ 𝐴𝑠
𝑁
𝑠=1  in this case corresponds to a matrix whose elements are 

∑ 𝑎𝑖𝑗
(𝑠)
= 𝑎𝑖𝑗

𝑁
𝑠=1 . 

If the series ∑ 𝐴𝑠
∞
𝑠=1  converges, then we say that ∑ 𝐴𝑠

∞
𝑠=1  converges absolutely. 

This occurs in the case of matrices iff ∑ |𝑎𝑖𝑗
(𝑠)|∞

𝑠=1 converges with 𝐴𝑠 = (𝑎𝑖𝑗
(𝑠)
). 

Proposition 1.44. In a normed linear space 𝑋, the series ∑
𝐴𝑛

𝑛!
∞
0  is absolutely 

convergent if 𝐴 ∈ ℒ(𝑋),. 

Proof. It is sufficient if we can prove that the partial sums {𝑆𝑁}𝑁=1
∞  for ∑

‖𝐴𝑛‖

𝑛!
∞
0  is a 

Cauchy sequence.  

We will define ∑
𝐴𝑛

𝑛!
∞
0  and note that a Cauchy sequence is formed by the partial sums 

of the convergent series of real number ∑
‖𝐴𝑛‖

𝑛!
∞
0 = 𝑒‖𝐴‖. 

This fact implies that 𝑆𝑁 is a Cauchy sequence in ℒ(𝑋), hence converges absolutely. 

Definition 1.45. An exponential map is the map defined as: 

𝑒𝑥𝑝: 𝑔 → 𝐺, 

𝐺 being a normed linear space and 𝑔 ∈ 𝐺. 

In series form, we can define the exponential map as: 

𝑒𝐴 = ∑
𝐴𝑛

𝑛!
∞
0  

The next proposition gives the main properties of the exponential map: 
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Proposition 1.46. Suppose 𝐴, 𝐵 ∈ ℒ(ℝ𝑛). 

i) 𝑒−1 = (𝑒𝐴)−1. 

ii) ‖𝑒𝐴‖ ≤ 𝑒‖𝐴‖. 

iii) 𝑒𝐴 ∈ ℒ(ℝ𝑛) if 𝐴 ∈ ℒ(ℝ𝑛). 

iv) 𝐵−1𝑒𝐴𝐵 = 𝑒𝐵
−1𝐴𝐵 if 𝑏 is nonsingular. 

 

Definition 1.47. Let 𝐴 be an operator that depends on a real parameter 𝑡 with 𝑡0 ∈

[𝑎, 𝑏] and 𝑎 ≤ 𝑡 ≤ 𝑏. The operator 

𝐴(𝑡0 + ℎ) − 𝐴(𝑡0)

ℎ
 

is defined if ℎ is sufficiently small. 𝐴 is differentiable at 𝑡 with respect to 𝑡 if its limit as 

ℎ → 0 exists.  

Definition 1.48. The symbol for the limiting operator is 
𝑑

𝑑𝑡
𝐴(𝑡). Thus, we have: 

lim
ℎ→0

‖
𝐴(𝑡0 + ℎ) − 𝐴(𝑡0)

ℎ
−
𝑑𝐴

𝑑𝑡
‖ = 0 

If each component 𝑎𝑖𝑗 is differentiable, the limit exists for all matrices, so we have 

𝑑

𝑑𝑡
𝐴(𝑡) = (

𝑑

𝑑𝑡
𝑎𝑖𝑗(𝑡)) 

If 𝐴 and 𝐵 are two differentiable operators in ℒ(𝑋), then 

𝑑

𝑑𝑡
(𝐴𝐵) =

𝑑𝐴

𝑑𝑡
𝐵 + 𝐴

𝑑𝐵

𝑑𝑡
 

Definition 1.49. The series of operators converges uniformly if for every ℰ > 0, ∃ 

a 𝑣ℰ > 0 such that ∀ 𝑡 ∈ [𝑎, 𝑏] and every 𝑣 > 𝑣 , 

‖∑𝐴𝑠(𝑡)

∞

𝑠=𝑣

‖ < 휀 

Definition 1.50. If the operator 𝐴𝑠(𝑡) is differentiable and ∑
𝑑

𝑑𝑡
𝐴𝑠(𝑡)

∞
𝑠=0  is 

uniformly convergent, then the operator 𝐴 = ∑ 𝐴𝑠(𝑡)
∞
𝑠=𝑣  is differentiable, and 

𝑑𝐴

𝑑𝑡
=∑

𝑑

𝑑𝑡
𝐴𝑠

∞

𝑠=0

 

The following result serves as an illustration of this notion:  
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Definition 1.51. If 𝐴 ∈ ℒ(𝑋), then 𝑡𝐴 ∈ ℒ(𝑋) if ∀ 𝑡 ∈ ℝ, 𝑡 ⟼ 𝑒𝑡𝐴 is differentiable 

and 

𝑑

𝑑𝑡
(𝑒𝑡𝐴) = 𝐴𝑒𝑡𝐴 

If 𝐴 is a nonsingular matrix, then the logarithm of 𝐴, denoted by 𝑙𝑛(𝐴) is a well-

defined matrix. 

Definition 1.52.   Let 𝐴 be an 𝑛 × 𝑛 matrix that is nonsingular. Then ∃ an 𝑛 × 𝑛 

matrix 𝐵 (called the logarithm of 𝐴) such that 𝐴 = 𝑒𝐵. 

Definition 1.53. Suppose that the component 𝑎𝑖𝑗 of the matrix 𝐴(𝑡), which depends 

on the parameter 𝑡 are all integrable functions over the interval  [𝑡0, 𝑡]. The matrix 

∫ 𝐴(𝑇)𝑑𝑇
𝑡

𝑡0

 

is called the integral of 𝐴(𝑡) between 𝑡0 and 𝑡. 

Definition 1.54. If the functions 𝑎𝑖𝑗 are continuous in the definition, 

𝑑

𝑑𝑡
(𝑎𝑖𝑗)𝑚,𝑛 = (

𝑑𝑎𝑖𝑗

𝑑𝑡
)
𝑚,𝑛

 , 

then 

𝑑

𝑑𝑡
∫𝐴(𝑇)𝑑𝑇 = 𝐴(𝑡). 

Definition 1.55. If 𝐴 is an 𝑛 × 𝑛 matrix and 𝐿 ≥ |𝑎𝑖𝑗|, then  

‖∫ 𝐴(𝑇)𝑑𝑇
𝑡

𝑡0
‖ ≤ √𝑚. 𝑛. 𝐿|𝑡 − 𝑡0|  

 

1.5 Calculus in review 

Here, we want to define differentiability in its broadest sense. 

Let 𝑈 be a nonempty open subset of Banach spaces 𝑋 and 𝑌 and ‖. ‖ be the norm in 

both Banach spaces. 

Definition 1.56. A function 𝑓: 𝑈 → 𝑌 is said to be differentiable at 𝑥 ∈ 𝑈 if there 

exists a linear map 𝐴 ∈ ℒ(𝑋, 𝑌) such that: 

lim
𝑎→0

‖𝑓(𝑥 + 𝑎) + 𝑓(𝑥) − 𝐴𝑎‖

‖𝑎‖
= 0 
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Remark 1.57. This kind of map is unique if it exists and can be written as 𝐴 =

𝑓𝐼(𝑥), which is referred to as the derivative of 𝑓 at 𝑥. 𝐷𝑓 and 𝑓𝑥 are other common 

notations for the derivative. 

Here are some general derivatives facts. 

We will look at some standard facts about derivatives and the symbols 𝑋, 𝑌, 𝑋𝑖 and 

𝑌𝑖 will denote Banach spaces. 

i) If 𝑓: 𝑋 → 𝑌 is differentiable at 𝑎 ∈ 𝑋, then 𝑓 is also continuous at 𝑎. 

ii) If 𝑓: 𝑋 → 𝑌1 ×…× 𝑌𝑛 is given by 𝑓(𝑥) = (𝑓1(𝑥), … , 𝑓𝑛(𝑥)), and if 𝑓𝑖 is differentiable 

for each 𝑖, then so is 𝑓 and 𝐷𝑓(𝑥) = (𝐷𝑓1(𝑥), … , 𝐷𝑓𝑛(𝑥)). 

iii) If the function 𝑓: 𝑋1 × 𝑋2 × …× 𝑋𝑛 → 𝑌 is given by 𝑥1, 𝑥2, … , 𝑥𝑧𝑛) ⟼

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), the 𝑖𝑡ℎ partial derivative of 𝑓 at (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ 𝑋1 × 𝑋2 ×…× 𝑋𝑛 is 

the derivative of the function 𝑔: 𝑋𝑗 → 𝑌 defined by 𝑔(𝑥𝑗) =

𝑓(𝑎1, … , 𝑎𝑗−1, 𝑥𝑗 , 𝑎𝑗+1, … , 𝑎𝑛). This derivative is denoted by 𝐷𝑗𝑓(𝑎). All partial 

derivatives of 𝑓 exist if 𝑓 is differentiable.. If ℎ = (ℎ1, ℎ2, … , ℎ𝑛), then: 

𝐷𝑓(𝑥)ℎ =∑𝐷𝑖𝑓(𝑥)

𝑛

𝑗=1

ℎ𝑗 

𝑓 is said to be continuously differentiable in 𝑈 if all of its partial derivatives exist and are 

continuous in the open set 𝑈 ⊂ 𝑋1 × 𝑋2 ×…× 𝑋𝑛, but the converse is not true. 

Theorem 1.50. Assume [𝑎, 𝑏] is a closed interval, and 𝑓: [𝑎, 𝑏] → 𝑌 is a continuous 

function. If 𝑓 is a differentiable function on the open interval (𝑎, 𝑏) and ∃ some number 

𝑀 > 0 such that ‖𝑓′(𝑡)‖ ≤ 𝑀 ∀ 𝑡 ∈ (𝑎, 𝑏), then 

‖𝑓(𝑏) − 𝑓(𝑎)‖ ≤ 𝑀(𝑏 − 𝑎) 

Theorem 1.51 (Mean value Theorem). Suppose that 𝑓: 𝑋 → 𝑌 is differentiable on 

an open set 𝑈 ⊆ 𝑋 with 𝑎, 𝑏 ∈ 𝑈 and 𝑎 + 𝑡(𝑏 − 𝑎) ∈ 𝑈 for 0 ≤ 𝑡 ≤ 1. If ∃ some 𝑀 > 0 

such that: 

𝑠𝑢𝑝
0 ≤ 𝑡 ≤ 1

‖𝐷𝑓(𝑎 + 𝑡(𝑏 − 𝑎))‖ ≤ 𝑀, 

then 

‖𝑓(𝑏) − 𝑓(𝑎)‖ ≤ 𝑀‖𝑏 − 𝑎‖ 
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1.6 Integration in Banach Space 

Definition 1.52. Sequel to definition 1.16, a Banach space (𝑋, ‖. ‖) is a normed 

linear space (over ℝ or ℂ) that is complete wrt 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. 

Let 𝑋 be a Banach space, 𝐼 = [𝑎, 𝑏] ⊂ ℝ and 𝑎 < 𝑏. 

Definition 1.53. The following formula defines the integral in the sense of Riemann 

if 𝑓: 𝐼 → 𝑋 is continuous on 𝐼: 

∫ 𝑓(𝑡)𝑑𝑡 = lim
𝑛→∞

𝑏 − 𝑎

𝑛
∑𝑓 (𝑎 + 𝑘

𝑏 − 𝑎

𝑛
)

𝑛−1

𝑘=0

𝑏

𝑎

 

and we know that:  

‖∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
‖ ≤ ∫ ‖𝑓(𝑡)‖𝑑𝑡

𝑏

𝑎
. 

 

Theorem 1.54. Suppose 𝑈 is an open, nonempty subset of 𝑋. If 𝑥 + 𝑡𝑦 ∈ 𝑈 for 0 ≤

𝑡 ≤ 1 and 𝑓: 𝑋 → 𝑌 is a differentiable function, then: 

𝑓(𝑥 + 𝑦) − 𝑓(𝑥) = ∫ 𝐷𝑓(𝑥 + 𝑡𝑦)𝑦𝑑𝑡
1

0
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CHAPTER II 

Basic notions of ordinary differential equations 

What is an ordinary differential equation solution, for example? and other 

fundamental questions are covered at the beginning of this chapter. Do differential 

equations have solutions all the time? Are differential equation solutions unique? The 

second strategy involves studying ordinary differential equations (ODEs) qualitatively 

and considering the notion of stability. 

 

2.1 General concept of ODE 

Let 𝑓: 𝐼 × 𝜇 → ℝ𝑛 be a vector-valued function defined by (𝑡, 𝑥) ⟼ 𝑓(𝑡, 𝑥) and let 

𝐼 ⊆ 𝑅 and 𝜇 ⊆ ℝ𝑛  be nonempty open sets. 

We will consider an ODE system of the following first order: 

𝑥′ = 𝑓(𝑡, 𝑥)        (2.1) 

where 𝑓 = (𝑓1, … , 𝑓𝑛) is a vector-valued function as defined above, the unknown function 

𝑥 = (𝑥1, … , 𝑥𝑛 ) is a vector, and the prime implies differentiation wrt 𝑡 (an independent 

variable which is usually a measure of time). It should be noted that (2.1) can be rewritten 

as:  

𝑥′ = 𝑓(𝑥), where 𝑥 ∈ 𝜇 

This differential equation is known as an autonomous differential equation. 

If not, (2.1) is referred to as a non-autonomous differential equation. 

