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Abstract 

 

Mathematical Modelling for the Improvement of BI-RADS 4 Diagnosis  

via Sensitivity Analysis and Optimal Control 

 

Gökbulut, Nezihal 

Supervisor: Prof. Dr. Evren Hınçal 

PhD, Department of Mathematics 

September, 2023, 140 pages 

   

 

In this thesis, a mathematical model is proposed with the aim of providing 

efficient techniques in the diagnosis of breast cancer and narrowing the range of cancer 

risk in BI-RADS 4 subcategories. Concordantly, two of popular mathematical 

techniques, sensitivity analysis and optimal control theory are employed to the 

constructed model. 

Chapter I specifies the main points and ideas of the presented thesis. General 

ideas, theorems and definitions supporting the thesis are presented in Chapter II. The 

study is separated into two sections, broadly. 

In Chapter III, the idea of applying sensitivity analysis to the parameters of the 

basic reproduction numbers is analysed for determining the impact of parameters on 

BI-RADS 4 subcategories. According to the model, three different globally 

asymptotically stable equilibrium points are obtained under some circumstances. 

These points include diagnose-free equilibrium point, BI-RADS 4B&BI-RADS 4C 

free equilibrium point and endemic equilibrium point. So, from this model it is 

concluded that it is possible to have a population with no BI-RADS 4 diagnosis, 

population with no BI-RADS 4B and BI-RADS 4C diagnosis, and manageable 

population with BI-RADS 4 diagnosis with no epidemic situation. The results of 

sensitivity analysis revealed that high lactation rate and early menopause causes a 

decline in BI-RADS 4 diagnosis and breast cancer as well. On the other hand, increase 

in other parameters including age, palpable mass, bloody nipple discharge, smoking, 

family history and late menopause leads an increase either in BI-RADS 4 

subcategories or breast cancer risk in other BI-RADS categories. 

Ascertaining the impact of high lactation rate or a longer time breastfeeding 

had been a guide so that an optimal control theory is applied to the constructed model 
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for determining an effective control strategy. The revised version of mathematical 

model that contains an optimal control is presented in Chapter IV. The results and 

numerical simulations of this model emphasized the impact of lactation rate on all BI-

RADS 4 subcategories. 

As a summary, it can be stated that the results of this thesis include significant 

declarations which should be applied by health professionals and individuals 

themselves for the control of the diagnosis of breast cancer. 

 

Key Words: mathematical model, sensitivity analysis, optimal control theory, BI-

RADS 4 subcategories, breast cancer 
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Özet 

 

Mathematical Modelling for the Improvement of BI-RADS 4 Diagnosis  

via Sensitivity Analysis and Optimal Control 

 

Gökbulut, Nezihal 

Danışman: Prof. Dr. Evren Hınçal 

PhD, Matematik Ana Bilim Dalı 

Eylül 2023, 140 sayfa 

 

 Bu tezde, meme kanseri tanısında etkili tekniklerin sağlanması ve BI-RADS 4 

alt kategorilerindeki kanser risk aralığının daraltılması amacıyla bir matematiksel 

model oluşturulmuştur. Buna uygun olarak oluşturulan modelde popüler matematiksel 

tekniklerden ikisi olan duyarlılık analizi ve optimal kontrol teorisi kullanılmıştır. 

 Bölüm I sunulan tezin ana noktalarını ve fikirlerini içermektedir. Tezi 

destekleyen genel fikirler, teoremler ve tanımlar Bölüm II'de sunulmuştur. Çalışma 

genel olarak iki bölüme ayrılmıştır. 

 Bölüm III'te, parametrelerin BI-RADS 4 alt kategorileri üzerindeki etkisini 

belirlemek için temel çoğaltma sayılarına ait parametrelere duyarlılık analizi 

uygulama fikri çalışılmıştır. Modele göre tezde belirtilen bazı koşullar altında üç farklı 

global asimptotik kararlı denge noktası elde edilmiştir. Bu noktalar arasında teşhis 

olmayan denge noktası, BI-RADS 4B&BI-RADS 4C serbest denge noktası ve 

endemik denge noktası yer almaktadır. Dolayısıyla bu modelden BI-RADS 4 tanısı 

olmayan bir popülasyona, BI-RADS 4B ve BI-RADS 4C tanısı olmayan bir 

popülasyona ve BI-RADS 4 tanısına sahip, salgın olmayan yönetilebilir bir 

popülasyona sahip olmanın mümkün olduğu sonucuna varılmıştır. Duyarlılık analizi 

sonuçları, yüksek laktasyon oranı ve erken menopozun hem BI-RADS 4 tanısında hem 

de meme kanserinde düşüşe neden olduğunu ortaya koymuştur. Öte yandan yaş, ele 

gelen kitle, meme ucundan kanlı akıntı, sigara kullanımı, aile öyküsü ve geç menopoz 

gibi diğer parametrelerdeki artış durumunda ya BI-RADS 4 alt kategorilerinde ya da 

diğer BI-RADS kategorilerinde meme kanseri riskinde artışa neden olabileceği 

belirlenmiştir. 
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 Yüksek laktasyon oranının veya daha uzun süreli emzirmenin etkisinin 

duyarlılık analizi ile belirlenmesi, etkili bir kontrol stratejisinin belirlenmesi adına 

oluşturulan modele optimal kontrol teorisinin uygulanmasında yol gösterici olmuştur. 

Optimal kontrolü içeren matematiksel modelin revize edilmiş versiyonu Bölüm IV'te 

sunulmuştur. Bu modelin sonuçları ve simülasyonları, laktasyon oranının tüm BI-

RADS 4 alt kategorileri üzerindeki etkisini vurgulamıştır. 

 Özet olarak, bu tezin sonuçlarının meme kanseri tanısının kontrolü için 

sağlıkçılar ve bireylerin bizzat uygulaması gereken önemli noktaları içerdiği ifade 

edilebilir. 

 

Anahtar Kelimeler: matematiksel modelleme, duyarlılık analizi, optimal kontrol 

teorisi, BI-RADS 4 alt kategorileri, meme kanseri 
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CHAPTER I 
 

Introduction 
 

 

For centuries, mathematicians that deal with the epidemiology investigates 

ways to make contributions in health sciences. Mathematical models are one of the 

most efficient tools that analyse the structure of the disease and determine 

significant ways for the diagnosis and/or treatment of diseases. Especially for 

serious life-threatening diseases, introducing these kinds of powerful tools is quite 

meaningful. Cancer is one of these life-threatening diseases that affects people’s 

lives worldwide. There exist many types of cancer and breast cancer is one of the 

leading common cancer types in women. Around 1980s, for uniformity and 

standardization of mammography and ultrasound results, a categorization system 

was invented by American College of Radiology (ACR). This system is named as 

BI-RADS system with the initials of the Breast Imaging Reporting and Data 

System. Although this system enables some standardization for radiologists, still 

some strategies and controls are needed for the diagnosis and treatment of breast 

cancer. In this regard, numerous mathematical models can be created and developed 

for providing meaningful and useful solutions for breast cancer. 

 

Purpose of the Study 

The study is brought forward with the aim of producing valuable solution for  

the diagnosis of breast cancer. It is realized that BI-RADS 4 diagnosed patients has 

a wide range of probability of being cancer (2-95%). On that note, BI-RADS 4 

subcategories are analysed for narrowing this percentage for the patients with BI-

RADS 4 diagnosis with mathematical modelling by introducing sensitivity analysis 

and some control strategies. 

 

Significance of the Study 

In the literature, none of the proposed mathematical models in the field of 

breast cancer dealt with the BI-RADS 4 subcategories. In other words, the study is 

the first one that deals with the diagnosis of breast cancer by means of BI-RADS 4 

subcategories via mathematical modelling with optimal and sensitivity strategies. 
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Research Questions / Hypotheses 

The main research question of this thesis is by analysing BI-RADS 4, how 

the wide range of cancer risk (2-95%) can be narrowed and how a mathematical 

model can be developed so that it can be analysed in which level different 

parameters affect the percentage of being breast cancer in BI-RADS 4 

subcategories. Furthermore, to decide and analyse that is it possible to apply any 

control strategy to the proposed mathematical model for the prevention of breast 

cancer for the BI-RADS 4 subcategories patients. As a hypothesis, it is believed 

that the wide range of cancer risk of BI-RADS 4 category can be narrowed by 

applying sensitivity analysis to the parameters and with optimal control theory, 

possible control strategies may prevent breast cancer for the people with diagnosis 

BI-RADS 4. 
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CHAPTER II 
 

Literature Review 
 

 

In this chapter, descriptions, conceptual definitions, theorems, corollaries 

and information which are already exist in the literature and that are related to the 

subject of the presented thesis are presented. 

 

Theoretical Framework and Definitions 

This section consists of the theories, definitions and information about 

mathematical modelling process, its relation with health sciences and breast cancer 

are stated. 

 

Mathematical Modelling 

In the last century, mathematical modelling became very popular in the field 

of applied sciences. Fundamentally, the main idea of mathematical modelling is 

converting real-life problems into mathematical problems/equations; solving and 

analysing them with necessary theorems and methods and then applying the results 

to real life. Due to the complexity of some real-life problems, few approximations 

or assumptions can be made for finding a solution of a model. In this case, these 

approximations and assumptions can be stated as limitations of the model (Kapur, 

1998). Mathematical modelling is actually a subject of applied sciences. In other 

words, it is the application of mathematical theorems into real-life problems 

(Fowler, 1997; Berry & Houston, 1995). 

 Mathematical models may be continuous or discrete according to the nature 

of the problem. When the model variables and parameters alter continuously in time 

and space, model should be continuous and if these changes happen 

discontinuously, the model should be discrete. Discrete models can be introduced 

for nonlinear recurrence equations in the field of coding, path finding problems, 

graphs of production, Markov processes, stochastic problems, etc. (Doorman & 

Verhage; Fowler, 1997). Continuous mathematical models include differential 

equations that can be ordinary, fractional, partial, delay, etc. The type of differential 

equations depends on the structure of the problem (Fowler, 1997). These models 

can be applied in almost every applied science including health sciences, economy, 
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social sciences, etc. (Artzrouni, 2005). Continuous models are more cognizable and 

analysable for human while discrete models are better apprehended by computers 

(Hall, 1986). 

In health sciences, mathematical modelling is a widely used and effective 

tool. Introducing mathematical models in health sciences focuses on finding cause 

of diseases, providing early diagnosis and better treatment conditions, predicting 

the future of diseases and most importantly preventing disease-caused deaths. The 

first mathematical model in epidemiology was introduced in 17s by Daniel 

Bernoulli. The model was about vaccination of smallpox which was an endemic at 

that time. This work was followed by another significant study, spatial and temporal 

pattern of cholera epidemic in London, by John Snow in 1855. The purpose of both 

studies was taking the spread of the disease under control and preventing the 

diseases becoming a pandemic. As a matter of fact, the main target of mathematical 

models in health sciences is precluding disease-caused deaths and taking the spread 

of diseases under control. Under favour of the results of these models, it is aimed to 

affect doctors, radiologists, decision makers, policymakers, etc. for public health 

(Brauer, 2017; Dündar, Gökkurt, & Soylu, 2012; Porgo, et al., 2019; Kermack & 

McKendrick, 1927). 

For superior understanding of nature/structure/causal factor of diseases, 

mathematicians mostly prefer studying with compartmental mathematical models. 

Compartmental mathematical model approach in epidemiology was firstly emerged 

by Sir R. A. Ross, W. H. Hamer, A. G. McKendrick, and W. O. Kermack in 1900-

1935 (Kermack & McKendrick, 1927). Kermack and McKendrick published three 

papers that explains the transmission of communicable diseases via compartmental 

model in 1927, 1932 and 1933, which were the basic epidemic models proposed 

until then (Brauer, 2017). 

In compartmental models, the population that is examined is divided into 

essential number of compartments. Then, to express the change in and transmission 

between these compartments, differential equations are created. There are many 

compartmental mathematical models including SI, SIR, SIS, SEIR, SVIR, etc. The 

type of models depends on the structure and transmission of diseases. In these 

models, S denotes the individuals that are susceptible to the disease, I denotes the 

individuals that are infected, R denotes either removed of recovered individuals in 

the population, E denotes the exposed individuals in the case of incubation period 
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of virus/bacteria/parasite and V denotes the individuals that are vaccinated if a 

vaccine exists for the disease (Brauer, 2017; Batista, et al., 2021; Sun, 2016; 

Hethcote, 1989). 

SIR models are created in the case of immunization. That is, when an infected 

individual (in the compartment I) recovers and enters to the compartment R with 

developing immunity, then SIR models can be introduced for that disease. For viral 

infections these models are preferred to be studied such as Cooper et al. (2020), 

Zakary et al. (2019) and Osthus et al. (2017). When vaccination strategies are one 

of the leading aims of constructing mathematical models, SVIR type can be created 

as in Attaullah et al. (2022) and Zhao and Ma (2021). SVIR models are popular in 

viral infections as well. SIS models are proposed if there exist no immunity for the 

disease and individuals become susceptible when they get rid of the infection. Ross’ 

malaria model can be given as an example of basic SIS model. Existence of latent 

period of microorganism that causes the disease is a good sign of constructing SEIR 

model since the population contains infected but not yet infectious individuals. The 

details and examples of these models can be found in Shah and Gupta (2013) and 

Feng (2007). As can be seen from these explanations and papers, mathematical 

models can be introduced for almost every area of health sciences including 

medicine, pharmacy, laboratory, etc. 

A need for a mathematical model in health sciences appears when a problem 

arises. The process of mathematical modelling in health sciences is time-drain and 

may be difficult in some cases. In this area, first step of mathematicians should be 

investigating the disease via electronic sources and the leading experts of the 

disease. This step is exceedingly important for understanding the nature and 

transmission of the disease in the population. Mathematicians generally give their 

decisions for the number of compartments after gathering this information. After 

this, the model should be formulated according to the disease and population. While 

formulating the problem, by adhering the reality, some assumptions and limitations 

can be added to the model for avoiding complexity in its analysis. At this stage, 

mathematicians may discuss their model with professionals in medicine for 

avoiding a mistake in the nature of the disease. The most important part of models 

is their analysis which makes mathematical models powerful. For these kind of 

models, similar analyses are applied including existence of steady solutions, 

stability of equilibrium points, instability of some points, etc. Applying necessary 
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theorems to constructed models, one can prove the existence of these models in 

real-life which shows the impact of mathematics. These analyses guarantees that 

the results of these models can be applied in public and optimal control strategies 

can be introduced for better health conditions in society. Finally, in mathematical 

modelling, numerical simulations should be presented for visual convenience for 

the future trend of diseases. For these simulations, MatLab, Maple, etc. programs 

can be utilized (Fowler, 1997; Quarteroni & Formaggia, 2004). 

For mathematicians, analysing the existence of diseases, understanding under 

what conditions diseases can spread or die out and predicting their future can be the 

basis step. However, diversity of mathematics allows researchers to investigate 

more by introducing mathematical tools into proposed models. As an example, for 

deciding which parameter is more effective on the disease can be revealed by 

applying sensitivity analysis to a model with the help of differentiation and basic 

reproduction number of diseases. If there exist an opinion such that some control 

strategy can be useful for the control of any disease, then this can be evaluated by 

introducing optimal control theory. For the improvement of models, new 

parameters and compartments can be imparted to exist models which allows richer 

results and makes model more realistic. Any proposed differential equation can be 

converted to another one including ordinary differential equations (ODEs), 

fractional differential equations (FDEs), partial differential equations (PDEs), etc. 

for comparison of results that may contribute discussions about these issues. For 

the sake of brevity, each constructed model can be improved for better and further 

contributions to the field of health sciences. 

In paper Baleanu et al. (2020), the model proposed in Čelechovská (2004) is 

improved by adding fractional order to the given integer order model. Both models 

were about the human liver and comparison of these models revealed that 

fractional-ordered model is more powerful that integer-ordered model for this 

study. For determining most effective parameters on COVID-19 with respect to 

basic reproduction numbers, both the authors of Samui et al. (2020) and Savaşan et 

al. (2022) applied sensitivity analysis to their constructed models. Vaccination 

strategies are investigated for rotavirus epidemic, tuberculosis and COVID-19 

diseases in Ahmad et al. (2020), Nkamba et al. (2019) and Kaymakamzade et al. 

(2022), respectively. Optimal control theory is adapted to proposed models in Saad 

and Hınçal (2018), for bladder cancer, Naik et al. (2020) for Human 
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Immunodeficiency Virus (HIV) and Abioye et al. (2020) for malaria disease. 

System of delay differential equations are constructed for tumour growth and cancer 

in Khajanchi and Nieto (2019) and Sweilam et al. (2021). As it is obvious, 

mathematical models can be employed for infectious diseases caused by 

bacteria/virus/parasite, cancer, tumour growth, etc. Moreover, preparing a 

mathematical model and visualizing results via software programs allows 

researchers to see where the disease is going. In that way, it can be decided whether 

it exceeds the threshold of carrying capacity or stays below it. Carrying capacity 

can be defined biologically as the maximum number that can be reached in a 

population so that the life goes on with providable resources. Otherwise, if this 

threshold exceeds, a decline will be obtained in the size of population until the 

conditions can be satisfied (Hartvigsen, 2017; Hixon, 2008). 

 

Properties of a Mathematical Model 

In this section, basic and important properties while constructing and proving 

a mathematical model are presented with necessary theorems. 

 

Existence of a Mathematical Model. During mathematical modelling 

process, the system of differential equations is written to describe the 

changes in compartment in time. For the models, there is another thing that 

is as important as the creation of models is the existence of solutions of the 

problems. These solutions may be unique or not. If the solution is not 

unique, then biologically relevance of these solutions should be proved 

(Shakil, et al., 2017). In other words, if there exists more than one solution, 

then these solutions should stay in a feasible region where the solutions are 

biologically meaningful. Moreover, since these models are related with real-

life, solutions should be non-negative. For that purpose, meaningful set of 

regions should be constructed and with the help of mathematical theorems, 

mathematicians should show that the set is positively invariant. For such 

proves, techniques that are used to solve initial value problems (IVPs) can 

be applied (Sowole, Sangare, Ibrahim, & Paul, 2019). 
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Uniqueness of Solutions of a Mathematical Model. This section includes 

necessary definitions and theorems about the unique solutions of any 

mathematical model. 

 

Definition 1. (Lipschitz continuity) Let 𝑓: 𝑋 → 𝑌 be any function. A 

function 𝑓 is said to be Lipschitz continuous if there exist any real positive 

constant 𝐿 such that 

𝑑𝑌(𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝐿𝑑𝑋(𝑥1, 𝑥2), 

for every 𝑥1, 𝑥2 in 𝑋. Here, the constant 𝐿 is called a Lipschitz condition 

(Hager, 1979). 

 

Theorem 1. (Picard-Lindelöf Theorem of Uniqueness) Given an IVP 

𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0, 

let 𝑓 be a continuous and bounded function in a region 

𝑃 = {(𝑡, 𝑦): |𝑡 − 𝑡0| ≤ 𝑎, |𝑦 − 𝑦0| ≤ 𝑏 𝑓𝑜𝑟 𝑎, 𝑏 > 0}. 

Moreover, assume that 𝑓 is Lipschitz continuous in the second variable. 

That is, 

|𝑓(𝑡, 𝑦1) − 𝑓(𝑡, 𝑦2)| ≤ 𝐿|𝑦1 − 𝑦2|, 

for each (𝑡, 𝑦𝑖) in 𝑃 with a Lipschitz constant 𝐿.Then, the above IVP has a 

unique solution defined on the interval |𝑡 − 𝑡0| ≤ 𝛿, where 𝛿 = min {𝑎,
𝑏

𝑅
} 

for a positive upper bound of 𝑓, 𝑅. 

Proof. (Coddington & Levinson, 1984) 

 

Basic Reproduction Number, Equilibrium Points and Stability. Any 

dynamical system in mathematical modelling can be formulated as 

�̇� = 𝑓(𝑥), 

where 𝑥 is a vector of the state of system in ℝ𝑛 for 𝑛 ∈ ℕ. �̇� represents the 

first derivative of the variable 𝑥 at time 𝑡 and 𝑓 is a nonlinear function. For 

strengthen the constructed model, after proving that the system has solutions 

that are feasible, equilibrium points of the model should be calculated 

(Aracil & Gordillo; Ahmed, El-Sayed, & El-Saka, 2007). At the equilibrium 

points, the population reaches a stable state which can be preserved under 

some conditions. Hence, at an equilibrium point, there is no change in the 
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state variables, i.e., the change in state variables equals to zero. This is why 

the computation of equilibrium points should be calculated by equating the 

differential equations to zero and finding the values for the state variables at 

these points (Fantaye, et al., 2022; Auslander, 2003). Generally, for the 

models, there exist two basic equilibrium points; disease-free equilibrium 

(DFE) point and endemic equilibrium (EE) point. At disease-free 

equilibrium point, the population is free of the disease, that is, there is no 

infected or exposed individuals. On the other hand, at endemic equilibrium 

point, infected or exposed individuals exist but the spread of the disease is 

under control; public health is not in danger. At this point, no epidemic or 

pandemic is expected to occur (Foppa, 2017; Panfilov, Dierckx, & Volpert, 

2019). For any constructed mathematical models, other equilibrium points 

may exist according to the nature of the disease and population. 

Mathematical modelling in epidemiology and health sciences includes 

another important term known as basic reproduction number. It is also called 

as basic reproduction ratio or basic reproduction rate and denoted by 𝑅0. 

(Dharmaratne, et al., 2020; Delamater, Street, Leslie, Yang, & Jacobsen, 

2019; Brauer, 2017; Heffernan, Smith, & Wahl, 2005). 

The concept “basic reproduction number” was first introduced by R. Böckh 

in the year of 1886 with demographic purposes. He tried to determine what 

the approximate number of female offspring is which are produced by one 

female in the duration of her entire life. However, the first mathematical 

formula for 𝑅0 was formalized by L. J. Dublin and A. Lotka in 1925 as 

follows: 

𝑅0 = ∫ 𝒫(𝑎). 𝛽(𝑎) 𝑑𝑎

∞

0

, 

where 𝒫 denotes the survival probability of female and 𝛽 denotes the 

fertility rate. As it is obvious, until this time, 𝑅0 was linked to demography 

(Perasso, 2018). 

George MacDonald was the first known scientist that introduced 𝑅0 into the 

field of epidemiology in the 1950s. He named this value as “basic case 

reproduction rate” and included the term in his study on malaria and he use 

the notation 𝑧0 instead of 𝑅0. He defined 𝑧0 as: 
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“Basic reproduction rate of malaria is the number of infections distributed 

in a community as the direct result of the presence in it of a single primary 

non-immune case.” 

Even though Ross, Kermack and McKendrick’s studies involved this 

threshold quantity, they did not identify or name it. In 70s the notation of 

basic reproduction number is changed as 𝑅0 with continuing the formula of 

Lotka. It is definition has also adopted to the field of epidemiology. After 

this time, it is defined as the expected number of secondary cases caused by 

primary cases in a fully susceptible population. A mathematical accurate 

definition for 𝑅0 was finally proposed by O. Diekmann, J. A. P. 

Heersterbeek and J. A. J. Metz in 1990 as: 

“Basic reproduction number is the number of new infections produced by a 

typical infective individual in a population at a disease-free equilibrium 

point.” 

This definition and 𝑅0 was linked to the dominant eigenvalue of the next 

generation operator. This version is found to be more useful while working 

with dynamical systems and ODEs. The value of 𝑅0 may be affected by 

many sociological, biological or environmental factors and it depends on the 

value of parameters of the proposed models. Hence, it cannot be a constant 

value since parameters’ values change constantly in time. On the other hand, 

if the spread of the disease can be taken under control, the value of 𝑅0 can 

be fixed in a small range. Subsequent generations that are developing by 

means of size results in population growth. This growth factor per 

population is the growth potential. So, 𝑅0 is actually the mathematical 

characterization of this growth factor (Dharmaratne, et al., 2020; Delamater, 

Street, Leslie, Yang, & Jacobsen, 2019; Brauer, 2017; Heffernan, Smith, & 

Wahl, 2005; Perasso, 2018; Diekmann, Heesterbeek, & Roberts, 2010). 

Due to the definition of 𝑅0, for the prevention of any uncontrolled outbreak, 

the value of 𝑅0 should be less than 1. In this case, 𝑅0 < 1 indicates that 

infected individuals can be infectious for the number of people less than 1 

which is meaningless, i.e., infected individuals are not infectious. Under this 

condition, a decrease will be seen in the disease and it will die out soon. 

When 𝑅0 < 1, the only stable equilibrium point that exists in the population 
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is generally the disease-free equilibrium point. If 𝑅0 > 1, then it can be 

interpreted as infected individuals can infect more than 1 person in a 

population. That is, infection exists in the population and an outbreak may 

occur without any control. In the case of 𝑅0 > 1, an endemic equilibrium 

point may exist and some precautions should be taken to reach the disease-

free equilibrium point. When 𝑅0 = 1, then it is concluded that each infected 

individual lead to a new case. The disease will be in the population but no 

epidemic or outbreak is expected to happen. Therefore, determination of 𝑅0 

is crucial and 𝑅0 is a valuable and useful tool for the prediction and 

upcoming direction of control measures of diseases (Tang, et al., 2021; 

Delamater, Street, Leslie, Yang, & Jacobsen, 2019; Ma & Earn, 2006; 

Ramirez, 2023; Breban, Vardavas, & Blower, 2007). 

In the course of 𝑅0 calculation, there are mainly two kinds of methods: 

through dynamical models and driven by data. If the model consists of finite 

number of compartments, Next Generation Matrix Method (NGM) is 

habitually preferred to be applied by the researchers which corresponds to 

the first method of 𝑅0 computation. In this method, next generation matrix 

(NGM) is constructed by separating the newly infected individuals and other 

individuals in the compartments/states. With these two matrices are 

constructed: one that includes newly infected individuals of the system and 

the other one that contains the rest of the system. After that, the inverse of 

second matrix is calculated and first matrix and the inverse matrix are 

multiplied. The dominant eigenvalue of the matrix multiplication will be the 

formula of 𝑅0. According to the infection or disease there may be more than 

one 𝑅0 formulas since it can be different for each disease compartment 

(Diekmann, Heesterbeek, & Roberts, 2010; Keeling & Rohani, 2007; 

Brouwer, 2021; Guo, et al., 2022). 

