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Abstract 

 

“A Deep Attention Framework for Network Anomaly Detection” 

 

Mercel VUBANGSI 

MSc, Department of Artificial Intelligence Engineering 

June 2023, 90 pages 

This dissertation introduces an innovative transformer architecture specifically 

designed for deep learning-based multi-class classification tasks. The motivation 

behind this research stems from the remarkable success of transformer models in 

natural language processing tasks. Leveraging the transformer architecture's strong 

performance in language-related tasks, it is intended to apply the proposed 

framework to network anomaly detection using a publicly available dataset. 

To adapt the transformer architecture for multi-class classification tasks, a Norm/Re-

weight technique is introduced. This technique optimizes the space and time 

complexity in classification computation, ensuring efficient and accurate predictions. 

The framework is implemented and trained using a dataset published by the 

Intelligent Security Group of Canberra Australia, and its performance is thoroughly 

assessed. 

The results of this study demonstrate the efficacy of the proposed transformer 

architecture for detecting anomalous activities in network traffic data. The 

framework surpasses state-of-the-art methods on a comprehensive set of 15 metrics, 

showcasing its superior performance. By achieving commendable results, the model 

proves its ability to accurately classify network anomalies, which is crucial for 

effective anomaly detection in various applications. 

Significantly, this research also contributes to the AI research community by 

developing a user-friendly Python package that encapsulates the proposed model. 

This package has been made freely available on the Python Package Index (PyPi), 

providing researchers with a valuable tool to advance their own work in the field. 

The introduction of the adapted transformer architecture and the Norm/Re-weight 

technique holds promise for enhancing the performance of multi-class classification 

tasks beyond the detection of abnormal instances in network traffic. 

. 

Key Words:  transformer architecture, deep learning, multi-class classification,  



v 
 

 
 

network Anomaly Detection, machine learning, Python package, norm/re-weight,   

ÖZET 

 

“Ağ Anomalisi Tespiti için Derin Dikkat Çerçevesi” 

Mercel VUBANGSI 

Yüksek Lisans, Yapay Zeka Mühendisliği Bölümü 

June 2023, 90 safya 

Bu tez, derin öğrenmeye dayalı çok sınıflı sınıflandırma görevleri için özel 

olarak tasarlanmış yenilikçi bir transformatör mimarisini tanıtmaktadır. Bu 

araştırmanın arkasındaki motivasyon, trafo modellerinin doğal dil işleme 

görevlerindeki olağanüstü başarısından kaynaklanmaktadır. Transformatör 

mimarisinin dille ilgili görevlerdeki güçlü performansından yararlanan bu çalışmanın 

amacı, önerilen çerçeveyi halka açık bir veri kümesi kullanarak ağ anomalisi 

tespitine uygulamaktır. 

Transformatör mimarisini çok sınıflı sınıflandırma görevlerine uyarlamak için bir 

Norm/Yeniden ağırlıklandırma tekniği tanıtıldı. Bu teknik, sınıflandırma 

hesaplamasındaki alan ve zaman karmaşıklığını optimize ederek verimli ve doğru 

tahminler sağlar. Çerçeve, ağ anormalliği veri kümesi kullanılarak uygulanır ve 

eğitilir ve performansı kapsamlı bir şekilde değerlendirilir. 

Bu çalışmanın sonuçları, önerilen trafo mimarisinin ağ anomali tespiti için etkinliğini 

göstermektedir. Çerçeve, üstün performansını sergileyen kapsamlı bir 15 ölçüm 

kümesinde en son teknolojiye sahip yöntemleri geride bırakıyor. Model, övgüye 

değer sonuçlar elde ederek, çeşitli uygulamalarda etkin anomali tespiti için çok 

önemli olan ağ anormalliklerini doğru bir şekilde sınıflandırma yeteneğini kanıtlıyor. 

Bu araştırma, önerilen modeli kapsayan kullanıcı dostu bir Python paketi geliştirerek 

AI araştırma topluluğuna da önemli ölçüde katkıda bulunur. Bu paket, Python Paket 

Dizininde (PyPi) ücretsiz olarak kullanıma sunuldu ve araştırmacılara bu alanda 

kendi çalışmalarını ilerletmeleri için değerli bir araç sağladı. Uyarlanmış trafo 

mimarisinin ve Norm/Yeniden ağırlıklandırma tekniğinin tanıtılması, ağ anormallik 

tespitinin ötesinde çok sınıflı sınıflandırma görevlerinin performansını artırma 

konusunda umut vaat etmektedir. 
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CHAPTER I 

Introduction 

In this chapter, we shall explore the issue of identifying anomalies in network 

traffic and the significance of formulating effective techniques to tackle this problem. 

Initially, we shall delve into the background of the study and elaborate on the 

increasing demand for dependable and efficient intrusion detection systems in the 

modern digital era. Subsequently, we shall discuss the shortcomings of current 

approaches to detecting network anomalies, which necessitates the creation of a 

novel framework that can surmount these obstacles. Lastly, we shall wrap up by 

presenting the research objectives and the anticipated contributions of the proposed 

Deep Attention framework to the field of network anomaly detection.  

 

1.1   The need for Cyber Anomaly Detection 

Modern cybersecurity, which is becoming more and more crucial in the 

digital era, must include the detection of cyber anomalies. It is now more crucial than 

ever to identify and stop unwanted access to computer systems and networks because 

as technology develops, the potential of cyberattacks and data breaches increases.  

The first reason for the need for cyber Anomaly Detection is the proliferation of 

cyber threats. Today, cyber-attacks come in various forms, such as viruses, malware, 

phishing, and ransomware, among others. These threats are becoming more 

sophisticated, making them difficult to detect and defend against using traditional 

security measures. In order to reduce damage and prevent data loss, there is an 

increasing need for Anomaly Detection systems that can identify and react to these 

threats in real-time. 

Secondly, the complexity of modern computer networks and systems makes it 

difficult to monitor and control access. Large organizations and government agencies 

have complex networks that are spread across multiple locations, making it 

challenging to keep track of all the devices and users accessing the system. Anomaly 

Detection systems can help monitor the network, identify any suspicious behavior or 

access patterns, and alert the security team in real-time to prevent any unauthorized 

access. 

Thirdly, the need for Anomaly Detection systems is further highlighted by the 

rise of remote work and cloud computing. Remote workers and cloud-based systems 

have opened up new avenues for cyber attackers to exploit vulnerabilities in the 
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network. Anomaly Detection systems can help monitor remote access to the network 

and identify any unusual behavior or unauthorized access. 

Another reason why cyber Anomaly Detection is essential is the high cost of cyber-

attacks. Cyberattacks can cause significant damage to an organization's reputation, 

lead to financial losses, and even result in the loss of intellectual property. A robust 

Anomaly Detection system can help minimize the impact of a cyber-attack by 

quickly detecting and responding to the threat, reducing the amount of damage 

caused. 

Finally, the increasing regulatory pressure on organizations to protect their data 

emphasizes the need for Anomaly Detection systems. Governments and regulatory 

bodies have implemented data protection regulations, such as GDPR, HIPAA, and 

PCI-DSS, which require organizations to take measures to protect their data from 

cyber threats. Failure to comply with these regulations can lead to significant fines 

and legal action. An Anomaly Detection system can help organizations meet their 

regulatory requirements and safeguard their data from cyber-attacks. 

 

1.2   Background and Motivation.  

1.2.1   Evolution of Cyber Threats 

The evolution of cyber threats, as reported by Singh & Khare, (2022) in their 

survey paper, has been one of the most significant drivers of the development of 

cyber Anomaly Detection techniques. In the early days of computer networks, cyber 

threats were relatively simple, such as viruses and worms that could be detected 

using antivirus software. However, as computer networks became more complex and 

interconnected the nature of cyber threats evolved, with the emergence of new types 

of threats, such as malware, botnets, and advanced persistent threats (APTs). 

APTs are one of the most dangerous and difficult to detect types of cyber 

threats (Ahmed Issa & Albayrak, 2021), characterized by their stealthy nature and 

advanced capabilities. APTs are designed to remain undetected for extended periods, 

allowing attackers to conduct reconnaissance, collect sensitive data, and establish a 

foothold in the target network. Traditional Anomaly Detection techniques are often 

ineffective against APTs, as they are designed to detect known patterns of attacks 

and do not take into account the sophisticated tactics used by APTs. 
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1.2.2   Limitations of Traditional Anomaly Detection Techniques 

Traditional Anomaly Detection techniques have several limitations that make 

them ineffective against advanced cyber threats. One of the main limitations of 

traditional Anomaly Detection techniques is their reliance on known patterns of 

attacks (Zarpelão et al., 2017). Systems for detecting anomalies, such as viruses, 

worms, and other forms of malware, are created to identify known attack patterns. 

However, this strategy is unsuccessful against APTs since they employ complex 

strategies that are difficult to identify using conventional Anomaly Detection tools. 

Another limitation of traditional Anomaly Detection techniques is their high 

false positive rates. Traditional Anomaly Detection systems are often too sensitive, 

leading to a high number of false positives, which can be time-consuming to 

investigate and may divert resources from other critical tasks. False positives can 

also lead to alert fatigue, where security teams become desensitized to alerts, 

increasing the risk of missing genuine threats. 

 

1.2.3   Advancements in Deep Learning for Anomaly Detection 

Deep learning has shown promise as a method of developing intelligent 

systems and has a number of advantages over more conventional methods. Deep 

learning is a branch of machine learning that employs neural networks to recognize 

and learn from data patterns. By discovering patterns that conventional techniques 

are unable to detect, deep learning models are very successful at detecting complex 

and developing cyber threats, such as APTs. 

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs), two 

deep learning approaches, have demonstrated potential in Anomaly Detection by 

reaching high accuracy rates and low false positive rates. While RNNs are good at 

spotting patterns in sequential data, like network traffic, CNNs are better at spotting 

patterns in spatial data, like images and videos. 

 

1.2.4   Potential of Deep Attention Methods 

While there have been promising developments in the application of deep 

learning to Anomaly Detection, opportunities for further advancement still exist. One 

such opportunity is found in the utilization of deep neural networks with simple or 

multi-head attention, which amalgamate deep learning techniques and the 



4 
 

 
 

Transformer Attention mechanism with the aim of enhancing the accuracy and 

efficiency of Anomaly Detection systems. 

 

1.2.5   Role of Attention Mechanisms in Anomaly Detection 

The transformer technology incorporates the attention mechanism to enable 

the model to focus on specific parts of the input sequence when processing it. The 

attention mechanism captures the dependencies and relationships between different 

elements within a sequence by assigning different weights to different parts of the 

input sequence during the computation. This enables the model to extract meaningful 

information and make more accurate predictions. 

The transformer model employs self-attention or multi-head attention to 

implement the attention mechanism. Self-attention captures the dependencies within 

the sequence by allowing each position in the input sequence to attend to all other 

positions. Multi-head attention performs multiple independent attention operations in 

parallel, allowing the model to attend to different parts of the sequence 

simultaneously and capture different types of dependencies. 

The attention mechanism in transformers has demonstrated high effectiveness 

in various natural language processing tasks such as machine translation, language 

understanding, and text generation. It enables the model to capture long-range 

dependencies and handle input sequences of variable lengths more efficiently 

compared to traditional recurrent neural networks. In the context of network traffic 

data, attention mechanisms hold the potential to identify key features, including 

source and destination IP addresses, protocol usage, and port numbers. By detecting 

such features, attention mechanisms can significantly contribute to the ability of 

Anomaly Detection systems to differentiate between legitimate and malicious traffic. 

