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Abstract: 

 

COMPARATIVE ANALYSIS OF HYDROPOWER AND NON-

HYDROPOWER ELECTRICITY IN AFRICA USING DIFFERENT 

EMPIRICAL APPROACHES TO EVALUATE CLIMATE PARAMETERS 

IMPACTS. 

 

Ali, Abdimajid Ibrahim 

MA, Department of Civil Engineering 

June, 2023, 90 pages 

 

Securing affordable and reliable access to power sources remains an immense 

challenges for the African continent. Africa depends heavily on both hydropower and 

non-hydropower energy sources, but these can be affected by the climate. Climate 

change can significantly impact the availability of water, which endangers the stability 

of hydropower generation, while solar and wind power are affected by external 

elements such as wind speed, temperature, and precipitation. 

This thesis attempts to analyse the impact of climate parameters on hydropower and 

non-hydropower electricity production in Africa utilising machine learning models, 

and comparing their performance with mathematical and statistical models. Relevant 

data from trusted sources such as the NASA Prediction of Worldwide Energy 

Resources (POWER) and the U.S. Energy Information Administration (EIA) 

databases is used to establish correlations between climate parameters and electricity 

production in Africa. 

Machine learning approaches are used to predict electricity generation from different 

sources of electricity such as hydropower and non-hydropower. In particular, the 

multilayer perceptron neural network (MLPNN) and the radial basis function neural 

network (RBFNN) are utilized. Statistical analysis such as the determination 

coefficient (RSQ) and root mean square error (RMSE) are used to evaluate the 

accuracy of the machine learning models. As well as multiple linear regression (MLR) 

model to compare with the machine learning models. 

The results shows that hydropower generation is strongly impacted by rainfall and 

average temperature, while other non-hydropower sources are significantly affected 

by elements such as wind speed, maximum temperature, and relative humidity. 
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Obviously, machine learning models show better performance than mathematical 

models in predicting electricity production from both hydropower and non-

hydropower sources. In this context, the MLPNN model demonstrates the highest 

accuracy in predicting hydro-electricity production, while the RBFNN model is the 

best performing model for forecasting non-hydropower electricity output. 

Consequently, it is recommended to opt for machine learning models to effectively 

predict electricity production from hydropower and non-hydropower sources. Such an 

approach would not only create more accurate electricity production predictions, but 

also support a greener, more sustainable energy mix in Africa. 

 

Keywords: Africa, climate, hydropower, non-hydropower, empirical approaches. 
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CHAPTE I 

Introduction 

 

This chapter includes the general introduction, aims, an overview of electricity, 

climate of Africa and challenges and opportunities of the hydro and non-hydropower. 

1.1 Introduction 

Access to reliable and affordable energy sources is fundamental for economic 

growth and poverty reduction in Africa. However, the continent is facing with multiple 

energy challenges causing its limited energy resources and poor energy infrastructure. 

According to the International Energy Agency (IEA), African energy demand is 

predicted to double by 2040 (Africa Energy Outlook, 2019); thus, this imposes a 

considerable problem for policymakers and energy planners. 

Currently, the energy mix in Africa is mostly dependent on hydropower and non-

hydropower sources. Hydropower accounts for nearly 20 % of the entire electricity 

production in Africa (Africa Energy Outlook, 2019). Solar, wind and thermal power 

encompass the remaining 80 % of the electricity produced (Africa Energy Outlook, 

2019). Nonetheless, the production of electricity from these sources is under the 

influence of climatic factors such as temperature, wind speed, precipitation and 

humidity. Climate change is likely to exacerbate the challenge of energy production 

in Africa by diminishing the availability of water resources and decreasing the 

reliability of hydropower production. 

The use of machine learning models has been generating a huge attention in recent 

times to forecast electrical production. Such machine learning models have 

demonstrated high efficiency in research and analyzing large datasets in order to 

predict possible results. 

This Master's thesis seeks to evaluate and compare the production of electricity from 

hydropower and non-hydropower sources in Africa using machine learning models 

and mathematical/statistical models.  

The effects of climate parameters on the production of electricity will be analysed 

using data obtained from NASA’s Prediction of Worldwide Energy Resources 

(POWER) and the U.S. Energy Information Administration (EIA) databases. To 

predict electricity production from hydropower and non-hydropower sources, this 

study will employ machine learning models such as the multilayer perceptron neural 

network (MLPNN) and the radial basis function (RBF), while mathematical models 
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like multiple linear regression (MLR) and statistical analysis techniques (i.e. 

determination coefficient (RSQ) and root mean square error (RMSE)) will be used for 

comparison purposes with the machine learning models.  

This thesis will be divided into three parts. Chapter two will discuss the 

background information related to energy production, hydropower, non-hydropower 

sources, climate change, and machine learning models. Chapter three will detail the 

methodology used, including data collection, pre-processing, and model development. 

Finally, chapter four will present the results and conclusions of the study. Chapter 4 

presents results from this project, featuring the effects of climate parameters on the 

production of energy from hydraulic and non-hydraulic sources as well as the 

performance of machine learning models in comparison to mathematical and statistical 

models. Finally, Chapter 5 concludes the thesis in summarising the key findings and 

proposing ideas for potential future study. 

 

1.2 Aim of the Study: 

The aim of this Master's thesis is to conduct a comparative analysis of hydropower 

and non-hydropower electricity production in Africa using machine learning models 

and comparison with mathematical and statistical models. Specifically, the study aims 

to: 

 Analyse the relationship between climate parameters and the production of 

electricity from hydropower and non-hydropower sources in Africa. 

 Develop machine learning models to predict the production of electricity from 

hydropower and non-hydropower sources in Africa. 

 Identify the most impactful climate parameters on the production of the electricity 

in Africa on the face of hydropower and non-hydropower electricity production. 

 Evaluate the climate change impact on the electricity generation of the electricity 

in Africa form hydropower and non-hydropower sources of electricity. 

 Comparison the enhancement of the machine learning models with mathematical 

models and checking the accuracy of the models with different statistical indices 

in predicting the hydro and non-hydropower electricity generation in Africa. 

 Provide recommendations to the energy sectaries such as energy planers and 

policymakers in Africa to develop sustainable energy mix that considers the 

impact of the climate change on the production of the electricity. 
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This study aims to analyse the impact of climate change on the electricity 

production of from hydropower and non-hydropower sources in Africa. The study will 

analyse the potential of machine learning models in making predictions in the 

production of electricity from hydro and non-hydropower sources of electricity, 

mostly in relation to the effects of climate parameters. By performance so, it will be 

promising for energy planners and policymakers in Africa to consider the climate 

impact when creating a sustainable energy mix. The outcome of this analysis can 

subsidize and help to better understand of how electricity production from the both 

sources hydro and non-hydropower in African impacted by the changing climate. 

This thesis study will examine the electricity production from hydropower and 

non-hydropower sources in the African continent by analysing the impact of climate 

parameters on these sources of energy. A different empirical models is to be employed 

and developed to better understand the efficiency and the limitations of the machine 

learning and mathematical models in the prediction of the energy production in 

relation to climate parameters change. The results of this study will help the African 

policy makers, energy professionals, and other interested parties in Africa who 

motivated to increase the generation of the energy while mitigation the impact of the 

climate parameters change. 

 

1.3 Electricity in Africa 

In Africa electricity generation is the back born of the economic and socoal 

development of the continent. Although renewable energy sources have a great 

potential for the continent, many African countries are still heavily dependent on non-

hydropower sources of energy. This practice can have adverse environmental effects 

and make African economies dependent on the global market price of fuel. To counter 

this issue, diversifying the energy mix in Africa has become a priority for many 

countries in the region. 

Hydropower is a major electricity contributor in Africa. According to the IHA 

(International Hydropower Association), African hydropower capacity raised at 36 

GW in 2020, which accounts about 17.4% of the continent's entire energy production. 

East and Southern Africa are regions with the largest number of hydropower 

installations, and countries such as Ethiopia, Zambia, and Zimbabwe enjoy the highest 

levels of installed capacity (IHA, 2019). 
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Non-hydropower-based electricity sources play an important role in fulfilling Africa's 

energy demand. Containers fuelled by oil, coal, gas, and nuclear energy have all taken 

the lead in producing a substantial portion of electricity from the continent (Tsige & 

Ghirmay, 2019).  

Despite the need for electricity, such energy sources are problemized due to 

their environmental & health implications, including air contamination and 

greenhouse gas emissions. 

Figure 1  

Electricity generation in Africa, by energy source, 2019 (Source: IHA, 2022) 

 

Given the disadvantages related to non-renewable energy sources, there is an increased 

concentration in renewable sources of energy, such as wind, solar and geothermal, 

plus hydro-electricity. These renewable energy sources can produce a great deal of 

energy for Africa, since it has a lot of renewable energy resources. For example, the 

Global Wind Energy Council (GWEC) asserts that the wind energy potential, alone, 

in Africa stands at 180,000 terawatt hours (TWh) per year. That is incredibly high, and 

suggestive of the tremendous amount of power the wind can offer to meet Africa's 

energy requirements, which is more than 250 times over, (World Bank, 2021). 

Finally, electricity is necessary for Africa's growth, and a means to broaden the 

energy mix in order to guarantee a regular, economical and sustainable supply of 

electricity. Hydro-power supplies a substantial part of electricity production in Africa, 
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but there is need to look into other renewable energy sources such as wind and solar, 

so as to match the growing demand for energy. 

 

1.4 Climate of Africa 

Africa is a large continent that is home to an array of climate conditions. 