The basic reproduction number of dynamical systems plays a significant 

role for the stability of equilibrium points. Stability of equilibrium points is 

much more important their existence. After finding equilibrium points of the 

system, it should be decided whether they are stable or not. Some of these 

points are unstable, locally asymptotically stable and/or globally 

asymptotically stable. When small disturbances applied, if the constructed 
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system get a motion away, then the point is said to be unstable. Unstable 

equilibrium points are not preferred and they reduce the impact of 

constructed models. Local asymptotical stability of an equilibrium point 

guarantees that solutions will approach to the equilibrium point if the initial 

conditions are close to that equilibrium point. However, global asymptotical 

stability of an equilibrium point ensures that all solutions will eventually 

approach to the equilibrium point under any initial condition. Hence, it can 

be concluded that any globally asymptotically stable point is locally 

asymptotically stable. So, small perturbations do not affect the stability of 

locally asymptotically stable equilibrium points and this is why local 

stability will be enough for health sciences if the situation is not an outbreak. 

On the other hand, especially for the disease-free equilibrium (DFE) point 

global stability is significant since large perturbations may lead to an 

epidemic or pandemic. So, if the DFE point of the system can be proved to 

be globally asymptotically stable, then the decision makers may be relieved 

since the disease will not be able to persist in public at this point. Thus, 

stability analysis enables us to know how system will behave when it is far 

away from the equilibrium points. As a conclusion, global stability of DFE 

point ensures the elimination of the disease in public and global stability of 

EE point guarantees that the disease will stay as endemic (Sharov, 1996; 

Gümüş, 2014; Murray, 2003; Chen & Cohen, 2001). 

For analysing the local asymptotical stability of equilibrium points, 

constructing Jacobian matrix is one of the most popular methods. That is, 

by taking the partial derivatives of the dynamical system a square matrix, 

Jacobian matrix, is constructed. Then, the coordinates of the equilibrium 

point are plugged into the matrix. These coordinates are the corresponding 

values for the states of the model. As a last step, eigenvalues of the matrix 

are computed. For the local stability, real parts of the all eigenvalues should 

be negative definite. Otherwise, the point is unstable. If the analysed point 

is DFE point, then eigenvalues are negative definite under the condition 

𝑅0 < 1 and if it is EE point, they are negative if 𝑅0 > 1 which makes sense 

due to the definition of 𝑅0. (Hoang, Ngo, & Truong, 2023; Roussel, 2005). 

For determining whether the eigenvalues are negative or not, Routh-Hurwitz 

criterion can be applied (DeJesus, 1987). 
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Determining global asymptotical stability of equilibrium points can usually 

be analysed via Lypunov technique. With this technique, one can examine 

the behaviour of the model when large perturbations happened. The idea for 

this technique is simply starts with writing a function of state variables 

which is generally denoted by 𝑉. After that, 3 conditions should be checked: 

the written function should be positive everywhere, it should take the value 

0 at the analyzed equilibrium point and its derivative should be negative 

definite. If such a function can be written and these properties can be proven 

for a constructed model, then it is concluded that the equilibrium point is 

globally asymptotically stable. In more general, these can be stated with the 

following theorem (Sastry, 1999; Mondragón, Gómez, & Leiton, 2014; 

Roussel, 2005). 

 

Theorem 2. (Lyapunov Stability Theory) Let 𝐸 be an equilibrium point of 

the system of ODEs and 𝑉:𝐷 → ℝ be a continuously differentiable function 

such that 𝑉(𝐸) = 0 and 𝑉(𝑥) > 0 for each 𝑥 ∈ 𝐷. Then, if the derivative of 

𝑉, denoted by �̇�, is negative definite, the point 𝐸 is globally asymptotically 

stable. Such a function is called Lyapunov function. 

Proof. (Wang & Zhou, 2007) 

 

Sensitivity Analysis 
 

In health sciences, while dealing with the spread of any disease, determining 

effective and responsible factors for the transmission and prevalence of the disease 

is substantially important. In this regard, mathematicians introduced a method 

called sensitivity analysis. Sensitivity analysis can be applied to a mathematical 

model for measuring the effects of precariousness on input parameters of a model 

and the following effect on the output of model (Arriola & Hyman, 2009; Chitnis, 

Hyman, & Cushing, 2008). 

For the analysis, there exist many techniques to be applied according to the 

type problem setting (Homma & Saltelli, 1996). A popular technique used in 

diseases analyse the sensitivity indices of basic reproduction number to the 

parameters of a model. Since 𝑅0 allows researchers to determine the current 

situation and the future of the disease, with the mentioned technique, crucial and 
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effective parameters can be decided. Hence, the parameters with high impact on 𝑅0 

can be decided and intervention strategies can be planned (Chitnis, Hyman, & 

Cushing, 2008). When any parameter changes in a model, the relative change in the 

compartments can be measured with sensitivity analysis. The method for the 

analysis is given below. 

 

Definition 2. Let the variable 𝑅0 be a differentiable function of the parameter 

𝛼. The normalized forward sensitivity index of the variable 𝑅0 which differentiably 

depends on the parameter 𝛼 can be calculated as: 

Ψ𝛼
𝑅0 =

𝜕𝑅0
𝜕𝛼

×
𝛼

𝑅0
. 

 

If the result of the above calculation has a positive value, then it means that 

increase in the parameter will lead to an increase in the value of 𝑅0, which is not 

preferred. In the same manner, if the calculation has a negative value, then increase 

in the parameter will lead to a decrease in 𝑅0 which is preferred and needs to be 

applicable as an intervention strategy (Rodrigues, Monteiro, & Torres, 2014; 

Samsuzzoha, Singh, & Lucy, 2013). 

In the literature, many researchers applied sensitivity analysis to basic 

reproduction number while studying with diseases. In Savaşan et al. (2022) the 

authors analysed the effect of the parameters for the COVID-19 disease with their 

mathematical model in Mediterranean island. The purpose of their work was to 

determine what can be done for the control of the spread of COVID-19 in their 

country. The authors Gokbulut et al. (2022) investigated the effect of parameters on 

BI-RADS 4 subcategories with the aim of reducing cancer risk in these 

subcategories. The work of Hurdoganoglu et al. (2022) is performed for applying 

sensitivity analysis to the constructed mathematical model for the evaluation of 

ESBL resistance dynamics in Escherichia coli isolates. In this study, the authors 

aimed to determine the effective parameters for antibiotic resistance of the bacteria 

Escherichia coli. 
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Optimal Control Theory 
 

The theory of optimal control aims to find out control strategies that will 

either maximize or minimize a given criterion or index of performance while 

enabling the process to carry out necessary physical constraints. Namely, in terms 

of mathematics, it is a method that can derive control functions and state trajectories 

over a time period for dynamical systems for maximizing or minimizing a criterion 

of performance (Kirk, 2004; Garira, Musekwa, & Shiri, 2005). 

 

History of Optimal Control. 326 years ago, in 1697, Johann Bernoulli who 

was a professor of mathematics at the local university of the Netherlands, 

Groningen, had discovered the optimal control. In the June of 1696, Bernoulli 

had challenged all mathematicians for the solution of Acta Eruditorum, also 

known as brachistochrone problem. At the end, in addition to the Johann’s 

solution, five famous mathematicians more proffered their solutions. On the 

16th of June, 1696, Leibniz had solved the problem and submitted it via letter 

to the Johann. The list of submitted solutions is continued in order of Jakob 

(elder brother of Johann), Tschirnhaus, l’Hospital and lastly, Newton. It is 

believed that these events between the years 1696-1697 became significant 

in the history of mathematics and lead to be an origin of similar works 

(Sussmann & Willems, 1997). 

Before 1696, some optimization problems similar to the mentioned one were 

studied at least since the Greeks. These problems include finding answers to 

the questions “What is the shortest path joining two points?” or “What is the 

plane curve of a given length that encloses the possible largest area?”, etc. 

Actually, in 1685, Newton studied, an accurate “calculus of variations” 

problem which was determining the shape of a body with minimal drag. 

However, his work did not get much attention (Sussmann & Willems, 1997). 

The need of an optimal control had emerged when calculus of variations 

became inadequate. The calculus of variations can solve optimization 

problems in the space of all curves while in optimal control problems 

minimization can be done over a set which can be determined by dynamical 

constraints. This is one of the reasons that optimal control theory had been 

developed in early 1960s and today it is mostly and currently used. From 
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here, it can be concluded that it is an extension of the calculus of variations 

(Hull, 2003; Kirk, 2004). 

According to some beliefs, born of optimal control relies on right after the 

World War II, also known as Cold War. As soon as the war started, United 

States (US) and Union of Soviet Socialists Republics (USSR) bore down on 

for the use of mathematicians and their theories in the analyses of defence. 

This is because mathematics had been accepted as an efficient tool during the 

war. Hence, both East and West mathematicians initiated a development 

process of present theories and studies, and these studies including fighter 

aircraft’s minimum time interception problems, are named as optimal control 

later on (Pesch & Plail, 2009; Sussmann & Willems, 1997). This belief is 

strengthened with the work of L. S. Pontryagin and his group work 

“Pontryagin’s Maximum Principle”. However, most of the mathematicians 

stood behind the ideas that this principle was just a minor addition to the 

“classical calculus of variations” (Berkovitz, 2013; Bryson, 1996). 

On the other hand, Pontryagin’s maximum principle can be defined as new 

era of optimal control theory. This is because of providing appropriate 

conditions for mathematicians while constructing optimization problems if 

they include differential equations as constraints. Moreover, it makes the 

present researches richer when the theory is added. Another significant 

property of the theory is that it can be applied to many fields to study. These 

fields include finance, business, economy, biology and health sciences, 

physics, chemistry, etc. (Garira, Musekwa, & Shiri, 2005). 

For the development of economic applications and economic growth, author 

Intriligator (1975) introduced optimal control theory to their constructed 

model. In the study of Saad and Hınçal (2018), BCG treatment strategy is 

applied as a control strategy for the bladder cancer. For the plasma in physics 

and in multistage energy systems, the theory is used in the work of Blum 

(1989) and Sieniutycz (2000), respectively, as well. As a result, it is 

applicable into many fields of science and literature for meaningful 

improvements. 

 

 



 
  32 
 
 
   

Optimal Control Problem. For the construction of an optimal control 

problem involves (Kirk, 2004): 

1. The mathematical description/model of process that needs to be 

controlled. 

2. Expression of the physical constraints. 

3. Indicating performance index or criterion. 

Let an ODE be given with an initial condition (IC) as 

{
�̇�(𝑡) = 𝒈(𝑡, 𝒚(𝑡)),

𝒚(𝑡0) = 𝒚𝟎, 𝑡 > 0.
 

Here 𝒚 and 𝒈 are vector-valued, continuous and piecewise differentiable 

functions such that 𝒚: ℝ+ → ℝ𝑛 and 𝒈: ℝ𝑛 → ℝ𝑛 for 𝑛 ∈ ℕ. Moreover, 𝒚𝟎 ∈

ℝ𝑛 holds. The system (1) is a dynamical system of a mathematical model as 

a state system. For an optimal control problem, a new function, named as 

control function, should be introduced to the constructed system to make 

some generalizations. The vector-valued function 𝒈 will depend on control 

parameters on any set 𝐵 ⊂ ℝ𝑚. As a result, for 𝒖 ∈ 𝐵 and for 𝒈 we have 

𝒈: ℝ𝑛 × 𝐵 → ℝ𝑛  𝑎𝑛𝑑 𝒖: ℝ+ → 𝐵. 

More general, the function 𝒖 can be defined for 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 and 

𝑢1, 𝑢2, … , 𝑢𝑚 ∈ 𝐵 as 

𝒖(𝑡) = {

𝑢1, 𝑡0 ≤ 𝑡 ≤ 𝑡1
𝑢2, 𝑡1 ≤ 𝑡 ≤ 𝑡2

⋮
𝑢𝑚, 𝑡𝑛−1 ≤ 𝑡 ≤ 𝑡𝑛

. 

Hence, with the control 𝒖, an optimal control problem for ODEs or controlled 

system can be written analogously as follows: 

{
�̇�(𝑡) = 𝒈(𝑡, 𝒚(𝑡), 𝒖(𝑡)),

𝒚(𝑡0) = 𝒚𝟎, 𝑡 > 0.
 

The solution of the above system, 𝒚(𝑡), is the trajectory of the system which 

depends on both control an initial condition. Since all 𝒚(𝑡), 𝒖(𝑡) and 

𝒈(𝑡, 𝒚(𝑡), 𝒖(𝑡)) are vector-valued functions, they can be illustrated as below. 

𝒚(𝑡) = [

𝑦1(𝑡)

𝑦2(𝑡)
⋮

𝑦𝑛(𝑡)

] , 𝒖(𝑡) = [

𝑢1(𝑡)

𝑢2(𝑡)
⋮

𝑢𝑛(𝑡)

] 

and 

(1) 

(2) 
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𝒈(𝑡, 𝒚(𝑡), 𝒖(𝑡)) =

[
 
 
 
 
𝑔1(𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑚(𝑡))

𝑔2(𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑚(𝑡))

⋮
𝑔𝑛(𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑚(𝑡))]

 
 
 
 

. 

Let 𝑈 = {𝒖: 𝑢 𝑖𝑠 𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠} be the set of all admissible 

controls of the system with 𝒖(𝑡). It is important to note that due to some 

expected jumps from control, the set does not consist of continuous functions 

and hence, it can be said that functions are piecewise continuous. 

To conclude, on an arbitrary time interval, say 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓, a piecewise 

continuous function 𝒖(𝑡) with a range in the region of control 𝑈 is called as 

an admissible control. Because of some discontinuities, 𝒖 is assumed to be 

continuous except finite number of 𝑡. As it is clear from its definition, every 

admissible control function is bounded. 

Any control problem requires a performance criterion or index, or objective 

function that will be minimized or maximized. An objective function is 

generally denoted by 𝐽 and defined as 

𝐽(𝒚(𝑡), 𝒖(𝑡)) = 𝜔 (𝒚(𝑡𝑓)) + ∫ 𝑓(𝒚(𝑡), 𝒖(𝑡))𝑑𝑡

𝑡𝑓

𝑡0

. 

In the above equality, 𝒚 solves (2) for the control 𝒖. The function 𝜔: ℝ𝑛 →

ℝ denotes the terminal payoff while 𝑓: ℝ𝑛 × 𝐵 → ℝ denotes the running 

payoff. Also, 𝑓 can be named as Lagrangian 𝐿. Both of these functions are 

continuously differentiable. 

The main goal after constructing above things is to identify the control 𝑢∗ 

which will maximize or minimize the objective function/performance 

criterion subject to (2). This 𝑢∗ is called the control of the system. At this 

step, we need to find 𝑢∗ such that 

𝐽(𝑢∗) ≥ 𝐽(𝑢), 

for every control 𝑢 ∈ 𝑈. 

Three main formulations exist in an optimal control problem: Bolza, 

Lagrange and Mayer formulations. The formulation of Bolza of an optimal 

control is defined by 

max
𝑢∈𝑈

[𝐽(𝒚(𝑡), 𝒖(𝑡))], 

where 

(3) 



 
  34 
 
 
   

𝐽(𝒚(𝑡), 𝒖(𝑡)) = 𝜔 (𝑡𝑓 , 𝒚(𝑡𝑓)) + ∫ 𝑓(𝑡, 𝒚(𝑡), 𝒖(𝑡))𝑑𝑡

𝑡𝑓

𝑡0

, 

subject to (2). Here 𝒚(𝑡𝑓) is the value of 𝒚 at final time 𝑡 and is can be free 

or fixed. 

Lastly, the third formulation known as Mayer formulation is obtained from 

Bolza’s as well as follows: 

max
𝑢∈𝑈

[𝐽(𝒚(𝑡), 𝒖(𝑡))], 

where 

𝐽(𝒚(𝑡), 𝒖(𝑡)) = 𝜔 (𝑡𝑓 , 𝒚(𝑡𝑓)), 

subject to (2) (Berkovitz, 2013). 

 

Theorem 3. All Bolza, Lagrange and Mayer formulations are equivalent. 

Proof. (Saad, Dynamics and Optimal Control of Cancer Cells, 2019) 

 

Existence of Optimal Control. As in every mathematical problem, proving 

the existence of solution is much more important than solving and finding a 

solution. So, in any optimal control problem, it should be proved that such an 

optimal control exists. In this regard, the following theorem plays a 

significant role for the existence of an optimal control. That is, it guarantees 

the existence of an optimal control which will minimize or maximize the 

optimal control’s objective functional that is subject to its physical 

constraints (Berkovitz, 2013). 

 

Theorem 4. Suppose that there exist an objective functional such that 

𝐽(𝑢∗) ≥ 𝐽(𝑢), 

for every control 𝑢 ∈ 𝑈 where 𝑈 = {𝒖: 𝑢 𝑖𝑠 𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠}. Let 

the set of controls be Lebesgue integrable on the interval 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 in the 

set of all real numbers. Then, there exists some arbitrary positive constants 

𝑘1, 𝑘2, 𝑐1 and 𝑐2 such that: 

a. In the admissible control set, (𝒚0, 𝒖), i.e., the class of all initial conditions 

with a control 𝑢, is nonempty if each state equation is satisfied. 

b. |𝒇(𝑡, 𝒚, 𝒖)| ≤ 𝑘1(1 + |𝒚| + |𝒖|). 
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c. |𝒇(𝑡, 𝒚𝟏, 𝒖) − 𝒇(𝑡, 𝒚, 𝒖)| ≤ 𝑘2|𝒚
𝟏 − 𝒚|(1 + |𝒖|). 

d. For a closed and convex set 𝑈, 𝑓(𝑡, 𝒚(𝑡), 𝒖(𝑡)) is convex on 𝑈 and  

𝒈(𝑡, 𝒚, 𝒖) = 𝛼(𝑡, 𝒚) + 𝛽(𝑡, 𝒚)𝒖. 

e. 𝑓(𝑡, 𝒚(𝑡), 𝒖(𝑡)) ≥ 𝑐1|𝒖|
𝛽 − 𝑐2 for 𝛽 > 1. 

If the above conditions hold, then there exists (𝒚0
∗ , 𝒖∗) which minimizes 

𝐽(𝒚0, 𝒖). 

Proof. (Saad, Dynamics and Optimal Control of Cancer Cells, 2019) 

 

Hamiltonian Function. The Hamiltonian of an optimal control theory is 

developed as a part of maximum principle of Lev Pontryagin. This function 

allows researchers to solve optimal control problems for dynamical systems. 

It can be defined as the instant increment of the Lagrangian expression of the 

optimization problem over a definite time interval. During the development 

of this function, Pontryagin demonstrated that while solving the optimal 

control problem for finding the control, control must be selected so that it can 

optimize the function of Hamiltonian (Sargent, 2000). The definition of the 

function is given below. 

 

Definition 3. The Hamiltonian function 𝐻: ℝ × ℝ𝑛 × ℝ𝑛 × 𝑈 → ℝ𝑛 is 

constructed as 

𝐻(𝑡, 𝒚(𝑡), 𝝀(𝑡), 𝒖(𝑡)) = 𝑓(𝑡, 𝒚(𝑡), 𝒖(𝑡)) + 𝝀𝒈(𝑡, 𝒚(𝑡), 𝒖(𝑡)) 

with the adjoint function 𝝀. (Bellman, 2012). 

 

Pontryagin’s Maximum Principle. The maximum principle of Pontryagin 

was first formulated in the year of 1956 by the mathematician Lev Pontryagin 

and his students. Initially, it is applied to a rocket system for maximizing its 

terminal speed. For finding results, Pontryagin and his group took some ideas 

form the classical calculus of variations. While introducing this principle, the 

main purpose was to determine necessary conditions for a control to be 

optimal. In other words, the principle aims to evaluate the best possible 

control for the problem while transferring the dynamical system between 

different states when constraints for the state exists (Bongini, Fornasier, 
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Rossi, & Solombrino, 2017; Vinter, 2013; Kopp, 1962; Gamkrelidze R. V., 

2003). 

During the discovery of necessary conditions, the principle was reducing the 

obtained problem to a two-point boundary value problem (BVP). The idea 

here is to obtain set of differential equations with maximization or 

minimization condition. It is concluded that the BVP’s results and 

computations can characterize the optimal control (Gamkrelidze R. V., 

History of the Discovery of the Pontryagin Maximum Principle, 2019). In 

spite of that, dealing with two-point BVPs can make some confusions and 

lead to some mistakes for complex examples. Therefore, numerical methods 

including forward-backward sweep, shooting, trapezoidal, etc. can be 

employed for the computation of numerical parts of the control problem 

(Fleming & Rishel, 1975; Schättler & Ledzewicz, 2012). 

 

Theorem 5. (Pontryagin’s maximum principle) (Pontryagin, 1987) Let 𝐽 be 

an objective functional, 𝒖∗ be an optimal for the (3) and 𝒚∗ be the resultant 

state solution. Then for all 𝒖 in 𝑈 and for all 𝑡 in [𝑡0, 𝑡𝑓], there exists an 

adjoint function 𝝀: [𝑡0, 𝑡𝑓] → ℝ𝑛 so that 

𝐻(𝑡, 𝒚∗(𝑡), 𝝀(𝑡), 𝒖(𝑡)) ≤ 𝐻(𝑡, 𝒚∗(𝑡), 𝝀(𝑡), 𝒖∗(𝑡)), 

�̇�∗(𝑡) =
𝜕𝐻(𝑡, 𝒚∗(𝑡), 𝝀(𝑡), 𝒖∗(𝑡))

𝜕𝝀
, 

�̇�(𝑡) = −
𝜕𝐻(𝑡, 𝒚∗(𝑡), 𝝀(𝑡), 𝒖∗(𝑡))

𝜕𝒚
, 

and 

𝝀(𝑡𝑓) = 𝟎. 

Proof. (Fleming & Rishel, 1975) 

 

In Theorem 5, the inequality (4) is the maximization principle, the equality 

(5) is called as the adjoint equations and the equation (6) is the transversality 

condition. This condition can be used only if 𝑦𝑓 is free. With this theorem, 

optimal control problem is reduced to maximizing Hamiltonian function. 

Hence, the optimality condition which is the critical point of Hamiltonian can 

be found as follows: 

(4) 

(5) 

(6) 
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𝜕𝐻(𝑡, 𝒚∗(𝑡), 𝝀(𝑡), 𝒖∗(𝑡))

𝜕𝒖
= 0. 

The result is very crucial, efficient and easy to apply for determining the 

necessary conditions of an optimal control. In this way, there is no need to 

solve the integral in the objective function (Gamkrelidze R. V., Discovery of 

the Maximum Principle, 1999). 

 

Corollary 1. (Bolza version of Pontryagin’s principle) Assume that 𝒚∗ and 

𝒖∗ are optimal for (2). Then for all 𝒖 in 𝑈 and for all 𝑡 in [𝑡0, 𝑡𝑓], there exists 

an adjoint function 𝝀: [𝑡0, 𝑡𝑓] → ℝ𝑛 so that 

𝐻(𝑡, 𝒚∗(𝑡), 𝝀(𝑡), 𝒖(𝑡)) ≤ 𝐻(𝑡, 𝒚∗(𝑡), 𝝀(𝑡), 𝒖∗(𝑡)), 

�̇�∗(𝑡) =
𝜕𝐻(𝑡, 𝒚∗(𝑡), 𝝀(𝑡), 𝒖∗(𝑡))

𝜕𝝀
, 

�̇�(𝑡) = −
𝜕𝐻(𝑡, 𝒚∗(𝑡), 𝝀(𝑡), 𝒖∗(𝑡))

𝜕𝒚
, 

and  

𝝀(𝑡𝑓) = �̇� (𝑦(𝑡𝑓)). 

Proof. (Fleming & Rishel, 1975) 

 

In the applications of real life, almost every control is bounded which leads 

us to propose necessary conditions for the bounded controls. Hence, we have 

the following corollary. 

 

Corollary 2. For arbitrary constants 𝑝 and 𝑞 such that 𝑝 < 𝑞, let 

max
𝑢∈𝑈

[∫ 𝑓(𝑡, 𝑦(𝑡), 𝑢(𝑡))𝑑𝑡

𝑡𝑓

𝑡0

], 

subject to the system 

�̇�(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑢(𝑡)), 

𝑦(𝑡0) = 𝑦0, 𝑓𝑜𝑟  𝑝 ≤ 𝑢(𝑡) ≤ 𝑞, 

be an optimal control problem. Assume 𝑢∗ and 𝑦∗ are optimal for the above 

system. Then for all 𝑢 in 𝑈 and for all 𝑡 in [𝑡0, 𝑡𝑓], there exists a piecewise 

differentiable function 𝜆 such that 
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𝐻(𝑡, 𝑦∗(𝑡), 𝜆(𝑡), 𝑢(𝑡)) ≤ 𝐻(𝑡, 𝑦∗(𝑡), 𝜆(𝑡), 𝑢∗(𝑡)), 

�̇�∗(𝑡) =
𝜕𝐻(𝑡, 𝑦∗(𝑡), 𝜆(𝑡), 𝑢∗(𝑡))

𝜕𝜆
, 

�̇�(𝑡) = −
𝜕𝐻(𝑡, 𝑦∗(𝑡), 𝜆(𝑡), 𝑢∗(𝑡))

𝜕𝑦
, 

and 

𝜆(𝑡𝑓) = �̇� (𝑦(𝑡𝑓)). 

