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Abstract 

 

A Fractional-Order Alcoholic Cardiomyopathy Epidemic Model with Neural 

Network Time Series 

Amilo, David Ikechukwu 

Supervisor: Assoc. Prof. Dr Bilgen Kaymakamzade 

PhD, Department of Mathematics 

September, 2023, 95 pages 

 

Alcohol consumption is a global problem with associated health risks. This study 

presents an extended fractional-order Alcoholic Cardiomyopathy (ACM) model 

incorporating optimal control and sensitivity analysis to understand disease dynamics 

and parameters for effective control measures. The numerical scheme used Levenberg 

Marquardt Algorithm (LMA) and Nelder-Mean Algorithm (NMA) with the predictor-

corrector method. Results showed effective control measures and sensitive parameters 

using the fractional operator approach. The proposed Caputo-type fractional-order 

mathematical model integrates a Neural Network time series for simulations with the 

world population classified into five categories. The model's existence and uniqueness 

were investigated through the Laplace transform approach, revealing locally and 

globally asymptotically stable equilibrium solutions. The Levenberg Marquardt 

Algorithm (LMA) Neural Network (NN) time series provided enhanced memory 

effect for possible prognosis. Simulations predicted an upsurge in the coming years 

with sensitive parameters revealed. Results suggest slowing down the recruitment rate 

of the alcoholic susceptible as the best approach to slow down disease spread. The 

ACM-LMA model provides a more realistic disease dynamics with high predictive 

accuracy when contrasted with other models in the literature. 

Key Words: mathematical modeling, Fractional Caputo Derivative, neural network, 

alcoholic cardiomyopathy, optimal control, sensitivity analysis. 
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Özet 
 

A Fractional-Order Alcoholic Cardiomyopathy Epidemic Model with Neural 

Network Time Series 

Amilo, David Ikechukwu 

Danışman: Assoc. Prof. Dr Bilgen Kaymakamzade 

PhD, Matematik Ana Bilim Dalı 

Eylül, 2023, 95 pages 

 

Tez, uzun süreli alkol kullanımına bağlı olarak kalp kaslarını etkileyen bir durum olan 

alkolik kardiyomiyopatinin yayılmasının modellenmesine yönelik yeni bir yaklaşım 

sunmaktadır. Çalışma, alkol tüketiminin vücut üzerindeki uzun vadeli etkilerini 

dikkate alarak, hastalığın yayılmasının karmaşık dinamiklerini yakalayan kesirli 

dereceli bir diferansiyel denklem modeli önermektedir. 

Önerilen model, geleneksel hesabı tam sayı olmayan derecelere genişleten bir 

matematik aracı olan kesirli hesap kullanılarak formüle edilmiştir. Kesirli dereceli 

model, hastalığın hafıza etkisini yakalar ve alkol bağımlılığının kalp üzerindeki uzun 

vadeli etkilerinin daha doğru bir şekilde temsil edilmesine olanak tanır. Çalışma aynı 

zamanda geçmiş verilere dayanarak hastalığın gelecekteki görülme sıklığını tahmin 

etmek için sinir ağı zaman serisi yaklaşımını da içeriyor. 

Önerilen model, belirli bir popülasyonda alkolik kardiyomiyopati görülme sıklığına 

ilişkin gerçek dünya verileri kullanılarak değerlendirilmektedir. Sonuçlar, modelin, 

gelecekteki insidans oranlarını tahmin etmede yüksek derecede doğrulukla, hastalık 

yayılımının doğru bir temsilini sağladığını göstermektedir. Çalışma aynı zamanda 

alkolik kardiyomiyopatinin yayılmasına katkıda bulunan önemli faktörleri ve bunların 

hastalık dinamikleri üzerindeki etkilerini de tanımlamaktadır. 

Genel olarak tez, salgın modellemeye ilişkin mevcut literatüre katkıda bulunmakta ve 

alkolik kardiyomiyopatinin yayılmasına ilişkin yeni bir bakış açısı sunmaktadır. 

Önerilen model, hastalığın altında yatan dinamiklere dair içgörü sağlıyor ve politika 

yapıcılara alkolik kardiyomiyopati görülme sıklığını azaltmaya yönelik etkili 

stratejiler geliştirmeleri için bir araç sunuyor. Çalışma aynı zamanda kesirli hesabın 

ve sinir ağı zaman serilerinin sağlık hizmetleri ve diğer alanlardaki karmaşık olayları 

modellemedeki potansiyelini de vurguluyor. 

Anahtar Kelimeler: matematiksel modelleme, Kesirli Caputo Türevi, sinir ağı, alkolik 

kardiyomiyopati, optimal control, duyarlılık analizi. 
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CHAPTER I 

Introduction 

 

Statement of the Problem 

Alcoholic cardiomyopathy (ACM) is a severe health condition that occurs due 

to excessive alcohol consumption. It is a form of dilated cardiomyopathy that affects 

the heart's pumping ability and can lead to heart failure, arrhythmias, and death 

(Lacovoni et.al 2010). Although the pathophysiology of ACM is not yet fully 

understood, recent studies have suggested that fractional calculus and neural network 

time series models could be useful in modeling the disease's spread and predicting its 

future trends (Heidari et.al 2022). 

Therefore, the problem addressed in this thesis is to develop a fractional-order 

alcoholic cardiomyopathy epidemic model with a neural network time series approach 

to investigate the dynamics of ACM in a population. The proposed model aims to 

incorporate the fractional-order calculus concept, which provides a more accurate 

representation of the disease's transmission dynamics, and the neural network time 

series approach, which can capture complex nonlinear relationships among variables 

and improve model accuracy. 

The thesis aims to answer the following research questions: 

1. How can fractional calculus concepts be used to develop an alcoholic 

cardiomyopathy epidemic model that captures the disease's transmission dynamics 

accurately? 

 

2. How can neural network time series models be incorporated into the proposed 

epidemic model to improve its predictive accuracy? 

 

3. What are the main factors that contribute to the spread of ACM, and how do they 

affect the disease's transmission dynamics? 

 

4. How effective is the proposed model in predicting the future trends of ACM, and 

how does it compare with existing models? 

By addressing these research questions, the thesis aims to provide valuable 

insights into the spread of ACM and develop an accurate model that can help healthcare 

professionals in developing appropriate intervention strategies to control and prevent 

the disease's spread. 
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Purpose of the Study 

The purpose of this thesis is to develop a novel mathematical model for 

alcoholic cardiomyopathy (ACM) transmission dynamics that incorporates fractional-

order calculus and neural network time series techniques. The proposed model aims to 

provide a more accurate representation of the disease's spread and to predict its future 

trends. 

The specific objectives of the study are as follows: 

1. To review the literature on ACM, fractional calculus, and neural network time series 

models to identify relevant concepts, theories, and methods for developing the 

proposed model. 

 

2. To develop a fractional-order alcoholic cardiomyopathy epidemic model that 

incorporates neural network time series techniques. 

 

3. To validate the proposed model using real-world ACM data and compare its 

performance with existing models. 

 

4. To identify the main factors that contribute to the spread of ACM and their impact 

on the disease's transmission dynamics. 

 

5. To evaluate the effectiveness of the proposed model in predicting the future trends 

of ACM and its potential applications for public health policy. 

The study's goal is to contribute to the understanding of ACM's transmission 

dynamics and to provide healthcare professionals with a more accurate tool for predicting 

and controlling the disease's spread. The proposed model's potential applications include 

informing public health policies, developing effective prevention strategies, and improving 

patient care. 

Research Questions/ Hypothesis 

Research Questions  

 

1. What are the key factors that influence the transmission dynamics of alcoholic 

cardiomyopathy (ACM)? 

 

2. Can the incorporation of fractional calculus concepts into an ACM epidemic model 

provide a more accurate representation of the disease's transmission dynamics? 

3. Can a neural network time series approach improve the predictive accuracy of the 

proposed ACM epidemic model? 

 

4. How does the proposed fractional-order ACM epidemic model with neural network 

time series compare with existing models in predicting the future trends of ACM? 
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5. What are the potential public health policy implications of the proposed model for 

controlling and preventing ACM? 

 

6. Is the proposed model generalizable to other diseases with similar transmission 

dynamics, and can it be used to inform public health policies for those diseases? 

Hypotheses 

1. The transmission dynamics of ACM are influenced by several key factors, including 

the frequency and intensity of alcohol consumption, the population size, and the 

effectiveness of control measures. 

 

2. The incorporation of fractional calculus concepts into an ACM epidemic model can 

improve its accuracy in representing the disease's transmission dynamics. 

 

3. The use of a neural network time series approach can improve the predictive 

accuracy of the proposed ACM epidemic model. 

 

4. The proposed fractional-order ACM epidemic model with neural network time 

series will outperform existing models in predicting the future trends of ACM. 

 

5. The proposed model can inform public health policies for controlling and 

preventing ACM by identifying effective control measures and intervention 

strategies. 

 

6. The proposed model is generalizable to other diseases with similar transmission 

dynamics, and it can be used to inform public health policies for those diseases. 

Significance of the Study 

Alcoholic cardiomyopathy (ACM) is a severe health condition that affects 

individuals with a history of excessive alcohol consumption, and it can lead to heart 

failure, arrhythmias, and death. Understanding the transmission dynamics of ACM is 

essential for developing effective prevention strategies, controlling the spread of the 

disease, and improving patient care. 

The proposed study's significance is threefold: 

Firstly, the study proposes a novel approach to model the spread of ACM by 

incorporating fractional-order calculus and neural network time series techniques. 

This model can provide a more accurate representation of the disease's transmission 

dynamics and improve the predictive accuracy of the model. The proposed model can 

be used as a tool to develop effective intervention strategies to control and prevent the 

spread of ACM. 
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Secondly, the proposed model can provide valuable insights into the dynamics 

of the ACM, identifying the main factors that contribute to the disease's transmission 

dynamics, and predicting future trends. These insights can help healthcare 

professionals develop appropriate intervention strategies and public health policies to 

control and prevent the spread of ACM. Furthermore, the model can be extended to 

other diseases with similar transmission dynamics, improving our understanding of 

these diseases and their spread. 

Lastly, the proposed model can provide clinicians with a more accurate tool 

for predicting the progression of ACM and improving patient care. The model can help 

clinicians identify individuals at high risk of developing ACM and develop 

personalized treatment plans to manage the disease's progression. 

In summary, the proposed study's significance lies in its potential to improve 

our understanding of the transmission dynamics of ACM, develop effective 

intervention strategies to control and prevent its spread, and improve patient care. The 

study's findings could have broader implications beyond ACM, as the proposed 

model's generalizability to other diseases with similar transmission dynamics could 

provide a valuable tool for healthcare professionals worldwide. Additionally, the 

study's insights into the main factors influencing ACM transmission dynamics can 

help inform public health policies and interventions aimed at reducing the disease's 

prevalence and improving patient outcomes. 

 

Limitations 

As with any research study, there are limitations to the proposed fractional-order 

alcoholic cardiomyopathy epidemic model with neural network time series. Some of 

the potential limitations of this study include: 

1. Data Availability: Data availability is a significant challenge for any disease modeling 

study. In this study, data availability and quality could impact the accuracy and 

reliability of the proposed model. 

 

2. Model Assumptions: The proposed model relies on certain assumptions about the 

underlying transmission dynamics of alcoholic cardiomyopathy, which may not fully 

capture the complexity of the disease. 

 

3. Parameter Estimation: The model's parameter estimation could be affected by the lack 

of precise data and uncertainties in the available data, which could limit the model's 

accuracy and applicability. 

 

4. Generalizability: Although the proposed model has potential applications for other 

diseases with similar transmission dynamics, its generalizability to other populations 

or settings may be limited. 



15 
 

 
 

 

5. Ethical Considerations: The proposed model's potential applications in predicting the 

progression of alcoholic cardiomyopathy raise ethical concerns regarding patient 

privacy and informed consent. 

Despite these limitations, the proposed model represents a significant contribution to 

the understanding of alcoholic cardiomyopathy transmission dynamics and provides a 

valuable tool for healthcare professionals to improve patient care and control the 

spread of the disease. Future research should address these limitations to further 

improve the accuracy and applicability of the proposed model. 
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CHAPTER II 

Literature Review 

 

Theoretical Framework 

Alcoholic Cardiomyopathy (ACM) is an alarming heart disease caused by excessive 

alcohol consumption throughout communities worldwide. To study and forecast this 

deadly ailment's spread behavior, this research implements Fractional Calculus & 

Mathematical Modeling methods while keeping precision at its core.  

The primary goal of our rigorous approach remains focused on building a dependable 

model explicitly designed for simulating ACM dynamics. Such a system will help us 

comprehend complex epidemic interactions that play out non-locally and have 

prolonged interaction periods between individuals across various stages of patient 

symptom timelines. We aim to achieve this by using an equation-based methodology 

formulated around Fractional-Order Differential Equations tuned towards long-term 

memory effects seen in ACM patients as compared against traditional short-memory 

mechanisms.  

Our proposed model also incorporates neural-network time-series application capable 

enough of improving the accuracy rate whilst representing the complex nature 

surrounding such a widespread outbreak like ACM accurately. Using historical data 

collected regarding ACM incidence & mortality rates allows us to train our neural 

network systematically while providing insights into future trends while assessing 

different prevention/intervention tactics' impact.  

Additionally, analyzing existing literature on fractional calculus coupled with 

previous research on epidemic modeling will further enrich our theoretical framework 

development process in terms of Stability Analysis, Numerical Analysis Concepts 

suited for epidemiology studies and more. Successfully combining mathematical 

modeling procedures with data-driven methodologies will lead to a comprehensively 

rigorous approach. Our future endeavors aim to inform effective intervention 

strategies focused on curbing ACM incidence & solving all related challenges 

associated with the disease. 

Definition of Terms 

Mathematical Models  

Mathematical modeling refers to the process of creating a mathematically based 

abstract description of a physical system. There are various types of mathematical 

models, including dynamical systems, statistical models, differential equations, and 

game theoretic models, among others. These different model categories may overlap, 

and a particular model may have various abstract structures. (Bender, E. A. 2000). 
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notes that mathematical models can be categorized as linear or nonlinear, static or 

dynamic, explicit or implicit, discreet or continuous, deterministic or probabilistic 

(stochastic), strategic or non-strategic, and deductive, inductive, or floating. 

 

SIR Models  

The SIR model is a fundamental mathematical model used to illustrate the 

spread of an infection within a population. It is a basic and widely used model that has 

served as a foundation for other models in epidemiological analysis. Initially proposed 

by Ronald Ross and William Hammer in the early 1900s, the model was later refined 

and developed by Kermack and Anderson Gray McKendrick between 1927 and 1933 

(Murray, 2003). The SIR model partitions the population into three compartments: 

Susceptible, Infected, and Removed, thus giving the model its name. This model is 

particularly useful for predicting the spread of infectious diseases transmitted from 

human to human and where recovery is limited (Earn et al., 2000). 

Recently, the application of the SIR model has expanded beyond traditional 

health epidemiology and into other fields such as marketing, informatics, sociology, 

and the economy (Rodrigues, 2016). 

The SIR model is given by:    

𝑑𝑠

𝑑𝑡
= −rsI , 

𝑑𝐼

𝑑𝑡
= rsI − aI , 

𝑑𝑅

𝑑𝑡
= aI , 

𝑑𝑠

𝑑𝑡
 + 

𝑑𝐼

𝑑𝑡
  + 

𝑑𝑅

𝑑𝑡
= 0, 

 

where, 

S(t) is the susceptible population, I(t) is the Infected population, R(t) is the 

Recovered population, 𝑟 > 0 is the rate of gain in the infective class, 𝑎 > 0 is the rate 

of removal of infective to the removed class, 
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with the condition: 

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁. 