Let 𝐼 ⊆ 𝑅 and 𝜇 ⊆ ℝ𝑛  be nonempty open sets and let 𝑓: 𝐼 × 𝜇 → ℝ𝑛 be a vector-

valued function defined by (𝑡, 𝑥) ⟼ 𝑓(𝑡, 𝑥). 

Note that if a vector-valued function 𝑓 does not depend explicitly on the independent 

variable 𝑡, then the corresponding differential equation is called autonomous differential 

equation and (2.1) can be rewritten as: 

𝑥′ = 𝑓(𝑥), 𝑥 ∈ 𝜇 

If not, (2.1) is referred to as a non-autonomous differential equation. 

An IVP associated to (2.1) for (𝑡0, 𝑥0) is given by the differential equation together 

with an IVP as follows: 

{
𝑥′  =  𝑓(𝑡, 𝑥) 

𝑥(𝑡0) = 𝑥0
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Example 2.1. In the IVP  

{
𝑥𝑖 = 𝑓(𝑡, 𝑥) 

𝑥(𝑡0) = 𝑥0
,      (2.3) 

the vector valued function 𝑓 is defined by 𝑓(𝑡, 𝑥) = −𝑥 + 𝑒−𝑡 in ℝ × ℝ, the point (0,1) 

corresponds to the IVP 𝑥(0) = 1. 

Example 2.2. The IVP 

𝑥′ = 𝐴𝑥     𝑥(0) = (1,0)𝑡     (2.4) 

where 𝐴 = (
0 1
−1 0

) and 𝑥 = (𝑥1, 𝑥2)
𝑡 ∈ ℝ2 

Definition 2.3. We refer to the vector-valued function 𝑥: 𝐼0 → 𝜇  defined on some 

non-empty open subinterval 𝐼0 of 𝐼 as the local solution of the differential equation (2.1) 

and such that: 

(i) (𝑡, 𝑓(𝑡, 𝑥(𝑡)) ∈ 𝐼 ∀ 𝑡 ∈ 𝐼0 , 

(ii) 𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) ∀ 𝑡 ∈ 𝐼0. 

Definition 2.4. Let 𝑥 be a solution function of 𝑥′ = 𝑓(𝑡, 𝑥) on an interval (𝛼, 𝛽) 

where 𝛼 < 𝛽. (𝛼, 𝛽) is a maximal domain of 𝑥 if ∄ any extension of 𝑥 over any of the 

intervals (𝛼 − 𝜖, 𝛽)  or (𝛼, 𝛽 + 𝜖) with 𝜖 > 0, such that 𝑥 is still a solution of 𝑥′ =

 𝑓(𝑡, 𝑥). 

Remark 2.5. If 𝑡0 ∈ 𝐼0 satisfies the IVP 𝑥(𝑡0) = 𝑥0 and 𝑥 is a solution of the 

differential equation above, then 𝑥 is a solution of the initial condition (2.2). 

Example 2.6. The initial condition (2.3) above ha 𝑥(𝑡) = (1 + 𝑡)𝑒−𝑡 as solution, 

and valid ∀ 𝑡 ∈ ℝ. ℝ is thus the maximum interval of existence. 

Example 2.7. The scalar differential equation 𝑥′ = 𝑥2 has the solution 

𝑥(𝑡) =
1

1 − 𝑡
 

defined on 𝐼 = (−1,1). That solution is considered continuous to the left to −∞, but not 

continuous to the right. In this case, the interval 𝐼 is not the maximal interval of existence 

of the solution. 

Proposition 2.8. An 𝑛𝑡ℎ order system: 

𝑥(𝑛) = 𝐹(𝑡, 𝑥, 𝑥′, … , 𝑥(𝑛−1))       (2.5) 
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where 𝑥:ℝ → ℝ is an unknown function, 𝑥(𝑛) =
𝑑𝑛𝑥

𝑑𝑡𝑛
 and 𝐹 is defined on ℝ ×ℝ𝑛 to 

ℝ may also be treated as a type of the system (2.1). 

Proof. If we set 

𝑑𝑘𝑥

𝑑𝑡𝑘
= 𝑦𝑘+1 

for 0 ≤ 𝑘 ≤ 𝑛 − 1, in which case 

𝑦𝑘
′ = 𝑦𝑘+1, 0 ≤ 𝑘 ≤ 𝑛 − 1 

𝑦𝑛
𝐼 = 𝐹(𝑡, 𝑦1, … , . 𝑦𝑛) 

i.e. if 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) and 

𝑓(𝑡, 𝑦) = (𝑦2, … , 𝑦𝑛, 𝐹(𝑡, 𝑦1, … , 𝑦𝑛)), 

we have 

𝑦′ = 𝑓(𝑡, 𝑦) 

where 𝑓 is considered as a vector-valued function defined on ℝ× ℝ𝑛 to ℝ, that is a system 

of first order and has the form (2.3) as required. 

Example 2.9. If we set 𝑥1 = 𝑥 and 𝑥2 = 𝑥1, the equation 𝑥′′ + 𝑥 =  𝑏(𝑡) can be 

written as the system 𝑥1
′ = 𝑥2, 𝑥2

′ = −𝑥1 + 𝑏(𝑡) or equivalent in the form (2.1) with 

𝑓(𝑡, 𝑥) = 𝐴𝑥 + 𝐵(𝑡) where 

𝐴 = (
0 1
−1 0

) and 𝐵 = (
0
𝑏(𝑡)

) 

 

2.2 General existence and uniqueness theorem of system solutions 

Let 𝑓: 𝐺 ⊆ ℝ ×ℝ𝑛 → ℝ𝑛 be a vector-valued function. 

Definition 2.10. We say 𝑓 is continuous if every component of 𝑓 is continuous in 

𝐺. 

Definition 2.11. 𝑓 is considered to be uniformly Lipschitz on 𝐺 wrt 𝑥 if ∀ 𝑡 ∈ 𝐼, ∃ 

a constant 𝐾 > 0 such that 

‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖ ≤ 𝐾‖𝑥 − 𝑦‖     (2.6) 

∀ (𝑡, 𝑥), (𝑡, 𝑦) ∈ 𝐺. 

The constant 𝐾 is called a Lipschitz constant for 𝑓 on 𝐺. 

For example, the function 𝑓:ℝ2 → ℝ defined by 𝑓(𝑡, 𝑥) = 𝑡 − 𝑥 satisfies the 

Lipschitz condition in ℝ2 with 𝐾 = 1. 
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Definition 2.12. A vector-valued function 𝑓 defined on 𝐺 ⊆ ℝ × ℝ𝑛 to ℝ𝑛 is locally 

Lipschitz wrt 𝑥 if ∀ (𝑡, 𝑥) ∈ 𝐺, ∃ a neighborhood of (𝑡, 𝑥) for which 𝑓 is Lipschitz. 

Remark 2.13. If 𝜕𝑓𝑖 𝜕𝑥𝑗  (𝑖, 𝑗: 1, … , 𝑛)⁄  exist and these partial derivatives are 

continuous on some region 𝐺 ⊆ ℝ ×ℝ𝑛, then 𝑓 satisfies a condition that is Lipschitz in 

𝐺. 

Theorem 2.14. Let the function 𝑓 be continuous vector-valued and defined thus: 

𝑈 = {(𝑡, 𝑥) ∶ |𝑡 − 𝑡0| ≤ 𝑎 and ‖𝑥 − 𝑥0‖ ≤ 𝑟} where 𝑎 > 0, 𝑟 > 0; 

Suppose 𝑓 satisfies the Lipschitz condition on 𝑈 and there is a constant 𝑀 >  0 

such that: 

‖𝑓(𝑡, 𝑥)‖ ≤ 𝑀 ∀ (𝑡, 𝑥) ∈ 𝑈. 

then there is a unique solution on (2.4) on the interval 

𝐼𝛼 = {𝑡: |𝑡 − 𝑡0| ≤ 𝛼} where 𝛼 = 𝑚𝑖𝑛 {𝛼,
𝑟

𝑀
,
1

𝐾+1
}. 

This is called the Local Existence Theorem. 

A good knowledge of the following lemma and theorems will be needed for the 

proof of the local existence theorem: 

Lemma 2.15. A function ∅ is an IVP solution on the interval 𝐼 iff it is an integral 

equation solution: 

𝑥(𝑡) = 𝑥0 + ∫ 𝑓(𝑠, 𝑥(𝑠))ds
𝑡

𝑡0
, ∀ 𝑡 ∈ 𝐼    (2.7) 

Proof: Assume that  ∅ is an IVP solution on 𝐼, then ∅ is differentiable on 𝐼 and 

∅𝐼(𝑡) = 𝑓(𝑡, ∅(𝑡) 

If we take the integral from 𝑡0 to any t in I, we get: 

∅(𝑡) − ∅(𝑡0) = ∫ 𝑓(𝑠, ∅(𝑠))ds
𝑡

𝑡0

 

Using the initial condition ∅(𝑡0) = 𝑥0, we see that ∅ satisfies (2.7) 

By applying the fundamental theorem of calculus to (2.7), we get that ∅ satisfies 

∅𝐼(𝑡)  =  𝑓(𝑡, ∅(𝑡))        (𝑡 ∈ 𝐼) 

and putting 𝑡 = 𝑡0 in (2.7), we have ∅(𝑡0) = 𝑥0. This completes the proof. 

 

Theorem 2.16 (Contraction mapping principle). If (𝑋, 𝑑) is a complete metric 

space and 𝑇: 𝑋 → 𝑋 a contraction mapping with 𝑘 ∈ [0,1) a contraction constant, then �̅� ∈
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𝑋 is a unique fixed point on T. More so, for arbitrary 𝑎 ∈ 𝑋, the sequence {𝑥𝑛}𝑛=0
∞  defined 

by: 

{
𝑥0 = 𝑎

𝑥𝑛 = 𝑇(𝑥𝑛−1), 𝑓𝑜𝑟 𝑛 ≥ 1
 

converges to �̅�. 

The contraction mapping concept is generalized by the Picard's iteration theorem. 

The iteration method is extremely helpful for solving ordinary differential equations even 

though the appropriate integral operator is not a contraction. 

Theorem 2.17. Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋 → 𝑋 a continuous 

map. Let 𝑥0 ∈ 𝑋 and define 𝑥𝑛+1  =  𝑇(𝑥𝑛) by induction. 

If ∑ 𝑑(𝑥𝑛, 𝑥𝑛+1)
∞
𝑛=0 < ∞, the sequence (𝑥𝑛)𝑛≥0 converges to a fixed point �̅� of T 

and 

𝑑(�̅�, 𝑥𝑛) ≤ ∑ 𝑑(𝑥𝑘, 𝑥𝑘+1)

∞

𝑘=𝑛

 

This is called the Picard iteration. 

With the above lemma and theorems, we can now prove the local existence theorem. 

Local existence theorem proof. 

It is sufficient to prove from lemma (2.15) the existence and uniqueness of solution 

of (2.7) in 𝐼0.  

Let 𝑋 = 𝐶(𝐼0), 𝑆 = {𝑥: 𝑥 ∈ 𝑋 𝑎𝑛𝑑 ‖𝑥 − 𝑥0‖ ≤ 𝑟}. 

𝑆 is a closed subset of 𝑋 and (𝑋, ‖. ‖) is complete.  Hence, S is complete (‖. ‖ in this 

case is the supermom norm on X). 

We will consider the map: 

𝑇: 𝑆 → 𝑆 

𝑥 ⟼ 𝑇𝑥 

defined by 

(𝑇𝑥)(𝑡) = 𝑥0 + ∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠
𝑡

𝑡0
 ∀ 𝑡 ∈ 𝐼𝛼 

We need to show that 𝑇 is well defined. 

Indeed, if 𝑥 ∈ 𝑆, then ‖𝑇𝑥 − 𝑥0‖ = ‖∫ 𝑓(𝑠, 𝑥(𝑠))ds
𝑡

𝑡0
‖

𝑡∈𝐼𝛼

𝑠𝑢𝑝

 

∀ 𝑡 ∈ 𝐼𝛼, it implies that: 
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‖∫ 𝑓(𝑠, 𝑥(𝑠))ds
𝑡

𝑡0

‖ ≤ |∫ ‖𝑓(𝑠, 𝑥(𝑠))‖ds
𝑡

𝑡0

| 

   ≤ 𝑀|𝑡0 − 𝑡| 

      ≤ 𝑀𝛼 

   ≤ 𝑟 

Therefore, ‖𝑇𝑥 − 𝑥0‖ ≤ 𝑟. 

Claim. T is a strict contraction on S. 

For every 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 and 𝑡 ∈ 𝐼𝛼, one has 

‖𝑇𝑥 − 𝑇𝑦‖ = ‖∫ 𝑓(𝑠, 𝑥(𝑠))ds
𝑡

𝑡0

−∫ 𝑓(𝑠, 𝑦(𝑠))ds
𝑡

𝑡0

‖ 

≤ ∫ ‖𝑓(𝑠, 𝑥(𝑠)) − 𝑓(𝑠, 𝑦(𝑠))‖ds
𝑡

𝑡0

 

≤ 𝐾‖𝑥 − 𝑦‖|𝑡0 − 𝑡| 

≤ 𝐾𝛼‖𝑥 − 𝑦‖ 

Since 𝛼 ≤
1

𝐾+1
, therefore 𝜆 =  𝐾𝛼 < 1. 

T is thus a strict contraction on S and has a unique fixed point (assume 𝑥) by the 

contraction mapping theorem. Furthermore, this point is the unique solution of equation 

(2.6). 