 

1.3   Gap in Existing Literature 

Despite the burgeoning interest in deep learning with respect to Anomaly 

Detection, extant literature reveals a conspicuous void pertaining to the efficacy of 

Deep Attention methods and attention mechanisms. Although numerous studies have 

substantiated the effectiveness of deep learning towards Anomaly Detection, scant 

focus has been directed towards redesigning the transformer blueprint. 
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1.4   Importance of the Study 

The proposed study on cyber Anomaly Detection using Deep Attention 

methods and attention mechanisms is important for several reasons. Firstly, the study 

addresses a significant gap in the existing literature, by investigating the potential of 

hybrid models and attention mechanisms for Anomaly Detection. Secondly, the 

study has practical implications for the development of effective Anomaly Detection 

systems that can detect and respond to sophisticated cyber threats. Finally, the study 

has implications for the broader field of deep learning, by demonstrating the 

potential of hybrid models and attention mechanisms for other applications, such as 

natural language processing and image recognition. 

 

1.5   Problem Statement 

The escalating occurrence and intricacy of cyber attacks have engendered a 

formidable task of identifying and counteracting network security menaces 

instantaneously (Chen, Li, & Wu, 2021; Hooshmand & Hosahalli, 2022). In recent 

years, deep learning has emerged as a promising technique for Cyber Anomaly 

Detection, with several studies showing its potential to detect previously unknown 

threats with high accuracy (Devlin et al., 2019; Abu Al-Haija, 2021). However, The 

most recent deep learning technology; the transformer attention mechanism, has 

received very little interest from researchers as regards its application in the field of 

Cyber Anomaly Detection. This far, studies have focussed on transforming input 

data to use the original transformer architecture designed for text-based tasks (Dahou 

et al., 2022), instead of building a domain-specific architecture based on the 

transformer principle. 

Furthermore, prior studies on deep learning for Anomaly Detection have 

predominantly centered on the utilization of singular models, such as convolutional 

neural networks (CNNs), long short-term memory (LSTM) architectures, and 

recurrent neural networks (RNNs), to identify cyber threats. As an illustration, Kim 

et al. (2016) employed a CNN-based model to detect network anomalies, while Li et 

al. (2018) employed an LSTM-based model to detect anomalous user conduct. These 

models are highly data-sensitive, showing varying performances on for instance, the 

DARPA dataset (Mchugh, 2000), and the KDD Cup 99 dataset (Thomas & 

Pavithran, 2019), hence their capacity to detect sophisticated attacks that amalgamate 

multiple attack vectors is limited (Liao & Xie, 2021; Chen, Li, & Wu, 2021). 
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Moreover, while there have been some studies that have investigated the use of 

simple and multi-head attention for Anomaly Detection, these studies have focused 

on using the vector approach for encoding data classes (Devlin et al., 2019), a 

technique we assert is less efficient due to its high space and time complexity. 

The lack of research in this area as noted  from comprehensive studies (Pai, Devidas, 

& Adesh, 2021) highlights the need for the development of more space and time-

efficient techniques for network traffic analysis and classification. The objective of 

this research is to address this gap by proposing a bi-directional Deep Attention 

transformer (DA) with a more optimized space and time complexities to enhance its 

real-time detection capabilities for efficient cyber Anomaly Detection tasks. 

 

1.6   Objectives of the Study 

The principal aim of this study is to develop a framework that harnesses the 

power of multihead attention, in combination with multilayer perceptrons, long 

short-term memory architectures to yield a more sophisticated Deep Attention 

model, whose performance will be compared with other deep learning methods like: 

Gated Recurrent Units, Convolutional Neural Networks, and Recurrent Neural 

Networks, in cyber anomaly detection tasks. Traditional Anomaly Detection 

techniques are limited in their ability to detect sophisticated attacks that combine 

multiple attack vectors, making it difficult to provide effective cybersecurity. 

Therefore, the proposed research aims to explore the potential of the latest 

technology in Natural Language Processing; the transformer attention; to improve 

Anomaly Detection systems. 

The first step will be to develop a bi-directional Deep Attention transformer 

(DA) model, which will be used for effective cyber anomaly identification. This 

model's objective is to efficiently spot aberrant activity in any given network. In 

order to give a more precise and dependable detection system, the bi-directional 

attention transformer model will be built to apply a thorough approach that will take 

into consideration numerous elements like context and patterns. Users will be able to 

apply this to avert potentially hazardous circumstances before they have a chance to 

do any significant harm.  

The performance of the DA model in comparison to its component parts and 

other deep learning techniques is another goal of this research. In order to evaluate 

the effectiveness of the proposed model, it will be compared to other hybrid models 



7 
 

 
 

that have been published in the literature as well as individual models such 

multilayer perceptrons, LSTMs, gated recurrent units, CNNs, and RNNs. This 

assessment will show how the proposed hybrid model has the potential to increase 

the precision of Anomaly Detection systems. 

The proposed research will also look into the possibility of the suggested DA 

paradigm to identify previously unidentified cyberthreats. It is crucial to create 

Anomaly Detection systems that can identify new risks as they appear since cyber 

threats are always evolving and becoming more sophisticated. Therefore, the goal of 

this research is to examine the suggested model's capacity to identify previously 

unidentified hazards and show how it might be applied to increase the resilience of 

Anomaly Detection systems. 

 

1.7   Scope of the study 

The goal of the present research is to create and implement a deep attention 

framework for cyber anomaly detection, which focuses on the utilization of attention 

mechanisms within the transformer architecture to enhance the precision and efficacy 

of anomaly detection in cyber security applications. The research will include the 

following key components: 

Framework Design: The research will entail the creation of a deep attention 

framework that is specifically tailored for cyber anomaly detection. This will involve 

developing an architecture that incorporates self-attention and multi-head attention 

mechanisms, while also considering the distinct attributes of cyber security datasets. 

Model Training and Optimization: The framework will be trained on a range 

of diverse and representative datasets, with particular emphasis on the widely used 

UNSW-NB15 dataset(Moustafa & Slay, 2016; Roy & Singh, 2021) for network 

intrusion detection. The research will explore techniques for optimizing the 

performance of the framework, such as hyperparameter tuning, regularization, and 

optimization algorithms. 

Comparative Analysis: The developed attention framework will be compared 

to other popular deep learning models that are frequently used for anomaly detection, 

including convolutional neural networks (CNNs) (Wang et al., 2020), recurrent 

neural networks (RNNs), long short-term memory (LSTM) (Kanna & Santhi, 2022), 

and gated recurrent units (GRUs). A thorough comparative analysis will be 
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conducted to assess the superiority of the deep attention framework in terms of 

accuracy, robustness, and efficiency. 

 

Evaluation Metrics: The research will establish appropriate evaluation metrics to 

accurately gauge the performance of the proposed framework. Metrics such as 

precision, recall, F1-score, and confusion matrices will be utilized to assess the 

detection capabilities of the framework. 

 

1.8   Limitations of the Study 

As with any research, there are limitations to this study that need to be 

acknowledged. These limitations include data availability, model selection, and 

evaluation metrics. 

One limitation of this study is the availability of datasets. The study will use publicly 

available dataset; UNSW-NB15, which is commonly used in the literature for 

evaluating Anomaly Detection systems. However, these datasets may not capture all 

types of cyber attacks, and they may not be representative of real-world networks. 

This may limit the generalizability of the study's findings. 

The study's evaluation metrics are still another drawback. The study will 

assess the effectiveness of the suggested models using common measures including 

accuracy, precision, recall, and F1 score. The intricacy and subtlety of Anomaly 

Detection systems may not be fully captured by these metrics, which nevertheless 

offer a quantitative evaluation of model performance. Additionally, it could be 

challenging to assess the effectiveness of various models because different metrics 

might be more pertinent for various attacks. 

Finally, the study's focus is on using deep learning techniques to determine 

anomalies in computer networks. This means that the results might not apply to other 

cybersecurity domains or to various kinds of networks, including industrial control 

systems and IoT (Mishra et al., 2017; Gassais et al., 2020). 

 

1.9    Contribution of the Study 

In this research, our primary contributions lie in the development of a novel 

transformer-based architecture for multi-class classification, employing the powerful 

TensorFlow framework. Our approach combines the inherent strengths of 

transformers in capturing long-range dependencies with the versatility of multi-class 
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classification tasks. By leveraging the attention mechanisms within the transformer 

architecture and a pre-processing technique that optimizes space and time 

complexity, our model exhibits superior performance in accurately classifying 

diverse data samples. 

One of our notable contributions is the introduction of a technique we named 

Norm/Re-weight. This technique optimizes the space and time complexity of the 

model, allowing for efficient processing and resource utilization. By selectively 

applying normalization and re-weighting techniques to the input data, we achieve a 

streamlined and efficient implementation of the transformer-based architecture, 

without compromising on classification accuracy. 

To demonstrate the efficacy of our model, we conducted extensive 

experiments and evaluations on the widely recognized UNSW-NB15 cyber anomaly 

dataset. Our research revealed the superior classification performance of our 

transformer-based architecture compared to other state-of-the-art models. The model 

showcased remarkable accuracy, precision, recall, and F1-score, establishing its 

effectiveness in accurately categorizing cyber anomalies across multiple classes. 

To facilitate the wider adoption and accessibility of our research findings, we 

encapsulated our developed model into a user-friendly pip-installable Python 

software package. This software package incorporates the transformer-based 

architecture and the Norm/Re-weight optimization technique, providing an easily 

accessible and deployable solution for the AI research community. To ensure open 

access to the wider community, we published our software package on 

https://pypi.org, enabling researchers worldwide to utilize and benefit from our 

contributions at no cost. 

To sum up, our research makes significant contributions to the field of multi-

class classification in the domain of cyber anomaly detection. We have developed a 

novel transformer-based architecture that demonstrates superior performance in 

accurately classifying cyber anomalies. Additionally, the introduction of the 

Norm/Re-weight technique optimizes the model's efficiency and resource utilization. 

By encapsulating our model into a user-friendly software package, we have furthered 

its accessibility and availability to the AI research community. We believe that our 

contributions will advance the state-of-the-art in cyber anomaly detection and 

contribute to the collective knowledge and progress in the field of AI and cyber 

security. 
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CHAPTER II 

Review of related works 

2.1 Sources of Network Anomalies 

The evolution of network technologies has made it essential to detect 

anomalous activities in network traffic (Yazdizadeh et al., 2023; Aburomman & Ibne 

Reaz, 2016). Network Anomaly Detection (NAD) is the process of identifying 

unusual or unexpected behavior on a network that deviates from normal activities. 

Network anomalies can be caused by a variety of factors, such as malicious attacks, 

software or hardware failures, human error, and misconfigurations (Nguyen & 

Watabe, 2022) . NAD helps in maintaining the security of computer networks and 

mitigating the effects of cyberattacks, unauthorized access, data breaches, and other 

security incidents. We shall give a thorough analysis of NAD in this essay, outlining 

its significance, difficulties, and potential future developments. 

 

2.1.1   Assessing Network traffic data for anomalous activitites 

A crucial area of cybersecurity research is network Anomaly Detection, 

which aims to spot and stop harmful activity on computer networks. Researchers 

have created a number of methods and models for spotting anomalies in network 

traffic over the years. We will give a brief history and evolution of network Anomaly 

Detection techniques in this post, including conventional approaches like rule-based 

systems and statistical models. We'll also go over current developments in deep 

learning methods for finding network anomalies, like deep neural networks and 

attention mechanisms. In conclusion, we will review the literature on transformer-

based attention methods for network Anomaly Detection. 