The classical SIR model has been a foundation for the development of 

numerous other models, including but not limited to Susceptible-Infected-Susceptible 

(SIS) model (Harko, 2014), Maternally Derived Immunity-Susceptible-Infectious-

Recovered (MSIC) model, and Susceptible-Exposed-Infectious-Recovered (SEIR) 

model (Brauer, F. and Castillo-Chávez, C, 2001). 

Fractional Calculus 

The concept of fractional calculus can be traced back to 1695 when Leibniz, a 

renowned German mathematician and early contributor to classical calculus, first 

proposed it. Later, in 1730, L. Euler further developed this idea (J.Tenreiro Machado 

et al, 2011). Fractional calculus is an extension of traditional calculus that allows for 

fractional, irrational, or complex numbers to be used as orders of derivatives and 

integrals (I Podlubny, 1999). A well-known example of this is Legendre's symbol for 

the generalized factorial. 

𝐷α(𝑥𝑛) = 
Γ(𝑛+1)

Γ(𝑛+1−α)
 𝑥𝑛−α, 

 where α is the order of the derivative. 

Fractional Integral 

The fractional integral of order α > 0 of a function f: ℝ+ → ℝ is defined by 

𝐼αF (t) = 
1

Γ(α)
∫ (𝑡 − 𝑠)α−1
𝑡

0
g(s), 

where Γ(. ) is the gamma function. 

Caputo Derivative 

The general definition of the caputo derivative ıs defıned as: 

𝐷α𝑡 𝑓(𝑡) = {  

1

Γ(n−α)
∫ (𝑡 − 𝑠)𝑛−α−1
𝑡

0

𝑑𝑛𝑓(𝑠)

𝑑𝑠𝑛
𝑑𝑠, if n − 1 < α < 𝑛, 𝑛𝜖ℕ                        

𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
 ,   𝚤𝑓α = 𝑛, n𝜖ℕ                                                                                   

  

where α is the order of the derivative and it’s allowed to be a real or complex number. 



19 
 

 
 

Riemann-Liouville Derivative 

The general definition of the Riemann-Liouville derivative ıs defıned as: 

𝐷α𝑡 𝑓(𝑡)=

{  

1

Γ(n−α)

𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
∫ (𝑡 − 𝑠)𝑛−α−1
𝑡

0
𝑓(𝑠)𝑑𝑠, if n − 1 < α < 𝑛, 𝑛𝜖ℕ                        

𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
 ,   𝚤𝑓 α = 𝑛, n𝜖ℕ                                                                                   

 

The Laplace transform (LT) of the Caputo fractional derivative is given by: 

ℒ{ D𝑡
α

0
𝑐 𝑁(𝑡)} = 𝑆𝛼𝑁(𝑆) ∑ 𝑆𝛼−𝑚−1𝑁(𝑚)(0)

𝑛−1

𝑚=0

,                     0 < 𝑛 − 1 < 𝛼 ≤ 𝑛 ∈ ℤ+ 

where 𝛼 is the order of the derivative and it’s allowed to be a real or complex number 

(Santanu Saha Ray and subhadashan Sahoo, 2019).  

Caputo’s fractional derivative formula has proven to be more applicable in 

practical situations compared to Riemann-Liouville’s derivative, as the latter yields a 

zero derivative for a constant function. Many scientists, including Sardar et al. (2015) 

and Dumitru Baleanu et al. (2010), have found fractional-order derivatives to be 

essential in developing models for analyzing dynamical systems. Recent research has 

also demonstrated the significance of fractional calculus in controlling and 

synchronizing chaotic systems (Ahmad Taher et al., 2017) as well as other engineering 

fields. A plethora of research findings support the notion that modeling real-life 

phenomena with fractional-order derivatives is the most accurate and reliable 

approach (Naik, P. A et al., 2020). 

Neural Network 

Artificial Neural Networks (ANNs) are a robust tool of artificial intelligence 

that can solve complex problems by mimicking human intelligence. Unlike traditional 

statistical and probabilistic methods that rely on nonlinear regression, ANNs excel in 

solving nonlinear regression problems with high precision, owing to their architecture 

similar to the human brain (Pavlenko et al., 2018). ANNs process information from 

observations and convert them into hidden layers. Hidden neurons within the hidden 

layer(s) compute weights, which are transmitted through the transfer characteristic 

using neurons within the inner layer. Recurrent and feedforward neural networks are 
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widely used deep learning techniques for time-domain forecasting, enabling accurate 

predictions of time series across diverse applications. 

Figure 1 

Schematic description of a feed forward neural network 

 

Next Generation Matrix 

The concept of next-generation matrix pertains to a square matrix denoted by 

G, where the element at the i-th row and j-th column represents the expected count of 

secondary infections of type i initiated by a solitary infected individual of type j, given 

the assumption that the population of type i is entirely susceptible (Levin et.al 2017). 

 

Basic Reproduction 

The fundamental reproduction number, commonly denoted as 𝑅0, is 

mathematically defined as the principal Eigen value of the next generation matrix G, 

expressed as (Diekmann et.al 2010): 

G = F𝑉−1 ,  𝐹 = ⌈
𝜕𝑓𝚤(𝑥0)

𝜕𝑥𝑗
⌉,      𝑉 = ⌈

𝜕𝑣𝚤(𝑥0)

𝜕𝑥𝑗
⌉, 

where, 

 𝑓𝚤 are new infections,  

 𝑣𝚤 are transferred infections from one compartment to another, 
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 𝑥 0 is the disease-free equilibrium state. 

The basic reproduction number, denoted as 𝑅0, is commonly understood to 

represent the expected number of secondary cases arising from a single infection in a 

population that is completely susceptible (Murray, 2003). 

𝑅0 ∝ (
𝚤𝑛𝑓𝑒𝑐𝑡𝚤𝑜𝑛

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
) 𝑥 (

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑡𝚤𝑚𝑒
) 𝑥 (

𝑡𝚤𝑚𝑒

𝚤𝑛𝑓𝑒𝑐𝑡𝚤𝑜𝑛
) =  𝛼𝛽𝛾 

 where,  

𝛼 represents the transmissibility, 

𝛽 represents the average rate of constant between susceptible and infected individuals. 

𝛾 represents the duration of infectiousness. 

Empirical research has demonstrated that if the basic reproduction number 𝑅0 

is less than 1, there will be no epidemic, and the disease will eventually extinguish. 

Conversely, if 𝑅0 is greater than 1, the likelihood of a pandemic outbreak is high. In 

the case of influenza, the average 𝑅0 ranges from 2 to 3, as reported by Mills (2004), 

a level of contagion consistent with observed transmission patterns. 

Dynamical System 

Let X be a metric space with metric d. Let I be an additive semi-group of real 

numbers. A dynamical system on X (also known as flow) is defined by a continuous 

mapping (Sternberg et.al 2010): 

𝜋: 𝑋 × 𝐼 → 𝑋 , 

with the following properties: 

I. 𝜋(𝑥, 0) = 𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋, 

II. 𝜋(𝜋(𝑥, 𝑡), 𝑠) =  𝜋(𝑥, 𝑡 + 𝑠),    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝐼. 

Equilibrium Point 

A point 𝑥∗ ∈ 𝑋 is called an equilibrium or rest point of a dynamical system 

(Feldman et. al 2011):  

𝜋: 𝑋 × ℝ → 𝑋,      if 
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𝜋(𝑥, 𝑡) =  𝑥∗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℝ. 

Stability 

An equilibrium point  𝑥∗ ∈ 𝑋 of a dynamical system (Verhulst. F, 2006): 

𝜋: 𝑋 × ℝ → 𝑋, 

is called stable if for every ℇ > 0 there exist a 𝛿 = 𝛿 ℇ such that 

𝑑(𝑥, y) ≤ 𝛿  𝚤𝑚𝑝𝑙𝚤𝑒𝑠 𝑡ℎ𝑎𝑡  𝑑(𝑥, 𝜋(𝑥, 𝑡)) ≤  ℇ  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 

and asymptotically stable if 𝑥∗ is stable and there exist a 𝛿 such that  

lim
𝑡→∞

𝜋(𝑦, 𝑡) = 𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑋   𝑤𝚤𝑡ℎ  𝑑(𝑥, y) ≤ 𝛿. 

Lyapunov function 

A function  𝑉 ∈  𝐶1(𝑋) is called a Lyapunov function with respect to 𝑓 if 

 𝑉˙ (𝑥)  =  𝑔𝑟𝑎𝑑 𝑉 (𝑥) 𝑇 𝑓(𝑥)  ≤  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋. 

With this definition the following proposition was formulated (Ames et.al 2019):  

If there exists a Lyapunov function 𝑉 ∈  𝐶1(𝑋)  with respect to 𝑓 which is positive 

definite with respect to some rest point  �̅� ∈  X, which satisfies the condition: 

𝑉(�̅�) =  0 and V (x) >  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋, x ≠ �̅� ,     

then 𝑥 is stable. If in addition 

 �̇� (�̅�) = 0 and �̇� (x) <  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑋, x ≠ �̅�,  then x is asymptotically stable. 

Local Asymptotic Stability 

Let  

𝑑𝑎𝑓(𝑡)

𝑑𝑡𝑎
= 𝑓(𝑥),   𝑥(0) = 𝑥0 , 

be an autonomous nonlinear fractional-order system with  

0 < 𝑎 < 1 𝑎𝑛𝑑 𝑥 ∈ ℝ𝑛, 

and the equilibrium points of the above system are solutions to the equation:   

𝑓(𝑥) = 0. 

An equilibrium is locally asymptotically stable if all Eigenvalues 𝜆𝚤𝑗 of the Jacobian 

matrix  𝐽 =
𝜕𝑓

𝜕𝑥
 evaluated at the equilibrium satisfy |arg 𝜆𝚤𝑗| > 𝛼

𝜋

2
 (Hammouch et.al 

2021). 

 

Routh- Hurwitz Stability Criterion  

The Routh-Hurwitz criterion is a crucial tool for determining the stability of a 

linear system. It offers a necessary and sufficient condition for the roots of a 

polynomial to be negative, without requiring direct solution for these roots. 
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Specifically, the Routh-Hurwitz stability criterion applies to second-order 

polynomials, and can be expressed as follows (Patil, A. 2021): 

P(s) = 𝑠2 + 𝑎1𝑠 + 𝑎0 ,    P(s) = 0  is stable if and only if  𝑎1, 𝑎0  > 0. 

Routh- Hurwitz stability Criterion for third order polynomials: 

P(s) = 𝑠3 + 𝑎2𝑠
2 + 𝑎1 ,    P(s) = 0 , 

is stable if and only if:  

 𝑎2, 𝑎0  > 0 𝑎𝑛𝑑 𝑎2 𝑎1 > 0, 

Routh-Hurwitz stability Criterion for higher order polynomials: 

Let D(s) = 𝑎𝑛𝑠
𝑛 + 𝑎𝑛−1𝑠

𝑛−1 +⋯+ 𝑎1𝑠 + 𝑎0 . 

We construct the Routh array as follows: 

(

 
 

𝑎𝑛 𝑎𝑛−2 𝑎𝑛−4   …
𝑎𝑛−1 𝑎𝑛−3 𝑎𝑛−5   …
𝑏1 𝑏2 𝑏3   …
𝑐1 𝑐2 𝑐3   …
⋮ ⋮ ⋮ ⋮ ⋯)

 
 

 

 

𝑏𝚤 =
𝑎𝑛−1 ×  𝑎𝑛−2𝚤 − 𝑎𝑛  ×  𝑎𝑛−(2𝚤+1)

𝑎𝑛−1
 , 

𝑐𝚤 =
𝑏𝚤 ×  𝑎𝑛−(2𝚤+1) − 𝑎𝑛−1  ×  𝑏𝚤+1

𝑏1
 , 

The polynomial D(s) has all negative roots if and only if all first-column 

elements of the Routh array have the same sign.  

 

Alcoholic Cardiomyopathy 

Alcohol is a widely consumed toxic substance worldwide, with high 

consumption shown to adversely affect the cardiovascular system and is a major 

contributor to non-ischemic enlarged cardiomyopathy (Mirijello et al., 2017). 

Prolonged excessive alcohol consumption can result in cardiovascular breakdown and 

the development of alcoholic cardiomyopathy (ACM) (Maisch, 2016). Although 

ACM was first described by Hippocrates in Greece during the 4th century B.C., 

modern clinical reports were officially released in the 19th century in England and 

Germany, with the pathophysiological basis for ACM recognized in the 20th century 

(Klatsky, 2002; Fernández-Solà & Estruch, 2017). Research has established a strong 

correlation between heavy alcohol consumption and ACM, with common symptoms 

including chest pain, dizziness, heart palpitations, increased pressure, swelling of 

veins in the neck, breathing difficulties, edema (fluid buildup and swelling), 
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particularly in the feet and lower legs, weight loss, and liver swelling (George & 

Figureueredo, 2011). Treatment for ACM involves reducing alcohol intake while 

managing withdrawal symptoms, which is better administered in therapy. Statistical 

research reveals an estimated 25,997 deaths globally from ACM in 2015 (Manthey et 

al., 2018; H, 2013), and the severity of the condition has led to its classification as an 

epidemic. 

 

Optimal Control 

Optimal control in mathematical modeling is a problem that involves finding a control 

strategy that maximizes or minimizes an objective function, given a set of constraints 

(Lenhart et.al 2007). The objective function represents a measure of performance, 

while the control strategy represents the inputs or actions chosen to achieve this 

performance. The constraints may represent physical or operational limits on the 

system being controlled. 

Mathematically, the optimal control problem can be represented by a set of equations. 

The dynamical system is described by a set of differential equations, where the state 

of the system at time t is represented by x(t), the control input at time t is represented 

by u(t), and the dynamics of the system are described by the function f(x(t), u(t), t). 

The initial state of the system is x0. 

The goal of the optimal control problem is to minimize or maximize a cost functional, 

represented by the equation: 

𝐽(𝑥(𝑡), 𝑢(𝑡), 𝑡) =  ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡 +  𝑀(𝑥(𝑡𝑓)). 

The instantaneous cost function L represents the cost associated with the state and 

control inputs at each time point, while the terminal cost function M represents the 

cost associated with the final state of the system. The control input u(t) is subject to 

constraints represented by the set U, while the state x(t) is subject to constraints 

represented by the set X. 

The optimal control problem is to find the control input u*(t) that minimizes or 

maximizes the cost functional, subject to the system dynamics and constraints, 

represented by the equations: 

𝑢 ∗ (𝑡) =  𝑎𝑟𝑔𝑚𝑖𝑛𝑢 ∈ 𝑈 𝐽(𝑥(𝑡), 𝑢(𝑡), 𝑡), 

subject to: 

𝑥′(𝑡) =  𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡), 𝑥(0) =  𝑥0, 
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𝑢(𝑡) ∈  𝑈, 

𝑥(𝑡) ∈  𝑋. 

The solution to the optimal control problem provides the optimal control input u*(t) 

that minimizes or maximizes the cost functional subject to the system dynamics and 

constraints. This solution can be used to design control systems for various 

applications, such as robotics, aerospace, chemical engineering, and finance. 

 

Related Research 

 The study of Alcoholic Cardiomyopathy (ACM) and its spread has received 

significant attention in recent years, resulting in a range of related research. This 

section provides a comprehensive review of the literature on ACM and its 

epidemiology, as well as previous research on mathematical modeling and data 

analysis of ACM. 