Furthermore, the optimal condition can be demonstrated as 

𝑢∗(𝑡) = min(max(�̂�, 𝑞) , 𝑝) 

or more precisely 

𝑢∗(𝑡) =

{
 
 

 
 𝑝,

𝜕𝐻

𝜕𝑢
< 0 

𝑝 < �̂� < 𝑞,
𝜕𝐻

𝜕𝑢
= 0 

𝑞,
𝜕𝐻

𝜕𝑢
> 0

. 

Proof. (Fleming & Rishel, 1975) 

 

Trapezoidal Collocation Method 

For the evaluation of results of any model visually, numerical methods are 

preferred to apply. Trapezoidal collocation method enables researchers to solve 

nonlinear differential equations numerically via programs like MatLab, Maple, etc. 

The method chooses a space with finite dimensional of solutions and few points 

from the domain. Then, it selects the solutions that satisfies the given equations for 

the points of the domain. As a result, it determines the values of optimal control for 

the problem. While constructing the program, transversality conditions, adjoint 

equations, objective functional, initial values of state variables and the equations of 

the control are needed (Awasthi, 2019). 

 

Descriptive Statistics 
 

Descriptive statistics is basically collecting, grouping, summarizing and 

analysing the collected data from sample groups. It allows researchers to understand 

and read data easier with the help of constructed tables, graphics and charts. It can 

be known as the basis step of researches since it tries to explain data within the 

groups and titles. Due to the applied field, the results of the statistics highlight 
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important parameters and guides researchers about what can be done in further 

steps. The relation between compartmental mathematical models and descriptive 

statistics can be described as the results of the statistics helps mathematicians to 

decide which parameters can be used during modelling process (Fisher & Marshall, 

2009; Nick, 2007; Marshall & Jonker, 2010). 

 

Cancer 

For the centuries, cancer has been the second leading cause of deaths, 

worldwide. According to the World Health Organization (WHO), only in 2020, 10 

million people passed away because of cancer. In 2020, the same statistics revealed 

that the most common types of the disease include breast, lung, colon and rectum, 

prostate, skin, and stomach, respectively (Cancer, 2022). All over the world, 

scientists try to develop techniques and introduce some interventions for providing 

early diagnosis and better treatment conditions for the patients.  

 

The Natural History of Cancer. In human, the natural history of cancer 

disease is still indefinite since the truth can be followed up with written 

records. There are some beliefs without an exact proof that cancer disease 

exists in animals before the first human in the world in prehistoric times. 

According to the records, in 3000 BC, it is found that the earliest recorded 

cancer was breast cancer which was identified in Edwin Smith’s papyrus with 

date 1500 BC. The record belongs to a papyrus from ancient Egypt. At that 

time, the disease was evaluated as a grave disease and concluded that no 

treatment exists for the disease. For the treatment of cancer, Egyptians 

employed knives, salts and arsenic paste till the 19th century. Later on, 

Hippocrates and Gales, as famous doctors, separated medicine from religion, 

magic and superstition. Their works claimed that cancer depends on natural 

causes and it can be diagnosed and treated with medical ways. The origin of 

the word “cancer” is from the Greek word “καρκιν̀οι” which means “crab” 

in English. The name was given by Hippocrates since the growth of 

cancerous reminded him a moving crab (Donahue-Taylor, n.d.; Galmarini, 

2020; Hajdu, 2011; Foulds, 1958; Sudhakar, 2009). 
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What is Cancer and its Causes? When an abnormal growth starts to occur 

in any part of the body including tissue, cells, organs and blood, cancer begins 

to develop. Even though there exist different types of cancer with unique 

features, in the lack of treatment, all in cancer types, growth and division of 

cancer cells are observed. Passing other parts of the body can be seen in some 

types of cancer through metastasis or the circulation of blood. Cancer cells 

cannot form independently; they develop in the body since the damage of 

DNA gives harm to normal cells. Hence, normal cells become cancer cells 

due to the damage of DNA. This damaged DNA may happen because of 

environmental conditions or it can be inherited from parents. Under some 

circumstances, the body structure is eligible to repair damaged DNA. 

However, this is not the case for cancer cells (Sung, Ferlay, Siegel, 

Laversanne, & Soerjomataram, 2021; Michor & Beal, 2015). 

In any part of the body, cancer emerges as a solid tumour but there are some 

types of cancer like leukaemia, also known as blood cancer, that does not 

form tumours since the cells of leukaemia include blood and it circulates 

along other tissues. On the other hand, not all solid structures diagnosed as 

cancerous tumour. The structures that do not grow, proliferate or are not life-

threatening are named as benign structures while the dangerous, spreadable 

and have the capacity of growth cancerous tumours are known as malignant 

tumours (Tabassum, Rosli, & Mazalan, 2019; Weinberg, 1996). 

As it is mentioned above, cancer may occur as a result of a damage in DNA. 

It is discussed that this damage can be hereditary of from the environment. 

Having a family history is strongly associated with a high risk of cancer 

(Murff, Spigel, & Syngal, 2004; Love, Evans, & Josten, 1985). The authors 

Stein and Colditz (2004) established that some of the risk factors of cancer 

can be modifiable. These factors include tobacco using (smoking), excess 

amount of alcohol consumption and obesity. They emphasize the importance 

of change in behaviour for the mentioned parameters for preventing cancer 

risk. Lack of exercise is also a significant factor so, integrating physical 

activity into lives will be an advantage for the prevention of disease. WHO 

revealed that one-third of cancer caused deaths are related with smoking, 

obesity, excess alcohol consumption and lack of exercise (Cancer, 2022; 

Siemiatycki, 1991). 
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Diagnosis and Treatment of Cancer. As mentioned earlier, cancer is a life-

threatening disease for centuries and due to this, early diagnosis (primary 

stage of cancer) is vitally significant. This leads scientists to improve 

researches for detecting cancer disease before the symptoms show up. There 

exist many tests for the diagnosis of cancer. First of all, if there are any 

symptoms, doctors start with investigating whether there is a family history 

of the patient or cancer history of the patient himself/herself. Screening 

(MRI, ultrasound, etc.) is a highly recommended prevention technique 

especially for breast, prostate, long and ovarian cancers. Particularly, the 

patients with a family history of cancer should regularly undergo medical 

screening and make necessary laboratory tests that are based on DNA 

mutations. These laboratory tests include blood tests, urine tests and other 

body fluids’ tests which enables doctors to identify the structure of certain 

substances. Naturally, laboratory tests are not enough to identify whether the 

patient has a cancer or not. For precise diagnose of cancer, further 

implications (especially tumour marker tests and biopsy) are essential 

(Wardle, Kathryn, Vernon, & Waller, 2015; Warton & Samimi, 2015; How 

Cancer Is Diagnosed, 2023). 

Cancer treatment with chemical substances has a long history. However, the 

first successful systemic chemotherapy was first used in 1940s. Of course, 

new agents are discovered and introduced to treatment techniques in 

following years. According to cancer types, there exist too many treatment 

types for cancer. Due to the stage and emergence of cancer more than one 

treatment may be needed. Hormone therapy, chemotherapy, radiotherapy, 

immunotherapy, surgery are common treatment strategies applied to cancer 

patients. Unfortunately, some of these like chemotherapy procedures can be 

a long and painful treatment. This is why drugs are discovered and produced 

for cancer pain (Nygren, 2001; Benson, et al., 2004; Cancer Treatment, n.d.). 

 

Breast Cancer. Breast cancer occurs when cells in a breast starts to grow 

and develop out of control in human body. The type of breast cancer may 

differ according to the place of growth happens. Lobules, ducts and 

connective tissue are the main three parts of a breast. The growth of breast 

cancer cells mostly starts inside of the milk ducts or/and breasts’ milk 
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producing lobules. Breast cancer may be invasive and spread out of the breast 

through lymph and blood vessels. This invasion results in the formation of 

tumours as lumps or thickening. Invasive cancers may lead a metastasis 

which may be fatal if no precautions are taken. WHO statistics demonstrated 

that in 2020, 2.3 million women are newly diagnosed with breast cancer and 

685000 people passed away due to the disease (Breast Cancer, 2023; What 

Is Breast Cancer?, 2023). 

 

Risk Factors, Diagnosis and Treatment of Breast Cancer. Gender is one 

of the risk factors since the disease occurs in men only with 0.5-1%. As in 

almost every disease increasing age is another risk factor. The author 

Singletary (2003) revealed that women aged between 30-80 has a high risk 

of breast cancer. In the same study, it is reported that alcohol consumption of 

low level is not related with breast cancer while family history is highly 

associated with breast cancer. The effect of obesity is significant since insulin 

level can be high due to obesity and this may lead a growth of cancer cells 

(Momenimovahed & Salehiniya, 2022). In the paper of Gaudet et al. (2013), 

it is observed that active tobacco use plays a significant role with the 

initiation of breast cancer. Hence, active smokers have a higher risk of breast 

cancer than non-smokers. Because breast cancer is related with hormones, 

having postmenopausal hormone therapies may increase the risk of breast 

cancer since the substances of therapy include oestrogen hormone. Another 

important factors that may increase the breast cancer include late menopause, 

low lactation rate due to less breastfeeding and early menarche (França-

Botelho, Ferreira, França, França, & Honório-França, 2012; 

Momenimovahed & Salehiniya, 2022; Singletary, 2003; Breast Cancer, 

2023). 

Until 1980s, there was an inadequacy of uniformity and standardization while 

reporting MRI, mammography and ultrasound screening results. Distinct 

evaluation of mammography results of radiologists was lead wide variability 

of practices and different radiation doses. So, the main problem was 

inconsistent recommendations and misinterpretations. In this regard, 

American College of Radiology (ACR) created a categorization system 

known as the Breast Imaging Reporting and Data System (BI-RADS). The 
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purpose of the system is to reduce the diversity of the terminology written in 

MRI, mammography and ultrasound reports (Kim, et al., 2008; Burnside, et 

al., 2009). 

The BI-RADS system consists of 7 different categories starting from BI-

RADS 0 till BI-RADS 7. The category 0 is an incomplete category, that is, 

further and additional evaluations are necessary such as prior mammograms 

and tests. BI-RADS 1 is the category defined as negative. In this category, 

no finding (including benign findings) exists in the breast. If 100% of benign 

findings are present in the breast, then the patient is categorized as BI-RADS 

2. In BI-RADS 2, radiologists and doctors do not suggest a time interval to 

follow up. BI-RADS 3 is an intermediate category in the system. Patients 

diagnosed as BI-RADS 3 have some structures in their breast and these 

findings have a high probability of being benign. However, the risk of 

malignancy exists with 0-2% and so a time interval should be suggested to 

follow up the structures. The lesions found in the patients diagnosed with BI-

RADS 4 have a certain malignancy probability. Hence, a biopsy is needed to 

evaluate these lesions. Due to the variety and wide range of cancer 

probability, BI-RADS 4 category is divided into three subcategories: BI-

RADS 4A, BI-RADS 4B and BI-RADS 4C. BI-RADS 4A has a low 

suspicious of malignancy with 2-10%, BI-RADS 4B has a moderate level of 

malignancy suspicion with 10-50% and the high level of suspicion for 

malignancy exists in the category BI-RADS 4C with 50-95%. As it is 

obvious, the category 4 has a wide range of cancer risk which may disturb 

the patients diagnosed with BI-RADS 4. In the category BI-RADS 5, 

observed lesions has a high chance of malignancy (95-100%). At this 

category, further implementations like biopsy are needed and should be done 

simultaneously. In BI-RADS 6 of the system, malignancy of founded lesions 

is histologically proved via biopsy. The patient’s observed lesions are 100% 

malignant, i.e., the patient has a breast cancer. Category of patients are 

identified by radiologists when they evaluate the screening results 

(Balleyguier, et al., 2007; Obenauer, Hermann, & Grabbe, 2005; Patterson, 

et al., 2014). 

In the breast cancer there are five stages as Stage 0, Stage I, Stage II, Stage 

III and Stage IV. In Stage 0, cancer is defined as non-invasive and in 
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medicine language Stage 0 is known as “in situ” since it is the earliest stage. 

At this stage, abnormal tissue and cell growths occur only in lobules and 

ducts of the breast; the cancer has not spread yet and can be fully treated by 

the removal of that region. In Stage I, the cancer become invasive, that is, 

cancer cells spread in the tissue of breast and the tumour is up to 2 cm. The 

stage is known as early-invasive stage and the best treatment method is 

determined as breast conserving surgery since this surgery does not 

completely remove the breast and it leaves excess healthy tissue of the breast. 

After the surgery, radiation therapy is necessary to prevent local recurrence. 

The Stage II is also named as early-invasive stage. However, at this stage 

cancer cells begin to spread lymph nodes of the breast and the tumour size is 

between 2-5 cm. In some cases, the tumour size may be above 5 cm with no 

spread to lymph nodes. Stage III breast cancer or locally advanced breast 

cancer is an invasive cancer with tumours greater than 5 cm that is extended 

to lymph nodes, underlying chest wall/skin. At this stage, induction 

chemotherapy is recommended firstly. Then, local therapy including surgery, 

radiation therapy, etc. should be applied. The Stage IV is the metastatic stage 

which may be occurred as a result of relapse after the treatment of early stage 

of breast cancer. At this stage, cancer cells spread to other organs and tissues. 

The treatment of cancer at Stage IV differs according to the health conditions 

of the patient, age, how huge is the spread, etc. (Hortobagyi, 1998; Maughan, 

Lutterbie, & Ham, 2010; Moulder & Hortobagyi, 2008; Tong, Wu, Cho, & 

To, 2018). 

 

Related Research 
 

In the literature, there exist innumerous studies that deals with breast cancer 

via mathematical modelling and statistics. Scientific researchers endeavour to 

discover effective diagnosis and treatment strategies for breast cancer for centuries. 

A study proposed in 1996 had developed a mathematical model to determine the 

effects of risk factors of reproduction on the incidence of breast cancer. The log-

incidence model developed for the issue revealed that women’s reproductive life 

should be limited in time periods (Rosner & Colditz, 1996). The author Euhus 

(2001) demonstrated that assessment and counselling for the breast cancer can be 

carried out via mathematical models and epidemiologic obtained data. However, he 
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emphasizes the importance of introducing more than one model for more accurate 

results. Solis-Perez and his friends developed an integer-ordered mathematical 

model for the breast cancer by introducing fractional operator to the system of 

ODEs. Their work was based on cells, that is, the state variables were cells and 

hormones. The aim of this work was to enable further information about the 

complex dynamics of breast cancer (Solís-Pérez, Gómez-Aguilar, & Atangana, 

2019). Both mathematical and statistical models are introduced in the work of Roe-

Dale et al. (2010) to improve treatment strategies for the breast cancer. For 

emphasizing the importance of regular screening, a statistical model and a 

mathematical model are constructed in Shwartz (A Mathematical Model Used to 

Analyze Breast Cancer Screening Strategies) (1978) and Shwartz (An Analysis of 

the Benefits of Serial Screening for Breast Cancer based upon a Mathematical 

Model of the Disease) (1978), respectively.  Optimal control theory is applied to a 

compartmental deterministic model where state variables are cells, immune 

response and oestrogen in Oke et al. (2018). For minimizing the breast cancer and 

tumour growth, ketogenic-diet and anti-cancer drugs are added as optimal controls.  

In the review Clare et al. (2000) two mathematical models are compared which are 

constructed for molecular biology of breast metastasis. For the BI-RADS 

categorization system, only papers including statistics and statistical models are 

developed such as Grimm et al. (2014), Dobruch-Sobczak (2017), Kim et al. (2012). 

 

Framework of the Thesis 

The main purpose of this thesis can be summarized as narrowing the wide 

range of breast cancer risk in BI-RADS 4 subcategories and pointing out the 

importance of early diagnosis by focusing on determining the effective parameters 

on BI-RADS 4 subcategories. Moreover, it is aimed to discern a remarkable control 

strategy in the diagnosis of BI-RADS 4 and hence breast cancer. The summary of 

the thesis including purpose and significant of the study, and research questions and 

hypotheses are stated in Chapter I. 

For a better understanding of breast cancer, BI-RADS subcategories and the 

relationship between mathematical model and health sciences, a literature review is 

done and explained in Chapter II including the mathematical tools (solution 

techniques, definitions, theorems and corollaries) that are used in the thesis. The 

data of BI-RADS 4 diagnosed patients is opted for with the aim of designing a 
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mathematical model. Chapter III consists of the constructed mathematical model 

with its necessary properties and theorems with proofs. Numerical simulations of 

the results of the model are also presented in Chapter III. With the findings of 

Chapter III, an optimal control system is proposed by introducing a control strategy 

(that should be efficacious) to the constructed mathematical model and presented in 

Chapter IV. The properties, theorems with proofs and numerical simulations of the 

results of the mathematical model with optimal control are also included in Chapter 

IV. The findings of all thesis and discussions are provided in Chapter V with the 

comparison of other works in literature. Chapter VI comprises the conclusions and 

recommendations of the thesis. In this chapter, overall conclusions and what can be 

done in future in this field are discussed. 
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CHAPTER III 
 

Methodology 
 

 

In this chapter, the evaluation of BI-RADS 4 diagnosed patients is proposed with the 

help of mathematical modelling. The aim of this chapter is to construct a mathematical model 

for the patients diagnosed with BI-RADS 4A, BI-RADS 4B and BI-RADS 4C, to evaluate 

the relationship between the subcategories and to find the most effective parameters on state 

variables or compartments via sensitivity analysis. On that note, firstly the design and 

limitations of the research are given. Then, the obtained data is explained. Lastly, the 

analysis of the model is illustrated with necessary theorems, proofs and numerical 

simulations. 

 

Research Design and Limitations 

For the research of BI-RADS 4 diagnosed patients, deterministic 

mathematical model is constructed with ODEs. Later on, proof of existence of 

solutions and equilibrium points are shown and calculated with computation 

techniques and theorems. For the examination of the disease, basic reproduction 

numbers of each compartment are calculated via NGM method. In order to 

determine the most effective parameters on the risk of breast cancer and BI-RADS 

4 subcategories, sensitivity analysis is applied to the parameters and basic 

reproduction numbers of the model. For visual evaluations, MatLab program is 

involved to solve the system numerically. 

During the construction of the model, it is assumed that diagnosed 

compartments’ transition occurs step by step. That is, BI-RADS 4A patients should 

be diagnosed as BI-RADS 4B firstly. In other words, they can transfer to BI-RADS 

4C compartment only if they diagnosed with BI-RADS 4B after BI-RADS 4A 

diagnosis. Moreover, as mentioned in Castillo-Garsow and Castillo-Chavez (2020), 

smoking may increase the risk of breast cancer in a long term. Hence, it is assumed 

that increase in the rate of tobacco use may increase the risk of diagnosis of BI-

RADS 4B and BI-RADS 4C. It does not have a huge effect on the risk of BI-RADS 

4A diagnosis. For early menopause, it is considered that an individual should go 

through menopause before the age 40 while late menopause is considered as after 

the age of 55. 
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Data Collection 

 In this chapter, the data is obtained from the Centre for Breast Health, Near 

East University Hospital and it captures the data of 107 patients. 

  

Data Analysis 

 In this section of the thesis, analysis of the obtained data is given. 

 

Descriptive Statistics 

In this section, statistics of the obtained data are expressed with tables. In this 

regard, the data is defined descriptively according to the patients’ age, menstrual 

state, tobacco use, lactation, existence of palpable mass and existence of bloody 

nipple discharge. The results are given in Table 1 – Table 6. This information is 

used while determining the parameters of the proposed model. 

 

Table 1. 

Distribution of Patients According to Their Age in BI-RADS 4 Subcategories 

 Patients younger than 40 Patients older than or equal to 40 

BI-RADS 4A 23 33 

BI-RADS 4B 10 14 

BI-RADS 4C 1 26 

 

Table 2. 

Distribution of Patients According to Their Menstrual State in BI-RADS 4 

Subcategories 

 Regular Irregular Menopause 

BI-RADS 4A 45 3 8 

BI-RADS 4B 19 1 4 

BI-RADS 4C 5 3 19 
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Table 3. 

Distribution of Patients According to Their Tobacco Use in BI-RADS 4 

Subcategories 

 Smokers Non-smokers 

BI-RADS 4A 19 37 

BI-RADS 4B 8 16 

BI-RADS 4C 6 21 

 

Table 4. 

Distribution of Patients According to Their Lactation in BI-RADS 4 Subcategories 

 Active lactation Non-active lactation 

BI-RADS 4A 39 17 

BI-RADS 4B 14 10 

BI-RADS 4C 18 9 

 

Table 5. 

Distribution of Patients According to the Existence of Palpable Mass in BI-RADS 

4 Subcategories 

 Palpable mass exists Palpable mass does not exist 

BI-RADS 4A 16 40 

BI-RADS 4B 15 9 

BI-RADS 4C 25 2 

 

Table 6. 

Distribution of Patients According to the Existence of Bloody Nipple Discharge in 

BI-RADS 4 Subcategories 

 Bloody nipple discharge 

exists 

Bloody nipple discharge 

does not exist 

BI-RADS 4A 1 55 

BI-RADS 4B 1 23 

BI-RADS 4C 4 23 
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Mathematical Model and Its Analysis 
 

While constructing the model, the total population, denoted by 𝑁(𝑡) at time 

𝑡, is divided into 4 compartments, that is, the model consists of 4 state variables. 

These are: susceptible individuals (𝑆(𝑡)), individuals diagnosed with BI-RADS 4A 

(4𝐴(𝑡)), individuals diagnosed with BI-RADS 4B (4𝐵(𝑡)) and individuals 

diagnosed with BI-RADS 4C (4𝐶(𝑡)). For determining the necessary parameters, 

the obtained data is analyzed. Hence, the model is constructed as follows: 

𝑑𝑆

𝑑𝑡
= 𝜋 − (𝑎 + 𝑝 + 𝑏)𝑆 + (𝑙1 + 𝑒1)4𝐴 + (𝑙2 + 𝑒2)4𝐵 + (𝑙3 + 𝑒3)4𝐶

− (ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶)𝑆 − 𝜇𝑆, 

𝑑4𝐴
𝑑𝑡

= 𝑐1𝑎𝑆 + 𝑘1𝑝𝑆 − (𝑚1 + 𝑙1 + 𝑒1)4𝐴 + ℎ14𝐴𝑆 − 𝑠14𝐴 − 𝜇4𝐴, 

𝑑4𝐵
𝑑𝑡

= 𝑐2𝑎𝑆 + 𝑘2𝑝𝑆 +𝑚14𝐴 − (𝑚2 + 𝑙2 + 𝑒2)4𝐵 + ℎ24𝐵𝑆 + 𝑠14𝐴 − 𝑠24𝐵 − 𝜇4𝐵, 

𝑑4𝐶
𝑑𝑡

= (1 − 𝑐1 − 𝑐2)𝑎𝑆 + (1 − 𝑘1 − 𝑘2)𝑝𝑆 + 𝑏𝑆 +𝑚24𝐵 − (𝑙3 + 𝑒3)4𝐶 + ℎ34𝐶𝑆 + 𝑠24𝐵

− 𝜇4𝐶 . 

 

 The definitions of state variables and parameters of the model are given in 

Table 7 and Table 8 below. 

 

Table 7. 

Description of Variables used in the Mathematical Model 

Variables Descriptions 

𝑆  Susceptible Individuals 

4𝐴  Individuals that are diagnosed as BI-RADS 4A 

4𝐵  Individuals that are diagnosed as BI-RADS 4B 

4𝐶   Individuals that are diagnosed as BI-RADS 4C 
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Table 8. 

Description of Parameters used in the Mathematical Model 

Parameters Descriptions 

𝜋  Recruitment Rate 

𝑎  Age 

𝑝  Palpable Mass 

𝑏  Bloody Nipple Discharge 

𝑙𝑖, 𝑖 = 1, 2, 3  Lactation Rate 

𝑒𝑖, 𝑖 = 1, 2, 3  Early Menopause 

𝑚1  Irregular Menstruation 

𝑚2  Late Menopause 

ℎ𝑖 , 𝑖 = 1, 2, 3  Family History 

𝑠1  Smoking Rate of the BI-RADS 4A Individuals 

𝑠2  Smoking Rate of the BI-RADS 4B Individuals 

𝜇  Natural Death Rate 

 

For the proof of existence of solutions of the proposed model, the following 

theorem is stated and demonstrated. 

 

Theorem 6. Let (𝑆, 4𝐴, 4𝐵, 4𝐶) be a solution of the proposed system with the 

following initial conditions: 

𝑆 ≥ 0, 4𝐴 ≥ 0, 4𝐵 ≥ 0, 4𝐶 ≥ 0. 

Then, the set Λ below is biological feasible, that is, positive and invariant. 

Moreover, all of the solutions in ℝ+
4  stay in 𝜋 with respect to the proposed system 

(Gokbulut, Hincal, Besim, & Kaymakamzade, 2022). 

Λ = {(𝑆, 4𝐴, 4𝐵, 4𝐶) ∈ ℝ+
4 : 𝑆, 𝐶𝐶 , 𝐶𝐼 , 𝐻𝐶 , 𝐻𝐼 , 𝑂, 𝐺, 𝑇 ≤ 𝜋}. 
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Proof. Firstly, all terms of the equations in the system should be added. Then, 

we obtain 

𝑑𝑁

𝑑𝑡
= 𝜋 − 𝜇(𝑆 + 4𝐴 + 4𝐵 + 4𝐶). 

As it is obvious from the above inequality, 
𝑑𝑁

𝑑𝑡
≤ 𝜋. Integrating both sides of 

the inequality with respect to 𝑡, we get 

𝑁(𝑡)𝑒𝑡 ≤ 𝜋𝑒𝑡 + 𝑘, 

for some arbitrary constant 𝑘. Applying Rota and Birkhoff stated in Birkhoff 

and Rota (1991) to the differential inequality, it is concluded that as 𝑡 tends to 

infinity (∞), 0 ≤ 𝑁 ≤ 𝜋 holds. As a result, all of the solutions of the proposed 

system enter the region 𝜋. Hence, it is concluded that the proposed model is 

biologically feasible and it will be enough to consider the dynamics on the model 

in the set Λ. 

