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Abstract 

Analysis and Performance Prediction of Shale Wells Using Data Analytics and Machine 

Learning 

MFUTA, John Kaninda  

M.Sc. Department of Petroleum and Natural Gas Engineering 

June, 2023, 93 pages 

            The oil and gas industry, in particular, has benefited greatly from the ability of data 

analytics to improve operations and save time. Numerical reservoir simulators and laboratory tests 

are currently employed for modeling. However, the computational cost of these approaches is 

substantial. In addition, research on the application of data-driven statistical methodologies has 

been conducted, with a primary focus on analysis and performance prediction in unconventional 

reservoirs. An analysis of the key factors that influence the cumulative gas produced after 1-year 

MCF from unconventional reservoirs was done in this study using data analytics to gain new 

knowledge. 

            Predictive modeling and exploratory data analysis were the main methods employed. 

Analyzing exploratory data indicated a connection between the operational and reservoir 

parameters. Additionally, algorithms based on statistics and machine learning were created to 

forecast the total amount of gas produced after one-year MCF. These predictive models were 

compared, and it was found that random forest had the lowest prediction error and highest 𝑅2 

value, making it the preferable approach. 

             Finally, variable importance was used to identify the performance prediction criteria in 

unconventional shale gas reservoirs that had the most influence. It is interesting to note that the 

factors that have the biggest effects on the stimulated reservoir volume. Our results indicate that 

operational parameter is more essential than reservoir parameter in stimulating reservoir volume 

and driving high performance, with Bottom Perf(ft) and Cluster per stage being the most crucial 

factors in achieving high performance. 

Keywords: Exploratory data analysis, Predictive modeling, Unconventional reservoirs 
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Özet 

Veri Analitiği ve Makine Öğrenimi Kullanılarak Şeyl Kuyularının Analizi ve Performans 

Tahmini 

MFUTA, John Kaninda 

M.Sc. Petrol ve Doğal Gaz Mühendisliği Bölümü 

Haziran, 2023, 93 sayfa 

             Özellikle petrol ve gaz endüstrisi, veri analitiğinin operasyonları iyileştirme ve zamandan 

tasarruf etme yeteneğinden büyük ölçüde faydalandı. Modelleme için şu anda sayısal rezervuar 

simülatörleri ve laboratuvar testleri kullanılmaktadır. Bununla birlikte, bu yaklaşımların 

hesaplama maliyeti önemlidir. Ek olarak, geleneksel olmayan rezervuarlarda analiz ve performans 

tahminlerine odaklanarak, veriye dayalı istatistiksel metodolojilerin uygulanmasına ilişkin 

araştırmalar yürütülmüştür. Bu çalışmada, yeni bilgiler elde etmek için veri analitiği kullanılarak 

geleneksel olmayan rezervuarlardan 1 yıllık MCF'den sonra üretilen kümülatif gazı etkileyen 

temel faktörlerin analizi yapılmıştır. 

            Tahmine dayalı modelleme ve keşifsel veri analizi, kullanılan ana yöntemlerdi. Keşif 

verilerinin analizi, operasyonel ve rezervuar parametreleri arasında bir bağlantı olduğunu gösterdi. 

Ek olarak, bir yıllık MCF'den sonra üretilen toplam gaz miktarını tahmin etmek için istatistik ve 

makine öğrenimine dayalı algoritmalar oluşturuldu. Bu tahmin modelleri karşılaştırıldı ve rastgele 

ormanın en düşük tahmin hatasına ve en yüksek 𝑅2 değerine sahip olduğu ve onu tercih edilen bir 

yaklaşım haline getirdiği bulundu.  

            Son olarak, geleneksel olmayan kaya gazı rezervuarlarında en fazla etkiye sahip olan 

performans tahmin kriterlerini belirlemek için değişken önem kullanıldı. Uyarılmış rezervuar 

hacmi üzerinde en büyük etkiye sahip olan faktörlerin dikkate alınması ilginçtir. Bulgularımız, 

operasyonel parametrenin, rezervuar hacmini canlandırmada ve yüksek performans sağlamada 

rezervuar parametresinden daha önemli olduğunu, yüksek performans elde etmede en önemli 

faktörlerin aşama başına Alt Perf(ft) ve Küme ile birlikte olduğunu göstermektedir. 

Anahtar Kelimeler: Keşifsel veri analizi, Tahmine dayalı modelleme, Geleneksel olmayan 

rezervuarlar 
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CHAPTER I 

Introduction 

 

            Shale gas, tight shales, gas hydrates, and coal bed methane production are encouraged by 

rising demand for fossil fuels and a decrease in their production. Gas that occurs in these 

unconventional reservoirs is now producible and has enormous potential for use in the future due 

to advancements in drilling and production technologies. 

            Unconventional natural gas known as shale gas can be found trapped in shale strata. 

(Ertekin,200) Shale gas has become more affordable to extract in large quantities during the 1990s 

because to a combination of horizontal drilling and hydraulic fracturing, and some analysts predict 

that shale gas will significantly increase the world's energy supply. (Clifford Krauss,2009). 

            Although shale gas reservoirs have been known for many decades, producing gas from 

these unconventional reservoirs started as the demand for natural gas increased, the production 

become commercially feasible, and the availability of drilling and completion technologies 

become implementable in late 1850s. (Paul, 2012) 

            The key technology in shale gas production is hydraulic fracturing. For commercially 

feasible gas production, shale gas reservoirs need to be hydraulically fractured. Hydraulic 

fracturing and horizontal well technology became operational for oil industry in 1980s to produce 

oil or gas from shale gas reservoirs. These fractures increase contact surface areas with production 

zone resulting in an increase in well productivity. (Krauss, Clifford,2009). 

            However, massive body of academic research building on top of each other over the years 

attempted to provide solutions to these problems-based formation type and economic feasibility of 

extracting shale gas. This has gained development in simulation study and data mining to get 

insight into the viability of shale well. This methodology presents complex computations that can 

only be achieved with sophisticated systems and some commercial simulation software (Ludmilla 

2018). Machine learning techniques were also applied to effectively analyses reservoir recovery 

and develop an intuitive model for predictive analytics (Chen,2022). This research study aims to 

analyze and develop a machine learning model that evaluates the performance prediction of shale 
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well and serves as a useful tool for predicting cumulative gas produced after 1-year MCF and 

recovery factors. 

Statement of the Problem 

            Global energy demand is on the rise to power machinery and the oil and gas industries are 

faced with a big task to meet with such rising demands. Recovery of oil and gas is a major concern 

to the industry and heavy investment have been made to explore different techniques to recover 

more gas. Horizontal drilling and hydraulic fracturing such technique widely used as it enables to 

improve recovery of shale well. 

            Therefore, prediction of dependent variable becomes a useful tool to give an insight 

towards making more practical decisions which has seen many theoretical models fail to deliver a 

more precise pattern. Machine learning is a data mining technique that will be explored in this 

work to create a powerful predictive tool. 

Purpose of the Study 

            The purpose of this study is to analyze and explore deeper into data mining techniques as 

applied in shale well reservoirs and measure its performance by comparing two different machine 

learning models to predict cumulative gas produced after 1-year MCF. 

Hypothesis 

            If a machine learning model is sufficiently trained, it will produce accurate results for a 

variety of instances. Within the parameters for which it was trained, it discovers the relationship 

between the input and the output and can eventually predict (with a certain level of accuracy) the 

output for a given input. 

Objectives and Questions 

A sample list of research objectives is shown below: 

• Gather and process publicly available shale gas data.  

• Get insight into the trends of important metrics, specifically the cumulative gas produced 

after 1-year MCF via exploration of descriptive and advanced statistics. 

• Design and train machine learning models to fit the available data. 

• Compare two machine learning algorithms (decision tree and random forest) in terms of 

performance, goodness of fit, explanatory impact, and level of significance.  



17 
 

• Determine, based on numerical simulation scenarios, the total amount of gas produced after 

a year MCF. 

The following is a list of possible research inquiries: 

• What are the essential properties of the data, and are there any outliers?  

• Are two or more variables related to one another?  

• How closely will the predicted model match up with future data?  