One of the early studies on ACM was conducted by Klatsky (2002), who 

identified a strong correlation between heavy alcohol consumption and the 

development of the disease. Other studies have since confirmed this correlation and 

investigated the underlying physiological mechanisms that lead to ACM (George & 

Figureueredo, 2011; Maisch, 2016). In terms of modeling the spread of ACM, a range 

of approaches have been proposed. For example, a compartmental model was 

developed by Fernández-Solà and Estruch (2017) to simulate the transmission 

dynamics of ACM in a population. The model incorporated both the direct effects of 

alcohol consumption on heart function and the indirect effects on lifestyle factors that 

increase the risk of the disease. 

Fractional calculus has also been applied in previous studies to model the spread 

of chronic diseases. For example, Caputo et al. (2015) developed a fractional-order 

epidemic model to simulate the spread of Ebola virus disease in a population. The 

model incorporated the memory effects observed in disease transmission and was able 

to capture the long-term dynamics of the epidemic. In recent years, machine learning 

techniques such as neural networks have been increasingly applied in epidemiological 

modeling to improve the predictive accuracy of models. For example, Huang et al. 

(2020) developed a neural network model to predict the incidence of dengue fever in 

Taiwan. The model was able to outperform traditional statistical models and provide 

accurate forecasts of the disease. 
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Mathematical models have long demonstrated their usefulness in the 

investigation of all forms of epidemics as they satisfactorily depict the transmission 

elements of the illness. There are fascinating phenomena that have what are termed 

memory effects, meaning their state does not depend solely on time and position but 

also on the previous state. Such a system can be very difficult to model and analyze 

with classical differential equations, but nonlocality gives fractional derivative built-

in ability to incorporate memory effects. (Baba, I. A., et al. 2021, Kaymakamzade et 

al. 2021; GOKBULUT, N., et al. 2021). Mathematical modeling based on enhanced 

rheological models naturally leads to differential equations of fractional order and to 

the necessity of the formulation of initial conditions to such equations Caputo 

derivative is used in this work because it allows the utilization of physically 

interpretable initial conditions and provides an interpolation between integer-order 

derivatives. The main properties and advantage of the Caputo operator are that the 

Laplace transform, interpolation, non-commutation, and linearity of the Caputo 

fractional derivative which is a generalization of properties the of integer order 

derivative, where n is replaced by 𝛼. This is not the case for the Riemann-Liouville 

operator. The Caputo derivative is more relevant to real-life problems when contrasted 

with the Reiman-Liouville type since it takes into consideration integer-order initial 

conditions for fractional differential equations and maintains basic calculus principles.  

(Ewees et, al. 2022) proposed a Heap-based optimizer long short-term memory 

(HBO-LSTM) to forecast wind power from different wind turbines which uses 

optimization algorithms to train the LSTM and to boost its performance by optimizing 

its parameters. Their results showed that the HBO-LSTM outpaced other alternative 

models like particle swam optimization (PSO) etc. However, HBO came 3rd in rank in 

computational cost using time, when compared with other models. (Oyelade, O. et al, 

2022) presented another novel metaheuristic algorithm, Ebola Optimization Search 

Algorithm (EOSA) incorporating the SIR model on a system of first-order differential 

equation. Their result showed that EOSA performed better than Genetic Algorithm 

(GA) and PSO in terms of scalability, convergence, and sensitivity analysis. (Lawal, 

A. I., & Idris, M. A. 2020) developed an artificial neural network-based mathematical 

model for the prediction of blast-induced ground vibrations employing the Levenberg 

Marquardt Algorithm (LMA) and the feed-forward back-propagation Multi-Layer 

Perceptron (MLP). The proposed ANN-based mathematical model outperformed the 

other existing models as it gave the lowest time-computational cost, the lowest Mean 
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Absolute Error (MAE) and Root Mean Square Error (RMSE), with the highest 

Variance Accounted For (VAF) among the equations compared with higher 

correlation. Also, the predicted values using the proposed model were closer to the 

field-measured data when compared with other models, hence its superiority. 

Many authors in literature have studied alcohol epidemics, mostly with the 

conventional classical system of differential equations (Khajji, B., et.al. 2020; Adu 

et.al. 2017; Sánchez, F., et.al. 2007; Santonja, F. J., et.al. 2010; Guzzo-Merello, et al 

2014; Walters et.al. 2013). Some have also studied the evolution of the fractional-

order model for studying alcohol epidemics (Rahman, M., et.al. 2021; Singh, J. 2020). 

(Gómez-Aguilar, J. F. 2018) analyzed an alcoholism model using Liouville–Caputo, 

and Atangana–Baleanu–Caputo fractional derivatives with constant and variable 

order, in which two fractional mathematical models are considered; with and without 

delay combined with analytical and numerical solutions of a nonlinear alcoholism 

model via variable-order fractional differential equations to develop a completer and 

more realistic model. (Weaver, M. A. 2020) developed an alcohol fractional model 

and proved the existence and uniqueness of the solution, with basic computational 

numerical solutions using fixed point theorem to show that fractional models via 

Caputo Fabrizio have good applications. Also, (Mayengo et al. 2020) studied alcohol-

related health risks with changing behaviors via cultural beliefs employing fuzzy 

modeling, with optimal control centered on increasing the resistance of susceptible 

individuals and curbing their chances of becoming alcoholics.  

However, no author to our knowledge narrowed the fractional-order technique 

to analyzing the dynamics of Alcoholic cardiomyopathy (ACM), as an epidemy while 

integrating Neural Networks time series; simulating and comparing with real-life data 

(Manthey, J. J. 2020; Zou, H. W., 2014; Manthey., J. 2019; Bardach, A. E., et al. 2017; 

Statista 2016; Setti, M. O., et al. 2021) to predict future outcomes. In this research, the 

Caputo type of the fractional-order approach combined with a Levenberg Marquardt 

Algorithm (LMA) Neural Network time series is employed to study the dynamics of 

the ACM, having both analytic solutions and numerical simulations to buttress the 

findings. Firstly, the ACM is described schematically and transformed into a system 

of fractional differential equations, by following the basic mechanism of the classical 

order but in addition, replacing the classical order n with the fractional order 𝛼. The 

existence, uniqueness, and stability of the system are carried out amongst other 

analytic computations. Finally, numerical simulations are performed integrating the 
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LMA to the ACM model (which implements the predictor-corrector method) using 

real-life data sets (Manthey, J. J. 2020). The resulting model stands out from other 

models in the literature as it combines all the advantages of Caputo fractional 

derivatives and the LMA Neural Network time series, realistically describing the 

disease dynamics while providing high accuracy in prediction with memory effects, 

hence its novelty and superiority. The related research on ACM and its epidemiology 

provides a solid foundation for the proposed research. By combining the insights from 

existing literature with fractional calculus and neural network time series, the 

proposed model is expected to contribute to the understanding of ACM transmission 

dynamics and inform the development of effective intervention strategies. 
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CHAPTER III 

Methodology 

 

The objective of this study is to develop a fractional-order alcoholic 

cardiomyopathy epidemic model with neural network time series to examine the 

dynamics of ACM while integrating neural networks time series and simulating and 

comparing with real-life data to predict future outcomes. To accomplish this objective, 

a mixed-methods research design that incorporates both qualitative and quantitative 

research methods will be used to investigate the dynamics of alcoholic 

cardiomyopathy using a fractional-order model with neural network time series. The 

research design will consist of preliminary literature review, theoretical development, 

model development, neural network time series, data collection, simulation and 

analysis, and a conclusion. 

The preliminary literature review will be conducted to determine the current research 

status in alcoholic cardiomyopathy and the application of fractional-order models with 

neural network time series. After the preliminary literature review, a theoretical 

framework will be created for the study. In this section, a fractional-order model for 

alcoholic cardiomyopathy will be developed using the Caputo derivative. The neural 

network time series will be incorporated into the fractional-order model in the next 

section using the Levenberg Marquardt Algorithm (LMA) to simulate and compare 

with real-life data. 

To validate the model, data on alcoholic cardiomyopathy will be collected from 

relevant sources, including hospitals and medical records. The data will be analyzed 

to determine the model parameters, and the model will be calibrated based on the data. 

The simulation and analysis section will simulate the model and analyze the outcomes. 

The outcomes will be compared to real-life data and analyzed to determine the 

effectiveness of the model. 

Finally, the conclusion section will discuss the results' implications, and suggest areas 

for future research. In conclusion, the mixed-methods research design proposed in this 

study will provide a comprehensive approach to developing a fractional-order 

alcoholic cardiomyopathy epidemic model with neural network time series. The 

research design will allow us to analyze the dynamics of alcoholic cardiomyopathy 
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while integrating neural networks time series and simulating and comparing with real-

life data to predict future outcomes. 

 

Dynamics of the ACM-LMA Model 

The evaluation of fractional-order alcoholic cardiomyopathy (ACM) epidemic 

models with neural network time series is incomplete without a comprehensive 

understanding of their dynamic nature hence, introducing us to one vital aspect: The 

Dynamics of the ACM-LMA Model within this field of study. This section offers 

insights into said aspects. By combining both fractional-order derivatives and neural 

network time series skillfully in creating our models- specifically relying on Caputo 

fractional derivative modeling for covering more nuanced complexities associated 

with disease progression while employing Levenberg Marquardt Algorithm (LMA) 

optimization techniques for superior data processing accuracy - we gain an 

unparalleled ability for developing highly predictive models capable of exploring even 

more intricate aspects under examination surrounding Alzheimer's. Additionally, we 

conduct stability analysis to determine where the equilibrium points lie, while also 

checking for any conflicting solutions with our unique analysis in hopes of creating as 

precise a model as possible that can aid in better predictions for ACM's dynamic 

changes. 

To simulate the dynamics of the ACM-LMA model, numerical methods such 

as the Predictor Corrector method will be employed. The model's outputs can then be 

analyzed using statistical methods such as regression analysis and goodness-of-fit tests 

to validate the accuracy of the model's predictions. 

In summary, the dynamics of the ACM-LMA model in the proposed fractional-

order ACM epidemic model with neural network time series as shown in Figures 2 

and 3, is crucial to the model's accuracy and reliability. The incorporation of 

fractional-order derivatives and neural network time series allows for a more 

comprehensive and realistic modeling of the complex and anomalous dynamics of 

ACM. The stability and uniqueness of the model are essential aspects of the dynamics, 

and numerical and statistical methods can be used to simulate and analyze the model's 

outputs. Descriptions of variables and parameters are shown in Tables 2 and 3. 
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Figure 2 

Schematic diagram of the ACM-LMA model 
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Figure 3  

Schematic diagram of the ACM (FDE) model 
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Table 1 

Description of variables of the model. 

Variable Description 

𝑆    Susceptible alcohol drinkers 

(moderate consumers) 

𝐴  Alcoholic addicts 

𝐶  Alcoholic cardiomyopathy 

diseased population 

 

T                          

 

A 

 

 

 

 

 

 

 

 

 

  

C 

 

 

 

 

 

 

 

 

 

R 

 

S 

𝜇𝛼 

𝜇𝛼  
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𝑇 Alcoholic cardiomyopathy 

diseased individuals under 

treatment 

𝑅 Recovered population 

 

Table 2 

Description of parameters of the model 

 

D𝑡
α

0
𝑐  𝑆(𝑡) = ⋀𝛼 + 𝑟𝛼𝑅(𝑡)   −  

𝛽𝛼𝑆(𝑡)

𝑁
𝐴(𝑡) − 𝜇𝛼𝑆(𝑡), 

D𝑡
α

0
𝑐 𝐴(𝑡) =

𝛽𝛼𝑆(𝑡)

𝑁
𝐴(𝑡) − 𝜇𝛼𝐴(𝑡) − 𝛿𝛼𝐴(𝑡)𝐶(𝑡)  , 

D𝑡
α

0
𝑐 𝐶(𝑡) = 𝛿𝛼𝐴(𝑡)𝐶(𝑡) − 𝜇𝛼𝐶(𝑡) − 𝜎𝛼𝐶(𝑡) − 𝑑𝛼𝐶(𝑡), 

D𝑡
α

0
𝑐 𝑇(𝑡) = 𝜎𝛼𝐶(𝑡) − 𝛾𝛼  𝑇(𝑡) − 𝜇𝛼𝑇(𝑡), 

D𝑡
α

0
𝑐 𝑅(𝑡) = 𝛾𝛼  𝑇(𝑡) − 𝜇𝛼𝑅(𝑡) − 𝑟𝛼𝑅(𝑡). 

 

Given that  𝑆(𝑡) + 𝐴(𝑡) + 𝐶(𝑡) + 𝑇(𝑡) + 𝑅(𝑡) = 𝑁(t), 0 < 𝛼 < 1 

  

Parameter Description 

Λ𝛼                        Recruitment rate 

𝛽𝛼                                               The rate at which alcoholics susceptible become 

addicted      

𝑑𝛼                         The rate at which an alcoholic cardiomyopathy 

diseased individual die 

𝜇𝛼                        Natural death rate 

𝛿𝛼                        The rate at which addictive develop alcoholic 

cardiomyopathy disease 

𝛾𝛼   

𝜎𝛼           

             

𝑟𝛼                                 

                   

            

Recovery rate 

Rate at which alcoholic cardiomyopathy diseased 

receive treatment. 

Rate at which a recovered individual return to the 

susceptible compartment 

 

(3.1) 

From Fig 3.2, we obtain the Caputo type fractional order system of equations: 
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Existence and Uniqueness of Solution 

Theorem 1. The solution to system (2.1) exits and is unique. 

Proof. 

   D𝑡
α

0
𝑐 N(t)   = Λ𝛼 − 𝜇𝛼𝑆(𝑡) − 𝜇𝛼𝐴(𝑡) − 𝜇𝛼𝐶(𝑡) − 𝜇𝛼𝑇(𝑡) − 𝜇𝛼𝑅(𝑡) − 𝑑𝛼𝐼(𝑡), 

                    = Λ𝛼 − 𝜇𝛼(𝑆(𝑡) + 𝐴(𝑡) + 𝐶(𝑡) + 𝑇(𝑡) + 𝑅(𝑡)) − 𝑑𝛼𝐼(𝑡), 

                    = Λ𝛼 − 𝜇𝛼𝑁(𝑡) − 𝑑𝛼𝐶(𝑡), 

                       ≤ Λ𝛼 − 𝜇𝛼𝑁(𝑡). 

 

Applying the Laplace transform method to solve Gronwall’s inequality with initial condition 

𝑁(𝑡0)≥ 0, we get: 

⌊ℒ{ D𝑡
α

0
𝑐 𝑁(𝑡) + 𝜇𝛼𝑁(𝑡)} ≤ ℒ{Λ𝛼}, 

 

⌊ℒ{ D𝑡
α

0
𝑐 𝑁(𝑡)} + 𝜇𝛼ℒ{𝑁(𝑡)} ≤ ℒ{Λ𝛼}. 

Employing the properties of Laplace transform, 

𝑆𝛼ℒ{𝑁(𝑡)} − ∑ 𝑆𝛼−𝑚−1𝑁(𝑚)(𝑡0)

𝑛−1

𝑚=0

+ 𝜇𝛼ℒ{𝑁(𝑡)} ≤
Λ𝛼

𝑆
, 

ℒ{𝑁(𝑡)}(𝑆𝛼 + 𝜇𝛼) ≤ ∑ 𝑆𝛼−𝑚−1𝑁(𝑚)(𝑡0)

𝑛−1

𝑚=0

+
Λ𝛼

𝑆
, 

ℒ{𝑁(𝑡)} ≤ ∑
𝑆𝛼−𝑚−1

(𝑆𝛼 + 𝜇𝛼)
𝑁(𝑚)(𝑡0)

𝑛−1

𝑚=0

+
Λ𝛼

𝑆(𝑆𝛼 + 𝜇𝛼)
. 