Lemma 2.18. Let 𝑓: 𝐷 → ℝ𝑛 be continuous in some region D of ℝ𝑛+1 and assume 

∃ 𝑀 > 0 such that ‖𝑓(𝑡, 𝑥)‖ ≤ 𝑀 ∀ (𝑡, 𝑥) ∈ 𝐷. Let x be a solution of IVP (2.4) that exists 

on a finite interval 𝐽 = (𝛼, 𝛽). Then lim
𝑡→𝛼+

𝑥(𝑡) and lim
𝑡→𝛽−

𝑥(𝑡) exist and are finite. 

Simply put, x can by extension be continuous to 𝛼 and 𝛽. 

Proof. Let’s define 𝑡1 and 𝑡2 as two points on the interval J such that 𝑡1 < 𝑡2. Then, 

since x satisfies the integral equation (2.7), 

𝑥(𝑡1) = 𝑥0 + ∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠
𝑡1

𝑡0
  (2.8) 

𝑥(𝑡2) = 𝑥0 + ∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠
𝑡2

𝑡0
  (2.9) 

Subtraction equation (2.9) from (2.8) gives: 

𝑥(𝑡1) − 𝑥(𝑡2) = ∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠
𝑡2

𝑡1

 

and the assumption ‖𝑓(𝑡, 𝑥(𝑡))‖ ≤ 𝑀 for (𝑡, 𝑥) ∈ 𝐷 now gives 
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‖𝑥(𝑡1) − 𝑥(𝑡2)‖ ≤ 𝑀|𝑡1 − 𝑡2| 

The Cauchy convergence criteria demonstrates that 𝑥(𝑡) tends to a limit as 𝑡 tends 

to 𝛽 from below since the right side tends to zero as 𝑡1 and 𝑡2 both tend to 𝛽 from below. 

By allowing 𝑡1 and 𝑡2 tend to 𝛼 from above, we may analogously demonstrate that 𝑥(𝑡) 

tends to a limit as t tends to 𝛼 from above. 

Let us now define 𝑥𝛼 = lim
𝑡→𝛼+

𝑥(𝑡) and 𝑥𝛽 = lim
𝑡→𝛽−

𝑥(𝑡) and we have a solution x 

defined on the closed interval [𝛼, 𝛽]. 

Theorem 2.19. Let 𝛼 < 𝛽 ∈ ℝ, and 𝑓: 𝐷 → ℝ𝑛 be continuous and suppose ∃ 𝑀 >

0 such that ‖𝑓(𝑡, 𝑥)‖ ≤ 𝑀 for all (𝑡, 𝑥) ∈ 𝐷 and (𝛼, 𝑥(𝛼)), (𝛽, 𝑥(𝛽) ∈ 𝐷. 

Then the solution x of (2.4) in the interval (𝛼, 𝛽) can be extended to  

(𝛼, 𝛽 + 휀) or (𝛼 − 휀, 𝛽) with 휀 > 0. 

Proof. From lemma (2.18) above, 𝑥𝛼 = lim
𝑡→𝛼+

𝑥(𝑡) and 𝑥𝛽 = lim
𝑡→𝛽−

𝑥(𝑡) exist. 

We can define function u as follows: 

𝑢(𝑡) = {
𝑥(𝑡) if 𝑡 ∈ (𝛼, 𝛽)
𝑥𝛽 if 𝑡 = 𝛽

 

Then ∀ 𝑡 ∈ (𝛼, 𝛽], we have 

𝑢(𝑡) = 𝑢(𝛽) + ∫ 𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
𝑡

𝛽

 

= 𝑥0 +∫ 𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
𝛽

𝑡0

+∫ 𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
𝑡

𝛽

 

= 𝑥0 + ∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠
𝑡

𝑡0
, 

the left-hand derivative 𝑢𝑙
′(𝛽) exists and 𝑢𝑙

′(𝛽) = 𝑓(𝛽, 𝑢(𝛽)). u is thus an extension of x 

in (𝛼, 𝛽].  

Let 𝑣 = 𝑣(𝑡) be a solution of the IVP: 

{
𝑥′ = 𝑓(𝑡, 𝑥)

𝑥(𝛽) = 𝑢(𝛽),
 

Then for some 휀 > 0, 𝑣 exists in the interval [𝛽, 𝛽 + 휀).  

If we define the function 𝑤(𝑡) thus, 

𝑤(𝑡) = {
𝑢(𝑡) if 𝑡 ∈ (𝛼, 𝛽)

𝑣(𝑡) if t ∈ [𝛽, 𝛽 + 휀)
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then w is continuous and differentiable in (𝛼, 𝛽) ∪ (𝛽, 𝛽 + 휀). Also, 𝑤𝛽
′  and  𝑤𝑟

′(𝛽) 

both exist and are equal. 

So, 𝑤𝑙
′(𝛽) = 𝑢′(𝛽) = 𝑓(𝑡, 𝑢(𝛽)) and 𝑤𝑟

′(𝛽) = 𝑣′(𝛽) = 𝑓(𝑡, 𝑣(𝛽)) = 𝑓(𝑡, 𝑢(𝛽)). 

Hence, w is a solution of IVP (2.4) in the interval (𝛼, 𝛽 − 휀), and an extension of x 

in the interval (𝛼, 𝛽 − 휀). 

It can be shown that x can also be extended to (𝛼 − 휀, 𝛽) if we follow the same 

argument, which completes the proof.  

We next give the local existence theorem without Lipschitz condition in a 

generalized  

Theorem 2.20. Let f be a continuous vector-valued function defined on 

△= {(𝑡, 𝑥): |𝑡 − 𝑡0| ≤ 𝑎 and ‖𝑥‖ < ∞} 𝑎 > 0 

and assume that 𝑓 satisfies a Lipschitz condition on the operator △ and there exists a 

constant 𝑀 > 0 such that 

‖𝑓(𝑡, 𝑥)‖ ≤ 𝑀 ∀(𝑡, 𝑥) ∈△ 

Then (2.4) has a unique solution in the entire interval [𝑡0 − 𝑎, 𝑡0 + 𝑎]. 

 

Proof. From the local existence theorem, ∃ a unique solution x of (2.4) and 𝛼 > 0 

that exist on 𝐼 = [𝑡0 − 𝛼, 𝑡0 + 𝛼]. 

Assuming 𝐼 to be the maximum interval of existence of solution, we shall set 𝑡1 =

𝑡0 − 𝛼 and 𝑡2 = 𝑡0 + 𝛼.  

By lemma (2.18), 𝑥(𝑡1) = lim
𝑡→𝑡1

+
𝑥(𝑡) and 𝑥(𝑡2) = lim

𝑡→𝑡2
−
𝑥(𝑡) exist. 

We claim that 𝑡2 = 𝑡0 + 𝑎, 𝑡1 = 𝑡0 + 𝑎. 

By contradiction, suppose 𝑡2 < 𝑡0 + 𝑎, since (𝑡1, 𝑥(𝑡1)) ∈ △, by theorem (2.19), we 

can extend the IVP solution of 𝑥 over (𝑡1, 𝑡2 + 휀) for some 휀 > 0 such that 𝑡2 < 𝑡2 + 휀 <

𝑡0 + 𝑎. Since 𝐼𝛼 is the maximal interval of existence of the solution, this is a contradiction. 

So, 𝑡2 = 𝑡0 + 𝑎.  

Similarly, we show that 𝑡1 = 𝑡0 + 𝑎 so that 𝐼 =  [𝑡0 − 𝑎, 𝑡0 + 𝑎].  

Hence, the proof. 

Theorem 2.21. Let the region D ∈ ℝ𝑛+1 be a continuous function 𝑓: 𝐷 → ℝ𝑛. 

Suppose 𝑀 >  0 exists such that ‖𝑓(𝑡, 𝑥)‖ ≤ 𝑀 ∀ (𝑡, 𝑥) ∈ 𝐷 and f is uniformly Lipschitz 
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on 𝐷, then the unique solution 𝑥 of (2.4) can be extended up to the point where the graph 

of 𝐷 meets the boundary. 

Proof. Let’s assume that x cannot be extended up to the boundary of D, but can be 

extended to the right only to [𝑡0, 𝑠).  

𝑥(𝑠) = lim
𝑡→𝑠−

𝑥(𝑡) exists by lemma (2.18). 

The proof is complete if (𝑠, 𝑥(𝑠)) is a boundary point of D. 

If (𝑠, 𝑥(𝑠)) is not a boundary point of D, then there exists a box centered at (𝑠, 𝑥(𝑠)) 

that lies in D. However, by the method in theorem (2.19), we may now extend the solution 

𝑥 to the right of 𝑠, which is a contradiction. It implies that x can be extended to the 

boundary of D. This completes the proof. 

 

2.3 Linear systems of Ordinary Differential Equations 

We say that (2.3) is a linear system if f is linear, i.e. each component 𝑓𝑖 of f  is of the 

form: 

𝑓𝑖(𝑡, 𝑥) = ∑ 𝑎𝑖𝑗(𝑡)𝑥𝑗 + 𝑏𝑖(𝑡)
𝑛
𝑗=1  (𝑖 = 1,… , 𝑛)  

This can be written as: 

𝑥′ = 𝐴(𝑡)𝑥 + 𝑏(𝑡)       (2.10) 

where 𝐴(𝑡) is an 𝑛 × 𝑛 matrix whose elements are 𝑎𝑖𝑗(𝑡), 𝑏(𝑡) ∈ 𝑛 × 1 vector with 𝑏𝑖(𝑥) 

components and 𝑥(𝑡) ∈ 𝑛 × 1 unknown vector with 𝑥𝑖(𝑡) components. 

Definition 2.22. If 𝑏(𝑡) = 0, (2.11) below is called a homogeneous linear system 

𝑥′ = 𝐴(𝑡)𝑥       (2.11) 

If otherwise, we have a nonhomogeneous system. 

The ODE in (2.8) is a good example of a linear system. 

We will make ‖𝑥‖ any convenient norm on ℝ𝑛 and ‖𝐴(𝑥)‖‖𝑥‖=1
𝑠𝑢𝑝

 in this section. 

Proposition 2.23. The linear system (2.10) where 𝑡 ⟼ 𝐴(𝑡) and 𝑡 ⟼ 𝑏(𝑡) are 

continuous functions on an interval 𝐼 ∈ 𝑡0. If 𝑥0 ∈ 𝜇, then ∃ one and only one solution x 

of (2.12) on 𝐼. 

{
𝑥′ = 𝐴(𝑡)𝑥 + 𝑏(𝑡)

𝑥(𝑡0) = 𝑥0
     (2.12) 

Proof. Each function 𝑓𝑖 may be shown to satisfy the Lipchitz condition (2.6) on 𝐼, 

which is required to prove this contradiction, using the global existence theorem. We 
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assume that 𝐼 is both closed and finite. Otherwise, we choose a closed, finite subinterval 

𝐼0 of I. The absolute value of any function 𝑎𝑖𝑗 is therefore less than some positive number 

∀ 𝑡 ∈ 𝐼 since 𝑡 ⟼ 𝐴(𝑡)  is continuous on 𝐼. If 𝑁 is the biggest of these numbers, then ∀ 

𝑡 ∈ 𝐼, we have: 

|𝑎𝑖𝑗(𝑡)| ≤ 𝑁 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑛 

Let 𝑡 ∈ 𝐼 be fixed and 𝑥, 𝑦 ∈ ℝ𝑛, we have 

‖𝑓𝑖(𝑡, 𝑥) − 𝑓𝑖(𝑡, 𝑦)‖ = ‖∑𝑎𝑖𝑗(𝑡)𝑥𝑗

𝑛

𝑗=1

−∑𝑎𝑖𝑗(𝑡)𝑦𝑗

𝑛

𝑗=1

‖ 

≤∑|𝑎𝑖𝑗(𝑡)(𝑥𝑗 − 𝑦𝑗)|

𝑛

𝑗=1

 

≤∑|𝑎𝑖𝑗||𝑥𝑗 − 𝑦𝑗|

𝑛

𝑗=1

 

≤ 𝑁∑|𝑥𝑗 − 𝑦𝑗|

𝑛

𝑗=1

 

  ≤ 𝑁‖𝑥 − 𝑦‖ ∀ 𝑥, 𝑦 ∈ ℝ𝑛. 

From the inequality above, since each 𝑓𝑖  (𝑖 = 1, . . . , 𝑛) is Lipschitz on 𝐽 with a 

Lipschitz constant 𝑁, the vector-valued function 𝑓 is Lipschitz on 𝐼. Hence, the initial 

condition (2.12) has a unique solution on the interval I from the global existence theorem. 

Definition 2.24. If all of the 𝑛 solutions to the ODE in (2.12) defined on the same 

interval 𝐼 are linearly independent functions on 𝐼, then the set of 𝑛 solutions is referred to 

as a fundamental set of solutions on 𝐼. 

Definition 2.25. Let 𝑋 = (𝑥1…𝑥𝑛) and 𝑥1 . . . 𝑥𝑛 be n solutions of (2.11). X is called 

a fundamental matrix of (2.11) if the 𝑛 solutions are linearly independent. 

Furthermore, if 𝑋(𝑡0) = 𝐼, X is called a principal fundamental matrix. 

Theorem 2.26. If 𝑋 is a fundamental matrix on 𝐼 for 𝑥′ = 𝐴(𝑡)𝑥 and 𝐶 is a 

nonsingular constant matrix, then 𝑋𝐶 is likewise a fundamental matrix of 𝑥′ = 𝐴(𝑡)𝑥 on 

I. 

Corollary 2.27. A solution u of 𝑥′ = 𝐴(𝑡)𝑥 is of the form: 

𝑢(𝑡) = 𝑋(𝑡). 𝑐 
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where 𝑐 is a constant vector and X = X(t) is a fundamental matrix solution. 

