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Abstract

Analysis and Performance Prediction of Shale Wells Using Data Analytics and Machine
Learning

MFUTA, John Kaninda
M.Sc. Department of Petroleum and Natural Gas Engineering
June, 2023, 93 pages

The oil and gas industry, in particular, has benefited greatly from the ability of data
analytics to improve operations and save time. Numerical reservoir simulators and laboratory tests
are currently employed for modeling. However, the computational cost of these approaches is
substantial. In addition, research on the application of data-driven statistical methodologies has
been conducted, with a primary focus on analysis and performance prediction in unconventional
reservoirs. An analysis of the key factors that influence the cumulative gas produced after 1-year
MCF from unconventional reservoirs was done in this study using data analytics to gain new

knowledge.

Predictive modeling and exploratory data analysis were the main methods employed.
Analyzing exploratory data indicated a connection between the operational and reservoir
parameters. Additionally, algorithms based on statistics and machine learning were created to
forecast the total amount of gas produced after one-year MCF. These predictive models were
compared, and it was found that random forest had the lowest prediction error and highest R?

value, making it the preferable approach.

Finally, variable importance was used to identify the performance prediction criteria in
unconventional shale gas reservoirs that had the most influence. It is interesting to note that the
factors that have the biggest effects on the stimulated reservoir volume. Our results indicate that
operational parameter is more essential than reservoir parameter in stimulating reservoir volume
and driving high performance, with Bottom Perf(ft) and Cluster per stage being the most crucial

factors in achieving high performance.

Keywords: Exploratory data analysis, Predictive modeling, Unconventional reservoirs



Ozet

Veri Analitigi ve Makine Ogrenimi Kullanilarak Seyl Kuyularinin Analizi ve Performans
Tahmini

MFUTA, John Kaninda
M.Sc. Petrol ve Dogal Gaz Miihendisligi Boliimii
Haziran, 2023, 93 sayfa

Ozellikle petrol ve gaz endiistrisi, veri analitiginin operasyonlari iyilestirme ve zamandan
tasarruf etme yeteneginden biiyiik 6l¢iide faydalandi. Modelleme icin su anda sayisal rezervuar
simiilatorleri ve laboratuvar testleri kullanilmaktadir. Bununla birlikte, bu yaklasimlarin
hesaplama maliyeti 6nemlidir. Ek olarak, geleneksel olmayan rezervuarlarda analiz ve performans
tahminlerine odaklanarak, veriye dayali istatistiksel metodolojilerin uygulanmasina iliskin
aragtirmalar yiiriitiilmiistiir. Bu calismada, yeni bilgiler elde etmek i¢in veri analitigi kullanilarak
geleneksel olmayan rezervuarlardan 1 yillik MCF'den sonra iiretilen kiimiilatif gazi etkileyen

temel faktorlerin analizi yapilmistir.

Tahmine dayali modelleme ve kesifsel veri analizi, kullanilan ana yontemlerdi. Kesif
verilerinin analizi, operasyonel ve rezervuar parametreleri arasinda bir baglant1 oldugunu gosterdi.
Ek olarak, bir yi1llik MCF'den sonra iiretilen toplam gaz miktarini tahmin etmek icin istatistik ve
makine 6grenimine dayali algoritmalar olusturuldu. Bu tahmin modelleri karsilastirild: ve rastgele
ormanin en diisiik tahmin hatasina ve en yiiksek R? degerine sahip oldugu ve onu tercih edilen bir

yaklagim haline getirdigi bulundu.

Son olarak, geleneksel olmayan kaya gazi rezervuarlarinda en fazla etkiye sahip olan
performans tahmin kriterlerini belirlemek i¢in degisken 6nem kullanildi. Uyarilmis rezervuar
hacmi tizerinde en biiyiik etkiye sahip olan faktdrlerin dikkate alinmasi ilgingtir. Bulgularimiz,
operasyonel parametrenin, rezervuar hacmini canlandirmada ve yiiksek performans saglamada
rezervuar parametresinden daha onemli oldugunu, yiliksek performans elde etmede en 6nemli

faktorlerin agama basina Alt Perf(ft) ve Kiime ile birlikte oldugunu gostermektedir.

Anahtar Kelimeler: Kesifsel veri analizi, Tahmine dayali modelleme, Gelencksel olmayan
rezervuarlar
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CHAPTERII

Introduction

Shale gas, tight shales, gas hydrates, and coal bed methane production are encouraged by
rising demand for fossil fuels and a decrease in their production. Gas that occurs in these
unconventional reservoirs is now producible and has enormous potential for use in the future due

to advancements in drilling and production technologies.

Unconventional natural gas known as shale gas can be found trapped in shale strata.
(Ertekin,200) Shale gas has become more affordable to extract in large quantities during the 1990s
because to a combination of horizontal drilling and hydraulic fracturing, and some analysts predict
that shale gas will significantly increase the world's energy supply. (Clifford Krauss,2009).

Although shale gas reservoirs have been known for many decades, producing gas from
these unconventional reservoirs started as the demand for natural gas increased, the production
become commercially feasible, and the availability of drilling and completion technologies

become implementable in late 1850s. (Paul, 2012)

The key technology in shale gas production is hydraulic fracturing. For commercially
feasible gas production, shale gas reservoirs need to be hydraulically fractured. Hydraulic
fracturing and horizontal well technology became operational for oil industry in 1980s to produce
oil or gas from shale gas reservoirs. These fractures increase contact surface areas with production

zone resulting in an increase in well productivity. (Krauss, Clifford,2009).

However, massive body of academic research building on top of each other over the years
attempted to provide solutions to these problems-based formation type and economic feasibility of
extracting shale gas. This has gained development in simulation study and data mining to get
insight into the viability of shale well. This methodology presents complex computations that can
only be achieved with sophisticated systems and some commercial simulation software (Ludmilla
2018). Machine learning techniques were also applied to effectively analyses reservoir recovery
and develop an intuitive model for predictive analytics (Chen,2022). This research study aims to
analyze and develop a machine learning model that evaluates the performance prediction of shale
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well and serves as a useful tool for predicting cumulative gas produced after 1-year MCF and

recovery factors.

Statement of the Problem
Global energy demand is on the rise to power machinery and the oil and gas industries are

faced with a big task to meet with such rising demands. Recovery of oil and gas is a major concern
to the industry and heavy investment have been made to explore different techniques to recover
more gas. Horizontal drilling and hydraulic fracturing such technique widely used as it enables to

improve recovery of shale well.

Therefore, prediction of dependent variable becomes a useful tool to give an insight
towards making more practical decisions which has seen many theoretical models fail to deliver a
more precise pattern. Machine learning is a data mining technique that will be explored in this

work to create a powerful predictive tool.

Purpose of the Study
The purpose of this study is to analyze and explore deeper into data mining techniques as

applied in shale well reservoirs and measure its performance by comparing two different machine

learning models to predict cumulative gas produced after 1-year MCF.

Hypothesis
If a machine learning model is sufficiently trained, it will produce accurate results for a

variety of instances. Within the parameters for which it was trained, it discovers the relationship
between the input and the output and can eventually predict (with a certain level of accuracy) the

output for a given input.

Objectives and Questions
A sample list of research objectives is shown below:

e Gather and process publicly available shale gas data.

e Get insight into the trends of important metrics, specifically the cumulative gas produced

after 1-year MCF via exploration of descriptive and advanced statistics.
e Design and train machine learning models to fit the available data.

e Compare two machine learning algorithms (decision tree and random forest) in terms of

performance, goodness of fit, explanatory impact, and level of significance.
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e Determine, based on numerical simulation scenarios, the total amount of gas produced after
a year MCF.

The following is a list of possible research inquiries:
e What are the essential properties of the data, and are there any outliers?
e Are two or more variables related to one another?
e How closely will the predicted model match up with future data?

e What variables, or what combinations of variables, affect shale well performance
prediction?
Significance of the Study
This modelling tool can be used as a guide toward a practical gas production decision and
also has a procedure for minimizing cost and maximizing productivity. Therefore, it is worth
exploring machine learning as a modern technique to identify hidden trends and patterns necessary
to resolve this problem.

Limitations
This study is limited only by analyzing independent and dependent variables also a

comparative study of machine learning models to identifying trends and patterns in the
performance prediction of shale wells by predicting cumulative gas produced after 1-year MCF.
While the findings of the study are limited to the data set used, approach taken can be tested with
different data sets.

Definition of Terms
e Data Analytics (DA) is the research and modeling of undiscovered relationships and

patterns in complex, multidimensional data sets utilizing a careful data collection and

analysis procedure (Mishra et al., 2021).

e Machine learning (ML) is the process by which an equation (commonly referred to as a
"black box") is used to deduce the underlying input/output relationship from data (Mishra
etal., 2021).

e Shale Gas: is a natural gas that is trapped in shale strata that is unconventional.
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Summary of the Study
The following guidelines have been stated bellow to briefly discuss how this project

was carried out:

Chapter 1 is an overview of the subject and the primary issue with analyzing and

predicting the performance of shale wells.

Chapter 2 contains a review of the literature. This chapter includes a thorough
discussion of a literature review that covered a variety of topics relating to the topic, including

data analysis and machine learning methods.

Chapter 3 discusses the approach used; in this chapter, all steps necessary to finish the

project are covered in depth.

Chapter 4 presents all the results and discussion made from this study. In this chapter,

all of the machine learning results are displayed and discussed.

Chapter 5 highlighted the results and recommendations. The concluding thoughts and
some suggestions for additional research are presented in this chapter.



19

CHAPTER II

Literature Review

This chapter briefly describes reservoir modeling and simulation, shale gas reservoirs,

horizontal drilling, hydraulic fracturing, Artificial intelligence, data analytics and machine

learning.

Reservoir Modeling
In order to estimate reservoir performance under various operating conditions, reservoir

simulation is an approach that combines a number of ideas, including mathematics, physics,
reservoir engineering, and computer programming (Ertekin et al., 2001). The most important
physical processes that happen inside the reservoir system are included in these mathematical
equations, including mass transfer between different phases and fluid movement split into the three
phases of oil, water, and gas (Ertekin et al., 2001).

Application of Reservoir Simulation in Shale Well Studies

Reservoir simulation models are the main instruments used to carry out the initial research
linked to the uncertainty analysis of fluid sequestration. They make it possible to forecast how the
storage and injection processes would function under various geological situations (Mohaghegh,
2018). The management of natural gas production from unconventional resources like shale is

likewise effectively handled by these commercial reservoir simulators (Boosari et al., 2015).

The complexity of the simulation model, however, rises with the length of the run. Any
research project needing tens of thousands of simulations, such uncertainty analysis, optimization
research, or History matching may become unworkable due to the long run time and high
computational effort requirements. The oil and gas industry have long struggled with these
protracted execution times of numerical reservoir simulation models (Mohaghegh,2018).
Complete physics-based simulators are widely used, but this poses a number of problems,

including their high processing costs (Schuetter et al,2018). For this reason, in addition to
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numerical reservoir simulators, data-driven modeling and comprehension tools for the crucial

components of fluid isolation in unconventional reservoirs must be developed and utilized.