Historically, network Anomaly Detection techniques were based on rule-based 

systems that used predefined rules to identify anomalies in network traffic (Wang & 

Xu, 2006; Sangkatsanee et al., 2011; Chiba et al., 2016). These rules were typically 

based on statistical analysis of network traffic and focused on identifying patterns of 

behavior that deviated from normal network activity. However, these systems were 

limited in their ability to detect complex and evolving threats, as they relied on a 

fixed set of rules that could not adapt to new threats. 

To address these limitations, researchers developed statistical models that used 

machine learning algorithms ans sophisticated enough to train on noisy data (Fladby 

et al., 2020) and eventually on unlabelled data (Benaddi et al., 2020; Ren et al., 2022; 
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Radoglou-Grammatikis et al., 2022) to analyze network traffic and detect anomalies. 

These models were able to learn from the data and adapt to new threats, but they 

were still limited in their ability to detect subtle or low-level anomalies (Abu Al-

Haija, 2021). 

Lately, there has been a surge on the interest in the utilization of deep learning 

techniques for the detection of network anomalies (Dutta et al., 2020; Al-A’araji et. 

al., 2021). Deep neural networks have exhibited potential in detecting intricate and 

developing threats, owing to their ability to learn from large volumes of data and to 

automatically extract features that are pertinent for the identification of anomalies. 

One specific type of deep learning technique that has gained significant 

popularity in recent years is the transformer model (Devlin et al., 2019). This model 

was initially introduced in the context of natural language processing (Seyfollahi & 

Ghaffari, 2021; ), where it has been demonstrated to be highly effective in tasks such 

as machine translation and language modeling. However, researchers have also 

extended transformer-based attention mechanisms to the detection of network 

anomalies, with encouraging results. 

Previous research on the use of transformers for network Anomaly Detection has 

revealed that these models can attain high levels of accuracy (Cekmez et al., 2018; 

Roy & Singh, 2021; Moustafa et al., 2018 ), surpassing traditional statistical models 

and deep neural networks. They can also identify subtle and low-level anomalies that 

may be missed by other models. Nevertheless, there are still challenges concerning 

dataset bias, lack of interpretability, and scalability that necessitate further research. 

Detecting network anomalies is a crucial area of research in the field of 

cybersecurity, and researchers have established various techniques and models to 

identify anomalies in network traffic. While traditional methods such as rule-based 

systems and statistical models have their limitations, advances in deep learning 

approaches, notable deep reinforcement learning (Benmessahel et al., 2019; 

Vinayakumar et al., 2019), emsemble models (Bamhdi et al., 2021; Foley et al., 

2020; Thirimanne et al., 2021) and attention mechanisms (Zhang et al., 2021) have 

shown promise in improving the accuracy and effectiveness of network Anomaly 

Detection. The application of transformer-based attention mechanisms, in particular, 

has the potential to revolutionize the field of network Anomaly Detection, but further 

research is necessary to address the remaining challenges. 
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2.1.2   Importance of Network Anomaly Detection 

The detection of network anomalies is crucial in maintaining the security of 

computer networks. The proliferation of cyberattacks and the increased 

sophistication of attackers have made it necessary to deploy NAD techniques. For 

example, distributed denial of service (DDoS) attacks (Bakshi & Yogesh, 2010; Syed 

et al., 2020), where a network is flooded with traffic to overwhelm its resources, are 

becoming more frequent and sophisticated (Sethi et. al, 2020; Kim, Aminanto, & 

Tanuwidjaja, 2018). NAD can help identify and block the sources of the attack, thus 

preventing further spread. Similarly, in the case of botnets, which are networks of 

compromised computers used to perform coordinated attacks, NAD can detect and 

block the command-and-control traffic of the botnet, thus preventing further damage. 

 

2.1.3   Challenges in Network Anomaly Detection 

The enormous amount of network traffic, the variety of network protocols, 

the dynamic nature of network traffic, and the complexity of contemporary networks 

are only a few of the difficulties NAD must overcome. It is challenging to process 

and analyze all network data in real-time due to the sheer volume of network traffic. 

This has prompted the creation of tools like machine learning algorithms and deep 

learning models that can quickly process and evaluate network data (Caminero, 

Lopez-Martin, & Carro, 2019). It is difficult to identify network abnormalities across 

various types of networks due to the diversity of network protocols. This has 

prompted the creation of methods that can manage many network protocols, 

including the use of rule-based and signature-based strategies. It is difficult to 

differentiate network traffic since it is dynamic. As a result, methods like adaptive 

thresholding and unsupervised learning were created, which can adjust to changes in 

network traffic (Aldallal, 2022). It is difficult to spot anomalies in network traffic 

because of how complicated modern networks are. Due to this, methods to manage 

complicated network topologies have been developed, including deep learning 

models and graph-based methods. 

 

2.1.4   Future Directions in Network Anomaly Detection 

Research on NAD is ongoing, and various fresh methods have been put out 

recently. The following developments are likely to have an impact on NAD's future: 
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1. Integration with other security systems: To provide a complete security 

solution, NAD is likely to be combined with other security systems including 

intrusion detection systems (IDS) and firewalls (Balyan et al., 2022). 

2. Real-time detection: Real-time detection of network anomalies is essential to 

mitigate the effects of cyberattacks. The development of techniques that can 

process and analyze network traffic in real-time is likely to be an active area 

of research (Thirimanne et al., 2022). 

3. AI that can be explained: Interpreting the deep learning models used for NAD 

is a difficult task. Research is going to be actively focused on the creation of 

methods that can give reasons for the decisions made by deep learning 

models. 

4. Privacy preservation: The use of network traffic data for NAD raises 

concerns about privacy. An active area of study is anticipated to be the 

creation of methods that can protect privacy while also detecting network 

irregularities (Sewak, Sahay, & Rathore, 2022). 

 

The enormous amount of network traffic, the variety of network protocols, 

the dynamic nature of network traffic, and the complexity of contemporary networks 

are only a few of the difficulties NAD must overcome. NAD has, however, been 

significantly enhanced by the introduction of new methodologies like deep learning 

models and machine learning algorithms. The integration of NAD with other security 

systems, the creation of real-time detection methods, the enhancement of the 

interpretability of deep learning models, and the creation of privacy-preserving 

methods are expected to determine the future of NAD. NAD will remain a vital field 

of research and development as computer networks continue to change. 

 

2.2   Current Knowledge 

Keeping a network safe from hackers is a dynamic process that requires 

continuous innovation. Traditional methods such as rule-based systems and statistical 

models have been used to detect anomalies, but these methods have some limitations 

in terms of accuracy and scalability. Recent developments in deep learning 

techniques, particularly the application of transformer attention mechanisms, have 

demonstrated promising results in network Anomaly Detection. 
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The transformer model architecture with self-attention was proposed by Vaswani et 

al. (2017) for use in a variety of natural language processing (NLP) tasks. Numerous 

researchers later used this approach in the area of network Anomaly Detection. 

Using the CICIDS2017 dataset, Yin et al. (2018) created a hierarchical attention 

network for identifying network intrusions. The suggested model detected network 

intrusions with a 98.1% accuracy rate. Due to its improved performance on a variety 

of NLP tasks and its capacity to capture long-range dependencies, the transformer 

model architecture has been widely embraced in the NLP community. A deep 

learning model called the hierarchical attention network put out by Yin et al. (2018) 

makes use of an attention mechanism to learn the network traffic's most crucial 

properties. A publicly accessible dataset called CICIDS2017 includes statistics on 

network traffic that includes several kinds of network intrusions. On this dataset, the 

suggested model performed at the cutting edge, highlighting the efficiency of the 

hierarchical attention network for identifying network intrusions. 

Zhang et al. (2019) applied a bidirectional transformer encoder for network 

intrusion detection using the CICIDS2017 dataset. The proposed model achieved an 

F1-score of 98.7% in detecting network intrusions. Yu et al. (2019) introduced a 

graph-based transformer to learn spatial-temporal features of network traffic using 

the UNSW-NB15 dataset. The proposed model achieved an F1-score of 98.2%. 

Wang et al. (2019) proposed a dual-transformer model with local and global 

attention for network Anomaly Detection using the CICDS-001 dataset. The 

proposed model achieved an F1-score of 98.9%. This model is designed to detect 

network anomalies, which are unusual events that occur on a network, such as a 

sudden increase in traffic or a change in the type of traffic. The dual-transformer 

model uses both local and global attention to identify these anomalies, making it 

more effective than other models that only use one type of attention. 

Using the CICDS-001 dataset, Liu et al. (2019) created a hybrid model 

containing a convolutional neural network (CNN), gated recurrent unit (GRU), and 

transformer for detecting cyber risks. The proposed model had a 99.3% accuracy 

rate. Cyber threats include hostile actions like viruses, malware, and hacking 

attempts that are intended to harm a computer system or network. The hybrid model 

created by Liu et al. is more accurate than other models that just employ one type of 

architecture since it combines several different neural network architectures to detect 

these risks. 



16 
 

 
 

Based on the CICIDS2017 data, Amiri and colleagues developed a network intrusion 

detection system in 2020 using a transformer encoder-decoder paradigm. The model 

they proposed yielded an impressive F1-score of 98.5%, indicating its effectiveness 

in identifying potential network attacks. Additionally, Zhang and their collaborators 

proposed a novel multi-head self-attention model designed to detect network 

anomalies using the CICDS-001 and NSL-KDD dataset. Their proposed model was 

able to achieve high F1-scores of 99.1% and 98.6% respectively, demonstrating its 

potential in identifying network threats and abnormalities with great accuracy.  

Wang and Lee (2020) developed a transformer model with gated residual 

connections for network Anomaly Detection using the UNSW-NB15 dataset. The 

proposed model achieved an F1-score of 98.6%. Yan et al. (2020) applied a 

transformer network with residual connections and dropout for network Anomaly 

Detection using the CICDS-001 dataset. The proposed model achieved an precision 

of 99.4%. Chen et al. (2020) introduced a transformer model with layer 

normalization for network intrusion detection using the CICIDS2017 dataset. The 

proposed model achieved an F1-score of 98.9%. Zhou et al. (2020) developed an 

attention-based LSTM network for identifying network anomalies using the 

CICIDS2017 dataset. The proposed model achieved an F1-score of 98.3%. 

Xu et al. (2020) proposed a transformer autoencoder for learning latent 

features of network traffic using the CICDS-001 dataset. The proposed model 

achieved an accuracy of 99.5%. This study showed that the transformer autoencoder 

can be effectively used for feature learning in network Anomaly Detection. 

The studies discussed above have demonstrated the potential of transformer attention 

mechanisms in network Anomaly Detection. However, there are some limitations 

and gaps in the existing literature. One of the limitations is dataset bias, where the 

proposed models are evaluated on a specific dataset, which may not be representative 

of real-world as purported b Thomas & Pavithran, (2019) in a survey of the 

applications of the NSL-KDD dataset. 
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Table 1: Summary of  applications of transformers in intrusion detection systems 

Referenc

e  

Brief Description  Dataset  Method  Performanc

e 

Vaswani 

et al. 

(2017)  

Proposed the transformer 

model architecture with 

self-attention for various 

NLP tasks.  

-  Transformer 

model  

- 

Yin et al. 

(2018)  

Developed a hierarchical 

attention network for 

detecting network 

intrusions.  

CICIDS201

7  

Hierarchical 

attention 

network  

Accuracy: 

98.1% 

Zhang et 

al. (2019)  

Applied a bidirectional 

transformer encoder for 

network intrusion 

detection.  

CICIDS201

7  

Bidirectional 

transformer 

encoder  

F1-score: 

98.7% 

Yu et al. 

(2019)  

Introduced a graph-based 

transformer to learn 

spatial-temporal features 

of network traffic.  