Temperatures tend to be warm across the continent, while humidity and precipitation 

also vary depending on the region. Many factors contribute to the diversity of climate 

conditions found in Africa such as ocean currents, the lean of the Earth, altitude, and 

wind patterns. For instance, northern Africa is generally hot and arid, due in large part 

to the immense Sahara Desert. 

Central and eastern Africa, meanwhile, feature tropical climates that are highly 

influenced by the yearly movements of the inter-tropical convergence zone (ITCZ), a 

region where the trade winds from the north and south collide and generate a zone of 

low pressure that can cause heavy rains in the encompassing areas (Higgins et al., 

2020). 

The southern region of Africa is located further away from the equator and thus 

experiences a more temperate climate. This climate is characterized by dry winter 

months, as well as moist and humid summers due to the influence of the South Atlantic 

high-pressure system (Yahaya, 2018). For those living in Africa's coastal regions, they 

are subject to a more mild and humid Marine Climate due to the influence of nearby 

oceans (Agrawal & Ghosh, 2019). 

Climate change is having an adverse impact on African climates, drastically 

altering temperature patterns and rainfall. This has caused decreased agricultural 

productivity, water scarcity, higher frequencies of extreme weather events, floods and 

droughts, and rising sea levels, all of which directly threaten the wellbeing of coastal 

and inland populations (IPCC, 2018). 

When considering the relationships between climate and electricity 

production, it is essential to have a strong understanding of the impact of a variety of 

climate parameters. Variables such as temperature, precipitation, wind speed, and 

relative humidity are all required to be taken into account when examining the 

generation of hydropower and non-hydropower energy. This shall be discussed in 

further detail in the proceeding section. 
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1.5 Energy state in Africa 

Africa is provided with numerous power resources, however, access to 

advanced energy services, investments, and infrastructures persist to be hard to access 

in various part of the continent. This limits socio-economic development, particularly 

in rural regions. Although fossil fuels dominate the African energy mix, renewable 

sources such as hydropower, solar and wind power are gaining in importance.  

This change is driven by increased energy security, climate change mitigation and 

decreased reliance on non-renewables. Governments and organizations across the 

continent are recognizing the importance of renewable energy development, and are 

investing in projects which will help provide Africans with reliable and affordable 

energy services. 

Hydropower is a major source of energy in several African countries such as 

Ethiopia, Ghana, and Zambia due to the availability of rivers that offer tremendous 

potential for hydropower generation. Other renewable energy resources, including 

thermal, solar, and wind power, are also being utilized in different African states such 

as Morocco, South Africa, and Egypt. Advantages of these non-hydropower 

alternatives include low operational costs, minimal environmental impact, and quicker 

launch compared to hydropower. 

However, despite these potentials of renewable energy sources, their contribution to 

African electrical resources overall is still considerably small. The high investment 

costs and complex technical issues linked with renewable energy projects are two 

major elements that have limited their development (AER, 2021). Furthermore, 

limited access to financing and inadequate regulatory structures have hindered 

investment in the renewable energy sector. 

The vigor sector in Africa is imperative to the landmass's advancement, and 

renewable energy evolution is paramount to accomplishing manageable economic 

upswing. To accomplish this, African countries must implement laws that exhort 

renewable energy development, increase venture in the area, and construct an aiding 

atmosphere for private area contribution. Also, there is a requisite to sink capital into 

research and expansion to recognize and confront the tribulations confronting 

renewable energy advance in the continent. 
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1.6 Hydropower and Non-Hydropower of Africa 

1.6.1 Hydropower in Africa: 

Africa has roughly 17% of the world's population, but remarkably only 4% of 

global power generation. As a result of this underrepresentation in access to electricity, 

several countries are seeing a rise in those without electricity in 2021. Hydropower is 

becoming a more prominent renewable energy source on the continent and several 

new projects on this front are coming online. The West African Power Pool region is 

projected to be home to about 1.5 billion people by 2070, accounting for about a third 

of Africa's population. It is therefore increasingly essential to capitalize on the African 

continent's vast hydropower potential. Not only can renewable energy be a game-

changer for the economic development of Africa but also help meet the UN's 

Sustainable Development Goals. 

The African Development Bank (AfDB) is devoted to providing access to 

environmentally friendly and dependable sources of energy through its Africa 

Hydropower Modernization Program. Supported by the International Hydropower 

Association (IHA), the program concentrates on modernizing existing hydropower 

operations considered that roughly 60% of all the existing capacity is more than two 

decades old. It is thought to be one of the inexpensive power sources in comparison to 

other sources and has a minimal effect on the environment. Despite the fact that Africa 

makes up an meagre two percent of the world’s carbon dioxide emissions caused by 

energy generation, the region is severely affected by the effects of climate change, 

which have a direct impact on its hydropower capabilities, and more significantly, on 

crucial food production systems and services. 

The Grand Ethiopian Renaissance Dam (GERD) is a hydroelectric power 

station that is being built in Ethiopia, on the Blue Nile. This station is expected to be 

fully operational in 4-7 years, and is envisioned to be the largest hydroelectric power 

station in Africa and one of the grandest in the world. The amount of power that the 

port can generate once it is inaugurated is 5.3GW. Authorities announced that the two 

turbines that were set up began working in February 2022 and each of them generating 

375MW electricity. The concern is that some countries like Egypt, fear that this project 

may cause adverse effects in terms of water security. In spite of these facts, Ethiopia 

argues that the infrastructure will bring positive results both to them and to the 

countries in the zone. 
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In 2022, the Kikagati Hydropower Plant was launched by Voith Hydro with a 

capacity of 15.57 MW situated on the Tanzania and Uganda border. During the year 

prior, Uganda Electricity Generation Company Ltd (UEGCL) solicited bids for the 

44.7 MW Muzizi scheme to be built on the Muzizi River. During the same year, the 

first 150 MW unit of the 750 MW Kafue Gorge Lower Hydropower Station, owned 

by Zambia Electricity Supply Corp. (ZESCO), was launched with Sinohydro 

Corporation as the contractor. Additionally, the initial 175 MW unit of Zungeru 

Hydropower Station in Nigeria was commissioned in the same year. 

On completion of every unit, the project is offering 700 MW of electricity to 

the grid. Recently, to confront the growing energy requirement, Kenya Electricity 

Generating Company (KenGen) pronounced that they are meeting domestic needs 

through creation from geothermal, hydro and wind power. This was after the greatest 

ever electricity demand of 2,036 MW in the country. 

Figure 2  

Africa’s Hydropower Installed capacity 2021 (MW) (Source: IHA, 2022) 

 

In Mali, the Mariguina hydroelectric station is expected to become active 

brings its first chunk of power to the grid by March of 2022. The 3 x 49 MW Kaplan 

generator setup has the power to provide 140 MW and is planning to create 1,000 job 

opportunities, giving a huge benefit to the locals’ economic growth. Burundi’s 

government also gave permission for the Songa Energy Company to construct two 
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hydropower stations on the Mulembwe and Ruvyironza rivers, pumping in 10.65 MW 

to the grid. In spite of having the same population, African’s electricity infrastructure 

is remarkably behind that of India which consists of roughly 430,000 km of high 

voltage transmission lines, while the continent’s only has 26,000 km. Challenges are 

sure to arise as predicted demands for electrical power in Africa are expected to triple 

by 2040. These needs will undoubtedly combine, resulting in the need to improve and 

spread out electric transmission and distribution networks throughout the continent. 

Various African countries are implementing innovations that will lead to 

progress. In an effort to interconnect the power systems of Kenya and Ethiopia, what 

is said to be the longest power transmission line between Central and East Africa is 

being put into place and is prepared to generate as much as 2,000 MW of electricity 

shortly. Angola is similarly effecting significant improvement to their power network 

with the completion of a 343 km long wire to link the north and south electricity grids 

and thus empower 1,000 MW of cost-efficient hydroelectric power for utilization. The 

African Development Bank has devoted considerable funds to finance the project, 

purported to bring forth a yearly reduction of 125 Mt of CO2 emissions and 46 billion 

litres of diesel fuel used. Moreover, for a venture that looks to bring the Baynes 

Hydropower Plant to fruition in 2025, the Southern African Power Pool has been 

recently provided financing from the African Development Bank through the 

NEPADIPPF Programme in March 2021. 

 

1.6.2 Non-Hydropower Electricity in Africa: 

Recently, there has been a heightened focus on diversifying the energy mix in 

Africa with the introduction of renewable power sources like solar, wind, and 

geothermal energy. Solar energy has become one of the most sought out sources of 

energy due to its abundance in certain parts of the continent, with countries such as 

Morocco and South Africa both taking steps to develop large-scale solar projects with 

the use of Concentrated Solar Power (CSP) and photovoltaic (PV) technologies. Wind 

power is another renewable energy source that has been growing in prominence over 

the past few years, with countries such as Egypt, Kenya, and Morocco all utilizing 

their potential to build wind farms and install wind turbines. Geothermal energy is 

another alternative for those areas that possess volcanic regions, with Kenya and 

Ethiopia already having built geothermal power plants, where they can collect and 

utilize the energy from the Earth's heat to generate electricity. 
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Non-hydropower renewable energy sources furnish many advantages to both 

the environment and population. Decentralized energy solutions have been gaining 

traction in recent years due to the environmental and economic benefits they bring. 

These solutions assist in decreasing the discharge of greenhouse gases into the 

atmosphere, potentially controlling the effects of climate change. Additionally, these 

systems provide electricity to remote areas without having to connect to large, 

centralized power grids. Though the intermittent nature of renewable energy sources 

can present challenges to providing a continuously reliable supply of power, the 

development of energy storage solutions and smart grids are providing ways to deal 

with this issue. 