Corollary 2.28. The matrix 𝑋(𝑡) = 𝑒𝑡𝐴 is the fundamental matrix of 𝑥′ = 𝐴𝑥 if 𝐴 

is a constant matrix. The IVP 𝑥′ = 𝐴𝑥, 𝑥(0) = 𝑥0 therefore has a unique solution  

𝑥(𝑡) = 𝑒𝑡𝐴𝑥0. 

 The solutions are linear combinations of 𝑒𝜆1𝑡, … , 𝑒𝜆𝑛𝑡, i.e. 𝑥(𝑡) =

∑ 𝑐𝑗𝑒
𝜆𝑗𝑡𝑛

𝑗=1  if the eigenvalues 𝜆1, … , 𝜆𝑛 of A are all distinct 

 If the eigenvalues 𝜆1, … , 𝜆𝑛 of A are not all distinct and 𝑛𝑗  are their 

respective multiplicities with 𝑛1 +⋯+ 𝑛𝑘 = 𝑛, then the solutions are linear 

combinations of 𝑝𝑛1𝑒
𝜆1𝑡, … , 𝑝𝑛𝑘𝑒

𝜆𝑘𝑡, where the degree of polynomial 𝑝𝑗 ≤ (𝑛𝑗 − 1),

𝑗 = 1,2, … , 𝑘. 

Theorem 2.29. If 𝜙 and 𝜓 are two solutions of system (2.10) and are defined on 

some interval (𝑎, 𝑏) with 𝑎 < 𝑏. Then 𝑡 ⟼ 𝑐1𝜙(𝑡) + 𝑐2𝜓(𝑡) is also a solution if 𝑐1 and 

𝑐2 are constants and defined on the same interval. 

Theorem 2.30. Assume that 𝑋 is a fundamental matrix of the homogeneous system 

(2.11) on I, an open interval. If 𝑡0 ∈ 𝐼 and the Wronskian 𝑊(𝑡) of 𝑋(𝑡) is 𝑑𝑒𝑡(𝑋(𝑡)), 

then, 

𝑊(𝑡) = 𝑊(𝑡0)𝑒𝑥𝑝 (∫ 𝑡𝑟(𝑎(𝑠)
𝑡

𝑡0

)𝑑𝑠 

Proof. 𝑡 ⟼ 𝑋(𝑡) is a differentiable function that is a matrix solution. Expanding 

around 𝑡0 in a Taylor series of order 1 gives: 

𝑋(𝑡) = 𝑋(𝑡0) + (𝑡 − 𝑡0)𝑋
′(𝑡0) + 𝑜((𝑡 − 𝑡0) 

= 𝑋(𝑡0) + (𝑡 − 𝑡0)𝐴(𝑡0)𝑋(𝑡0) + 𝑜((𝑡 − 𝑡0) 

= [𝐼 + (𝑡 − 𝑡0)𝐴(𝑡0)]𝑋(𝑡0) + 𝑜((𝑡 − 𝑡0) 

so that 

det(𝑋(𝑡)) = det[𝐼 + (𝑡 − 𝑡0)𝐴(𝑡0)] det (𝑋(𝑡0)) 

W(t) = det[𝐼 + (𝑡 − 𝑡0)𝐴(𝑡0)]𝑊(𝑡0) 

It is clear that the function 휀 ⟼ 𝜙(휀) = 𝑑𝑒𝑡(𝐼 + 휀𝐶) is differentiable.  

If C is any nonsingular square matrix and we expand around 0 in a Taylor series of 

order 1, then: 

𝑑𝑒𝑡(𝐼 + 휀𝐶) = 1 + 휀𝑡𝑟(𝐶)𝑜(휀), 
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From this last equation, we have that: 

𝑊(𝑡) = 𝑊(𝑡0)[1 + (𝑡 − 𝑡0)𝑡𝑟(𝐴(𝑡0))] 

By expanding 𝑡 ⟼ 𝑊(𝑡) in a Taylor series, we now obtain: 

𝑊(𝑡) = 𝑊(𝑡0) + (𝑡 − 𝑡0)𝑊
′(𝑡0) + 𝑜((𝑡 − 𝑡0)), 

so that 

𝑊′(𝑡0) = 𝑊(𝑡0)𝑡𝑟(𝐴((𝑡0)). 

Since no assumption about 𝑡0 has been made, we can then write 

𝑊′(𝑡) = 𝑊(𝑡)𝑡𝑟(𝐴(𝑡) 

Hence, the solution to this is given by: 

𝑊(𝑡) = 𝑊(𝑡0)𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴(𝑠))
𝑡

𝑡0

)𝑑𝑠 

Theorem 2.31. If �̅� is any particular solution of (2.10), then any solution of such 

can be expressed in the form: 

𝑥(𝑡) = �̅� + 𝑋(𝑡)𝑐      (2.13) 

with c a constant vector and 𝑋 a fundamental matrix solution of ( 2.11). 

Proof. Setting 𝑥(𝑡) = �̅� + 𝑋(𝑡)𝑐, we have: 

𝑥′(𝑡) = �̅�′(𝑡) + 𝑋′(𝑡)𝑐 

= 𝐴(𝑡)�̅� + 𝑏(𝑡) + 𝐴(𝑡)𝑋𝑐 

= 𝐴(𝑡)(�̅� + 𝑋(𝑡)𝑐) + 𝑏(𝑡) 

= 𝐴(𝑡)𝑥(𝑡) + 𝑏(𝑡) 

Hence, 𝑥(𝑡) is a solution of (2.10), a nonhomogeneous equation. 

Setting 𝑢(𝑡) as any solution of (2.10), it is required to prove that 𝑢(𝑡) is of the form 

(2.13). 

Whereas,  

𝑢′(𝑡) = 𝐴(𝑡)𝑢 + 𝑏(𝑡)     (2.14) 

As �̅� is a particular solution of (2.10), 

�̅�′(𝑡) = 𝐴(𝑡)�̅� + 𝑏(𝑡);     (2.15) 

Subtracting (2.15) from (2.14), we obtain 

𝑢′(𝑡) − �̅�𝐼(𝑡) = 𝐴(𝑡)(𝑢 − �̅�)    (2.16) 

(2.16) means that (𝑢 − �̅�) is a solution of (2.11), a homogeneous equation.  

The solution of (2.11) has a fundamental matrix 𝑋 and ∃ a constant vector c so that 
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𝑢(𝑡) − �̅�(𝑡) = 𝑋(𝑡)𝑐 

Hence, 

𝑢(𝑡) = �̅�(𝑡) + 𝑋(𝑡)𝑐 

and this completes the proof. 

 

Theorem 2.32 (Variation of constant). If X is a fundamental matrix solution of 

(2.11), then, 

�̅�(𝑡) = 𝑋(𝑡).∫ 𝑋−′(𝑠)𝑏(𝑠)𝑑𝑠
𝑡

𝑡0

 

is a particular solution to nonhomogeneous equation (2.10). 
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CHAPTER III 

Stability Theory 

Approximations are commonly used in various applications to enter (numerical) 

data into differential systems (with a certain degree of error). Thus, the subject of stability, 

often referred to as robustness, sensitivity, or continuity, concerns how solutions, which 

may potentially take the form of physical systems, respond to small perturbations of the 

data. 

Nonetheless, it should be noted that a physical system is stable if only a very small 

deviation from its current state results in a very small change in the state. If no such exists, 

such system is unstable. 

 

3.1 Phase space 

The autonomous systems below will be taken into consideration: 

𝑥′ = 𝑓(𝑥);        𝑥 ∈ 𝑀 ⊂ ℝ𝑛      (3.1) 

where the vector-valued function 𝑓 is continuous on M to ℝ𝑛. 

We can plot the solution x of (3.1) above in the space 𝑥1 − 𝑥𝑛. This space is called 

phase space. 

A solution of an ODE can be referred to by several different geometric terms 

namely: orbit, trajectory and integral curve. 

Definition 3.1. The integral curve of an ODE solution, shown by the graph 

{(𝑡, 𝑥) ∈ ℝ × ℝ𝑛 ∶ 𝑥 = 𝑥(𝑡), 𝑡 ∈ 𝐼} represents the time interval throughout which the 

solution 𝑥 exists. 

Definition 3.2. The projection of an integral curve along the axis 𝑡 in phase space 

is referred to as a phase curve or trajectories of solutions. 

Definition 3.3. In the phase space of, let 𝑥0 be a point (3.1). For 𝑥0 ∈ 𝑀 ⊂ ℝ𝑛, the 

orbit through 𝑥0 denoted 𝜑(𝑥0) is defined as: 

𝜑(𝑥0) = {𝑥 ∈ ℝ
𝑛: 𝑥 = 𝑥(𝑡, 𝑡0, 𝑥0), 𝑡 ∈ 𝐼} 

We will look at the example below to illustrate the concept of the phase space: 

Example 3.4. Consider the differential equation: 

𝑑2𝑢

𝑑𝑡2
+ 𝑢 = 0       (𝑡, 𝑢) ∈ ℝ × ℝ 
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By setting 𝑥 = 𝑢 and 𝑦 = 𝑥′, this system of equation can be transformed to the form: 

𝑋′ = 𝐴𝑋,      𝑋 ∈ ℝ2 

where 𝑋 = (
𝑥
𝑦) and 𝐴 = (

0 1
−1 0

) 

𝜆1 = 𝑖 and 𝜆2 = −𝑖 are the eigenvalues of 𝐴. An eigenvector corresponding to 𝜆 =

𝑖 is 𝑣 = 𝑘 (
1
0
), where 𝑘 ≠ 0 is constant. Hence, the general solution is 𝑋(𝑡) = 𝑒𝑖𝑡𝑣. 

The phase space is at plane ℝ2.  

The solution through (𝑥, 𝑦) = (1,0) at 𝑡 = 0 is: 

(𝑥(𝑡), 𝑦(𝑡)) = (𝑐𝑜𝑠 𝑡, −𝑠𝑖𝑛 𝑡) 

The integral curve through (1,0) at 𝑡 = 0 is: 

{(𝑡, (𝑐𝑜𝑠 𝑡, 𝑠𝑖𝑛 𝑡)): 𝑡 ∈ ℛ} 

The orbit through (0,1) is given by: 𝑥2 + 𝑦2 = 1 (which corresponds to the 

equation of a circle). 

In addition to the different types of orbits that can be obtained by trying to solve 

ordinary differential equations, two special types will be defined: the rest point and the 

periodic orbit.  

Definition 3.4. A rest point, also called critical point, singular point, stationary 

point, steady state or an equilibrium point is a point 𝑥𝑒 ∈ ℝ
𝑛such that 𝑓(𝑥𝑒) = 0. This 

type of solution remains constant over time. 

Definition 3.5. In the ODE (3.1), the solution 𝑥 is known as a periodic solution if 

there exists a constant T, such that (𝑡 + 𝑇) = 𝑥(𝑡) ∀ 𝑡 ∈ 𝐼. Periodic solutions have closed 

phase curves, known as cycles or periodic orbits. 

 

3.2 General definition of stability 

Definition 3.6. The equilibrium point 𝑥𝑒 of (3.1) is stable if for every 휀 > 0, there 

exists a number 𝛿 = 𝛿(휀) > 0 such that for any solution x of (3.1), if ‖𝑥𝑒 − 𝑥(𝑡0‖ < 𝛿, 

then the solution x exists ∀ 𝑡 ≥ 𝑡0 and ‖𝑥𝑒 − 𝑥(𝑡)‖ < 휀 ∀ 𝑡 > 𝑡0. 

Example 3.7. The equation 𝑥′ = 1 − 𝑥 is stable at the equilibrium point 𝑥𝑒 = 1. 

Definition 3.8. If 𝑥𝑒 of (3.1) is stable and ∃ 𝛿0 >  0 such that 

lim
𝑡→∞

𝑥(𝑡) = 𝑥𝑒 if ‖𝑥(𝑡0) − 𝑥𝑒‖ < 𝛿0 
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Then the equilibrium solution 𝑥𝑒 of (3.1) is said to be asymptotically stable. 

Example 3.9. The equilibrium solution 𝑥𝑒 = 0 of 𝑥′ = −𝑎𝑥, 𝑎 > 0 is not only 

stable, but asymptotically stable. 

If x is any solution of 𝑥′ = −𝑎𝑥, the solution x of 𝑥′ = −𝑎𝑥 with the IVP  𝑥(0) = 1 

is 𝑥(𝑡) = 𝑒−𝑎𝑡, so lim
𝑡→∞

𝑥(𝑡) = 0 = 𝑥 . 

If it is not stable, then the equilibrium solution 𝑥  is unstable 

Example 3.10. The solution 𝑥 = 0 of 𝑥′ = 𝑥2 is unstable, since for 𝑡0, 𝑥0 > 0, the 

solution 𝑥(𝑡) =
𝑥0

1+𝑥0(𝑡0−𝑡)
 fails to exist at 𝑡 = 𝑥0

−1 + 𝑡0. 

To understand stability of solution of non-autonomous systems in (2.3), we will 

generalize to arbitrary solutions, where the real valued-vector function f is defined and 

continuous in 𝐷 = { (𝑡, 𝑥): 0 ≤ 𝑡 < ∞, ‖𝑥‖ < 𝑎}, where 𝑎 ≥ 0 is a constant. 

Furthermore, we will set 𝑥 ∶= 𝑥(𝑡, 𝑡0, 𝑥0) to be any solution of (2.3) with IVP 𝑥(𝑡0) = 𝑥0, 

where 𝑡0 ≥ 0. 