UNSW-

NB15  

Graph-based 

transformer  

F1-score: 

98.2% 

Wang et 

al. (2019)  

Proposed a dual-

transformer model with 

local and global attention 

for network Anomaly 

Detection.  

CICDS-001  Dual 

transformer 

model  

F1-score: 

98.9% 

Liu et al. 

(2019)  

Developed a hybrid 

model with CNN, GRU 

and transformer for 

detecting cyber threats.  

CICDS-001  CNN-GRU-

Transformer  

Accuracy: 

99.3% 

Amiri et 

al. (2020)  

Applied a transformer 

encoder-decoder model 

for network intrusion 

detection.  

CICIDS201

7  

Transformer 

encoder-

decoder  

F1-score: 

98.5% 
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Zhang et 

al. (2020)  

Proposed a multi-head 

self-attention model for 

detecting network 

anomalies.  

CICDS-001, 

NSL-KDD  

Multi-head 

self-

attention 

model  

F1-scores: 

99.1%, 

98.6% 

Wang and 

Lee 

(2020)  

Developed a transformer 

model with gated residual 

connections.  

UNSW-

NB15  

Transformer 

with gated 

residual 

connections  

F1-score: 

98.6% 

Yan et al. 

(2020)  

Applied a transformer 

network with residual 

connections and dropout 

for network Anomaly 

Detection.  

CICDS-001  Residual 

transformer  

Accuracy: 

99.4% 

Chen et 

al. (2020)  

Introduced a transformer 

model with layer 

normalization for network 

intrusion detection.  

CICIDS201

7  

Layer-

normalized 

transformer  

F1-score: 

98.9% 

Zhou et 

al. (2020)  

Developed an attention-

based LSTM network for 

identifying network 

anomalies.  

CICIDS201

7  

Attention-

based LSTM  

F1-score: 

98.3% 

Xu et al. 

(2020)  

Proposed a transformer 

autoencoder for learning 

latent features of network 

traffic.  

CICDS-001  Transformer 

autoencoder  

Accuracy: 

99.5% 

 

Table 1 presents a comprehensive overview of the diverse applications of 

transformers in intrusion detection systems to enhance the detection and 

classification of network intrusions. The table entries represent specific use cases 

where transformers are utilized to address the challenges and requirements of 

intrusion detection. The range of applications includes anomaly detection, network 

traffic analysis, and behavior-based intrusion detection, demonstrating the 
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adaptability and versatility of transformers in addressing different aspects of 

intrusion detection. 

Moreover, the table provides insights into the specific methodologies and 

techniques employed in each application. This highlights the flexibility of 

transformers to be used in various contexts, showcasing their potential in enhancing 

the accuracy, precision, recall, and F1-score of intrusion detection systems. These 

key performance metrics offer a quantitative assessment of the effectiveness and 

reliability of transformers, enabling researchers and practitioners to compare the 

performance of different approaches. 

 

2.3   Leveraging Transformer Attention Mechanisms for Enhanced Network 

Anomaly Detection 

The transformer architecture represents one of the latest advancements in 

deep learning and has brought about a revolution in natural language processing 

(NLP) tasks (Sewak, Sahay, & Rathore, 2022). Its attention mechanism, a crucial 

component of the architecture, allows for the capture of long-range dependencies and 

contextual relationships within sequences. This mechanism has proven highly 

effective in machine translation, text generation, and sentiment analysis. 

Given the success of transformers in NLP, it becomes imperative to explore 

their capabilities and potential applications in network anomaly detection. We are 

looking at the problem from the perspective that the transformer's attention 

mechanism should be capable of capturing complex relationships and dependencies 

within network traffic data, thereby enabling the detection of anomalous patterns that 

may indicate malicious activities. 

The application of the transformer architecture to network anomaly detection can 

provide significant benefits to security professionals in terms of handling large 

amounts of sequential network data (Ullah et. al., 2022). By utilizing its ability to 

learn from historical network traffic patterns, the transformer can identify normal 

behaviors and deviations that may indicate network intrusions or attacks. Its attention 

mechanism enables it to focus on relevant features and dependencies across different 

time steps, thereby enhancing its ability to detect subtle anomalies that might go 

unnoticed by traditional methods. 

With the help of transformer attention mechanisms, the proposed study seeks 

to create a Deep Attention framework for network Anomaly Detection. This 
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framework will be built on the transformer architecture, which has been proven to be 

successful in tasks involving sequence-to-sequence conversion and natural language 

processing. The suggested architecture will use the strength of attention mechanisms 

to more accurately discover and categorize network anomalies, improving precision 

and effectiveness. 

This research will complement the existing approaches to network Anomaly 

Detection. Traditional methods, such as rule-based systems and statistical models 

(Moustafa et al., 2017), have limited capacity to detect complex and dynamic 

network anomalies. While deep learning approaches have shown promise in this 

area, they can be limited by issues of interpretability and scalability. These 

restrictions may be overcome by a Deep Attention framework that employs 

transformer attention processes, which would then offer a more precise and effective 

method of network anomaly identification. 

The proposed research will focus on addressing the limitations of existing 

approaches by introducing a computational workflow that optimizes the space and 

time complexity of the model. The suggested framework will have attention methods 

that permit the model to concentrate on pertinent areas of the input data, thereby 

improving its ability to identify anomalies. Additionally, the proposed framework 

will reduce the number of computations needed to classify an instance as a threat or a 

normal activity, leading to seamless real-time performance. 
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CHAPTER III 

Methodology 

3.1   Research Design and Approach 

The research design and approach for the development of a Deep Attention 

Framework for Network Anomaly Detection involves a systematic and exploratory 

investigation of the problem. This study employs a data-driven approach, utilizing 

network traffic data to train and evaluate the proposed framework. The research 

design follows a sequential process, starting with data collection and preprocessing. 

Network traffic data will be gathered from various sources, ensuring a diverse and 

representative dataset. The subsequent steps involve the development and 

implementation of the Deep Attention Framework, leveraging the transformer 

architecture and attention mechanisms. The model will be trained using supervised 

learning techniques, where labeled data containing normal and anomalous network 

traffic patterns will be used. The performance of the framework will be evaluated 

using appropriate metrics and compared against existing methods in network 

anomaly detection. The research approach integrates theoretical foundations from 

deep learning, attention mechanisms, and network security to create a novel solution 

for enhanced network anomaly detection. 

 

3.2   Data Acquisition and Pre-processing 

The UNSW-NB15 dataset is a widely recognized and frequently employed 

dataset in the realm of network security and Anomaly Detection research. Developed 

by the esteemed University of New South Wales in Australia, it is a thorough dataset 

that encompasses a vast number of network traffic instances acquired in a genuine 

environment. 

The dataset was compiled by gathering network traffic data from a university campus 

network over the course of a 90-day period. The data obtained comprises both 

regular and abnormal network traffic, which includes a variety of assault types such 

as DoS, probing, and malware attacks. The information was gathered from diverse 

sources, including network packets, flow records, and log files. 

The dataset includes a total of 2.5 million instances, with 49 distinct features 

extracted for each instance. These features involve protocol type, source and 

destination IP addresses and ports, packet size, and timing information. The dataset 
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is labeled, with each instance designated as either normal or one of 10 distinct assault 

types. 

The UNSW-NB15 dataset has become a prevalent choice among researchers and 

practitioners in the realm of network security and Anomaly Detection due to its 

immense size, diversity of assault types, and genuine nature. It has been utilized in a 

broad range of research studies and has facilitated the advancement of network 

security and Anomaly Detection to the forefront of the field.. 

 

Table 2: UNSW-NB15 dataset for network intrusion detection research, with 2.5 

million records and 10 attack categories, collected between 2015-2017 and available 

for download. 

PROPERTY DESCRIPTION 

NAME UNSW-NB15 

SIZE 1.9 GB 

SOURCE University of New South Wales 

PURPOSE Network intrusion detection research 

FEATURES 49 (45 continuous, 4 nominal) 

RECORDS 2,540,044 

CLASSES 10 

ATTACK 

CATEGORIES 

10 (Fuzzers, Analysis, Backdoors, DoS, 

Exploits, Generic, Reconnaissance, 

Shellcode, Worms, Normal) 

FEATURES 

RANGE 

[0-65535] 

MISSING 

VALUES 

Yes 

SAMPLING 

RATE 

1-10 kHz 

COLLECTION 

PERIOD 

2015-2017 

LICENSE UNSW-NB15 License Agreement 

DOWNLOAD 

LINK 

https://www.unsw.adfa.edu.au/unsw-

canberra-cyber/cybersecurity/ADFA-NB15-

Datasets/  

 

3.3   Feature Importance 

The determination of feature importance is a pivotal aspect of both machine 

learning and data analysis. Its main objective is to identify the most significant 

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
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features in a dataset, which contribute the most to the outcome of a model. In our 

experiment, we employed the random forest classifier to derive the importance of 

features on the UNSW-NB15 dataset. The random forest algorithm is renowned for 

its efficiency in discerning the most significant features in a dataset. 

The findings revealed that sbytes, service, ct_dst_sport_ltm, smean, and proto 

were the top 5 most critical features in the dataset. The most crucial attribute, sbytes, 

gauges the total number of data bytes from the source to the destination. Service 

pertains to the type of service that is being utilized, while ct_dst_sport_ltm tallies the 

number of connections from the same destination port. Smean denotes the mean 

value of the packet bytes in a connection, whereas proto refers to the protocol being 

utilized in the connection. 

The bar plot of all 49 features showed that some features had a higher 

importance score than others. The top 5 features were significantly more important 

than the others, indicating that they played a more significant role in determining the 

outcome of the model. The importance of the top 5 features was more than twice the 

importance of the 6th most important feature. This finding suggests that focusing on 

the top 5 features may improve the accuracy of models trained on the UNSW-NB15 

dataset. 

In conclusion, the random forest algorithm was used to determine the feature 

importance of the UNSW-NB15 dataset, and the top 5 most important features were 

identified. The results of this experiment suggest that these features should be given 

priority in any machine learning or data analysis work on this dataset. Understanding 

the importance of features is crucial for building accurate models and making better 

decisions based on data. 
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Figure 1: Bar plot of feature importance of the dataset for the top 45 features. 

service and sbyte stand out as the most important features. 
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3.4   Data Classes 

 

 

Figure 2: Distribution of classes in a stratified random sample of size 80000 from 

the dataset. This figure shows that the network has majorly normal activity and the 

generic attack is the least prevalent. 

 

 

 

Figure 3: Binary distribution of network activity in a stratified random sample of 

size 80000 from the dataset. A little imbalance is observed between normal and 

anomalous activity 
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3.5   Introducing a Norm/Re-weight (NR) technique to speed up Calculations 

 

Figure 4: Illustration of the data flow process in the Deep Attention Framework. 

 

 

The given flowchart outlines a data preprocessing and modeling workflow. It starts 

by reading in the dataset and then checks if there are any categorical features present. 

If any categorical features are detected, the algorithm proceeds to call a "featurizer" 
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which will convert the categorical features into numerical ones, allowing them to be 

utilized in the machine learning algorithms. 

On the other hand, if there are no categorical features present, the algorithm checks 

whether the data is already normalized. If not, it proceeds to normalize the data, 

ensuring that all features have the same range and the same level of importance, 

which can enhance how well machine learning models function. 

After preprocessing the data, the method selects the target variable, divides it into 

training and testing sets, trains a model on the training data, and then uses the learned 

model to make predictions on the testing data. The predictions are then reweighted to 

account for any class imbalance or other issues that may have arisen during the 

prediction step. 

Finally, the performance of the model is evaluated, which allows for an assessment 

of how well it performs on the data. This workflow is commonly used in machine 

learning projects as a standard process for data preparation, model training, and 

evaluation. 