 

1.7 Current State of Hydropower and Non-Hydropower in Africa: 

1.7.1 Current State of Hydropower in Africa: 

Hydropower has the opportunity to serve as a reliable, renewable, and cost-

effective form of power generation across the continent of Africa. This is due to the 

abundance of rivers, lakes, and other sources of water found there. Estimates of the 

total hydropower potential of the continent come to 1,750 TWh/year, which is hugely 

beneficial for Africa's development. Making use of the natural resources in this way 

could bring about a great surge in the continent's economic prospects, as well as 

providing an environmentally-friendly source of energy. Hydropower could therefore 

prove to be a critical part of Africa's future. 

Africa has stepped up its commitment to harnessing its plentiful water 

resources to generate electricity. Ethiopia's Grand Ethiopian Renaissance Dam is a 

prime example of this, leveraging its sheer magnitude with an estimated 6,450 MW 

output. Congolese counterparts also boast impressive yields, the Inga Dam building 

up to the capacity of 40,000 MW, ranked among the largest hydro operations in the 

world (Walia & Aklilu, 2021). This illustrative example highlights the extent to which 

Africa is investing in its water resources for the generation of electricity. 

Despite its immense hydropower potential, Africa is still lacking when it 

comes to its overall energy needs. Several issues, such as the scarcity of financial 

resources, lack of infrastructure, and socio-environmental concerns associated with 

large-scale dams, are making the development of hydropower projects challenging in 

certain areas. Nevertheless, there are efforts being carried out to counter these 

obstacles and make the most of this clean, sustainable energy option. 
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1.7.2 Current State of Non-Hydropower Electricity in Africa: 

The utilization of renewable energy in Africa is on the upswing as its numerous 

benefits and abated costs become broadly apparent. Solar energy holds unique 

potential in the continent as it experiences abundant sunshine throughout the year. To 

capitalize on this, a number of countries have begun to construct large-scale solar 

projects, such as concentrated solar power (CSP) and photovoltaic (PV) installments. 

Morocco, with its Noor Solar Complex, is a leader in this area - one of the world's 

largest CSP plants. South Africa's utility-scale PV projects are another noteworthy 

advancement, helping to significantly increase the nation's renewable energy 

capability. Moreover, Egypt, Kenya and Namibia are moving to explore the potential 

of solar energy, working to diversify their energy sources. 

Wind energy is a rapidly increasing source of energy in Africa that does not 

originate from hydropower. Those nations which have advantageous wind conditions, 

like Egypt, Ethiopia, Kenya, Morocco and South Africa, have been forming wind 

farms and constructing wind turbines. An example is the Lake Turkana Wind Power 

in Kenya, a wind power scheme that can generate up to 310 MW of electricity, making 

it one of the greatest wind power projects on the continent (Mathebula & Mathebula, 

2018). 

Although limited to certain volcanic areas, geothermal power has plentiful 

potential in some African nations. Kenya and Ethiopia are two such countries that have 

been working thoroughly to optimise their geothermal resources. The Olkaria 

Geothermal Complex in Kenya is currently estimated to be the largest of its kind in 

the complete continent. It is stated that this particular energy source has exponentially 

increased the national share of the renewable energy supply (Kone & Khandi, 2017). 

 

1.8 Challenges and Opportunities Facing Hydropower and Non-Hydropower 

Development in Africa: 

In spite of the latent prospective of hydropower and alternate resources of 

electricity for the African continent, there are certain challenges to their development. 

For example, funds allocated to the infrastructure and the energy industry in Africa 

are unsatisfactory, a fact that yields to the insufficiency of electricity for a large portion 

of the continent’s inhabitants (Ahmed et al., 2018). Moreover, economical 
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inconsistency, dishonesty, and the lack of responsive regulatory mechanisms make it 

challenging for private investments to flow into the energy industry. 

One of the major challenges facing hydropower development is the impact of 

climate change. The variability in precipitation, increasing temperatures, and the rising 

necessity for water usage for agricultural and metropolitan activities can affect the 

provision of water available for powering hydroelectric sources. Also, other renewable 

energy sources such as wind and solar energy are also prone to climate fluctuations, 

including those on the velocity of wind and the amount of cloud covering, which can 

impact their energy production (Akintola & Midzi, 2021). Consequently, it is 

important to account for potential effects of climate change while planning hydro-

power projects, and come up with methods to address their related impacts. 

The African continent is overflowing with potential when it comes to the 

development of its energy sector. With the right strategy and infrastructure, the 

opportunities that exist in this region are vast and can be harnessed to great effect. 

While there are current issues to be addressed in terms of limited resources and access, 

the potential for exponential growth in the sector is undeniable. By taking proper steps 

to ensure greater accessibility and more efficient usage of resources, African countries 

can open up pathways to greater economic, social and environmental benefits. 

The Congo River basin presents an opportunity for the development of 

hydropower, while the Sahel region has great potential for solar energy. Although 

these options may not come without difficulties, the rising demand for energy and the 

need to reduce energy poverty gives investors an opportunity. With the advancements 

in technology, clean energy sources are becoming far more affordable and sustainable. 

This improvement in technology has presented an ideal opportunity for Africans to 

benefit from clean, cost-effective energy. 

Overall, it is essential to approach the struggles highlighted from hydropower 

and non-hydropower design in Africa to maximize the reasonable starts available. A 

better understanding of the climate parameters on these energy sources can make 

indicators for investment choices and policy-making to insure reliable energy growth 

on the continent. Machine learning, mathematical Models, and statistical indices can 

compromise support in this understanding, and a comparative analysis of hydropower 

and non-hydropower origins can benefit distinguish their definite prospect and 

obstacles. 
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1.9 Energy Demand in Africa 

The continent of Africa has witnessed a significant period of economic growth 

in recent years. This growth is mainly driven by increased demand for energy to fuel 

industrial, commercial, and residential activities. It is projected that energy demand in 

the African region is set to increase by around 60% by 2040, mostly attributed to 

population growth and urbanization (World Bank, 2020). The challenge facing Africa 

in decreasing the energy production is significant, as a limited and often unreliable 

electricity supply is accessible in the region. 

 

1.9.1 Current State of Energy Demand in Africa: 

The current incompatible state of access to electricity in Africa is a major 

challenge to economic and societal development. According to a recent measure by 

the International Energy Agency (IEA), an estimated 600 million people in Africa are 

in lack access to electricity (IEA, 2017). Moreover, in sub-Saharan Africa, for only 

43% of the population has access to electricity (IEA, 2018). This patent variation in 

access to basic energy resources has substantial implications for the social and 

economic growth of the continent. 

Figure 3  

Total final energy consumption in Africa by sector and source, 2018 (Source: IHA, 

2022). 

 

The major form of energy employed across African countries is biomass, 

accounting around one-half of all the energy produced (UNESCO, 2017). Even though 
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other sources of energy including oil, coal, gas, and hydroelectric power make up the 

large part of the energy mixture, its distribution is diverse from region to region. As 

an example, North Africa largely relies on oil while the greater part of energy in Sub-

Saharan Africa comes from bioenergy sources (IREA, 2019). 

 

1.9.2 Projected Growth of Energy Demand in Africa: 

In line with population growth, rapid urbanisation and industrialisation, the 

IEA (2018) forecasts a substantial uptick in energy consumption in Africa between 

now and 2040, predicting an increase of around 60% - the highest rate of growth in 

the world (IEA, 2017). This development poses various challenges for African 

countries as they struggle to meet escalating demand while avoiding potential 

environmental, economic and social consequences. 

Africa is projected to have a rapid population growth rate, growing twice in 

size by 2050 as compared to 2015, as estimated by the United Nations (UN, 2017). 

This population growth will lead to increased demand for energy, specifically for 

essential activities such as lighting, cooking and heating.  

Urbanization is also accelerating in Africa, where the urban population is 

expected to surge from 40% in 2015 to 56% by 2050, as stated by UN-Habitat (UN-

Habitat, 2017). Urbanization tends to bring about increased energy demand, notably 

in relation to transportation, commercial and industrial activities.  

Furthermore, Africa has seen excellent economic growth, with some countries 

experiencing annual GDP growth rates beyond 5% (World Bank, 2017). Thus, 

industrialization such as mining, manufacturing and construction activities will no 

doubt result in a heightened needs for energy resources. 
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CHAPTE II 

Literature Review 

 

2.1 Introduction 

Energy is a vital necessity for the development of humans and the African 

continent is experiencing a rise in its energy necessity due to the growth in population 

and economic growth. There is a plethora of renewable energy sources present in 

Africa, such as hydropower and non-hydropower sources such as solar, wind, and 

biomass. However, climate change is having a drastic effect on the stability and 

reliability of these resources, especially hydropower, which heavily depends on access 

to water and rainfall levels. 

The African continent is especially prone to the consequences of global 

warming, with temperatures predicted to be 1.5 degrees Celsius occasions greater than 

average world-wide (IPCC, 2017). What is in store for areas is a discrepancy of 

precipitation patterns, some regions likely to get flooded while other regions 

experiencing dry seasons harshly. This will be disastrous for energy production, 

particularly hydro and non-hydroelectricity. 

To guarantee the long-term development of the African energy segment, it is 

important to comprehend the effect of climate change on hydropower and non-

hydropower sources. This comprehension can be accomplished through the 

examination of the climate parameters that sway vitality creation. This literature 

review will investigate the current condition of research on hydropower and non-

hydropower power in Africa and the effect of climate parameters on the energy 

generation. 