• What variables, or what combinations of variables, affect shale well performance 

prediction?  

Significance of the Study 

            This modelling tool can be used as a guide toward a practical gas production decision and 

also has a procedure for minimizing cost and maximizing productivity. Therefore, it is worth 

exploring machine learning as a modern technique to identify hidden trends and patterns necessary 

to resolve this problem. 

Limitations 

            This study is limited only by analyzing independent and dependent variables also a 

comparative study of machine learning models to identifying trends and patterns in the 

performance prediction of shale wells by predicting cumulative gas produced after 1-year MCF. 

While the findings of the study are limited to the data set used, approach taken can be tested with 

different data sets. 

Definition of Terms 

• Data Analytics (DA) is the research and modeling of undiscovered relationships and 

patterns in complex, multidimensional data sets utilizing a careful data collection and 

analysis procedure (Mishra et al., 2021). 

• Machine learning (ML) is the process by which an equation (commonly referred to as a 

"black box") is used to deduce the underlying input/output relationship from data (Mishra 

et al., 2021). 

• Shale Gas: is a natural gas that is trapped in shale strata that is unconventional. 
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Summary of the Study 

            The following guidelines have been stated bellow to briefly discuss how this project 

was carried out:  

            Chapter 1 is an overview of the subject and the primary issue with analyzing and 

predicting the performance of shale wells. 

            Chapter 2 contains a review of the literature. This chapter includes a thorough 

discussion of a literature review that covered a variety of topics relating to the topic, including 

data analysis and machine learning methods. 

            Chapter 3 discusses the approach used; in this chapter, all steps necessary to finish the 

project are covered in depth. 

            Chapter 4 presents all the results and discussion made from this study. In this chapter, 

all of the machine learning results are displayed and discussed. 

            Chapter 5 highlighted the results and recommendations. The concluding thoughts and 

some suggestions for additional research are presented in this chapter. 
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CHAPTER II 

 Literature Review 

 

 

            This chapter briefly describes reservoir modeling and simulation, shale gas reservoirs, 

horizontal drilling, hydraulic fracturing, Artificial intelligence, data analytics and machine 

learning. 

 

Reservoir Modeling  

            In order to estimate reservoir performance under various operating conditions, reservoir 

simulation is an approach that combines a number of ideas, including mathematics, physics, 

reservoir engineering, and computer programming (Ertekin et al., 2001). The most important 

physical processes that happen inside the reservoir system are included in these mathematical 

equations, including mass transfer between different phases and fluid movement split into the three 

phases of oil, water, and gas (Ertekin et al., 2001).      

 

Application of Reservoir Simulation in Shale Well Studies 

            Reservoir simulation models are the main instruments used to carry out the initial research 

linked to the uncertainty analysis of fluid sequestration. They make it possible to forecast how the 

storage and injection processes would function under various geological situations (Mohaghegh, 

2018). The management of natural gas production from unconventional resources like shale is 

likewise effectively handled by these commercial reservoir simulators (Boosari et al., 2015). 

 

            The complexity of the simulation model, however, rises with the length of the run. Any 

research project needing tens of thousands of simulations, such uncertainty analysis, optimization 

research, or History matching may become unworkable due to the long run time and high 

computational effort requirements. The oil and gas industry have long struggled with these 

protracted execution times of numerical reservoir simulation models (Mohaghegh,2018). 

Complete physics-based simulators are widely used, but this poses a number of problems, 

including their high processing costs (Schuetter et al,2018). For this reason, in addition to 
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numerical reservoir simulators, data-driven modeling and comprehension tools for the crucial 

components of fluid isolation in unconventional reservoirs must be developed and utilized. 

Exploratory Data Analysis 

            EDA is mostly used to get a basic comprehending of the data in the concept of the 

characteristics of the individual variables and the connections among them. Other objectives 

include selecting instruments for thorough study, identifying important variables of interest, and 

developing questions for future data analysis as shown in Figures 2.1 to 2.3. (Mishra & Datta-

Gupta, 2018). 

 

 

Figure 2.1. Scatter plot matrix (Schuetter et al. 2018) 
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Figure 2.2. Histograms for predictor variables (Zhong et al., 2015) 

 

 

Figure 2.3. Scatterplot matrix for predictor variables (Zhong et al., 2015). 
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• Predictive Input and Output Modeling  

            Predictive modeling, according to Kuhn & Johnson (2013), is the process of creating a 

pattern or mathematical tool that makes an accurate forecast. According to Lolon et al. (2016), the 

model could take the form of a formula or algorithm that has one output variable to forecast and 

one or more independent, well-known predictors as inputs. 

 

Unconventional Gas Recovery 

            There is various meaning for an unconventional gas system, typically regarded as 

unconventional gas reservoirs since it is significantly more difficult to generate from these 

reservoirs both economically and technically. In addition to these factors, unconventional gas 

resources are not buoyancy-driven accumulations like conventional gas resources. Most 

unconventional gas reserves are not affected by stratigraphic or structural traps. The presence of 

significant amounts of hydrocarbons is another hallmark of unconventional gas reservoir. The 

development of unconventional reservoirs is challenging, nevertheless. In contrast, despite the 

smaller size of conventional reservoirs, recovering hydrocarbon is simpler. 

 

            Resources for unconventional gas are becoming more crucial for the resource base. For 

instance, the US uses unconventional gas reservoirs to produce more than 25% of its natural gas. 

In the ensuing decades, it appears that the production percentages will increase. (Kulga,2010). 

 

Shale Gas Reservoirs 

           Shale gas is the name given to natural gas that is trapped inside shale rocks. Petroleum and 

natural gas can be found in large quantities in the fine-grained sedimentary rocks known as shale 

(see Figure 2.4). The pores in this sedimentary rock are shale gas-filled. Gas in gas shales is 

frequently kept in three different ways. 
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Figure 2.4. An illustration of shale gas compared to other types of gas deposits. (Stevens et Paul, 

2012). 

 

In the past ten years, huge amounts of shale gas that were previously uneconomic to generate have 

been extracted by using the hydraulic fracturing and horizontal drilling. The natural gas business 

has been rejuvenated by the exploitation of natural gas from shale deposits. 

 

Horizontal Drilling 

            Horizontal wellbore technology is the first essential component of creating a shale gas 

reservoir. Since the late 1980s, horizontal drilling technique has been used commercially. 

Horizontal drilling can be divided into four categories, according to (Lolon,2016). The most 

common and successful drilling technique has been the medium-radius well. These days, 

horizontal wellbores can reach lengths of up to 8000 feet. Although drilling and finishing a 

horizontal well can be more expensive than drilling and finishing a vertical well for production, it 

can be far more advantageous in other ways. Drilling a vertical well can increase the wellbore 
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surface area, which is the first principle of drilling a horizontal wellbore. Drilling a horizontal well 

as opposed to a vertical well has several additional financial advantages. 

Hydraulic Fracturing 

            Stimulating a well using a hydraulic fracturing method is another essential technology for 

creating a shale gas reserve. In order to increase the effective wellbore radius, hydraulic fracturing 

is typically done in shale reservoirs with micro-Darcy-range permeability. Fluids and proppant 

need to be pumped under high pressure in order to fracture the reservoir in order to stimulate a 

well using the hydraulic fracturing process. Figure 2.5 shows major steps of hydraulic fracturing. 

Types of Hydraulic Fracturing 

            There are two ways that the formation can be hydraulically fractured (Figure 2.5), 

depending on the orientation of the in-situ stress. Transverse or longitudinal fractures to the 

horizontal well axis are both possible. A longitudinal fracture is produced if a horizontal well is 

dug perpendicular to the axis of the least major formation stress. (Zhong, M., Schuetter, J., Mishra, 

S., & LaFollette, R. F. 2015). 

 

 

Figure 2.5. Hydraulic fracturing process (introduction to well testing. schlumberger, bath, 

england, 1998). 
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Data Mining 

           Data mining is the require separation of certain information from a database that was 

previously hidden and not immediately accessible to the user. It uses a variety of methodologies, 

including machine learning (ML). It is also known as knowledge discovery in databases (KDD). 