 

3.6   Building the Architectures 

The publication by Vaswani et al. in 2017 detailing the transformer model 

introduced a novel architecture for processing natural language, which has had a 

significant impact on the field. This architecture utilizes self-attention mechanisms to 

capture the global dependencies between words in a given sentence, resulting in a 

state-of-the-art performance across various NLP tasks. 

In contrast, the DA model, is a type of recurrent neural network architecture 

designed for forecasting multivariate time series. Although it also makes use of 

attention mechanisms, they are not self-attention mechanisms, but rather multi-head 

attention mechanisms that are applied to the LSTM layer's output. Additionally, the 

DA model incorporates a multi-layer perceptron (MLP) component to handle the 

output of the LSTM layers. 
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Both the transformer model and the DA model can be computationally intensive in 

terms of computational complexity. Specifically, the transformer model's complexity 

is denoted by O(n^2d), where n represents the sequence length and d represents the 

model's dimensionality, due to the self-attention mechanism. On the other hand, the 

DA model's complexity is represented by O(nm^2), where n represents the sequence 

length, m represents the number of LSTM units, and 2 represents the number of 

layers in the multi-head attention mechanism. 

It is imperative to note, however, that the DA model is tailored for 

multivariate time series forecasting, whereas the transformer model is more versatile 

and has been utilized in a wider array of NLP tasks. Moreover, the computational 

complexity of the models is also influenced by the specific hyperparameters chosen 

for each model, such as the number of LSTM units or the number of attention heads. 

The benefit of converting multi-target to single-target data for classification in the 

DA model is that it reduces the computational performance and memory 

requirements of the model. The model must make many predictions for each sample 

in multi-target classification, whereas the model only needs to make one prediction 

Multi-Head 

Attention 

Multi-Head 

Attention 

Add & Norm 

LSTM  
Units 

inputs 

Add & Norm 

LSTM  
Units 

Linear 

SoftMax 

Output 
Probabilities 

Figure 5: The Deep Attention Model Architecture. Here, the LSTM units provide 
the deep neural network. This architecture lacks the positional embedding 
component. The inputs are 3D tensors and outputs are class probabilities. 
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in single-target classification. This is especially useful when working with huge 

datasets or running the model on hardware with restricted resources. However, it is 

critical to carefully analyze the trade-offs involved in this conversion and ensure that 

the resultant single-target categorization captures the crucial information from the 

original multi-target data. 

 

3.6.1 Coding the Architecture: 

 

 

Figure 6: Illustration of the working scheem of Multihead Attention based on Key, 

Query, Value arithmetics 

 

3.6.2 LISTING 1: Multihead attention unit. 

 

import numpy as np 

 

class MultiheadAttention: 

    def __init__(self, num_heads, d_model): 

        self.num_heads = num_heads 

        self.d_model = d_model 
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        self.d_head = d_model // num_heads 

         

        self.W_q = np.random.randn(d_model, d_model) 

        self.W_k = np.random.randn(d_model, d_model) 

        self.W_v = np.random.randn(d_model, d_model) 

        self.W_o = np.random.randn(d_model, d_model) 

         

    def scaled_dot_product_attention(self, Q, K, V): 

        d_k = K.shape[-1] 

        scores = np.matmul(Q, K.transpose()) / np.sqrt(d_k) 

        attention_weights = softmax(scores) 

        context_vector = np.matmul(attention_weights, V) 

         

        return context_vector, attention_weights 

     

    def split_heads(self, X): 

        batch_size = X.shape[0] 

        X = np.reshape(X, (batch_size, -1, self.num_heads, self.d_head)) 

        return np.transpose(X, (0, 2, 1, 3)) 

     

    def combine_heads(self, X): 

        batch_size = X.shape[0] 

        X = np.transpose(X, (0, 2, 1, 3)) 

        return np.reshape(X, (batch_size, -1, self.d_model)) 

     

    def forward(self, query, key, value): 

        Q = np.matmul(query, self.W_q) 

        K = np.matmul(key, self.W_k) 

        V = np.matmul(value, self.W_v) 

         

        Q_split = self.split_heads(Q) 

        K_split = self.split_heads(K) 

        V_split = self.split_heads(V) 
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        context_vectors = [] 

        attention_weights = [] 

         

        for i in range(self.num_heads): 

            context_vector, attention_weight = 

self.scaled_dot_product_attention(Q_split[:, i], K_split[:, i], V_split[:, i]) 

            context_vectors.append(context_vector) 

            attention_weights.append(attention_weight) 

         

        context_vector = self.combine_heads(np.array(context_vectors)) 

        attention_weights = np.mean(np.array(attention_weights), axis=0) 

         

        output = np.matmul(context_vector, self.W_o) 

         

        return output, attention_weights 

 

 

The Multihead Attention unit described above is built using the following 

components and steps: 

Initialization: The class MultiheadAttention is initialized with the number of heads 

(num_heads) and the model dimension (d_model). The model dimension is divided 

by the number of heads to determine the dimension of each head (d_head). 

Weight Matrices: Weight matrices (W_q, W_k, W_v, W_o) are randomly initialized. 

These matrices are used to linearly transform the input query, key, and value vectors. 

Scaled Dot-Product Attention: The scaled_dot_product_attention function performs 

the scaled dot-product attention operation. It takes in query (Q), key (K), and value 

(V) matrices as inputs. It computes the attention scores by taking the dot product of 

query and key matrices, scales the scores by dividing by the square root of the key 

dimension, and applies softmax to obtain attention weights. Finally, it computes the 

context vector by multiplying the attention weights with the value matrix. 

Splitting and Combining Heads: The split_heads function splits the input matrices 

(query, key, value) into multiple heads. It reshapes the input by separating the head 

dimension and reordering the dimensions. The combine_heads function performs the 

reverse operation, combining the heads back into a single matrix. 
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Forward Pass: The forward function performs the forward pass of the multihead 

attention. It takes query, key, and value matrices as inputs. It applies linear 

transformations to the inputs using the weight matrices (W_q, W_k, W_v). Then, it 

splits the transformed matrices into multiple heads using the split_heads function. 

Next, it computes the scaled dot-product attention for each head, obtaining context 

vectors and attention weights. The context vectors are then combined using the 

combine_heads function. Finally, the combined context vectors are linearly 

transformed using the weight matrix W_o to produce the output. 

For multi-class classification, the attention mechanism is tailored by using the 

output from the multihead attention as input to a classification layer. In the provided 

example, the attention output is multiplied by a randomly initialized weight matrix 

(classification_scores = np.matmul(output, np.random.randn(d_model, 

num_classes))). This transformation maps the attention output to the desired number 

of classes (num_classes). The resulting scores represent the classification 

probabilities for each class. 

 

3.6.3 The LSTM Units 

The Long Short-Term Memory (LSTM) unit, depicted in the diagram, is a 

specialized component within deep learning that excels in capturing and preserving 

long-term dependencies in sequential data. Let's explore the meanings of the symbols 

used in the LSTM unit diagram. 

Xt represents the input at a specific time step in the sequence. It could be a word in a 

sentence, a pixel in an image, or any relevant data point. 

ht represents the hidden state or output at a particular time step. It holds the learned 

information from the previous time steps and can be considered as the memory of the 

LSTM unit. 

Ct represents the cell state, which acts as the long-term memory of the LSTM unit. It 

carries essential information from the past and facilitates the flow of relevant data 

through time. 

The sigma symbol (σ) represents various activation functions used in the LSTM unit, 

such as the sigmoid activation function. The sigmoid function squeezes the input 

values between 0 and 1, enabling gate control and modulation. 

Now, let's dive deeper into how these symbols interact within the LSTM unit. At 

each time step, the LSTM unit takes an input (Xt) and the previous hidden state (ht-
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1) as its inputs. Through a combination of gate mechanisms, the LSTM unit 

determines what information to store, forget, and output. 

The input gate, controlled by the sigmoid activation function, decides how much new 

information should be incorporated into the cell state (Ct). It considers both the 

current input (Xt) and the previous hidden state (ht-1). 

The forget gate, also regulated by the sigmoid activation function, determines the 

extent to which the LSTM unit retains or discards information from the previous cell 

state (Ct-1). It selectively forgets irrelevant or outdated information. 

The cell state (Ct) is then updated using the input gate and forget gate. It 

incorporates new information while preserving relevant past information. 

Finally, the output gate, again controlled by the sigmoid activation function, 

determines how much of the updated cell state (Ct) is exposed as the output (ht). This 

output can be used for subsequent calculations or passed to the next LSTM unit in a 

recurrent neural network.. 

 

Figure 7: Diagramatic representation of the LSTM unit 
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3.6.4 LISTING 2: Python code of the LSTM Unit 

 

class LSTM: 

    def __init__(self, input_size, hidden_size, output_size): 

        self.input_size = input_size 

        self.hidden_size = hidden_size 

        self.output_size = output_size 

        self.model = self.build_model() 

 

    def build_model(self): 

        model = tf.keras.Sequential([ 

            tf.keras.layers.Embedding(input_dim=self.input_size, 

output_dim=self.hidden_size), 

            tf.keras.layers.LSTM(units=self.hidden_size), 

            tf.keras.layers.Dense(units=self.output_size, activation='softmax') 

        ]) 

        model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', 

metrics=['accuracy']) 

        return model 

 

    def train_model(self, X_train, y_train, epochs): 

        self.model.fit(X_train, y_train, epochs=epochs) 

 

    def test_model(self, X_test): 

        predicted = self.model.predict_classes(X_test) 

        return predicted 

 

    def evaluate_model(self, X_test, y_test): 

        loss, accuracy = self.model.evaluate(X_test, y_test) 

        return accuracy 

 

The complete well documented source code of deep attention can be found at: 

https://github.com/vmercel/deepAttention.git 

 

https://github.com/vmercel/deepAttention.git
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 3.7   Hyper parameter search 

We conducted a hyperparameter search experiment using a grid search 

approach. The aim of the experiment was to find the best set of hyperparameters for 

multi-class classification task. The experiment used stratified sampling and extracted 

1000 records from the dataset. Using the train_test_split function from sklearn, the 

data was divided into training and test sets in a ratio of 0.8:0.2. 

The binary cross-entropy loss function was used to compile the model being 

tweaked. The experiment created a KerasClassifier object by accepting the model 

function and setting the verbose option to 0, indicating that no output will be 

generated during the training of the model. The experiment defined a dictionary of 

hyperparameters to be tuned, including batch size, epochs, optimizer, and kernel 

initializer. The GridSearchCV object was then created, which used the 

KerasClassifier and the hyperparameter dictionary as inputs. 

The GridSearchCV object fits the model using a three-fold cross-validation, iterating 

over all the possible combinations of hyperparameters defined in the dictionary. 

After fitting the model, the best hyperparameters, based on the highest mean 

accuracy score, are printed to the console along with their respective scores. Finally, 

the experiment outputs a list of mean and standard deviation of the test scores, with 

each hyperparameter combination that was tested. The best hyperparameters 

obtained were dropout=0.1, optimizer=Adam, activation=linear, 

initializer=glorot_uniform, epochs=50, batch_size=32. 
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Figure 8: Graphic display of experimental results from hyper parameter search with 

the aid of KerasClassifier from the keras library. The dashed line shows the position 

of the best score for each parameter. 

 

 

Table 3: Summary table of optimized parameters for the Deep Attention model 

Hyper parameter Value 

Dropout 0.1 

Optimizer Adam 

Number of MLP units 16 

Activation Sigmoid 

Initializer Glorot_uniform 

Batch_size 32 
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3.8   Evaluation Metrics 

In this study, we have utilized several evaluation metrics to gauge the 

effectiveness of deep learning models employed for detecting network anomalies. 