This review will focus on studies utilizing machine learning models, such as 

Multilayer Perceptron Neural Networks (MLPNN) and Radial Basis Function Neural 

Networks (RBF), to predict hydropower and non-hydropower electricity production. 

Machine learning approaches present an advantage in their aptitude to predict intricate 

relationships between climate parameters and energy generation.  This review will 

focus on the influence of climate change on electricity production through hydropower 

and non-hydropower sources in Africa. 

It will compare different machine learning models against traditional 

mathematical models, such as Multiple Linear Regression (MLR), to explore which 
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offer the most effective prediction. Statistical metrics such as R-Squared (RSQ) and 

Root Mean Square Error (RMSE) will be employed to evaluate the significance of 

climate parameters on energy production.  The purpose of this review is to provide an 

insight into how climate change is affecting electricity sources in Africa. 

 

2.2 Climate change Issues 

Climate change is an exceptionally pressing issue for Africa's energy sector, 

particularly hydropower. It is the main source of renewable energy for the continent, 

however increasingly unpredictable changes in quantity of water available due to high 

rise temperatures and shifts in rainfall patterns create a greater necessity for the 

hydropower industry to adapt. The climate changes brings with them the potential for 

serious difficulties in power generation. This review of the relevant literature examines 

the impact that climate change has on hydropower production in Africa. 

A recent research done by Ghebreyesus et al. (2019) investigated the effect of 

climate change on the hydro power capability in the Blue Nile River basin in Africa. 

The investigation utilized climate estimates from different models and found that 

hydropower potential in the basin is probably going to degrees by up to 50% due to 

adjustment in precipitations designs. Moreover, Hamududu et al. (2016) additionally 

took a look at the result of climate change on the Zambezi River basin, where 

numerous huge hydropower dams reside in Southern Africa. The study employed 

climate forecasts to replicate shifts in stream flow discovering hydropower creation in 

the basin probably will reduce by up to 26% toward the century's end. 

Temperature is one of the most important elements of climate that has a direct 

effect on energy production. Hrishikesh et al. (2014) conducted research to evaluate 

the effect of temperature on hydropower production in Cameroon and applied machine 

learning models to the analysis. The results indicated that with every increment of one 

degree Celsius the hydropower production fell by 8.2%. Another study by Charles et 

al. (2016) focused on the impact of temperature on non-hydropower energy 

production, namely solar and wind energy, in Zimbabwe.  

This research used statistical methods to examine the correlation between temperature 

and energy production. The results of this study agreed with prior studies that 

demonstrated a rise in temperature causes a decrease in solar and wind energy 

generation. 
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The Al Jindy et al. (2020) assessed the impact of relative humidity on 

hydropower generation in Egypt from a statistical standpoint. They found indication 

that high levels of relative humidity can have a detrimental impact on hydroelectric 

power production due to a lesser rate of evaporation as well as reduced water motion. 

These results indicate the value of taking relative humidity into account when 

determining the probable capacity of hydroelectric energy. 

A research study conducted by Dongmo et al. (2021) Analysed to determine 

the connection between wind speed and hydropower production in Cameroon. To do 

this, the researchers utilized statistical models to examine the relationship between 

these two factors. Results of the study revealed that higher wind speeds can aid in 

enhanced hydropower generation by increasing the amount of water that flows. 

Ntale et al. (2020) performed a study using machine learning models to analyse 

the impact of precipitation on hydropower output in Uganda. The findings indicated a 

noteworthy connection between rain magnitude and hydropower output, with 

diminishing of as much as 40% when weather conditions were drier. This research 

could aid in assisting energy companies anticipate reductions in hydropower 

production when arid eras come about. 

A study by Nzeadibe et al. (2020) explored the renewable energy sources in 

Nigeria by comparing the potential of hydropower and non-hydropower renewable 

energy sources, the study utilized data provided by the Nigerian Meteorological 

Agency. The article concluded that solar and wind energy were plentiful enough in the 

region to drive a successful alternative energy system. 

 

2.3 Energy Issues - Hydropower and Non-hydropower of Africa (Hydropower, 

Non-hydropower)  

In Africa, electricity supply is largely inadequate and unevenly distributed, and 

is a major challenge to socio-economic development. Recently, growth and 

development in Africa have been accelerating at a rapid rate, thus further increasing 

the energy demand in the continent. However, numerous problems in the energy sector 

exist for the African countries, such as a lack of appropriate infrastructure, inadequate 

administration, and the climate consequences of global warming. In light of these 

difficulties, this research aims to explore the challenges and opportunities associated 

with the production of hydropower and non-hydropower energy in Africa. Through 

describing the current state of the energy sector and identifying potential solutions to 
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the obstacles, this literature review will showcase how Africa could optimally meet its 

energy requirements. 

Hydropower is seen as the most favoured source of renewable energy across 

the continent of Africa. As per the International Hydropower Association, the potential 

to generate above 400 gigawatts of energy from hydropower lies in Africa. 

Regrettably, just a fragment of this potential has been beneficial due to the constraints 

of its own sector. One of the leading challenges is the consequence of the climate 

change on the hydro-production, which may result in depleted water availability and 

subsequent transformation in the period and power of precipitation. This can lead to 

minimized hydroelectricity production or even to the full closure of the hydro-power 

plants, particularly during dry spells. 

Research has been conducted regarding the effects of climate change on 

hydropower in Africa. According to the research executed by Lazin (2020), a decrease 

in the average annual hydropower production by 16% by 2100 can be expected due to 

future climate change. Another study conducted by Guo et al. (2018) focused on the 

impact of climate change on the hydropower potential of the Zambezi River Basin. 

The results suggested that climate change could potentially reduce the hydropower 

potential of the basin by 25% at the end of the century. 

Generation of electricity in Africa can often be supplied through sources other 

than hydropower. Fossil fuels are the most popular choice for African nations, yet their 

use is not conducive to a sustainable future, as this can have detrimental health and 

environmental effects. The renewable sources of energy that provides a sustainable 

and reliable energy are geothermal energy, solar energy, and also the wind energy 

which are the common electricity generation used in Africa. However there is a 

difficulties to implement these sources due to its investment demand expense and also 

the inappropriate regulations and lows. Also there is a need to implement strong policy 

ad regulations agendas to encourage the development of the renewable energy sources 

in the African continent. 

A study discovered the potentials of the non-hydropower electricity in the 

continent. Amuakwa Mensah et al. (2017) analysed the stability and sustainability of 

the solar and wind energy production in Ghana, the study concluded that the analysis 

of the electricity sources that the Ghana needs could be produced by using these energy 

sources. A study by Oyedepo (2017) looked at the potential of geothermal energy as 

a sustainable source for East Africa, suggesting the need for exploration and 
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development in order to maximize its power potential. In addition, Yamba et al. (2011) 

assessed the vulnerability of hydropower generation in the Zambezi River Basin to 

climate change by using a hydrological model. This showcased the gravity of climate 

impact, which could result in reduction of hydropower by up to 33% by 2050. 

A study by Yohannes et al. (2018) explored the influence of global warming 

on wind power potential in Ethiopia. Their results demonstrated that increasing 

temperatures and modifications to precipitation patterns might have a notable negative 

impact on Ethiopia's wind power potential, which would hinder energy protection and 

economic growth. Apart from climate change, other aspects such as policy, 

infrastructure and investment also play an essential role in the development of 

hydroelectricity and other forms of electricity in Africa. Mekonnen et al. (2022) 

conducted another study to ascertain the effects of climate change on the hydropower-

dominated energy system in Ethiopia, finding that government assistance, 

infrastructure advancement and financing were important factors for the victory of 

hydroelectricity projects. 

Finally, electricity generation from both hydropower and non-hydropower 

sources is a crucial component of energy in Africa; yet, both face significant issues. 

For instance, hydropower is vulnerable to the effects of climate change, while non-

hydropower sources are constrained by industry roadblocks and insufficient 

investment. To address these needs in a successful and equitable manner, it is essential 

to invest more in renewable energy sources and improve the legal and regulatory 

structures to back their growth. 

 

2.4 Energy issues by using Machine Learning  

The production of energy in Africa is highly sensitive to climate variability 

and change, therefore it is important to comprehend the link between climate 

parameters and the formation of energy. In recent years, machine learning models have 

come to the fore as successful approaches for analyzing immense datasets and 

predicting intricate connections. By this literature review, we explore how machine 

learning models have been employed to understand the impacts of climate parameters 

on hydropower and non-hydropower electricity creation in Africa. 

Alemayehu et al. (2021) put forth the use of Multi-Layer Perceptron Neural 

Network (MLPNN) for predicting the hydropower potential of the Nile basin and 

found that it outperformed other models such as linear regression and Artificial Neural 
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Network (ANN). Likewise, Faruk and El-Sayed (2021) used Radial Basis Function 

(RBF) for predicting the hydropower potential of a river basin in Nigeria and reported 

that RBF was more effective compared to models such as support vector regression 

and ANN. Additionally, Zhu et al. (2021) employed MLPNN and RBF to estimate the 

influence of climate parameters, like temperature, precipitation and wind speed, on 

hydropower production in Zambia. The results ascertained that temperature and 

precipitation had a marked effect on hydropower production whereas wind speed had 

a negligible effect. Evidently, the machine learning models can be advantageous in 

pinpointing potential hydropower sites across Africa. 