Exploratory Data Analysis
EDA is mostly used to get a basic comprehending of the data in the concept of the

characteristics of the individual variables and the connections among them. Other objectives
include selecting instruments for thorough study, identifying important variables of interest, and
developing questions for future data analysis as shown in Figures 2.1 to 2.3. (Mishra & Datta-
Gupta, 2018).
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Figure 2.1. Scatter plot matrix (Schuetter et al. 2018)
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Figure 2.3. Scatterplot matrix for predictor variables (Zhong et al., 2015).
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e Predictive Input and Output Modeling
Predictive modeling, according to Kuhn & Johnson (2013), is the process of creating a
pattern or mathematical tool that makes an accurate forecast. According to Lolon et al. (2016), the
model could take the form of a formula or algorithm that has one output variable to forecast and

one or more independent, well-known predictors as inputs.

Unconventional Gas Recovery
There is various meaning for an unconventional gas system, typically regarded as

unconventional gas reservoirs since it is significantly more difficult to generate from these
reservoirs both economically and technically. In addition to these factors, unconventional gas
resources are not buoyancy-driven accumulations like conventional gas resources. Most
unconventional gas reserves are not affected by stratigraphic or structural traps. The presence of
significant amounts of hydrocarbons is another hallmark of unconventional gas reservoir. The
development of unconventional reservoirs is challenging, nevertheless. In contrast, despite the

smaller size of conventional reservoirs, recovering hydrocarbon is simpler.

Resources for unconventional gas are becoming more crucial for the resource base. For
instance, the US uses unconventional gas reservoirs to produce more than 25% of its natural gas.

In the ensuing decades, it appears that the production percentages will increase. (Kulga,2010).

Shale Gas Reservoirs
Shale gas is the name given to natural gas that is trapped inside shale rocks. Petroleum and

natural gas can be found in large quantities in the fine-grained sedimentary rocks known as shale
(see Figure 2.4). The pores in this sedimentary rock are shale gas-filled. Gas in gas shales is
frequently kept in three different ways.
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In the past ten years, huge amounts of shale gas that were previously uneconomic to generate have
been extracted by using the hydraulic fracturing and horizontal drilling. The natural gas business

has been rejuvenated by the exploitation of natural gas from shale deposits.

Horizontal Drilling
Horizontal wellbore technology is the first essential component of creating a shale gas

reservoir. Since the late 1980s, horizontal drilling technique has been used commercially.
Horizontal drilling can be divided into four categories, according to (Lolon,2016). The most
common and successful drilling technique has been the medium-radius well. These days,
horizontal wellbores can reach lengths of up to 8000 feet. Although drilling and finishing a
horizontal well can be more expensive than drilling and finishing a vertical well for production, it

can be far more advantageous in other ways. Drilling a vertical well can increase the wellbore



24

surface area, which is the first principle of drilling a horizontal wellbore. Drilling a horizontal well

as opposed to a vertical well has several additional financial advantages.

Hydraulic Fracturing
Stimulating a well using a hydraulic fracturing method is another essential technology for

creating a shale gas reserve. In order to increase the effective wellbore radius, hydraulic fracturing
is typically done in shale reservoirs with micro-Darcy-range permeability. Fluids and proppant
need to be pumped under high pressure in order to fracture the reservoir in order to stimulate a

well using the hydraulic fracturing process. Figure 2.5 shows major steps of hydraulic fracturing.

Types of Hydraulic Fracturing
There are two ways that the formation can be hydraulically fractured (Figure 2.5),

depending on the orientation of the in-situ stress. Transverse or longitudinal fractures to the
horizontal well axis are both possible. A longitudinal fracture is produced if a horizontal well is

dug perpendicular to the axis of the least major formation stress. (Zhong, M., Schuetter, J., Mishra,

S., & LaFollette, R. F. 2015).

Prefracturing Treatment Fracture Initiation Fracture Extension

Proppant Injection Iloan.u( and Production

Figure 2.5. Hydraulic fracturing process (introduction to well testing. schlumberger, bath,
england, 1998).
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Data Mining
Data mining is the require separation of certain information from a database that was

previously hidden and not immediately accessible to the user. It uses a variety of methodologies,
including machine learning (ML). It is also known as knowledge discovery in databases (KDD).
In contrast to data mining, which involves paying someone to find the finest basketball courts,
machine learning entails teaching someone how to play the game. Data mining is used by machine
learning algorithms to connect many linear and nonlinear connections (Belyadi et al, 2019), data
mining techniques can also be used to acquire and aggregate information from websites, online

services, and social media.

Acrtificial Intelligence
Artificial intelligence is essentially the application of machine or computer intelligence as

opposed to that of humans or other animals. It is a subfield of computer science that investigates

how well computers can mimic cognitive functions.

Machine Learning
Modern data science methodology uses machine learning. To be fair, machine learning has

the algorithm at its core, which gives it a major advantage over all other traditional data science
methodologies. These are the guidelines a computer follows to locate a model that as closely
matches the facts as feasible. In contrast to conventional data science techniques, machine learning
uses the algorithm's instructions to teach itself how to locate the desired dependence. This is where
machine learning differs from typical data science techniques. Contrary to typical data science,
little human interaction is used. In reality, deep learning algorithms in particular are so complex
that humans are unable to fully comprehend what is going "inside™ the model (365-DS-Booklet).
e Machine Learning Algorithm

Each new experiment in a machine learning algorithm is at least as successful as the
previous one, which is similar to a trial-and-error process. But keep in mind that a computer needs
to make hundreds of thousands of mistakes before it can learn effectively, with the frequency of
mistakes decreasing over time. After training, the computer will be able to examine new data and

make incredibly precise predictions using the complex computational model it has learnt.
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I.  Supervised Learning.
Labeled data serve as the cornerstone of supervised learning. Large data can be compared to videos
and images with the tags "cats," "dogs," and "other."” If the computer's performance doesn't produce
the right response, an improvement algorithm changes the computing power, and the computer
runs another test. Typically, the computer executes this action simultaneously on a huge number
of data points (365-DS Booklet).

Il.  Unsupervised Learning

When there is not enough time or money to label the data, or when the data scientist is
unsure of the precise meaning of the labels, unsupervised learning is utilized. Unlabeled data must
be sent to the computer along with guidelines on how to draw conclusions in order to do this. As
a result, the data is typically divided into groups according to predetermined criteria. As a result,
it is combined. Unsupervised learning is especially effective at identifying data patterns that people

using traditional analytical techniques would miss (365-DS-Booklet).

I11.  Reinforcement Learning

This kind of machine learning prioritizes performance (the capacity to walk, see, and read)
over correctness. The computer is rewarded whenever it performs better than it did previously;
but, if it performs less than optimally, the algorithms leave the calculation alone. A dog learning
commands comes to mind. If the animal follows the rules, it gets a treat; if it doesn't, it doesn't.
(365-DS-Booklet).
Programming Languages

Using a programming language, they are comfortable with, the data scientist can write
programs that perform certain procedures. The best feature of a programming language is
flexibility. R, Python, MATLAB, and SQL are the most often used tools. R and Python are the two
most frequently used data science technologies overall. By far, their biggest advantage is their
capacity to edit data and integration with different data and data. They are adaptable and not just

suitable for calculations involving arithmetic and statistics (365-DS-Booklet).
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Software and Frameworks
Excel can be used to manage traditional data, artificial intelligence, and data science.

Similar to this, SPSS is a widely used tool for handling conventional data and statistical analysis.
On the other hand, Tensor Flow is a software framework and library created specifically for
utilizing enormous volumes of data and creating machine learning algorithms. It was created by
Google for internal use, became available to the general public in 2015, and now dominates

machine learning usage and applications (365-DS-Booklet).

Related Research
Hydraulic fracturing technology has seen a rise in the development of unconventional

reservoirs over the past ten years (Muther et al. 2020a, 2020b). Its main applications include the
development of tight gas and oil reservoirs as well as the use of horizontal wells for shale gas.
Particularly in Canada and North America, this spike was seen. According to Syed et al. (2020a),

shale gas made up almost fifty % of all-natural gas produced in the United America State in 2018.

The development of models that can forecast EUR, the generation behavior of
unconventional HCs, and give an accurate estimate of the amount of injected fluid or proppant
using a variety of supervised learning-based techniques (Kuhn, M., & Johnson, K.,2013). To create
Al and ML-based models, researchers with backgrounds in prospection and production as well as
Al and ML knowledge joined forces. In the lines that follow, a succinct assessment of the literature
is provided, including an estimation of the production performance of shale gas wells using several
ML and Al-based methodologies.

ML strategy was the subject of extensive investigation as well. Based on a data-driven
methodology, it evaluates the effectiveness of shale gas by considering a number of variables, such
as HF and well completion in the Eagle Ford formation. Based on supervised learning, a core
machine learning technique, a model prediction of cumulative production data was developed
using ML modeling and a data-driven approach. (Han et al. 2020).
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General workflow
A data analytics and statistical modeling approach was employed to address the study

challenge. Figure 2.6 provides a summary of this approach.

Data Preparation

Exploratory
Data Analysis

Predicive Modeling

Decision Tree Random Forest

\\4 Y
Variable Variable
Importance Importance

Figure 2.6. Workflow for data analytics approach

Data Preparation
e Perform a quality check on the input data after importing the dataset in Python.
Exploratory Data Analysis
e EDA was used to find hidden patterns and characteristics, like outlier points and the
connection between operational and reservoirs parameter.
Predictive Modeling
e Machine learning algorithms were used to predict the total amount of gas generated after
1-year MCF using the reservoir and operational information.
e The models were then evaluated using the goodness of fit approach.
Variable Importance
e Selected the key reservoir and operational characteristics that influence the total amount of

gas produced.
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CHAPTER 11

Research Methodology

This chapter outlines the study population, the research design, the data collection method,

the validity and reliability of the data collection instrument, and the data collection process.

Research Design
A structured correlational research design is used to achieve the objective of the study. This

design facilitates the description of a situation in its current state, and elicits information directly

from the study area.

Population of the Study
The study population consists of a portion of actively producing fields with 49 production

wells in total, in four areas with different formation in EAGLE FORD, HAYNESVILLE SHALE,
BOSSIER SHALE, MARCELLUS and data was collected from them.

Validity and Reliability Criteria
Machine learning uses a model to train and find relationships between input and output data

given to it in a trial-and-error process using an objective function to calculate learning error and
optimization algorithm to adjust in order to minimize training errors. Since the algorithm tries to
fit a model in a given data, special techniques must be used not to over fit (over train the model)
or under fit (not being able to capture the underlying logic) the data as well as the power of

prediction. In this regard, validity and reliability criteria are set as follows.

e Field data is pre-processed and made suitable for machine learning.

e In the analysis section a decision tree and random forest will be designed to fit a model
into the collected data as intuitively as possible to find trends and patterns.

e Priors were set, the dataset was balanced and splintered into a 70%, 75% and 80% training
sets and 30%, 25%, and 20% testing sets.

e After training the model, the 30%,25%, and 20% testing set will be used to calculate the
accuracy of prediction of all data points in the testing set using the trained model.

e 70% accuracy is good and acceptable for further predictive analytics, 90% and above is

impressively okay.
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Method of Data Collection
e Data collected would be used to create a database table in excel.

e Data redundancy would be normalized and balanced.
e A file extension with xIsx will be used to facilitate 10 operations in data science

frameworks.