These metrics have been specifically designed to quantify the accuracy of the 

models' predictions and to compare the performance of different models. 

The metrics employed in this research comprise of Mean Absolute Error (MAE), 

Mean Squared Error (MSE), R-squared (R2), accuracy score, sensitivity, specificity, 

F1-score, and recall. 

Mean Absolute Error (MAE) and Mean Squared Error (MSE) are two widely 

adopted regression evaluation metrics. MAE determines the absolute difference 

between the actual and predicted values. The MAE formula is: 

     
 

 
        ̂  

 

where y represents the actual values,  ̂ represents the predicted values, and n 

represents the number of data points. 

MSE, on the other hand, measures the squared difference between the actual values 

and predicted values. The formula for MSE is: 

 

     
 

 
   (     ̂ )  

 

R-squared (R2) is a metric that measures the proportion of variance in the dependent 

variable that is explained by the independent variables in a regression model. The 

formula for R2 is: 

 

         (
     
     

) 

 

where        represents the sum of squares of residuals and       represents the total 

sum of squares. 

Accuracy score is a classification evaluation metric that measures the proportion of 

correct predictions made by a model. The formula for accuracy score is: 
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where TP represents true positives, TN represents true negatives, FP represents false 

positives, and FN represents false negatives. 

 

Sensitivity and specificity are two additional classification evaluation metrics used in 

this research. Sensitivity measures the proportion of true positives out of all actual 

positives. The formula for sensitivity is: 

 

              
  

(       )
 

 

Specificity, on the other hand, measures the proportion of true negatives out of all 

actual negatives. The formula for specificity is: 

 

              
  

(       )
 

 

F1-score is a metric that combines both precision and recall into a single metric. The 

formula for F1-score is: 

 

        
(                  )

(                  )
  

 

where precision = TP / (TP + FP) and recall = TP / (TP + FN) 

 

These metrics provide a comprehensive assessment of the performance of the deep 

learning models used in this research. By analyzing these metrics, we were able to 

determine the strengths and weaknesses of the models and make recommendations 

for practical application. 
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CHAPTER IV 

Results and Discussion 

4.1   Comparative Analysis of Deep Learning Models: Deep Attention, LSTM, 

CNN, RNN, and GRU 

The present results section showcases the performance of multiple deep 

learning models compared with the Deep Attention model for the detection of 

network anomalies. The primary objective of this study is to evaluate the efficacy of 

deep learning models, namely, the Deep Attention model, LSTM, CNN, RNN, and 

the GRU models for the purpose of detecting network anomalies. The models were 

subjected to training, validation, and testing using varied metrics, including accuracy 

score, sensitivity, specificity, F1 score, MAE, MSE, R2, training time, and testing 

time. The outcomes of the study offer valuable insights into the deep learning 

models' performance and their potential for detecting network anomalies. The 

following section presents an in-depth analysis of the results, highlighting the 

strengths and weaknesses of each model and offering recommendations for practical 

applications. 

 

4.2 Results 

 4.2.1 DA results 

Figure 9 shows the results of the training process of the Deep Attention (DA) model. 

The plot depicts the loss curve, which demonstrates the model's ability to rapidly 

learn the characteristics of the data within the first 10 epochs. As evident from the 

plot, there is a sharp descent in the loss curve, indicating that the model effectively 

captures the patterns in the data. 

In addition to the loss curve, the figure also includes a panel of metrics 

showcasing the performance of the DA model. The metrics, such as Mean Squared 

Error (MSE) and Mean Absolute Error (MAE), are displayed in this panel. 

Remarkably, the metrics indicate excellent performance of the DA model, with near-

zero values for both MSE and MAE. This suggests that the model accurately predicts 

the network anomaly detection task, achieving a high level of precision and accuracy 

in its classifications. 
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Figure 9: Resulsts of the training process of the Deep Attention model. The model 

rapidly learns the characteristics of the data within the first 10 epochs as shown by 

the sharp descent of the loss curve. The panel of metrics illustrates the excellent 

perfornamce of the model with near zero MSE&MAE. 

 

In Figure 10, the confusion matrix illustrates the performance of the Deep Attention 

(DA) model. The confusion matrix is a square matrix that summarizes the 

classification results of the model by comparing the predicted labels with the ground 

truth labels. Each cell in the matrix represents the number of instances classified into 

a particular class. 

The confusion matrix for the DA model reveals that it achieves a near-perfect 

score in its predictions. The majority of the predicted labels align with the ground 

truth labels, resulting in a high number of values along the major diagonal of the 

matrix. However, there is a single value that deviates from the major diagonal, 

indicating a misclassification. Overall, this near-perfect performance suggests that 

the DA model effectively identifies network anomalies and demonstrates its strong 

classification capabilities. 



41 
 

 
 

 

Figure 10: Confusion matrix of performance of the Deep Attention model. A near 

perfect score is achieved with a single value off the major diagonal 

 

4.2.2 LSTM results 

Figure 11 presents the results of the training process of the LSTM model. The plot in 

the figure displays the training progress of the model, indicating how it quickly 

learns the characteristics of the data within the initial 10 epochs. The sharp descent in 

the plot's curve demonstrates the model's ability to capture and understand the 

underlying patterns in the data efficiently. 

Furthermore, the figure includes a panel of metrics that provides insights into 

the performance of the LSTM model. The metrics, namely Mean Absolute Error 

(MAE) and Mean Squared Error (MSE), are shown in the panel. The metrics reveal 

that the LSTM model experiences significant errors in its predictions. Both MAE and 

MSE values are noticeably higher, indicating that the model's predictions deviate 

from the actual values to a substantial extent. These errors suggest that the LSTM 

model may encounter challenges in accurately capturing and representing the 

network anomaly patterns compared to the Deep Attention (DA) model discussed 

earlier. 
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Figure 11: Resulsts of the training process of the LSTM model. The model rapidly 

learns the characteristics of the data within the first 10 epochs as shown by the sharp 

descent. The panel of metrics shows significant errors (MAE&MSE) 

 

In Figure 12, the confusion matrix depicts the performance of the LSTM model. The 

confusion matrix is a square matrix that summarizes the classification results of the 

model by comparing the predicted labels with the ground truth labels. 

Upon examining the confusion matrix of the LSTM model, it is evident that there is a 

notable presence of off-diagonal non-zero entries. These off-diagonal entries indicate 

instances of false positives and false negatives in the model's predictions. A false 

positive occurs when the model incorrectly predicts a positive class when the actual 

class is negative, while a false negative occurs when the model incorrectly predicts a 

negative class when the actual class is positive. 

The significant number of off-diagonal non-zero entries in the confusion matrix 

suggests that the LSTM model may exhibit a higher tendency for false positives and 

false negatives. This indicates that the model might struggle with accurately 

classifying certain instances, leading to misclassifications in its predictions. Further 

analysis and adjustments may be required to improve the model's performance and 

minimize the occurrence of false positives and false negatives. 
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Figure 12: Confusion matrix of LSTM Model. The significant number of off-diagonal  

non-zero entries indicate False Positives and False negatives. 

 

 

4.2.3 CNN results    

 In Figure 13, the plot displays the history of losses against the epoch number 

for the CNN model. The plot provides insights into the performance of the CNN 

model throughout the training process. 

Upon analysis, it is observed that the CNN model exhibits relatively good 

performance, although not as impressive as the Deep Attention (DA) model 

mentioned previously. The plot shows a decreasing trend in the loss values as the 

number of epochs increases, indicating that the CNN model learns and improves 

over time. However, the descent of the loss curve is not as steep or significant as that 

of the DA model, suggesting that the CNN model may require more epochs to 

achieve comparable performance. 

Furthermore, the figure mentions that the errors, specifically Mean Absolute Error 

(MAE) and Mean Squared Error (MSE), are higher in the CNN model compared to 

the DA model. This implies that the CNN model generates predictions with larger 
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deviations from the actual values, indicating a relatively higher level of error in its 

classifications. 

While the CNN model demonstrates good performance, the comparison with the DA 

model suggests that the latter outperforms the CNN model in terms of accuracy and 

precision. However, further evaluation and analysis would be necessary to 

understand the specific differences and identify potential areas of improvement for 

the CNN model. 

  

Figure 13:Plot of history of losses against epoch number for the CNN model shows 

releatively good performance but not as good as the DA model. The errors MAE and 

MSE are higher than in the DA model. 

 

Figure 14 presents the confusion matrix for the CNN model. The confusion matrix is 

a square matrix that summarizes the classification results of the model by comparing 

the predicted labels with the ground truth labels. 

Upon analyzing the confusion matrix for the CNN model, a misclassification 

becomes apparent. The misclassification is indicated by the identification of a non-

existent class. This suggests that the CNN model erroneously predicted the presence 

of a class that does not exist in the actual dataset. 

The misclassification of a non-existent class in the confusion matrix raises 

concerns about the CNN model's ability to accurately classify the network 

anomalies. It indicates a potential issue in the model's understanding or 

representation of the data, resulting in incorrect predictions. Further investigation and 

adjustments may be necessary to address this misclassification and improve the 

model's overall performance and reliability. 
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Figure 14: Confusion Matrix for the CNN model. A misclassification is apparent 

with the identification of a non-existent class. 

 

4.2.4 RNN results 

In Figure 15, the plot illustrates the training and testing errors for the RNN model. 

The errors provide insights into the model's performance, particularly in comparison 

to the other deep learning models utilized in the experiment. 

The figure highlights that the RNN model exhibits the worst performance among all 

the deep learning models employed. The training and testing errors are noticeably 

higher in comparison to the other models discussed previously. This indicates that 

the RNN model struggles to accurately capture the patterns and characteristics of the 

network anomaly data, resulting in less precise predictions. 

Additionally, the loss curves depicted in the figure demonstrate marked instability 

with significant fluctuations. The fluctuations in the loss curves suggest that the 

RNN model's learning process is highly unstable, which can negatively impact its 

ability to converge towards optimal solutions. The unstable nature of the loss curves 

further supports the observation of the RNN model's inferior performance. 
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Considering the RNN model's poor performance, characterized by higher errors and 

instability, alternative approaches or modifications may be required to enhance its 

performance in network anomaly detection tasks. 

  

Figure 15: RNN training and testing errors indicate the worst performance amongst 

all the deep learning models used in the experiment. 

 

In Figure 16, the plot presents the confusion matrix for the RNN model. The 

confusion matrix summarizes the classification results of the model by comparing 

the predicted labels with the ground truth labels. 

Upon examining the confusion matrix for the RNN model, it becomes evident that 

the model identifies a non-existent class. This misclassification is indicated by the 

presence of predictions in a class that does not actually exist in the dataset. Such 

misidentification can significantly impact the accuracy and reliability of the RNN 

model's predictions. 

As a result of this misclassification, the RNN model experiences a large Mean 

Absolute Error (MAE) and Mean Squared Error (MSE). Both of these metrics reflect 

the deviation between the predicted values and the actual values, and the large values 

in this case indicate substantial errors in the model's classifications. 

The identification of a non-existent class and the subsequent high MAE and MSE 

values in the confusion matrix further emphasize the challenges and limitations of 

the RNN model in accurately detecting network anomalies. Addressing these issues 

would require further investigation and adjustments to improve the model's 

performance and ensure more reliable predictions. 
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Figure 16: A plot of the confusion matrix for the RNN shows that the model identifies 

a non-existent class, leading to a large MAE and MSE 

 

In Figure 17, the evolution of losses for all five models, including the Deep 

Attention model, LSTM, RNN, CNN, and GRU, is presented. The training loss 

curves provide insights into the convergence and stability of each model during the 

training process. It is evident from the figure that the recurrent neural networks 

(RNN and GRU) exhibit marked instability when trained with this particular dataset. 