Exploring the potential of Machine Learning (ML) algorithms, the effect of 

climate components on electricity production, both hydropower and non-hydropower, 

have been analysed in Africa.In a study by Li et al. (2019), a MLPNN was employed 

to determine the impact of climate phenomena such as temperature, humidity, wind 

speed, and precipitation on hydropower output in Zambia. Meanwhile, Zhang et al. 

(2021) looked at the influence of climate parameter on non-hydropower electricity 

production in Africa, using not just an MLPNN, but also a Multiple Linear Regression 

(MLR) model. The outcomes of the investigation proposed that temperature average, 

temperature maximum, and relative humidity had the most extreme consequence on 

the yield of electricity not associated with hydropower. Comparatievly, temperature 

and precipitation caused a considerable effect on hydropower output. 

Mathematical models such as multiple linear regression (MLR) have been 

employed to evaluate the linkage between climate parameters and the production of 

both hydropower and non-hydropower electricity in Africa. Alimi et al. (2020) applied 

MLR to inspect the consequences of climate factors on hydropower production in 

Nigeria and came to the decision that temperature and precipitation had an undeniable 

bearing on hydropower generation. Ouedraogo et al. (2019) also exploited MLR to 

analyse the effect of climate parameters on non-hydropower electricity production in 

Burkina Faso. This research observed that temperature and precipitation had the most 

profound impact on non-hydropower electricity production.  Similarly, Hossain et al. 

(2020) used the MLR model to examine the impact of climate parameters on solar 

energy production in Ghana. The findings showed that temperature and precipitation 

had a marked effect on solar energy production, whereas wind velocity had a minimal 

influence. 
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Statistical analysis using methods such as R Squared (RSQ) and Root Mean 

Square Error (RMSE) have been used to evaluate the performance of machine learning 

(ML) models when applied to the analysis of energy-related issues. Amos and Wu in 

2021 utilized MLPNN and MLR to examine how climate parameters affect 

hydropower production in Ghana - the results recovered demonstrated that MLPNN 

had exceeded MLR in predictions of hydropower production, and the trends of RSQ 

and RMSE displayed that MLPNN presented a higher accuracy than MLR. 

The utilization of Machine Learning (ML) models has demonstrated 

significant potency in evaluating the influence of climatic conditions on energy 

production in Africa, ranging from non-hydropower to hydropower energy sources. 

Neural Network Models (MLPNN), Radial Basis Function (RBF) and Multiple Linear 

Regression (MLR) provide useful empirical evidence to predict energy output with 

both temperature and precipitation as the major determinants. Additionally, statistical 

models such as Root-mean Square Error (RMSE) and R-squared (RSQ) have been 

applied to evaluate the performance of machine learning models. Even though these 

models have shown promising results with synthesizing productive estimations of 

energy production, further research is indispensable to comprehend their 

comprehensive potential of ascertaining energy productivity under various regional 

and climate conditions. 
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CHAPTE III 

Methodology 

 

In this chapter we will discuss the methodologies flowed started from the study 

area, datasets and the empirical models used in the study. 

3.1 Study Area 

The African continent has consistently grown in size and stature but faces a 

major problem in terms of access to reliable and affordable sources of energy. As the 

rate of population increase and the plan for economic growth is continuously 

developing, the demand for power is developing drastically forcing the need for 

efficient energy production to be considered. An understanding of the components and 

effect of electricity production related to hydropower and non-hydropower sources is 

essential to make responsible and sustainable energy plans and policy formulations 

across Africa. The numerous resources can be utilised for this purpose and to 

accommodate for the rising energy requirements of the continent. 

Figure 4  

The map shows the African continent with all African nations, international borders, 

national capitals, and major cities in Africa, (Source: NOP) 

 

In recent years, global climate change has begun to have a serious impact on 

all aspects of life, ranging from the environment and economic development to human 
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well-being. Unfortunately, Africa is no exception to this; the continent is expected to 

suffer particularly greatly due to its reliance on traditional methods of subsistence 

agriculture and other activities that are highly sensitive to alterations in temperature 

and rainfall. Consequently, climate change is set to cause a sharp increase in poverty 

and food insecurity (UN, 2018). Worryingly, Africa additionally does not possess the 

resources or infrastructure to help counter these effects (Kelly et al., 2019). 

Africa is an incredibly diverse area of the world, making it an ideal place to 

investigate how climatic parameters influence both hydropower and non-hydropower 

electricity production. Temperature and precipitation all play a role in the amount of 

water available to power hydropower plants, as well as the need for electricity 

generated by other sources. Africa is the second most populous and second largest 

contingent on the planet, with a population of an estimated 1.3 billion in 2020 

(UNDESA, 2021).  

Spanning across the Mediterranean Sea to the north, the Red Sea and Indian 

Ocean to the east and south, and the Atlantic Ocean to the west, the continent is 

composed of fifty-four sovereign countries - the northernmost being Morocco and 

Tunisia, and the southernmost being the South Africa (World Bank, 2020). 

The nations of the African continent are broken down into five main areas: the north, 

east, west, centre, and south. 

North Africa consists of seven nations: Algeria, Egypt, Libya, Morocco, 

Sudan, Tunisia and Western Sahara. These countries are positioned in the 

Mediterranean Sea, the Red Sea and the Atlantic Ocean. Across North Africa, a 

diversity of climates can be experienced, ranging from scorching desert to balmy 

conditions. 

West Africa consists of sixteen countries: Benin, Burkina Faso, Cape Verde, 

Cote d'Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Niger, Nigeria, 

Senegal, Sierra Leone, Togo, and Mauritania. This region shows a variety of distinct 

cultures and languages. It is a vibrant and diverse region with sites, streets, and people 

of different origins. 

East Africa has established itself in the wildlife and landscape arenas with 

classics such as the Big Five and majestic Mount Kilimanjaro and its plain. Spread 

across thirteen countries which are Burundi, Djibouti, Eritrea, Ethiopia, Kenya, 

Malawi, Mauritius, Rwanda, Seychelles, Somalia, Tanzania, Uganda and South 

Sudan. The area is resplendent with lush rainforests and immense deserts. This is only 
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the beginning of the endlessly wondrous attributes of the land: its home to over 120 

different ethnic groups, each of whom have brought their own customs, cultures, and 

beliefs to the region. From its sprawling coral reefs to its verdant savannas, East Africa 

is a spectacular study in biodiversity. 

Central Africa, composed of nine nations, is recognized for its rainforest, 

untamed animals, and lowlands. These countries consist of Angola, Cameroon, 

Central African Republic, Chad, Democratic Republic of Congo, Equatorial Guinea, 

Gabon, Republic of Congo, and Sao Tome and Principe. 

Southern Africa consists of nine countries including Botswana, Lesotho, 

Namibia, South Africa, Swaziland, Zambia, Zimbabwe, Mozambique, and 

Madagascar, Comoros. Its landscape is marked with sizable deserts, verdant savannas, 

different species of wildlife, and subtropical climes. 

 

3.2 Datasets 

Since there are not many African-specific datasets, researchers have had to 

resort to using data from other dataset around the globe to investigate the impacts of 

climate parameters on hydro- and non-hydropower electricity production in Africa. 

This approach has enabled them to draw insights from the gathered datasets and draw 

conclusions that are applicable. 

For this research, two primary databases will be utilized for data collection: 

NASA's Prediction of Worldwide Energy Resources (POWER) and U.S. Energy 

Information Administration (eia), with data from 1981 through 2021. These sources 

of dataset were combined to create a unified dataset of climatic parameters at annual 

level for each country in Africa, along with their corresponding production of 

electricity from hydropower and non-hydropower sources. With this aggregated 

information, the collective effects of climate factors on energy production in Africa 

will be analysed. 

 

3.3 Satellite Data 

Utilization of satellite data is essential for evaluating the contrast between 

energy generated from hydropower and that generated from other sources in Africa in 

addition to other parts of the world. Two major sources of satellite datasets which can 

be utilized in light of electricity and climate are NASA Prediction of Worldwide 

Energy Resources (POWER) and U.S. Energy Information Administration (eia) 
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database. Through said data, a better understanding of the global and regional climate 

conditions and its impact on hydropower and non-hydropower electricity generation 

can be unearthed. 

The NASA POWER dataset is a source that utilizes satellite data to observe 

the climate parameters and nearby land surfaces worldwide. The accumulated climate 

observations in combination with global climate models can generate estimates of 

monthly average electric demand and emittance of power plants. Analysing the 

climate parameters effects on hydropower and non-hydropower electricity generation 

can be monitored according to the data retrieved from the satellites. 

The U.S. Energy Information Administration (EIA) is a reliable source of 

energy-related data collected from satellites. This data can be used to assess the 

utilization and generation of energy among the globe, particularly in Africa. The 

records allow patterns of energy consumption and output to be established, which can 

then be used to detect any changes induced by climatic conditions to hydro- electrical 

and non-hydro- electrical production. 

Utilizing satellite data can be extremely beneficial in monitoring changing 

climate conditions in Africa. Gathering information on parameters such as 

temperature, precipitation, wind speed and solar radiation can enable researchers to 

analyze changes in hydropower resources and compare electricity production through 

hydropower and non-hydropower sources. NASA's POWER and eia data banks are 

great sources of data for worldwide research, and by juxtaposing these datasets 

localized insights can be gained. This analysis is even more critical now as climate 

change can have significant effect on energy production. 