 

Equilibrium Points and Basic Reproduction Numbers. As it is mentioned 

in Chapter II, existence of equilibrium points and their stability improves the 

strength of mathematical models. For the proposed model in Chapter III, 

there exist 3 equilibrium points: diagnose-free equilibrium point 𝐸0, BI-

RADS 4B&BI-RADS 4C free equilibrium point 𝐸1 and endemic equilibrium 

point 𝐸2. 

The constructed model contains three diagnosis compartments. This results 

in the existence of three different basic reproduction numbers for each 

compartment. For the computation of these numbers, NGM method is applied 

as below. The matrix 𝐹 contains the model’s new diagnosis with BI-RADS 4 

subcategories while the rest of the model is included in the matrix 𝑉. Hence, 

𝐹 = [

ℎ1𝑆 0 0
𝑠1 ℎ2𝑆 0
0 𝑠2 ℎ3𝑆

],    

𝑉 = [

𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝜇 0 0
−𝑚1 𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇 0
0 −𝑚2 𝑙3 + 𝑒3 + 𝜇

]. 

Computation of basic reproduction numbers should be done by obtaining 

dominant eigenvalues of the multiplication matrix 𝐹. 𝑉−1. The inverse matrix 

𝑉−1 is 
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𝑉
−
1
=

[      
1

𝑚
1
+
𝑙 1
+
𝑒 1
+
𝑠 1
+
𝜇

0
0

𝑚
1

(𝑚
1
+
𝑙 1
+
𝑒 1
+
𝑠 1
+
𝜇
)(
𝑚
2
+
𝑙 2
+
𝑒 2
+
𝑠 2
+
𝜇
)

1

𝑚
2
+
𝑙 2
+
𝑒 2
+
𝑠 2
+
𝜇

0

𝑚
1
𝑚
2

(𝑚
1
+
𝑙 1
+
𝑒 1
+
𝑠 1
+
𝜇
)(
𝑚
2
+
𝑙 2
+
𝑒 2
+
𝑠 2
+
𝜇
) (
𝑙 3
+
𝑒 3
+
𝜇
)

𝑚
2

( 𝑚
2
+
𝑙 2
+
𝑒 2
+
𝑠 2
+
𝜇
) (
𝑙 3
+
𝑒 3
+
𝜇
)

1

𝑙 3
+
𝑒 3
+
𝜇
]      . 
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So, the matrix multiplication is obtained as 

𝐹. 𝑉−1 =

[
 
 
 
 
 
 

ℎ1𝑆

𝑜
0 0

𝑠1
𝑜
+
(𝑆ℎ2 + 𝑠1)𝑚1

𝑜𝑞

𝑆ℎ2 + 𝑠1
𝑞

0

𝑠2𝑚1

𝑜𝑞
+
(𝑆ℎ3 + 𝑠2)𝑚1𝑚2

𝑜𝑞𝑟

𝑠2
𝑞
+
(𝑆ℎ3 + 𝑠2)𝑚2

𝑞𝑟

𝑆ℎ3 + 𝑠2
𝑟 ]

 
 
 
 
 
 

, 

where 

𝑜 = 𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝜇, 

𝑞 = 𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇, 

𝑟 = 𝑙3 + 𝑒3 + 𝜇. 

The basic reproduction numbers of the constructed model are the dominant 

eigenvalues of the above matrix. That is, 

𝑅0,𝐴 =
ℎ1𝑆

𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝜇
, 

𝑅0,𝐵 =
ℎ2𝑆

𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇
, 

and 

𝑅0,𝐶 =
ℎ3𝑆

𝑙3 + 𝑒3 + 𝜇
, 

for the subcategories BI-RADS 4A, BI-RADS 4B and BI-RADS 4C, 

respectively. 

At the diagnose-free equilibrium point 𝐸0 the subcategories of BI-RADS 4 

do not exist in the population. That is, the state variables 4𝐴, 4𝐵 and 4𝐶  are 

all equal to 0. Hence, 

𝐸0(𝑆0, 4𝐴,0, 4𝐵,0, 4𝐶,0)

= {(𝑆0, 4𝐴,0, 4𝐵,0, 4𝐶,0) ∈ 𝑅4
+: 4𝐴,0 = 4𝐵,0 = 4𝐶,0 = 0}. 

As a formulation, it can be written as 

𝐸0 = (
𝜋

𝑎 + 𝑝 + 𝑏 + 𝜇
, 0, 0, 0). 

At the BI-RADS 4B&BI-RADS 4C free equilibrium point 

𝐸1(𝑆1, 4𝐴,1, 4𝐵,1, 4𝐶,1), only individuals diagnosed with BI-RADS 4A exist in 

the community. In other words, no one can be diagnosed with BI-RADS 4B 

or BI-RADS 4C. This point is important since the subcategory BI-RADS 4A 
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has the lowest cancer risk when it is compared with other two subcategories. 

It is obtained with the following calculations. 

The solution of 𝑆1 is the solution of the below equation 

𝐴𝑆1
2 + 𝐵𝑆1 + 𝐶 = 0, 

where 

𝐴 = −ℎ1(𝑐1𝑎 + 𝑘1𝑝 − 𝑎 − 𝑝 − 𝑏 − 𝜇), 

𝐵 = −ℎ1𝜋 − (𝑙1 + 𝑒1 + 𝑠1 +𝑚1 + 𝜇)(𝑎 + 𝑝 + 𝑏 + 𝜇)

+ (𝑙1 + 𝑒1)(𝑐1𝑎 + 𝑘1𝑝), 

𝐶 = 𝜋(𝑙1 + 𝑒1 + 𝑠1 +𝑚1 + 𝜇). 

The above equation has a solution only if 𝐶 ≥ 0 and 𝐵 < 0 which is possible 

since 𝐶 consists of addition of nonnegative parameters, so, 𝐶 ≥ 0. For 𝐵 <

0, we should show that 

−ℎ1𝜋 − (𝑙1 + 𝑒1 + 𝑠1 +𝑚1 + 𝜇)(𝑎 + 𝑝 + 𝑏 + 𝜇) + (𝑙1 + 𝑒1)(𝑐1𝑎 + 𝑘1𝑝)

< 0, 

or 

ℎ1𝜋 + (𝑙1 + 𝑒1 + 𝑠1 +𝑚1 + 𝜇)(𝑎 + 𝑝 + 𝑏 + 𝜇) > (𝑙1 + 𝑒1)(𝑐1𝑎 + 𝑘1𝑝). 

At this point, 𝑅0,𝐴 > 1 should hold. That is, 

ℎ1𝜋 > (𝑙1 + 𝑒1 + 𝑠1 +𝑚1 + 𝜇)(𝑎 + 𝑝 + 𝑏 + 𝜇). 

Now, from the inequality (7) 

ℎ1𝜋 + (𝑙1 + 𝑒1 + 𝑠1 +𝑚1 + 𝜇)(𝑎 + 𝑝 + 𝑏 + 𝜇)

> (𝑙1 + 𝑒1 + 𝑠1 +𝑚1 + 𝜇)(𝑎 + 𝑝 + 𝑏 + 𝜇)

+ (𝑙1 + 𝑒1 + 𝑠1 +𝑚1 + 𝜇)(𝑎 + 𝑝 + 𝑏 + 𝜇)

= 2(𝑙1 + 𝑒1 + 𝑠1 +𝑚1 + 𝜇)(𝑎 + 𝑝 + 𝑏 + 𝜇)

> 2(𝑙1 + 𝑒1)(𝑎 + 𝑝 + 𝑏 + 𝜇) > (𝑙1 + 𝑒1)(𝑐1𝑎 + 𝑘1𝑝). 

Hence, 𝐵 < 0 and the coordinate 𝑆1 exists. For the solution of 4𝐴,1, 

𝑐1𝑎𝑆1 + 𝑘1𝑝𝑆1 − (𝑚1 + 𝑙1 + 𝑒1)4𝐴,1 + ℎ14𝐴,1𝑆1 − 𝑠14𝐴,1 − 𝜇4𝐴,1 = 0, 

(𝑚1 + 𝑙1 + 𝑒1)4𝐴,1 − ℎ14𝐴,1𝑆1 + 𝑠14𝐴,1 + 𝜇4𝐴,1 = (𝑐1𝑎 + 𝑘1𝑝)𝑆1, 

(𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 − ℎ1𝑆1 + 𝜇)4𝐴,1 = (𝑐1𝑎 + 𝑘1𝑝)𝑆1, 

4𝐴,1 =
(𝑐1𝑎 + 𝑘1𝑝)𝑆1

𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 − ℎ1𝑆1 + 𝜇
. 

So, the solution 4𝐴,1 exists since 𝑆1 exists. 

Therefore, the equilibrium point 

𝐸1(𝑆1, 4𝐴,1, 4𝐵,1, 4𝐶,1) = 𝐸1(𝑆1, 4𝐴,1, 0, 0) 

(7) 
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exists. 

The endemic equilibrium point is where the diagnosis of BI-RADS 4 

subcategories exist but under control. This point consists of 4 coordinates, 

𝑆2, 4𝐴,2, 4𝐵,2 and 4𝐶,2. For the existence of this point, we need to show that 

the below equation has a solution 𝑆2. 

𝐴′𝑆2
4 + 𝐵′𝑆2

3 + 𝐶′𝑆2
2 + 𝐷′𝑆2 + 𝐸

′ = 0, 

where 

𝐴′ = (𝑅 − 𝑉)ℎ1ℎ2ℎ3, 

𝐵′ = (𝐵1𝑉 − ℎ1𝜋 + 𝐶2𝑅)ℎ2ℎ3 + [𝐴1(𝑅 − 𝑉) − 𝑄(𝐸 + 𝐶3)]ℎ1ℎ3

+ (𝑅 − 𝑉)𝐶1ℎ1ℎ2, 

𝐶′ = 𝐴1[(𝐶2𝑅 + 𝐵1𝑉 − ℎ1𝜋)ℎ3 − (𝑉 + 𝑅)𝐶1ℎ1]

+ 𝐵1[(𝐶1𝑉 + ℎ3𝜋)ℎ2 + (𝐸 + 𝐶3)ℎ3𝑄]

+ 𝐶1[𝐶2𝑅ℎ2 − (ℎ2𝜋 + 𝑄𝐶3)ℎ1] + (𝐸 + 𝐶3)𝐷𝑅ℎ3

− (𝑙3 + 𝑒3)𝐸𝑄ℎ1, 

𝐷′ = 𝐴1𝐵1(ℎ3𝜋 + 𝐶1𝑉) + 𝐶1[𝐴1(𝐶2𝑅 − ℎ1𝜋) + 𝐵1(𝑄𝐶3 + ℎ2𝜋)]

+ 𝐸(𝑙3 + 𝑒3)(𝐷𝑅 + 𝑄𝐵1) + 𝐷𝑅𝐶1𝐶3, 

𝐸′ = 𝜋𝐴1𝐵1𝐶1, 

and 

𝑅 = 𝑐1𝑎 + 𝑘1𝑝, 

𝑉 = 𝑎 + 𝑝 + 𝑏 + 𝜇, 

𝐴1 = 𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇, 

𝐵1 = 𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝜇, 

𝐶1 = 𝑙3 + 𝑒3 + 𝜇, 

𝐶2 = 𝑙1 + 𝑒1, 

𝐶3 = 𝑙2 + 𝑒2, 

𝐷 = 𝑚1 + 𝑠1, 

𝐸 = 𝑚2 + 𝑠2, 

𝑄 = 𝑐2𝑎 + 𝑘2𝑝. 

For this equation, 𝐸′ > 0 always holds since all parameters are positive. For 

the coefficient 𝐴′, 

𝑅 − 𝑉 = 𝑐1𝑎 + 𝑘1𝑝 − (𝑎 + 𝑝 + 𝑏 + 𝜇) = (𝑐1 − 1)𝑎 + (𝑘1 − 1)𝑝 − 𝑏 − 𝜇

< 0. 
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Hence, 𝐴′ is always negative. The coefficient 𝐵′ is negative if 𝑅0,𝐴 >

1, 𝑅0,𝐵 > 1 and 𝑅0,𝐶 > 1 as proved below. 

𝐵′ = 𝐵1𝑉ℎ1ℎ3 + 𝐶2𝑅ℎ2ℎ3 + 𝐴1𝑅ℎ1ℎ3 + 𝐶1𝑅ℎ1ℎ2 − 𝜋ℎ1ℎ2ℎ3 − 𝐴1𝑉ℎ1ℎ3

− (𝐸 + 𝐶3)𝑄ℎ1ℎ3 − 𝐶1𝑉ℎ1ℎ2

< (𝐶2𝑅 − 𝜋ℎ1)ℎ2ℎ3 + (𝑅 − 𝑉)𝐶1ℎ1ℎ2 < 0. 

Similarly, the coefficient 𝐶′ is always negative if 𝑅0,𝐴 > 1, 𝑅0,𝐵 >,𝑅0,𝐶 > 1 

and ℎ1𝜋 > 3 which is explained below. 

𝐶′ = 𝐴1[(𝐶2𝑅 + 𝐵1𝑉 − ℎ1𝜋)ℎ3 − (𝑉 + 𝑅)𝐶1ℎ1]

+ 𝐵1[(𝐶1𝑉 + ℎ3𝜋)ℎ2 + (𝐸 + 𝐶3)ℎ3𝑄]

+ 𝐶1[𝐶2𝑅ℎ2 − (ℎ2𝜋 + 𝑄𝐶3)ℎ1] + (𝐸 + 𝐶3)𝐷𝑅ℎ3

− (𝑙3 + 𝑒3)𝐸𝑄ℎ1 < ℎ1ℎ2ℎ3𝜋
2(3 − ℎ1𝜋) < 0. 

For the coefficient 𝐷′, it is always positive under the conditions 𝑅0,𝐴 >

1, 𝑅0,𝐵 > 1 and 𝑅0,𝐶 > 1. 

𝐷′ = 𝐴1𝐵1(ℎ3𝜋 + 𝐶1𝑉) + 𝐶1[𝐴1(𝐶2𝑅 − ℎ1𝜋) + 𝐵1(𝑄𝐶3 + ℎ2𝜋)]

+ 𝐸(𝑙3 + 𝑒3)(𝐷𝑅 + 𝑄𝐵1) + 𝐷𝑅𝐶1𝐶3

> 𝐴1𝐵1(ℎ3𝜋 + 𝐶1𝑉) + 𝐵1𝐶1[𝑉 + 𝑄𝐶3 + ℎ2𝜋]

+ 𝐸(𝑙3 + 𝑒3)(𝐷𝑅 + 𝑄𝐵1) + 𝐷𝑅𝐶1𝐶3 > 0. 

The equation given above has a real solution 𝑆2 since 

256𝐴′
3
𝐸′
3
− 192𝐴′

2
𝐵𝐷𝐸′

2
− 128(𝐴′𝐶′𝐸′)2 + 144𝐴′

2
𝐶𝐷′

2
𝐸′

− 27𝐴′
2
𝐷′

4
+ 144𝐴′𝐵′

2
𝐶𝐸′

2
− 6𝐴′𝐵′

2
𝐷′

2
𝐸′

− 80𝐴′𝐵′𝐶′
2
𝐷′𝐸′ + 18𝐴′𝐵′𝐶′𝐷′

3
+ 16𝐴′𝐶′

4
𝐸′

− 4𝐴′𝐶′
3
𝐷′

2
− 27𝐵′

4
𝐸′
2
+ 18𝐵′

3
𝐶′𝐷′𝐸′ − 4𝐵′

3
𝐷′

3

− 4𝐵′
2
𝐶′
3
𝐸′ < 0 

always hold. 

The other coordinates depend on 𝑆2 as below: 

4𝐴,2 =
𝑅

𝐵1 − ℎ1𝑆2
𝑆2, 

4𝐵,2 =
(𝐵1 − ℎ1𝑆2)𝑄 + 𝐷𝑅

(𝐴1 + ℎ2𝑆2)(𝐵1 − ℎ1𝑆2)
𝑆2, 

and 
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4𝐶,2 =
(1 − 𝑐1 − 𝑐2)𝑎 + (1 − 𝑘1 − 𝑘2)𝑝

𝐶1 + ℎ3𝑆2
𝑆2

+
[(𝐵1 − ℎ1𝑆2)𝑄 + 𝐷𝑅]𝐸

(𝐴1 + ℎ2𝑆2)(𝐵1 − ℎ1𝑆2)(𝐶1 + ℎ3𝑆2)
𝑆2. 

From the above calculations, it is concluded that the endemic equilibrium 

point 𝐸2 exists only if 𝑅0,𝐴 > 1, 𝑅0,𝐵 > 1 and 𝑅0,𝐶 > 1. 

 

Theorem 7. The diagnose-free equilibrium point, 𝐸0, of the system is 

globally asymptotically stable under the conditions 𝑅0,𝐴 < 1, 𝑅0,𝐵 < 1, and 

𝑅0,𝐶 < 1. 

Proof. For proving the stability of 𝐸0, we will construct a Lyapunov function. 

Let 

𝑉(𝑆, 4𝐴, 4𝐵, 4𝐶) = 𝑆 − 𝑆0 ln 𝑆 + 4𝐴 + 4𝐵 + 4𝐶 + 𝐾, 

where 𝐾 = 𝑆0 ln 𝑆0 − 𝑆0 be a Lyapunov function. It is clear that the state 

variables are positive and hence, the function 𝑉 is always positive and it 

equals to 0 at the equilibrium point 𝐸0. Lastly, it should be checked that �̇� <

0. 

�̇� = �̇� − 𝑆0
𝑆

𝑆

̇
+ 4�̇� + 4�̇� + 4�̇�

= 𝜋 − 𝜇(𝑆 + 4𝐴 + 4𝐵 + 4𝐶)

− [𝜋 − (𝑎 + 𝑝 + 𝑏 + 𝜇)𝑆 + (𝑙1 + 𝑒1)4𝐴 + (𝑙2 + 𝑒2)4𝐵

+ (𝑙3 + 𝑒3)4𝐶 − ℎ14𝐴𝑆 − ℎ24𝐵𝑆 − ℎ34𝐶𝑆]
𝑆0
𝑆
. 

Since 𝜋 = 𝑆0(𝑎 + 𝑝 + 𝑏 + 𝜇) as calculated above, we get 

𝜋 − 𝜇(𝑆 + 4𝐴 + 4𝐵 + 4𝐶)

− [𝜋 − (𝑎 + 𝑝 + 𝑏 + 𝜇)𝑆 + (𝑙1 + 𝑒1)4𝐴 + (𝑙2 + 𝑒2)4𝐵

+ (𝑙3 + 𝑒3)4𝐶 − ℎ14𝐴𝑆 − ℎ24𝐵𝑆 − ℎ34𝐶𝑆]
𝑆0
𝑆

= 𝑆0(𝑎 + 𝑝 + 𝑏 + 𝜇) (1 −
𝑆0
𝑆
)

+ [−𝜇 − (𝑙1 + 𝑒1)
𝑆0
𝑆
+ ℎ1𝑆0] 4𝐴

+ [−𝜇 − (𝑙2 + 𝑒2)
𝑆0
𝑆
+ ℎ2𝑆0] 4𝐵

+ [−𝜇 − (𝑙3 + 𝑒3)
𝑆0
𝑆
+ ℎ3𝑆0] 4𝐶 − 𝜇𝑆. 
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For the term 1 −
𝑆0

𝑆
, we have the followings: 

Since 𝑆0 is the point where the population is diagnose-free, whole population 

stays in that compartment. In other words, for any time 𝑡,  

𝑆0 > 𝑆(𝑡). 

This implies that 

𝑆0
𝑆
> 1, 

1 −
𝑆0
𝑆
< 0. 

For the other terms, if 𝑅0,𝐴 < 1 at 𝐸0, we have 

−𝜇 − (𝑙1 + 𝑒1)
𝑆0
𝑆
+ ℎ1𝑆0 < −𝜇 − (𝑙1 + 𝑒1)

𝑆0
𝑆
+ 𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝜇, 

since 𝑅0,𝐴(𝐸0) =
ℎ1𝑆0

𝑚1+𝑙1+𝑒1+𝑠1+𝜇
< 1. 

Then, 

−𝜇 − (𝑙1 + 𝑒1)
𝑆0

𝑆
+𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝜇 = −(𝑙1 + 𝑒1)

𝑆0

𝑆
+𝑚1 + 𝑙1 +

𝑒1 + 𝑠1 < −(𝑙1 + 𝑒1)
𝑆0

𝑆
+ 𝑙1 + 𝑒1, since 𝑚1 > 0 and 𝑠1 > 0. Hence, 

−𝜇 − (𝑙1 + 𝑒1)
𝑆0
𝑆
+ ℎ1𝑆0 < −(𝑙1 + 𝑒1)

𝑆0
𝑆
+ 𝑙1 + 𝑒1 = (𝑙1 + 𝑒1) (1 −

𝑆0
𝑆
)

< 0, 

since 𝑙1 + 𝑒1 > 0 and 1 −
𝑆0

𝑆
< 0 which is proved above. 

Similarly, if 𝑅0,𝐵 < 1 at 𝐸0, we have 

𝑅0,𝐵(𝐸0) =
ℎ2𝑆0

𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇
< 1 

and so, 

−𝜇 − (𝑙2 + 𝑒2)
𝑆0
𝑆
+ ℎ2𝑆0 < −𝜇 − (𝑙2 + 𝑒2)

𝑆0
𝑆
+ 𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇

= −(𝑙2 + 𝑒2)
𝑆0
𝑆
+ 𝑚2 + 𝑙2 + 𝑒2 + 𝑠2

< −(𝑙2 + 𝑒2)
𝑆0
𝑆
+ 𝑙2 + 𝑒2 

since 𝑚2 > 0 and 𝑠2 > 0. Thus, 

−𝜇 − (𝑙2 + 𝑒2)
𝑆0
𝑆
+ ℎ2𝑆0 < −(𝑙2 + 𝑒2)

𝑆0
𝑆
+ 𝑙2 + 𝑒2 = (𝑙2 + 𝑒2) (1 −

𝑆0
𝑆
)

< 0 
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holds since 𝑙2 + 𝑒2 > 0 and 1 −
𝑆0

𝑆
< 0 (from above) always hold. 

Lastly, under the condition 𝑅0,𝐶 < 1 at 𝐸0, that is, ℎ3𝑆0 < 𝑙3 + 𝑒3 + 𝜇, we 

get 

−𝜇 − (𝑙3 + 𝑒3)
𝑆0
𝑆
+ ℎ3𝑆0 < −𝜇 − (𝑙3 + 𝑒3)

𝑆0
𝑆
+ 𝑙3 + 𝑒3 + 𝜇

= −(𝑙3 + 𝑒3)
𝑆0
𝑆
+ 𝑙3 + 𝑒3 = (𝑙3 + 𝑒3) (1 −

𝑆0
𝑆
) < 0, 

since 𝑙3 + 𝑒3 > 0 and 1 −
𝑆0

𝑆
< 0 from the previous calculations. 

Therefore, the point 𝐸0 is globally asymptotically stable if 𝑅0,𝐴 < 1, 𝑅0,𝐵 <

1, and 𝑅0,𝐶 < 1 hold. 

 

Theorem 8. The equilibrium point, 𝐸1, of the system is globally 

asymptotically stable under the conditions 𝑅0,𝐴 > 1, 𝑅0,𝐵 < 1, and 𝑅0,𝐶 < 1. 