Data Analysis Technique (Exploratory Data Analysis of Data Set)
e Raw data from. excel file format (suitable file type for jupyter notebook)

a. Explore descriptive statistics.
1. Mean, standard deviation, mode.
2. Quartiles (Q1, Q2, Q3).
3. Minimum and maximum values.
4. Counts.
b. Conduct advanced statistical tests.
1. Significance test (p-values).
2. Calculating explanatory power of correlated variables (R-squared & adjusted R-
squared).
3. Measure of overall significance (F-statistic and F-probability).
4. Skewness and kurtosis.
c. Assumptions with linear machine learning regression
Linearity
Homoscedasticity/ Heteroscedasticity
No autocorrelation
Normality

o > w0 N

Multicollinearity

Machine Learning (Supervised Learning Algorithm)
Data, models, objective functions, and optimization algorithms must all be specified when

creating a machine learning algorithm. A model gives the machine learning algorithm a sense of
direction to train and learn on its own. An objective function estimates error after each trail of the
training process. An optimization algorithm is used to find the objective function's minima in order

to minimize error and improve accuracy.
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Metrics for Evaluating Regression
Before going any farther with the implementation of a Decision Tree and Random Forest

model in scikit-learn, let's go through some of the regression assessment metrics outside of R and
R?.( Scikit-learn, 2020)

1. Mean absolute error (MAE): is the average error value in absolute terms. It is merely the
average of the absolute difference between the numbers that were forecasted and those that
actually occurred. Since the objective is to minimize this loss function, MAE is also known
as a loss function and is defined as follows:

MAE== ¥, (¥ — 7)) 3.1

n

Where

y; True response

A~

¥; Predicted response

2. Mean squared error (MSE): It is known as the mean of the squared error, as suggested
by the name, as can be seen in the example below. There is another loss function called
MSE that also needs to be minimized. Due to the fact that MSE's objective function
penalizes greater errors more harshly than MAE does, MSE is frequently utilized in real-
world ML applications (Scikit-learn, 2020).

1 AN
MSE:; (i —y)? 3.2
Where
y; True variable
¥; Predicted variable

3. Root mean squared error (RMSE): As may be seen in the graphic below, RMSE is
essentially the square root of MSE. Please be aware that due to its interpretability, RMSE

is another very well-liked loss function. (Scikit-learn, 2020).



32

1 ~
RMSE = \/;Z?ﬂ()’i - y)? 3.3

Where
y; True variable
y; Predicted variable

Tree Methods

e Decision Tree
A supervised ML approach known as a decision tree can be applied to classification and

regression issues. It is essential to comprehend how a decision tree functions before talking about
decision trees and random forest which are related concepts. The data is separated into sub trees
using a decision tree, which are further subdivided into sub trees. As shown in Figure 3.1, while a
terminal node, also known as a leaf node, is the lowest node and no longer splits, a decision node,
also known as an internal node, comprises two or more branches. The root node, which is the
highest level, accurately represents the entire population. You should be aware that "splitting™ is
the splitting of a node into two or more sub nodes.

There are various decision tree algorithms. The 1986 Iterative Dichotomize 3 algorithm,
generally known as ID3 (Quinlan, R.1986), was developed. This approach, which will be
explained, builds decision trees utilizing categorical traits in a top-down greedy manner to
maximize information gain. An ID3 multi-way tree is also used. It is not necessary for features to
be categorical when using C4.5, another decision tree approach. In comparison to C4.5, the most
recent Quinlan release, C5.0, uses less RAM and produces smaller rule sets.

Finally, C4.5 is similar to CART but includes numerical target variables and does not compute
rule sets. CART define classification and regression trees. The highest information gain at each
node is achieved by CART's creation of binary trees. Please be aware that the CART algorithm is

used in an optimal manner by the scikit-learn library (Scikit-learn,2020).
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Decision Node Decision Node

Figure 3.1. Decision tree illustration. (Breiman, L. 2011).

e Attribute Selection Technique

Determining which attributes belong at the root or internal node of a data collection with N
attributes can be difficult and complex. The following list includes some of the most crucial

factors for attribute selection:

1. Entropy: Entropy is only a calculation that measures uncertainty or purity. Keep in mind

that low purity means high entropy.
E(S) =Xi-1 —P; log,P; 3.4
Where
Pi is the chance that a class will appear in a dataset,

C is the total number of classes.

Entropy for many qualities can be determined mathematically as follows:

E (X, Y)=Xcer P(€)E(c) 3.5
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Where

X is the present situation.
Y Is the chosen attribute.
P(c) is the attribute's probability.

E(c) stands for the attribute's entropy.

2. Information Gain (1G): When creating a decision tree, it's critical to identify the attribute
that yields the highest information gain and the lowest entropy. A characteristic's ability
to successfully place training cases in the appropriate category is described by IG. IG

favors smaller partitions, which can be determined by the following:
IG (Y, X)=E(Y)-E (Y, X) 3.6

3. Gini Index: As demonstrated here, the Gini index is determined by deducting 1 from the
sum of squared probabilities for each class. The Gini index encourages bigger partitions
as opposed to information gain. Please note that the Gini index would be zero in fully

categorized samples.
Gini=1-Y¢ ,(Pi)? =1 — (P(class A)? + (P(class B)? + - + P(class N)?) 3.7
Where
Pi is the probability of an element being classified under a particular class.

Over fitting is one of the most challenging problems when employing a decision tree. Pruning is
one strategy for preventing over fitting. Pruning is the act of removing branches or tree trunk
segments that don't offer much information for classifying cases or that otherwise interfere with
overall accuracy. To ensure that the model is not over fitted when employing a decision tree, cross
validation is also crucial. A different strategy is to employ the algorithm of random forest, which

typically performs better than a decision tree. This chapter's next section goes into great detail on
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random forests. When selecting attributes, the previously mentioned criteria, including knowledge
gain and the Gini index, are utilized to determine the values of each property. Assume that the
selection criterion for attributes is information gain. After sorting the data, the attributes with the
greatest values are positioned at the root.

e Random Forest
A robust supervised machine learning method called random forest as shown in Figure

3.2, can be applied to both classification and regression problems. Ho introduced the
widespread application of random decision trees in 1995 (Kam Ho, 1995). A forest of decision
trees, or random forest, is a collection of decision trees. Random forest is an ensemble method
since it combines multiple decision tree models into a single model. For instance, because
projections can differ, MCF might utilize a single tree instead of a decision tree and end up
with an inaccurate estimate of the Cumulative Gas Produced after 1 Year. One method to
reduce this volatility in estimating the Cumulative Gas Produced after 1 year, MCF, is to use
predictions from hundreds or thousands of decision trees and calculate the final result using
the average of those trees. The fundamental idea behind random forest is to build a single
model out of many decision trees. (Breiman, L.2011)

Single Decon Tree Random Forest (Ensembile of Decision Trees]
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Figure 3.2. Decision tree versus random forest.

While individual decision tree forecasts may not be precise, aggregated forecasts have a higher
likelihood of being so. Since it combines substantially more data from several forecasts, random
forest typically outperforms a single decision tree in terms of accuracy. Random forest makes its

final prediction in regression issues by averaging the decision trees. As was previously mentioned,
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classification issues can also be resolved utilizing random forests by polling the vast majority of

the anticipated class.

Implementation of Decision Tree and Random Forest Using Scikit-learn

The output feature in this section, cumulative Gas Produced after 1 Year, is linked to a

database with the input features stated below. To predict Cumulative Gas Produced after 1 Year,

MCF, a supervised regression decision tree and random forest model are being built.

e The input features are initial pressure estimate(psi), reservoir temperature(F), net pay (ft),

porosity, water saturation, oil saturation, gas saturation, gas specific gravity, CO2, N2,

TVD (ft), spacing, stages, number of clusters, clusters per stage, Total proppant (Lbs.),

lateral Length(ft), Top Perf(ft), bottom perf(ft), sand surface temperature, (deg F), static

wellhead temp (deg F)

e The output feature is Cumulative Gas Produced after 1 year, MCF.

Below is an outline of applicable methods (the training and testing set must be done separately for

DT and RF in python jupyter notebook).

e Raw data Pre-processing

1.

N o ok~ N

Import libraries (NumPy, matplotlib, pandas, seaborn, and from sklearn. Model
selection import train_test_split).

Define the x and y variables

Next, import Decision Tree Regressor and Random Forest Regressor from sklearn.
Define the decision tree and Random Forest

Apply dtree and rf to “(X_train. Y _train)”

Obtaining the training and testing R? is the next step

Optimized. Next, compare training actual results to those from predictions and
testing.

Let's additionally include MAE, MSE, and RMSE to adequately assess the model

from all angles.
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CHAPTER IV

Results and Discussion

The main goal of this chapter is to explain the results from the analysis and performance
predictions of shale wells using data analytics and machine learning techniques. The following
cases were examined for this analysis:

e Using descriptive statistics to comprehend and interpret the data
e Use box plots, histogram plots, scatter plots, and multivariate correlation graphs to provide

a visual analysis.

e Use supervised learning techniques to predict the cumulative gas produced after a year,

such as decision trees and random forests.

Descriptive Statistics
When analyzing a dataset, you should first get a sense of it by posing questions like the following

(Hold away, 2009):
e What are the smallest and greatest values?
e What single representative number would be adequate for this batch of data?
e How broad is the spread or variance?

e Does the dataset have a uniform distribution throughout a range of values, or are certain

values grouped around others?

Because they describe the data, descriptive statistics and summary statistics can provide answers
to these problems. In this study, both the reservoir and the operational parameters were subjected

to descriptive statistics.

Reservoir and Operational Parameters
The count, mean, standard, minimum, 25%, 50%, 75%, and maximum values that were

obtained from this investigation are shown in Table 4.1 along with the summary statistics for the
operational and reservoir parameters.

The first thing to notice is that Table 4.1's mean porosity values are lower (7%), which indicates
that the shale rock has been compressed as a result of the stress and has less pore space as a result.



38

The fact that the average water saturation is lower (0.301) indicates that the insoluble
nonconductive substance kerogen is present, which causes a decrease in rock conductivity and an
underestimating of water saturation. Additionally, oil saturation is lower (0.10) and temperature-
dependent. Any given oil will have a lower saturation point as temperature rises. In our data, we
have a value of 0.10 and a mean value of CO2 (0.01) and N2 (0.00), and the critical gas saturation
ranges between 0.5 and 50% depending on parameters like rock and fluid qualities. Although these
values are insignificant, they can be employed to prevent the pore pressure in shale from decreasing

and to keep it pliable.

The high mean value of the initial pressure estimate (6313.78 psi), which is also visible in
Table 4.1, indicates the amount of driving power that may be used to force the remaining fluid out

of the reservoir during a production sequence.

Finally, we have a high mean value of TVD, lateral length, bottom perforation which define

the horizontal well operation in shale well.