In contrast to data mining, which involves paying someone to find the finest basketball courts, 

machine learning entails teaching someone how to play the game. Data mining is used by machine 

learning algorithms to connect many linear and nonlinear connections (Belyadi et al, 2019), data 

mining techniques can also be used to acquire and aggregate information from websites, online 

services, and social media. 

 

Artificial Intelligence 

            Artificial intelligence is essentially the application of machine or computer intelligence as 

opposed to that of humans or other animals. It is a subfield of computer science that investigates 

how well computers can mimic cognitive functions. 

 

Machine Learning   

            Modern data science methodology uses machine learning. To be fair, machine learning has 

the algorithm at its core, which gives it a major advantage over all other traditional data science 

methodologies. These are the guidelines a computer follows to locate a model that as closely 

matches the facts as feasible. In contrast to conventional data science techniques, machine learning 

uses the algorithm's instructions to teach itself how to locate the desired dependence. This is where 

machine learning differs from typical data science techniques.  Contrary to typical data science, 

little human interaction is used. In reality, deep learning algorithms in particular are so complex 

that humans are unable to fully comprehend what is going "inside" the model (365-DS-Booklet).   

• Machine Learning Algorithm 

            Each new experiment in a machine learning algorithm is at least as successful as the 

previous one, which is similar to a trial-and-error process. But keep in mind that a computer needs 

to make hundreds of thousands of mistakes before it can learn effectively, with the frequency of 

mistakes decreasing over time. After training, the computer will be able to examine new data and 

make incredibly precise predictions using the complex computational model it has learnt.  
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I. Supervised Learning. 

Labeled data serve as the cornerstone of supervised learning. Large data can be compared to videos 

and images with the tags "cats," "dogs," and "other." If the computer's performance doesn't produce 

the right response, an improvement algorithm changes the computing power, and the computer 

runs another test. Typically, the computer executes this action simultaneously on a huge number 

of data points (365-DS Booklet).  

 

II. Unsupervised Learning 

            When there is not enough time or money to label the data, or when the data scientist is 

unsure of the precise meaning of the labels, unsupervised learning is utilized. Unlabeled data must 

be sent to the computer along with guidelines on how to draw conclusions in order to do this. As 

a result, the data is typically divided into groups according to predetermined criteria. As a result, 

it is combined. Unsupervised learning is especially effective at identifying data patterns that people 

using traditional analytical techniques would miss (365-DS-Booklet). 

 

 

III. Reinforcement Learning 

            This kind of machine learning prioritizes performance (the capacity to walk, see, and read) 

over correctness. The computer is rewarded whenever it performs better than it did previously; 

but, if it performs less than optimally, the algorithms leave the calculation alone. A dog learning 

commands comes to mind. If the animal follows the rules, it gets a treat; if it doesn't, it doesn't. 

(365-DS-Booklet). 

Programming Languages  

            Using a programming language, they are comfortable with, the data scientist can write 

programs that perform certain procedures. The best feature of a programming language is 

flexibility. R, Python, MATLAB, and SQL are the most often used tools. R and Python are the two 

most frequently used data science technologies overall. By far, their biggest advantage is their 

capacity to edit data and integration with different data and data. They are adaptable and not just 

suitable for calculations involving arithmetic and statistics (365-DS-Booklet). 

 



27 
 

Software and Frameworks  

            Excel can be used to manage traditional data, artificial intelligence, and data science. 

Similar to this, SPSS is a widely used tool for handling conventional data and statistical analysis. 

On the other hand, Tensor Flow is a software framework and library created specifically for 

utilizing enormous volumes of data and creating machine learning algorithms. It was created by 

Google for internal use, became available to the general public in 2015, and now dominates 

machine learning usage and applications (365-DS-Booklet).        

  

Related Research 

            Hydraulic fracturing technology has seen a rise in the development of unconventional 

reservoirs over the past ten years (Muther et al. 2020a, 2020b). Its main applications include the 

development of tight gas and oil reservoirs as well as the use of horizontal wells for shale gas. 

Particularly in Canada and North America, this spike was seen. According to Syed et al. (2020a), 

shale gas made up almost fifty % of all-natural gas produced in the United America State in 2018. 

 

            The development of models that can forecast EUR, the generation behavior of 

unconventional HCs, and give an accurate estimate of the amount of injected fluid or proppant 

using a variety of supervised learning-based techniques (Kuhn, M., & Johnson, K.,2013). To create 

AI and ML-based models, researchers with backgrounds in prospection and production as well as 

AI and ML knowledge joined forces. In the lines that follow, a succinct assessment of the literature 

is provided, including an estimation of the production performance of shale gas wells using several 

ML and AI-based methodologies. 

 

            ML strategy was the subject of extensive investigation as well. Based on a data-driven 

methodology, it evaluates the effectiveness of shale gas by considering a number of variables, such 

as HF and well completion in the Eagle Ford formation. Based on supervised learning, a core 

machine learning technique, a model prediction of cumulative production data was developed 

using ML modeling and a data-driven approach. (Han et al. 2020).  
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General workflow 

            A data analytics and statistical modeling approach was employed to address the study 

challenge. Figure 2.6 provides a summary of this approach. 

 

 

Figure 2.6. Workflow for data analytics approach 

 

Data Preparation  

• Perform a quality check on the input data after importing the dataset in Python. 

Exploratory Data Analysis 

• EDA was used to find hidden patterns and characteristics, like outlier points and the 

connection between operational and reservoirs parameter. 

Predictive Modeling 

• Machine learning algorithms were used to predict the total amount of gas generated after 

1-year MCF using the reservoir and operational information. 

• The models were then evaluated using the goodness of fit approach. 

Variable Importance 

• Selected the key reservoir and operational characteristics that influence the total amount of 

gas produced. 

Data Preparation

Exploratory 
Data Analysis

Predicive Modeling

Random Forest

Variable 
Importance

End

Decision Tree

Variable 
Importance

End
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CHAPTER III 

Research Methodology 

 

            This chapter outlines the study population, the research design, the data collection method, 

the validity and reliability of the data collection instrument, and the data collection process. 

 

Research Design  

            A structured correlational research design is used to achieve the objective of the study. This 

design facilitates the description of a situation in its current state, and elicits information directly 

from the study area. 

Population of the Study 

            The study population consists of a portion of actively producing fields with 49 production 

wells in total, in four areas with different formation in EAGLE FORD, HAYNESVILLE SHALE, 

BOSSIER SHALE, MARCELLUS and data was collected from them. 

Validity and Reliability Criteria 

           Machine learning uses a model to train and find relationships between input and output data 

given to it in a trial-and-error process using an objective function to calculate learning error and 

optimization algorithm to adjust in order to minimize training errors. Since the algorithm tries to 

fit a model in a given data, special techniques must be used not to over fit (over train the model) 

or under fit (not being able to capture the underlying logic) the data as well as the power of 

prediction. In this regard, validity and reliability criteria are set as follows.    

• Field data is pre-processed and made suitable for machine learning.  

• In the analysis section a decision tree and random forest will be designed to fit a model 

into the collected data as intuitively as possible to find trends and patterns.    

• Priors were set, the dataset was balanced and splintered into a 70%, 75% and 80% training 

sets and 30%, 25%, and 20% testing sets.    

• After training the model, the 30%,25%, and 20% testing set will be used to calculate the 

accuracy of prediction of all data points in the testing set using the trained model.  

• 70% accuracy is good and acceptable for further predictive analytics, 90% and above is 

impressively okay.    
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Method of Data Collection 

• Data collected would be used to create a database table in excel. 

• Data redundancy would be normalized and balanced. 

• A file extension with xlsx will be used to facilitate IO operations in data science 

frameworks. 

Data Analysis Technique (Exploratory Data Analysis of Data Set) 

• Raw data from. excel file format (suitable file type for jupyter notebook) 

a. Explore descriptive statistics. 

1. Mean, standard deviation, mode.  

2. Quartiles (Q1, Q2, Q3).  

3. Minimum and maximum values.  

4. Counts.  

b. Conduct advanced statistical tests. 

1. Significance test (p-values). 

2. Calculating explanatory power of correlated variables (R-squared & adjusted R- 

squared). 