Proof. For the stability, consider the following Lyapunov function 

𝑊(𝑆, 4𝐴, 4𝐵 , 4𝐶) = 𝑆 − 𝑆1 ln 𝑆 + 4𝐴 − 4𝐴,1 ln 4𝐴 + 4𝐵 + 4𝐶 +𝑀, 

where 𝑀 = 𝑆1 ln 𝑆1 − 𝑆1 + 4𝐴,1 ln 4𝐴,1 − 4𝐴,1. As can be seen, the function 

𝑊 is always positive and equals to zero at 𝐸1. In order to prove stability, we 

need to show that 𝑊 is negative definite, that is, �̇� < 0. Now, we have 
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�̇� = �̇� − 𝑆1
�̇�

𝑆
+ 4�̇� − 4𝐴,1

4�̇�
4𝐴
+ 4�̇� + 4�̇�

= �̇� (1 −
𝑆1
𝑆
) + 4�̇� (1 −

4𝐴,1
4𝐴
) + 4�̇� + 4�̇�

= [𝜋 − (𝑎 + 𝑝 + 𝑏)𝑆 + (𝑙1 + 𝑒1)4𝐴 + (𝑙2 + 𝑒2)4𝐵

+ (𝑙3 + 𝑒3)4𝐶 − (ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶)𝑆 − 𝜇𝑆] (1 −
𝑆1
𝑆
)

+ [𝑐1𝑎𝑆 + 𝑘1𝑝𝑆 − (𝑚1 + 𝑙1 + 𝑒1)4𝐴 + ℎ14𝐴𝑆 − 𝑠14𝐴

− 𝜇4𝐴] (1 −
4𝐴,1
4𝐴
) + 𝑐2𝑎𝑆 + 𝑘2𝑝𝑆 + 𝑚14𝐴

− (𝑚2 + 𝑙2 + 𝑒2)4𝐵 + ℎ24𝐵𝑆 + 𝑠14𝐴 − 𝑠24𝐵 − 𝜇4𝐵 + (1

− 𝑐1 − 𝑐2)𝑎𝑆 + (1 − 𝑘1 − 𝑘2)𝑝𝑆 + 𝑏𝑆 + 𝑚24𝐵

− (𝑙3 + 𝑒3)4𝐶 + ℎ34𝐶𝑆 + 𝑠24𝐵 − 𝜇4𝐶

= 𝜋 − (𝑎 + 𝑝 + 𝑏)𝑆 + (𝑙1 + 𝑒1)4𝐴 + (𝑙2 + 𝑒2)4𝐵

+ (𝑙3 + 𝑒3)4𝐶 − (ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶)𝑆 − 𝜇𝑆 − [𝜋

− (𝑎 + 𝑝 + 𝑏)𝑆 + (𝑙1 + 𝑒1)4𝐴 + (𝑙2 + 𝑒2)4𝐵 + (𝑙3 + 𝑒3)4𝐶

− (ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶)𝑆 − 𝜇𝑆]
𝑆1
𝑆
+ 𝑐1𝑎𝑆 + 𝑘1𝑝𝑆

− (𝑚1 + 𝑙1 + 𝑒1)4𝐴 + ℎ14𝐴𝑆 − 𝑠14𝐴 − 𝜇4𝐴 − [𝑐1𝑎𝑆 + 𝑘1𝑝𝑆

− (𝑚1 + 𝑙1 + 𝑒1)4𝐴 + ℎ14𝐴𝑆 − 𝑠14𝐴 − 𝜇4𝐴]
4𝐴,1
4𝐴

+ 𝑐2𝑎𝑆

+ 𝑘2𝑝𝑆 + 𝑚14𝐴 − (𝑚2 + 𝑙2 + 𝑒2)4𝐵 + ℎ24𝐵𝑆 + 𝑠14𝐴

− 𝑠24𝐵 − 𝜇4𝐵 + (1 − 𝑐1 − 𝑐2)𝑎𝑆 + (1 − 𝑘1 − 𝑘2)𝑝𝑆 + 𝑏𝑆

+𝑚24𝐵 − (𝑙3 + 𝑒3)4𝐶 + ℎ34𝐶𝑆 + 𝑠24𝐵 − 𝜇4𝐶 

= 𝜋 − 𝜇(𝑆 + 4𝐴 + 4𝐵 + 4𝐶)

− [𝜋 − (𝑎 + 𝑝 + 𝑏)𝑆 + (𝑙1 + 𝑒1)4𝐴 + (𝑙2 + 𝑒2)4𝐵

+ (𝑙3 + 𝑒3)4𝐶 − (ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶)𝑆 − 𝜇𝑆]
𝑆1
𝑆

− [𝑐1𝑎𝑆 + 𝑘1𝑝𝑆 − (𝑚1 + 𝑙1 + 𝑒1)4𝐴 + ℎ14𝐴𝑆 − 𝑠14𝐴

− 𝜇4𝐴]
4𝐴,1
4𝐴

− [𝜇 + (𝑙2 + 𝑒2)
𝑆1
𝑆
− ℎ2𝑆1] 4𝐵

− [𝜇 + (𝑙3 + 𝑒3)
𝑆1
𝑆
− ℎ3𝑆1] 4𝐶  
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= 𝜋 (1 −
𝑆1
𝑆
) − [ℎ1𝑆1 − (𝑙1 + 𝑒1)𝑆1 − 𝜇]4𝐴

− [−ℎ2𝑆1 + (𝑙2 + 𝑒2)𝑆1 + 𝜇]4𝐵

− [−ℎ3𝑆1 + (𝑙3 + 𝑒3)𝑆1 + 𝜇]4𝐶

+ [(𝑐1𝑎 + 𝑘1𝑝 + ℎ1)𝑆 −𝑚1 − 𝑙1 − 𝑒1 − 𝑠1 − 𝜇]4𝐴 < 0. 

The above equality is negative since 

(1 −
𝑆1
𝑆
) < 0, 

−ℎ1𝑆1 + (𝑙1 + 𝑒1)𝑆1 + 𝜇 < 0 if 𝑅0,𝐴 > 1, 

ℎ2𝑆1 − (𝑙2 + 𝑒2)𝑆1 − 𝜇 < 0 if 𝑅0,𝐵 < 1, 

ℎ3𝑆1 − (𝑙3 + 𝑒3)𝑆1 − 𝜇 < 0 if 𝑅0,𝐶 < 1, 

and 

[(𝑐1𝑎 + 𝑘1𝑝 + ℎ1)𝑆 − 𝑚1 − 𝑙1 − 𝑒1 − 𝑠1 − 𝜇]4𝐴 = 0 

from the second equation of the proposed system of ODEs. Hence, the 

equilibrium point 𝐸1 is globally asymptotically stable if 𝑅0,𝐴 > 1, 𝑅0,𝐵 < 1, 

and 𝑅0,𝐶 < 1. 

 

Theorem 9. The endemic equilibrium point, 𝐸2, of the system is globally 

asymptotically stable if the conditions 
𝑆2

𝑆
<

4𝐴,2

4𝐴
,
𝑆2

𝑆
<

4𝐵,2

4𝐵
,
𝑆2

𝑆
<

4𝐶,2

4𝐶
,
4𝐴,2

4𝐴
<

4𝐵,2

4𝐵
 and 

4𝐵,2

4𝐵
<

4𝐶,2

4𝐶
 hold. 

Proof. Consider the Lyapunov function 

𝑇 = 𝑆 − 𝑆2 ln 𝑆 + 4𝐴 − 4𝐴,2 ln 4𝐴 + 4𝐵 − 4𝐵,2 ln 4𝐵 + 4𝐶 − 4𝐶,2 ln 4𝐶 . 

From the definition of the function 𝑇, it is obvious that the function is always 

non-negative and equals to zero at the endemic equilibrium point 𝐸2. Lastly, 

it should be proven that the function is negative definite. In other words, it 

should be shown that �̇� < 0. We have 

�̇� = �̇� −
𝑆2
𝑆
�̇� + 4�̇� −

4𝐴,2
4𝐴

4�̇� + 4�̇� −
4𝐵,2
4𝐵

4�̇� + 4�̇� −
4𝐶,2
4𝐶

4�̇�  
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= 𝜋 − 𝜇𝑆 − 𝜋
𝑆2
𝑆
+ (𝑎 + 𝑝 + 𝑏 + 𝜇)𝑆2 − (𝑙1 + 𝑒1)

4𝐴𝑆2
𝑆

− (𝑙2 + 𝑒2)
4𝐵𝑆2
𝑆

− (𝑙3 + 𝑒3)
4𝐶𝑆2
𝑆

+ (ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶)𝑆2 − 𝜇4𝐴

− (𝑐1𝑎 + 𝑘1𝑝)𝑆
4𝐴,2
4𝐴

+ (𝑚1 + 𝑙1 + 𝑠1 + 𝑒1 + 𝜇)4𝐴,2

− ℎ14𝐴,2𝑆 − 𝜇4𝐵 − (𝑐2𝑎 + 𝑘2𝑝)𝑆
4𝐵,2
4𝐵

− (𝑚1 + 𝑠1)4𝐴
4𝐵,2
4𝐵

+ (𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇)4𝐵,2 − ℎ2𝑆4𝐵,2 − 𝜇4𝐶

− (1 − 𝑐1 − 𝑐2)𝑎𝑆
4𝐶,2
4𝐶

− (1 − 𝑘1 − 𝑘2)𝑝𝑆
4𝐶,2
4𝐶

− 𝑏𝑆
4𝐶,2
4𝐶

− (𝑚2 + 𝑠2)4𝐵
4𝐶,2
4𝐶

+ (𝑙3 + 𝑒3 + 𝜇)4𝐶,2 − ℎ34𝐶,2𝑆 

< [(𝑙1 + 𝑒1)4𝐴 + ℎ14𝐴𝑆] (
𝑆2
𝑆
−
4𝐴,2
4𝐴
) + [(𝑙2 + 𝑒2)4𝐵 + ℎ24𝐵𝑆] (

𝑆2
𝑆
−
4𝐵,2
4𝐵

)

+ [(𝑙3 + 𝑒3)4𝐶 + ℎ34𝐶𝑆] (
𝑆2
𝑆
−
4𝐶,2
4𝐶
)

+ (𝑚1 + 𝑠1)4𝐴 (
4𝐴,2
4𝐴

−
4𝐵,2
4𝐵

) + (𝑚2 + 𝑠2)4𝐵 (
4𝐵,2
4𝐵

−
4𝐶,2
4𝐶
)

< 0 

if 
𝑆2

𝑆
<

4𝐴,2

4𝐴
,
𝑆2

𝑆
<

4𝐵,2

4𝐵
,
𝑆2

𝑆
<

4𝐶,2

4𝐶
,
4𝐴,2

4𝐴
<

4𝐵,2

4𝐵
 and 

4𝐵,2

4𝐵
<

4𝐶,2

4𝐶
 hold. Hence, under 

the given conditions, the endemic equilibrium point is globally 

asymptotically stable. 

 

Sensitivity Analysis. In this section, sensitivity analysis is applied to 

determine the effective parameters of the constructed model. The technique 

used for sensitivity analysis is to analyse sensitivity indices of obtained basic 

reproduction numbers to the parameters of the model. The definition 2 given 

in Chapter III is utilized for the analysis. According to the definition, 

sensitivity indices of the basic reproduction number 𝑅0,𝐴 are computed as 

follows: 

Ψℎ1
𝑅0,𝐴 =

𝜕𝑅0,𝐴
𝜕ℎ1

×
ℎ1
𝑅0,𝐴

= 1, 

Ψ𝜋
𝑅0,𝐴 =

𝜕𝑅0,𝐴
𝜕𝜋

×
𝜋

𝑅0,𝐴
= 1, 
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Ψ𝑚1

𝑅0,𝐴 =
𝜕𝑅0,𝐴
𝜕𝑚1

×
𝑚1

𝑅0,𝐴
=

−𝑚1

𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝜇
, 

Ψ𝑙1
𝑅0,𝐴 =

𝜕𝑅0,𝐴
𝜕𝑙1

×
𝑙1
𝑅0,𝐴

=
−𝑙1

𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝜇
, 

Ψ𝑒1
𝑅0,𝐴 =

𝜕𝑅0,𝐴
𝜕𝑒1

×
𝑒1
𝑅0,𝐴

=
−𝑒1

𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝜇
, 

Ψ𝑠1
𝑅0,𝐴 =

𝜕𝑅0,𝐴
𝜕𝑠1

×
𝑠1
𝑅0,𝐴

=
−𝑠1

𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝜇
, 

Ψ𝑎
𝑅0,𝐴 =

𝜕𝑅0,𝐴
𝜕𝑎

×
𝑎

𝑅0,𝐴
=

−𝑎

𝑎 + 𝑝 + 𝑏 + 𝜇
, 

Ψ𝑝
𝑅0,𝐴 =

𝜕𝑅0,𝐴
𝜕𝑝

×
𝑝

𝑅0,𝐴
=

−𝑝

𝑎 + 𝑝 + 𝑏 + 𝜇
, 

Ψ𝑏
𝑅0,𝐴 =

𝜕𝑅0,𝐴
𝜕𝑏

×
𝑏

𝑅0,𝐴
=

−𝑏

𝑎 + 𝑝 + 𝑏 + 𝜇
, 

and 

Ψ𝜇
𝑅0,𝐴 =

𝜕𝑅0,𝐴
𝜕𝜇

×
𝜇

𝑅0,𝐴
=
−𝜇(𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝑎 + 𝑝 + 𝑏 + 2𝜇)

(𝑚1 + 𝑙1 + 𝑒1 + 𝑠1)(𝑎 + 𝑝 + 𝑏 + 𝜇)
. 

The sensitivity indices of the basic reproduction number 𝑅0,𝐵 are calculated 

and given below. 

Ψℎ2
𝑅0,𝐵 =

𝜕𝑅0,𝐵
𝜕ℎ2

×
ℎ2
𝑅0,𝐵

= 1, 

Ψ𝜋
𝑅0,𝐵 =

𝜕𝑅0,𝐵
𝜕𝜋

×
𝜋

𝑅0,𝐵
= 1, 

Ψ𝑚2

𝑅0,𝐵 =
𝜕𝑅0,𝐵
𝜕𝑚2

×
𝑚2

𝑅0,𝐵
=

−𝑚2

𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇
, 

Ψ𝑙2
𝑅0,𝐵 =

𝜕𝑅0,𝐵
𝜕𝑙2

×
𝑙2
𝑅0,𝐵

=
−𝑙2

𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇
, 

Ψ𝑠2
𝑅0,𝐵 =

𝜕𝑅0,𝐵
𝜕𝑠2

×
𝑠2
𝑅0,𝐵

=
−𝑠2

𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇
, 

Ψ𝑒2
𝑅0,𝐵 =

𝜕𝑅0,𝐵
𝜕𝑒2

×
𝑒2
𝑅0,𝐵

=
−𝑒2

𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇
, 

Ψ𝑎
𝑅0,𝐵 =

𝜕𝑅0,𝐵
𝜕𝑎

×
𝑎

𝑅0,𝐵
=

−𝑎

𝑎 + 𝑝 + 𝑏 + 𝜇
, 

Ψ𝑝
𝑅0,𝐵 =

𝜕𝑅0,𝐵
𝜕𝑝

×
𝑝

𝑅0,𝐵
=

−𝑝

𝑎 + 𝑝 + 𝑏 + 𝜇
, 
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Ψ𝑏
𝑅0,𝐵 =

𝜕𝑅0,𝐵
𝜕𝑏

×
𝑏

𝑅0,𝐵
=

−𝑏

𝑎 + 𝑝 + 𝑏 + 𝜇
, 

and 

Ψ𝜇
𝑅0,𝐵 =

𝜕𝑅0,𝐵
𝜕𝜇

×
𝜇

𝑅0,𝐵
=
−𝜇(𝑎 + 𝑝 + 𝑏 + 2𝜇 +𝑚2 + 𝑙2 + 𝑒2 + 𝑠2)

(𝑚2 + 𝑙2 + 𝑒2 + 𝑠2)(𝑎 + 𝑝 + 𝑏 + 𝜇)
. 

The sensitivity indices of the basic reproduction number 𝑅0,𝐶 are computed 

as below: 

Ψℎ3
𝑅0,𝐶 =

𝜕𝑅0,𝐶
𝜕ℎ3

×
ℎ3
𝑅0,𝐶

= 1, 

Ψ𝜋
𝑅0,𝐶 =

𝜕𝑅0,𝐶
𝜕𝜋

×
𝜋

𝑅0,𝐶
= 1, 

Ψ𝑙3
𝑅0,𝐶 =

𝜕𝑅0,𝐶
𝜕𝑙3

×
𝑙3
𝑅0,𝐶

=
−𝑙3

𝑙3 + 𝑒3 + 𝜇
, 

Ψ𝑒3
𝑅0,𝐶 =

𝜕𝑅0,𝐶
𝜕𝑒3

×
𝑒3
𝑅0,𝐶

=
−𝑒3

𝑙3 + 𝑒3 + 𝜇
, 

Ψ𝑎
𝑅0,𝐶 =

𝜕𝑅0,𝐶
𝜕𝑎

×
𝑎

𝑅0,𝐶
=

−𝑎

𝑎 + 𝑝 + 𝑏 + 𝜇
, 

Ψ𝑝
𝑅0,𝐶 =

𝜕𝑅0,𝐶
𝜕𝑝

×
𝑝

𝑅0,𝐶
=

−𝑝

𝑎 + 𝑝 + 𝑏 + 𝜇
, 

Ψ𝑏
𝑅0,𝐶 =

𝜕𝑅0,𝐶
𝜕𝑏

×
𝑏

𝑅0,𝐶
=

−𝑏

𝑎 + 𝑝 + 𝑏 + 𝜇
, 

and 

Ψ𝜇
𝑅0,𝐶 =

𝜕𝑅0,𝐶
𝜕𝜇

×
𝜇

𝑅0,𝐶
=
−𝜇(𝑙3 + 𝑒3 + 𝑎 + 𝑝 + 𝑏 + 2𝜇)

(𝑙3 + 𝑒3 + 𝜇)(𝑎 + 𝑝 + 𝑏 + 𝜇)
. 

 

Numerical Simulations and Results 
 

In this part of the thesis, results and numerical simulations that are obtained 

with the use of sensitivity indices and the constructed model are provided. With the 

acquired sensitivity indices and parameter values, sensitivity values for 𝑅0,𝐴, 𝑅0,𝐵 

and 𝑅0,𝐶 are calculated and demonstrated in Table 9, Table 10 and Table 11, 

respectively. 
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 Figure 1 

 Distribution of BI-RADS 4 Subcategories According to the Constructed Model 

 

 

Figure 1 above illustrates that, BI-RADS 4A category is expected to extinct 

if the current conditions can be preserved (regular screenings, awareness, etc.) and 

hence BI-RADS 4 category is going to be separated into 2 categories, in time. 

Therefore, a decrease in the range of cancer probability for BI-RADS 4 is expected. 

However, existence of BI-RADS 4B and BI-RADS 4C diagnosis is expected and 

moreover, an increase is observed especially in BI-RADS 4C diagnosed patients. 

  

 Table 9. 

 Sensitivity Values for 𝑅0,𝐴 

Parameter Value 

ℎ1  1.00  

𝜋  1  

𝑚1  −0.063  

𝑙1  −0.683  

𝑒1  −0.25  

𝑠1  −0.003  
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Table 9 (Continued). 

𝑎  −0.511  

𝑝  −0.436  

𝑏  −0.053  

𝜇  −0.0001  

 

According to the Table 9, increase in the parameters ℎ1 and 𝜋 will cause an 

increase in the 𝑅0,𝐴 while increase in the rest parameters of 𝑅0,𝐴 (which are 

𝑚1, 𝑙1, 𝑒1, 𝑠1, 𝑎, 𝑝, 𝑏 and 𝜇) will result in a decline in 𝑅0,𝐴. Increase rate of parameters 

is 10%. Biologically, these can be evaluated as follows: 

• Family history has a significant impact on the diagnosis of BI-RADS 4A. If 

more people have a diagnosis of BI-RADS 4A in the family, then the chance 

of BI-RADS 4A diagnosis of other family members will increase. 

• Increase in the recruitment rate, 𝜋, means increase in the susceptible 

individuals in the population. Hence, increase in this parameter may lead an 

increase in the compartment 4𝐴 and 𝑅0,𝐴. 

• Irregular menstruation increase will naturally affect the hormones and thus, 

it will increase the chance of breast cancer risk. So, the cancer risk of people 

with the diagnosis of BI-RADS 4A will increase and hence people will 

transfer to other categories (BI-RADS 4B, BI-RADS 4C, etc.) with higher 

cancer risks. This is why increase in 𝑚1 may cause a decrease in 𝑅0,𝐴. 

• Rise in the lactation rate 𝑙1 is one of the most effective parameters in BI-

RADS 4A subcategory and this increase does not cause another increase in 

the other compartments that are related with cancer risk. Moreover, increase 

in 𝑙1 causes a decrease in the number of BI-RADS 4A diagnosed patients. 

• Since early menopause, 𝑒1, affects hormones positively, increase in this 

parameter will decrease the number of members diagnosed with BI-RADS 

4A. As in 𝑙1, increase in this parameter will not be resulted in cancer risk-

related compartments. 
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• Increase in the smoking rate, 𝑠1, will lead a decrease in 𝑅0,𝐴. However, 

increase in the smoking rate causes the patients of BI-RADS 4A to be 

diagnosed as BI-RADS 4B or even higher category. 

• Higher aged people have a lower risk of being diagnosed as BI-RADS 4A 

which can be related with menopause and hence lower risk of breast cancer. 

So, the increase in 𝑎 will cause a decrease in 𝑅0,𝐴. 

• Palpable masses and bloody nipple discharge generally seen in other BI-

RADS categories and further investigations are recommended in that case. 

Hence, individuals cannot be diagnosed with BI-RADS 4A. This is why 

increase in 𝑝 and 𝑏 will decrease 𝑅0,𝐴. 

• Innately, increase in natural death rate 𝜇 will decrease the number of people 

in the population. So, increase in 𝜇 naturally causes a decrease in 𝑅0,𝐴. 

Table 10. 

Sensitivity Values for 𝑅0,𝐵 

Parameter Value 

ℎ2  1  

𝜋  1  

𝑚2  −0.288  

𝑙2  −0.58  

𝑠2  −0.0035  

𝑒2  −0.128  

𝑎  −0.511  

𝑝  −0.436  

𝑏  −0.053  

𝜇  −0.0001  
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Table 10, reveals that increase in the rate of ℎ2 and 𝜋 will lead arise in the 

value of 𝑅0,𝐵 while a decrease is expected in 𝑅0,𝐵 if the value of other parameters of 

𝑅0,𝐵 (which are 𝑎, 𝑝, 𝑏, 𝜇,𝑚2, 𝑙2, 𝑒2 and 𝑠2) increase. Increase rate of parameters is 

10%. Changes in these parameters can be explained biologically as follows: 

• For the diagnosis of BI-RADS 4B, family history has a huge effect so that 

more people diagnosed with BI-RADS 4B in the family will increase the 

chance of BI-RADS 4B diagnosis of other family members. 

• As expected, increase in the recruitment rate, 𝜋, implies an increase in the 

susceptible individuals in the population. So, increase in 𝜋 will cause an 

increase in the 4𝐵 compartment and hence in 𝑅0,𝐵. 

• Higher aged people have a lower risk of being diagnosed as BI-RADS 4B 

which can be related with menopause and hence lower risk of breast cancer. 

So, the increase in 𝑎 will cause a decrease in 𝑅0,𝐵. 

• Palpable masses and bloody nipple discharge generally seen in other BI-

RADS categories and further investigations are recommended in that case. 

Hence, with the further implementations, individuals cannot be diagnosed 

with BI-RADS 4B. This is why increase in 𝑝 and 𝑏 will decrease 𝑅0,𝐵. 

• As it is expected, increase in natural death rate 𝜇 will cause a decrease in the 

number of people in the population. So, increase in 𝜇 naturally causes a 

decrease in 𝑅0,𝐵. 

• Irregular menstruation increase will naturally affect the hormones and thus, 

it will increase the chance of breast cancer risk. So, the cancer risk of people 

with the diagnosis of BI-RADS 4B will increase and hence people will 

transfer to other categories (BI-RADS 4C, BI-RADS 5, etc.) with higher 

cancer risks. Hence, increase in 𝑚2 may lead a decrease in 𝑅0,𝐵. 

• Increase in the rate of lactation 𝑙2 is one of the most effective parameters in 

BI-RADS 4B and this increase is meaningful since it does not cause another 

increase in the other compartments that are related with cancer risk. Also, 

increase in 𝑙2 decreases the number of BI-RADS 4B diagnosed patients. 

• Increase in the smoking rate, 𝑠2, will lead a decrease in 𝑅0,𝐵. However, 

increase in the smoking rate causes the patients of BI-RADS 4B to be 

diagnosed as BI-RADS 4C. 
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• Since early menopause, 𝑒2, affects hormones positively, increase in this 

parameter will decrease the number of members diagnosed with BI-RADS 

4B. Likewise 𝑙2, increase in this parameter will not be resulted in cancer risk-

related compartments. 

Table 11. 

Sensitivity Values for 𝑅0,𝐶 

Parameter Value 

ℎ3  1  

𝜋  1  

𝑙3  −0.91  

𝑒3  −0.0896  

𝑎  −0.511  

𝑝  −0.436  

𝑏  −0.053  

𝜇  −0.0001  

 

In Table 11, it can be revealed that increase in the rate of ℎ3 and 𝜋 will lead 

an increase in the value of 𝑅0,𝐶 and a decline is expected in the value of 𝑅0,𝐶 when 

the value of other parameters of 𝑅0,𝐶 (which are 𝑎, 𝑝, 𝑏, 𝜇, 𝑙3 and 𝑒3) increase. 

Increase rate of parameters is 10%. Changes in these parameters can be explained 

biologically as follows: 

• For the diagnosis of BI-RADS 4C, family history has a significant effect so 

that more people diagnosed with BI-RADS 4C in the family will increase the 

chance of BI-RADS 4C diagnosis of other family members. 

• As expected, increase in the recruitment rate, 𝜋, implies an increase in the 

susceptible individuals in the population. Thus, increase in 𝜋 will cause an 

increase in the 4𝐶  compartment and hence in 𝑅0,𝐶. 
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• Higher aged people have a lower risk of being diagnosed as BI-RADS 4C 

which can be related with menopause and hence lower risk of breast cancer. 

So, the increase in 𝑎 will cause a decrease in 𝑅0,𝐶. 

• Palpable masses and bloody nipple discharge generally seen in other BI-

RADS categories and further investigations are recommended in that case. 

Hence, with the further implementations, individuals cannot be diagnosed 

with BI-RADS 4C. This is why increase in 𝑝 and 𝑏 will decrease 𝑅0,𝐶. 

• As it is expected, increase in natural death rate 𝜇 will cause a decrease in the 

number of people in the population. So, increase in 𝜇 naturally causes a 

decrease in 𝑅0,𝐶. 

• Increase in the rate of lactation 𝑙3 is one of the most effective parameters in 

BI-RADS 4C and this increase is meaningful since it does not cause another 

increase in the other compartments that are related with cancer risk. 

Furthermore, increase in 𝑙3 causes a decrease in the number of BI-RADS 4C 

diagnosed patients. 

• Since early menopause, 𝑒3, affects hormones positively, increase in this 

parameter will decrease the number of members diagnosed with BI-RADS 

4C. As in 𝑙3, increase in this parameter will not be resulted in cancer risk-

related compartments. 