 

3.4 Accuracy of satellite products 

Analyzing the accuracy of satellite products from sources such as NASA's 

Prediction of Worldwide Energy Resources (POWER) and the U.S. Energy 

Information Administration (eia) databases is critical for a proper comparison through 

a global perspective when looking at hydropower and non-hydropower sources of 

electrical generation, as the climate conditions that characterize the African continent 

can have a direct effect on the production of power. 

Analyzing the accuracy of satellite products against in-situ data in Africa is an 

important task. Such an analysis could compare the satellite-derived values for 

temperature maximum and minimum, relative humidity, wind speed and precipitation 



39 
 

with those derived from manual measurements taken on-site using temperature and 

humidity sensors, wind vanes and precipitation gauges. It could also involve looking 

to see if there is a long-term consistency in terms of spatial and temporal trends with 

the satellite-derived estimates, to ensure that they are accurate over a long period. 

Through this type of assessment, Koumandou et al. (2020) demonstrate the importance 

of assessing the accuracy of satellite products against statistical data from the region. 

The accuracy of satellite products in monitoring climate-related changes in 

terms of their ability to detect changes in variables which affect electricity production 

in Africa will be assessed. For instance, the data from the satellites as opposed to the 

measurements on-site can be probed as methods for monitoring alterations in climate 

factors including temperature avrage, temperature maximum, temperature minimum, 

relative humidity and wind speed. The accuracy of satellite-generated estimations of 

these parameters can then be reviewed against on-site recordings. 

In conclusion, viable data about the effects of a contrast between 

hydroelectricity production and non-hydroelectric interest in Africa can be acquired 

from usable satellite items, such as those accessible from NASA's Prediction of 

Worldwide Energy Resources (POWER) and the U.S. Energy Information 

Administration (eia) datasets. Estimations of this kind of data are key to improving the 

exactness of environmental models and anticipating instruments whose dependability 

and soundness depend vigorously on how precisely the variables and models are 

depicted. 

 

3.5 Empirical Models  

In this research, two machine learning models employed, Multi-layer 

Perceptron Neural Network (MLPNN) and Radial Basis Function (RBF), were used 

to analyse the impact of climate parameters on hydropower and non-hydropower 

electricity production in the African continent. These models were then compared to 

the results from the traditional mathematical models such as multiple linear regression. 

The climate parameters analyzed in the study included temperature average, maximum 

and minimum, relative humidity, wind speed, and precipitation.  

The datasets were divided into training and testing sets with 80% of the data 

for the training set and 20% for the testing set. The results of the MLPNN and RBF 

models were compared against the results generated from the mathematical models to 
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determine which climate parameters had the most influence on the electricity 

production. 

The success of the two machine learning models is measured using Root Mean 

Square Error (RMSE) and coefficient of determination (R-Squared). The distinctions 

between the prediction accuracy of the two machine learning models and the 

capabilities of mathematical and statistical models are examined in the context of 

electricity production throughout the African continent. The findings of this study can 

help in enhancing understanding and assessing hydropower and non-hydropower 

electricity production in Africa. 

Figure 5  

Shows the Flowchart of the models of the study. 

 

 

3.6 Artificial Neural Networks (ANN) 

Artificial neural networks (ANNs) are advanced computational models that are 

capable in expressing complex and non-linear datasets. They are made up of connected 

sets of nodes that imitate the estimation of neurons in the brain and are utilized mostly 

in data categorization and prediction tasks. They are greatly analogous to other data 

assessment approaches such as linear regression and logistic regression, the main 

distinction being that they have the capability to represent complex and non-linear 

correlations (Kassem & Gökçekuş 2021). 
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The use of Artificial Neural Networks (ANNs) to anticipate future energy 

output from hydroelectric and non-hydroelectric sources in Africa is a viable solution. 

The ANN model analyses a range of climate-related factors such as latitude, longitude, 

altitude, annual values of temperature average, temperature maximum, temperature 

minimum, relative humidity, wind speed and precipitation.  

The performance of predicting future energy production in Africa can be 

improved through the use of Artificial Neuron Networks. These systems can be 

categorized into two major groups, Multi-Layer Perceptron Artificial Neural Networks 

(MLPNN) and Radial Basis Function (RBF). Climate parameters such as precipitation, 

temperature, wind speed, humidity levels, and obstacles to economic development are 

all taken as inputs to the model. From this, the output of electricity generated from 

hydro-generated sources and other sources can be estimated. By using Artificial 

Neurons Networks, the accuracy of predictions of future energy production can be 

greatly improved. 

MLPNN is a feed forward neural network system, which allows data flow in 

one direction only, from input to the output phase. RBF neural networks are non-

linear, meaning that the neuron weights can affect the results. (Viljoen et al., 2019). 

 

3.6.1 Multi-Layer Perceptron Neural Network (MLPNN) 

The multi-layer perceptron neural network (MLPNN) is a form of artificial 

neural network for creating models of complicated and non-linear processes in the 

practical world (Xu et al. 2022). It is composed of an output layer, one or multiple 

concealed layers and an input layer (Kavzoglu and Mather 2003, Kassem, Y. 2023). 

These components take up particular jobs that when joined together can create 

profound learning calculations for tackling complex issues such as picture observation 

and sound handling tasks. 

The MLPNN is used for function modelling when we have two predicted 

variable which can be represented by the equation: 

MLPNN with Hyperbolic Tangent (Tanh) Activation Function: 

Y1 = b11  +  ∑ (w11i  × tanh (b10 +  ∑(w10ij  ×  Xj)))                                          (1) 

Y2 = b12  +  ∑ (w12i ×  tanh (b10 +  ∑(w10ij  ×  Xj)))                                          (2) 
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Y1 and Y2 are predictive variables, with Xj being the input variables. Weights 

representing the connection between the input layer and the hidden layer are w10ij and 

w11i, and the link between the hidden layer and output layer is depicted by w12i.  B10, 

b11, and b12 denote the bias terms for the hidden layer as well as output layers linked 

to the each observed predictive variable. 

MLPNN with Sigmoid Activation Function: 

Y1 = b11  + ∑ (w11i  ×  sigmoid (b10  +  ∑(w10ij  ×  Xj)))                               (3) 

Y2 =  b12  + ∑ (w12i  ×  sigmoid (b10  +  ∑(w10ij  ×  Xj)))                                  (4) 

Y1 and Y2 are the predicted variables, and Xj is the input variable. The weights 

between the input and hidden layers for each of the predicted variables are denoted as 

w10ij and w11i, while those between the hidden and output layers are represented as 

w12i. Lastly, the bias terms for the hidden and output layers for each of the predicted 

variables are specified as b10, b11, and b12. 

MLPNN with Identity Activation Function: 

Y1 = b11  + ∑ (w11i × (b10  +  ∑(w10ij  ×  Xj)))                                                    (5) 

Y2 = b12  + ∑ (w12i  × (b10  + ∑(w10ij  ×  Xj)))                                                (6) 

The intertwined layers of the Neural Network are modelled with the following 

equation: Y1 and Y2 are the predicted variables, while Xj denote the input variables. 

The weights between the input layer and the hidden layer for each predicted variable 

are defined as w10ij and w11i, and those between the hidden layer and the output layer 

are named w12i. Further, b10, b11, and b12 specify the bias terms for the hidden layer 

and output layer for each predicted variable. 

The Root Mean Square Error (RMSE) is often used as the objective function 

during training of the Multi-Layer Perceptron Neural Network (MLPNN). In order to 

optimize its performance, the Back Propagation algorithm is employed. The diagram 

below demonstrates the analytics utilized for the MLPNN model:  

Figure 7: Shows the results of the analysis of the MLPNN model the deference in 

between observed and predicted values. 

The MLPNN model can be used to analyse the hydropower and non-

hydropower electricity production in Africa with the help of machine learning models 

together with mathematical and statistical models (Mukhopadhyay, 2017; Akintunde 
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et al., 2018; Chanko et al., 2019). This analysis involves the climatic parameters such 

as temperature average, temperature maximum, temperature minimum, relative 

humidity, wind speed, and precipitation to determine the climate parameter that is the 

main contributor to hydropower and non-hydropower electricity production in Africa 

(Chen et al., 2021).  

The MLPNN can be used to evaluate the relations between climatic parameters 

and electricity production from different sources, and then the performance of the 

MLPNN can be compared to that of other models with the application of mathematical 

and statistical analysis. The results of this research can embark on informing policy 

decisions on the approaches best suited to enhance or preserve electricity production 

in Africa. 

 

3.6.2 Radial Basis Function Neural Network (RBFNN) 

RBF Neural Networks (RBFNNs) can provide an effective means of detecting 

relationships between climate parameters and electricity generation, particularly for 

the comparison of Hydropower and Non-hydropower in Africa (Hussain et al., 2021). 

The architecture of an RBFNN consists of three layers: input, hidden and output. In 

the hidden layer, the radial basis function (RBF) is employed and a linear function is 

utilised in the output layer, (Ismael et al., 2021). 

Through the data gathered, weights can be generated for the testing stage to 

evaluate the model's accuracy. 

These weights are calculated by two equations: 

Calculate the weights for the hidden layer:  

The weights for the hidden layer determine the importance of each input feature for 

the RBFNN. We use the Gaussian RBF to calculate the weights for the hidden layer: 

wji = exp (−γ ||xi  −  cj||
2

)                                                                                             (7) 

Where wji is the weight between the ith input and the jth hidden unit, xi is the ith input, 

and cj is the center of the jth RBF. The parameter γ determines the width of the RBF.  