3. Measure of overall significance (F-statistic and F-probability). 

4. Skewness and kurtosis. 

c. Assumptions with linear machine learning regression 

1. Linearity 

2. Homoscedasticity/ Heteroscedasticity 

3. No autocorrelation 

4. Normality 

5. Multicollinearity 

 

Machine Learning (Supervised Learning Algorithm)  

          Data, models, objective functions, and optimization algorithms must all be specified when 

creating a machine learning algorithm. A model gives the machine learning algorithm a sense of 

direction to train and learn on its own. An objective function estimates error after each trail of the 

training process. An optimization algorithm is used to find the objective function's minima in order 

to minimize error and improve accuracy.  
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Metrics for Evaluating Regression 

            Before going any farther with the implementation of a Decision Tree and Random Forest 

model in scikit-learn, let's go through some of the regression assessment metrics outside of R and 

𝑅2.( Scikit-learn, 2020) 

1. Mean absolute error (MAE): is the average error value in absolute terms. It is merely the 

average of the absolute difference between the numbers that were forecasted and those that 

actually occurred. Since the objective is to minimize this loss function, MAE is also known 

as a loss function and is defined as follows: 

                                       MAE= 
𝟏

𝒏
 ∑ (𝒚𝒊 − 𝒚𝒊̂)

𝒏
𝒊=𝟏                                            3.1 

   Where               

𝑦𝑖  True response 

𝑦̂𝑖   Predicted response                                                                           

2. Mean squared error (MSE): It is known as the mean of the squared error, as suggested 

by the name, as can be seen in the example below. There is another loss function called 

MSE that also needs to be minimized. Due to the fact that MSE's objective function 

penalizes greater errors more harshly than MAE does, MSE is frequently utilized in real-

world ML applications (Scikit-learn, 2020). 

                                           MSE = 
𝟏

𝒏
 ∑ (𝒚𝒊 − 𝒚̂𝒊)

𝟐𝒏
𝒊=𝟏                                                   3.2 

Where               

𝑦𝑖  True variable 

𝑦̂𝑖   Predicted variable                                                        

3. Root mean squared error (RMSE): As may be seen in the graphic below, RMSE is 

essentially the square root of MSE. Please be aware that due to its interpretability, RMSE 

is another very well-liked loss function. (Scikit-learn, 2020).                        
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                                        RMSE = √
𝟏

𝒏
∑ (𝒚𝒊 − 𝒚̂𝒊)

𝟐𝒏
𝒊=𝟏                                           3.3 

  Where               

𝑦𝑖  True variable 

𝑦̂𝑖   Predicted variable                      

Tree Methods     

• Decision Tree 

            A supervised ML approach known as a decision tree can be applied to classification and 

regression issues. It is essential to comprehend how a decision tree functions before talking about 

decision trees and random forest which are related concepts. The data is separated into sub trees 

using a decision tree, which are further subdivided into sub trees. As shown in Figure 3.1, while a 

terminal node, also known as a leaf node, is the lowest node and no longer splits, a decision node, 

also known as an internal node, comprises two or more branches. The root node, which is the 

highest level, accurately represents the entire population. You should be aware that "splitting" is 

the splitting of a node into two or more sub nodes.         

             There are various decision tree algorithms. The 1986 Iterative Dichotomize 3 algorithm, 

generally known as ID3 (Quinlan, R.1986), was developed. This approach, which will be 

explained, builds decision trees utilizing categorical traits in a top-down greedy manner to 

maximize information gain. An ID3 multi-way tree is also used. It is not necessary for features to 

be categorical when using C4.5, another decision tree approach. In comparison to C4.5, the most 

recent Quinlan release, C5.0, uses less RAM and produces smaller rule sets.         

Finally, C4.5 is similar to CART but includes numerical target variables and does not compute 

rule sets. CART define classification and regression trees. The highest information gain at each 

node is achieved by CART's creation of binary trees. Please be aware that the CART algorithm is 

used in an optimal manner by the scikit-learn library (Scikit-learn,2020). 
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Figure 3.1. Decision tree illustration. (Breiman, L. 2011). 

• Attribute Selection Technique 

Determining which attributes belong at the root or internal node of a data collection with N 

attributes can be difficult and complex. The following list includes some of the most crucial 

factors for attribute selection: 

1. Entropy: Entropy is only a calculation that measures uncertainty or purity.  Keep in mind 

that low purity means high entropy.                                        

                                     E(S) = ∑ −𝑷𝒊
𝑪
𝑰=𝟏 𝒍𝒐𝒈𝟐𝑷𝒊                                                   3.4 

Where  

 Pi is the chance that a class will appear in a dataset,  

C is the total number of classes. 

  Entropy for many qualities can be determined mathematically as follows: 

       

                                 E (X, Y) = ∑ 𝑷(𝒄)𝑬(𝒄)𝑪∈𝒀                                                 3.5 
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Where  

X is the present situation.  

 Y Is the chosen attribute. 

 P(c) is the attribute's probability.  

 E(c) stands for the attribute's entropy. 

 

2. Information Gain (IG): When creating a decision tree, it's critical to identify the attribute 

that yields the highest information gain and the lowest entropy. A characteristic's ability 

to successfully place training cases in the appropriate category is described by IG. IG 

favors smaller partitions, which can be determined by the following:      

                                       IG (Y, X) = E(Y) – E (Y, X)                                          3.6 

3. Gini Index:   As demonstrated here, the Gini index is determined by deducting 1 from the 

sum of squared probabilities for each class. The Gini index encourages bigger partitions 

as opposed to information gain. Please note that the Gini index would be zero in fully 

categorized samples.        

   Gini = 1- ∑ (𝑷𝒊)𝟐𝒄
𝒊=𝟏 = 𝟏 − (𝑷(𝒄𝒍𝒂𝒔𝒔 𝑨)𝟐 + (𝑷(𝒄𝒍𝒂𝒔𝒔 𝑩)𝟐 + ⋯ + 𝑷(𝒄𝒍𝒂𝒔𝒔 𝑵)𝟐)       3.7 

Where  

Pi is the probability of an element being classified under a particular class. 

Over fitting is one of the most challenging problems when employing a decision tree. Pruning is 

one strategy for preventing over fitting. Pruning is the act of removing branches or tree trunk 

segments that don't offer much information for classifying cases or that otherwise interfere with 

overall accuracy. To ensure that the model is not over fitted when employing a decision tree, cross 

validation is also crucial. A different strategy is to employ the algorithm of random forest, which 

typically performs better than a decision tree. This chapter's next section goes into great detail on 
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random forests. When selecting attributes, the previously mentioned criteria, including knowledge 

gain and the Gini index, are utilized to determine the values of each property. Assume that the 

selection criterion for attributes is information gain. After sorting the data, the attributes with the 

greatest values are positioned at the root. 

• Random Forest 

            A robust supervised machine learning method called random forest as shown in Figure 

3.2, can be applied to both classification and regression problems. Ho introduced the 

widespread application of random decision trees in 1995 (Kam Ho, 1995). A forest of decision 

trees, or random forest, is a collection of decision trees. Random forest is an ensemble method 

since it combines multiple decision tree models into a single model. For instance, because 

projections can differ, MCF might utilize a single tree instead of a decision tree and end up 

with an inaccurate estimate of the Cumulative Gas Produced after 1 Year. One method to 

reduce this volatility in estimating the Cumulative Gas Produced after 1 year, MCF, is to use 

predictions from hundreds or thousands of decision trees and calculate the final result using 

the average of those trees. The fundamental idea behind random forest is to build a single 

model out of many decision trees. (Breiman, L.2011) 

 

Figure 3.2. Decision tree versus random forest. 

While individual decision tree forecasts may not be precise, aggregated forecasts have a higher 

likelihood of being so. Since it combines substantially more data from several forecasts, random 

forest typically outperforms a single decision tree in terms of accuracy. Random forest makes its 

final prediction in regression issues by averaging the decision trees. As was previously mentioned, 



36 
 

classification issues can also be resolved utilizing random forests by polling the vast majority of 

the anticipated class. 