The numerical simulations of the model with sensitivity analysis are 

illustrated in Figure 2 – Figure 12. Thus, it can be seen what is expected to happen 

with the increase in parameters (with 10%) in time, visually. 
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Figure 2 

Sensitivity Analysis of the Parameter 𝑙1 in BI-RADS 4A Subcategory 

 

 

Figure 3 

Sensitivity Analysis of the Parameter 𝑙2 in BI-RADS 4B Subcategory 
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Figure 4 

 Sensitivity Analysis of the Parameter 𝑙3 in BI-RADS 4C Subcategory 

 

 

The effect of lactation rate, 𝑙1, 𝑙2, and 𝑙3, on the subcategories of BI-RADS 4 

are illustrated in Figure 2, Figure 3 and Figure 4, respectively. The figures revealed 

that higher lactation rate may lead a significant decrease in BI-RADS 4 

subcategories. Especially for the categories BI-RADS 4B and BI-RADS 4C, there is 

a significant positive impact in the case of active lactation. 
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 Figure 5 

Sensitivity Analysis of the Parameter 𝑒1 in BI-RADS 4A Subcategory 

 

 

 Figure 6 

 Sensitivity Analysis of the Parameter 𝑒2 in BI-RADS 4B Subcategory 
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Figure 7 

 Sensitivity Analysis of the Parameter 𝑒3 in BI-RADS 4C Subcategory 

 

In the Figure 5, Figure 6 and Figure 7, the impact of parameters 𝑒1, 𝑒2, and 

𝑒3 on the subcategories BI-RADS 4A, BI-RADS 4B, and BIRADS 4C are 

respectively presented. According to these figures, early menopause will lead a 

decline in the subcategories. For all of the subcategories, a meaningful change exists 

in this situation. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
  76 
 
 
   

Figure 8 

Sensitivity Analysis of the Parameter 𝒉𝟏 in BI-RADS 4A Subcategory 

 
 

 Figure 9 

 Sensitivity Analysis of the Parameter ℎ2 in BI-RADS 4B Subcategory 
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Figure 10 

 Sensitivity Analysis of the Parameter ℎ3 in BI-RADS 4C Subcategory 

 

Impact of the parameters ℎ1, ℎ2 and ℎ3, i.e., the family history, on the 

subcategories of BI-RADS 4 are presented in the Figure 8, Figure 9 and Figure 10, 

respectively. Family history causes an enormous and meaningful increase in the 

diagnosis of all BI-RADS 4 subcategories as can be seen from the given figures. 
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Figure 11 

 Sensitivity Analysis of the Parameter 𝑠2 in BI-RADS 4C Subcategory 

 

Figure 11 is drawn to determine and show the effect of smoking on the 

subcategory BI-RADS 4C. Rise in the tobacco usage rate leads an increase in the BI-

RADS 4C subcategory, which is naturally expected to happen. 
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 Figure 12 

 Sensitivity Analysis of the Parameter 𝑚2 in BI-RADS 4C Subcategory 

 

 

From the Figure 12, the negative effect of late menopause on BI-RADS 4C 

is illustrated. This figure emphasizes that late menopause and BI-RADS 4C have a 

substantial relationship. 

To sum up, with the constructed model it is obtained that there exist 3 

equilibrium points that are globally asymptotically stable under mentioned 

conditions. This emphasizes that distribution of patients to BI-RADS 4 subcategories 

can be stable if the conditions satisfied. With these, it is concluded that BI-RADS 4 

subcategories can reduce in time with narrower chance of breast cancer risk range. 

Sensitivity analysis that is applied to the parameters of basic reproduction numbers 

revealed effective parameters of the model. Calculations of sensitivity analysis 

showed that increase in ℎ1 and 𝜋 will lead an increase in the value of 𝑅0,𝐴 while 

increase in 𝑚1, 𝑙1, 𝑒1, 𝑠1, 𝑎, 𝑝, 𝑏 and 𝜇 will result in a decline in 𝑅0,𝐴. For the 

compartment 4𝐵, it is observed that increase in ℎ2 and 𝜋 will cause arise in the value 

of 𝑅0,𝐵 while a decrease is expected in the value of 𝑅0,𝐵 if the value of 

𝑎, 𝑝, 𝑏, 𝜇,𝑚2, 𝑙2, 𝑒2 and 𝑠2 increase. Lastly, the computations for the compartment 4𝐶  

showed that rise in the rate of ℎ3 and 𝜋 will lead an increase in 𝑅0,𝐶 and a decline is 

expected to happen in the value of 𝑅0,𝐶 when the value of 𝑎, 𝑝, 𝑏, 𝜇, 𝑙3 and 𝑒3 increase. 
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Numerical simulations of sensitivity analysis emphasized that higher lactation rate 

and early menopause decreases the number of patients diagnosed with BI-RADS 4 

subcategories. On the other hand, having a family history increases the risk of being 

diagnosed as BI-RADS 4 in all subcategories. Moreover, tobacco use and late 

menopause increases the chance of diagnosis of BI-RADS 4C. 
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CHAPTER IV 
 

Methodology 
 

 

In this chapter, possible and applicable control interventions for BI-RADS 4 patients 

is introduced with the help of optimal control theory. The aim of this chapter is to introduce 

control strategy for the patients diagnosed with BI-RADS 4 subcategories and to evaluate 

the impact of control strategy on these via optimal control function. In this regard, the design 

and limitations of the research are given at first. Afterwards, the collected data is expressed. 

Finally, the analysis of the model with control is proposed with necessary theorems, proofs 

and numerical simulations. 

 

Research Design and Limitations 

In order to apply control function into ODEs, effective parameters should 

be determined firstly. In this manner, the data obtained as a result of sensitivity 

analysis in Chapter III is utilized. According to those results, it is concluded that 

lactation rate and hence, breastfeeding plays a significant role in BI-RADS 4 

subcategories. Thus, control function in this chapter is assigned as “drug for 

increasing the lactation rate or longtime breastfeeding”. Later on, this function is 

added to the constructed mathematical model in Chapter III. For the analysis of 

newly created model, existence of optimal control, necessary conditions for 

optimality, characterization of optimal control and uniqueness of solutions are 

stated. For the evaluation of the control, MatLab program is involved with 

numerical methods which enables visual results. The limitations of this model are 

the same limitations given in Chapter III. 

 

Data Collection 

In this chapter, the data is obtained from the Centre for Breast Health, Near 

East University Hospital. 

 

Data Analysis 

 In this section of the thesis, analysis of the obtained data is given. 
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Mathematical Model with Optimal Control and Its Analysis 

In this section, a mathematical model with an optimal control function is 

constructed as below. As in Chapter III, the total population (𝑁) is divided into 4 

compartments including susceptible individuals (𝑆), individuals diagnosed with BI-

RADS 4A (4𝐴), individuals diagnosed with BI-RADS 4B (4𝐵) and individuals 

diagnosed with BI-RADS 4C (4𝐶). 

𝑑𝑆

𝑑𝑡
= 𝜋 − (𝑎 + 𝑝 + 𝑏)𝑆 + [𝑙1𝑢(𝑡) + 𝑒1]4𝐴 + [𝑙2𝑢(𝑡) + 𝑒2]4𝐵 + [𝑙3𝑢(𝑡) + 𝑒3]4𝐶

− (ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶)𝑆 − 𝜇𝑆, 

𝑑4𝐴
𝑑𝑡

= 𝑐1𝑎𝑆 + 𝑘1𝑝𝑆 − [𝑚1 + 𝑙1𝑢(𝑡) + 𝑒1]4𝐴 + ℎ14𝐴𝑆 − 𝑠14𝐴 − 𝜇4𝐴, 

𝑑4𝐵
𝑑𝑡

= 𝑐2𝑎𝑆 + 𝑘2𝑝𝑆 + 𝑚14𝐴 − [𝑚2 + 𝑙2𝑢(𝑡) + 𝑒2]4𝐵 + ℎ24𝐵𝑆 + 𝑠14𝐴 − 𝑠24𝐵

− 𝜇4𝐵 , 

𝑑4𝐶
𝑑𝑡

= (1 − 𝑐1 − 𝑐2)𝑎𝑆 + (1 − 𝑘1 − 𝑘2)𝑝𝑆 + 𝑏𝑆 +𝑚24𝐵 − [𝑙3𝑢(𝑡) + 𝑒3]4𝐶

+ ℎ34𝐶𝑆 + 𝑠24𝐵 − 𝜇4𝐶 . 

with the initial conditions 𝑆(0) = 𝑆0, 4𝐴(0) = 4𝐴,0, 4𝐵(0) = 4𝐵,0 and 4𝐶(0) = 4𝐶,0. 

The control function, 𝑢, denotes the drug for increasing the lactation rate or longtime 

breastfeeding. Definitions of parameters and state variables are given in Table 12 and 

Table 13. 

 

Table 12. 

Descriptions of Variables used in the Mathematical Model with Optimal Control 

Variables Descriptions 

𝑆  Susceptible Individuals 

4𝐴  Individuals that are diagnosed as BI-RADS 4A 

4𝐵  Individuals that are diagnosed as BI-RADS 4B 

4𝐶   Individuals that are diagnosed as BI-RADS 4C 
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Table 13. 

Descriptions of Parameters used in the Mathematical Model with Optimal Control 

Parameters Descriptions 

𝜋  Recruitment Rate 

𝑎  Age 

𝑝  Palpable Mass 

𝑏  Bloody Nipple Discharge 

𝑢  Drug for increasing the lactation rate or longtime breastfeeding 

𝑙𝑖, 𝑖 = 1, 2, 3  Lactation Rate 

𝑒𝑖, 𝑖 = 1, 2, 3  Early Menopause 

𝑚1  Irregular Menstruation 

𝑚2  Late Menopause 

ℎ𝑖 , 𝑖 = 1, 2, 3  Family History 

𝑠1  Smoking Rate of the BI-RADS 4A Individuals 

𝑠2  Smoking Rate of the BI-RADS 4B Individuals 

𝜇  Natural Death Rate 

 

 The objective functional to be minimized is 

𝐽(4𝐴, 4𝐵, 4𝐶 , 𝑢) = ∫ [4𝐴 + 4𝐵 + 4𝐶 +
𝐾

2
𝑢2(𝑡)] 𝑑𝑡

𝑇

0

. 

 In this part, it is expected to minimize the number of individuals diagnosed 

as BI-RADS 4A, 4B, 4C and costs of control. 𝐾 denotes the weight factor 

representing benefit/cost and the level of patient’s breastfeeding or acceptance of 

drugs. A quadratic control 
1

2
𝐾𝑢2 is used for convenience in finding an analytic 

representation of the control 𝑢 ∈ Ω. The goal here is to find 𝑢∗ that will satisfy 
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𝐽(4𝐴, 4𝐵 , 4𝐶 , 𝑢
∗) = min

𝑢∈Ω
𝐽(4𝐴, 4𝐵 , 4𝐶 , 𝑢), 

where 

Ω = {𝑢(𝑡): 0 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 = 𝑏1,

𝑢 piecewise continuous function, 𝑏1 is a fixed constant, 𝑡

∈ [0, 𝑇]}. 

 

Existence of Optimal Control. Now, it will be proven that an optimal 

control 𝑢∗ for the system actually exists. Firstly, it should be shown that the 

system is bounded for finite time. Afterwards, solutions that are upper bounds 

(super solutions) of 𝑆, 4𝐴, 4𝐵 and 4𝐶  will be found in the model. 

For the compartment 𝑆, 

𝑑𝑆𝑚𝑎𝑥
𝑑𝑡

= 𝜋, 

𝑑𝑆𝑚𝑎𝑥 = 𝜋𝑑𝑡, 

𝑆𝑚𝑎𝑥 = 𝜋𝑡 + 𝑆0, 

where 𝑆0 is the initial condition for 𝑆, i.e., 𝑆0 = 𝑆(0). 

For the compartment 4𝐴, 

𝑑4𝐴,𝑚𝑎𝑥
𝑑𝑡

= (𝑐1𝑎 + 𝑘1𝑝)𝑆𝑚𝑎𝑥 = (𝑐1𝑎 + 𝑘1𝑝)(𝜋𝑡 + 𝑆0), 

4𝐴,𝑚𝑎𝑥 =
(𝑐1𝑎 + 𝑘1𝑝)𝜋𝑡

2

2
+ (𝑐1𝑎 + 𝑘1𝑝)𝑆0𝑡 + 4𝐴,0, 

where 𝑆0 and 4𝐴,0 are the initial conditions for 𝑆 and 4𝐴, respectively. That 

is, 𝑆0 = 𝑆(0) and 4𝐴,0 = 4𝐴(0). 

For the compartment 4𝐵, 

𝑑4𝐵,𝑚𝑎𝑥
𝑑𝑡

= (𝑐2𝑎 + 𝑘2𝑝)𝑆𝑚𝑎𝑥 + (𝑚1 + 𝑠1)4𝐴,𝑚𝑎𝑥

= (𝑐2𝑎 + 𝑘2𝑝)(𝜋𝑡 + 𝑆0)

+ (𝑚1 + 𝑠1) [
(𝑐1𝑎 + 𝑘1𝑝)𝜋𝑡

2

2
+ (𝑐1𝑎 + 𝑘1𝑝)𝑆0𝑡 + 4𝐴,0], 

4𝐵,𝑚𝑎𝑥 =
(𝑐1𝑎 + 𝑘1𝑝)(𝑚1 + 𝑠1)𝜋𝑡

3

6

+
[(𝑐2𝑎 + 𝑘2𝑝)𝜋 + (𝑐1𝑎 + 𝑘1𝑝)(𝑚1 + 𝑠1)𝑆0]𝑡

2

2

+ [(𝑐2𝑎 + 𝑘2𝑝)𝑆0 + (𝑚1 + 𝑠1)4𝐴,0]𝑡 + 4𝐵,0, 
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where 𝑆0, 4𝐴,0 and 4𝐵,0 are the initial conditions for 𝑆, 4𝐴 and 4𝐵, 

respectively. That is, 𝑆0 = 𝑆(0) , 4𝐴,0 = 4𝐴(0) and 4𝐵,0 = 4𝐵(0). 

Lastly, for the compartment 4𝐶 , 

𝑑4𝐶,𝑚𝑎𝑥
𝑑𝑡

= [(1 − 𝑐1 − 𝑐2)𝑎 + (1 − 𝑘1 − 𝑘2)𝑝 + 𝑏]𝑆𝑚𝑎𝑥

+ (𝑚2 + 𝑠2)4𝐵,𝑚𝑎𝑥

= [(1 − 𝑐1 − 𝑐2)𝑎 + (1 − 𝑘1 − 𝑘2)𝑝 + 𝑏](𝜋𝑡 + 𝑆0)

+ (𝑚2 + 𝑠2) {
(𝑐1𝑎 + 𝑘1𝑝)(𝑚1 + 𝑠1)𝜋𝑡

3

3

+
[(𝑐2𝑎 + 𝑘2𝑝)𝜋 + (𝑐1𝑎 + 𝑘1𝑝)(𝑚1 + 𝑠1)𝑆0]𝑡

2

2

+ [(𝑐2𝑎 + 𝑘2𝑝)𝑆0 + (𝑚1 + 𝑠1)4𝐴,0]𝑡 + 4𝐵,0}, 
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4
𝐶
,𝑚
𝑎
𝑥
=
( 𝑐
1
𝑎
+
𝑘
1
𝑝
)(
𝑚
1
+
𝑠 1
)(
𝑚
2
+
𝑠 2
) 𝜋
𝑡4

1
2

+
[(
𝑐 2
𝑎
+
𝑘
2
𝑝
) 𝜋
+
( 𝑐
1
𝑎
+
𝑘
1
𝑝
)(
𝑚
1
+
𝑠 1
) 𝑆
0
](
𝑚
2
+
𝑠 2
) 𝑡
3

6

+
{[
( 1
−
𝑐 1
−
𝑐 2
) 𝑎
+
( 1
−
𝑘
1
−
𝑘
2
) 𝑝
+
𝑏
] 𝜋
+
( 𝑚

2
+
𝑠 2
) [
( 𝑐
2
𝑎
+
𝑘
2
𝑝
) 𝑆
0
+
( 𝑚

1
+
𝑠 1
) 4
𝐴
,0
]}
𝑡2

2
+
{[
( 1
−
𝑐 1
−
𝑐 2
) 𝑎
+
( 1
−
𝑘
1
−
𝑘
2
) 𝑝
+
𝑏
] 𝑆
0
+
( 𝑚

2
+
𝑠 2
) 4
𝐵
,0
}𝑡
+
4
𝐶
,0
, 
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where 𝑆0, 4𝐴,0, 4𝐵,0 and 4𝐶,0 are the initial conditions for 𝑆, 4𝐴, 4𝐵 and 4𝐶 , 

respectively. That is, 𝑆0 = 𝑆(0), 4𝐴,0 = 4𝐴(0), 4𝐵,0 = 4𝐵(0) and 4𝐶,0 =

4𝐶(0). Therefore, by using these bounds, a set of upper bound solutions, 

denoted by 𝑆̅, 4𝐴̅̅ ̅, 4𝐵̅̅ ̅, and 4𝐶̅̅ ̅, can be formed for the constructed system as 

follows: 

𝑑𝑆̅

𝑑𝑡
= 𝜋, 

𝑑4𝐴̅̅ ̅

𝑑𝑡
= (𝑐1𝑎 + 𝑘1𝑝)𝑆̅, 

𝑑4𝐵̅̅ ̅

𝑑𝑡
= (𝑐2𝑎 + 𝑘2𝑝)𝑆̅ + (𝑚1 + 𝑠1)4𝐴̅̅ ̅, 

𝑑4𝐶̅̅ ̅

𝑑𝑡
= [(1 − 𝑐1 − 𝑐2)𝑎 + (1 − 𝑘1 − 𝑘2)𝑝 + 𝑏]𝑆̅ + (𝑚2 + 𝑠2)4𝐵̅̅ ̅. 

Hence, a linear and bounded system with bounded coefficients on a finite 

time interval is obtained. Therefore, obtained super solutions are uniformly 

bounded and the constructed system is ultimately bounded. 

 

Necessary Conditions for Optimality. In this section, necessary conditions 

for optimal control will be explained. 

 

Theorem 10. For the objective functional 

𝐽(4𝐴, 4𝐵, 4𝐶 , 𝑢) = ∫ [4𝐴 + 4𝐵 + 4𝐶 +
𝐾

2
𝑢2(𝑡)] 𝑑𝑡

𝑇

0

, 

where Ω = {𝑢(𝑡): 0 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 = 𝑏1,

𝑢 is lebesgue measurable, 𝑏1 is a fixed constant, 𝑡 ∈ [0, 𝑇]}, subject to the 

proposed system with 𝑆(0) = 𝑆0, 4𝐴(0) = 4𝐴,0, 4𝐵(0) = 4𝐵,0 and 4𝐶(0) =

4𝐶,0, there exists an optimal control 𝑢∗ such that 

𝐽(4𝐴, 4𝐵, 4𝐶 , 𝑢
∗) = min

𝑢∈Ω
𝐽(4𝐴, 4𝐵, 4𝐶 , 𝑢) 

if the following conditions hold: 

a. The class of all initial conditions with a control in the admissible 

control set along with all satisfied state equations is non-empty. 

b. The admissible control set Ω is closed and convex. 

c. In the constructed system of ODEs, right-hand side of each equation 

is continuous and bounded above by the sum of the bounded control 
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and the state. Moreover, they can be written as a linear function of Ω 

with time and state dependent coefficients. 

d. The integrand of 𝐽(4𝐴, 4𝐵 , 4𝐶 , 𝑢) is convex on Ω and bounded below 

by −𝑑2 + 𝑑1𝑢
2 with 𝑑1 > 0. 

Proof. A result from Lukes (1982) proves that solution exists for the 

proposed system since it possesses bounded coefficients and the solutions are 

bounded on the finite time interval. Hence, part (a) is proved. From the 

definition of Ω, it is closed and convex which proves (b). For the condition 

(c), the right-hand side of the constructed system is continuous because each 

term of the equations is nonzero and polynomial. Now, let 

𝑓(𝑡, �⃗�, 𝑢) = �⃗⃗�(𝑡, �⃗�) + 𝑢𝛽(𝑡, �⃗�), 

where �⃗⃗� and 𝛽 are vector-valued functions of �⃗� ∈ ℝ4. Then, 
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𝑓
(𝑡
,𝑋
,𝑢
)
=
𝜑
(𝑡
,𝑋
)
+
𝑢
𝛽
(𝑡
,𝑋
)

=

[   
𝜋
−
( 𝑎
+
𝑝
+
𝑏
) 𝑆
+
𝑒 1
4 𝐴
+
𝑒 2
4
𝐵
+
𝑒 3
4
𝐶
−
( ℎ
1
4 𝐴
+
ℎ
2
4
𝐵
+
ℎ
3
4
𝐶
) 𝑆
−
𝜇
𝑆

𝑐 1
𝑎
𝑆
+
𝑘
1
𝑝
𝑆
−
( 𝑚

1
+
𝑒 1
) 4
𝐴
+
ℎ
1
4 𝐴
𝑆
−
𝑠 1
4 𝐴
−
𝜇
4 𝐴

𝑐 2
𝑎
𝑆
+
𝑘
2
𝑝
𝑆
+
𝑚
1
4 𝐴
−
( 𝑚

2
+
𝑒 2
) 4
𝐵
+
ℎ
2
4
𝐵
𝑆
+
𝑠 1
4 𝐴
−
𝑠 2
4
𝐵
−
𝜇
4
𝐵

(1
−
𝑐 1
−
𝑐 2
)𝑎
𝑆
+
(1
−
𝑘
1
−
𝑘
2
)𝑝
𝑆
+
𝑏
𝑆
+
𝑚
2
4
𝐵
−
𝑒 3
4
𝐶
+
ℎ
3
4
𝐶
𝑆
+
𝑠 2
4
𝐵
−
𝜇
4
𝐶
]   
+
𝑢
[𝑙 1
4 𝐴
+
𝑙 2
4
𝐵
+
𝑙 3
4
𝐶

−
𝑙 1
4 𝐴

−
𝑙 2
4
𝐵

−
𝑙 3
4
𝐶

],
 

 

|𝑓
(𝑡
,𝑋
,𝑢
)|
=
ተ [   

𝜋
−
( 𝑎
+
𝑝
+
𝑏
) 𝑆
+
𝑒 1
4 𝐴
+
𝑒 2
4
𝐵
+
𝑒 3
4
𝐶
−
( ℎ
1
4 𝐴
+
ℎ
2
4
𝐵
+
ℎ
3
4
𝐶
) 𝑆
−
𝜇
𝑆

𝑐 1
𝑎
𝑆
+
𝑘
1
𝑝
𝑆
−
( 𝑚

1
+
𝑒 1
) 4
𝐴
+
ℎ
1
4
𝐴
𝑆
−
𝑠 1
4 𝐴
−
𝜇
4 𝐴

𝑐 2
𝑎
𝑆
+
𝑘
2
𝑝
𝑆
+
𝑚
1
4 𝐴
−
( 𝑚

2
+
𝑒 2
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𝐵
+
ℎ
2
4
𝐵
𝑆
+
𝑠 1
4 𝐴
−
𝑠 2
4
𝐵
−
𝜇
4
𝐵
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−
𝑐 1
−
𝑐 2
)𝑎
𝑆
+
(1
−
𝑘
1
−
𝑘
2
)𝑝
𝑆
+
𝑏
𝑆
+
𝑚
2
4
𝐵
−
𝑒 3
4
𝐶
+
ℎ
3
4
𝐶
𝑆
+
𝑠 2
4
𝐵
−
𝜇
4
𝐶
]   
+
𝑢
[𝑙 1
4 𝐴
+
𝑙 2
4
𝐵
+
𝑙 3
4
𝐶

−
𝑙 1
4 𝐴

−
𝑙 2
4
𝐵

−
𝑙 3
4
𝐶

] ተ
 

 

≤
ተ [   

𝜋
−
( 𝑎
+
𝑝
+
𝑏
) 𝑆
+
𝑒 1
4 𝐴
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𝑒 2
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𝐵
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𝐶
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1
4 𝐴
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ℎ
2
4
𝐵
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ℎ
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4
𝐶
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𝜇
𝑆

𝑐 1
𝑎
𝑆
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𝑘
1
𝑝
𝑆
−
( 𝑚

1
+
𝑒 1
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𝐴
+
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1
4 𝐴
𝑆
−
𝑠 1
4 𝐴
−
𝜇
4 𝐴

𝑐 2
𝑎
𝑆
+
𝑘
2
𝑝
𝑆
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𝑚
1
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𝐶
+
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3
4
𝐶
𝑆
+
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𝐵
−
𝜇
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𝐶
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+
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[𝑙 1
4 𝐴
+
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𝐵
+
𝑙 3
4
𝐶

−
𝑙 1
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−
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𝐵

−
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𝐶

]ተ
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=
ተ [   

−
( 𝑎
+
𝑝
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𝑏
+
𝜇
+
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1
4 𝐴
+
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2
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𝐵
+
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𝐶
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𝑐 1
𝑎
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𝑝
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1
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𝑎
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1
+
𝑒 1
+
𝑠 1
+
𝜇
)

𝑚
1
+
𝑠 1

0

𝑒 2 0
−
( 𝑚

2
+
𝑒 2
+
𝑠 2
+
𝜇
)

𝑚
2
+
𝑠 2

𝑒 3 0 0
−
( 𝑒
3
+
𝜇
) ]   
[

𝑆 4 𝐴 4
𝐵

4
𝐶

] ተ

+
ተ𝑢
[0 0 0 0

𝑙 1  −
𝑙 1 0 0

𝑙 2 0 −
𝑙 2 0

𝑙 3 0 0 −
𝑙 3

]
[

𝑆 4 𝐴 4
𝐵

4
𝐶

]ተ
 

 

=
ฮ
𝐴
𝑋
ฮ
+
ฮ
𝑢
 𝐵
 𝑋
ฮ

 

 

≤
ԡ
𝐴
ԡ
ฮ
𝑋
ฮ
+
| 𝑢
|ԡ
𝐵
ԡ
ฮ
𝑋
ฮ
=
(ԡ
𝐴
ԡ
+
| 𝑢
|ԡ
𝐵
ԡ
) ฮ
𝑋
ฮ
=
𝐷
ฮ
𝑋
ฮ
, 
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where 𝐷 depends on the coefficients of the proposed system. This proves the 

part (c). Since 𝑆, 4𝐴, 4𝐵 , and 4𝐶  are non-negative and bounded below, we have 

𝑑𝑆

𝑑𝑡
≥ −(𝑎 + 𝑝 + 𝑏 + 𝜇)𝑆, 

𝑑4𝐴
𝑑𝑡

≥ −(𝑚1 + 𝑙1 + 𝑒1 + 𝑠1 + 𝜇)4𝐴, 

𝑑4𝐵
𝑑𝑡

≥ −(𝑚2 + 𝑙2 + 𝑒2 + 𝑠2 + 𝜇)4𝐵, 

and 

𝑑4𝐶
𝑑𝑡

≥ −(𝑙3 + 𝑒3 + 𝜇)4𝐶 . 