Definition 3.11. If ∀ 휀 > 0, ∃ 𝛿 = 𝛿(휀, 𝑡0) such that for any other solution  

𝑦 ∶= 𝑦(𝑡, 𝑡0, 𝑥0) of (2.3) existing for 𝑡 > 𝑡0 and satisfying |𝑥(𝑡0) − 𝑦(𝑡0)| < 𝛿, one has 

|𝑥(𝑡) − 𝑦(𝑡) < 휀| for 𝑡 > 𝑡0, then the solution x of (2.3) is stable. 

Definition 3.12. The solution x of (2.3) is asymptotically stable if it is stable and 

there is a constant 𝛿0 = 𝛿0(𝑡0) > 0 such that, if |𝑥(𝑡0) − 𝑦(𝑡0)| < 𝛿0, then lim
𝑡→∞

𝑦(𝑡) =

𝑥(𝑡). 

Example 3.13. Every solution of 𝑥′ = −𝑡𝑥 is asymptotically stable, and hence 

stable. 

Next, we will find a method of examining the stability of a solution of an ODE. 

To understand how stable 𝑥 is, we need to know the nature of the solution around 

𝑥. This is accomplished via a term called linearization. 

Definition 3.14 (Linearization). Linearization involves approximating a 

complicated nonlinear system to a linear one. The concept of linearization is to 

approximate a nonlinear map with one that is linear. 

We will now describe the method of linearization for any solution x of (.3.1). 

Suppose that 𝑢 = 𝑥 + 𝑦 is solution of (3.1), then 𝑢 satisfies (3.1) and the Taylor’s 

expansion of 𝑓 around x gives: 
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𝑢′ = 𝑥′ + 𝑦′ = 𝑓(𝑥(𝑡)) + 𝐷𝑓(𝑥(𝑡))𝑦 + 𝑜(‖𝑦‖)   (3.2) 

where 𝐷𝑓 is the derivative of 𝑓, 𝑜(‖𝑦‖) = ‖𝑦‖ ∈ (𝑦) with lim
𝑦→0

휀(𝑦) = 0. 

Since x is a solution of (3.1), then (3.2) above becomes: 

𝑦′ = 𝐷𝑓(𝑥(𝑡))𝑦 +  𝑜(‖𝑦‖)      (3.3) 

and this explains the evolution of orbits around x. 

The question of stability concerns solutions arbitrarily close to 𝑥, so we can answer 

this question by investigating the related linear system: 

𝑦′ = 𝐷𝑓(𝑥(𝑡))𝑦                             (3.4) 

In the case of constant coefficients, stability of 𝑥 therefore entails stability of an 

eigenvalue question, which is an eigenvalue problem. 

 

3.3 Linear systems' stability 

Considering the linear system below: 

𝑥′ = 𝐴(𝑡)𝑥,     (𝑡, 𝑥) ∈ ℝ × ℝ𝑛    (3.5) 

𝑡 → 𝐴(𝑡) is a continuous matrix-valued function and X a fundamental matrix of (3.5) that 

satisfies 𝑋(𝑡0) = 𝐼. 

Theorem 3.15. All solutions of (3.5) are stable iff each solution is bounded. 

Proof. We will make X a fundamental matrix of (3.5). There exists a constant M 

such that ‖𝑋(𝑡)‖ ≤ 𝑀 ∀ 𝑡 ∈ ℝ if (3.5) has all solutions bounded.  

Given any 휀 > 0, then 

‖𝑥0 − 𝑦0‖ < 𝑀+1
⇒ ‖𝑥(𝑡, 𝑡0, 𝑥0) − 𝑦(𝑡, 𝑡0, 𝑦0)‖ = ‖𝑋(𝑡)(𝑥0 − 𝑦0)‖ ≤ 𝑀‖𝑥0 − 𝑦0‖ < 휀,  

𝑦 being any solution with IVP 𝑦(𝑡0) = 𝑦0. All solutions are therefore stable. 

In converse, 𝑥(𝑡, 𝑡0, 0) = 0 is stable if all solutions are stable.  

Given 휀 > 0, ∃ 𝛿 = 𝛿(휀) such that ‖𝑦0‖ < 𝛿 implies 

‖0 − 𝑦(𝑡, 𝑡0, 𝑦0)‖ = ‖𝑋(𝑡)𝑦0‖ < 휀. 

If we let 𝑦0 be a vector and 
𝛿

2
 in the ith place with zero everywhere else, then 

‖𝑋(𝑡)𝑦0‖ = ‖𝑋𝑖(𝑡)‖
𝛿

2
< 휀 

where 𝑋𝑖 is the ith column of X. Hence, 

‖𝑋(𝑡)‖ < 2𝑛휀𝛿−1 = 𝑘 
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Therefore for any solution, 

‖𝑦(𝑡, 𝑡0, 𝑦0)‖ = ‖𝑋(𝑡)𝑥0‖ < 𝑘‖𝑥0‖ 

and hence, all solutions are bounded. 

We next consider the ODE (3.5) when the matrix 𝐴 = 𝐴(𝑡) is constant. 

Definition 3.16. A polynomial 𝑃(𝜆) is stable when all solutions (roots) of the 

characteristic polynomial 𝑃(𝜆) have negative real parts. 

Theorem 3.17. If 𝜆1, 𝜆2, … , 𝜆𝑘 eigenvalues of 𝐴 that are distinct, with 𝜆𝑗 having 

multiplicity 𝑛𝑗  and 𝑛1 + 𝑛2 +⋯+ 𝑛𝑘 = 𝑛. If 𝑝 > 𝑅𝑒(𝜆𝑗)𝑗=1,…,𝑘
𝑚𝑎𝑥 , then ∃ a constant 𝑀 >

0 such that: 

‖𝑒(𝑡𝐴)‖ ≤ 𝑀𝑒𝑝𝑡 (0 ≤ 𝑡 ≤ ∞) 

Proof. From (2.28), 𝑒𝑡𝐴 is a fundamental matrix of 𝑥𝐼 = 𝐴𝑥 (a linear ODE) and of 

the form: 

𝑒𝑡𝐴 = ∑ 𝑝𝑗(𝑡)𝑒
𝜆𝑗𝑡𝑘

𝑗 , 

Where the polynomial 𝑝𝑗(𝑡) ≤ (𝑛𝑗 − 1).  

Recall: For 𝜆𝑗 ∈ ℂ, ‖𝑒𝜆𝑗𝑡‖ = 𝑒𝑅𝑒(𝜆𝑗)𝑡.  

If 𝑝 > 𝑅𝑒(𝜆𝑗)1≤𝑗≤𝑘
𝑚𝑎𝑥 , we may write 

𝑒𝑅𝑒(𝜆𝑗)𝑡|𝑝𝑗(𝑡)| = 𝑒
𝑝𝑡𝑒−(𝑝−𝑅𝑒(𝜆𝑗)𝑡|𝑝𝑗(𝑡)| 

and since 𝑝 > 𝑅𝑒(𝜆𝑗), we deduce that lim
𝑡→∞

Examplep ( − (𝑝 − 𝑅𝑒(𝜆𝑗)𝑡|𝑝𝑗(𝑡)| = 0.  

Hence, ∃ 𝑀 > 0 such that: 

∑ exp (−(𝑝 − 𝑅𝑒(𝜆𝑗)𝑡
𝑘
𝑗=1 |𝑝𝑗(𝑡)| ≤ 𝑀,    𝑡 ≥ 0   

Thus, we deduce that 

‖𝑒𝑡𝐴‖ ≤∑exp (𝑅𝑒(𝜆𝑗)𝑡

𝑘

𝑗=1

|𝑝𝑗(𝑡)| ≤ 𝑀,    𝑡 ≥ 0 

Theorem 3.18. Every solution of (3.5) is asymptotically stable if the characteristic 

polynomial of 𝐴 = 𝐴(𝑡) is stable. 

Proof. Let ∃ positive constants 𝑀 and 𝑝 such that ‖𝑋(𝑡)‖ ≤ 𝑀𝑒−𝑝𝑡, 𝑡 ≥ 0 (since 

the characteristic polynomial is stable). 

We know that 𝑡 ⟼ 𝑀𝑒−𝑝𝑡 is a decreasing function, so, given 휀 > 0, then  

‖𝑥0 − 𝑦0‖ < 휀𝑀
−1𝑒𝑝𝑡0 implies that: 
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‖𝑥(𝑡, 𝑡0, 𝑥0) − 𝑦(𝑡, 𝑡0, 𝑦0)‖ ≤ ‖𝑋(𝑡)‖‖𝑥0 − 𝑦0‖ 

≤ 𝑀𝑒−𝑝𝑡‖𝑥0 − 𝑥1‖ 

The RHS is less than 휀 ∀ 𝑡 > 𝑡0 and tends to zero as t approaches 1.  

Hence, all solutions of (3.5) are asymptotically stable. 

Proposition 3.19 (Stability test using eigenvalues) 

a) If each real portion of the eigenvalue of 𝐴 is strictly less than zero, the constant-

coefficient system (2.28) is said to be asymptotically stable. 

b) (2.28) is stable if all eigenvalues of 𝐴 have real parts zero and each eigenvalue is less 

than or equal to zero. 

Next, we will consider a system of the form: 

𝑥′ = 𝐴𝑥 + 𝑓(𝑡, 𝑥)      (3.6) 

where 𝐴 = (𝑎𝑖𝑗)𝑛 is a constant matrix and 𝑓 a vector-valued function defined as  

𝑓 = (𝑓1, … , 𝑓𝑛) satisfies: 

i) (𝑡, 𝑥) ⟼ 𝑓(𝑡, 𝑥) is continuous for ‖𝑥‖ < 𝑎 and 𝑡 ≥ 0, 

ii) lim
‖𝑥‖⟼0

‖𝑓(𝑡,𝑥)‖

‖𝑥‖
= 0 with respect to t. 

Theorem 3.20. If the characteristic polynomial of 𝐴 in equation (3.6) is stable, then 

the solution 𝑥(𝑡) ≡ 0 of (3.6) is asymptotically stable. 

The solution 𝑥(𝑡) ≡ 0 of (3.6) is asymptotically stable if the characteristic 

polynomial of A in (3.6) is stable. 

It is important to introduce the Gronwall's inequality to prove theorem 3.20. 

Theorem 3.21 (Gronwall's inequality). Let 𝐾 ≥ 0 and 𝑓, 𝑔 be continuous 

nonnegative functions on the interval 𝑎 ≤ 𝑡 ≤ 𝑏. If 

𝑓(𝑡) ≤ 𝐾 + ∫ 𝑓(𝑠)𝑔(𝑠)𝑑𝑠
𝑡

𝑎
 for 𝑎 ≤ 𝑡 ≤ 𝑏.  

Then 

𝑓(𝑡) ≤ 𝐾 𝑒𝑥𝑝 (∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑎
) for 𝑎 ≤ 𝑡 ≤ 𝑏. 

Proof. Let ℎ(𝑡) = 𝐾 + ∫ 𝑓(𝑠)𝑔(𝑠)𝑑𝑠
𝑡

𝑎
 and observe that ℎ(𝑎) = 𝐾.  

By hypothesis,  

𝑓(𝑡) ≤ ℎ(𝑡) 

Recall that 𝑔 is non-negative and by fundamental theoRemark of calculus. 
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ℎ′(𝑡) = 𝑓(𝑡)𝑔(𝑡) ≤ ℎ(𝑡)𝑔(𝑡) 𝑎 ≤ 𝑡 ≤ 𝑏 

We multiply this inequality by 𝑒𝑥𝑝 (−∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑎
) and apply the identity: 

ℎ′(𝑡)𝑒𝑥𝑝 (−∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑎

− ℎ(𝑡)𝑔(𝑡)𝑒𝑥𝑝 (−∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑎

)) =
𝑑

𝑑𝑡
(ℎ(𝑡)𝑒𝑥𝑝 −∫ 𝑔(𝑠)𝑑𝑠

𝑡

𝑎

) 

to obtain: 

𝑑

𝑑𝑡
(ℎ(𝑡)Examplep (−∫ 𝑔(𝑠)𝑑𝑠

𝑡

𝑎

)) ≤ 0 

Integrating from a to t gives: 

ℎ(𝑡)𝑒𝑥𝑝 (−∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑎

) − ℎ(𝑎) ≤ 0 

Since 𝑓(𝑡) ≤ ℎ(𝑡) and ℎ(𝑎) = 𝐾, 

𝑓(𝑡) ≤ ℎ(𝑡) ≤ 𝐾𝑒𝑥𝑝 (∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑎
) 𝑎 ≤ 𝑡 ≤ 𝑏 

We will now proceed to prove theorem 3.20 

Proof. First, we will prove that the solution 𝑥(𝑡) = 𝑥(𝑡, 0, 𝑥0) is defined on 𝑡 ≥ 0 

when 𝑥0 → 0. If X is the fundamental matrix of 𝑥𝐼 = 𝐴𝑥 with 𝑋(0) = 𝐼, then ∃ 𝑅 > 0 and  

𝛼 > 0 such that:  

‖𝑋(𝑡)‖ ≤ 𝑅𝑒−𝛼𝑡 ∀ 𝑡 ≥ 0 

Since matrix A is constant, x satisfies the relation: 

𝑥(𝑡) = 𝑋(𝑡)𝑥0 +∫ 𝑋(𝑡 − 𝑠)𝑓(𝑠, 𝑥(𝑠))𝑑𝑠
𝑡

0

 

Therefore, 

‖𝑥(𝑡)‖𝑒𝛼𝑡 ≤ 𝑅‖𝑥0‖ + ∫ 𝑅𝑒𝛼𝑠‖𝑓(𝑠, 𝑥(𝑠))‖𝑑𝑠
𝑡

0

 

 

The first and second relations are definitely valid for t in the interval [0, 𝑇) if 

‖𝑥(𝑡)‖ < 𝑎 and ‖𝑥0‖ < 𝑎 on assumption. 