Implementation of Decision Tree and Random Forest Using Scikit-learn 

 

            The output feature in this section, cumulative Gas Produced after 1 Year, is linked to a 

database with the input features stated below. To predict Cumulative Gas Produced after 1 Year, 

MCF, a supervised regression decision tree and random forest model are being built. 

 

• The input features are initial pressure estimate(psi), reservoir temperature(F), net pay (ft), 

porosity, water saturation, oil saturation, gas saturation, gas specific gravity, CO2, N2, 

TVD (ft), spacing, stages, number of clusters, clusters per stage, Total proppant (Lbs.), 

lateral Length(ft), Top Perf(ft), bottom perf(ft), sand surface temperature, (deg F), static 

wellhead temp (deg F) 

 

• The output feature is Cumulative Gas Produced after 1 year, MCF. 

Below is an outline of applicable methods (the training and testing set must be done separately for 

DT and RF in python jupyter notebook). 

• Raw data Pre-processing  

1. Import libraries (NumPy, matplotlib, pandas, seaborn, and from sklearn. Model 

selection import train_test_split).   

2. Define the x and y variables 

3. Next, import Decision Tree Regressor and Random Forest Regressor from sklearn.  

4. Define the decision tree and Random Forest 

5. Apply dtree and rf to “(X_train. Y_train)” 

6. Obtaining the training and testing 𝑅2 is the next step 

7. Optimized. Next, compare training actual results to those from predictions and 

testing. 

8. Let's additionally include MAE, MSE, and RMSE to adequately assess the model 

from all angles. 
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CHAPTER IV 

Results and Discussion 

 

            The main goal of this chapter is to explain the results from the analysis and performance 

predictions of shale wells using data analytics and machine learning techniques. The following 

cases were examined for this analysis: 

• Using descriptive statistics to comprehend and interpret the data  

• Use box plots, histogram plots, scatter plots, and multivariate correlation graphs to provide 

a visual analysis. 

• Use supervised learning techniques to predict the cumulative gas produced after a year, 

such as decision trees and random forests. 

Descriptive Statistics  

When analyzing a dataset, you should first get a sense of it by posing questions like the following 

(Hold away, 2009):  

• What are the smallest and greatest values?  

• What single representative number would be adequate for this batch of data?  

• How broad is the spread or variance?  

• Does the dataset have a uniform distribution throughout a range of values, or are certain 

values grouped around others?  

Because they describe the data, descriptive statistics and summary statistics can provide answers 

to these problems. In this study, both the reservoir and the operational parameters were subjected 

to descriptive statistics. 

Reservoir and Operational Parameters 

            The count, mean, standard, minimum, 25%, 50%, 75%, and maximum values that were 

obtained from this investigation are shown in Table 4.1 along with the summary statistics for the 

operational and reservoir parameters.  

The first thing to notice is that Table 4.1's mean porosity values are lower (7%), which indicates 

that the shale rock has been compressed as a result of the stress and has less pore space as a result.  
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            The fact that the average water saturation is lower (0.301) indicates that the insoluble 

nonconductive substance kerogen is present, which causes a decrease in rock conductivity and an 

underestimating of water saturation. Additionally, oil saturation is lower (0.10) and temperature-

dependent. Any given oil will have a lower saturation point as temperature rises. In our data, we 

have a value of 0.10 and a mean value of CO2 (0.01) and N2 (0.00), and the critical gas saturation 

ranges between 0.5 and 50% depending on parameters like rock and fluid qualities. Although these 

values are insignificant, they can be employed to prevent the pore pressure in shale from decreasing 

and to keep it pliable. 

 

            The high mean value of the initial pressure estimate (6313.78 psi), which is also visible in 

Table 4.1, indicates the amount of driving power that may be used to force the remaining fluid out 

of the reservoir during a production sequence. 

 

            Finally, we have a high mean value of TVD, lateral length, bottom perforation which define 

the horizontal well operation in shale well. 

 

            Different kinds of tales can be told between characteristics and the goal variables using 

plotting and data visualization. The oldest and most significant area of data science is plotting, or 

data visualization. And to see how each variable in this thesis is distributed, we will utilize boxplot, 

histogram plot, scatter plot, and multivariate correlation plot. 
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Table 4.1 Descriptive statistics for reservoir and operational parameters 

 count mean std min 25% 50% 75% max 

Initial Pressure 

Estimate (Psi) 

50 6313.78 2963.47 2200.00 4300.00 5164.00 9929.25 12223 

Reservoir 

Temperature (degF) 

50 211.16 93.43 115.00 134.00 144.50 323.00 379.00 

Net Pay (ft) 50 163.38 56.79 56.00 136.00 164.50 208.75 268.00 

Porosity 50 0.07 0.01 0.05 0.06 0.07 0.08 0.10 

Water Saturation 50 0.30 0.08 0.18 0.21 0.31 0.36 0.47 

Oil Saturation 50 0.10 0.24 0.00 0.00 0.00 0.00 0.74 

Gas Saturation 50 0.59 0.27 0.00 0.57 0.67 0.79 0.81 

Gas Specific Gravity 50 0.61 0.09 0.57 0.57 0.57 0.59 0.95 

CO2 50 0.01 0.01 0.00 0.00 0.00 0.02 0.05 

N2 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TVD (ft) 50 9020.33 2160.28 5707.63 7389.31 7794.69 11755.37 12668 

Spacing 50 1220.20 297.46 700.00 1000.00 1200.00 1500.00 1850.00 

Number Of stages 50 45.18 20.07 7.00 30.25 47.00 62.50 89.00 

Number of Clusters 50. 276.46 160.97 49.00 141.00 234.00 444.00 735.00 

Number of Cluster 

per Stage 

50 6.07 2.16 3.00 5.00 5.00 7.00 15.00 

Number of Total 

Proppant (MM Lbs) 

50 20.53 8.95 3.59 14.11 20.64 26.53 42.94 

Lateral Length(ft) 50 7867.84 2354.97 2268.00 5990.00 7480.00 9800.00 13011.00 

Top Perf(ft) 50 9204.48 2224.97 5900.00 7548.50 8133.00 12082.00 13153.00 

Bottom Perf(ft) 50 17054.92 3608.28 10049 14360.75 16192.00 20089.50 23203.00 

Sand face Temp 

(deg F) 

50 209.61 91.38 115.00 133.81 143.18 303.75 379.00 

Static Wellhead 

Temp (deg F) 

50 95.91 49.34 60.00 65.00 80.00 120.00 236.00 

Cumulative Gas 

Produced after 1 

year, MCF 

50 4378.22 3273.30 25.12 1618.66 3792.71 6355.90 13094.84 
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Univariate Data Analysis  

            The basic methods employed for univariate data analysis include scatter plots, histograms, 

and box plots. We may assess the symmetry of the data and the degree of skewness, as well as 

whether it contains any outliers, by the visual inspection of these methods. 

Boxplots for Reservoir and Operational Parameters 

            We can get a general notion of the data distribution using a box plot. The data is more 

compact if the box plot is not too long. The data is dispersed if the box plot is relatively tall. Each 

of the box plot of 22 variables can be interpreted in terms of the data's spread or compactness. We 

might use the chart to determine the potential existence of outliers using a broad definition of 

outliers. Outliers are typically anticipated when there are several data points. 

 

            Figure 4.2 shows that the Total Proppant (MM Lbs.) box plot's interquartile range (IQR) 

falls in the middle of the median for the reservoir parameter box plots. Inferring further that the 

sample values for the reservoir parameters are distributed equally on both sides of the median, this 

shows that the sample values are evenly distributed between the median and the IQR. 

 

            However, some of the variables plotted in Figure 4.1 reveal the median is located farther 

from the upper half of the box plot (third quartile). Given that the upper whisker is longer than the 

lower one, the upper tail of the data is likely to be longer than the lower tail. The box plot is being 

pulled higher by the variable values. The variability of those variables is increased as a result. 

 

            Furthermore, since the top whisker is shorter than the bottom one, we may say that there is 

less fluctuation of variable. You might use the chart to determine the potential existence of outliers 

using a broad definition of outliers. Outliers are typically expected with big data points, and we 

can see their existence in our reservoir and operating parameters box plots (Figures 4.1 and 4.2). 