Applying partial fractions, we arrive at:    

ℒ{𝑁(𝑡)} ≤
Λ𝛼

𝜇𝛼
[
1

𝑆
−

1

𝑆 (1 +
𝜇𝛼

𝑆𝛼)
] + ∑

1

𝑆𝑚+1 (1 +
𝜇𝛼

𝑆𝛼)
𝑁(𝑚)(𝑡0).

𝑛−1

𝑚=0

 

 

Since, ∑ (
−𝜇𝛼

𝑠𝛼
)
𝑛

∞
𝑛=0 is the is Taylor series expansion for 𝐹(𝑡) =

1

(1+
𝜇𝛼

𝑠𝛼
)
. Then we will have 

that: 

 

ℒ{𝑁(𝑡)} ≤
Λ𝛼

𝜇𝛼
[
1

𝑆
−
1

𝑆
∑(

−𝜇𝛼

𝑠𝛼
)

𝑛∞

𝑛=0

] + ∑
1

𝑆𝑚+1
 ∑ (

−𝜇𝛼

𝑠𝛼
)

𝑛∞

𝑛=0

𝑁(𝑚)(𝑡0)

𝑛−1

𝑚=0

, 

 

                            

(3.2) 
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=
Λ𝛼

𝜇𝛼
[
1

𝑆
−
1

𝑆
∑(

−𝜇𝛼

𝑠𝛼
)

𝑛∞

𝑛=0

] + ∑  ∑
(−𝜇𝛼)𝑛

𝑠𝛼𝑛+𝑚+1

∞

𝑛=0

𝑁(𝑚)(𝑡0).

𝑛−1

𝑚=0

 

Taking Laplace inverse function, we have 

 

𝑁(𝑡) ≤
Λ𝛼

𝜇𝛼
{ℒ−1 {

1

𝑠
} −∑(−𝜇𝛼)𝑛ℒ−1 (

1

𝑠𝛼𝑛+1
)

∞

𝑛=0

}

+ ∑  ∑(−𝜇𝛼)𝑛𝑁(𝑚)(𝑡0)ℒ
−1 {

1

𝑠𝛼𝑛+𝑚+1
}

∞

𝑛=0

𝑛−1

𝑚=0

. 

Thus, we have 

𝑁(𝑡) ≤
Λ𝛼

𝜇𝛼
{1 −

∑ (−𝜇𝛼𝑡𝛼)𝑛∞
𝑛=0

Γ(𝛼𝑛 + 1)
} + ∑  ∑

(−𝜇𝛼𝑡𝛼)𝑛

Γ(𝛼𝑛 +𝑚 + 1)
𝑡𝑚𝑁(𝑚)(𝑡0)

∞

𝑛=0

𝑛−1

𝑚=0

. 

 Employing the Mittag-leffler function: 

 𝐸𝑎,𝑏(𝑧) = Σ𝑛=0
∞ 𝑧𝑚

Γ(𝑎𝑚+𝑏)
 , 𝑎 > 0, 𝑏 > 0, and 𝐸𝑎(𝑧) = 𝐸𝑎,1(𝑧) = Σ𝑛=0

∞ 𝑍𝑚

Γ(𝑎𝑚+1)
 ,  

we get: 

𝑁(𝑡) ≤
Λ𝛼

𝜇𝛼
[1 − 𝐸𝛼(−𝜇

𝛼𝑡𝛼)] + ∑  𝐸𝛼,𝑚+1(−𝜇
𝛼𝑡𝛼)𝑁(𝑚)(𝑡0)𝑡

𝑚

𝑛−1

𝑚=0

, 

 

where the series of the Mittag-leffler functions 𝐸𝛼(−𝜇
𝛼𝑡𝛼) and 𝐸𝛼,𝑚+1(−𝜇

𝛼𝑡𝛼) are 

converge. 

Therefore, the system (1) has a bounded solution, and hence solution exit.  

Each equation of the system (1) can be represented by 

D𝑡
𝛼

0
𝑐 𝑦(𝑡) = 𝐺(𝑡, 𝑦),    𝑦(0) = 𝑦0 

𝐺(𝑡, 𝑦) = 𝑃(𝑦) + 𝑄(𝑦) + 𝑟, 𝑦 = 𝑦(𝑡). 

We now show that the system (iv) is Lipschitz continuous.   

    |𝐺(𝑡, 𝑦) − 𝐺(𝑡, 𝑦∗)| = |𝑃(𝑦) + 𝑄(𝑦) + 𝑟 − (𝑃(𝑦∗) + 𝑄(𝑦∗) + 𝑟)|, 

                                     = |𝑃((𝑦(𝑡) − 𝑦∗(𝑡)) + 𝑄(𝑦(𝑡) − 𝑦∗(𝑡))|, 

                                     ≤ ‖𝑃((𝑦(𝑡) − 𝑦∗(𝑡))‖ + ‖𝑄(𝑦(𝑡) − 𝑄(𝑦∗(𝑡))‖, 

                                     = ‖𝑃‖. ‖(𝑦(𝑡) − 𝑦∗(𝑡)‖ + ‖𝑄(𝑦(𝑡) − 𝑄(𝑦∗(𝑡))‖, 

                                     ≤ ‖𝑃‖. ‖𝑦(𝑡) − 𝑦∗(𝑡)‖ + ‖(𝑦(𝑡) − 𝑦∗(𝑡)‖, 

                                     = (‖𝑃‖ + 1)‖𝑦(𝑡) − 𝑦∗(𝑡)‖, 

                                     = 𝑀‖𝑦(𝑡) − 𝑦∗(𝑡)‖. 

                            

(3.3) 
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Where 𝑀 = (‖𝑃‖ + 1), and  𝑀‖𝑦(𝑡) − 𝑦𝛼(𝑡)‖ < ∞ . 

Hence 𝐺 is uniformly Lipschitz continuous and bounded. 

To complete the proof for uniqueness of the system (1). 

Let 0 < 𝛼 < 1,  𝜑 = [0, ℎ∗] ⊆ ℝ and 𝜓 = ‖𝑦(𝑡) − 𝑦(0)‖ ≤ 𝐾, and  𝑔:𝜑 ×  𝜓 →  ℝ  

be a continuous bounded function, that is there exist 𝐿 > 0 such that  |𝑔(𝑡, 𝑦)| ≤ 𝐿, 

since 𝐺 is Lipschitz continuous. 

Let 𝑀𝐾 < 𝐿, then ∃ a unique 𝑦 ∈ 𝐶𝛼[0, ℎ∗] for the initial value problem (iv), where 

ℎ∗ = {ℎ, (
𝐾Γ(𝛼+1)

𝐿

1

𝛼
)} 

Let 𝐸 = {𝑦 ∈ 𝐶𝛼[0, ℎ∗]: ‖𝑦(𝑡) − 𝑦(0)‖ ≤ 𝐾}, observe that 𝐸 ⊆ ℝ is closed and hence 

a complete metric space. Transforming the system (iv) to the equivalent Volterra 

integral equation: 

                           D𝑡
−𝛼

0
𝑐 [ D𝑡

𝛼
0
𝑐 𝑦(𝑡)] = D𝑡

𝛼
0
𝑐 𝑔(𝑡, 𝑦), 

                                 𝑦(𝑡) − 𝑦(0) =
1

Γ(𝛼)
∫(𝑡 − ∅)𝛼−1
𝑡

0

𝑔(∅, 𝑦(∅))𝑑∅, 

                                               𝑦(𝑡) = 𝑦(0) +
1

Γ(𝛼)
∫ (𝑡 − ∅)𝛼−1
𝑡

0
𝑔(∅, 𝑦(∅))𝑑∅.       (3.4) 

Defining an operator 𝐺 in 𝐸, with 𝐺: 𝐸 → 𝐸 such that: 

                                         𝐺[𝑦](𝑡) = 𝑦0 +
1

Γ(𝛼)
∫ (𝑡 − ∅)𝛼−1
𝑡

0
𝑔(∅, 𝑦(∅))𝑑∅.  

It follows that, 

                                         |𝐺[𝑦(𝑡)] − 𝑦(0)| = |
1

Γ(𝛼)
∫ (𝑡 − ∅)𝛼−1
𝑡

0
𝑔(∅, 𝑦(∅))𝑑∅|,  

  ≤
1

Γ(𝛼)
∫(𝑡 − ∅)𝛼−1
𝑡

0

𝐿𝑑∅, 

                                                                         ≤
𝐿

Γ(𝛼 + 1)
(ℎ∗)𝛼, 

                                                                         ≤
𝐿

Γ(𝛼 + 1)

𝐾Γ(𝛼 + 1)

𝐿
, 

                                                                         ≤ 𝐾. 

So, 𝐺 is well defined. 

Next; 

                                 |𝐺[𝑦](𝑡) − 𝐺[𝑦∗](𝑡)|

= |
1

Γ(𝛼)
∫(𝑡 − ∅)𝛼−1
𝑡

0

[𝑔(∅, 𝑦(∅)) − 𝑔(∅, 𝑦∗(∅))]𝑑∅|, 
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                                                                         ≤
1

Γ(𝛼)
∫(𝑡 − ∅)𝛼−1
𝑡

0

𝑀‖𝑦 − 𝑦∗‖𝑑∅, 

                                                                         ≤
𝑀

Γ(𝛼)
‖𝑦 − 𝑦∗‖

Γ(𝛼)

Γ(𝛼 + 1)
𝑡𝛼 , 

  ≤
𝑀

Γ(𝛼 + 1)
‖𝑦 − 𝑦∗‖(ℎ∗)𝛼, 

           ≤
𝑀

Γ(𝛼 + 1)
‖𝑦 − 𝑦∗‖

𝐾Γ(𝛼 + 1)

𝐿
, 

 

So, |𝐺[𝑦] − 𝐺[𝑦∗]| ≤
𝑀𝐾

L
‖𝑦 − 𝑦∗‖, and from hypothesis 

𝑀𝐾

L
< 1.  

Therefore, as a consequence of Banach contraction principle, 𝐸 is a contraction and 

has a unique fixed point (Hincal et.al. 2021). Hence, from Picard-lindelof theorem 

(Delavari, H.,et al. 2012), the system (iv) has a unique solution and a biological 

feasible region as: 

Ω = {(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝐼𝑠(𝑡), 𝑅(𝑡)) ∈ ℝ+
5 ∶ 𝑁(𝑡)

≤
Λ𝛼

𝜇𝛼
[1 − 𝐸𝛼(−𝜇

𝛼𝑡𝛼)]

+ ∑  𝐸𝛼,𝑚+1(−𝜇
𝛼𝑡𝛼)𝑁(𝑚)(𝑡0)𝑡

𝑚

𝑛−1

𝑚=0

}.            (3.5) 

 

Basic Reproduction Number 

The reproduction number is computed by engaging the new generation matrix 

method. Considering the addiction and infected compartment the Jacobian matrices 𝐹 

and 𝑉 representing the new infectivity and the transfer of persons connecting the 

compartments respectively we get: 

𝐹 = [

𝛽𝛼𝑆(𝑡)

𝑁
0 0

0 0 0
0 0 0

], 

𝑉 = [

𝜇𝛼 + 𝛿𝛼𝐶(𝑡) 𝛿𝛼𝐴(𝑡) 0

−𝛿𝛼𝐶(𝑡)  −𝛿𝛼𝐴(𝑡) + 𝜇𝛼 + 𝜎𝛼 + 𝑑𝛼 0
0 −𝜎𝛼 𝛾𝛼 + 𝜇𝛼

], 

 evaluating at 𝐸0 = (
∧𝛼

𝜇𝛼
, 0,0,0,0) gives: 
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                            𝐹𝑉−1 = [

𝛽𝛼𝑆0

𝑁0

𝜇𝛼
0 0

0 0 0
0 0 0

], 

So, 

  𝑅0 =
𝛽𝛼

𝜇𝛼
. 

Stability Analysis 

Theorem 2. The system (1) is locally asymptotically stable at  𝑬𝟎 = (
∧𝜶

𝝁𝜶
, 𝟎, 𝟎, 𝟎, 𝟎) if 

and only if 𝑹𝟎 < 𝟏. 

Proof. Evaluating the Jacobian at 𝐸0, we get: 

 

(

 
 

−𝜇𝛼  −𝛽𝛼 0 0 𝑟𝛼

0 −𝛽𝛼 − 𝜇𝛼 0 0 0
0 0 −(𝜇𝛼 + 𝜎𝛼 + 𝑑𝛼) 0 0
0 0 𝜎𝛼 −(𝛾𝛼 + 𝜇𝛼) 0

0 0 0 𝛾𝛼 −𝜇𝛼)

 
 
. 

 

After computation we get the characteristic equation to be: 

(−𝜇𝛼 − 𝜆)(−𝛽𝛼 − 𝜇𝛼 − 𝜆)(−𝜇𝛼 − 𝜎𝛼 − 𝑑𝛼 − 𝜆) (−𝛾𝛼 − 𝜇𝛼 − 𝜆)(−𝜇𝛼 − 𝜆) = 0 . 

Hence, 

𝜆1 = 𝜆2 = −𝜇
𝛼, 

𝜆3 = −[𝛽
𝛼 + 𝜇𝛼], 

𝜆4 = −[𝜇
𝛼 + 𝜎𝛼 + 𝑑𝛼], 

𝜆5 = −[𝛾
𝛼 + 𝜇𝛼], 

We see that all eigen values are negative (|arg 𝜆𝑗| = 𝜋 >
𝜎𝜋

2
, 𝑗 = 1,2, … ,5). 

So, if  𝑅0 < 1   i.e.  0 > −2𝛽𝛼 > −𝛽𝛼 − 𝜇𝛼. 

Then the system is locally asymptotically stable at 𝐸0 If and only if 𝑅0 < 1. 

Proof complete. 
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Endemic Equilibrium 

𝐸1 =(𝑆1, 𝐴1, 𝐶1, 𝑇1, 𝑅1) 

𝑆1 =
[⋀𝛼+𝑟𝛼𝑅1] [⋀𝛼−𝑑𝛼𝐶1]𝜇𝛼

𝜇2𝛼𝛽𝛼𝐴1− [⋀𝛼−𝑑𝛼𝐶1]
, 

𝐴1 =
[⋀𝛼+𝑟𝛼𝑅1] 

𝜇𝛼+𝛿𝛼𝐶1
+
 ⋀𝛼−𝑑𝛼𝐶1

𝛽𝛼
, 

𝐶1 =

√4𝛿𝛼𝑑𝛼[𝛽𝛼(⋀𝛼+𝑟𝛼𝑅1)]+[𝛽𝛼(𝜇𝛼+𝜎𝛼+𝑑𝛼)]2−2𝛽𝛼(𝜇𝛼+𝜎𝛼+𝑑𝛼)𝛿𝛼 ⋀𝛼+𝛿2𝛼⋀2𝛼 −𝛽𝛼(𝜇𝛼+𝜎𝛼+𝑑𝛼)+𝛿𝛼⋀𝛼

2𝛿𝛼𝑑𝛼

, 

𝑇1 = (
𝜎𝛼

𝛾𝛼+𝜇𝛼
) [

𝛽𝛼[⋀𝛼+𝑟𝛼𝑅1] 

𝛽𝛼[𝜇𝛼+𝜎𝛼+𝑑𝛼]− 𝛿𝛼[⋀𝛼−𝑑𝛼𝐶1]
−
𝜇𝛼

𝛿𝛼
], 

𝑅1 =
𝛾𝛼𝜎𝛼𝜇𝛼[𝛽𝛼[𝜇𝛼+𝜎𝛼+𝑑𝛼]−𝛿𝛼[⋀𝛼−𝑑𝛼𝐶1] ]−𝛿𝛼𝛾𝛼𝜎𝛼𝛽𝛼⋀𝛼

𝛿𝛼[𝛾𝛼𝜎𝛼𝛽𝛼𝑟𝛼−(𝜇𝛼+𝑟𝛼)(𝛾𝛼+𝜇𝛼)(𝛽𝛼[𝜇𝛼+𝜎𝛼+𝑑𝛼]− 𝛿𝛼(⋀𝛼−𝑑𝛼𝐶1))]
, 

𝐸1 is biologically meaningful if [𝛽𝛼[𝜇𝛼 + 𝜎𝛼 + 𝑑𝛼] − 𝛿𝛼[⋀𝛼 − 𝑑𝛼𝐶1]] < 1, and 

hence 𝐶1 > 0. 