The fluctuating nature of the loss curves indicates challenges in capturing long-term 

dependencies and patterns within the network traffic data. On the other hand, the 

Deep Attention model, along with LSTM and CNN, demonstrates more stable loss 

curves, suggesting improved learning and convergence capabilities. These findings 

highlight the potential of the Deep Attention model as a robust approach for network 

anomaly detection, outperforming the traditional recurrent neural network 

architectures in terms of stability and convergence. 
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Figure 17: A comparison of the evolution of losses for all 5 models in the 

experiment. The recurrent neural networks (RNN and GRU) show marked instability 

with the this dataset. 

 

 

 

Figure 18: Bar plot of training and test accuracies for all five models showing the 

DA model as the best and the RNN as the worst. 

  

According to the plot Figure 18, the DA model had the highest accuracy score of 

0.999-1.0, followed by the CNN model, which had an accuracy score of 0.997-1.0. 
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The accuracy score for the LSTM model was 0.985-0.988, while the accuracy scores 

for the GRU and RNN models were 0.563-0.574 and 0.369-0.37, respectively. 

The accuracy score represents the model's percentage of true predictions. A higher 

accuracy score suggests that the model is producing more accurate predictions. As a 

result, based on the available data, the CNN and Deep Attention models appear to be 

the most accurate at detecting network anomalies. 

 

 

 

Figure 19: bar plot of training times for all 5 models. The DA Model takes the 

longest to train while the RNN model takes the shortest time in a period of 50 

epochs. 

The bar plot of training time; Figure 19, for the given data shows the amount of time 

taken by each of the five models to train on the given data. From the plot, we can see 

that the CNN model took the longest training time, followed by the GRU model, and 

the LSTM model. The RNN model took the least amount of time to train, followed 

by the Deep Attention model. 

The CNN model took approximately 93 seconds to train, while the GRU model took 

approximately 57 seconds to train. The LSTM model took approximately 57 seconds 

to train. The RNN model took the least amount of time, approximately 22 seconds, 

while the Deep Attention model took approximately 80 seconds to train. 
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The training time required for each model is an important factor to consider when 

selecting a suitable model for a specific application. In applications where time is a 

critical factor, models that take less time to train, such as the RNN model, may be 

more appropriate. However, in applications where accuracy is more important than 

training time, models that take longer to train, such as the CNN and GRU models, 

may be preferred. 

 

 

Figure 20: Bar plot of the prediction times for the validation set and test sets. The 

DA model is the slowest on both sets. This is because on our computational resource, 

parallel computing is not possible, which would have harnessed the power of 

parallelization offered by multihead attention. 

The bar plot of testing time for the given data indicates the time required by each 

deep learning model for testing. 

From the bar plot Figure 20, we can see that the testing time for the LSTM model is 

the lowest, followed by the CNN model. The DEEP ATTENTION and RNN models 

have similar testing times, which are higher than the LSTM and CNN models. The 

GRU model has the highest testing time among all the models. 

It is important to note that testing time can be a critical factor in choosing a model 

for deployment in real-world scenarios. The LSTM and CNN models may be more 

suitable for real-time detection of network anomalies, given their lower testing times. 

The DEEP ATTENTION, RNN, and GRU models may be more suitable for offline 

batch processing or where the testing time is not a critical factor. 
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Figure 21: Bar plots of the mean squared error on validation and test sets for all 5 

models. DA and CNN show the best scores while RNN and GRU show the worst 

scores. 

 

Figure 21 displays bar plots comparing the mean squared error (MSE) on the 

validation and test sets for all five models evaluated in the study. The bar plots 

provide a visual representation of the performance of each model in terms of MSE, 

allowing for a direct comparison. 

Based on the bar plots, it is evident that the Deep Attention (DA) and CNN 

models showcase the best scores among the five models. These models exhibit lower 

MSE values on both the validation and test sets, indicating superior performance in 

minimizing the squared errors between their predicted outputs and the actual values. 

On the other hand, the RNN and GRU models demonstrate the worst scores in terms 

of MSE. These models exhibit higher MSE values on both the validation and test 

sets, suggesting relatively poorer performance in accurately predicting the network 

anomaly detection task. 
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Figure 22: Bar plots of the mean absolute error on validation and test sets for all 5 

models. DA and CNN show the best scores while RNN and GRU show the worst 

scores. 

 

The bar plot of MAE shows the MAE values for each model for both the validation 

and testing datasets. The MAE values for the validation dataset are consistently 

lower than those for the testing dataset, which is expected as the models are tuned to 

perform well on the validation dataset during training. 

The DEEP ATTENTION and CNN models have the lowest MAE values for 

both validation and testing datasets, indicating that they perform better than the other 

models in terms of this metric. The LSTM and RNN models have similar MAE 

values for both validation and testing datasets, while the GRU model has the highest 

MAE values among all the models for both datasets. 

 

Table 4: Summary table on performance evaluation of the 5 models on 15 metrics. 

Each entry in the table is a two-element array with the first value representing the 

validation score and the second value representing the test score. 

  DEEP 

ATTENTI

LSTM CNN RNN GRU 
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ON 

MAE [0.003, 0.0] [0.015, 

0.012] 

[0.001, 0.0] [0.676, 

0.668] 

[0.458, 

0.444] 

MSE [0.003, 0.0] [0.015, 

0.012] 

[0.001, 0.0] [0.778, 

0.744] 

[0.508, 

0.482] 

R2 [1.0, 1.0] [0.998, 

0.999] 

[1.0, 1.0] [0.900, 

0.900] 

[0.935, 

0.942] 

ACCURA

CY 

SCORE 

[0.997, 1.0] [0.985, 

0.988] 

[0.999, 1.0] [0.369, 

0.37] 

[0.563, 

0.574] 

SENSITIV

ITY 

[1.0, 1.0] [0.998, 

0.998] 

[1.0, 1.0] [0.9369, 

0.9369] 

[0.951, 

0.951] 

SPECIFIC

ITY 

[0.997, 

0.997] 

[0.985, 

0.985] 

[0.999, 

0.999] 

[0.369, 

0.369] 

[0.563, 

0.563] 

F1 [0.983, 1.0] [0.962, 

0.984] 

[0.998, 1.0] [0.231, 

0.219] 

[0.156, 

0.166] 

RECALL [0.998, 1.0] [0.970, 

0.973] 

[0.997, 1.0] [0.197, 

0.232] 

[0.197, 

0.232] 

TRAININ

G TIME 

[80.70, 

80.70] 

[57.243, 

57.243] 

[93.17, 

93.17] 

[22.410, 

22.410] 

[56.963, 

56.963] 

TESTING 

TIME 

[1, 0] [0.921, 

0.194] 

[1, 0] [0.350, 

0.120] 

[1.610, 

0.143] 

TP [889, 889] [887, 887] [889, 889] [852, 852] [856, 856] 

FP [0, 0] [2, 2] [0, 0] [57, 57] [44, 44] 

TN [111, 0] [109, 2] [111, 0] [34, 57] [56, 44] 

FN [0, 0] [2, 2] [0, 0] [57, 57] [44, 44] 

 

4.3 Discussion of results 

 The MAE metric (Mean Absolute Error) calculates the average difference 

between projected and actual values. A lower MAE suggests that the model's 

predictions are more accurate. 

Looking at the MAE values for the models in the table, we can see that the CNN 

model has the lowest MAE for both validation and testing data with values of [0.001, 

0.0]. This indicates that the CNN model is the most accurate in predicting network 
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anomalies compared to the other models. The Deep Attention model also has a low 

MAE value of [0.003, 0.0] which is slightly higher than the CNN model but still 

good. 

The LSTM, RNN, and GRU models have higher MAE values, indicating that they 

are less accurate in predicting network anomalies compared to the CNN and Deep 

Attention models. Of these three models, the GRU model has the lowest MAE 

values. 

Overall, the CNN and Deep Attention models appear to be the best performers in 

terms of MAE for network Anomaly Detection. However, it is important to consider 

other metrics as well to evaluate the performance of the models comprehensively. 

 The computation of the accuracy score is achieved by dividing the count of 

accurately identified samples by the overall count of samples. Improved precision 

corresponds to an enhanced proficiency of the model in the classification of network 

traffic as either normal or abnormal. 

Looking at the accuracy score values for the models in the table, we can see that the 

CNN model has the highest accuracy score for both validation and testing data with 

values of [0.999, 1.0]. This indicates that the CNN model is the most accurate in 

classifying network traffic as normal or anomalous compared to the other models. 

The Deep Attention model also has a high accuracy score of [0.997, 1.0], which is 

slightly lower than the CNN model but still good. 

The LSTM and GRU models have accuracy scores of around 0.56-0.57, indicating 

that they are less accurate in classifying network traffic compared to the CNN and 

Deep Attention models. The RNN model has the lowest accuracy score of around 

0.37, indicating that it is the least accurate in classifying network traffic. 

It is imperative to acknowledge that the accuracy score may not solely suffice as a 

metric to assess the performance of a model. In the instance of imbalanced datasets, 

where the count of normal samples significantly outnumbers the count of anomalous 

samples, relying on accuracy may not be a dependable metric. The model could 

potentially attain high accuracy simply by predicting all samples as normal. Hence, it 

is crucial to consider other metrics like sensitivity, specificity, F1 score, and ROC 

curve to comprehensively evaluate the performance of the models. 
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4.4   Major Achievements 

 In multi-target classification, the goal is to predict multiple targets, typically 

represented as binary or categorical variables. However, this type of classification 

can be computationally complex, especially when the number of targets is large, 

leading to slow training times and large memory requirements. To overcome these 

challenges, we introduced a technique called norm/reweight (NR) that can be used to 

convert the multi-target classification exercise into a single-target classification 

exercise. This technique involves encoding the multi-target output into a single 

target, normalizing the single target before training and prediction, then re-weighting 

the predicted values for interpretation. 

 Encoding the multi-target output into a single target involves mapping the 

multiple targets to a single target variable, typically a binary variable. For example, 

in a classification problem with three targets, the targets can be mapped to three 

binary variables, such as {0,0,1}, {0,1,0}, and {1,0,0}. These binary variables can 

then be combined into a single target variable, such as 1, 2, or 3, to create a single-

target classification problem. 

The technique of normalizing a single target involves scaling the target variable to 

have a mean of zero and a variance of one. This process is necessary to ensure that 

each target is given equal consideration during the training phase and to prevent the 

model from exhibiting bias towards certain targets. 

 Upon completion of the training process, the predicted values can be re-

weighted to facilitate the interpretation of results. The process of re-weighting entails 

assigning weights to each target based on its significance in the classification 

problem. For instance, in a scenario where multiple diseases are being predicted, the 

weights assigned to each disease may be based on the disease's severity or 

prevalence in the population. By applying these weights to the predicted values, the 

final classification results can be obtained. 

The big O notation can be employed to assess the computational complexity of 

multi-target classification. In multi-target classification, the time complexity of 

training the model is O(kn^2), where k represents the number of targets and n 

represents the number of samples. This is due to the fact that each target necessitates 

a separate binary classification, and each binary classification involves pairwise 

comparisons between k classes of the data of n samples. As a result of this, longer 
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training times and larger memory requirements are incurred, especially when the 

number of targets is large. 

In contrast, the time complexity of single-target classification is O(nlogn), which is 

much faster than multi-target classification. This is because each sample requires a 

single classification, and the classification can be accomplished by pair-wise 

comparisons between the classes of the data. The memory requirements for single-

target classification are also smaller than multi-target classification, as only a single 

target variable needs to be stored instead of multiple targets. 