Such is the cluster per stage boxplot, gas specific gravity, N2, and oil saturation. The box plot of 

Gas specific gravity and N2 also reveals outliers at the upper end of the data range. If the mean 

value is above the median, the median line does not divide the box evenly, and the upper tail of 

the boxplot is longer than the lower tail, the population distribution from which the data were 

sampled may be skewed to the right.   
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 Boxplots for Reservoir Parameters 

 

(a) Initial Pressure Estimate (psi) Boxplot                            (b) Reservoir Temperature (F) Boxplot 

              

(c) Net Pay (ft) Boxplot                                                            (d) Porosity Boxplot 

      

(e) Water Saturation Boxplot                                  (f) Oil saturation Boxplot 

      

 

 



42 
 

     (g) Gas Saturation Boxplot                                      ( h) Gas Specific Gravity Boxplot 

       

                                   (i) CO2 Boxplot                                                                    (j) N2 Boxplot 

      

  

 

Figure 4.1. Reservoir parameters box plots: (a) Initial Pressure Estimate (psi), (b) Reservoir 

Temperature(F), (c) Net Pay(ft), (d) Porosity, (e)Water Saturation, (f) Oil saturation, (g) 

Gas Saturation, (h) Gas Specific Gravity, (j) CO2 (k) N2  
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Boxplots for Operational Parameters 
 

    (a) TVD Boxplot                                                                  (b)Spacing Boxplot    

       

                     (c) Numner of Stages Boxplot                                                    (d) Number of clusters Boxplot 

       

                  (e) Number of clusters per Stage Boxplot                              (f) Total Proppant (MM Lbs.) Boxplot 
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                           (g) Lateral Length (ft.) Boxplot                                         (h) Top Perf (ft.) Boxplot 

       

   (i) Bottom Perf (ft.) Boxplot                                        (j) Sand face Temp (F) Boxplot 

      

k) Static wellhead Temp (F) Boxplot                (l) Cumulative Gas Produced after 1 year, MCF Boxplot 

      

Figure 4.2 Operational parameters box plots: (a) TVD                                                     

(b)Spacing ,(c) Number of Stages ,(d) Number of clusters , (e) Number of clusters per 

Stage , (f) Total Proppant (MM Lbs.), (g) Lateral Length (ft.), (h) Top Perf (ft.), (i) 

Bottom Perf (ft.), (j) Sand face Temp (F), (k) Static wellhead Temp (F), (l) Cumulative 

Gas Produced after 1 year, MCF         
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Histograms for Reservoir and Operational Parameters  

 

            By comparing the lengths of the tails, a histogram can reveal whether the data is skewed. 

If the right tail is longer than the left tail, the data is skewed to the right; conversely, if the left tail 

is longer than the right, the data is skewed to the left. 

 

            It is clear from Figures 4.3 and 4.4 that the majority of the operational parameters are not 

symmetrical in terms of the histogram's shape. They all do, to some extent, show skewness. These 

histograms clearly depict that most of the sample values are at the left and the right side of the tail 

is longer. Figures 4.3 and 4.4 show that the majority of histograms are not symmetric. A histogram 

is considered to be positively skewed (skewed to the right) if the tail on the right is lengthy. The 

median value is lower than the mean, as shown by this histogram.  

 

            A lower boundary in a data set is typically the cause of right-skewed data, whereas a higher 

barrier causes left-skewed data. Therefore, the data will skew right if the lower bounds of the data 

set are extremely low in comparison to the remainder of the data. 

 

            Last but not least, the left-skewed distribution in Figure 4.4 Lateral Length (ft.) Histogram 

is longer on the left side of its peak than on its right. Negative skew is another name for left skew. 

That indicates that a higher border is to blame. 
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 Histograms for Reservoir Parameters 
 

    (a) Initial Pressure Estimate (psi) Histogram Plot                  (b) Reservoir Temperature (F) Histogram Plot 

  

(c) Net Pay (ft) Histogram    Plot                                     (d) Porosity Histogram Plot 

    

(e) Water Saturation Histogram Plot                        (f) Oil Saturation Histogram Plot 
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             (g)Gas Saturation Histogram Plot                                  (h) Gas Specific Gravity Histogram Plot 

    

(i) CO2 Histogram Plot                                              (j) N2 Histogram Plot 

     

 

Figure 4.3. Reservoir parameters histogram plots: (a) Initial Pressure Estimate (psi), (b) 

Reservoir Temperature (F), (c) Net Pay (ft), (d) Porosity, (e) Water Saturation, (f) Oil 

saturation, (g) Gas Saturation, (h) Gas Specific Gravity, (i) CO2 , (j) N2  
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   Histograms for Operational Parameters 

 

     (a)TVD (ft) Histogram Plot                                         (b) Spacing Histogram Plot 

      

      (c) Number of Stages Histogram Plot                                  (d) Number of clusters Histogram Plot 

 

(e)Number of clusters per Stage Histogram Plot                  (f) Number of Total Proppant (MM Lbs.) Histogram Plot 
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     (g)Lateral Length (ft) Histogram Plot                                     (h) Bottom Per (ft) Histogram Plot 

      

                     (i)Top Perf (ft) Histogram Plot                           (j) Sand face Temp (deg F) Histogram Plot 

    

  (k)Static Wellhead Temp (deg F) Histogram Plot                     (l) Cumulative Gas Produced after 1 year, MCF 

Histogram Plot 

     

 

Figure 4.4. Operational parameters histogram plots: (a) TVD                                                     

(b)Spacing ,(c) Number of Stages ,(d) Number of clusters , (e) Number of clusters per 

Stage , (f) Total Proppant (MM Lbs.), (g) Lateral Length (ft.), (h) Top Perf (ft.), (i) 

Bottom Perf (ft.), (j) Sand face Temp (F), (k) Static wellhead Temp (F), (l) Cumulative 

Gas Produced after 1 year, MCF         
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Scatterplot for Reservoir and Operational Parameters 

            In a scatter plot, values for one or more different numerical variables are represented by 

dots. Each dot's location on the horizontal and vertical axes represents a data point's values. To 

view relationships between variables, utilize scatter plots. 

 

            The data in the scatterplots in Figures 4.5 and 4.6 with no association between the variables 

shows neither positive nor negative trends. The scatterplot displays random, non-directional 

points. In addition, a scatterplot with no linear trend (positive or negative) is referred to as having 

a zero correlation or a near-zero correlation.  

 

            Also, we can see that none of the data have been modeled, so the scatter plot can only be 

fit approximately by a linear function because the straight line will pass through all points. We 

cannot use a scatter plot that shows no association to make a prediction. Because association 

describes how sets of data are related and when there is no association that means that there is no 

relationship between them. 

 

            Finally, as the scatter plots have been plotted individually it is complicate to see the 

association and correlation of data and to make it easy, we are using the multivariable correlation 

plot to see the high correlation between each variable (Figures 4.7 and 4.8) 
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  Scatterplot for Reservoir Parameters  

 

(a)Initial Pressure Estimate (psi) Scatter Plot         (b) Reservoir Temperature (deg F) Scatter Plot 

         

 

 

(c)Net Pay (ft) Scatter Plot                                                           (d) Porosity Scatter Plot 

       

(e)Water Saturation (ft) Scatter Plot                                  (f) Oil Saturation Scatter Plot 
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(g) Gas Saturation (ft) Scatter Plot                                  (h) Gas Specific Gravity Scatter Plot 

     

 

(i) CO2 Scatter Plot                                                           (j) N2 Scatter Plot 

    

 

 

Figure 4.5. Reservoir parameters scatter plots: (a) Initial Pressure Estimate (psi), (b) Reservoir 

Temperature (F), (c) Net Pay (ft), (d) Porosity (e), Water Saturation, (f) Oil saturation, (g) 

Gas Saturation, (g) Gas Specific Gravity, (h) CO2, (i) N2 

 

 

 

 

 

 



53 
 

Scatterplot for Operational Parameters 

 

(a)TVD (ft) Scatter Plot                                                      (b) Spacing Scatter Plot 

       

(c)Number of Stages Scatter Plot                    (d) Number of Clusters Scatter Plot 

    

(e)Number of clusters per Stage Scatter Plot                    (f) Number of Total Proppant (MM Lbs.) Scatter Plot 
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(g)Lateral Length (ft) Scatter Plot                                     (h) Bottom Perf (ft) Scatter Plot 

       

(i)Top Perf (ft) Scatter Plot                                (j) Sand face Temp (deg F) Scatter Plot 

    

  (k)Static Wellhead Temp (deg F) Scatter Plot                    (l) Cumulative Gas Produced after 1 year, MCF Scatter 

Plot 

    

 

Figure 4.6. Operational parameters histogram plots: (a) TVD                                                     

(b)Spacing ,(c) Number of Stages ,(d) Number of clusters , (e) Number of clusters per 

Stage , (f) Total Proppant (MM Lbs.), (g) Lateral Length (ft.), (h) Top Perf (ft.), (i) 

Bottom Perf (ft.), (j) Sand face Temp (F), (k) Static wellhead Temp (F), (l) Cumulative 

Gas Produced after 1 year,  

MCF. 
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Multivariate Correlation Plot 

            In this study, the final step of EDA involved presenting a correlation matrix that builds on 

the concepts outlined before but now includes all variable pairings, including reservoir and 

operational characteristics. 