It follows from condition (ii) that given any 𝑚 > 0, ∃ 𝑑 > 0 such that for ‖𝑥‖ < 𝑑 

and 𝑡 ≥ 0, we have ‖𝑓(𝑡, 𝑥)‖ ≤ 𝑚‖𝑥‖. If we assume ‖𝑥0‖ < 𝑑, then by continuity of 

𝑡 ⟼ 𝑥(𝑡), ∃ 𝑡1 > 0 : ‖𝑥(𝑡)‖ < 𝑑 ∀ 0 ≤ 𝑡 < 𝑡1.  

Therefore, 
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‖𝑥(𝑡)‖𝑒𝛼𝑡 ≤ 𝑅‖𝑥0‖ + ∫ 𝑚𝑅𝑒𝛼𝑡‖𝑥(𝑠)‖𝑑𝑠
𝑡

0

 

for 0 ≤ 𝑡 < 𝑡1.  

From the Gronwall's inequality, it implies that: 

‖𝑥(𝑡)‖ ≤ 𝑅‖𝑥0‖𝑒
(𝑚𝑅−𝛼)𝑡;  0 ≤ 𝑡 <  𝑡1 

Choosing m such that 𝑚𝑅 < 𝛼 and 𝑥(0) = 𝑥0 since 𝑥0 and m are at our disposal, so 

that ‖𝑥0‖ < 𝑑 2𝑅⁄  ⟹ ‖𝑥(𝑡)‖ < 𝑑 2⁄  for 0 ≤ 𝑡 < 𝑡1. 

Solution 𝑥, which exists locally at every point (𝑡, 𝑥), 𝑡 > 0, ‖𝑥‖ < 𝑎 can be 

extended interval by interval once 𝑓 is defined for ‖𝑥‖ < 𝑎 and 𝑡 ≥ 0. 

Therefore, for any solution x with ‖𝑥0‖ < 𝑑 2𝑅⁄ , it is defined for 𝑡 ≥ 0 and satisfies 

‖𝑥(𝑡)‖ ≤ 𝑑 2⁄ . Obviously, we can make d small and by doing so, 𝑥(𝑡) ≡ 0 is stable, 

hence 𝑚𝑅 < 𝛼 is asymptotically stable. 
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CHAPTER IV 

Floquet Theory: Presentation of Periodic Solutions and their Stability 

The Floquet theory is a fundamental subject in the qualitative theory of ordinary 

differential equation (ODE). By using the Floquet theory, periodic linear systems can be 

represented and periodic solutions' stability can be analyzed. The purpose of this chapter 

is to first present main results concerning Floquet theory, then we will finish this up by 

applying this theory in the next and final chapter to the problem of the stability of periodic 

solutions. The Hill's equation's stability will then be concluded by using the Floquet's 

theory. 

Definition 4.1. If 𝐴(𝑡 +  𝑇) = 𝐴(𝑡) ∀ 𝑡 ∈ 𝑅, then an 𝑛 × 𝑛 matrix-valued function 

𝑡 ⟼ 𝐴(𝑡) is said to be 𝑇-periodic. 

 

4.1 Linear systems with periodic coefficients 

We will take the 𝑛 × 𝑛 homogeneous linear systems below: 

𝑥′ = 𝐴(𝑡)𝑥     (𝑡, 𝑥) ∈ ℝ × ℝ𝑛       (4.1) 

where 𝑡 ⟼ 𝐴(𝑡) is a continuous, T-periodic matrix-valued function defined thus: 

𝐴(𝑡 + 𝑇) = 𝐴(𝑡)∀ 𝑡 ∈ ℝ      (4.2) 

Example 4.2. The system 𝑥′ = 𝐴(𝑡)𝑥 where  

𝐴(𝑡) = (
1 + cos (𝑡) 0

1 −1
) 

is 2𝜋-periodic. 

Theorem 4.3. Let A be a matrix with period T. If 𝑡 ⟼ 𝑋(𝑡) is a fundamental matrix 

of (4.1), then so is 𝑡 ⟼ 𝑋(𝑡 + 𝑇) and ∃ a nonsingular constant matrix B such that: 

i) 𝑋(𝑡 + 𝑇) = 𝑋(𝑡)𝐵 ∀ 𝑡 ∈ ℝ 

ii) 𝑑𝑒𝑡(𝐵) = 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴(𝑠)
𝑇

0
)𝑑𝑠 

Proof. Since 𝑡 ⟼ 𝐴(𝑡) is periodic, it is defined ∀ 𝑡 ∈ ℝ. As a result, the system's 

solutions are all defined for 𝑡 ∈ ℝ. 

If we set 𝑌(𝑡) = 𝑋(𝑡 +  𝑇), then 

𝑌′(𝑡) = 𝑋′(𝑡 + 𝑇) = 𝐴(𝑡 + 𝑇)𝑋(𝑡 + 𝑇) = 𝐴(𝑡)𝑋(𝑡 + 𝑇) = 𝐴(𝑡)𝑌 (𝑡) 

which shows that Y is the linear system’s solution matrix of (4.1).  
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Furthermore, as  𝑑𝑒𝑡(𝑋(𝑡 + 𝑇)) ≠ 0 ∀ 𝑡 ∈ ℝ, we have that 𝑑𝑒𝑡𝑌(𝑡) ≠ 0 ∀ 𝑡 ∈ ℝ. 

Consequently, Y is a fundamental matrix of (4.1). 

i) Define 𝐵(𝑡) = 𝑋−1(𝑡)𝑌(𝑡), B is nonsingular and a product of two nonsingular matrices. 

Moreover, 𝑌(𝑡) = 𝑋(𝑡)𝑋−1(𝑡)𝑌(𝑡). The proof that 𝐵 is a constant matrix is still 

needed. 

Let 𝐵0 = 𝐵(𝑡0), we know by Chapter 2 that 𝑌0(𝑡) = 𝑋(𝑡)𝐵0 is a fundamental 

matrix, but by definition, 𝑌0(𝑡0) = 𝑌(𝑡0). Since both are solutions to (4.1), we must have  

𝑌0(𝑡) = 𝑌(𝑡) for all time by the uniqueness of solution.  

So, 𝐵0 = 𝐵(𝑡), and thus B is independent of time. 

ii) By using Abel's formula, we get: 

𝑊(𝑡) = 𝑊(𝑡0)𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠
𝑡

𝑡0

) 

𝑊(𝑡 + 𝑇) = 𝑊(𝑡0)𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠
𝑡

𝑡0

+∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠
𝑡+𝑇

𝑡

) 

𝑊(𝑡 + 𝑇) = 𝑊(𝑡)𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠
𝑡+𝑇

𝑡

) 

𝑊(𝑡 + 𝑇) = 𝑊(𝑡)𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠
𝑇

0

) 

We know that: 

𝑋(𝑡 + 𝑇) = 𝑋(𝑡)𝐵 

𝑑𝑒𝑡(𝑋(𝑡 + 𝑇)) = 𝑑𝑒𝑡(𝑋(𝑡))𝑑𝑒𝑡(𝐵) 

𝑊(𝑡 + 𝑇) = 𝑊(𝑡)𝑑𝑒𝑡(𝐵)    ∀ 𝑡 ∈ ℝ 

taking 𝑡 = 0, we get 

det(𝐵) = 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠
𝑇

0

) 

Remark 4.4. Since the matrix B is independent of time, 𝐵 can be calculated by 

setting 𝑡 = 0, so that 𝐵 = 𝑋−1(0)𝑋(𝑇). By taking the initial condition 𝑋(0) = 𝐼, then 

𝐵 = 𝑋(𝑇). 

Definition 4.5. Matrix 𝐵 = 𝑋(𝑇) from remark 4.4 above is known as a monodromy 

matrix. 
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Theorem 4.6 (Floquet's Theorem). Let 𝑋 be any fundamental matrix of (4.1) and 

𝐴 be a continuous periodic matrix with period 𝑇. Then  

𝑋(𝑡) = 𝑃(𝑡)𝑒𝑥𝑝(𝑡𝑅),      (4.3) 

where 𝑃 is a periodic nonsingular matrix with period 𝑇 and 𝑅 is a constant matrix. 

The representation 𝑋(𝑡) = 𝑃(𝑡) 𝑒𝑥𝑝(𝑡𝑅)  is a Floquet normal form for X. 

Proof. Let X be an arbitrary fundamental matrix of (4.1) and from theorem (4.3), 

matrix B is non-singular. By theorem (1.47), ∃ a matrix R such that: 

𝑒𝑇𝑅 = 𝐵 

Let us define 𝑃(𝑡) = 𝑋(𝑡)𝑒−𝑡𝑅 ∀ 𝑡 ∈ ℝ. 𝑃 is obviously the product of two 

nonsingular matrices. 

Furthermore, 

𝑃(𝑡 + 𝑇) = 𝑋(𝑡 + 𝑇) 𝑒𝑥𝑝(−(𝑡 + 𝑇)𝑅) 

= 𝑋(𝑡) 𝑒𝑥𝑝(𝑇𝑅)𝑒𝑥𝑝(−(𝑡 + 𝑇)𝑅) 

= 𝑋(𝑡)𝑒𝑥𝑝(−𝑡𝑅) = 𝑃(𝑡)            − ∞ < 𝑡 < ∞ 

Thus P has period T and solving 𝑃(𝑡) = 𝑋(𝑡)𝑒𝑡𝑅 for X, (4.3) is obtained. 

 

4.2 Characteristic multipliers and exponents 

Definition 4.7 (Characteristic multipliers). The eigenvalues 𝜆1, … , 𝜆𝑛 of matrix B 

are known as the characteristic or Floquet multipliers of (4.1).  

Definition 4.8 (Characteristic exponents). The number 𝑟1, … , 𝑟𝑛 defined by the 

relations 𝜆𝑗 = 𝑒
𝑟𝑗𝑇 , 𝑗 = 1,… , 𝑛 are known as the characteristic or Floquet exponents of 

(4.1).  

Floquet exponents have real parts called Lyapunov exponents. 

 

Proposition 4.9. The characteristic multipliers and exponents properties are stated 

below: 

i) The trace of matrix B denoted by 𝑡𝑟(𝐵) is given as: 

𝑡𝑟(𝐵) = 𝜆1 + 𝜆2 +⋯+𝜆𝑛 

ii) The characteristic multipliers 𝜆1, … , 𝜆𝑛 of matrix B satisfy 

𝑑𝑒𝑡(𝐵) = 𝜆1𝜆2…𝜆𝑛 = 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠
𝑇

0

) 
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with 𝑋(0) = 𝐼. 

iii) There is no dependence between fundamental matrix and characteristic multipliers. 

iv) Characteristic exponents are not all the same (unique). 

v) The Floquet exponents 𝑟𝑖 that correspond to 𝜆𝑖 satisfy the equation: 

𝑟1 + 𝑟2 +⋯+ 𝑟𝑛 =
1

𝑇
∫ 𝑡𝑟(𝐴(𝑡)𝑑𝑡 (𝑚𝑜𝑑

2𝜋

𝑇
𝑖)

𝑇

0

 

 

Corollary 4.10. The periodic system (4.1), where P is the periodic matrix of the 

Floquet's theorem, is changed to the system with constant coefficients by the variable 

change 𝑥 = 𝑃(𝑡)𝑦. 

Proof. As  𝑋′(𝑡) = 𝐴(𝑡)𝑋(𝑡), (3.1.3) will give: 

(𝑃(𝑡) 𝑒𝑥𝑝(𝑡𝑅))′ = 𝑃′(𝑡) 𝑒𝑥𝑝(𝑡𝑅) + 𝑃(𝑡)𝑅𝑒𝑥𝑝(𝑡𝑅) 

= 𝐴(𝑡)𝑃(𝑡) 𝑒𝑥𝑝(𝑡𝑅) 

It follows that 

𝑃′(𝑡) = 𝐴(𝑡)𝑃(𝑡) − 𝑃(𝑡)𝑅 

Thus, 

𝑥′(𝑡) = 𝑃(𝑡)𝑦′ + 𝑃′(𝑡)𝑦 = 𝑃(𝑡)𝑦′ + (𝐴(𝑡)𝑃(𝑡) − 𝑃(𝑡)𝑅)𝑦 

=  𝐴(𝑡)𝑃(𝑡)𝑦 

and therefore 

𝑃(𝑡)𝑦′ − 𝑃(𝑡)𝑅𝑦 = 0 

or 

𝑦′ = 𝑅𝑦 (whose system is linear system and has constant 

coefficients). 

Theorem 4.11. Let 𝜆 be a characteristic multiplier and 𝑟 a corresponding 

characteristic exponent of the homogeneous linear 𝑇-periodic system (3.1.1), so that 𝜆 =

𝑒𝑟𝑇. Then ∃ is a nontrivial solution x of (4.1) such that: 

i) 𝑥(𝑡 + 𝑇) = 𝜆𝑥(𝑡) 

ii) ∃ a T-periodic function p such that 𝑥(𝑡) = 𝑒𝑟𝑡𝑝(𝑡). 

Proof. 

i) Let 𝑣 ≠ 0 be an eigenvector of matrix B that corresponds to the eigenvalue 𝜆.  