Above inequalities implies that 

𝑆 ≥ 𝑒−(𝑎+𝑝+𝑏+𝜇)𝑡+𝐶𝑆
0
> 0, 

4𝐴 ≥ 𝑒
−(𝑚1+𝑙1+𝑒1+𝑠1+𝜇)𝑡+𝐶𝐴

0
> 0, 

4𝐵 ≥ 𝑒−(𝑚2+𝑙2+𝑒2+𝑠2+𝜇)𝑡+𝐶𝐵
0
> 0, 

and 

4𝐶 ≥ 𝑒−(𝑙3+𝑒3+𝜇)𝑡+𝐶𝐶
0
> 0, 

respectively, where 𝐶𝑆
0, 𝐶𝐴

0, 𝐶𝐵
0, and 𝐶𝐶

0 are constants of the integration. 

Hence, letting 𝐹 = min{𝐹𝐴, 𝐹𝐵, 𝐹𝐶} , where 

𝐹𝐴 = inf
𝑡∈[0,𝑇]

{4𝐴(𝑡)} , 𝐹𝐵 = inf
𝑡∈[0,𝑇]

{4𝐵(𝑡)} , 𝐹𝐶 = inf
𝑡∈[0,𝑇]

{4𝐶(𝑡)}, 

we get 

4𝐴 + 4𝐵 + 4𝐶 +
1

2
𝐾𝑢2(𝑡) ≥ 𝐹 +

1

2
𝐾𝑢2(𝑡) = 𝑑2 + 𝑑1|𝑢(𝑡)|

2, 

where 𝑑1 =
1

2
𝐾 and 𝑑2 = 𝐹. Besides this, if 𝐿 = 4𝐴 + 4𝐵 + 4𝐶 +

1

2
𝐾𝑢2(𝑡), 

then we have  
𝜕2𝐿

𝜕𝑢2
= 𝐾 > 0. This means that the integrand is a convex 

function and hence, part (d) is proven. Therefore, optimal control 𝑢∗ exists. 

As the existence of optimal control that will minimize the objective 

functional 𝐽 subject to the system with optimal control is proven, 

characterization of the optimal control will be given with Pontryagin’s 

maximum principle. 
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Characterization of Optimal Control. For the necessary conditions for 

optimal control Hamiltonian of the system is defined by 

𝐻 = 4𝐴 + 4𝐵 + 4𝐶 +
1

2
𝐾𝑢2(𝑡) +∑𝜆𝑖𝑓𝑖

4

𝑖=1

, 

where 

𝑓1 = 𝜋 − (𝑎 + 𝑝 + 𝑏)𝑆 + [𝑙1𝑢(𝑡) + 𝑒1]4𝐴 + [𝑙2𝑢(𝑡) + 𝑒2]4𝐵

+ [𝑙3𝑢(𝑡) + 𝑒3]4𝐶 − (ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶)𝑆 − 𝜇𝑆, 

𝑓2 = 𝑐1𝑎𝑆 + 𝑘1𝑝𝑆 − [𝑚1 + 𝑙1𝑢(𝑡) + 𝑒1]4𝐴 + ℎ14𝐴𝑆 − 𝑠14𝐴 − 𝜇4𝐴, 

𝑓3 = 𝑐2𝑎𝑆 + 𝑘2𝑝𝑆 + 𝑚14𝐴 − [𝑚2 + 𝑙2𝑢(𝑡) + 𝑒2]4𝐵 + ℎ24𝐵𝑆 + 𝑠14𝐴

− 𝑠24𝐵 − 𝜇4𝐵 , 

and 

𝑓4 = (1 − 𝑐1 − 𝑐2)𝑎𝑆 + (1 − 𝑘1 − 𝑘2)𝑝𝑆 + 𝑏𝑆 +𝑚24𝐵 − [𝑙3𝑢(𝑡) + 𝑒3]4𝐶

+ ℎ34𝐶𝑆 + 𝑠24𝐵 − 𝜇4𝐶 . 

 

Theorem 11. Given optimal control 𝑢∗ and solutions 𝑆∗, 4𝐴
∗ , 4𝐵

∗ , 4𝐶
∗  of the 

corresponding state system, there exist adjoint variables 𝜆1, 𝜆2, 𝜆3, 𝜆4 

satisfying 

𝑑𝜆1
𝑑𝑡

= 𝜆1(𝑎 + 𝑝 + 𝑏 + ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶 + 𝜇)

− 𝜆2(𝑐1𝑎 + 𝑘1𝑝 + ℎ14𝐴) − 𝜆3(𝑐2𝑎 + 𝑘2𝑝 + ℎ24𝐵)

− 𝜆4[(1 − 𝑐1 − 𝑐2)𝑎 + (1 − 𝑘1 − 𝑘2)𝑝 + 𝑏 + ℎ34𝐶], 

𝑑𝜆2
𝑑𝑡

= −1 − 𝜆1[𝑙1𝑢(𝑡) + 𝑒1 − ℎ1𝑆]

− 𝜆2[−𝑚1 − 𝑙1𝑢(𝑡) − 𝑒1 + ℎ1𝑆 − 𝑠1 − 𝜇] − 𝜆3(𝑚1 + 𝑠1), 

𝑑𝜆3
𝑑𝑡

= −1 − 𝜆1[𝑙2𝑢(𝑡) + 𝑒2 − ℎ2𝑆]

− 𝜆3[−𝑚2 − 𝑙2𝑢(𝑡) − 𝑒2 + ℎ2𝑆 − 𝑠2 − 𝜇] − 𝜆4(𝑚2 + 𝑠2), 

𝑑𝜆4
𝑑𝑡

= −1 − 𝜆1[𝑙3𝑢(𝑡) + 𝑒3 − ℎ3𝑆] − 𝜆4[−𝑙3𝑢(𝑡) − 𝑒3 + ℎ3𝑆 − 𝜇], 

and the transversality conditions 𝜆1(𝑇) = 𝜆2(𝑇) = 𝜆3(𝑇) = 𝜆4(𝑇) = 0. 

Furthermore, 

𝑢∗ = min{𝑚𝑎𝑥{0, 𝛥} , 1}, 

where 𝛥 =
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶 − 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]. 
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Proof. The Hamiltonian of the system is 

𝐻 = 4𝐴 + 4𝐵 + 4𝐶 +
1

2
𝐾𝑢2(𝑡) +∑𝜆𝑖𝑓𝑖

4

𝑖=1

= 4𝐴 + 4𝐵 + 4𝐶 +
1

2
𝐾𝑢2(𝑡)

+ 𝜆1{𝜋 − (𝑎 + 𝑝 + 𝑏)𝑆 + [𝑙1𝑢(𝑡) + 𝑒1]4𝐴

+ [𝑙2𝑢(𝑡) + 𝑒2]4𝐵 + [𝑙3𝑢(𝑡) + 𝑒3]4𝐶

− (ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶)𝑆 − 𝜇𝑆}

+ 𝜆2{𝑐1𝑎𝑆 + 𝑘1𝑝𝑆 − [𝑚1 + 𝑙1𝑢(𝑡) + 𝑒1]4𝐴 + ℎ14𝐴𝑆 − 𝑠14𝐴

− 𝜇4𝐴}

+ 𝜆3{𝑐2𝑎𝑆 + 𝑘2𝑝𝑆 + 𝑚14𝐴 − [𝑚2 + 𝑙2𝑢(𝑡) + 𝑒2]4𝐵

+ ℎ24𝐵𝑆 + 𝑠14𝐴 − 𝑠24𝐵 − 𝜇4𝐵} + 𝜆4{(1 − 𝑐1 − 𝑐2)𝑎𝑆

+ (1 − 𝑘1 − 𝑘2)𝑝𝑆 + 𝑏𝑆 +𝑚24𝐵 − [𝑙3𝑢(𝑡) + 𝑒3]4𝐶

+ ℎ34𝐶𝑆 + 𝑠24𝐵 − 𝜇4𝐶}. 

The adjoint system will be calculated with below formulas. 

𝑑𝜆1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆
,
𝑑𝜆2

𝑑𝑡
= −

𝜕𝐻

𝜕4𝐴
,
𝑑𝜆3

𝑑𝑡
= −

𝜕𝐻

𝜕4𝐵
 and  

𝑑𝜆4

𝑑𝑡
= −

𝜕𝐻

𝜕4𝐶
. 

That is, 

𝑑𝜆1
𝑑𝑡

= 𝜆1(𝑎 + 𝑝 + 𝑏 + ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶 + 𝜇)

− 𝜆2(𝑐1𝑎 + 𝑘1𝑝 + ℎ14𝐴) − 𝜆3(𝑐2𝑎 + 𝑘2𝑝 + ℎ24𝐵)

− 𝜆4[(1 − 𝑐1 − 𝑐2)𝑎 + (1 − 𝑘1 − 𝑘2)𝑝 + 𝑏 + ℎ34𝐶], 

𝑑𝜆2
𝑑𝑡

= −1 − 𝜆1[𝑙1𝑢(𝑡) + 𝑒1 − ℎ1𝑆]

− 𝜆2[−𝑚1 − 𝑙1𝑢(𝑡) − 𝑒1 + ℎ1𝑆 − 𝑠1 − 𝜇] − 𝜆3(𝑚1 + 𝑠1), 

𝑑𝜆3
𝑑𝑡

= −1 − 𝜆1[𝑙2𝑢(𝑡) + 𝑒2 − ℎ2𝑆]

− 𝜆3[−𝑚2 − 𝑙2𝑢(𝑡) − 𝑒2 + ℎ2𝑆 − 𝑠2 − 𝜇] − 𝜆4(𝑚2 + 𝑠2), 

and 

𝑑𝜆4
𝑑𝑡

= −1 − 𝜆1[𝑙3𝑢(𝑡) + 𝑒3 − ℎ3𝑆] − 𝜆4[−𝑙3𝑢(𝑡) − 𝑒3 + ℎ3𝑆 − 𝜇]. 

Moreover, from the optimality conditions, we have 

𝜕𝐻

𝜕𝑢
= 0 at 𝑢 = 𝑢∗. 
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That is, 

𝜕𝐻

𝜕𝑢
= 𝐾𝑢 + 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶) − 𝜆2𝑙14𝐴 − 𝜆3𝑙24𝐵 − 𝜆4𝑙34𝐶 = 0 

𝐾𝑢 = 𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶 − 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶) 

Hence, 

𝑢 =
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶 − 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)] = 𝛥. 

In other words, 

𝑢∗ = {

0,              𝑖𝑓 𝛥 ≤ 0,
𝛥,       𝑖𝑓 0 < 𝛥 < 1,
1,              𝑖𝑓 𝛥 ≥ 1.

 

Therefore, 

𝑢∗ = min{𝑚𝑎𝑥{0, 𝛥} , 1}, 

where 𝛥 =
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶 − 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]. 

 

Optimality System. In this section, the optimality system will be proposed 

with the proof of uniqueness of its solutions. The system consists of state 

equations with initial conditions, adjoint system and transversality 

conditions. The system is proposed below. 

𝑑𝑆

𝑑𝑡
= 𝜋 − (𝑎 + 𝑝 + 𝑏)𝑆

+ (𝑙14𝐴 + 𝑙24𝐵

+ 𝑙34𝐶)min {𝑚𝑎𝑥 {0,
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶

− 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]} , 1} + 𝑒14𝐴 + 𝑒24𝐵 + 𝑒34𝐶

− (ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶)𝑆 − 𝜇𝑆, 

𝑑4𝐴
𝑑𝑡

= 𝑐1𝑎𝑆 + 𝑘1𝑝𝑆 − (𝑚1 + 𝑒1)4𝐴

−min {𝑚𝑎𝑥 {0,
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶

− 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]} , 1} 𝑙14𝐴 + ℎ14𝐴𝑆 − 𝑠14𝐴 − 𝜇4𝐴, 
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𝑑4𝐵
𝑑𝑡

= 𝑐2𝑎𝑆 + 𝑘2𝑝𝑆 + 𝑚14𝐴 − (𝑚2 + 𝑒2)4𝐵

−min {𝑚𝑎𝑥 {0,
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶

− 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]} , 1} 𝑙24𝐵 + ℎ24𝐵𝑆 + 𝑠14𝐴

− 𝑠24𝐵 − 𝜇4𝐵, 

𝑑4𝐶
𝑑𝑡

= (1 − 𝑐1 − 𝑐2)𝑎𝑆 + (1 − 𝑘1 − 𝑘2)𝑝𝑆 + 𝑏𝑆 +𝑚24𝐵 − 𝑒34𝐶

−min {𝑚𝑎𝑥 {0,
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶

− 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]} , 1} 𝑙34𝐶 + ℎ34𝐶𝑆 + 𝑠24𝐵

− 𝜇4𝐶 , 

𝑑𝜆1
𝑑𝑡

= 𝜆1(𝑎 + 𝑝 + 𝑏 + ℎ14𝐴 + ℎ24𝐵 + ℎ34𝐶 + 𝜇)

− 𝜆2(𝑐1𝑎 + 𝑘1𝑝 + ℎ14𝐴) − 𝜆3(𝑐2𝑎 + 𝑘2𝑝 + ℎ24𝐵)

− 𝜆4[(1 − 𝑐1 − 𝑐2)𝑎 + (1 − 𝑘1 − 𝑘2)𝑝 + 𝑏 + ℎ34𝐶], 

𝑑𝜆2
𝑑𝑡

= −1 − 𝜆1(𝑒1 − ℎ1𝑆)

− 𝜆1𝑙1min {𝑚𝑎𝑥 {0,
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶

− 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]} , 1}

− 𝜆2(ℎ1𝑆 − 𝑚1 − 𝑒1 − 𝑠1 − 𝜇)

+ 𝜆2𝑙1min {𝑚𝑎𝑥 {0,
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶

− 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]} , 1} − 𝜆3(𝑚1 + 𝑠1), 

𝑑𝜆3
𝑑𝑡

= −1 − 𝜆1(𝑒2 − ℎ2𝑆)

− 𝜆1𝑙2min {𝑚𝑎𝑥 {0,
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶

− 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]} , 1}

− 𝜆3(ℎ2𝑆 − 𝑚2 − 𝑒2 − 𝑠2 − 𝜇)

+ 𝜆3𝑙2min {𝑚𝑎𝑥 {0,
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶

− 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]} , 1} − 𝜆4(𝑚2 + 𝑠2), 
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𝑑𝜆4
𝑑𝑡

= −1 − 𝜆1(𝑒3 − ℎ3𝑆)

− 𝜆1𝑙3min {𝑚𝑎𝑥 {0,
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶

− 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]} , 1} − 𝜆4(ℎ3𝑆 − 𝑒3 − 𝜇)

+ 𝜆4𝑙3min {𝑚𝑎𝑥 {0,
1

𝐾
[𝜆2𝑙14𝐴 + 𝜆3𝑙24𝐵 + 𝜆4𝑙34𝐶

− 𝜆1(𝑙14𝐴 + 𝑙24𝐵 + 𝑙34𝐶)]} , 1}, 

with 𝑆(0) = 𝑆0, 4𝐴(0) = 4𝐴,0, 4𝐵(0) = 4𝐵,0, 4𝐶(0) = 4𝐶,0, 𝜆1(𝑇) =

0, 𝜆2(𝑇) = 0, 𝜆3(𝑇) = 0 and 𝜆4(𝑇) = 0. 

 

Theorem 12. The function 

𝑢(𝑧) = min[max(𝑧, 𝑦), 𝑥] 

is Lipschitz continuous in 𝑧 with 𝑥 < 𝑦 for positive parameters 𝑥 and 𝑦. 

Proof. (Saad, Dynamics and Optimal Control of Cancer Cells, 2019) 

 

Theorem 13. For the proposed optimality system above, the bounded 

solutions are unique for sufficiently small 𝑇. 

Proof. Assume that there exist two different solutions, 

(𝑆, 4𝐴, 4𝐵, 4𝐶 , 𝜆1, 𝜆2, 𝜆3, 𝜆4) and (𝑆′, 4𝐴′, 4𝐵′, 4𝐶 ′, 𝜆1′, 𝜆2′, 𝜆3′, 𝜆4′), of the 

optimality system. Let 

𝑆 = 𝑒𝑟𝑡𝑥, 4𝐴 = 𝑒
𝑟𝑡𝑦, 4𝐵 = 𝑒𝑟𝑡𝑧, 4𝐶 = 𝑒

𝑟𝑡𝑤, 𝜆1 = 𝑒
−𝑟𝑡𝑞, 𝜆2 = 𝑒−𝑟𝑡𝑣, 𝜆3

= 𝑒−𝑟𝑡𝑛, 𝜆4 = 𝑒−𝑟𝑡𝑓 

and 

𝑆′ = 𝑒𝑟𝑡𝑥′, 4𝐴
′ = 𝑒𝑟𝑡𝑦′, 4𝐵

′ = 𝑒𝑟𝑡𝑧′, 4𝐶
′ = 𝑒𝑟𝑡𝑤′, 𝜆1

′ = 𝑒−𝑟𝑡𝑞′, 𝜆2
′

= 𝑒−𝑟𝑡𝑣′, 𝜆3
′ = 𝑒−𝑟𝑡𝑛′, 𝜆4

′ = 𝑒−𝑟𝑡𝑓′. 

Moreover, 

𝑢 = min {𝑚𝑎𝑥 {0,
1

𝐾
(𝑙1𝑣𝑦 + 𝑙2𝑛𝑧 + 𝑙3𝑓𝑤 − 𝑙1𝑞𝑦 − 𝑙2𝑞𝑧 − 𝑙3𝑞𝑤)} , 1} 

and 

𝑢′ = min {𝑚𝑎𝑥 {0,
1

𝐾
(𝑙1𝑣

′𝑦′ + 𝑙2𝑛
′𝑧′ + 𝑙3𝑓

′𝑤′ − 𝑙1𝑞
′𝑦′ − 𝑙2𝑞

′𝑧′

− 𝑙3𝑞
′𝑤′)} , 1}. 
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From the definition 1 and theorem 1, we get 

𝑢 − 𝑢′ ≤
1

𝐾
{𝑙1[𝑦(𝑣 − 𝑞) − 𝑦

′(𝑣′ − 𝑞′)] + 𝑙2[𝑧(𝑛 − 𝑞) − 𝑧
′(𝑛′ − 𝑞′)]

+ 𝑙3[𝑤(𝑓 − 𝑞) − 𝑤
′(𝑓′ − 𝑞′)]}. 

Substituting 𝑆 = 𝑒𝑟𝑡𝑥 and 𝑆′ = 𝑒𝑟𝑡𝑥′ into the first equation of the proposed 

optimality system, we obtain 

�̇� + 𝑟𝑥 = 𝜋𝑒−𝑟𝑡 − (𝑎 + 𝑝 + 𝑏 + 𝜇)𝑥 + [𝑙1𝑢 + 𝑒1]𝑦 + [𝑙2𝑢 + 𝑒2]𝑧

+ [𝑙3𝑢 + 𝑒3]𝑤 − (ℎ1𝑦 + ℎ2𝑧 + ℎ3𝑤)𝑥𝑒
𝑟𝑡, 

and 

�̇�′ + 𝑟𝑥′ = 𝜋𝑒−𝑟𝑡 − (𝑎 + 𝑝 + 𝑏 + 𝜇)𝑥′ + [𝑙1𝑢
′ + 𝑒1]𝑦

′ + [𝑙2𝑢
′ + 𝑒2]𝑧

′

+ [𝑙3𝑢
′ + 𝑒3]𝑤

′ − (ℎ1𝑦
′ + ℎ2𝑧

′ + ℎ3𝑤
′)𝑥′𝑒

𝑟𝑡
. 

Similarly, substituting 𝜆1 = 𝑒−𝑟𝑡𝑞 and 𝜆1
′ = 𝑒−𝑟𝑡𝑞′ into the fifth equation of 

the proposed system, we get 

�̇� − 𝑟𝑞 = (𝑎 + 𝑝 + 𝑏 + 𝜇)𝑞 + (𝑞 − 𝑣)ℎ1𝑦𝑒
𝑟𝑡 + (𝑞 − 𝑛)ℎ2𝑧𝑒

𝑟𝑡 + (𝑞

− 𝑓)ℎ3𝑤𝑒
𝑟𝑡 − (𝑐1𝑎 + 𝑘1𝑝)𝑣 − (𝑐2𝑎 + 𝑘2𝑝)𝑛

− [(1 − 𝑐1 − 𝑐2)𝑎 + (1 − 𝑘1 − 𝑘2)𝑝 + 𝑏]𝑓 

and 

�̇�′ − 𝑟𝑞′ = (𝑎 + 𝑝 + 𝑏 + 𝜇)𝑞′ + (𝑞′ − 𝑣′)ℎ1𝑦
′𝑒𝑟𝑡 + (𝑞′ − 𝑛′)ℎ2𝑧

′𝑒𝑟𝑡

+ (𝑞′ − 𝑓′)ℎ3𝑤
′𝑒𝑟𝑡 − (𝑐1𝑎 + 𝑘1𝑝)𝑣

′ − (𝑐2𝑎 + 𝑘2𝑝)𝑛
′

− [(1 − 𝑐1 − 𝑐2)𝑎 + (1 − 𝑘1 − 𝑘2)𝑝 + 𝑏]𝑓
′. 

Taking the difference between the equations of 𝑥 and 𝑥′, multiplying it by 

𝑥 − 𝑥′ and then integrating from 0 to 𝑇, we obtain 
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1

2
[𝑥(𝑇) − 𝑥′(𝑇)]2 + (𝑟 + 𝑎 + 𝑝 + 𝑏 + 𝜇)∫(𝑥 − 𝑥′)2𝑑𝑡

𝑇

0

= 𝑒1∫(𝑥 − 𝑥
′)(𝑦 − 𝑦′)𝑑𝑡

𝑇

0

+ 𝑒2∫(𝑥 − 𝑥
′)(𝑧 − 𝑧′)𝑑𝑡

𝑇

0

+ 𝑙1∫(𝑥 − 𝑥
′)(𝑢𝑦 − 𝑢′𝑦′)𝑑𝑡

𝑇

0

+ 𝑙2∫(𝑥 − 𝑥
′)(𝑢𝑧 − 𝑢′𝑧′)𝑑𝑡

𝑇

0

+ 𝑙3∫(𝑥 − 𝑥
′)(𝑢𝑤 − 𝑢′𝑤′)𝑑𝑡

𝑇

0

−∫𝑒𝑟𝑡(𝑥 − 𝑥′)[ℎ1(𝑥𝑦 − 𝑥
′𝑦′) + ℎ2(𝑥𝑧 − 𝑥

′𝑧′)

𝑇

0

+ ℎ3(𝑥𝑤 − 𝑥
′𝑤′)]𝑑𝑡. 