            Figure 4.7 and 4.8 present the correlation matrix for all variable pairs (dependent and 

independent). 

            In Figure 4.7, the highest absolute value of Pearson correlation coefficient is between Top 

Reservoir temperature (deg F) and Initial pressure estimate (deg F) with a coefficient of 0.93. It 

can be seen in Figure 4.7 there is a dependency between Reservoir temperature and Initial pressure 

estimate, CO2 with Initial Pressure Estimate (psi), CO2 with Reservoir Temperature (deg F), Gas 

Specific Gravity with Oil Saturation, Gas Saturation with Net Pay (ft), Gas Saturation with 

Porosity, Porosity with Reservoir Temperature (deg F) and Cumulative Gas Produced after 1 year, 

MCF with Gas Saturation. 

 

In Figure 4.8, the highest absolute value of Pearson correlation coefficient is between Top Perf (ft) 

and TVD (ft) with a coefficient of 1. It can be seen in Figure 4.8 there is a dependency between 

Bottom Pref (ft) and Stages, Bottom Perf (ft) with Lateral Length (ft), Lateral Length (ft) with 

Stages, Number of Cluster per stage with Number of Clusters, and Bottom Perf (ft) with Number 

of Clusters. 

 

            The reason for noticing the preceding outlier points was the dependence between 

independent variables (Predictors), as well as between dependent variables (Response) and 

independent variables the outlier points cannot be the result of an inaccurate input value into the 

dataset since this dataset was created via numerical simulation scenarios. As a result, this 

dependency results in additional log normality, which is evident in the box plots and histograms 

of these variables. 
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Figure 4.7. Multivariable correlation plot for reservoir parameters: Initial Pressure Estimate (psi), 

Reservoir Temperature (F), Net Pay (ft), Porosity, Water Saturation, Oil saturation, Gas 

Saturation, Gas Specific Gravity, CO2 ,N2 and Cumulative Gas Produced after 1 year, 

MCF 
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Figure 4.8. Multivariable correlation plot for operational parameters: TVD,Spacing ,Stages 

,Number of clusters ,  Number of clusters per Stage , Total Proppant (MM Lbs.), Lateral 

Length (ft.), Top Perf (ft.), Bottom Perf (ft.), n) Cumulative Gas Produced after 1 year, 

MCF        
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Predictive modeling 

            The EDA method utilized in the aforementioned section is a crucial methodology 

employed in this study to verify the variables that have a relationship with the cumulative gas 

generated after a year, MCF, as well as figuring out patterns and trends to carry out predictive 

modeling. The decision tree and random forest approaches were used in this study to predict the 

cumulative gas produced after a year, or MCF. These predictive models are crucial for giving 

precise forecasts of the total amount of gas generated after a year, measured in MCF, given the 

dataset at hand. (Hastie, T., Tibshirani, R., & Friedman, 2008) 

Decision Tree 

            This method of evaluating the decision tree model's level of accuracy is used since it is 

simple and uncomplicated as shown in Figure 4.9 to 4.17. These techniques aid in lowering the 

variance of a statistical-machine learning algorithm and enhancing the performance of these 

techniques, as was previously discussed in the methodology chapter. To evaluate the prediction 

error and determine whether there has been an improvement, three plots were created. 

            As 𝑅2 is an indicator of regression error that supports the model's effectiveness. The 

amount by which the independent variables can adequately characterize the value of the response 

or target variable is what it represents. Always between 0 and 1 (0% to 100%), that is the range 

for R-Square’s value. The linear regression function line is close to many data points when the R-

Squared value is high. When the linear regression function line has a low R-Squared value, the 

data are not well fitted by the function line. 

 

            In Table 4.2 we ca see that by training the model with 70% of training and 30% of testing 

set it gives the highest value of 𝑅2 value, it means that many data points are close to the linear 

regression function line, comparative to other training and testing tests used in decision tree in this 

thesis. 

 

            Furthermore, it can be observed in Figure 4.11, 4.14, 4.17 that bottom perf, (ft) is the most 

influential predictor and has an immense impact on the performance of shale well followed by 

cluster per stage. 
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Table 4.2. Training and testing sets for decision tree model 

 𝑹𝟐 R 

Training 70% 96% 98% 

Testing 30% 70.6% 84% 

   

Training 75% 95.5% 97.7% 

Testing 25% 56.8% 75% 

   

Training 80% 95.7% 97.8% 

Testing 20% 57.7% 76% 

 

The model prediction error can be estimated by a plot of actual and predicted values from the 

decision tree with 70% training and 30% testing set. This corresponds to a prediction error of: 

 

MAE: 1.5× 𝟏𝟎𝟑 MCF 

MSE: 6.7× 𝟏𝟎𝟔 MCF 

RMSE: 2.5 × 𝟏𝟎𝟑 MCF         

        

 

Figure 4.9. Training actual vs prediction using decision tree (70% training). 
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Figure 4.10. Testing actual vs prediction using decision tree (30% training). 

 

 

 

Figure 4.11. Feature importance score using decision tree (70/30). 

 

 

The second plot of decision tree with 75% training and 25% testing set can be seen in Figure 4.12 

and 4.13 this technique provided the following prediction error: 
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MAE: 1.5× 𝟏𝟎𝟑 MCF                                 

MSE: 7.1× 𝟏𝟎𝟔 MCF                                                

RMSE: 2.6× 𝟏𝟎𝟑 MCF 

 

Figure 4.12. Training actual vs prediction using decision tree (75% training). 

 

 

Figure 4.13. Testing actual vs prediction using decision tree (25% training). 
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Figure 4.14. Feature importance score using decision tree (75/25). 

 

The third and final plot of decision tree with 80% training and 20% testing test can be seen in 

Figure 4.15, and 4.16 this technique produced the following prediction error: 

 

 

MAE: 1.8× 𝟏𝟎𝟑MCF 

MSE: 9.2× 𝟏𝟎𝟔 MCF 

RMSE: 3× 𝟏𝟎𝟑MCF 
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Figure 4.15. Training actual vs prediction using decision tree (80% training). 

 

 

 

Figure 4.16. Testing actual vs prediction using decision tree (20% training). 
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Figure 4.17. Feature importance score using decision tree (80/20). 

 

Random Forest 

            The accuracy (𝑅2) of the training and testing sets is displayed in Table 4.3. As can be seen, 

using 70% training and 30% testing test results in an 84.3% testing rate compared to 70.6% of the 

decision tree, using 75% training and 25% testing test results in an 87.3% testing rate compared to 

56.8% of the decision tree, and using 80% training and 20% testing test results in an 87.7% testing 

rate compared to 57.7% of the decision tree.   

 

            Therefore, it appears that the random forest algorithm outperforms the decision tree without 

further parameter fine-tuning. In figures 4.18 and 4.19, 4.21 and 4.22, 4.24 and 4.25, the plots of 

actual versus predicted training and testing data are visualized. As shown, compared to the decision 

tree model, MAE, MSE, and RMSE values are lower. 