Different kinds of tales can be told between characteristics and the goal variables using
plotting and data visualization. The oldest and most significant area of data science is plotting, or
data visualization. And to see how each variable in this thesis is distributed, we will utilize boxplot,

histogram plot, scatter plot, and multivariate correlation plot.
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Produced after 1
year, MCF

count mean std min 25% 50% 75% max
Initial Pressure 50 6313.78 | 2963.47 | 2200.00 | 4300.00 | 5164.00 | 9929.25 12223
Estimate (Psi)
Reservoir 50 211.16 93.43 | 115.00 | 134.00 144.50 323.00 379.00
Temperature (degF)
Net Pay (ft) 50 163.38 56.79 56.00 136.00 164.50 208.75 268.00
Porosity 50 0.07 0.01 0.05 0.06 0.07 0.08 0.10
Water Saturation 50 0.30 0.08 0.18 0.21 0.31 0.36 0.47
Oil Saturation 50 0.10 0.24 0.00 0.00 0.00 0.00 0.74
Gas Saturation 50 0.59 0.27 0.00 0.57 0.67 0.79 0.81
Gas Specific Gravity 50 0.61 0.09 0.57 0.57 0.57 0.59 0.95
CO2 50 0.01 0.01 0.00 0.00 0.00 0.02 0.05
N2 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TVD (ft) 50 9020.33 | 2160.28 | 5707.63 | 7389.31 | 7794.69 | 11755.37 12668
Spacing 50 1220.20 | 297.46 | 700.00 | 1000.00 | 1200.00 | 1500.00 | 1850.00
Number Of stages 50 45.18 20.07 7.00 30.25 47.00 62.50 89.00
Number of Clusters 50. 276.46 160.97 49.00 141.00 234.00 444.00 735.00
Number of Cluster 50 6.07 2.16 3.00 5.00 5.00 7.00 15.00
per Stage
Number of Total 50 20.53 8.95 3.59 14.11 20.64 26.53 42.94
Proppant (MM Lbs)
Lateral Length(ft) 50 7867.84 | 2354.97 | 2268.00 | 5990.00 | 7480.00 | 9800.00 | 13011.00
Top Perf(ft) 50 9204.48 | 2224.97 | 5900.00 | 7548.50 | 8133.00 | 12082.00 | 13153.00
Bottom Perf(ft) 50 17054.92 | 3608.28 | 10049 | 14360.75 | 16192.00 | 20089.50 | 23203.00
Sand face Temp 50 209.61 91.38 | 115.00 | 133.81 143.18 303.75 379.00
(deg F)
Static Wellhead 50 95.91 49.34 60.00 65.00 80.00 120.00 236.00
Temp (deg F)
Cumulative Gas 50 4378.22 | 3273.30 | 25.12 1618.66 | 3792.71 | 6355.90 | 13094.84
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Univariate Data Analysis
The basic methods employed for univariate data analysis include scatter plots, histograms,

and box plots. We may assess the symmetry of the data and the degree of skewness, as well as
whether it contains any outliers, by the visual inspection of these methods.

Boxplots for Reservoir and Operational Parameters
We can get a general notion of the data distribution using a box plot. The data is more

compact if the box plot is not too long. The data is dispersed if the box plot is relatively tall. Each
of the box plot of 22 variables can be interpreted in terms of the data's spread or compactness. We
might use the chart to determine the potential existence of outliers using a broad definition of

outliers. Outliers are typically anticipated when there are several data points.

Figure 4.2 shows that the Total Proppant (MM Lbs.) box plot's interquartile range (IQR)
falls in the middle of the median for the reservoir parameter box plots. Inferring further that the
sample values for the reservoir parameters are distributed equally on both sides of the median, this

shows that the sample values are evenly distributed between the median and the IQR.

However, some of the variables plotted in Figure 4.1 reveal the median is located farther
from the upper half of the box plot (third quartile). Given that the upper whisker is longer than the
lower one, the upper tail of the data is likely to be longer than the lower tail. The box plot is being
pulled higher by the variable values. The variability of those variables is increased as a result.

Furthermore, since the top whisker is shorter than the bottom one, we may say that there is
less fluctuation of variable. You might use the chart to determine the potential existence of outliers
using a broad definition of outliers. Outliers are typically expected with big data points, and we
can see their existence in our reservoir and operating parameters box plots (Figures 4.1 and 4.2).
Such is the cluster per stage boxplot, gas specific gravity, N2, and oil saturation. The box plot of
Gas specific gravity and N2 also reveals outliers at the upper end of the data range. If the mean
value is above the median, the median line does not divide the box evenly, and the upper tail of
the boxplot is longer than the lower tail, the population distribution from which the data were

sampled may be skewed to the right.
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Boxplots for Reservoir Parameters
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Figure 4.1. Reservoir parameters box plots: (a) Initial Pressure Estimate (psi), (b) Reservoir
Temperature(F), (c) Net Pay(ft), (d) Porosity, (e)Water Saturation, (f) Oil saturation, (g)
Gas Saturation, (h) Gas Specific Gravity, (j) CO2 (k) N2
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Figure 4.2 Operational parameters box plots: (a) TVD
(b)Spacing ,(c) Number of Stages ,(d) Number of clusters , (€) Number of clusters per
Stage , (f) Total Proppant (MM Lbs.), (g) Lateral Length (ft.), (h) Top Perf (ft.), (i)
Bottom Perf (ft.), (j) Sand face Temp (F), (k) Static wellhead Temp (F), (I) Cumulative
Gas Produced after 1 year, MCF
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Histograms for Reservoir and Operational Parameters

By comparing the lengths of the tails, a histogram can reveal whether the data is skewed.
If the right tail is longer than the left tail, the data is skewed to the right; conversely, if the left tail
is longer than the right, the data is skewed to the left.

It is clear from Figures 4.3 and 4.4 that the majority of the operational parameters are not
symmetrical in terms of the histogram's shape. They all do, to some extent, show skewness. These
histograms clearly depict that most of the sample values are at the left and the right side of the tail
is longer. Figures 4.3 and 4.4 show that the majority of histograms are not symmetric. A histogram
is considered to be positively skewed (skewed to the right) if the tail on the right is lengthy. The

median value is lower than the mean, as shown by this histogram.

A lower boundary in a data set is typically the cause of right-skewed data, whereas a higher
barrier causes left-skewed data. Therefore, the data will skew right if the lower bounds of the data

set are extremely low in comparison to the remainder of the data.

Last but not least, the left-skewed distribution in Figure 4.4 Lateral Length (ft.) Histogram
is longer on the left side of its peak than on its right. Negative skew is another name for left skew.

That indicates that a higher border is to blame.
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Figure 4.3. Reservoir parameters histogram plots: (a) Initial Pressure Estimate (psi), (b)
Reservoir Temperature (F), (¢) Net Pay (ft), (d) Porosity, (e) Water Saturation, (f) Oil
saturation, (g) Gas Saturation, (h) Gas Specific Gravity, (i) CO2, (j) N2
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Figure 4.4. Operational parameters histogram plots: (a) TVD
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Stage , (f) Total Proppant (MM Lbs.), (g) Lateral Length (ft.), (h) Top Perf (ft.), (i)
Bottom Perf (ft.), (j) Sand face Temp (F), (k) Static wellhead Temp (F), (I) Cumulative
Gas Produced after 1 year, MCF
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Scatterplot for Reservoir and Operational Parameters
In a scatter plot, values for one or more different numerical variables are represented by

dots. Each dot's location on the horizontal and vertical axes represents a data point's values. To

view relationships between variables, utilize scatter plots.

The data in the scatterplots in Figures 4.5 and 4.6 with no association between the variables
shows neither positive nor negative trends. The scatterplot displays random, non-directional
points. In addition, a scatterplot with no linear trend (positive or negative) is referred to as having

a zero correlation or a near-zero correlation.

Also, we can see that none of the data have been modeled, so the scatter plot can only be
fit approximately by a linear function because the straight line will pass through all points. We
cannot use a scatter plot that shows no association to make a prediction. Because association
describes how sets of data are related and when there is no association that means that there is no

relationship between them.

Finally, as the scatter plots have been plotted individually it is complicate to see the
association and correlation of data and to make it easy, we are using the multivariable correlation

plot to see the high correlation between each variable (Figures 4.7 and 4.8)
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(9) Gas Saturation (ft) Scatter Plot (h) Gas Specific Gravity Scatter Plot
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Figure 4.5. Reservoir parameters scatter plots: (a) Initial Pressure Estimate (psi), (b) Reservoir
Temperature (F), (c) Net Pay (ft), (d) Porosity (e), Water Saturation, (f) Oil saturation, (g)
Gas Saturation, (g) Gas Specific Gravity, (h) CO2, (i) N2
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Figure 4.6. Operational parameters histogram plots: (a) TVD

(b)Spacing ,(c) Number of Stages ,(d) Number of clusters , (€) Number of clusters per
Stage , (f) Total Proppant (MM Lbs.), (g) Lateral Length (ft.), (h) Top Perf (ft.), (i)
Bottom Perf (ft.), (j) Sand face Temp (F), (k) Static wellhead Temp (F), (I) Cumulative

Gas Produced after 1 year,
MCF.
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Multivariate Correlation Plot
In this study, the final step of EDA involved presenting a correlation matrix that builds on

the concepts outlined before but now includes all variable pairings, including reservoir and
operational characteristics.

Figure 4.7 and 4.8 present the correlation matrix for all variable pairs (dependent and
independent).

In Figure 4.7, the highest absolute value of Pearson correlation coefficient is between Top
Reservoir temperature (deg F) and Initial pressure estimate (deg F) with a coefficient of 0.93. It
can be seen in Figure 4.7 there is a dependency between Reservoir temperature and Initial pressure
estimate, CO2 with Initial Pressure Estimate (psi), CO2 with Reservoir Temperature (deg F), Gas
Specific Gravity with Oil Saturation, Gas Saturation with Net Pay (ft), Gas Saturation with
Porosity, Porosity with Reservoir Temperature (deg F) and Cumulative Gas Produced after 1 year,
MCF with Gas Saturation.

In Figure 4.8, the highest absolute value of Pearson correlation coefficient is between Top Perf (ft)
and TVD (ft) with a coefficient of 1. It can be seen in Figure 4.8 there is a dependency between
Bottom Pref (ft) and Stages, Bottom Perf (ft) with Lateral Length (ft), Lateral Length (ft) with
Stages, Number of Cluster per stage with Number of Clusters, and Bottom Perf (ft) with Number

of Clusters.

The reason for noticing the preceding outlier points was the dependence between
independent variables (Predictors), as well as between dependent variables (Response) and
independent variables the outlier points cannot be the result of an inaccurate input value into the
dataset since this dataset was created via numerical simulation scenarios. As a result, this
dependency results in additional log normality, which is evident in the box plots and histograms

of these variables.
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Predictive modeling
The EDA method utilized in the aforementioned section is a crucial methodology

employed in this study to verify the variables that have a relationship with the cumulative gas
generated after a year, MCF, as well as figuring out patterns and trends to carry out predictive
modeling. The decision tree and random forest approaches were used in this study to predict the
cumulative gas produced after a year, or MCF. These predictive models are crucial for giving
precise forecasts of the total amount of gas generated after a year, measured in MCF, given the
dataset at hand. (Hastie, T., Tibshirani, R., & Friedman, 2008)

Decision Tree
This method of evaluating the decision tree model's level of accuracy is used since it is

simple and uncomplicated as shown in Figure 4.9 to 4.17. These techniques aid in lowering the
variance of a statistical-machine learning algorithm and enhancing the performance of these
techniques, as was previously discussed in the methodology chapter. To evaluate the prediction

error and determine whether there has been an improvement, three plots were created.