In the same manner, taking the difference between the equations of 𝑞 and 𝑞′, 

multiplying it by 𝑞 − 𝑞′ and then integrating from 0 to 𝑇, we get 

1

2
[𝑞(0) − 𝑞′(0)]2 − (𝑟 + 𝑎 + 𝑝 + 𝑏 + 𝜇)∫(𝑞 − 𝑞′)2𝑑𝑡

𝑇

0

= (𝑐1𝑎 + 𝑘1𝑝)∫(𝑞 − 𝑞
′)(𝑣 − 𝑣′)𝑑𝑡

𝑇

0

+ (𝑐2𝑎 + 𝑘2𝑝)∫(𝑞 − 𝑞
′)(𝑛 − 𝑛′)𝑑𝑡

𝑇

0

+ [(1 − 𝑐1 − 𝑐2)𝑎 + (1 − 𝑘1 − 𝑘2)𝑝

+ 𝑏]∫(𝑞 − 𝑞′)(𝑓 − 𝑓′)𝑑𝑡

𝑇

0

+ ℎ1∫𝑒
𝑟𝑡(𝑞 − 𝑞′)[𝑦(𝑞 − 𝑣) − 𝑦′(𝑞′ − 𝑣′)]𝑑𝑡

𝑇

0

+ ℎ2∫𝑒
𝑟𝑡(𝑞 − 𝑞′)[𝑧(𝑞 − 𝑛) − 𝑧′(𝑞′ − 𝑛′)]𝑑𝑡

𝑇

0

+ ℎ3∫𝑒
𝑟𝑡(𝑞 − 𝑞′)[𝑤(𝑞 − 𝑓) − 𝑤′(𝑞′ − 𝑓′)]𝑑𝑡

𝑇

0

. 
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Similar equations are obtained for 4𝐴 and 4𝐴′, 4𝐵 and 4𝐵′, 4𝐶  and 4𝐶′, 𝜆2 and 

𝜆2′, 𝜆3 and 𝜆3′, and 𝜆4 and 𝜆4′. Afterwards, upper bounds / estimates on the 

right-hand side of all eight integral equations are computed as below. For the 

compartment 𝑆, for example, we have 

1

2
[𝑥(𝑇) − 𝑥′(𝑇)]2 + (𝑟 + 𝑎 + 𝑝 + 𝑏 + 𝜇)∫(𝑥 − 𝑥′)2𝑑𝑡

𝑇

0

= 𝑒1∫(𝑥 − 𝑥
′)(𝑦 − 𝑦′)𝑑𝑡

𝑇

0

+ 𝑒2∫(𝑥 − 𝑥
′)(𝑧 − 𝑧′)𝑑𝑡

𝑇

0

+ 𝑙1∫(𝑥 − 𝑥
′)(𝑢𝑦 − 𝑢′𝑦

′
)𝑑𝑡

𝑇

0

+ 𝑙2∫(𝑥 − 𝑥
′)(𝑢𝑧 − 𝑢′𝑧′)𝑑𝑡

𝑇

0

+ 𝑙3∫(𝑥 − 𝑥
′)(𝑢𝑤 − 𝑢′𝑤′)𝑑𝑡

𝑇

0

−∫𝑒𝑟𝑡(𝑥 − 𝑥′)[ℎ1(𝑥𝑦 − 𝑥
′𝑦′) + ℎ2(𝑥𝑧 − 𝑥

′𝑧′)

𝑇

0

+ ℎ3(𝑥𝑤 − 𝑥
′𝑤′)]𝑑𝑡 
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≤ 𝐸1∫[(𝑥 − 𝑥
′)2 + (𝑦 − 𝑦′)2]𝑑𝑡

𝑇

0

+ 𝐸2∫[(𝑥 − 𝑥
′)2 + (𝑧 − 𝑧′)2]𝑑𝑡

𝑇

0

+ 𝐿1∫[(𝑥 − 𝑥
′)2 + (𝑦 − 𝑦′)2 + (𝑢 − 𝑢′)2]𝑑𝑡

𝑇

0

+ 𝐿2∫[(𝑥 − 𝑥
′)2 + (𝑧 − 𝑧′)2 + (𝑢 − 𝑢′)2]𝑑𝑡

𝑇

0

+ 𝐿3∫[(𝑥 − 𝑥
′)2 + (𝑤 − 𝑤′)2 + (𝑢 − 𝑢′)2]𝑑𝑡

𝑇

0

+ 𝐻1𝑒
𝑟𝑇∫[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2]𝑑𝑡

𝑇

0

+ 𝐻2𝑒
𝑟𝑇∫[(𝑥 − 𝑥′)2 + (𝑧 − 𝑧′)2]𝑑𝑡

𝑇

0

+ 𝐻3𝑒
𝑟𝑇∫[(𝑥 − 𝑥′)2 + (𝑤 − 𝑤′)2]𝑑𝑡

𝑇

0

, 

where 𝐸1, 𝐸2, 𝐿1, 𝐿2, 𝐿3, 𝐻1, 𝐻2 and 𝐻3 depends on the upper bounds and 

coefficients of the variables 𝑥, 𝑦, 𝑧 and 𝑤. In a similar way, we obtain the 

following inequality for the variable 𝑞. 
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1

2
[𝑞(0) − 𝑞′(0)]2 − (𝑟 + 𝑎 + 𝑝 + 𝑏 + 𝜇)∫(𝑞 − 𝑞′)2𝑑𝑡

𝑇

0

= (𝑐1𝑎 + 𝑘1𝑝)∫(𝑞 − 𝑞
′)(𝑣 − 𝑣′)𝑑𝑡

𝑇

0

+ (𝑐2𝑎 + 𝑘2𝑝)∫(𝑞 − 𝑞
′)(𝑛 − 𝑛′)𝑑𝑡

𝑇

0

+ [(1 − 𝑐1 − 𝑐2)𝑎 + (1 − 𝑘1 − 𝑘2)𝑝

+ 𝑏]∫(𝑞 − 𝑞′)(𝑓 − 𝑓′)𝑑𝑡

𝑇

0

+ ℎ1∫𝑒
𝑟𝑡(𝑞 − 𝑞′)[𝑦(𝑞 − 𝑣) − 𝑦′(𝑞′ − 𝑣′)]𝑑𝑡

𝑇

0

+ ℎ2∫𝑒
𝑟𝑡(𝑞 − 𝑞′)[𝑧(𝑞 − 𝑛) − 𝑧′(𝑞′ − 𝑛′)]𝑑𝑡

𝑇

0

+ ℎ3∫𝑒
𝑟𝑡(𝑞 − 𝑞′)[𝑤(𝑞 − 𝑓) − 𝑤′(𝑞′ − 𝑓′)]𝑑𝑡

𝑇

0

 

≤ 𝐻1𝑒
𝑟𝑇∫[(𝑞 − 𝑞′)2 + (𝑣 − 𝑣′)2 + (𝑦 − 𝑦′)2]𝑑𝑡

𝑇

0

+ 𝐻2𝑒
𝑟𝑇∫[(𝑞 − 𝑞′)2 + (𝑛 − 𝑛′)2 + (𝑧 − 𝑧′)2]𝑑𝑡

𝑇

0

+ 𝐻3𝑒
𝑟𝑇∫[(𝑞 − 𝑞′)2 + (𝑤 − 𝑤′)2 + (𝑓 − 𝑓′)2]𝑑𝑡

𝑇

0

+ 𝐴∫[(𝑞 − 𝑞′)2 + (𝑣 − 𝑣′)2]𝑑𝑡

𝑇

0

+ 𝐵∫[(𝑞 − 𝑞′)2 + (𝑛 − 𝑛′)2]𝑑𝑡

𝑇

0

+ 𝐶∫[(𝑞 − 𝑞′)2 + (𝑓 − 𝑓′)2]𝑑𝑡

𝑇

0

, 
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where 𝐻1, 𝐻2, 𝐻3, 𝐴, 𝐵 and 𝐶 depends on the upper bounds and coefficients 

of the variables 𝑞, 𝑣, 𝑛, 𝑓, 𝑥, 𝑦, 𝑧 and 𝑤. The same computations applied to the 

rest 6 integral equations. Afterwards, for proving the uniqueness, all of the 

eight integral inequalities are added side by side as below. 

1

2
[𝑥(𝑇) − 𝑥′(𝑇)]2 +

1

2
[𝑦(𝑇) − 𝑦′(𝑇)]2 +

1

2
[𝑧(𝑇) − 𝑧′(𝑇)]2

+
1

2
[𝑤(𝑇) − 𝑤′(𝑇)]2 +

1

2
[𝑞(0) − 𝑞′(0)]2

+
1

2
[𝑣(0) − 𝑣′(0)]2 +

1

2
[𝑛(0) − 𝑛′(0)]2

+
1

2
[𝑓(0) − 𝑓′(0)]2 + (𝑟 + 𝑎 + 𝑝 + 𝑏 + 𝜇)∫(𝑥 − 𝑥′)2𝑑𝑡

𝑇

0

+ (𝑟 + 𝑚1 + 𝑠1 + 𝑒1 + 𝜇)∫(𝑦 − 𝑦
′)2𝑑𝑡

𝑇

0

+ (𝑟 + 𝑚2 + 𝑠2 + 𝑒2 + 𝜇)∫(𝑧 − 𝑧
′)2𝑑𝑡

𝑇

0

+ (𝑟 + 𝑒3 + 𝜇)∫(𝑤 − 𝑤
′)2𝑑𝑡

𝑇

0

+ (−𝑟 − 𝑎 − 𝑝 − 𝑏 − 𝜇)∫(𝑞 − 𝑞′)2𝑑𝑡

𝑇

0

+ (−𝑟 −𝑚1 − 𝑠1 − 𝑒1 − 𝜇)∫(𝑣 − 𝑣
′)2𝑑𝑡

𝑇

0

+ (−𝑟 −𝑚2 − 𝑠2 + 𝑒2 − 𝜇)∫(𝑛 − 𝑛)
2𝑑𝑡

𝑇

0

+ (−𝑟 − 𝑒3 − 𝜇)∫(𝑓 − 𝑓
′)2𝑑𝑡

𝑇

0
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≤ 𝐴0∫(𝑓 − 𝑓
′)2𝑑𝑡

𝑇

0

+ 𝐴1∫[(𝑥 − 𝑥
′)2 + (𝑦 − 𝑦′)2 + (𝑞 − 𝑞′)2 + (𝑣 − 𝑣′)2]𝑑𝑡

𝑇

0

+ 𝐴2∫[(𝑥 − 𝑥
′)2 + (𝑧 − 𝑧′)2 + (𝑞 − 𝑞′)2 + (𝑛 − 𝑛′)2]𝑑𝑡

𝑇

0

+ 𝐴3∫[(𝑥 − 𝑥
′)2 + (𝑦 − 𝑦′)2 + (𝑢 − 𝑢′)2 + (𝑞 − 𝑞′)2

𝑇

0

+ (𝑣 − 𝑣′)2]𝑑𝑡

+ 𝐴4∫[(𝑥 − 𝑥
′)2 + (𝑧 − 𝑧′)2 + (𝑢 − 𝑢′)2 + (𝑞 − 𝑞′)2

𝑇

0

+ (𝑛 − 𝑛′)2]𝑑𝑡

+ 𝐴5∫[(𝑥 − 𝑥
′)2 + (𝑤 − 𝑤′)2 + (𝑢 − 𝑢′)2 + (𝑞 − 𝑞′)2

𝑇

0

+ (𝑓 − 𝑓′)2]𝑑𝑡

+ 𝐴6𝑒
𝑟𝑇∫[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑞 − 𝑞′)2

𝑇

0

+ (𝑣 − 𝑣′)2]𝑑𝑡

+ 𝐴7𝑒
𝑟𝑇∫[(𝑥 − 𝑥′)2 + (𝑧 − 𝑧′)2 + (𝑞 − 𝑞′)2

𝑇

0

+ (𝑛 − 𝑛′)2]𝑑𝑡

+ 𝐴8𝑒
𝑟𝑇∫[(𝑥 − 𝑥′)2 + (𝑤 − 𝑤′)2 + (𝑞 − 𝑞′)2

𝑇

0

+ (𝑓 − 𝑓′)2]𝑑𝑡

+ 𝐴9∫[(𝑦 − 𝑦
′)2 + (𝑧 − 𝑧′)2 + (𝑞 − 𝑞′)2 + (𝑛 − 𝑛′)2]𝑑𝑡

𝑇

0

+ 𝐴10∫[(𝑥 − 𝑥
′)2 + (𝑤 − 𝑤′)2 + (𝑞 − 𝑞′)2

𝑇

0

+ (𝑓 − 𝑓′)2]𝑑𝑡
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+ 𝐴11∫[(𝑧 − 𝑧
′)2 + (𝑤 −𝑤′)2 + (𝑛 − 𝑛′)2

𝑇

0

+ (𝑓 − 𝑓′)2]𝑑𝑡 + 𝐴12∫[(𝑞 − 𝑞
′)2 + (𝑓 − 𝑓′)2]𝑑𝑡

𝑇

0

, 

where 𝐴𝑖’s, 𝑖 = 0,… , 12, depends on the coefficients and upper bounds of 

the system’s variables. Introducing positivity of solutions of the variables and 

calculating at both initial and final time the below inequality is obtained with 

necessary simplifications. 

(𝑟 − 𝑍 − 𝑍′𝑒2𝑟𝑇)∫[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2 + (𝑤 − 𝑤′)2
𝑇

0

+ (𝑢 − 𝑢′)2 + (𝑞 − 𝑞′)2 + (𝑣 − 𝑣′)2 + (𝑛 − 𝑛′)2

+ (𝑓 − 𝑓′)2]𝑑𝑡 ≤ 0. 

Here, 𝑍 and 𝑍′ are dependent coefficients and they depend on the solutions 

of variables 𝑥, 𝑦, 𝑧, 𝑤, 𝑞, 𝑣, 𝑛 and 𝑓. It is obvious that the integrand is always 

non-negative. Hence, if 𝑟 − 𝑍 − 𝑍′𝑒2𝑟𝑇 > 0, then the integrand should be 

zero. Now, if we check the sign of (𝑟 − 𝑍 − 𝑍′𝑒2𝑟𝑇), we have 

ln (
𝑟 − 𝑍

𝑍′
) > 2𝑟𝑇, 

since the natural logarithm function is and increasing function. Hence, 𝑟 >

𝑍 + 𝑍′ and 

𝑇 <
1

2𝑟
ln (

𝑟 − 𝑍

𝑍′
). 

It is obvious that 𝑟 − 𝑍 − 𝑍′𝑒2𝑟𝑇 > 0 always hold. As a result, we get 

𝑥 = 𝑥′, 𝑦 = 𝑦′, 𝑧 = 𝑧′, 𝑤 = 𝑤′, 𝑞 = 𝑞′, 𝑣 = 𝑣′, 𝑛 = 𝑛′, and 𝑓 = 𝑓′. 

Therefore, for a small time, the system of optimal has a unique solution. 

 

Numerical Simulations and Results 
 

In Chapter III, the distribution of the population is presented in Figure 1. In 

this section, the numerical simulations of the model with optimal control are 

presented. The effect of control function on the state variables 4𝐴, 4𝐵 and 4𝐶  are 

emphasized in Figure 13, Figure 14 and Figure 15 the trend of control function 𝑢 is 

given in Figure 16 and the analysis of control cost is presented in Figure 17. 
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Figure 13 

The Distribution of BI-RADS 4A Diagnosed Patients with Control 

 

 

Figure 14 

The Distribution of BI-RADS 4B Diagnosed Patients with Control 
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Figure 15 

The Distribution of BI-RADS 4C Diagnosed Patients with Control 

 

 

Figure 16 

Control Function 
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Figure 17 

Control Cost Analysis 

 

 In Figure 13, Figure 14 and Figure 15, the expected trend of BI-RADS 4A, 

BI-RADS 4B, BI-RADS 4C diagnosed patients are presented, respectively. As can 

be seen from the Figure 13, a huge decline is expected to happen in a really short 

time when the control is applied. With the use of control, there will be an increase 

in a short time in BI-RADS 4B diagnosed patients. However, after a while, a 

decrease will be happened in the compartment if the control continues to be applied. 

Lastly, in the use of control, there will be an enormous decrease in BI-RADS 4C 

diagnosed patients which has the highest percentage of cancer risk in BI-RADS 4 

subcategories. The Figure 16 reveals the nature of control function in time. It 

represents the dosage that should be used for achieving the desired aim. As it is 

clear, control should be applied with lower dosages in time which reduces the side 

effects of control (if it has any). The objective functional J is calculated by 

integrating the control cost and the number of individuals in the BI-RADS 4A, BI-

RADS 4B, and BI-RADS 4C categories over time. It serves as a quantitative 

measure of the overall performance of the optimal control system and the efficacy 

of control strategies. The function allows for the comparison of different control 

interventions and aids in optimizing control strategies to reduce the number of 

suspicious BI-RADS 4 diagnoses while considering the associated control cost (as 

shown in Figure 16 and Figure 17). The control cost analysis plot depicted in Figure 
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17 illustrates the cost associated with implementing control strategies over time. By 

examining this plot, healthcare providers can assess the efficiency and feasibility of 

different control measures in minimizing the progression of breast cancer. 

To conclude, from the Figure 1 in Chapter III, we observed that an increase 

is expected in BI-RADS 4B and BI-RADS 4C diagnosed patients in the absence of 

control. However, when the control is applied, a reduction is foreseen in all 

diagnosis compartments. This proves the effectiveness of control in BI-RADS 4 

subcategories. 
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CHAPTER V 
 

Findings and Discussion 
 
 

In this thesis, a compartmental mathematical model is constructed for the analysis of 

BI-RADS 4 diagnosis in the population of North Cyprus. In this regard, the total 

population is separated into 4 compartments/state variables which are susceptible 

individuals (𝑆), individuals diagnosed with BI-RADS 4A (4𝐴), individuals 

diagnosed with BI-RADS 4B (4𝐵) and individuals diagnosed with BI-RADS 4C 

(4𝐶). In the analysis of this model, 3 equilibrium points are found; diagnose-free 

equilibrium point (𝐸0), BI-RADS 4B&BI-RADS 4C free equilibrium point (𝐸1) and 

endemic equilibrium point (𝐸2). The important side and strength of these 

equilibrium points is it is proved that all of them are globally asymptotically stable 

under some conditions. In other words, it is proved that it is possible to reach these 

equilibrium points and stay as close as necessary under the mentioned conditions. 

In the analysis of the proposed model, 3 different basic reproduction numbers are 

found which are belong to 3 diagnosis compartments, 4𝐴, 4𝐵 and 4𝐶 . Sensitivity 

analysis is applied to the parameters of obtained basic reproduction numbers to 

determine the effective parameters on the diagnosis of BI-RADS 4 subcategories. 

With the constructed model, it is declared that BI-RADS 4A category will become 

extinct and so, BI-RADS 4 category is going to be separated into 2 categories, in 

time. Therefore, a decrease in the range of cancer probability for BI-RADS 4 is 

expected (Figure 1). However, existence of BI-RADS 4B and BI-RADS 4C 

diagnosis is expected and moreover, an increase is observed especially in BI-RADS 

4C diagnosed patients. 

As it is expected in the existence of any disease, increase in the recruitment rate in 

population results in a rise in BI-RADS 4 subcategories which is specified in 

sensitivity analysis calculations. Both sensitivity analysis calculations and numerical 

simulations (i.e., Table 9, Table 10, Table 11, Figure 2, Figure 3 and Figure 4) 

emphasize the impact of lactation rate on BI-RADS 4 diagnosis. It is revealed that 

rise in the rate of lactation causes a decrease in the diagnosis compartments. There 

exist papers that suggest longer breastfeeding duration / active lactation for the 

prevention of breast cancer (Tan, et al., 2018; Qiu, Zhong, Hu, & Wu, 2022). The 

effect of menopause is discussed in papers Park et al. (2020) and Kim et al. (2020). 
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In these works, the authors had indicated that there exists a relation between 

menopause and breast cancer/BI-RADS categories. The results of this thesis revealed 

that menopause at early age has a significant effect on BI-RADS 4 subcategories so 

that it reduces the risk of diagnosis of all BI-RADS 4 subcategories (stated in 

computational and visual way in Table 9, Table 10, Table 11, Figure 5, Figure 6 and 

Figure 7). On the other hand, as illustrated in Figure 12 and Table 9 – 11, late 

menopause increases the risk of breast cancer. So, increase in the rate of late 

menopause decreases the number of BI-RADS 4A&BI-RADS 4B diagnosed patients 

while increasing the number of BI-RADS 4C diagnosed patients since it has the 

highest percentage of cancer risk in BI-RADS 4 subcategories. Computations of 

sensitivity indices indicate that increase in the parameters related with family history 

will cause an increase in all diagnosis compartments 4𝐴, 4𝐵 and 4𝐶  in time. These 

computations are supported by Table 9, Table 10, Table 11, Figure 8, Figure 9 and 

Figure 10. The authors of Colditz et al. (1996) and Pharoah et al. (1997) also had 

declared the importance and effect of family history on breast cancer. In the works 

Terry and Rohan (2002) and Lilleborge et al. (2021), the results showed that smoking 

increase the risk of breast cancer. The results of the sensitivity analysis in this thesis 

also revealed the importance smoking on the risk of breast cancer. The analysis 

showed that increase in 𝑠1, will lead a decrease in BI-RADS 4A patients and 

similarly, increase in the parameter 𝑠2 will cause a decline BI-RADS 4B patients. It 

is indicated that these decreases happen due to the increasing risk of cancer. In other 

words, increase in these parameters causes an increase in other BI-RADS categories 

that have higher chance of cancer risk (given in Table 9, Table 10 and Table 11). 

This result is shown in Figure 11; increase in smoking will rise the number of BI-

RADS 4C diagnosed patients. In the literature, many studies including Kvåle and 

Heuch (1988), Titus-Ernstoff et al. (1998) and Orgéas et al. (2008) indicated that 

there is no certain relation between irregular menstruation and breast cancer risk. 

However, the results of this thesis revealed that irregular menstruation increases the 

probability of cancer risk and hence, it causes a decline in BI-RADS 4A&BI-RADS 

4B diagnosed patients and an increase in BI-RADS 4C diagnosed patients. The 

impact of age on breast cancer diagnosis and treatment is analyzed in many works 

including Greenfield et al. (1987) and Adami et al. (1986). Both of these studies 

showed that the breast cancer can be treated more easier in younger ages. The results 

of this thesis also showed that in older ages the risk of BI-RADS 4 diagnosis 



 
  111 
 
 
   

decreases since the cancer risk is higher at these ages (Table 9, Table 10 and Table 

11). In the literature, many studies concluded that having bloody nipple discharges 

and palpable masses in breast may not be malign; however, increase in them may 

turn to be a breast cancer and it is an important sign (Donegan, 1992; Klein, 2005; 

Salzman, Fleegle, & Tully, 2012; Ahmed, Ali, & Almobarak, 2010; Pruthi, 2001; 

Chen, et al., 2012; Varga, Romero, & Chlebowski, 2002). In this thesis, the 

computations of sensitivity analysis showed that increase in bloody nipple discharge 

and palpable masses in the structure of breast definitely increases the risk of breast 

cancer. Hence, individuals’ diagnosis may turn from BI-RADS 4 subcategories to 

upper BI-RADS categories with higher cancer risk. In this regard, further 

investigations, screenings and operations are recommended in this case. Also, 

increase in the natural death rate will cause a decrease in the population and hence, 

BI-RADS 4 subcategories’ diagnosis will be reduced (Table 9, Table 10 and Table 

11). 

In the continuation of the thesis, the model is improved by introducing control 

function with the use of optimal control theory. The control function 𝑢 is selected by 

analyzing the results of sensitivity analysis. In other words, one of the applicable 

effective parameters that is found in the sensitivity analysis is chosen to be the 

control. Hence, due to the effectiveness of lactation rate it is seen that high lactation 

rate/breastfeeding can be used as a control since it can be applied to the real life. The 

need of control comes from the continuation of BI-RADS 4 subcategories’ diagnosis 

given in Figure 1. 

Concordantly, control function 𝑢 is described with “drug for increasing the lactation 

rate or longtime breastfeeding” and added to the constructed model in Chapter III. 

Necessary theorems including existence and uniqueness of control function with 

Pontryagin’s Maximum Principle are provided and proved in the following sections. 

The solutions of the proposed optimal control problem are presented in Figure 13, 

Figure 14 and Figure 15. 

In the literature, although there are some studies suggesting that longer duration of 

breastfeeding may increase the risk of breast cancer like Zhou et al. (2015), most of 

the studies including Brinton et al. (1995), Lipworth et al. (2000), Lord et al. (2008), 

Bernier et al. (2000), Gajalakshmi et al. (2009) and Anstey et al. (2017) had revealed 

that high lactation rate and longer duration of breastfeeding decreases the risk of 

breast cancer. The results of this thesis also indicated that prolonged breastfeeding 
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and high lactation rate can be a control measure that decreases the number of patients 

in BI-RADS 4 subcategories. Figure 13, Figure 14 and Figure 14 are presented to 

show the expected trends of BI-RADS 4A, BI-RADS 4B, BI-RADS 4C diagnosed 

patients, respectively. According to the Figure 13, a meaningful decrease is expected 

to happen in a very short time with the implementation of the control. When the 

control is applied to the BI-RADS 4B patients, there will be an increase in the 

diagnosis for a short time; however, after a while, a decrease will be happened in the 

compartment if the control continues to be applied. Lastly, application of control will 

cause an enormous decrease in BI-RADS 4C diagnosed patients which has the 

highest percentage of cancer risk in BI-RADS 4 subcategories. The Figure 16 

indicates the nature of control function in time. It represents the dosage that should 

be used for achieving the desired aim. As it is clear, control should be applied with 

lower dosages in time which reduces the side effects of control (if it has any). Figure 

17 is presented for the analysis of control cost and it illustrates the cost related with 

implementing control strategies over time. With the help of this figure, healthcare 

providers can assess the effectiveness and feasibility of different control measures in 

minimizing the diagnosis of BI-RADS 4. To sum up, from the Figure 1 in Chapter 

III, it is observed that an increase is expected in BI-RADS 4B and BI-RADS 4C 

diagnosed patients in the absence of control. However, when the control is applied, 

a reduction is foreseen in all diagnosis compartments. This emphasizes the 

effectiveness of introduced control in the diagnosis of BI-RADS 4 subcategories. 
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CHAPTER VI 

Conclusion and Recommendations 

 

In this thesis, the diagnosis of BI-RADS 4 subcategories is evaluated. In this regard, 

a mathematical model is constructed by introducing related parameters according to 

the data. For determining the most effective parameters on the diagnosis of BI-RADS 

4 subcategories, sensitivity analysis applied to the observed basic reproduction 

numbers 𝑅0,𝐴, 𝑅0,𝐵, and 𝑅0,𝐶, which belongs to each subcategory. As a result of this 

analysis, it is concluded that high lactation rate and early menopause can be helpful 

and applicable strategies for reducing the risk of BI-RADS 4 diagnosis and hence 

breast cancer. Unfortunately, it is observed that having a family history increases the 

risk of diagnosis of BI-RADS 4. Moreover, other parameters including increase in 

age, palpable masses and smoking rate, existence of bloody nipple discharge, and 

late menopause causes individuals to be diagnosed with higher BI-RADS categories 

and so increases the risk of breast cancer. Furthermore, the constructed model 

revealed that with regular screenings, doctor checks and knowledge of effective 

parameters, BI-RADS 4 subcategories may be reduced into 2 subcategories with a 

narrower range of cancer risk. 

As high lactation rate is encountered as an effective parameter which can enable 

breast cancer, it is introduced to the constructed mathematical model as an optimal 

control strategy. Results of this strategy provide evidence that control measures 

targeting lactation rate and the duration of breastfeeding have a positive impact on 

managing the diagnosis of BI-RADS 4. These findings underscore the significance 

of promoting breastfeeding practices as a potential strategy for controlling breast 

cancer and highlight the ongoing need for support and encouragement of 

breastfeeding to alleviate the burden of the diagnosis and cancer. 

The presented study captures the diagnosis process of BI-RADS 4 which is a part of 

breast cancer and it emphasizes the importance of early diagnosis with regular 

screenings. In future, the study can be extended and higher BI-RADS categories can 

be added to the model to analyse the relationship between them and to prevent any 

transition to higher categories with higher risk of breast cancer. Furthermore, what 

can be done for the treatment of breast cancer can be studied including better and 

painless treatment conditions. Lately, it is announced by the Washington University 

that one of the breast cancer vaccines completed its Phase I trials. In this manner, 
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study of vaccine can be included into mathematical models for determining its 

effectiveness on patients. Besides, as a popular topic, the relationship between 

ovarian cancer and breast cancer can be examined to make significance inferences 

in future since they are found to be related according to some health care 

professionals. 
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