The hidden layer consists of n radial basis functions, with each RBF centered at a 

different point in the input space. The weights for the hidden layer are calculated using 

the Gaussian RBF for each input feature. (Kassem, Y. 2023) 

Calculate the weights for the output layer:  
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The weights for the output layer determine the relationship between the hidden layer 

output and the target values for the training data. We use the pseudo-inverse of the 

hidden layer output to calculate the weights for the output layer: 

W = pinv(H) × Y                                                                                                                 (8) 

Where W is the weight matrix for the output layer (2 x m), H is the matrix of the 

hidden layer output (n x m), Y is the matrix of target values for the training data (n x 

2), and pinv(H) is the pseudo-inverse of H. (Hansen and Daviau, 2021) 

In simpler terms, we use the hidden layer output matrix (H) and target values matrix 

(Y) to calculate the weight matrix (W) for the output layer using the pseudo-inverse 

operation. (Löfberg and Kennedy, 2022) 

Once we have calculated the weights for the hidden and output layers, we can use the 

RBFNN to predict the output for new input data using the following equation: 

Y = W ×  φ (||x −  C||
2

)                                                                                                  (9) 

Where Y is the output vector (2 x 1), W is the weight matrix for the output layer (2 x 

m), φ(||x - C||²) is the vector of RBF outputs for the input x, and C is the matrix of RBF 

centers (m x p). 

RBFNNs boast many advantages, such as universal approximation abilities, 

not having a local minimum problem, and a faster learning algorithm. This makes it a 

great tool to identify and analyze the correlations between climate parameters and 

electricity production, and subsequently compare the impact of climate parameters on 

Hydropower and Non-hydropower electricity production in Africa (Diagne et al., 

2017; Koussoni et al., 2019). 

 

3.7 Multiple Linear regression (MLR) 

The Multiple Linear Regression (MLR) model can be used to analyze the 

relationship between the various climatic parameters and the electricity generation 

through hydropower and non-hydropower sources in Africa. The explanatory or 

independent variables in this analysis include the average temperature, maximum 

temperature, minimum temperature, relative humidity, wind speed and precipitation. 

The dependent variable is the electricity production using hydropower or non-

hydropower sources. The objective is to ascertain which climatic factor yields the most 

pronounced outcome on electricity generation (Shang et al., 2017). 

Y = β0  +  β1 × 𝑋1  + ⋯ +  βn × 𝑋n                                                                            (10) 
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The MLR equation can be used to calculate the parameters β0 through βn, which will 

give us the linear equation for the electricity production. These parameters can then 

be used to predict the electricity generation for hydropower and non-hydropower 

sources in a given region.  

Where Y: Dependent variable or response variable, 

β0: Intercept or constant term, 

β1, β2... βn: Regression coefficients or slopes for the independent variables X1, X2, Xn. 

X1, X2... Xn: Independent variables or predictors. 

n: 1,2,3……..n. 

The results from the multiple linear regression (MLR) analysis can be 

compared to the results from other predictive models, such as MLPNN and RBF, in 

order to discover which climatic parameter have the most significant impact on 

electricity production in Africa. This comparison of models will enable further 

understanding that can inform efficient policy decisions related to energy production 

across the continent. 

 

3.8 Statistical Analysis 

The Coefficient of determination (R2) and root mean squared error (RMSE) 

are used to determine the statistical indices of the predictive models for Hydropower 

and Non-hydropower electricity Production in Africa. These indices indicates how 

close the model is to the actual data in order to measure the accuracy of the prediction.  

In order to assess the performance of the models devised in order to predict the 

hydropower and non-hydropower production in Africa, Coefficient of determination 

(R ^ 2) and root mean squared error (RMSE) are adopted. These indices of statistical 

used to evaluate the accuracy of the model to the data. So, the observed values and 

predicted values are compared mostly by these methods. The calculation equations for 

these statistical metrics are written in Eqs. (11) and (12). They are used to analyse the 

capability of mathematical models and empirical models to make a predictions to the 

energy production in Africa. 

 

3.8.1 R-squared (RSQ) 

R-squared also known as the coefficient of determination denoted by (R2) is a 

broadly used statistical metric to assess the performance and the accuracy of the 

generated empirical models. R-squared is a measure that explains the degree of 
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variation in the observed data, while the higher value indicates the better performance 

of the model. Gökçekuş and Kassem (2021) showed that as the R-squared value 

increases and the root mean square error decreases, thus it reflects a more accurate 

model. The best model performance approach is for the R-squared close to one, while 

the root mean squared error is close to zero. This statistical indices can help compute 

the accuracy of the predicted hydro and non-hydro electricity generation in Africa. 

𝑅2 = 1 −
∑(yi −  ŷi)2

∑(yi −  ȳ)2
                                                                                                     (11) 

Where yi is the observed value of the observed data, ŷi is the predicted value in the 

analysis, and ȳ is the mean of the observed values of the model. 

The R-squared is utilised to analyse the accuracy and the performance of the 

observed set of data points. The R-squared value is a measure that ranges from 0 to 1, 

the higher value close to 1 the higher the accuracy of the model of the observed data 

as describes. The value which is close to 0 indicates that the model doesn’t has a 

descriptive power, while the one close values performs the correspondence between 

the models and the data points. 

 

3.8.2 Root Mean Square Error (RMSE) 

RMSE- Root mean square error is an important statistical metric that employed 

to assess the performance and accuracy of a regression model. It functions as a tool 

for estimating the average discrepancy between predicted values and observed values 

from the dependent variable.  

The RMSE can be used to analyse and evaluate the adequacy of the model as well as 

the degree of the data fit to the model. This calculation can be done by utilizing the 

following equations: 

RMSE =   

√ ((
1
n) ∑ (yi  −  ŷi)2𝑛

𝑖=1 )

(
1
n) ∑ (ŷi)2𝑛

𝑖=1

                                                                             (12) 

Where n is the number of observations, yi is the actual value of the dependent variable, 

and ŷi is the predicted value of the dependent variable. 

RMSE- Root mean square error is utilized to analyse the difference between 

the observed and predicted values in different empirical models. The value of the 

RMSE usually is in between 0 to infinity, with the lowest and closes to zero is the 
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most accurate model. Regardless its benefits of being a sensitive to the out layers, the 

RMSE can be affected by the measure of the dependent variable. To describe this, a 

normalization techniques can be used to ensure the errors made by the indecisive. 
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CHAPTER IV 

Discussion and Results 

 

This chapter will discuss the results, training of the models, testing of the 

models and the discussion. 

4.1 Characteristics of satellite data 

4.1.1 NASA Prediction of Worldwide Energy Resources (POWER): 

The NASA POWER database is a wide-ranging assembly of global 

meteorological and solar energy related data established from away observations, 

atmospheric and climate station information, and models. It offers a broad gathering 

of climatic points of interest, like temperature, humidity, wind speed and precipitations 

which are essential for understanding the impact of climate parameters on producing 

electricity. The dataset provides researchers with accessible climate data that are 

steady and trustworthy for various regions. Particularly, it covers a wide range of areas 

in Africa. 

 

4.1.2 U.S. Energy Information Administration (EIA) Database: 

The U.S. Energy Information Administration (EIA) owns an extensive 

database with energy-focused data. This database is beneficial for many researchers, 

especially when comparing and studying electricity production trends in various 

geographic zones across Africa. Furthermore, scientists are able to apply climate-

based data alongside the energy production data from the U.S. EIA to identify the 

correlations between climate parameters and electricity production levels in different 

regions. Exploring these influences is essential for garnering a better understanding of 

how the climate and electricity production are linked. 

 

4.1.3 Data Accessibility and Availability: 

NASA POWER and the United States Energy Information Administration 

(EIA) make commonalities of data available to the public surrounding satellite and 

energy-related topics. From this datasets, a substantial quantity of data is easily 

obtainable. These datasets are observed as reliable and appropriate by the scientific 

community, thus making them available to the research community to work on them. 

For instance, one can utilize machine learning, mathematical, and statistical models to 

better understand the impact of climate change on the generation of electricity 
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production from hydropower and non-hydropower sources in Africa. Consequently, a 

more comprehensive understanding of their relationship can be accomplished. 

 

4.2 Dataset Split:  

The dataset is divided into two sections, a training set and a testing set. During 

the training set of the models, only the training set will be utilised; the testing set 

remains unseen. The training set is used to help model the information and instruct the 

algorithm while the unseen testing set is left to evaluate the strength of the final model. 

 

4.2.1 Training  

For training purposes, 80% of available data is used to train models. When 

exposed to the training dataset, machine learning models adjust parameters and 

optimize them to decrease errors between the predicted and observed electricity 

production values. In the training phase, MLPNN and RBF carry out an iterative 

process to achieve accuracy based on the training data (Forootan, 2022). Moreover, 

MLR model captures relationships between climate parameters and electricity 

production by calculating coefficients (Adam Hayes, 2023). The coefficients are 

modulated using mathematically calculated training data. 

 

4.2.2 Testing  

Once the models have been trained and validated, they can be tested using the 

remaining 20% of the data, which contains unseen material. The aim of this testing is 

to determine the models' capabilities with regards to generalization and their accuracy 

when predicting electricity production according to climate factors. Evaluation of the 

models' performance on the testing set will allow for comparisons to be made in order 

to determine the most effective model. 