As R? is an indicator of regression error that supports the model's effectiveness. The
amount by which the independent variables can adequately characterize the value of the response
or target variable is what it represents. Always between 0 and 1 (0% to 100%), that is the range
for R-Square’s value. The linear regression function line is close to many data points when the R-
Squared value is high. When the linear regression function line has a low R-Squared value, the

data are not well fitted by the function line.

In Table 4.2 we ca see that by training the model with 70% of training and 30% of testing
set it gives the highest value of R? value, it means that many data points are close to the linear
regression function line, comparative to other training and testing tests used in decision tree in this

thesis.

Furthermore, it can be observed in Figure 4.11, 4.14, 4.17 that bottom perf, (ft) is the most
influential predictor and has an immense impact on the performance of shale well followed by

cluster per stage.
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Table 4.2. Training and testing sets for decision tree model

R? R
Training 70% 96% 98%
Testing 30% 70.6% 84%
Training 75% 95.5% 97.7%
Testing 25% 56.8% 75%
Training 80% 95.7% 97.8%
Testing 20% 57.7% 76%

The model prediction error can be estimated by a plot of actual and predicted values from the

decision tree with 70% training and 30% testing set. This corresponds to a prediction error of:

MAE: 1.5x 103 MCF
MSE: 6.7x 10® MCF
RMSE: 2.5 x 103 MCF

Cumulative Gas Produced after 1 year, MCF Training Actual Ws. Prediction

10000 = =
8000

G000 -

Training Prediction

4000 - -

2000

8] 2000 4000 8000 8000 10000
Traiming Actual

Figure 4.9. Training actual vs prediction using decision tree (70% training).
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Figure 4.10. Testing actual vs prediction using decision tree (30% training).
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Figure 4.11. Feature importance score using decision tree (70/30).

The second plot of decision tree with 75% training and 25% testing set can be seen in Figure 4.12

and 4.13 this technique provided the following prediction error:



MAE: 1.5x 103 MCF

MSE: 7.1x 10 MCF
RMSE: 2.6x 103 MCF
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Figure 4.12. Training actual vs prediction using decision tree (75% training).
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Figure 4.13. Testing actual vs prediction using decision tree (25% training).
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Figure 4.14. Feature importance score using decision tree (75/25).

The third and final plot of decision tree with 80% training and 20% testing test can be seen in

Figure 4.15, and 4.16 this technique produced the following prediction error:

MAE: 1.8x 103MCF
MSE: 9.2x 10 MCF
RMSE: 3x 103MCF
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Figure 4.15. Training actual vs prediction using decision tree (80% training).
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Figure 4.16. Testing actual vs prediction using decision tree (20% training).
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Figure 4.17. Feature importance score using decision tree (80/20).

Random Forest
The accuracy (R?) of the training and testing sets is displayed in Table 4.3. As can be seen,

using 70% training and 30% testing test results in an 84.3% testing rate compared to 70.6% of the
decision tree, using 75% training and 25% testing test results in an 87.3% testing rate compared to
56.8% of the decision tree, and using 80% training and 20% testing test results in an 87.7% testing

rate compared to 57.7% of the decision tree.

Therefore, it appears that the random forest algorithm outperforms the decision tree without
further parameter fine-tuning. In figures 4.18 and 4.19, 4.21 and 4.22, 4.24 and 4.25, the plots of
actual versus predicted training and testing data are visualized. As shown, compared to the decision

tree model, MAE, MSE, and RMSE values are lower.

The significant properties obtained by random forest are distinct from those obtained by
decision tree, as shown in Figures 4.20, 4.23, and 4.26. This is mostly attributable to the random

forest model's greater accuracy. It is advised to use the random forest model, as it has a higher

level of accuracy.
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As was previously said, the goal in classification issues is to reduce the Gini impurity
(assuming Gini impurity is chosen) Eq. 3.7. As a result, the nodes that result in the greatest
decrease in Gini impurity are found at the beginning of the trees, whilst the nodes that result in the
least reduction are found towards the end of the trees. Feature ranking is carried out by tree-based

algorithms in this manner.

Table 4.3. Training and testing sets for random forest models

R? R
Training 70% 94% 96.9%
Testing 30% 84.3% 91.8%
Training 75% 95.2% 97.6%
Testing 25% 87.3% 93.4%
Training 80% 95.3% 97.6%
Testing 20% 87.7% 93.6%

The model prediction error can be estimated by a plot of actual and predicted values from the
random forest with 70% training and 30% testing set. This corresponds to a prediction error of:

MAE: 1.4x 103 MCF
MSE: 4.7x 10® MCF
RMSE: 2.1x 103 MCF
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Figure 4.18. Training actual vs prediction using random forest (70% training).
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Figure 4.19. Testing actual vs prediction using random forest (30% training).
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Feature Importance Ranking
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Figure 4.20. Feature importance score using random forest (70/30).

The second plot of random forest with 75% training and 25% testing set can be seen in Figure 4.21

and 4.22 this technique provided the following prediction error:

MAE: 1.1x 10* MCF
MSE: 2.7x 10® MCF
RMSE: 1.6x 10® MCF
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Figure 4.21. Training actual vs prediction using random forest (75% training).
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Figure 4.22. Testing actual vs prediction using random forest (25% training).
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Feature Importance Ranking
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Figure 4.23. Feature importance score using random forest (75/25).

The third and final plot of random forest with 80% training and 20% testing test can be seen in

Figure 4.24 and 4.25 this technique produced the following prediction error:

MAE: 1.2x 10* MCF
MSE: 3.4x 10® MCF
RMSE: 1.8x 10* MCF
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Figure 4.24. Training actual vs prediction using random forest (80% training).
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Figure 4.25. Testing actual vs prediction using random forest (20% training).
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Feature Importance Ranking
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Figure 4.26. Feature importance score using random forest (80/20).

Comparison of Decision Tree and Random Forest Using Bar Chart Plot
In this review, by creating model by training test we can visualize that Decision Tree (DT)

and Random Forest (RF) have approximately the same values. And by regulating the model by
testing set Random Forest algorithms have better accuracy rates than Decision Tree algorithms.

In comparison to the Decision tree method, the random Forest algorithm have a greater

accuracy of about 84%, 87%, and 87%.
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B DT ERF
o AT, N 1n
(P o o o o 3 00

.56
IS 0
I 0.57
I 0.87

|\D
o
| o

TRAINING TRAINING TRAINING TESTING 30% T TESTING25%TESTING 20%
70% 75% 80%

Figure 4.27. Decision tree and random forest bar chart comparison of training and testing tests.

Variable Importance
By predicting the cumulative gas output after a year, this study's last section identified the

performance forecasting of shale wells in unconventional shale-gas reservoirs. The key way to
control this process is to examine the response variable in the context of a large number of predictor
factors. DT and RF contain built-in functions for carrying out such a procedure to find the most
significant predictors, which can be used to accomplish this. For the DT and RF models, the
percent decrease in RMSE is used to determine a relevance of predictor. Let's compare how
important each feature is according to DT and RF.
I.  Decision Tree
According to the decision tree's feature relevance rankings, Bottom Per(ft) is the most
significant predictor and has a significant impact on shale well performance forecasts,
followed by Clusters per stage, Clusters, and stages.
Il.  Random Forest
Bottom Perf (ft.), followed by Clusters per stage, Stage, Porosity, and Lateral Length
(ft.), is the most influential predictor and has a significant impact on the performance
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forecasting of shale wells, as can be seen from the feature importance rankings of

random forest.

Comparison of Feature Importance Rankings of DT and RF

It should be observed that the top two decisive predictors (Bottom Perf (ft.) and Clusters

per stage) for the shale-gas reservoirs for both the DT and RF models are identical with 20 and

25% of testing tests, and the top one for all of the feature important are identical.

The other rating for the predictor, on the other hand, is different because, for instance, RF

ranks the most significant predictors differently from DT. It is important to talk about the key

finding of the parameters in terms of their physical meaning.

We will evaluate the importance of the high-performance predictors in this study to determine

whether they are physically logical.

Bottom Perf (ft): When it comes to hydraulic fracturing and horizontal wells, a perforation
is crucial. It is forming a conduit between the pay zone and the wellbore to make it easier
for gas to flow there. At the perforations at the bottom of a well, the pressure of the liquid

inside the wellbore causes the rock to fracture.

Clusters Per Stage: Since there are fewer entrance opportunities for hydraulic fracturing
if there are fewer clusters each stage. Greater surface area near the wellbore each stage is

produced by more clusters, which can maximize the early gas recovery.

Porosity: Shale are distinguished by having extremely little porosity. a kind of secondary
porosity brought about by the rock's tectonic fractures. Fractures normally do not have
much volume on their own, but by linking preexisting pores, they greatly increase

permeability.

Lateral Length (ft.): The most important aspect in determining the production and
financial advantages of horizontal wells is lateral length. The horizontal wellbore length is
essential because the well crosses highly conductive cracks, which would facilitate the
extraction of shale gas for the purpose of injecting CO2. Additionally, a long horizontal
wellbore length would increase the area in contact with the fracture permeability zone,

which would obviously affect the well's productivity index.
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CHAPTER V

Concluding Remarks

Data analytics is employed in this study to determine the key factors that influence the total
gas generated after a year MCF. In this study, unconventional shale reservoir is the main topic. In
order to comprehend the features and patterns inside a dataset in shale well reservoirs, an EDA

using data mining and visualization was carried out.

Predictive models were created using statistical and machine-learning techniques after
gaining insights into the information. Assessing the link between reservoir parameters and
operational factors in order to precisely forecast process performance. Then, the predictive
effectiveness of each of these models was evaluated to determine which model had the highest

accuracy in estimating the total gas generated after 1-year MCF.

Conclusions
The major conclusions from this study are as follows:

1) In unconventional shale reservoirs, operational parameter is increasingly important for
shale well performance. The most important indicator is Bottom Perf(ft), has a significant

impact on shale well performance forecasting.

2) The most influential parameters of performance forecasting of shale well according to DT

are:

e Bottom Perf(ft)
e Clusters per stage
3) The most influential parameters of performance forecasting of shale well according to RF

are:

e Bottom Perf(ft)

e Cluster per Stage
e Number of stages
e Porosity

e Lateral Length(ft)



4)

5)

6)

75

The maximum proportion of variation is explained with a R? value when using Random
Forests (RF), which also has the lowest prediction error when compared to Decision Tree.
This outcome supports the literature's assertion that one of the most potent machine

learning methods is the RF model.

Regression tree (RF) can rank the most important factors that affect the total amount of gas

produced and are simple to understand.

The reliance between the predictors and response variables, which adds more log normality
and manifests as the outlier points, is the root cause of the EDA outlier points. There is no

way to link these outlier points to erroneous input values in the dataset.

Recommendations

To improve the prediction capabilities of the machine learning model, more reservoir
information should be provided. The actual reservoir dataset can help to make the decision
tree and random forest (machine learning model) more applicable.