 

            The significant properties obtained by random forest are distinct from those obtained by 

decision tree, as shown in Figures 4.20, 4.23, and 4.26. This is mostly attributable to the random 

forest model's greater accuracy. It is advised to use the random forest model, as it has a higher 

level of accuracy. 
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            As was previously said, the goal in classification issues is to reduce the Gini impurity 

(assuming Gini impurity is chosen) Eq. 3.7. As a result, the nodes that result in the greatest 

decrease in Gini impurity are found at the beginning of the trees, whilst the nodes that result in the 

least reduction are found towards the end of the trees. Feature ranking is carried out by tree-based 

algorithms in this manner. 

 

Table 4.3. Training and testing sets for random forest models 

 𝑹𝟐 R 

Training 70% 94% 96.9% 

Testing 30% 84.3% 91.8% 

   

Training 75% 95.2% 97.6% 

Testing 25% 87.3% 93.4% 

   

Training 80% 95.3% 97.6% 

Testing 20% 87.7% 93.6% 

 

The model prediction error can be estimated by a plot of actual and predicted values from the 

random forest with 70% training and 30% testing set. This corresponds to a prediction error of: 

 

MAE: 1.4× 𝟏𝟎𝟑 MCF 

MSE: 4.7× 𝟏𝟎𝟔 MCF 

RMSE: 2.1× 𝟏𝟎𝟑 MCF 
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Figure 4.18. Training actual vs prediction using random forest (70% training). 

 

 

 

Figure 4.19. Testing actual vs prediction using random forest (30% training). 
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Figure 4.20. Feature importance score using random forest (70/30). 

 

 

The second plot of random forest with 75% training and 25% testing set can be seen in Figure 4.21 

and 4.22 this technique provided the following prediction error: 

 

MAE: 1.1× 𝟏𝟎𝟑 MCF 

MSE: 2.7× 𝟏𝟎𝟔 MCF 

RMSE: 1.6× 𝟏𝟎𝟑 MCF 
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Figure 4.21. Training actual vs prediction using random forest (75% training). 

 

 

 

Figure 4.22. Testing actual vs prediction using random forest (25% training). 
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Figure 4.23. Feature importance score using random forest (75/25). 

 

 

 

The third and final plot of random forest with 80% training and 20% testing test can be seen in 

Figure 4.24 and 4.25 this technique produced the following prediction error: 

 

MAE: 1.2× 𝟏𝟎𝟑 MCF 

MSE: 3.4× 𝟏𝟎𝟔 MCF 

RMSE: 1.8× 𝟏𝟎𝟑 MCF 
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Figure 4.24. Training actual vs prediction using random forest (80% training). 

 

 

 

Figure 4.25. Testing actual vs prediction using random forest (20% training). 
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Figure 4.26. Feature importance score using random forest (80/20). 

 

Comparison of Decision Tree and Random Forest Using Bar Chart Plot 

            In this review, by creating model by training test we can visualize that Decision Tree (DT) 

and Random Forest (RF) have approximately the same values. And by regulating the model by 

testing set Random Forest algorithms have better accuracy rates than Decision Tree algorithms.  

 

            In comparison to the Decision tree method, the random Forest algorithm have a greater 

accuracy of about 84%, 87%, and 87%. 

 

 



72 
 

 

 

Figure 4.27. Decision tree and random forest bar chart comparison of training and testing tests. 

 

Variable Importance 

            By predicting the cumulative gas output after a year, this study's last section identified the 

performance forecasting of shale wells in unconventional shale-gas reservoirs. The key way to 

control this process is to examine the response variable in the context of a large number of predictor 

factors. DT and RF contain built-in functions for carrying out such a procedure to find the most 

significant predictors, which can be used to accomplish this. For the DT and RF models, the 

percent decrease in RMSE is used to determine a relevance of predictor. Let's compare how 

important each feature is according to DT and RF. 

I. Decision Tree 

According to the decision tree's feature relevance rankings, Bottom Per(ft) is the most 

significant predictor and has a significant impact on shale well performance forecasts, 

followed by Clusters per stage, Clusters, and stages. 

II. Random Forest 

Bottom Perf (ft.), followed by Clusters per stage, Stage, Porosity, and Lateral Length 

(ft.), is the most influential predictor and has a significant impact on the performance 
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forecasting of shale wells, as can be seen from the feature importance rankings of 

random forest. 

Comparison of Feature Importance Rankings of DT and RF 

             It should be observed that the top two decisive predictors (Bottom Perf (ft.) and Clusters 

per stage) for the shale-gas reservoirs for both the DT and RF models are identical with 20 and 

25% of testing tests, and the top one for all of the feature important are identical. 

            The other rating for the predictor, on the other hand, is different because, for instance, RF 

ranks the most significant predictors differently from DT. It is important to talk about the key 

finding of the parameters in terms of their physical meaning.  

We will evaluate the importance of the high-performance predictors in this study to determine 

whether they are physically logical.      

• Bottom Perf (ft): When it comes to hydraulic fracturing and horizontal wells, a perforation 

is crucial. It is forming a conduit between the pay zone and the wellbore to make it easier 

for gas to flow there. At the perforations at the bottom of a well, the pressure of the liquid 

inside the wellbore causes the rock to fracture. 

• Clusters Per Stage: Since there are fewer entrance opportunities for hydraulic fracturing 

if there are fewer clusters each stage. Greater surface area near the wellbore each stage is 

produced by more clusters, which can maximize the early gas recovery. 

• Porosity: Shale are distinguished by having extremely little porosity. a kind of secondary 

porosity brought about by the rock's tectonic fractures. Fractures normally do not have 

much volume on their own, but by linking preexisting pores, they greatly increase 

permeability. 

• Lateral Length (ft.): The most important aspect in determining the production and 

financial advantages of horizontal wells is lateral length. The horizontal wellbore length is 

essential because the well crosses highly conductive cracks, which would facilitate the 

extraction of shale gas for the purpose of injecting CO2. Additionally, a long horizontal 

wellbore length would increase the area in contact with the fracture permeability zone, 

which would obviously affect the well's productivity index. 
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CHAPTER V 

Concluding Remarks 

 

            Data analytics is employed in this study to determine the key factors that influence the total 

gas generated after a year MCF. In this study, unconventional shale reservoir is the main topic. In 

order to comprehend the features and patterns inside a dataset in shale well reservoirs, an EDA 

using data mining and visualization was carried out.  

            Predictive models were created using statistical and machine-learning techniques after 

gaining insights into the information. Assessing the link between reservoir parameters and 

operational factors in order to precisely forecast process performance. Then, the predictive 

effectiveness of each of these models was evaluated to determine which model had the highest 

accuracy in estimating the total gas generated after 1-year MCF. 

Conclusions 

The major conclusions from this study are as follows: 

1) In unconventional shale reservoirs, operational parameter is increasingly important for 

shale well performance. The most important indicator is Bottom Perf(ft), has a significant 

impact on shale well performance forecasting. 

2) The most influential parameters of performance forecasting of shale well according to DT 

are: 

• Bottom Perf(ft) 

• Clusters per stage  

3) The most influential parameters of performance forecasting of shale well according to RF 

are: 

• Bottom Perf(ft) 

• Cluster per Stage 

• Number of stages 

• Porosity 

• Lateral Length(ft) 
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4) The maximum proportion of variation is explained with a 𝑅2 value when using Random 

Forests (RF), which also has the lowest prediction error when compared to Decision Tree. 

This outcome supports the literature's assertion that one of the most potent machine 

learning methods is the RF model. 

5) Regression tree (RF) can rank the most important factors that affect the total amount of gas 

produced and are simple to understand. 

6) The reliance between the predictors and response variables, which adds more log normality 

and manifests as the outlier points, is the root cause of the EDA outlier points. There is no 

way to link these outlier points to erroneous input values in the dataset. 

Recommendations 

• To improve the prediction capabilities of the machine learning model, more reservoir 

information should be provided. The actual reservoir dataset can help to make the decision 

tree and random forest (machine learning model) more applicable. 

• The problem can be made simpler by converting the regression tree into a classification 

tree, which can then be used to forecast whether performance will be high or low. 
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