 

Theorem 3. The system (1) is locally asymptotically stable at 𝐸1 =(𝑆1, 𝐴1, 𝐶1, 𝑇1, 𝑅1) 

 if and only if 𝑅0 > 1. 

Proof. Evaluating the Jacobian at 𝐸1, we get: 

(

 
 
 
 
 
−
𝛽𝛼𝐴1

𝑁1
− 𝜇𝛼  −

𝛽𝛼𝑆1

𝑁1
0 0 𝑟𝛼

𝛽𝛼𝐴1

𝑁1
−
𝛽𝛼𝑆1

𝑁1
− 𝜇𝛼 − 𝛿𝛼𝐶1 −𝛿𝛼𝐴1 0 0

0 𝛿𝛼𝐶1 𝛿𝛼𝐴1 − (𝜇𝛼 + 𝜎𝛼 + 𝑑𝛼) 0 0

0 0 𝜎𝛼 −(𝛾𝛼 + 𝜇𝛼) 0

0 0 0 𝛾𝛼 −𝜇𝛼 − 𝑟𝛼)

 
 
 
 
 

. 

 

After computation we get the characteristic equation to be: 

[(−𝜇𝛼 − 𝛾𝛼 − 𝜆)(−𝜇𝛼 − 𝑟𝛼 − 𝜆)(𝜆2 + 𝜆(
𝛽𝛼𝐴1

𝑁1
+ 𝛿𝛼𝐶1 + 2𝜇𝛼 −

𝛽𝛼𝑆1

𝑁1
) + 𝜇2𝛼 +

𝛽𝛼𝐴1

𝑁1
(𝛿𝛼𝐶1 + 𝜇𝛼) − 𝜇𝛼(

𝛽𝛼𝑆1

𝑁1
+ 𝛿𝛼𝐶1)((𝛿𝛼𝐴1 − (𝜇𝛼 + 𝜎𝛼 + 𝑑𝛼) −

𝛿𝛼𝐶1(
𝛽𝛼𝐴1

𝑁1
𝛿𝛼𝐴1 + 𝛿𝛼𝐴1𝜆 + 𝛿𝛼𝐴1𝜇𝛼) +

𝛽𝛼𝐴1

𝑁1
𝛿𝛼𝐶1𝜎𝛼𝛾𝛼𝑟𝛼)] = 0. 

And, 

𝜆1 = −(𝜇
𝛼 + 𝛾𝛼), 

𝜆2 = −(𝜇
𝛼 + 𝑟𝛼), 
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𝜆3 = −
(𝛿2𝛼𝐶1𝐴1+

𝛽𝛼𝐴1

𝑁1
𝛿𝛼𝐶1𝜎𝛼𝛾𝛼𝑟𝛼−(𝛿𝛼𝐴1+𝑑𝛼+𝜎𝛼+𝜇𝛼+

𝛽𝛼𝐴1

𝑁1
𝛿2𝛼𝐴1))

𝛿2𝛼𝐶1𝐴1−1
, 

And the quadratic: 𝐴𝜆2 + 𝐵𝜆 + 𝐶. 

Where: 

𝐴 = 1, 

𝐵 = (
𝛽𝛼𝐴1

𝑁1
+ 𝛿𝛼𝐶1 + 2𝜇𝛼 −

𝛽𝛼𝑆1

𝑁1
), 

𝐶 = 𝜇2𝛼 +
𝛽𝛼𝐴1

𝑁1
(𝛿𝛼𝐶1 + 𝜇𝛼) − 𝜇𝛼(

𝛽𝛼𝑆1

𝑁1
+ 𝛿𝛼𝐶1), 

Employing the Routh-Hurwitz criterion, we have that 𝐵 > 0 and 𝐶 < 0,  if 𝑅0>1. 

Then all eigen values will be negative (|arg 𝜆𝑗| = 𝜋 >
𝜎𝜋

2
, 𝑗 = 1,2, … ,5), 

and hence the system is locally asymptotically stable at 𝐸1 if and only if 𝑅0 > 1. 

 

Theorem 4. The system (1) is globally asymptotically stable at the given positive 

equilibriums. 

Proof. Consider the Lyapunov function: 

𝑉(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) = ∑ (𝑥𝑖(𝑡)𝑥
∗)

1

2𝑛
𝑖=1  , 

𝑉(𝑆(𝑡), 𝐴(𝑡), 𝐶(𝑡), 𝑇(𝑡), 𝑅(𝑡))=(𝑆(𝑡)𝑆∗)
1

2 + (𝐴(𝑡)𝑆∗)
1

2 + (𝐶(𝑡)𝐶∗)
1

2 +

(𝑇(𝑡)𝑇∗)
1

2 + (𝑅(𝑡)𝑅∗)
1

2 . 

Applying the linearity of Caputo operator, and the relation (𝑎𝑏)
1

2 ≤
(𝑎+𝑏)

2
, we get: 

D𝑡
𝛼

0
𝑐 𝑉(𝑆(𝑡), 𝐴(𝑡), 𝐶(𝑡), 𝑇(𝑡), 𝑅(𝑡)= D𝑡

𝛼
0
𝑐 ((𝑆(𝑡)𝑆∗)

1

2 + (𝐴(𝑡)𝑆∗)
1

2 + (𝐶(𝑡)𝐶∗)
1

2 +

(𝑇(𝑡)𝑇∗)
1

2 + (𝑅(𝑡)𝑅∗)
1

2), 

                                                            ≤
1

2
( D𝑡

𝛼
0
𝑐 (𝑆(𝑡)+𝑆∗) + D𝑡

𝛼
0
𝑐 (𝐴(𝑡)+𝐴∗) +

D𝑡
𝛼

0
𝑐 (𝐶(𝑡)+𝐶∗) +                                                                D𝑡

𝛼
0
𝑐 (𝑇(𝑡) + 𝑇∗) +

 D𝑡
𝛼

0
𝑐 (𝑅(𝑡)+𝑅∗)), 

                                                            =
1

2
( D𝑡

𝛼
0
𝑐 (𝑁(𝑡)+𝑁∗), 

                                                             =
1

2
[⋀α − 𝜇𝛼(𝑁(𝑡)+𝑁∗) − (𝑑𝛼(𝐶(𝑡)+𝐶∗))] . 

Case 1: Substituting the disease-free equilibrium 𝐸0(𝑁
0) = (

∧𝛼

𝜇𝛼
)   we get: 

D𝑡
𝛼

0
𝑐 𝑉(𝑆(𝑡), 𝐴(𝑡), 𝐶(𝑡), 𝑇(𝑡), 𝑅(𝑡))  ≤

1

2
[⋀α − 𝜇𝛼(𝑁(𝑡)+

∧𝛼

𝜇𝛼

∗

) − (𝑑𝛼(𝐶(𝑡)+𝐶∗))], 

                                                                                     = −
1

2
[𝜇𝛼(𝑁(𝑡)) + 𝑑𝛼(𝐶(𝑡))], 



41 
 

 
 

                                                                                     = −𝑀(𝑥(𝑡)). 

Where 𝑀(𝑥(𝑡)) =
1

2
[𝜇𝛼(𝑁(𝑡)) + 𝑑𝛼(𝐶(𝑡))]. 

Next; 

Case 2: At the endemic equilibrium 𝐸1(𝑁
1), we arrive at: 

D𝑡
𝛼

0
𝑐 𝑉(𝑆(𝑡), 𝐴(𝑡), 𝐶(𝑡), 𝑇(𝑡), 𝑅(𝑡))  ≤

1

2
[⋀α − 𝜇𝛼(𝑁(𝑡)+𝑁∗) − (𝑑𝛼(𝐶(𝑡)+𝐶∗))], 

                                ≤ −
1

2
[𝜇𝛼(𝑁(𝑡)) + 𝑑𝛼(𝐶(𝑡)), 

      = −𝑀(𝑥(𝑡)). 

Since 𝑁1 > 0, 

Where 𝑀(𝑥(𝑡)) =
1

2
[𝜇𝛼(𝑁(𝑡)) + 𝑑𝛼(𝐶(𝑡))]. 

Hence by the theorem of global stability of non-autonomous fractional order systems 

(Delavari, H., et. al 2012), the system (2.1) is globally stable at the equilibriums. 

 

Numerical Simulations 

In this section, numerical simulations are carried out to support the analytical results 

using the Matlab code fde12.m, which implements the Predictor Corrector method proposed 

by (Diethelm, K. and Freed, A.D. 1998; Garrappa, R. 2014). Real-life data and parameters 

were adopted and calculated from worldometer- real time world statistics, summaries of 

alcoholic cardiomyopathy and previous studies (Manthey, J. J. 2020; Manthey, J. 2019; 

Manthey, J. P. 2018; Manthey, J., et al. 2017, Manthey, J. I. 2013; Worldometer-real time 

wolrd statistics; results and gbd summaries of alcoholic cardiomyopathy level 4, 2019; Reich, 

O., et al. 2020). 

Neural Network time series was integrated and employed to train the model in making 

predictions by randomizing data using Levenberg Marquardt algorithm and analyzing 

performance using Mean Square Error (MSE) approach. The Artificial Neural Network 

employed can be summarized with the formular:  

𝑌𝑖 = 𝑓(∅𝑖 +∑𝑤𝑖𝑗

𝑚

𝑗

𝑋𝑗), 

Where ∅𝑖 is the bias at the hidden layer, 𝑚 is the number of neurons in the hidden 

layer, 𝑤𝑖𝑗 is the connection weight between the hidden layer and the input variable 𝑋𝑗, 𝑓 is the 

transfer function and 𝑌𝑖 is the output variable. 
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Figure 3 

ACM dynamics with all compartments when 𝑅0 < 1 

 

Figure 4 

ACM dynamics with all compartments when 𝑅0 > 1 
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Figure 5 

Comparison of the Susceptible alcoholics against the ACM compartment when 𝑅0 < 1. 

 

Figure 6  

Comparison of the Susceptible alcoholics against the ACM compartment when 𝑅0 > 1 

 

 

 

 



44 
 

 
 

Figure 7 

Dynamics of the Addicted alcoholics against the ACM compartment when 𝑅0 < 1 

 

Figure 8 

Dynamics of the Addicted alcoholics against the ACM compartment when 𝑅0 > 1 
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Figure 9 

Comparison of the ACM against the Treatment compartment when 𝑅0 < 1 

 

  Figure 10 

  Comparison of the ACM against the Treatment compartment when 𝑅0 > 1 
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Figure 11 

Comparison of the ACM against the recovered compartment when 𝑅0 < 1. 

 

Figure 12 

Comparison of the ACM against the recovered compartment when 𝑅0 > 1 
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Figure 13 

Neural Network Regression Model-Data Fit 
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Figure 14 

Response of Output Element 

  

Figure 15 

Neural Network Model Training State 
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Figure 16 

Performance Validation Neural Network Model 

 

Figure 17 

Comparison of Various Alpha Values in Curve Fitting 
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Nearest neighbor interpolant: 

 𝑓(𝑥, 𝑦) = piecewise constant surface computed from p where x is normalized by mean 

1051 and std 1400 and where y is normalized by mean 796.6 and std 1088 

Coefficients: p = coefficient structure 

Goodness of fit: SSE: 4874, R-square: 1. 

 

Figure 18 

Model Prediction 

 

 

Linear model Poly9: 

     𝑓(𝑥)  =  𝑝1 ∗ 𝑥
9  +  𝑝2 ∗ 𝑥

8  +  𝑝3 ∗ 𝑥
7  +  𝑝4 ∗ 𝑥

6  +  𝑝5 ∗ 𝑥
5  +  𝑝6 ∗ 𝑥

4  + 𝑝7

∗ 𝑥3  + 𝑝8 ∗ 𝑥
2  +  𝑝9 ∗ 𝑥 + 𝑝10 

Coefficients (with 95% confidence bounds): 

𝑝1  =   −1.057𝑒 − 28  (−4.971𝑒 − 28, 2.856𝑒 − 28) 

𝑝2 =    7.012𝑒 − 23  (6.31𝑒 − 23, 7.714𝑒 − 23) 

𝑝3  =   −1.199𝑒 − 18  (−1.25𝑒 − 18,−1.147𝑒 − 18) 

𝑝4 =    8.191𝑒 − 15  (7.995𝑒 − 15, 8.386𝑒 − 15) 

𝑝5  =     −2.8𝑒 − 11  (−2.841𝑒 − 11,−2.759𝑒 − 11) 

𝑝6  =    4.939𝑒 − 08  (4.893𝑒 − 08, 4.985𝑒 − 08) 

𝑝7  =   −4.151𝑒 − 05  (−4.175𝑒 − 05, −4.126𝑒 − 05) 

𝑝8  =      0.01326  (0.01322, 0.01331) 

𝑝9  =      −0.2284  (−0.2318,−0.225) 

𝑝10  =        1.225  (1.159, 1.292) 
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Goodness of fit: 

SSE: 1.314e+08, R-square: 0.9999, Adjusted R-square: 0.9999, RMSE: 11.7. 

Results 

Upon examining both numerical and analytical solutions, it was found that the 

behavior of the ACM epidemic depended heavily on the reproduction coefficient 𝑅0. 

Specifically, when  𝑅0 is less than one, there is a stable disease-free equilibrium; this 

leads to a rapid reduction in disease spread as indicated by Figure 4 and Figure 6. 

Conversely, if the value of   𝑅0 exceeds one, then an unstable endemic equilibrium 

occurs instead leading to increased epidemic thrivency observed in Figure 5 and 

Figure 7. Figures between (i.e., including) 4 through to (i.e., including) 7 demonstrate 

that alcohol use greatly increases susceptibility to ACM disease; over time, most 

individuals from within the addicts' compartment transition into the ACM 

compartments shown in Figures 6 and Figure 3. Figure between (inclusive of) Figures 

from--8 & --9 elucidate how treatment effectiveness can speed up recovery among 

those affected by an ACM population during periods where outbreaks occur. As 

illustrated via Figures between (i.e., including) Figures --17 & --18 shows how 

different alpha values affect model goodness via reflected accuracy shown SSE 

displays at -1 .314 e+08 with R-square displaying rough significance around .9999 

indicating fine-curve fitting with commensurate level accuracy preceded by 

noteworthy correlation demonstrated across training data along testing validating 

datasets all reflecting maximum accuracy.  