The problem can be made simpler by converting the regression tree into a classification

tree, which can then be used to forecast whether performance will be high or low.
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Import Relevant packages

In [1]: import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

fmatplotlib inline

sns.set style("darkgrid")

df= pd.read excel('SPE shale.xlsx")

In [2]: df.head().transpose()

In [4]: df.info()

<class 'pandas.core.frame.DataFrame’>
Rangelndex: 5@ entries, @ to 49
Data columns (total 23 columns):

#  Column

0 Well Number

1, [Initial Pressure Estimate (psi)
2 Reservoir Temperature (deg F)
3 Net Pay (ft)

4 Porosity

5  Mater Saturation

6  0il Saturation

7 Gas Saturation

8  Gas Specific Gravity

9 (02

16 N2

11 TV (ft)

12 Spacing

13 # Stages

14 # Clusters

15 # Clusters per Stage

16 # of Total Proppant (MM Lbs)
17  Lateral Length (ft)

18  Top Perf (ft)

19  Bottom Perf (ft)

20 Sandface Temp (deg F)

21 Static Wellhead Temp (deg F)

Appendix A

Non-Null Count
5 non-null
5@ non-null
50 non-null
5@ non-null
50 non-null
5@ non-null
50 non-null
50 non-null
50 non-null
50 non-null
50 non-null
50 non-null
58 non-null
50 non-null
5 non-null
50 non-null
5 non-null
5@ non-null
5 non-null
5@ non-null
50 non-null
5@ non-null

22 Cumulative Gas Produced after 1 year, MCF 58 non-null

dtypes: float64(13), int64(10)
memory usage: 9.1 KB

In [5]: import numpy as np

In [6]:

Out[6]:

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline

df = pd.read_excel('SPE_shale.xlsx")
df .describe().transpose()

plt.figure(figsize=(12,10))

sns.heatmap(df.corr(), annot=True, linecolor='white',

linewidth=2, cmap='coolwarm')

<AxesSubplot: >

Dtype
int64
int64
int6d
int64
floated
float6d
floated
float6d
floated
float64
floatsd
float64
int64
int64
int64
float64
float64
int64
int64
int64
float6d
float6d
floated
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In [7]:

In [8]:

In [9]:

In [10]:

In [11]:

In [12]:

In [13]:

Appendix B

Decision Tree Classifier Building in Scikit-learn

LET USE 70/30 FOR TRAINING AND TESTING

Let’s define the x and y variables as follows:

x=df .drop([ 'Cumulative Gas Produced after 1 year, MCF'], axis=1)
y=df[ 'Cumulative Gas Produced after 1 year, MCF']

# next import the train test split Library and use a 78/30 split as follows:
from sklearn.model_selection import train_test_split

seed=1000

np.random.seed(seed)

X_train,X_test,y_train, y_test=train_test split\

(x, y, test size=0.30)

Next, import "DecisionTreeRegressor” from sklearn tree as follows. For classification problems, simply use "DecisionTreeClassifier "

from sklearn.tree import DecisionTreeRegressor

Let’s define the decision tree

parameters as shown below:

np.random.seed(seed)
dtree=DecisionTreeRegressor(criterion="squared_error', splitter=‘best’,
max_depth=None, min_samples_split=4, min_samples leaf=2,
max_features=None, ccp_alpha=6)

Let’s apply "dtree" to "(X_train,y_train)" as follows:

Now that the model has been fit to training inputs and output, let's apply to predict "X_train" and "X_test" as follows. The main reason to apply to "X_train" is to
be able to obtain the fraining accuracy on the model as well as the testing accuracy.

dtree.fit(X train,y_train)
y_pred_train=dtree.predict(X train)
y_pred_test=dtree.predict(X_test)

Next, let’s obtain the training and testing R2 as follows:

corr_train=np.corrcoef(y_train, y_pred_train) [@,1]
print('Training Data R"2=',round(corr_train*#2,4),'R=",
round(corr_train,4))

Training Data R"2= 9.9618 R= 0.9807

corr_test=np.corrcoef(y_test, y pred test) [0,1]
print('Testing Data R"2=",round(corr_test**2,4), 'R=",
round(corr_test,4))

Testing Data R™2= 0.7066 R= 0.8406

Optimized. Next, let’s visualize the training actual versus prediction and
testing

actual versus prediction as follows:
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In [14]:

Out[14]:

In [15]:

Out[15]:

In [16]:

In [17]:

Out[17]:

In [18]:

In [19]:

Out[19]:

In [20]:

In [21]:

Optimized. Next, let’s visualize the training actual versus prediction and
testing

actual versus prediction as follows:

plt.figure(figsize=(8,6))

plt.plot(y_train, y_pred_train, 'r.")

plt.xlabel('Training Actual')

plt.ylabel('Training Prediction')

plt.title('Cumulative Gas Produced after 1 year, MCF Training Actual Vs. Prediction')

Text(0.5, 1.8, 'Cumulative Gas Produced after 1 year, MCF Training Actual Vs. Prediction')

plt.figure(figsize=(8,6))

plt.plot(y_test, y_pred_test, 'r.")

plt.xlabel('Testing Actual’)

plt.ylabel('Testing Prediction’)

plt.title('Cumulative Gas Produced after 1 year, MCF Testing Actual Vs. Prediction')

Text(0.5, 1.0, 'Cumulative Gas Produced after 1 year, MCF Testing Actual Vs. Prediction’)

To properly evaluate the model from all aspects, let's also add MAE, MSE, and RMSE as follows

from sklearn import metrics

print( MAE: "', round(metrics.mean_absolute error(y_test,
y_pred_test),5))

print( MSE: "', round(metrics.mean_squared_error{y_test,
y_pred_test),5))

print( 'RMSE:", round(np.sqrt(metrics.mean_squared error(y_test,
y_pred_test)),5))

MAE: 1518.52203
MSE: 6744531.57498
RMSE: 2597.0236

dtree.feature_importances_

array([@. a8, 8. aa, 8. a8, a. 08,
8. a8, 0. 08, B. o0, 4.76660507e-03,
a. @8, a. 88, 9.25832181e-83, ©.000000002+00,
1.18975428e-82, 4.72649111le-02, 6.74644558e-82, 3.42315663e-01,
0.8000000602+00, 2.45926040e-04, ©6.00000000e+806, 5.14282517e-01,
2.56465827e-083, 0.60000000e+08])

feature_names=df.columns[:-1]

plt.figure(figsize=(8,6))
plt.show()

<Figure size 200x6080@ with @ Axes>
feature_imp=pd.Series(dtree.feature_importances_,
index-feature_names).sort_values(ascending=False)
sns.barplot(x=feature_imp, y=feature_imp.index)
plt.xlabel('Feature Importance Score Using Decision Tree')

plt.ylabel('Features’)
plt.title("Feature Importance Ranking™)

Text(@.5, 1.8, 'Feature Importance Ranking')

Note that the train_test_split was done randomly with 70% of the data used

as fraining and 30% of the data used as testing. Let's also do a five-fold cross- validation to observe the resulting average R2 as follows

from sklearn.model_selection import cross_val_ score
np.random.seed(seed)

scores_R2=cross_val_score(dtree, x, y,cv=5,scoring="r2")
print(" R2_Cross-validation scores: {}". format(scores_R2))

R2_Cross-validation scores: [-8.69549639 -0.480862385 -0.73620648 -0.19568775 ©.308827655]
print(" Average R2_Cross-validation scores: {}".
format(scores_R2.mean()))

Average R2_Cross-validation scores: -©.3599475848899655
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LET USE 75/25 FOR TRAINING AND TESTING

In [22]: | x=df.drop(["Cumulative Gas Produced after 1 year, MCF'], axis=1}
y=df[ 'Cumulative Gas Produced after 1 year, MCF']

In [23]: |# mext import the train_test_split Llibrory and use a 75/25 split as follows:
from sklearn.model_selection import traim_test split
seed=1808
np.random. seed(seed)
¥_train,X_test,y train, y test=train test split\
(x, ¥, test_size-@.25)

In [24]: from sklearn.tree import DecisionTreeRegressor

In [25]:  np.random.seed(seed)
dtree=DecisionTreeRegressor{criterion="squared_error', splitter="best',
max_depth=MNonz, min_samples split=4, min_samples leaf=2,
max_features=None, ccp_alpha=e)

In [26]: dtree.fit(X_train,y_train)
y_pred_train=dtree.predict(X_train)
y_pred_test=dtree.predict(x_test)

In [27]: corr_train=np.corrcoef(y_train, y_pred train) [8,1]
print(‘Training Data R*2=',round(corr_train®*2,4),"R=",
round({corr_train,4))

Training Data R 2= 8.95532 R= @.9774

In [28]: corr_test=np.corrcoef(y_test, y_pred_test) [e,1]
print(*Testing Data R"2=',round(corr_test**z,4),'R=",

round({corr_test,4))

Testing Data R"2= ©.568 R= 8.7537

In [29]:  plt.figure(figsize=(8,6})
plt.plot{y train, y_pred train, 'g.'}
plt.xlabel( " Training Actual®)
plt.ylabel("Training Prediction'})
plt.title( cumulative Gas Produced after 1 year, MCF Training Actual vs. Prediction')

out[22]: Text(e.s, 1.e, "cumulative Gas Produced after 1 year, MCF Training Actual vs. Prediction')

In [3@]: plt.figure(figsize=(8,6))
plt.plot(y_test, y pred_test, 'g.")
plt.xlabel( ' Testing Actual')
plt.ylabel('Testing Prediction')
plt.title('Cumulative Gas Produced after 1 year, MCF Testing Actual Vs. Prediction’)

Out[3e]: Text(e.5, 1.8, 'Cumulative Gas Produced after 1 year, MCF Testing Actual Vs. Prediction’)

In [31]: from sklearn import metrics
print({"MAE: ", round(metrics.mean_absolute_error(y_test,
y_pred_test),5))
print{ "MSE:", round(metrics.mean_squared_error(y_test,
y_pred_test),5))
print("RMSE:', round(np.sqrt(metrics.mean_squared_error(y_test,
y_pred_test)),5))

MAE: 1589.39835
MSE: 7115398.33428
RMSE: 2667.4784

In [32]: dtree.feature_importances_

Out[32]: array([2.87285826e-83, @. 88, . ee, 8. 08,
2.5312778%e-84, 1.584556874e-03, O.00080086e+88, 3.73838218e-03,
a. ea, @. 80, 6.91126112e-03, ©.000000002+00,
9.31118928e-83, 3.81791274e-02, 5.27512498e-82, 3.65756647e-01,
a. ea, @. 20, @. @8, 5.19535687e-01,
0. 88, @. ae])

In [33]: feature_names=df.columns[:-1]
plt.figure(figsize=(8,6))

Out[33]: <Figure size 800x600 with © Axes>

<Figure size 800x600 with 8 Axes>

In [34]: feature_imp-pd.Series(dtree.feature_importances_,
index=feature_names).sort_values(ascending=False)
sns.barplot(x=feature_imp, y-feature_imp.index)
plt.xlabel( Feature Importance Score Using Decision Tree')
plt.ylabel( ' Features')
plt.title("Feature Importance Ranking™)

Out[24]: Text(®.5, 1.8, 'Feature Importance Ranking®)