Also, we will let  
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𝑥(𝑡) = 𝑋(𝑡)𝑣 

Then, 

𝑥′(𝑡) = 𝐴𝑥 

and 

𝑥(𝑡 + 𝑇) = 𝑋(𝑡 + 𝑇)𝑣 

= 𝑋(𝑡)𝐵𝑣 = 𝜆𝑋(𝑡)𝑣 

= 𝜆𝑥(𝑡) 

so that 

𝑥(𝑡 + 𝑇) = 𝜆𝑥(𝑡) 

ii) Let 𝑝(𝑡) = 𝑥(𝑡)𝑒−𝑟𝑡. We are required to show that p is T-periodic. 

𝑝(𝑡 + 𝑇) = 𝑥(𝑡 + 𝑇)𝑒−𝑟(𝑡+𝑇) 

= 𝜆𝑥(𝑡)𝑒−(𝑡+𝑇) 

=
𝜆

𝑒𝑟𝑇
𝑥(𝑡)𝑒−𝑟𝑡 

= 𝑥(𝑡)𝑒−𝑟𝑡 = 𝑝(𝑡) 

Thus, we get a solution  𝑥(𝑡) = 𝑒𝑟𝑡𝑝(𝑡) where p real valued function of period T. 

 

Corollary 4.12. The system (4.1) has a periodic solution with period 𝑇 if at least 

one characteristic multiplier is equal to unity. 

Theorem 4.13. System (4.1) has a periodic solution with period 𝑘𝑇 if at least one 

of the characteristic multipliers is the 𝑘-th root of unity. 

Proof. Consider (𝜆1, … , 𝜆𝑛) and 𝑥 = (𝑥1, … , 𝑥𝑛) be characteristic multipliers and 

solution of (4.1) respectively. It is enough to show that 𝑥𝑗(𝑡 + 𝑘𝑇) = 𝜆𝑗
𝑘𝑥𝑗(𝑡).  

We need to go by induction. If 𝑘 = 1, from proposition (4.9i), we have 

𝑥𝑗(𝑡 + 𝑇) = 𝜆𝑗𝑥𝑗(𝑡) 

If this is true for 𝑘 ≥ 1, we can now prove for 𝑘 = 𝑘 + 1. 

We get 𝑥𝑗(𝑡 + (𝑘 + 1)𝑇) = 𝑥𝑗(𝑡 + 𝑇 + 𝑘𝑇) = 𝜆𝑗
𝑘𝑥𝑗(𝑡 + 𝑇) induction at step k.  

Consequently,  𝑥𝑗(𝑡 + (𝑘 + 1)𝑇) = 𝜆𝑗
𝑘+1𝑥𝑗 ∀ 𝑡 ∈ ℝ and as 𝜆𝑗 is the k-th root of 

unity, it implies that 𝜆𝑗
𝑘 = 1 so that 𝑥𝑗(𝑡 + 𝑘𝑇) = 𝑥𝑗(𝑡), 𝑗 = 1,… , 𝑛 ∀ 𝑡 ∈ ℝ. Hence, the 

proof. 
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4.3 Nonhomogeneous linear systems 

Here, we shall take the following linear system under consideration: 

𝑥𝐼 = 𝐴(𝑡)𝑥 + 𝑏(𝑡)          (4.4) 

where 𝑛 × 𝑛 matrix function 𝑡 ⟼ 𝐴(𝑡) and 𝑡 ⟼ 𝑏(𝑡) are both periodic and continuous 

and have  period T. 

Theorem 4.14. A solution x of (4.4) is periodic that has a period T iff 𝑥(𝑇) = 𝑥(0). 

Proof. It is obvious that 𝑥(𝑇) = 𝑥(0) if x is periodic of period T. 

In converse, we will suppose x as a solution of (4.4) where 𝑥(𝑡) = 𝑥(0). 

If we define 𝑦(𝑡) = 𝑥(𝑡 + 𝑇), then both 𝑥 and y are solutions of (4.4) and 𝑦(0) =

𝑥(𝑇) = 𝑥(0). As a result, 𝑥 and 𝑦 have the same initial values, thus 𝑥(𝑡) = 𝑦(𝑡) =

𝑦(𝑡 +  𝑇), −∞ < 𝑡 < ∞, from the uniqueness theorem in Chapter 2. 

This shows that x is periodic. 

A superior property for periodicity of solutions can be found in the next theorem. 

Theorem 4.15. For every periodic vector 𝑏 of period 𝑇, the system (4.4) will have 

a periodic solution with period 𝑇 iff the corresponding homogeneous system does not have 

a nontrivial solution with period 𝑇 

Proof. Consider the following homogeneous system with 𝑋 as the fundamental 

matrix where, 𝑋(0) = 𝐼. 

We will assume that x is a solution of (4.4) that satisfies 𝑥(0) = 𝑥0,  

From Chapter 2, we know that each solution x of (4.4) is of the form: 

𝑥(𝑡) = 𝑋(𝑡)𝑥0 + 𝑋(𝑡)∫ 𝑋−1(𝑠)𝑏(𝑠)𝑑𝑠
𝑡

0

,       𝑡 ∈ ℝ 

By theorem 4.3, the solution x is periodic iff 𝑥(0) = 𝑥0 = 𝑥(𝑇). 

But 

𝑥(𝑇) = 𝑋(𝑇)𝑥0 + 𝑋(𝑡)∫ 𝑋−1(𝑠)𝑏(𝑠)𝑑𝑠
𝑇

0

 

and the periodicity condition 𝑥(𝑇) = 𝑥0 becomes 

[𝐼 − 𝑋(𝑇)]𝑥0 = 𝑋(𝑇)∫ 𝑋−1(𝑠)𝑏(𝑠)𝑑𝑠
𝑇

0
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This system is composed of linear nonhomogeneous algebraic equations for 

components of the vector 𝑥0, solvable for each periodic vector 𝑏. This becomes possible 

iff the determinant of  

(𝐼 − 𝑋(𝑇)) is not equal to zero i.e. [𝑑𝑒𝑡(𝐼 − 𝑋(𝑇)) ≠ 0], which is equivalent to our 

earlier assertion that 𝑋(𝑇)𝑥0 = 𝑥0 has only 𝑥0 as its trivial solution. 

Moreover, the solution of this homogeneous system can be expressed as: 

𝑢(𝑡) = 𝑋(𝑡)𝑥0 

Therefore the relation 

𝑢(𝑇) = 𝑋(𝑇)𝑥0 = 𝑢(0) = 𝑥0 

can only be satisfied by the trivial solution 𝑢(𝑡) = 0.  

It follows that from corollary 4.11, there is only a trivial solution which is a periodic 

solution of period 𝑇 for the homogeneous system. Hence the proof. 

 

4.4 Periodic solution stability  

Here, we will examine the periodic solutions’ stability based on the Floquet theory. 

We will first look at the linear system in (4.1) from the Floquet's theorem and theorem 

4.10. The behavior of this system is then determined by the distribution of Floquet 

multipliers. 

Lemma 4.16. Let 𝑟 and 𝜆 be Floquet exponent and characteristic multiplier 

respectively and correspond to (4.1). Then; 

i) 𝑅𝑒(𝑟) = 0 if |𝜆| = 1 

ii) 𝑅𝑒(𝑟) < 0 if |𝜆| > 1, and so lim
𝑡→∞

𝑥(𝑡) = ∞ 

iii) 𝑅𝑒(𝑟) < 0 if |𝜆| < 1, and so lim
𝑡→∞

𝑥(𝑡) = 0 

Theorem 4.17 (Criterion of Stability). The periodic linear system (4.1) is 

considered: 

a) stable iff |𝜆| ≤ 1 (𝑅𝑒(𝑟𝑗) ≤ 0 respectively) ∀ characteristic multipliers 𝜆𝑗 

(characteristic exponents 𝑟𝑗) of (4.1), and for |𝜆𝑗| = 1 (respectively 𝑟𝑗 = 0) the associated 

Jordan block of 𝑒𝑇𝑅 (respectively. R), its eigenvalue is semisimple and of 1 × 1 

dimension. 
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b) asymptotically stable iff the real component of each characteristic exponent is strictly 

less than zero (0) or the moduli of each characteristic multiplier is strictly less than one 

(1). 

 

4.5 Autonomous systems 

We shall look at a system of the form: 

𝑥′ = 𝑓(𝑥),   𝑥 ∈ ℝ𝑛      (4.5) 

where f is of class 𝐶∞ on ℝ𝑛. 

Theorem 4.18. If 𝑢 is a 𝑇-periodic solution, then one characteristic multiplier of 

this problem related to the linearization of the solution around 𝑢 will be unity. 

Proof. Assume that u is a solution of period T. The solution can be linearized about 

u if we write 𝑥 = 𝑢 + 𝑣, and we get 𝑣′ = 𝐴(𝑡)𝑣, where the Jacobian of 𝑓 is 𝐴 = 𝐴(𝑡) i.e. 

𝐴(𝑡) = (
𝛿𝑓

𝛿𝑥
(𝑢(𝑡))) 

So, u and A are both T-periodic.  

Then a fundamental matrix X with 𝑋(0) = 𝐼 can be defined, so that 𝑋(𝑇) = 𝐵. 

As u is the solution of (4.5),  

𝑢′(𝑡) = 𝑓(𝑢(𝑡)) 

Differentiating with respect to t again gives: 

𝑢′′(𝑡) = 𝑓′(𝑢(𝑡)). (𝑢′(𝑡)) 

that is 

𝑢′(𝑡) = 𝐴(𝑡)𝑢′(𝑡) 

𝑢′ satisfies the linear system 𝑣′ = 𝐴(𝑡)𝑣. 

As assumed before, u is T-periodic, so, 𝑢′(𝑡) = 𝑢′(𝑡 + 𝑇) and the corresponding 

characteristic multiplier is 1. 

The consequence is that the periodic solution of (4.5) has a local stability around 𝑢 

that depends on the linear stability problem 𝑣′ = 𝐴(𝑡)𝑣. 

Generalized result at 𝒏 = 𝟐 

We will take a problem that has the form 𝑥′ = 𝑓(𝑥) and 𝑥 ∈ ℝ2 which has a periodic 

solution 𝑥 ≔ ∅(𝑡) with period T. 
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Theorem 4.19. ∅ is a stable solution if  

∫ ∇. 𝑓|𝑥=∅𝑑𝑠 = ∫ (
𝛿𝑓1
𝛿𝑥1

+
𝛿𝑓2
𝛿𝑥2

)|
∅(𝑠)

𝑑𝑠 < 0
𝑇

0

,
𝑇

0

 

where ∇= (
𝛿

𝛿𝑥1
,
𝛿

𝛿𝑥2
). 

Proof. Let ∅ be a periodic solution of 𝑥′ = 𝑓(𝑥), with period T. So the periodic 

matrix will be: 

𝐴(𝑡) = 𝐷𝑓(∅(𝑡)) 

We know from the above result that we must have 𝜆1 = 1 and from earlier, 

𝜆1𝜆2 = 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠
𝑇

0
)

𝜆2 = 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠
𝑇

0
)
}   (4.6) 

From the criterion of stability, we know that to have bounded perturbation, 𝜆1 ≤ 1 

and 𝜆2 ≤ 1 and hence it is known that 𝜆1 = 1 and we want 𝜆1 and 𝜆2 to be distinct, 𝜆2 <

1. So, 

0 > ∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠 = ∫ 𝑡𝑟 (
𝛿𝑓𝑖

𝛿𝑥𝑗
) 𝑑𝑠

𝑇

0

𝑇

0
, 𝑖, 𝑗 = 1,2 

0 > ∫ (
𝛿𝑓1

𝛿𝑥1
+
𝛿𝑓2

𝛿𝑥2
)|
∅(𝑠)

𝑑𝑠
𝑇

0
    (4.7) 

0 > ∫ ∇. 𝑓|𝑥=∅𝑑𝑠
𝑇

0
 as desired. 

Instability is achieved when: 

∫ ∇. 𝑓|𝑥=∅𝑑𝑠
𝑇

0

> 0 

Example 4.20. Consider the system below: 

{
𝑥′ = 𝑥 − 𝑦 − 𝑥(𝑥2 + 𝑦2)

𝑦′ = 𝑥 + 𝑦 − 𝑦(𝑥2 + 𝑦2)
     (4.8) 

Let 𝑥 = 𝑟(𝑡)𝑐𝑜𝑠(𝜃(𝑡)), 𝑦 = 𝑟(𝑡)𝑠𝑖𝑛(𝜃(𝑡)) and where (𝑟, 𝜃) is a polar coordinate. 

Problem (4.8) then becomes: 

sin(𝜃) (𝑟 − 𝑟𝜃′) = cos (𝜃)(𝑟 − 𝑟3 − 𝑟′)

cos(𝜃) (𝑟 − 𝑟𝜃′) = −sin (𝜃)(𝑟 − 𝑟3 − 𝑟′)
   (4.9) 

Squaring and adding (4.9), we obtain: 

(𝑟 − 𝑟𝜃′)2 = (𝑟 − 𝑟3 − 𝑟′)2     (4.10) 

Again, setting 𝑎 = 𝑟 − 𝑟𝜃′, we have 𝑠𝑎 = 𝑟 − 𝑟3 − 𝑟′ with 𝑠1 = 1 and 𝑠2 = −1. 
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This gives: 

asin(𝜃) = 𝑠𝑎 cos(𝜃)

𝑎 cos(𝜃) = −𝑠𝑎 sin(𝜃)
    (4.11) 

which can be rewritten as 

asin(𝜃) = 𝑠𝑎 cos(𝜃)

−𝑠2𝑎𝑠𝑖𝑛(𝜃) = 𝑠𝑎 cos(𝜃)
     (4.12) 

so that we must have 

asin(𝜃) = −𝑎 sin(𝜃)

𝑎𝑠𝑖𝑛(𝜃) =0
      (4.13) 

As a result, we have 

𝑎𝑠𝑖𝑛(𝜃) = 𝑠𝑎 cos(𝜃) =0 

so that we must have 𝑎 = 0.  