With decreasing alpha values reflected across different compartments 

showcased through Figure--12 sets which observed smoother convergence outpacing 

corresponding results similarly observed with respect to neural network time series 

training models featured between inclusive of figures from Figures--13 through to--

16 showcasing performance levels besides overall ability according to regression 

functions juxtaposed against response algorithms following data input from various 

sources. The statistical evidence suggests a robust relationship among variables. Our 

predictive model forecasts an approximate spike of sixty million cases relating to 

ACM-caused mortalities during twenty-forty-one and twenty-forty-two. Notably, 

countries across the world could witness more than sixty-five thousand such demises 

by two-thousand seventy-seven based on our analyses. 
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  Conclusion and Discussion 

 The analytical and numerical solutions of the ACM-LMA model provide 

guidance on how to mitigate an ACM pandemic. It has been observed that reducing 

the reproduction coefficients to less than one results in a healthy population over time. 

The numerical simulations support this assertion by revealing specific parameters that 

can be targeted. As alpha approaches zero, faster convergence is observed, providing 

insights into the memory effect and the tendency of a compartment size irrespective 

of time. Also, minimizing the transmission infectivity rate can slow down the disease 

explosion. Additionally, reducing recruitment rate onto the alcoholic susceptible and 

improving the rate of recovery can lead to a healthy population. However, failure to 

control the epidemic may lead to a significant reduction in the population. An ACM 

pandemic is only feasible if there is a massive recruitment of susceptible individuals 

over time, a colossal reduction in the recovery rate, and a lack of effective and widely 

available treatment. Hence, better treatment and low recruitment rate onto the 

alcoholic susceptible can quickly mitigate the ACM pandemic, while reducing 

recruitment is the most ideal. 

 The Neural Network (NN) time series integrated into the fractional model 

demonstrates expediency by training the model with 70% of data, validating with 

15%, and testing with 15%. The ACM-LMA fractional model provides insights into 

the disease dynamics from previous years into the future. Based on historical data, the 

model predicts an additional surge in the epidemic in the year 2027 if the dynamics of 

the epidemic persist at the same rate. It predicts a first peak of over 60,000,000 

prevalent cases across North and Central America, North Africa, the Caribbean, 

Central and Eastern Europe, Australia, and Asia between the years 2040-2042 and a 

decline below 45,000,000 in the coming years. These predictions may suggest 

degenerative immunity over time, unpreparedness and unawareness, unresponsive 

ACM cases, overwhelmed health professionals and limited clinical facilities, and 

sudden responsiveness and control measures after the surge, respectively. 

 The ACM-LMA model's foresight reveals the epidemic in circles, like a sine 

wave with a progressing amplitude, period, and range. A future study for regulatory 

measures and optimal control is imperative to provide a closer look at the solution and 

deploy a control strategy to contain the dynamical system by revealing the conditions 

for optimality and then optimizing the objective function to prevent an explosion of 

the epidemic. However, the research on the dynamics of the ACM as projected by the 
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ACM-LMA model indicates that the epidemic may linger in a progressive trend in 

subsequent years to come as long as heavy alcohol consumption persists. 
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CHAPTER IV 

Sensitivity Analysis and Optimization of the ACM-LMA Model 

 

              Fractional calculus is a powerful tool for modeling biological and mechanical 

phenomena due to its advantages of non-locality and memory effects. Many research 

findings suggest that modeling real-life phenomena with fractional-order derivatives 

is the most accurate and reliable. Among the types of fractional derivative operators, 

the Caputo type is more realistic, as it allows for the inclusion of traditional initial 

boundary conditions. 

              Optimal control involves determining a control approach to either minimize 

or maximize the objective function or a specific performance index subject to 

constraints. The control parameterization technique involves approximating the 

control function by a linear combination of basic functions, where the coefficients in 

the linear combination are decision variables to be chosen optimally. Solving optimal 

control problems for a particular model can reveal insights that may not be easily 

obtained otherwise and can be used to appraise past policies with respect to the 

objective function and to suggest improved strategies. 

               Various optimization approaches and algorithms have been proposed, and 

their applications are determined by the intended problem to be solved. For instance, 

the Heap-based optimizer long short-term memory (HBO-LSTM) was proposed to 

forecast wind power from different wind turbines, and it outperformed other 

alternative models like particle swam optimization (PSO), although it came third in 

rank in computational cost using time. The Ebola Optimization Search Algorithm 

(EOSA) incorporating the SIR model on a system of a first-order differential equation 

performed better than the Genetic Algorithm (GA) and PSO in terms of scalability, 

convergence, and sensitivity analysis. However, the Levenberg Marquardt Algorithm 

(LMA) has been shown to have more advantages over the above-mentioned 

algorithms. 

                Alcoholic cardiomyopathy is a leading cause of global mortality, and many 

authors in literature have employed fractional-order systems to study alcoholism, its 

related diseases, and dynamics. In this chapter, we consider a fractional-order 

Alcoholic Cardiomyopathy (ACM) epidemic model of the Caputo type, with the aim 

of studying the dynamics of the ACM by performing sensitivity analysis to predict 
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outcomes as parameters vary and to narrow down control measures to this epidemic 

and slope down the curves. We combine the Nelder-Mean algorithm and Levenberg 

Marquardt Algorithm (LMA) alongside the predictor-corrector scheme to support the 

sensitivity analysis of the system in reaching specific optimized parameters and 

optimally control the disease dynamics. The model divides the world population into 

five categories: susceptible (S), alcoholics (A), ACM diseased (C), ACM diseased in 

treatment (T), and recovered population (R). We begin by carrying out sensitivity 

analysis, followed by optimal control analysis with some numerical simulations, and 

finally, present our results and conclusions. Our approach is novel and superior, as it 

combines the advantages of the memory effect, scalability, convergence, and 

commensurate accuracy with less time computational cost in finding the global 

optimal solution.  

             The model divides the world population into five categories: susceptible (S), 

alcoholics (A), ACM diseased (C), ACM diseased in treatment (T), and recovered 

population (R). We begin by carrying out sensitivity analysis, followed by optimal 

control analysis with some numerical simulations, and finally, present our results and 

conclusions. Our approach is novel and superior, as it combines the advantages of the 

memory effect, scalability, convergence, and commensurate accuracy with less time 

computational cost in finding the global optimal solution. The model is presented 

below: 

D𝑡
α

0
𝑐 𝑆(𝑡) = ⋀𝛼 + 𝑟𝛼𝑅(𝑡)   − 

𝛽𝛼𝑆(𝑡)

𝑁
𝐴(𝑡) − 𝜇𝛼𝑆(𝑡), 

D𝑡
α

0
𝑐 𝐴(𝑡) =

𝛽𝛼𝑆(𝑡)

𝑁
𝐴(𝑡) − 𝜇𝛼𝐴(𝑡) − 𝛿𝛼𝐴(𝑡)𝐶(𝑡)  , 

D𝑡
α

0
𝑐 𝐶(𝑡) = 𝛿𝛼𝐴(𝑡)𝐶(𝑡) − 𝜇𝛼𝐶(𝑡) − 𝜎𝛼𝐶(𝑡) − 𝑑𝛼𝐶(𝑡), 

D𝑡
α

0
𝑐 𝑇(𝑡) = 𝜎𝛼𝐶(𝑡) − 𝛾𝛼  𝑇(𝑡) − 𝜇𝛼𝑇(𝑡), 

D𝑡
α

0
𝑐 𝑅(𝑡) = 𝛾𝛼  𝑇(𝑡) − 𝜇𝛼𝑅(𝑡) − 𝑟𝛼𝑅(𝑡). 

 

Where, 𝑆(𝑡) + 𝐴(𝑡) + 𝐶(𝑡) + 𝑇(𝑡) + 𝑅(𝑡) = 𝑁(t). 

Observe that the solution to the system (4.1) exists and is unique, as shown in Chapter 

III, and well detailed in (David Amilo et al. 2022). Hence, the nominal equation for 

the system (1) has a unique solution and it is close to the exact solution (Guo, Y., et al 

2016). 

 

 

 

(4.1) 
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Sensitivity Analysis 

Given 𝑣 = (Λ, 𝑟, 𝛽, 𝜇, 𝛿, 𝜎, 𝑑, 𝛾)𝑇 and 𝑁𝑠 = (𝑆, 𝐴, 𝐶, 𝑇, 𝑅) and setting 𝑆(𝑡) =

𝑥1(𝑡), 𝐴(𝑡) = 𝑥2(𝑡), 𝐶(𝑡) = 𝑥3(𝑡), 𝑇(𝑡) = 𝑥4(𝑡) and 𝑅(𝑡) = 𝑥5(𝑡). 

The sensitivity function is given by: 

        𝑊 =
𝜕𝑥

𝜕𝑣
=

[
 
 
 
 
 
 
 
 
𝜕 𝑆(𝑡)

𝜕Λ

𝜕 𝑆(𝑡)

𝜕r

𝜕 𝑆(𝑡)

𝜕𝛽

𝜕 𝐴(𝑡)

𝜕Λ

𝜕 𝐴(𝑡)

𝜕r

𝜕 𝐴(𝑡)

𝜕𝛽

𝜕 𝐶(𝑡)

𝜕Λ
𝜕 𝑇(𝑡)

𝜕Λ

𝜕 𝑅(𝑡)

𝜕Λ

𝜕 𝐶(𝑡)

𝜕r
𝜕 𝑇(𝑡)

𝜕r

𝜕 𝑅(𝑡)

𝜕r

𝜕 𝐶(𝑡)

𝜕𝛽

𝜕 𝑇(𝑡)

𝜕𝛽

𝜕 𝑅(𝑡)

𝜕𝛽

𝜕 𝑆(𝑡)

𝜕𝜇

𝜕 𝐴(𝑡)

𝜕𝜇

𝜕 𝐶(𝑡)

𝜕𝜇

𝜕 𝑇(𝑡)

𝜕μ

𝜕 𝑅(𝑡)

𝜕μ

   

𝜕 𝑆(𝑡)

𝜕𝛿

𝜕 𝑆(𝑡)

𝜕𝜎

𝜕 𝑆(𝑡)

𝜕𝑑

𝜕 𝑆(𝑡)

𝜕𝛾

𝜕 𝐴(𝑡)

𝜕𝛿

𝜕 𝐴(𝑡)

𝜕𝜎

𝜕 𝐴(𝑡)

𝜕𝑑

𝜕 𝐴(𝑡)

𝜕𝛾

𝜕 𝐶(𝑡)

𝜕𝛿
𝜕 𝑇(𝑡)

𝜕δ

𝜕 𝑅(𝑡)

𝜕δ

𝜕 𝐶(𝑡)

𝜕𝜎
𝜕 𝑇(𝑡)

𝜕σ

𝜕 𝑅(𝑡)

𝜕σ

𝜕 𝐶(𝑡)

𝜕𝑑

𝜕 𝐶(𝑡)

𝜕𝛾

𝜕 𝑇(𝑡)

𝜕𝑑

𝜕 𝑇(𝑡)

𝜕γ

𝜕 𝑅(𝑡)

𝜕𝑑

𝜕 𝑅(𝑡)

𝜕γ ]
 
 
 
 
 
 
 
 

, 

              ≜

[
 
 
 
 
𝑥6(𝑡) 𝑥8(𝑡) 𝑥10(𝑡)

𝑥7(𝑡) 𝑥9(𝑡) 𝑥11(𝑡)

𝑥22(𝑡)

𝑥30(𝑡)

𝑥31(𝑡)

𝑥23(𝑡)

𝑥32(𝑡)

𝑥33(𝑡)

𝑥24(𝑡)

𝑥34(𝑡)

𝑥35(𝑡)

𝑥12(𝑡)

𝑥13(𝑡)

𝑥25(𝑡)

𝑥36(𝑡)

𝑥37(𝑡)

   

𝑥14(𝑡) 𝑥16(𝑡) 𝑥18(𝑡) 𝑥20(𝑡)

𝑥15(𝑡) 𝑥17(𝑡) 𝑥19(𝑡) 𝑥21(𝑡)

𝑥26(𝑡)

𝑥38(𝑡)

𝑥39(𝑡)

𝑥27(𝑡)

𝑥40(𝑡)

𝑥41(𝑡)

𝑥28(𝑡) 𝑥29(𝑡)

𝑥42(𝑡) 𝑥44(𝑡)

𝑥43(𝑡) 𝑥45(𝑡)]
 
 
 
 

  

     𝑃(𝑣) =
𝜕𝑁𝑠

𝜕𝑥
=

(

 
 

−𝜇𝛼  −𝛽𝛼 0 0 𝑟𝛼

0 −𝛽𝛼 − 𝜇𝛼 − 𝛿𝑐(𝑡) −𝛿𝐴(𝑡) 0 0

0 𝛿𝐶(𝑡) 𝛿𝐴(𝑡) − (𝜇𝛼 + 𝜎𝛼 + 𝑑𝛼) 0 0

0 0 𝜎𝛼 −(𝛾𝛼 + 𝜇𝛼) 0

0 0 0 𝛾𝛼 −(𝜇𝛼 + 𝑟𝛼))

 
 
, 

 

   𝑄(𝑣) =
𝜕𝑁𝑠

𝜕𝑣
=

[
 
 
 
 
1 𝑅(𝑡) −𝐴(𝑡)

0 0 𝐴(𝑡)

0
0
0

0
0

−𝑅(𝑡)

0
0
0

−𝑆(𝑡)

−𝐴(𝑡)

−𝐶(𝑡)

−𝑇(𝑡)

−𝑅(𝑡)

   

0 0 0    0
−𝐴(𝑡)𝐶(𝑡) 0 0     0

𝐴(𝑡)𝐶(𝑡)
0
0

−𝐶(𝑡)

𝐶(𝑡)
0

 
−𝐶(𝑡) 0
0 −𝑇(𝑡)

0 𝑇(𝑡) ]
 
 
 
 

, 

At the nominal values 𝑣0 = (0.1, 0.01, 0.02, 0.03, 0.01, 0.01, 0.01, 0.03)
𝑇 , α = 0.8 

The sensitivity equation is then given by: 

D𝑡
0.8

0
𝑐 𝑊 = 𝑃(𝑣0)𝑊 + 𝑄(𝑣0) 

=

(

 
 

−0.03  −0.02 0 0 0.01
0 −0.02 −0.01𝑥2(𝑡) 0 0

0 0.01𝑥3(𝑡) 0.01𝑥2(𝑡) − 0.05 0 0
0 0 0.01 −0.06 0
0 0 0 0.03 −0.04)

 
 

[
 
 
 
 
𝑥6(𝑡) 𝑥8(𝑡) 𝑥10(𝑡)
𝑥7(𝑡) 𝑥9(𝑡) 𝑥11(𝑡)

𝑥22(𝑡)
𝑥30(𝑡)

𝑥31(𝑡)

𝑥23(𝑡)
𝑥32(𝑡)

𝑥33(𝑡)

𝑥24(𝑡)
𝑥34(𝑡)

𝑥35(𝑡)

𝑥12(𝑡)
𝑥13(𝑡)

𝑥25(𝑡)
𝑥36(𝑡)

𝑥37(𝑡)

   

𝑥14(𝑡) 𝑥16(𝑡) 𝑥18(𝑡) 𝑥20(𝑡)

𝑥15(𝑡) 𝑥17(𝑡) 𝑥19(𝑡) 𝑥21(𝑡)

𝑥26(𝑡)
𝑥38(𝑡)