In [35]: from sklearn.model_selection import cross_val_score
np.random.seed(seed)
scores_R2=cross_val score(dtree, x, y,cv=5,scoring="r2")
print(" R2_Cross-validation scores: {}". format(scores_R2))

R2_Cross-validation scores: [-©.69549639 -0.48@62385 -@.73620648 -0.19568775 €.38827655]

In [36]: print(" Average R2 Cross-validation scores: {}".
format(scores_R2.mean()))

Average R2_Cross-validation scores: -@.3599475848899655

S

LET USE 80/20 FOR TRAINING AND TESTING

In [37]:  x=df.drop(["Cumulative Gas Produced after 1 year, MCF'], axis=1)
y=af[ "Cumulative Gas Produced after 1 year, MCF']

In [38]: |# next import the troin test split librory and use g 85/25 split as follows:
from sklearn.model selection import traim test_split
seed=1808
np.random.seed(seed)
¥_train,X_test,y_train, y_test=train_test_split\
(%, v, test_size-0.28)

In [32]: from sklearn.tree import DecisionTreeRegressor

In [42]: | np.random.seed(seed)
dtree=pecisionTreeregressor{criterion="squared_error', splitter="best',
max_depth-None, min_samples_split-4, min_samples_leaf=2,
max_features=None, ccp_alpha=2)

In [41]: dtree.fit(x_train,y_train)
y_pred_train=dtree.predict(X_train)
y_pred_test=diree.predict(x_ test)

In [42]: corr_train=np.corrcoef(y_train, y_pred_train) [8,1]
print('Training Data R"2=',round(corr_train®*2,4),'R=",
round{corr_train,4))

Training Data R™2= 8.9578 R= 8.9787

In [43]: corr_test=np.corrcoef(y_test, y_pred test) [e,1]
print('Testing Data R™2=',round(corr_test®**2,4),'R=",
reund({corr_test,4))

Testing Data R™2= B.5779 R= 8.7602

In [44]: | plt.figure(figsize-(8,8))
plt.plot(y_train, y_pred_train, 'y.")}
plt.xlabel( "Training Actual')
plt.ylabel("Training Prediction")
plt.title( "Cumulative Gas Produced after 1 year, MCF Training Actual Vs. Prediction')

out[44]: Text(e.s, 1.e, 'cumulative Gas Produced after 1 year, MCF Training Actual ws. Prediction')
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In [45]:

In [47]:

out[47]:

In [48]:

out[48]:

In [43]:

out[43]:

In [5@]:

In [51]:

from sklearn import metrics

print("MAE: ", round({metrics.mean_absclute_error(y_test,
y_pred_test},5))

print("MsE: ", round(metrics.mean_squared error{y_test,
y_pred_test},5))

print("rMsE: ", round(np.sgrt({metrics.mean_squared_error(y_test,
y_pred_test}),5))

MAE: 1839.88549

MSE: 9235036.62798
RMSE: 3838.92831

dtree. feature_importances_

array([1.962895782-92, 0.00002000:+00, 0.000000002+00, ©.000200022+00,
1.431655352-83, 5.59853198:-02, 0.900000002+00, §.287718832-85,
2.008000082+00, ©.20080000e+08, 6.541968202-83, O. +58,
1.195624132-82, 3.513993852-82, 4.55157871e-82, 3.516563722-81,
2.002000222+00, 0.2000000BE+08, 0.0000D200C+2, 5.13030628:-51,
2.002000282+00, 0.20020008:+00])

feature_names=df.columns[:-1]
plt.figure{figsize=(3,6)}}

<Figure size seexsoe with 8 Axes»

<Figure size 208608 with 8 Axes»

feature_imp=pd.Series{dtree.featurs_importances_,
index=feature_names}.sort_values(ascending=False)
sns.barplot{x=feature_imp, y=feature_imp.index)
plt.xlabel( "Feature Importance Score Using Decision Tree')
plt.ylabel( "Features')

plt.title("Feature Importance Ranking™)

Text{e.5, 1.8, "Feature Importance Ranking")

from sklearn.model selection import cross val score
np.random.seed(seed)

scores_R2=cross_val_score(dtree, x, y,cv=5,scoring="r2"})
print(" R2 Cross-validation scores: {}". format(scores R2))

R2_Cross-validation scores: [-8.69549639 -2.48862385 -0.73620648 -8.19568775
print(" Average R2_Cross-validation scores: {}".
format({scores_R2.mean(}))

Average R2_Cross-validation scores: -@.3599475342399655

8.38827655]
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Appendix C

Random Forest implementation using scikit-learn

LET USE 70/30 FOR TRAINING AND TESTING

In [52]: from sklearn.ensemble import RandomForestRegressor

In [53]: # next import the train_fest split Llibrory ond use g 75/25 split as follows:
from sklearn.model_selection import traim test split
seed=18ea
np.random. seed{seed}
¥_train,X test,y train, y test=train_test split’
(%, vy, test_size-8.38)

In [54]:  np.random.seed(seed)
rf=RandomForestRegressor{n_estimators=5aea,
criterion="squared_error"',max_depth=Mone, min_samples split-=4,
min_samples_leaf=2, max features='auto', bootstrap=True,
n_jobs=-1}

In [55]: rf.fit(x train,y train)
yv_pred_train=rf.predict(X train)
y_pred_test=rf.predict(x_ftest)
corr_train=np.corrceef(y_train, y_pred train) [@,1]
print("Training pata R"2=',round{corr_train**z,4),"R=",
round({corr_train,4))

C:\Wsers\user\AppData\Local \Programs\Python\Python31e\ lib\site-packages\sklearn\ensemble\_forest.py:413: FutureWarning: ~max_fe
atures="autc'" has been deprecated im 1.1 and will be removed in 1.2. To keep the past behaviour, explicitly set “max_features=
1.2" or remove this parameter as it iz also the default value for RandomForestRegressors and ExtraTreesRegressors.

warn{

Training Data R 2= 8.3484 A= 8.3637

In [56]: corr_test=np.corrcoef(y_test, y_pred_test) [©,1]
print('Testing Data R 2=",round{corr_test**2,4), 'R=",
round(corr_test,a))

Testing Data R"2= @.8436 R= ©.9185

In [57]: plt.figure(figsize=(3,&5})
plt.plot(y_train, y_pred_train, "b.',label='Training wells"'}
plt.xlabel("Training Actual®)
plt.ylabel("Training Prediction")
plt.title("Training Actual vs. Prediction®)
plt.legend(fontsize=18)

Qut[57]: <matplotlib.legend.Legend at ex24b3d2575e8>

In [58]: plt.figure(figsize=(3,6})
plt.plot(y test, y pred test, 'b .',label-"Testing wWells')
plt.xlabel( "Testing Actual'})
plt.ylabel( 'Testing Prediction')
plt.title("Testing Actual Vs. Prediction"})
plt.legend()

out[58]: <matplotlib.legend.Legend at 8x24bsdelieres

In [52]:  feature_names=df.columns[:-1]
plt.figure(figsize=(8,5))
feature_imp=pd.series{rf.feature_importances_,
index=feature_names).sort_wvalues({ascending=False)
sns.barplot{x=feature_imp, y-feature_imp.index})
plt.xlabel('Feature Importance Score Using Random Forest')
plt.ylabel( "Features")
plt.title("Feature Importance Ranking™)

out[52]: Text(e.s, 1.e, "Feature Importance Ranking')



In [&2]:
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LET USE 75/25 FOR TRAINING AND TESTING

from sklearn.ensemble import RandomForestRegressor

In [63]: |# next import the train test split Llibrary ond use @ 75/25 split os follows:

In [B4]:

In [65]:

In [66]:

In [67]:

out[67]:

In [e2]:

In [61]:

In [&£]:

out[&8]:

from sklearn.model_selection import train_test split
seed=100a

np .random.seed(seed)
¥ _train,X test,y train, y_test=train_test splith
(x, v, test_size-8.25)

np.random.seed(seed)
rf=RandomForestRegressor{n_estimators=saea,
criterion="sgquared_error’ ,max_depth=None, min_samples_split=4,
min_samples_leaf=2, max_features='auto', bootstrap=True,
n_jobs=-1)

rf.fit{x_train,y_train)
y_pred_train=rf.predict(x train)

y_pred test=rf.predict(X_test)
corr_train=np.corrcoef(y_train, y pred train) [0,1]
print(*Training Data R 2=',round(corr_train**2,4),"R=",
round(corr_train,4))

C:\Users\user\AppDatalLocal\Programs\Pythen\Python2184 1ib\ site-packagesisklearn\ensemble’_forest.py:413: FutureWarning: “max_fe
atures="auto'" has been deprecated in 1.1 and will be removed in 1.2. To keep the past behaviour, explicitly set “max_features=
1.8" or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTressRegressors.

warn{

Training Data R™ 2= 8.9525 R= 8.976

corr_test=np.corrcoef(y_test, y_pred test) [&,1]
print(*Testing Data R™2=",round(corr_test**2,3),"'R=",
round(corr_test,4))

Testing Data R™2= ©.8737 R= 8.9347

plt.figure(figsize=(8,6)})
plt.plot(y_train, y_pred train,
plt.xlabel("Training Actual"}
plt.ylabel("Training Prediction')
plt.title('Training Actual vs. Prediction'})
plt.legend()

¥."',label="Trainig wells")

«matplotlib.legend.Legend at exz4bofersd2a>

from sklearn.model_selection import cross_val score
np.random.seed(seed)

scores_R2=cross_wval_score(rf, x, y,cv=5,scoring='r2'}
print(" R2_Cross-validation scores: {}". format(scores_R2))

C:\Wsersiyuser\AppDatalLocal \Programs\Pythen\Python31e\1ib\site-packages\sklearn\ensemblel_forest.py:413: FutureWarning: ~max_fe
atures="auto"" has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set “max_features=
1.8 or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTreesRegressors.

warn(
C:\WsershuseriAppDatalLocal\Programs\Pythen'\Python21e\1ib\site-packages\sklearn'ensemble'_forest.py:413: FuturewWarning: “max_fe
atures="auto"" has been deprecated in 1.1 and will be removed in 1.2. To keep the past behaviour, explicitly set “max_features=
1.8" or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTressRegressors.

warn(
C:\Wsersiuser\appDatalLocal\Programs\Pythen'\Pythonz1e\1ib\site-packages\sklearn'ensemble'_forest.py:413: Futurewarning: “max_fe
atures="auto"'" has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set “max_features=
1.8" or remove this parameter as it is also the default value for RandomForestRegressors and EXtraTresesRegressors.

warn(
C:\Users\user\AppDatalLocal \Programs\Python\Python3181ib\site-packages\sklearn\ensemblel_forest.py:413: FutureWarning: ~max_fe
atures="auto"" has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set "“max_features=
1.2 or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTressRegressors.

warn(
C:\Users\user\AppDatalLocal \Programs\Python\Python31e\lib\site-packages\sklearn\ensemblel_forest.py:413: FutureWarning: ~max_fe
atures="auto"” has been deprecated in 1.1 and will be removed in 1.2. To keep the past behaviour, explicitly set “max_features=
1.2 or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTressRegressors.