This means that: 

𝑟 − 𝑟𝜃′ = 𝑟 − 𝑟3 − 𝑟′ = 0 

We have that: 

𝑟′ = 𝑟(1 − 𝑟2) 

which gives radius 𝑟 = ±1 as non-trivial solutions 

We will consider 𝑟 = 1 of course without losing generality, 

As 𝑟𝜃′ = 𝑟, we get  𝜃′ = 1, so that 𝜃 = 𝑡 + 𝑐, where c is a constant. This results in 

a solution with period 𝑇 = 2𝜋. 

Furthermore, we have: 

∇. 𝑓|𝑟=1 = [
𝛿𝑓1
𝛿𝑥
+
𝛿𝑓2
𝛿𝑦
] 

= [(1 − 3𝑥2 − 𝑦2) + (1 − 𝑥2 − 3𝑦2)]𝑟=1   (4.14) 

= −2 

so that 

𝜆2 = 𝑒𝑥𝑝 (∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠
𝑇

0

) 

= 𝑒𝑥𝑝 (∫ −2𝑑𝑠
2𝜋

0
)    (4.15) 

= Examplep(−4𝜋) < 1 

The periodic orbit is thus stable at radius 𝑟 = 1. 
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4.6 Non-autonomous systems 

Let us consider the n component linear system below: 

𝑥′ = 𝑓(𝑡, 𝑥)       (4.16) 

with  f being periodic of period T in t. Assume that 𝑓 continuous in (𝑡, 𝑦) and has 

continuous second partial derivatives wrt the 𝑥-components in the domain 𝐷 =

{(𝑡, 𝑥): 0 ≤  𝑡 ≤  𝑇, ‖𝑥‖ <  𝑟}, where 𝑟 > 0 is some constant. 

To test the stability of the periodic solution 𝑥, let's assume that (4.16) has a periodic 

solution 𝑢 with period 𝑇. 

Consider v as the solution of (4.16) which is: 

𝑣(𝑡) = 𝑢(𝑡) + 𝑦(𝑡)      (4.17) 

So,  

𝑣′(𝑡) = 𝑓(𝑡, 𝑢(𝑡) + 𝑦(𝑡)) = 𝑢′(𝑡) + 𝑦′(𝑡) 

But  

𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) 

Hence, 𝑦 satisfies the equation: 

𝑦′(𝑡) = 𝑓(𝑡, 𝑢(𝑡) + 𝑦(𝑡)) − 𝑓(𝑡, 𝑢(𝑡))    (4.18) 

By Taylor expansion, we have: 

𝑓(𝑡, 𝑢(𝑡) + 𝑦(𝑡))

= 𝑓(𝑡, 𝑢(𝑡)) +
𝛿𝑓

𝛿𝑥
(𝑡, 𝑢(𝑡))𝑦(𝑡)

+ ∫ (1 − 𝑠)
𝛿2𝑓

𝛿𝑥2
(𝑡, 𝑢(𝑡) + 𝑠𝑦(𝑡))(𝑦(𝑡), 𝑦(𝑡))𝑑𝑠

1

0

 

That is: 

𝑦′ = 𝐷𝑓(𝑡, 𝑢(𝑡)). 𝑦 + 𝑔(𝑡, 𝑦) 

where 

𝑔(𝑡, 𝑦) = ∫ (1 − 𝑠)
𝛿2𝑓

𝛿𝑥2
(𝑡, 𝑢(𝑡) + 𝑠𝑦)(𝑦, 𝑦)𝑑𝑠

1

0

 

It is clear that 𝑔 is continuous in (𝑡, 𝑦) ∀ t, periodic of period T in t and for ‖𝑦‖ 

small and 

lim
‖𝑦‖→0

‖𝑔(𝑡, 𝑦)‖

‖𝑦‖
= 0 
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Moreover, the matrix 𝐷𝑓(𝑡, 𝑢(𝑡)) is periodic and continuous in t for period T. 

It is obvious that 𝑦 = 0 is a solution of (4.19) and that the periodic solution 𝑢(𝑡) of 

the system (4.16) is stable or asymptotically stable iff 𝑦 ≔ 0 is respectively a stable or 

asymptotically stable solution of (4.11).  

This leads us to study the stability of the system with the form: 

𝑦𝐼 = 𝐴(𝑡)𝑦 + 𝑔(𝑡, 𝑦)     (4.19) 

where 𝐴(𝑡) = 𝐷𝑓(𝑡, 𝑢(𝑡)) is a periodic matrix that has a period T and g a continuous 

vector-valued function in (𝑡, 𝑦), periodic wrt t of period T and small by definition. The 

system associated to (4.19) which is homogeneous has periodic coefficients of period T. 

From Floquet's theorem, ∃ a T-periodic matrix P and a nonsingular constant matrix R, 

such that a change of variable 𝑦 = 𝑃𝑧 changes (4.19) to a suitable system. 

Hence, 

𝑧′ = 𝑅𝑧 + 𝑃−1(𝑡)𝑔(𝑡, 𝑃(𝑡)𝑧)    (4.20) 

which has constant coefficients. 
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CHAPTER V 

Application and conclusion 

5.1 Application 

A very important and common application of the Floquet theory is the stability of 

Hill’s equation. We will now apply this theory in studying the Hill's equation shown 

below: 

𝑥′′ + 𝑎(𝑡)𝑥 = 0     (5.1) 

where 𝑡 ⟼ 𝑎(𝑡) is continuous, real-valued and periodic with period T.  

If we set 𝑥1 =  𝑥 and 𝑥2 = 𝑥1
′ , ODE (3.3.1) can be rewritten as 

{
𝑥1
′ = 𝑥2

𝑥2 = −𝑎(𝑡)𝑥1
 

which is of the form of the first order linear ODE: 

𝑥′ = 𝐴(𝑡)𝑥      (5.2) 

where 𝐴(𝑡) = (
0 1

−𝑎(𝑡) 0
) is periodic with period T and 𝑥 = (

𝑥1
𝑥2
). 

If X is the fundamental matrix associated to (5.2), then ∃ constant B (a non-singular 

matrix) such that: 

𝑋(𝑡 + 𝑇) = 𝑋(𝑡)𝐵, 𝑡 ∈ ℝ (from theorem (4.3)). 

We choose a fundamental system of solution 𝑥1(𝑡), 𝑥2(𝑡) that satisfies the IVP: 

{
𝑥1(0) = 1 𝑥1

′(0) = 0

𝑥2(0) = 0 𝑥2
′ (0) = 1

 

and so 𝑋(0) = 𝐼. This implies that  

𝐵 = (
𝑥1(𝑇) 𝑥2(𝑇)

𝑥1
′ (𝑇) 𝑥2(𝑇)

) 

Let 𝜆1, 𝜆2 be the characteristic multipliers of (5.2) and 𝑟1, 𝑟2 the corresponding 

characteristic exponents.  

We have from property (i) of (4.6) that: 

𝜆1𝜆2 = 𝑒𝑥𝑝∫ 𝑡𝑟(𝐴(𝑠))𝑑𝑠 = 1
𝑇

0

 

and from (ii) of same lemma, we have: 

𝜆1 + 𝜆2 = 𝑡𝑟(𝐵) = 𝑥1
′ (𝑇) + 𝑥2

′ (𝑇) 

Let's set 𝐾 =
𝑡𝑟(𝐵)

2
, so that 
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{
𝜆1𝜆2 = 1
𝜆1+𝜆2 = 2𝐾

 

Therefore, 𝜆1, 𝜆2 are roots of equation 

𝜆 − 2𝐾𝜆 + 1 =  0 

whose solution is given by 𝜆1 = 𝐾 − √𝐾2 − 1 or 𝜆2 = 𝐾 + √𝐾2 − 1. We know that 

𝜆𝑗 = 𝑒𝑥𝑝(𝑟𝑗𝑇) where 𝑗 = 1,2.  

Thus, for stability of (5.2), depending on the value of K, we will consider the 

following cases: 

Case 1. If 𝐾 > 1, then 𝜆1,𝜆2 ∈ ℝ
+: 𝜆1𝜆2 =  1. 

We may assume thus: 0 < 𝜆1 < 1 < 𝜆2; 𝜆1 =
1

𝜆2
 and there is 𝑟 > 0 ∶  𝜆2 = 𝑒

𝑟𝑇 and 

𝜆2 = 𝑒
−𝑟𝑇 . A basic set of solutions of the form 𝑒−𝑟𝑡𝑝1(𝑡), 𝑒

𝑟𝑡𝑝2(𝑡), where the real valued 

functions 𝑝1 and 𝑝2 are T-periodic, are given by (4.20). 

As a result, since at least one of these solutions is unbounded, it is unstable. 

Therefore, the zero solution is unstable. 

Case 2. If |𝐾| < 1, then 𝜆1 = 𝐾 − 𝑖√1 − 𝐾2 or 𝜆2 = 𝐾 + 𝑖√1 − 𝐾2 

We know that |𝜆1| = 1 because 𝜆1𝜆2 = 1. As a result, both characteristic multipliers 

are located on the complex plane's unit circle. Since the imaginary parts of 𝜆1 and 𝜆2 are 

nonzero, one of the characteristic multipliers, say 𝜆2 is located in the upper half plane. As 

a result, there is a real number 𝜃 with 0 < 𝜃𝑇 < 𝜋 and 𝜆2 = 𝑒
𝑖𝜃𝑇. In fact, a solution of 

the type 𝑒𝑖𝜃𝑡(𝑢(𝑡) + 𝑖𝑠(𝑡))  exists, where 𝑢 and 𝑠 are both T-periodic functions. Hence, 

there is a fundamental set of solutions of the form: 

𝑢(𝑡)𝑐𝑜𝑠 𝜃𝑡 − 𝑠(𝑡)𝑠𝑖𝑛 𝜃𝑡, 𝑢(𝑡) 𝑠𝑖𝑛 𝜃𝑡 + 𝑠(𝑡) 𝑐𝑜𝑠 𝜃𝑡 

In this case, (5.2) is stable. 

Case 3. If 𝐾 = 1, hence 𝜆1 = 𝜆2 = 1. Theorem (4.16) only ensures that we have 

one solution 𝑥(𝑡) = 𝑒𝑟𝑡𝑝(𝑡), where 𝑝 is a 𝑇-periodic real-valued function. If 𝐵 = 𝑋(𝑇) =

𝐼, then 𝑋(𝑡) = 𝑃(𝑡), where 𝑃 is a 𝑇-periodic and invertible matrix, has a Floquet normal 

form. As a result, there is a basic set of solutions, and the stable zero solution is one of 

them. There exists a nonsingular matrix 𝐶 such that 𝐶𝑋(𝑇)𝐶−1 = 𝐼 + 𝑁 = 𝑒𝑁 and so 

𝑋(𝑇) = 𝑒𝐶−1𝑁𝐶, where 𝑁 ≠ 0  is nilpotent, if 𝐵 = 𝑋(𝑇)  is not the identity matrix. Thus, 
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𝑋(𝑡) = 𝑃(𝑡)𝑒𝑡𝑅 and 𝑋(𝑇) = 𝐵 = 𝑒𝑇𝑅, where 𝑅 = 𝐶−1 (
𝑁

𝑇
)𝐶, 𝑋 has a Floquet normal 

form. 

Hence, the zero solution is unstable since the matrix function 𝑡 → 𝑒𝑡𝑅 is unbounded. 

Case 4. If 𝐾 = −1, we have a similar situation as case 3, with the exception that the 

fundamental matrix is represented by 𝑄(𝑡)𝑒𝑡𝑅 where Q is a 2T-periodic matrix function. 

 

5.2 Conclusion 

As an effective method of solving linear systems with periodic coefficients and 

obtaining stability properties of periodic solutions of linear and nonlinear systems with 

periodic coefficients, we present in this work the Floquet theory, which relies on the 

computation of monodromy matrices for solving linear and nonlinear systems with 

periodic coefficients. 

In perspective, other tools such as Poincaré map 𝑝𝑛+1 = 𝜑(𝑝𝑛), could be used to 

study the existence of periodic solutions and their qualitative properties. Research can also 

be carried out on Floquet Theory for Partial Differential Equations, a subject that has 

recently attracted interest due to advancement of Elasticity Theory and Parametric 

Resonance Theory. 
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APPENDIX 

Some notations and abbreviations used in this research 

S/N Notation/Abbreviation Meaning 

1. |𝑥| Absolute value of 𝑥 

2. ‖𝑥‖ Norm of 𝑥 

3. ⇒ Implies that 

4. ≡ Equivalent to 

5. wrt With respect to 

6. ∀ For all 

7. ∃ There exists 

8.  There does not exist 

9. iff If and only if 

10. : or | Such that 

11. ≔ Definitionined as 

12. ℝ Real number 

13. ℂ ComplExample number 

14. 𝑑𝑒𝑡 Determinant of 

15. 𝑡𝑟(𝐴) Trace of 𝐴 

16. 𝑖𝑛𝑡(𝐴) Interior of 𝐴 

17. 𝑐𝑙(𝐴) Closure of 𝐴 

18. ≠ Not equal to 

19. 𝐴~𝐵 A is similar to B 

20. 𝐼 Identity of a matrix 

21. IVP Initial value problem 

 