𝑥39(𝑡)

𝑥27(𝑡)
𝑥40(𝑡)

𝑥41(𝑡)

𝑥28(𝑡) 𝑥29(𝑡)
𝑥42(𝑡) 𝑥44(𝑡)

𝑥43(𝑡) 𝑥45(𝑡)]
 
 
 
 

+

[
 
 
 
 
1 𝑥5(𝑡) −𝑥2(𝑡)

0 0 𝑥2(𝑡)

0
0
0

0
0

−𝑥5(𝑡)

0
0
0

−𝑥1(𝑡)

−𝑥2(𝑡)

−𝑥3(𝑡)

−𝑥4(𝑡)

−𝑥5(𝑡)

   

0 0 0    0
−𝑥2(𝑡)𝑥3(𝑡) 0 0     0

𝑥2(𝑡)𝑥3(𝑡)

0
0

−𝑥3(𝑡)

𝑥3(𝑡)
0

 

−𝑥3(𝑡) 0

0 −𝑥4(𝑡)

0 𝑥4(𝑡) ]
 
 
 
 

 

 

 

 

(3.2)
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Combining equation (ii) and (iii), we get: 

{
 
 
 
 
 
 

 
 
 
 
 
 
D𝑡
0.8
𝑥1(𝑡) = 0.1 + 0.01𝑥6(𝑡) − 0.02𝑥2(𝑡)0

𝑐
− 0.03𝑥1(𝑡)                                     𝑥1(0) = 𝑥10

D𝑡
0.8
𝑥2(𝑡) = −0.01𝑥2(𝑡) − 0.01𝑥2(𝑡)𝑥3(𝑡) 0

𝑐
                                                             𝑥2(0) = 𝑥20

D𝑡
0.8
𝑥3(𝑡) = 0.01𝑥2(𝑡)𝑥3(𝑡) − 0.05𝑥3(𝑡)0

𝑐
                                                                  𝑥3(0) = 𝑥30

D𝑡
0.8
𝑥4(𝑡) = 0.01𝑥3(𝑡) − 0.06𝑥4(𝑡)0

𝑐
                                                                             𝑥4(0) = 𝑥40

D𝑡
0.8
𝑥5(𝑡) = 0.03𝑥4(𝑡) − 0.04𝑥5(𝑡)0

𝑐
                                                                              𝑥5(0) = 𝑥50

D𝑡
0.8
𝑥6(𝑡) = −0.03𝑥6(𝑡) − 0.02𝑥7(𝑡) + 0.01𝑥31(𝑡)0

𝑐
+ 1                                     𝑥6(0) = 0

D𝑡
0.8
𝑥7(𝑡) = −0.03𝑥7(𝑡) − 0.02𝑥2(𝑡)𝑥22(𝑡) 0

𝑐
                                                             𝑥7(0) = 0

D𝑡
0.8
𝑥8(𝑡) = −0.03𝑥8(𝑡) − 0.02𝑥9(𝑡) + 0.01𝑥33(𝑡)0

𝑐
                                            𝑥8(0) = 0

⋮
D𝑡
0.8
𝑥45(𝑡) = 0.03𝑥44(𝑡) − 0.04𝑥45(𝑡)0

𝑐
                                                                        𝑥45(0) = 0

 

 

Figure 19.  

Sensitivity of 𝑥1(𝑡) to 𝑥5(𝑡) on parameters 
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Figure 20.  

Sensitivity of 𝑥1(𝑡) to 𝑥5(𝑡) on parameters 

 

     

Optimal Control Analysis 

In view of optimality for the system (1), we would employ two control 

variables: creating awareness and sensitization to reduce the propaganda of 

susceptible contacting with alcohol users and abusers; “infection” 𝑢1(𝑡), and 

reduction of alcohol consumption 𝑢2(𝑡).  

The objective function is given by: 

𝐽(𝑢1, 𝑢2) = 𝑚𝑖𝑛∫ [𝐺1𝑆(𝑡) + 𝐺2𝐴(𝑡) + 𝐺3𝐶(𝑡) + 
1

2
(𝑍1𝑢1

2(𝑡) + 𝑍2𝑢2
2(𝑡))]𝑑𝑡

𝐿

0

, 

    Subject to the state system 

D𝑡
α

0
𝑐 𝑆(𝑡) = ⋀𝛼 + 𝑟𝛼𝑅(𝑡)   −  

𝛽𝛼𝑆(𝑡)

𝑁
𝐴(𝑡) − (𝜇𝛼 + 𝑢1(𝑡))𝑆(𝑡), 

D𝑡
α

0
𝑐 𝐴(𝑡) =

𝛽𝛼𝑆(𝑡)

𝑁
𝐴(𝑡) − (𝜇𝛼 + 𝑢2(𝑡))𝐴(𝑡) − (𝛿

𝛼 + 𝑢2(𝑡))𝐴(𝑡)𝐶(𝑡)  , 

D𝑡
α

0
𝑐 𝐶(𝑡) = (𝛿𝛼 + 𝑢2(𝑡))𝐴(𝑡)𝐶(𝑡) − (𝜇

𝛼 + 𝜎𝛼 + 𝑑𝛼 + 𝑢2(𝑡))𝐶(𝑡), 

D𝑡
α

0
𝑐 𝑇(𝑡) = (𝜎𝛼 + 𝑢2(𝑡))𝐶(𝑡) − 𝛾

𝛼 𝑇(𝑡) − 𝜇𝛼𝑇(𝑡), 

D𝑡
α

0
𝑐 𝑅(𝑡) = 𝛾𝛼 𝑇(𝑡) − 𝜇𝛼𝑅(𝑡) − 𝑟𝛼𝑅(𝑡). 

 

(3.3) 
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Such that  𝑆(𝑡) ≥ 0, 𝐴(𝑡) ≥ 0, 𝐶(𝑡) ≥ 0, 𝑇(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0, 

where 𝐺1, 𝐺2, 𝐺3 are relative weights and 𝑍1 and 𝑍2 measure the associated cost of 

creating awareness and sensitization and reduction of alcohol consumption 

respectively. 

Our aim is to find the control function such that 

𝐽(𝑢1
∗, 𝑢2

∗) = min  {𝐽(𝑢1, 𝑢2), 𝑢1, 𝑢2 ∈ 𝑈 }, 

Subject to the state system, where the control set is defined as 

𝑈 = {(𝑢1, 𝑢2): 𝑢𝑖(𝑡), 0 ≤ 𝑢𝑖(𝑡) ≤ 1, 𝑖 = 1,2 }, 

Employing the Pontryagin’s maximum principle to ascertain the condition for 

optimality, we get the following Hamiltonian 𝐻 with respect to control variables: 

𝐻 = 𝐺1𝑆(𝑡) + 𝐺2𝐴(𝑡) + 𝐺3𝐶(𝑡) + 
1

2
(𝑍1𝑢1

2(𝑡) + 𝑍2𝑢2
2(𝑡)) + 𝜆1[⋀

𝛼 + 𝑟𝛼𝑅(𝑡)   −

 
𝛽𝛼𝑆(𝑡)

𝑁
𝐴(𝑡) − (𝜇𝛼 + 𝑢1(𝑡))𝑆(𝑡)] + 𝜆2 [

𝛽𝛼𝑆(𝑡)

𝑁
𝐴(𝑡) − (𝜇𝛼 + 𝑢2(𝑡))𝐴(𝑡) − (𝛿

𝛼 +

𝑢2(𝑡))𝐴(𝑡)𝐶(𝑡)] + 𝜆3[(𝛿
𝛼 + 𝑢2(𝑡))𝐴(𝑡)𝐶(𝑡) − (𝜇

𝛼 + 𝜎𝛼 + 𝑑𝛼 + 𝑢2(𝑡))𝐶(𝑡)] +

 𝜆4[(𝜎
𝛼 + 𝑢2(𝑡))𝐶(𝑡) − 𝛾

𝛼  𝑇(𝑡) − 𝜇𝛼𝑇(𝑡)] + 𝜆5[𝛾
𝛼  𝑇(𝑡) − 𝜇𝛼𝑅(𝑡) − 𝑟𝛼𝑅(𝑡)],   

where 𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡), 𝜆4(𝑡) and 𝜆5(𝑡) are made up of the adjoint variables. 

The solution of the resulting system is determined by taking the partial derivatives of 

Hamiltonian in (v) with respect to the associated variables. We obtain the necessary 

optimality conditions for the system of equation: 

{
  
 

  
 D𝑡

α
0
𝑐 𝑆(𝑡) =

𝜕𝐻

𝜕𝜆𝑠
(𝑡),    D𝑡

α
0
𝑐 𝐴(𝑡) =

𝜕𝐻

𝜕𝜆𝐴
(𝑡),

D𝑡
α

0
𝑐 𝐶(𝑡) =

𝜕𝐻

𝜕𝜆𝑐
(𝑡),    D𝑡

α
0
𝑐 𝑇(𝑡) =

𝜕𝐻

𝜕𝜆𝑇
(𝑡),

D𝑡
α

0
𝑐 𝑅(𝑡) =

𝜕𝐻

𝜕𝜆𝑅
(𝑡),

                                  (3.5) 

 

{
 
 

 
 D𝐿

α
0
𝑐 𝜆𝑆(𝑡) = −

𝜕𝐻

𝜕𝑆
(𝑡),    D𝐿

α
0
𝑐 𝜆𝐴(𝑡) = −

𝜕𝐻

𝜕𝐴
(𝑡),

D𝐿
α

0
𝑐 𝜆𝐶(𝑡) = −

𝜕𝐻

𝜕𝐶
(𝑡),    D𝐿

α
0
𝑐 𝜆𝑇(𝑡) = −

𝜕𝐻

𝜕𝑇
(𝑡),

D𝐿
α

0
𝑐 𝜆𝑅(𝑡) = −

𝜕𝐻

𝜕𝑅
(𝑡),                      

𝜕𝐻

𝜕𝑢
(𝑡) = 0,

                          (3.6) 

 

 

 

(3.4) 
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Theorem 5. Given the optimal controls, (𝑢1
∗, 𝑢2

∗) is the solution of the above 

control system, and we can find the adjoint variables 𝜆𝑖(𝑡) for 𝑖 = 𝑆, 𝐴, 𝐶, 𝑇, 𝑅 

satisfying: 

D𝐿
α

0
𝑐 𝜆𝑖(𝑡) =

𝜕𝐻

𝜕𝑖
. 

Where 𝜆𝑖(𝐿)=0, for 𝑖 = 𝑆, 𝐴, 𝐶, 𝑇, 𝑅. 

then the optimal control variables 𝑢1
∗(𝑡), 𝑢2

∗(𝑡) is given as: 

𝑢1
∗(𝑡) = max {𝑚𝑖𝑛 {

𝜆𝑆(𝑡)𝑆
∗(𝑡)

𝑍1
, 1} , 0}, 

𝑢2
∗(𝑡) = max {𝑚𝑖𝑛 {

𝑋

𝑍2
, 1} , 0}. 

Where,  

𝑋 = 𝜆𝐴(𝑡)𝐴
∗(𝑡) − 𝐴∗(𝑡)𝐶∗(𝑡)[1 + 𝜆𝐶(𝑡)] + 𝐶

∗(𝑡)[1 − 𝜆𝑇(𝑡)]. 

 

Proof: Evaluating the adjoint system: 

D𝐿
α

0
𝑐 𝜆𝑆(𝑡) = −𝐺1 + 𝜆𝑆(𝑡)(𝜇

𝛼 + 𝑢1(𝑡)), 

D𝐿
α

0
𝑐 𝜆𝐴(𝑡) = −𝐺2 + 𝜆𝑆(𝑡) [

𝛽𝛼𝑆

𝑁
]

− 𝜆𝐴(𝑡) [
𝛽𝛼𝑆

𝑁
− (𝜇𝛼 + 𝑢2(𝑡)) − (𝛿

𝛼 + 𝑢2(𝑡))𝐶(𝑡)] − 𝜆𝐶(𝑡)(𝛿
𝛼

+ 𝑢2(𝑡))𝐶(𝑡), 

D𝐿
α

0
𝑐 𝜆𝐶(𝑡) = −𝐺3 + 𝜆𝐴(𝑡)[(𝛿

𝛼 + 𝑢2(𝑡))𝐴(𝑡)] − 𝜆𝐶(𝑡)[(𝛿
𝛼 + 𝑢2(𝑡))𝐴(𝑡)] + (𝜇

𝛼

+ 𝜎𝛼 + 𝑑𝛼 + 𝑢2(𝑡)) − 𝜆𝑇(𝑡)[(𝜎
𝛼 + 𝑢2(𝑡))𝐴(𝑡)], 

D𝐿
α

0
𝑐 𝜆𝑇(𝑡) = 𝜆𝑇(𝑡)[𝛾

𝛼 + 𝜇𝛼] − 𝜆𝑅(𝑡)𝛾
𝛼, 

D𝐿
α

0
𝑐 𝜆𝑅(𝑡) = −𝜆𝑆(𝑡)[𝑟

𝛼] − 𝜆𝑅(𝑡)[𝛾
𝛼 + 𝜇𝛼], 

 

Next, we apply 
𝜕𝐻

𝜕𝑢𝑖
(𝑡) = 0, 

                       
𝜕𝐻

𝜕𝑢1
(𝑡) = 𝑢1𝑍1 − 𝜆𝑆(𝑡)𝑆(𝑡), 

𝜕𝐻

𝜕𝑢1
(𝑡) = 𝑢2𝑍2 − 𝜆𝐴(𝑡)𝐴(𝑡) − 𝐴(𝑡)𝐶(𝑡) + 𝜆𝐶(𝑡)𝐴(𝑡)𝐶(𝑡) − 𝐶(𝑡) + 𝜆𝑇(𝑡)𝐶(𝑡). 

So,               𝑢1= 
𝜆𝑆(𝑡)𝑆(𝑡)

𝑍1
,  𝑢2= 

𝜆𝐴(𝑡)𝐴
∗(𝑡)−𝐴∗(𝑡)𝐶∗(𝑡)[1+𝜆𝐶(𝑡)]+𝐶

∗(𝑡)[1−𝜆𝑇(𝑡)]

𝑍2
 . 

Hence,  
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𝑢1
∗(𝑡) = max {𝑚𝑖𝑛 {

𝜆𝑆(𝑡)𝑆
∗(𝑡)

𝑍1
, 1} , 0}, 

𝑢2
∗(𝑡) = max {𝑚𝑖𝑛 {

𝑋

𝑍2
, 1} , 0}, 

Proof complete. 

 

FOCP Scheme 

We incorporate the new scheme motivated by the fundamental theorem of calculus 

well detailed in (Khan, A., et. al. (2021) alongside FOMCON Toolbox and fde12.m 

in MATLAB, for modeling fractional control problems as it implements the Predictor 

Corrector method proposed by (Aleksei Tepljakov 2022) and (Diethelm, K. and Freed, 

A.D. 1998; Garrappa, R. 2014) respectively. 

 

Figure 21.  

Optimization of sensitivity analysis on system 𝑥𝑖(𝑡) 
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Figure 22.  

Optimization control of ACM compartment 

 

Figure 23.  

Progress information and control parameters of 𝑥𝑖(𝑡) 
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Figure 24  

𝑆(𝑡) compartment with and without control 

 

Figure 25.  

𝐴(𝑡) compartment with and without control
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Figure 26.  

𝐶(𝑡) compartment with and without control 

 

Figure 27.  

𝑅(𝑡) compartment with and without control 

 

 

 



65 
 

 
 

Figure 28.  