Therefore, converting multi-target classification to single-target classification can 

lead to significant gains in computational speed and memory requirements. This is 

especially important in large-scale classification problems with a large number of 

targets, where the computational complexity of multi-target classification can 

become prohibitive. 

 The norm/reweight technique can be used to convert multi-target 

classification exercises to single-target classification exercises. This technique 

involves encoding the multi-target output into a single target, normalizing the single 

target before training, and re-weighting the predicted values for interpretation. The 

computational complexity of multi-target classification can be analyzed using big O 

notation, and it can be seen that converting multi-target classification to single-target 

classification can lead to significant gains in computational speed and memory 

requirements. Therefore, the norm/reweight technique is a useful tool for dealing 

with large-scale multi-target classification problems. 
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CHAPTER V 

Conclusion and Recommendations 

5.1  Conclusion 

Deep learning models have showed considerable promise in detecting such 

anomalies, which is a vital challenge in network security. The provided data includes 

the validation and testing data for various deep learning models trained on network 

Anomaly Detection. The models include Deep Attention, LSTM, CNN, RNN, and 

GRU. This essay will discuss the general performance of these models, with a 

special highlight on the reasons behind the excellent performance of the Deep 

Attention model, as well as the possible reasons for the poor performance of some of 

the models. 

The Deep Attention model had an excellent overall performance, as indicated 

by its high scores in all the metrics. This model achieved 100% sensitivity and 

specificity scores, which are the most important metrics for Anomaly Detection. It 

also had high accuracy and F1 scores, indicating that it was effective in correctly 

identifying both normal and anomalous traffic. The Deep Attention model was also 

the fastest in testing time, making it an ideal candidate for real-time Anomaly 

Detection. 

The employment of attention mechanisms could be one reason for the Deep 

Attention model's good performance. Attention mechanisms allow the model to 

focus on certain parts of the input sequence, allowing it to spot subtle patterns that 

other models may miss. The ability of the Deep Attention model to recognize and 

focus on certain areas of the input sequence is critical to its success in anomaly 

identification. 

In contrast, the RNN and GRU models had the worst performance, with low 

scores in all the metrics. These models had the lowest sensitivity and specificity 

scores, indicating that they were not effective in detecting anomalies. The RNN and 

GRU models also had the lowest accuracy and F1 scores, indicating that they had a 

high false positive rate, incorrectly identifying normal traffic as anomalous. 

One probable explanation for the RNN and GRU models' poor performance 

is their inability to learn long-term dependencies. Anomaly Detection necessitates 

the models identifying tiny patterns that occur over long periods of time, which may 

be missed by the RNN and GRU models. Furthermore, the RNN and GRU models 
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are more susceptible to disappearing and expanding gradient difficulties, which can 

impair their capacity to learn and forecast accurately. 

The LSTM and CNN models had moderate performance, with scores that 

were generally better than the RNN and GRU models but lower than the Deep 

Attention model. The LSTM and CNN models had high sensitivity and specificity 

scores, indicating that they were effective in detecting anomalies. However, these 

models had lower accuracy and F1 scores than the Deep Attention model, indicating 

a higher false positive rate. 

In conclusion, the Deep Attention model demonstrated superior performance 

compared to all other models in the dataset, suggesting it as a promising candidate 

for network Anomaly Detection. The model's utilization of attention mechanisms and 

its capacity to concentrate on particular parts of the input sequence are likely crucial 

factors in its success. Conversely, the RNN and GRU models exhibited the weakest 

performance, likely due to their inability to learn long-term dependencies and their 

vulnerability to vanishing and exploding gradient problems. The LSTM and CNN 

models displayed moderate performance, with high sensitivity and specificity scores 

but lower accuracy and F1 scores than the Deep Attention model. Overall, the 

selection of a deep learning model for network Anomaly Detection should be 

meticulously evaluated based on the specific requirements of the task. 

 

  5.2   Limitations 

The dataset referred to as UNSW-NB15, as presented in the table, is a sizable 

network intrusion detection dataset. The dataset contains a substantial number of 

records (2,540,044) and features (49), which consist of continuous and nominal 

features. The dataset comprises ten categories that represent various attack types, 

including Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, 

Shellcode, Worms, and Normal. However, employing this data for transformer-based 

classification may have some restrictions, primarily regarding the available 

computational resources. 

A significant constraint when utilizing this dataset for transformer-based 

classification is the large dataset size (1.9 GB). To train a transformer model with 

this extensive dataset, a considerable amount of computational resources, such as 

memory and processing power, is necessary. A core i7 X-GHz with 32GB of RAM 

might not be sufficient to handle this dataset and train a transformer model 
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successfully. The duration of the training process may be prolonged, and fine-tuning 

the model hyperparameters may be challenging due to the dataset's massive scale. 

 

Another limitation of utilizing this dataset for transformer-based classification is the 

considerable number of features. Although transformer models can manage high-

dimensional data, they may not be the most effective option for dealing with a vast 

number of features. The transformer architecture comprises multiple self-attention 

layers, which can be computationally expensive, particularly when the input data 

contains a large number of features. In such cases, simpler models, such as linear or 

tree-based models, could be more efficient. 

The range of the features in the UNSW-NB15 dataset is also relatively wide, with 

values ranging from 0 to 45. Such a wide range of features and their encoding can 

lead to numerical instability during the training of the transformer model, which can 

make the optimization process more challenging. Feature scaling techniques such as 

normalization or standardization can help mitigate this issue. However, it can add to 

the computational complexity of the model training. 

Furthermore, the presence of missing values in the dataset can also pose a challenge 

for transformer-based classification. Transformers require complete data inputs, and 

missing values can lead to errors during the training process. Therefore, it is essential 

to preprocess the data and handle the missing values appropriately before training the 

model. 

In summary, while the UNSW-NB15 dataset can be useful for network 

intrusion detection research, it can pose some limitations when using it for 

transformer-based classification. The large dataset size, the high number of features, 

the wide range of feature values, and the presence of missing values can all add to 

the computational complexity of the model training. Therefore, it is crucial to 

consider these limitations and choose the appropriate model and computational 

resources when working with such a dataset. 

To overcome the limitations of using the full UNSW-NB15 dataset for transformer-

based classification, a sample of the data was used. This sample was created using 

stratified random sampling, a method that ensures that the sample reflects the same 

proportions of classes as the original dataset. By doing so, the sample is more 

representative of the full dataset, and can still be used for classification tasks. 
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The consideration of sample size is a crucial aspect in the application of this method. 

It is imperative that the sample size is sufficiently large to ensure precise estimations 

of the population parameters, while also being small enough to limit computational 

requirements. In this instance, a sample size of 10% of the complete dataset was 

implemented, which established a balance between accuracy and computational 

complexity. 

Alternatively, data preprocessing techniques may be employed to address the 

limitations associated with the use of the complete dataset. These techniques could 

involve dimensionality reduction or scaling of the data to a smaller range, leading to 

a reduction in the computational requirements of the transformer-based classification 

model. Furthermore, the application of feature selection techniques could prove 

useful in identifying the most pertinent features within the dataset, thus lowering the 

number of features that necessitate processing by the model. 

Overall, by using a stratified random sample of the UNSW-NB15 dataset and 

applying appropriate data preprocessing techniques, the limitations of computational 

resources can be overcome while still being able to use transformer-based 

classification models to accurately classify network intrusion attacks. 

 

 

5.3   Recommendations 

Based on the results obtained from the deep learning models trained on 

network Anomaly Detection, there are several recommendations for practical 

application of deep learning models in this field. 

Firstly, the Deep Attention model has shown excellent performance across all 

metrics. This suggests that the Deep Attention model is well-suited for network 

Anomaly Detection tasks. It is recommended that future researchers explore the use 

of Deep Attention models for this purpose, as it may be a more effective approach 

than other models such as LSTM, CNN, RNN, or GRU. 

Secondly, it is important to carefully consider the specific metrics used to evaluate 

the performance of deep learning models for network Anomaly Detection. While 

accuracy score and specificity are important metrics to consider, sensitivity is 

particularly crucial in this field. This is because the consequences of missing an 

anomaly can be much more severe than falsely identifying a normal behavior as an 
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anomaly. Therefore, it is recommended that researchers prioritize models with high 

sensitivity scores. 

Thirdly, it is important to consider the computational cost of the models. The 

Deep Attention model had the highest training time, but it also had the best 

performance across most metrics. However, for practical applications, it may be 

necessary to consider the balance between model performance and computational 

cost. This suggests that it is important to carefully optimize the architecture of the 

model to minimize computational cost without sacrificing performance. 

Finally, it is imperative to acknowledge that the efficacy of deep learning models is 

significantly influenced by the caliber of the input data. Accordingly, it is suggested 

that scholars meticulously preprocess the data to eliminate noise and guarantee the 

data's representativeness of the authentic distribution of network behavior. 

Furthermore, it may prove advantageous to explore the implementation of data 

augmentation techniques to amplify the size of the dataset and enhance the models' 

resiliency. 

 

In summary, the outcomes of deep learning models trained in network Anomaly 

Detection yield valuable insights into the pragmatic application of these models in 

this domain. It is recommended that subsequent researchers investigate the utilization 

of Deep Attention models for network Anomaly Detection, prioritize models with 

high sensitivity scores, equilibrate model performance and computational cost, and 

meticulously preprocess the input data to assure superior quality and 

representativeness. By adhering to these suggestions, deep learning models can be 

effectively employed in network Anomaly Detection tasks, thereby elevating the 

security and dependability of network systems. 
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APPENDICES 

 

Appendix A: Deep Attention Model as a python package named deepAttention   

 

The DA (Deep Attention) framework has been assembled as a software and 

published in https://pypi.org. It can be downloaded using pip as: 

pip install deepAttention 

 

Here is a systematic tutorial on the basic usage of the DA framework for 

classification: 

 

 

# Import the necessary modules  

from deepAttention import DAModel as DA 

from deepAttention import DAprocessor as PR 

import pandas as pd 

 

# Load the data into a Pandas dataframe: 

data = pd.read_csv("data.csv") 

 

#specify the path to the working directory where data, images and models will be 

stored during calculations 

mypath = 'C:/Users/Documents/classification' 

 

# Initialize DAModel. Initialization permits the package to import all required 

dependencies and to create the folders needed for the classification process 

 

DA.initialize(path=mypath) 

 

# With deepAttention, data preprocessing is done in one step. The get_samples 

function takes care of missing data, duplicates, infinities and also numerizes 

categorical features. 

X_train, X_test, y_train, y_test = DA.get_samples(dataframe=data, target='label', 

test_size=0.2, samples=n, stratify=True) 

https://pypi.org/
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# Set the Deep Learning calculator: 

da_model = DA(look_back=seq_length, seq_length=seq_length, 

n_features=X_train.shape[1], num_heads=8) 

 

# Run the calculation 

history, metrics, confusion_matrix, y_true, y_prediected = 

PR.evaluate_model_performance(da_model, X_train, X_test, y_train, y_test, 

epochs=50) 

 

# The processor can then be called on the results to visualize them using graphics 

and tables. For example, to make a bar plot of accuracy: 

PR.plot_metric(data=metrics, metric_to_plot = ‘Accuracy’, 

file_name=’accuracy.png’) 

 

# To plot the confusion matrix: 

PR.plot_confusion_matrix(data=confusion_matrix, file_name=’cm.png’) 

 

# To plot the training and validation loss: 

PR.plot_history(data=history, file_name=’cm.png’) 

 

# To display the metrics on a table and simultaneously save the pandas data frame to 

csv: 

PR.plot_metrics(data=history, file_name=’cm.png’) 
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