warn(

R2_Cross-validation scores: [-2.65359281 ©.22012819 -8.32286354 -8.61958175 @.79659883]

print(" Average R2_Cross-validation scores: {}".
format{scores_R2.mean()})

Average R2_Cross-validation scores: -@.5157938153259419

plt.figure(figsize=(8,8))
plt.plot(y test, y pred test,
plt.xlabel( Testing Actual")
plt.ylabel('Testing Prediction')
plt.title('Testing Aactual vs. Prediction"')
plt.legend()

v .',label="Testing wells')

<matpletlib.legend.Legend at @x24bafe7role:



In [69]:

out[69]:

In [78]:

In [71]:

87

feature_names=df.columns[:-1]

plt.figure(figsize-(2,5)})
feature_imp=pd.Series(rf.feature_importances_,
index=feature_names}.sort_values{ascending=False)
sns.barplot{x=feature_imp, y=feature imp.index)
plt.xlabel('Feature Importance Score Using Random Forest')
plt.ylabel('Features’)

plt.title("Feature Importance Ranking")

Text(e.5, 1.8, 'Feature Importance Ranking')

from sklearn.medel_selection import cross_val score
np.random. seed(seed)

scores_R2=cross_val_score(rf, x, y,cv=5,scoring="r2")
print(" R2_Cross-validation scores: {}". format(scores_R2)}

C:h\Users\user\AppData’Local\Programs\Python' Python21e' 1ib\site-packages'\sklearniensemble’_forest.py:413: FutureWwarning: “max_fe
atures="auto'" has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set “max_features=
1.8" or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTressRegressors.

warn(
C:\Users\user\AppData\Local\Programs\Python'\Python31e\1ib\site-packages\sklearn\ensemble'_forest.py:413: Futurewarning: “max_fe
atures="auto'" has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set “max_features=
1.8 or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTreesRegressors.

warn(
C:\Users\user\AppData\Local \Programs\Python\Python318\ 1ib\site-packages\sklearn\ensemble'_forest.py:413: FutureWarning: ~max_fe
atures="'auto'” has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set “max_features=
1.8 or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTreesRegressors.

warn(
C:h\Users\user\AppData\Local \Programs\Python' Python31ey 1ib\site-packages'\sklearniensemble’_forest.py:413: FutureWarning: “max_fe
atures="'auto'” has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set “max_features-
1.8" or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTreesRegressors.

warn(
C:\Users\user\AppData\Local\Programs\Python'\Python31e\1ib\site-packages\sklearn\ensemble'_forest.py:413: Futurewarning: “max_fe
atures="auto'" has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set “max_features=
1.8 or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTreesRegressors.

warn(

R2_Cross-validation scores: [-2.65359281 @.22812819 -8,32286354 -8.51958175 @.79659883]
print(" Average R2_Cross-validation scores: {}".
format(scores_R2.mean()))

Average R2_Cross-validation scores: -8.5157838153252419



In [72]:

In [73]:

In [74]:

In [75]:

In [78]:

In [77]:

out[77]:

In [78]:

out[78]:

In [79]:

out[79]:

In [32]:

In [81]:
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LET USE 80/20 FOR TRAINING AND TESTING

from sklearn.ensemble import RandomForestRegressor

# next import the train test split Librory aond use g 75/25 split as follows:
from sklearn.model_selection import train_test split

seed=1808

np.random. seed(seed)

¥X_train,X test,y train, y_test=traim_test_split\

(%, ¥, test size-8.28)

np.random. seed(seed)
rf=RandomForestRegressor({n_estimators=5o0a,
criterion="squared_error",max_depth=None, min_samples_split=4,
min_samples_leaf=2, max_features="auto', bootstrap=True,
n_jobs=-1)

rf.fit(¥_train,y_train)
y_pred_train=rf.predict(X_train)
y_pred_test=rf.predict(x_test)
corr_train=np.corrcoef(y_train, y_pred train) [@8,1]
print("Training Data R”2=',round(corr_train**2,4),'R=",
round(corr_train,4))

C:\Wsers\user\AppData\Local\Programs\Python\Python31e\lib\site-packages\sklearn\ensemble’_forest.py:413: FutureWwarning: “max_fe
atures="auto"” has been deprecated im 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set “max_features=
1.8" or remove this parameter as it is alsc the default value for RandomForestRegressors and ExtraTreesRegressors.

warni(

Training Data R 2= 8.9536 A= 8.3765

corr_test=np.corrcoef(y_test, y_pred test) [e,1]
print("Testing Data R"2=",round(corr_test**2,4),'R=",
round(corr_test,4))

Testing Data R™2= @.8777 R= 8.9369

plt.figure(figsize=(8,&})
plt.plot(y_train, y_pred_train,
plt.xlabel('Training Actual')}
plt.ylabel('Training Prediction')
plt.title( ' Training Actual vs. Prediction®)
plt.legend(fomtsize=1a)

«matplotlib.legend.Legend at ex24bod2feade>

g.",label= "Training wells")

plt.figure(figsize=(8,6))

plt.plot(y test, y _pred test, 'g .',label="Testing Wells')
plt.xlabel('Testing Actual'}

plt.ylabel('Testing Prediction')

plt.title( Testing Actual vs. Prediction')

plt.legend(}

«<matplotlib.legend.Legend at ex24abagzaedse:

feature_names=df.columns[:-1]

plt.figure(figsize=(2,5))
feature_imp=pd.Series{rf.feature_importances_,
index=feature_names}.sort_values{ascending=False)
sns.barplot{x=feature_imp, y-feature imp.index})
plt.xlabel( "rFeature Importance Score Using Random Forest')
plt.ylabel( "Features")

plt.title("Feature Importance Rankimg"™)

Text(e.5, 1.8, "Feature Importance Ranking")

from sklearn.model_selection import cross_wval_score
np.random.sesd{ssed)

scores_R2=cross_val_score(rf, x, y,Cw=5,scoring="r2"

print (" R2_Cross-wvalidation scores: {}". format(scores R2))

C:\users\user\appData\Local\ProgramsyPython\Pythonzie\lib\site-packages\sklearniensemble’_forest.py:413: ruturewarning: ~max_fe
atures="auto"" has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set “max_features=
1.2 or remove this parameter as it is also the default value for RandomForestRegressors and EXtraTreesREgressors.

warng
C:\Usersiuser\AppDataiLocal\ProgramsyPython\Python31e\1lib\site-packages\sklearn\ensemble’_forest.py:413: FutureWarning: “max_fe
atures="autoc"” has been deprecated in 1.1 and will be removed in 1.2. To keep the past behaviour, explicitly set “max_features-—
1.2 or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTreesRegressors.

warn{
C:\Wsers\user\AppData\Local \Programs\Python\Python31e\lib\site-packages\sklearniensemble\_forest.py:413: Futurewarning: ~max_fe
atures="autc"'  has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set “max_features=
1.8 or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTreesRegressors.

warni
C:\Users\user\AppData\Lecal\ProgramsYPython\Python3i1e\lib\site-packages\sklearniensemble’_forest.py:413: FutureWarning: ~max_fe
atures="auto"” has been deprecated in 1.1 and will be removed in 1.32. To keep the past behaviour, explicitly set “max_features=
1.8  or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTreesRegressors.

warng
C:\Users\user\AppDataiLocal \ProgramsyPython\Python31e\lib\site-packages\sklearniensemble’_forest.py:413: Futurewarning: "“max_fe
atures="autc"” has been deprecated in 1.1 and will be removed in 1.2. To keep the past behaviour, explicitly set ~max_features=
1.82° or remove this parameter as it is also the default value for RandomForestRegressors and ExtraTreesRegressors.

warn{

R2_cross-validation scores: [-2.65359201 ©.22012319 -2.32286354 -@.61958175 ©.79659003]
print (" Awverage R2_Cross-validation scores: {}".
format{scores_Rz.mean()}}

Average R2_Cross-wvalidation scores: -8.5157838153253419



Appendix D

Variables of Multivariable Correlation Plot for Reservoir Parameters

In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
¥matplotlib inline

df = pd.read excel('SPE lyr Gas Draw_a.xlsx')

df.describe() .transpose()

out[2]:

count mean std min 25% 50% 15% max

[nitial Pressure Estimate (psi) 500 6313760000 2963476970 2200.0000 4300.000000 5164.000000 9929250000 12223.00000
Reservoir Temperature (deg F) 500 211160000 93430398 112.0000 134000000 144300000 323000000  379.00000
NetPay(ft) 500 163380000 56790661  56.0000 136.000000 164.500000 208750000  266.00000

Porosity 500 0070614 0013419 00300 0080300 0068430  0.083300 0.10000

Water Saturation 500 0301070 0087444 01836 0210000 0310050 0362500 0.47000

Oil Saturation 500 0107326  0248%3 00000 (000000  0.00000C  0.0000CO 0.74000

Gas Saturation 500 0591604 0272560 00000 0574275 0676550  (0.790000 0.81620

Gas Specific Gravity 500 0612286 0093459 05700 0570000 0570000  0.594730 0.95130

€02 500 001626 0017981 00000 0000000  0O00OOO 0024575 0.05800

N2 500 0000304 0000770 00000  0.000000  0.0000OC 0000400 0.00430

Cumulative Gas Produced after 1 year, MCF  50.0 4378222749 3273.300086

201260 1618665060 3792715095 6359.904765 13094.84705



Appendix E

Variables of Multivariable Correlation Plot for Operational Parameters

In [1]: 'import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
Yinatplotlib inline

df = pd.read_excel('SPE_Iyr Gas Draw_b.xlsx')

df .describe() . transpose()

Qut[1]:
count

mean

std

min

2%

50%

5%

max

Ot 500
Spacing 500

#%ages 300

#Clusters 300

# Clusters per Stage 500

Lateral Length (ft) 300

Top Perf(f) 500

Bottom Perf(f) 500

Cumulative Gas Praduced after 1year, MCF 300

9020.337103
1220200000
45180000
275450000
6.076200
T867.640000
9204 480000
17054920000
4378.222149

2160.285764
291 468846
20075093
160.971620
2160534
234971626
2004 7208
3608.268191
3273300085

70763
700.000
1.000
49000
3000
2266.000
5900.000
10049.000
B1%

1369.30875
1000.00000
30.25000
14100000
5.00000
3990.00000
7548.50000
14360.75000
1616.66506

7794690000
1200.000000
47.000000
234000000
5.000000
7480000000
§133.000000
16192.000000
792715095

1725376796
1300.000000
62500000
444000000
7.000000
9600000000
12082000000
20089500000
b335.904765

12666.00000
1830.00000
§9.00000
73000000
15.00000
1301100000
13153.00000
2320300000
13094.84705
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Appendix F

larity Report
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Appendix G
Ethical Approval Letter

YAKIN DOGU UNIVERSITESI

ETHICAL APROVAL DOCUMENT

Date: 20/06/2023

To the Institute of Graduate Studies

The research project titled “Analysis and Performance Prediction of Shale Wells Using Data
Analytics and Machine Learning’’ has been evaluated. Since the researcher will not collect
primary data from humans, animals, plants or earth, this project does not need through the ethics
committee.

Title: Prof. Dr.
Name Surname: Cavit ATALAR
Signature:

Role in the Research Project: Supervisor