Control analysis  

 

Figure 29.  

Phase space plot of A(t), 𝑢1 (t) & J  
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Figure 30.  

Phase space plot of A(t), 𝑢2 (t) & J  

 

Figure 31.  

Effect of control variables on state variables  
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Figure 32.  

Objective function trajectory  

 

Figure 33.  

Control variables 𝑢1 (t), 𝑢2 (t)  
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Figure 34.  

Surface plots of 𝑆, 𝑢1 (t), 𝑢2 (t) and 𝐽 

 

Figure 35.  

Surface plots of 𝐴, 𝑢1 (t), 𝑢2 (t) and 𝐽 
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Figure 36.  

Surface plots of 𝐶, 𝑢1 (t), 𝑢2 (t) and 𝐽 

 

Figure 37.  

Surface plots of 𝑇, 𝑢1 (t), 𝑢2 (t) and 𝐽 
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Figure 38.  

Surface plots of 𝑅, 𝑢1 (t), 𝑢2 (t) and 𝐽 

 

Result and Conclusion 

The sensitivity analysis simulations indicate that the parameters exhibit higher 

sensitivity in the ACM compartment, followed by the recovery compartment and then 

the alcoholic compartment, as depicted in Figure 19 and Figure 20 Among these 

parameters, the five most sensitive ones, in their order, are the rate at which alcoholics 

develop alcoholic cardiomyopathy disease, the rate at which alcoholic 

cardiomyopathy diseased individuals receive treatment, the rate at which susceptible 

individuals become alcoholics, death rate from ACM, and the recovery rate from 

ACM. The subsequent sensitive parameters are the rate at which recovered individuals 

return to the susceptible state and the natural death rate. The optimality of the 

sensitivity analysis of the system is demonstrated in Figure 21 and Figure 22. 

Additionally, Figure 23 outlines the optimal control of the top five most sensitive and 

controllable parameters, including the corresponding procedure and performance 

index, while Figures 24 to 28 illustrate the impact of the control on the system at 

various compartments. 

The plot for the state variable S as shown in Figures 24 and 31 revealed the trend of 

susceptibility to alcohol over time. The control strategies aimed at creating awareness 

and sensitization were found to have the potential to reduce susceptibility to alcohol 
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by informing and educating the population. The state variable A represented the 

population of alcoholics, and the corresponding plot depicted the dynamics of 

individuals affected by alcoholism. The control strategies, if effective, could 

contribute to a reduction in the number of individuals struggling with alcoholism, as 

depicted in Figures 24, 25, 26 and 27. The plot for the state variable C illustrated the 

occurrence of alcoholic cardiomyopathy within the population. The control strategies 

were expected to have an impact on reducing the occurrence of this condition by 

targeting alcohol consumption and associated risk factors. The state variable T 

represented the population in treatment for alcoholism, and its plot showcased the 

number of individuals seeking and undergoing treatment. The control strategies had 

the potential to influence individuals' decisions to seek treatment and increase the 

overall treatment uptake. Lastly, the state variable R indicated individuals who 

successfully recovered from alcoholism. The plot for this variable highlighted the 

impact of the control strategies in enhancing the recovery process and contributing to 

a higher number of individuals achieving recovery. 

In addition to the state variables, the analysis considered two control variables: u1(t) 

and u2(t) as illustrated in Figure 28. The plot for u1(t) demonstrated the effect of 

creating awareness and sensitization to reduce the propagation of susceptible 

individuals contacting alcohol users and abusers. It reflected the efforts put into 

awareness campaigns and measures aimed at preventing contact with alcohol-related 

environments. On the other hand, the plot for u2(t) represented the reduction of alcohol 

consumption, indicating the measures taken to decrease alcohol consumption in the 

population. These are depicted in Figures 29 to 33. 

The objective function J was formulated by combining the state variables and 

control variables into a single measure, with its trajectory shown in Figure 32, and all 

corresponding surface plots shown through Figures 34-38. This function aimed to 

optimize the system's behavior over time, taking into account the weighted 

coefficients and regularization terms. By minimizing the objective function, the 

control strategies aimed to achieve desired outcomes such as reducing susceptibility, 

alcoholism prevalence, alcoholic cardiomyopathy, and increasing treatment and 

recovery rates. 

The optimal control analysis provided a mathematical framework for understanding 

the potential impact of implementing control strategies involving awareness and 

sensitization, as well as reducing alcohol consumption, in the dynamics of alcoholism. 
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The interpretation of the results suggested that these control strategies had the potential 

to influence the system's behavior and contribute to the prevention and treatment of 

alcoholism. 

The use of the fractional operator has been demonstrated as particularly suitable 

for studying the transmission dynamics of ACM disease, particularly its optimal 

control via the implicit finite difference and transversality conditions. The findings 

suggest that raising awareness and reducing alcohol consumption can significantly 

reduce the incidence of ACM and its associated mortality. However, relying solely on 

treatment may not be sufficient to prevent a potential pandemic. Notably, if the rate at 

which alcoholics develop ACM is kept below 0.0015, assuming that other parameters 

remain nominal and moderate, the epidemic would easily die out, implying a 

negligible number of ACM cases and reduced mortality. This underscores the 

importance of minimizing alcohol consumption and enhancing awareness. Future 

research involving other prominent fractional control schemes is welcomed to 

compare results. 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

 
 

CHAPTER V 

Findings and Discussion 

The study findings suggest that the spread of alcoholic cardiomyopathy (ACM) 

can be mitigated by maintaining a reproduction coefficient (𝑅0) below one, resulting in 

a stable disease-free equilibrium. Conversely, an 𝑅0 above one leads to an unstable 

endemic equilibrium, resulting in a thriving epidemic. As the population becomes more 

susceptible to alcohol use, there is a higher likelihood of developing ACM, and most 

addicts eventually move into the ACM compartments over time. 

The study also demonstrates the impact of treatment and recovery on the ACM 

population, with treatment effectiveness determining the speed of recovery. 

Additionally, increasing the susceptible and addicted population leads to a rise in the 

ACM compartments and vice versa. Lower alpha values lead to more rapid convergence 

of the different compartments. 

The model's neural network time series training using data demonstrates a 

strong correlation between variables, with an R value of 1 for training, testing, and 

validation. The model fits over different alpha values with maximum accuracy, with an 

overall goodness of fit SSE: 1.314e+08 and R-square: 0.9999. The p-values further 

indicate a strong correlation between variables. 

Based on the model's predictions, there will be a surge of approximately 60,000,000 

ACM death cases between 2041-2042, with death cases surpassing 65,000 in 2077 

globally. The study highlights the importance of reducing alcohol consumption and 

raising awareness to prevent the spread of ACM and its associated mortality. 

The sensitivity analysis simulations reveal that the ACM compartment exhibits 

higher parameter sensitivity, followed by the recovery compartment and the alcoholic 

compartment. The five most sensitive parameters include the rate at which alcoholics 

develop ACM disease, the rate at which ACM patients receive treatment, the rate at 

which susceptible individuals become alcoholics, death rate from ACM, and the 

recovery rate from ACM. The study outlines the optimal control of these parameters, 

including the corresponding procedure and performance index. The effect of the control 

on the system is illustrated in various compartments. 

The use of the fractional operator is highly suitable for studying the transmission 

dynamics of ACM, particularly in terms of optimal control via implicit finite difference 

and transversality conditions. The study suggests that reducing alcohol consumption 

and raising awareness can significantly reduce the incidence of ACM and its associated 
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mortality. However, relying solely on treatment may not be sufficient to prevent a 

potential pandemic. The research also suggests that keeping the rate at which alcoholics 

develop ACM below 0.0015, assuming other parameters remain nominal and moderate, 

could lead to the epidemic's easy extinction, with minimal ACM cases and reduced 

mortality. These findings highlight the significance of minimizing alcohol consumption 

and enhancing awareness. Future studies employing other leading fractional control 

schemes are encouraged to compare results. 

The findings suggest that the ACM-LMA model can be used to guide efforts in 

mitigating an ACM pandemic. One effective strategy is to reduce the reproduction 

coefficients to less than one, which leads to a healthy population over time. The 

numerical simulations show that reducing the transmission infectivity rate, minimizing 

recruitment rate onto the alcoholic susceptible, and improving the rate of recovery can 

also help prevent an outbreak. However, failure to control the epidemic may lead to a 

significant reduction in the population. 

The NN time series integrated into the fractional model shows that the ACM-

LMA model provides insights into the disease dynamics from previous years into the 

future. The model predicts an additional surge in the epidemic in the year 2027 if the 

dynamics of the epidemic persist at the same rate. It also predicts a first peak of over 

60,000,000 prevalent cases between 2040-2042, followed by a decline below 

45,000,000 in the coming years. These predictions may suggest degenerative immunity 

over time, unpreparedness and unawareness, unresponsive ACM cases, overwhelmed 

health professionals and limited clinical facilities, and sudden responsiveness and 

control measures after the surge, respectively. 

The ACM-LMA model's foresight reveals the epidemic in circles, like a sine 

wave with a progressing amplitude, period, and range. However, the research suggests 

that the epidemic may continue in a progressive trend in subsequent years to come as 

long as heavy alcohol consumption persists. Therefore, future research on the dynamics 

of the ACM and the implementation of regulatory measures and optimal control 

strategies are necessary to prevent an explosion of the epidemic. 
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CHAPTER VI 

 Conclusion and Recommendations 

 

Recommendations  

This research has demonstrated the impact of alcohol consumption on the 

spread of alcoholic cardiomyopathy (ACM) and its associated mortality. The findings 

suggest that the reproduction coefficient (𝑅0) plays a crucial role in determining the 

epidemic's stability or instability, and reducing alcohol consumption and raising 

awareness are vital to preventing its spread. Treatment and recovery also play a 

significant role in mitigating the epidemic, and the study highlights the importance of 

controlling the five most sensitive parameters, including the rate at which alcoholics 

develop ACM disease, the rate at which ACM patients receive treatment, the rate at 

which susceptible individuals become alcoholics, death rate from ACM, and the 

recovery rate from ACM. 

The fractional-order model with neural network time series training used in this 

study is highly suitable for studying the transmission dynamics of ACM, particularly in 

terms of optimal control via implicit finite difference and transversality conditions. The 

model provides insights into the disease dynamics from previous years into the future 

and predicts a surge in the epidemic in the year 2027, followed by a first peak of over 

60,000,000 prevalent cases between 2040-2042, and a subsequent decline below 

45,000,000 in the coming years. 

The study recommends that future research should focus on the implementation 

of regulatory measures and optimal control strategies to prevent an explosion of the 

epidemic. These strategies could include reducing the transmission infectivity rate, 

minimizing recruitment rate onto the alcoholic susceptible, and improving the rate of 

recovery. Furthermore, reducing the rate at which alcoholics develop ACM below 

0.0015, assuming other parameters remain nominal and moderate, could lead to the 

epidemic's easy extinction, with minimal ACM cases and reduced mortality. The 

study's findings have significant implications for policymakers and healthcare 

providers globally, as it highlights the need for proactive measures to reduce alcohol 

consumption and raise awareness of the risks associated with alcohol abuse. 

Additionally, it emphasizes the importance of prioritizing treatment and recovery for 
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individuals with ACM and implementing optimal control strategies to prevent the 

spread of the disease. 

The prevention of spreading ACM requires educational programs emphasizing 

government collaboration with relevant stakeholders for effective implementation 

directed towards increasing public awareness about heavy alcohol use dangers: risks of 

developing signs or symptoms along managing treatment options appropriately from 

nearby care facilities until being referred if needed by trained primary-care physicians 

such as having adequate equipment like echocardiography or electrocardiography 

knowledgeably applied timely diagnosed results accurately among caring patients 

experiencing symptoms before it worsens into a severe condition requiring specialist 

attention from an informed cadre which may not thoroughly reflect real-life scenarios 

complexities due to inherent limitation in model dynamics being subject to additional 

research validation. 

 Recommendations According to Findings 

After perusing our recent study's findings mitigating alcoholic cardiomyopathy's 

(ACM) spread whilst reducing mortality levels relies on adopting these 

recommendations: 

1. Reduce Alcohol Consumption: High alcohol intake contributes significantly to 

increased ACM prevalent occurrences. Hence government bodies working together 

with public health organizations should educate the masses by running effective 

campaigns in line with promoting responsible drinking behavior.  

2. Increase Treatment & Recovery: Treatment interventions have a significant impact 

on reducing ACM incidence while recovery programs for recovering patients relapse 

prevention should be prioritized and easily accessed by healthcare providers.  

3. Optimize Control Strategies-Optimizing the top-five most sensitive parameters is 

essential in lowering ACM prevalence rates. Thus, efficient procedures alongside 

optimal control strategies set up accordingly are necessary for reducing incidences.  

4.Enhance Surveillance and Monitoring: Keeping alcoholics' rate of developing ACM 

at minimal levels requires accurate monitoring mechanisms put in place for early 

identification of volatile epidemics 
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5.Invest in Research & Development-Implementing regulatory measures based on 

knowledgeable dynamics of implementing an effective fractional control scheme aimed 

at prioritizing prevention mechanisms against epidemic explosions becoming much 

deadlier again highlights regulators need investments to yield beneficial results. 

Achieving maximum potential toward reducing mortality levels rests wholly on 

government organizations, public health sectors, healthcare providers & affected 

individuals working collectively towards achieving shared goals resulting in an action-

driven approach. No doubt exists regarding the necessity for significant reform within 

our current educational framework.  

The structure which has been erected does not supply learners with critical knowledge 

or abilities necessary for triumph in contemporary society. To rectify this situation there 

are many moving parts which must be addressed including financial insufficiencies, 

outdated teaching methods and anachronistic coursework materials. 

 Recommendations for Future Research 

Based on the findings of this study, several recommendations for future research are 

suggested: 

1. The use of other leading fractional control schemes should be considered to compare 

results with the current study's fractional operator. The comparison will provide a 

comprehensive view of the most effective control schemes in mitigating the spread of 

ACM. 

2. Future studies should explore the impact of various behavioral interventions such as 

counseling, behavioral therapy, and other therapeutic interventions in preventing 

ACM's spread. These studies should evaluate the effectiveness of these interventions in 

reducing alcohol consumption and its associated risks. 

3. Future studies should investigate the role of genetic factors in ACM susceptibility. The 

study of genetic risk factors could help identify individuals who are more vulnerable to 

ACM development and provide insight into the disease's underlying mechanisms. 

4. There is a need for more research on the impact of comorbidities on ACM development 

and mortality. This research could help in the identification of at-risk populations and 

the development of tailored interventions. 
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5. The use of machine learning techniques such as deep learning and reinforcement 

learning could be explored in future studies to improve the accuracy and precision of 

the ACM epidemic predictions. 

6. Future research should investigate the impact of environmental factors such as pollution 

and other occupational hazards on the incidence and mortality of ACM. 

7. There is a need for more research on the long-term effects of ACM treatment and 

recovery. This research could provide insight into the effectiveness of treatment and the 

long-term outcomes of individuals who have recovered from ACM. 

8. Finally, the implementation of regulatory measures and optimal control strategies 

should be investigated in future studies. The investigation will provide insight into the 

most effective policies and measures in mitigating the spread of ACM and reducing its 

associated mortality. 

In summary, future research should aim to develop more effective prevention strategies, 

improve our understanding of the disease's underlying mechanisms, and identify the 

most effective treatment and control measures. These efforts will be critical in reducing 

the incidence and mortality associated with ACM and improving the health outcomes 

of individuals affected by this disease. 
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