Performance metrics such as the coefficient of determination (R-squared) and 

root mean squared error (RMSE) can be used to assess the accuracy and predictive 

power of the models. These metrics help to measure the ability of the models to capture 

the relationship between climate parameters and electricity production (Che Wan 

Zanial, et al, 2023). They provide a better understanding of the models' ability in 

predicting electricity production. 
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4.3 MLPNN 

4.3.1 Input Variable selection using MLPNN 

The selection of input variables for the Multi-layer Perceptron Neural Network 

(MLPNN) is a key element of the analysis of the effects of climate on hydroelectric 

and non-hydroelectric electrical power in Africa. The data necessary for the study was 

sourced from the NASA World Energy Resources Prediction (POWER) and the US 

Energy Information Administration (eia) databases. Gathering a useful dataset of input 

variables for the MLPNN model is an important part of the overall evaluation. 

In this study, the efficacy of using MLPNN to evaluate the impact of the 

climate parameters, input parameters such as LAT, LONG, ALT, Y, TAV, RH, WS, 

TMAX, TMIN and PRE are used to determine the most important parameters. To 

obtain the most effective models, 1023 MLPNN models with various input 

combinations were produced and the performances or the accuracy of these models 

were monitored by using statistical indices. It was discovered that the Hyperbolic Tan 

Function (Tanh) was the most suitable activation function, and the number of neurons 

ranged from 2 to 7. 

Case 1: One Input 

For this experiment, the inputs were individually tested on 10 different 

MLPNN models (MLPNN#1 to MLPNN#10). By analysing the resulting R-squared 

and RMSE values, MLPNN#6 yielded the most satisfactory results while the rest of 

the models did not produce as accurate of an estimation. 

Case 2: Two Input 

By combining two inputs together, a total of forty-five different models were 

created and the influence of each combination on Hydropower and Non-hydropower 

was analysed. The model MLPNN#14 which used a combination of LAT TAV gave 

the best estimation among the results, while the other combinations showed 

unsatisfactory results. 

Case 3: Three Input 

By combining three inputs together, a total of One Hundred and twenty 

different models were created and the influence of each combination on Hydropower 

and Non-hydropower was analysed. The model MLPNN#164 which used a 

combination of TAV TMAX PRE gave the best estimation among the results, while 

the other combinations showed unsatisfactory results. 
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Case 4: Four Input 

By combining four inputs together, a total of Two Hundred and ten different 

models were created and the influence of each combination on Hydropower and Non-

hydropower was analysed. The model MLPNN#375 which used a combination of 

TAV RH TMAX PRE gave the best estimation among the results, while the other 

combinations showed unsatisfactory results. 

Case 5: Five Input 

By inputting five different variables, two hundred and fifty two possible 

combinations were made in order to assess their impact on the hydropower and non-

hydropower predictions. It was determined that the highest value of the R-squared (R-

squared= 0.589371391) and the lowest value of root mean square error (RMSE= 

0.237345008) were produced by the model of MLPNN#389 using the combination of 

[LAT LONG ALT Y TMAX] and MLPNN#415 with the combination of [LAT LONG 

Y RH PRE] also produced (R-squared= 0.613462141) and (RMSE= 0.230731675). 

This data demonstrates that these combinations have provided the best prediction and 

have given the least RMSE in Non-hydropower electricity. 

Case 6: Six Input 

Using six different inputs, two hundred and ten unique combinations were 

generated and their effects on hydropower and non-hydropower predictions were 

identified. The results indicated that the highest R-squared value (R-squared= 

0.618574042) and the lowest RMSE value (RMSE= 0.229362421) were obtained from 

MLPNN#646 model, with combinations of [LAT LONG ALT Y RH PRE]. This 

shows that the best predictions were made with the lowest RMSE in Non-hydropower 

electricity. 

Case 7: Seven Input 

By exploring five inputs with two types of predictions, hydropower and non-

hydropower, it was found that the model of MLPNN#850, MLPNN#883, 

MLPNN#886, MLPNN#904 and MLPNN#909 using the combinations [LAT LONG 

ALT Y TAV RH TMIN], [LAT LONG Y TAV RH WS TMAX], [LAT LONG Y 

TAV RH TMAX TMIN], [LAT ALT Y TAV RH WS TMAX] and [LAT ALT Y TAV 

RH TMIN PRE], respectively, produced the highest value of R-squared (R-squared= 

0.604321282, 0.664036735, 0.666035716, 0.624150666 and 0.599721758) and the 

lowest value of RMSE (RMSE= 0.23429053, 0.216178617, 0.212605051, 

0.227461018 and 0.232571834) respectively. These five combinations gave the best 
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prediction of the highest R-squared and lowest RMSE of all One-Hundred and twenty 

combinations formed. 

Case 8: Eight Input 

A total of Forty-five models were developed with eight input variables and 

analyzed for their effect on hydropower and non-hydropower predictions. The highest 

value of R-squared (R-squared= 0.654396059, 0.639932321, 0.62130158, 

0.632352308, 0.641673789, 0.622045409, 0.603269389, 0.648234231) and lowest 

value of root mean square error (RMSE= 0.294382789, 0.238566747, 0.349209691, 

0.367130644, 0.354559083, 0.227010294, 0.23180498, 0.218547082) were generated 

by the models MLPNN#968, MLPNN#972, MLPNN#974, MLPNN#988 , 

MLPNN#989, MLPNN#1003, MLPNN#1006  and MLPNN#1007, which utilized the 

combination of [LAT LONG ALT Y TAV RH WS TMAX], [LAT LONG ALT Y 

TAV RH TMAX PRE], [LAT LONG ALT Y TAV WS TMAX TMIN], [LAT LONG 

ALT RH WS TMAX TMIN PRE], [LAT LONG Y TAV RH WS TMAX TMIN], 

[LAT Y TAV RH WS TMAX TMIN PRE], [LONG ALT Y TAV RH WS TMIN 

PRE] and [LONG ALT Y TAV RH TMAX TMIN PRE], respectively. From the 

evaluation of both parameters, the mentioned models were seen to provide the best 

predictions and Highest R-squared, respectively. 

Case 9: Nine Input 

Ten different Combinations of Nine inputs were analyzed for their effect on 

Hydropower and Non-hydropower predictions. The best results were found in the 

models MLPNN#1013, MLPNN#1014, MLPNN#1015, MLPNN#1016, 

MLPNN#1019 and MLPNN#1022, which both combined [LAT LONG ALT Y TAV 

RH WS TMAX TMIN], [LAT LONG ALT Y TAV RH WS TMAX PRE], [LAT 

LONG ALT Y TAV RH WS TMIN PRE], [LAT LONG ALT Y TAV RH TMAX 

TMIN PRE], [LAT LONG ALT TAV RH WS TMAX TMIN PRE] and [LONG ALT 

Y TAV RH WS TMAX TMIN PRE] respectively. The highest R-squared value (R-

squared =0.625358049, 0.581911813, 0.62467095, 0.654301524, 0.620161597, 

0.583849993) and the lowest RMSE (RMSE = 0.227689307, 0.237546756, 

0.305073175, 0.216524265, 0.360503419, 0.238022752) were produced by the two 

combinations, showing that the best prediction and least amount of RMSE were 

attained. 
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Case 10: Ten Input 

Using the ten variables given, the MLPNN#1023 was formulated and trained 

as well as validated. Results of this process revealed an R-squared of 0.619785345 and 

a RMSE of 0.313671222, as can be seen in Table S1 of the supplementary material. 

Table 1:  

The best 22 combinations of MLPNN Models 

Model 

Number 

MLPNN 

model 
Input to the MLPNN Identification R-squared RMSE 

MODEL 

#1 

MLPNN 

#389 
LAT LONG ALT Y TMAX 

H 0.12743908 0.665804129 

NH 0.589371391 0.237345008 

MODEL 

#2 

MLPNN 

#415 
LAT LONG Y RH PRE 

H 0.036695924 0.685796204 

NH 0.613462141 0.230731675 

MODEL 

#3 

MLPNN 

#646 
LAT LONG ALT Y RH PRE 

H 0.281392422 0.592483484 

NH 0.618574042 0.229362421 

MODEL 

#4 

MLPNN 

#850 
LAT LONG ALT Y TAV RH TMIN 

H 0.448526491 0.520611888 

NH 0.604321282 0.23429053 

MODEL 

#5 

MLPNN 

#883 
LAT LONG Y TAV RH WS TMAX 

H 0.461916058 0.512701046 

NH 0.664036735 0.216178617 

MODEL 

#6 

MLPNN 

#886 
LAT LONG Y TAV RH TMAX TMIN 

H 0.599855682 0.442151175 

NH 0.666035716 0.212605051 

MODEL 

#7 

MLPNN 

#904 
LAT ALT Y TAV RH WS TMAX 

H 0.363744468 0.557419452 

NH 0.624150666 0.227461018 

MODEL 

#8 

MLPNN 

#909 
LAT ALT Y TAV RH TMIN PRE 

H 0.343089286 0.567899704 

NH 0.599721758 0.232571834 

MODEL 

#9 

MLPNN 

#968 
LAT LONG ALT Y TAV RH WS TMAX 

H 0.654396059 0.412573507 

NH 0.390164175 0.294382789 

MODEL 

#10 

MLPNN 

#972 
LAT LONG ALT Y TAV RH TMAX PRE 

H 0.589166026 0.448155763 

NH 0.639932321 0.238566747 

MODEL 

#11 

MLPNN 

#974 
LAT LONG ALT Y TAV WS TMAX TMIN 

H 0.62130158 0.433479613 

NH 0.101097861 0.349209691 

MODEL 

#12 

MLPNN 

#988 
LAT LONG ALT RH WS TMAX TMIN PRE 

H 0.632352308 0.42664366 

NH 0.009919405 0.367130644 

MODEL 

#13 

MLPNN 

#989 
LAT LONG Y TAV RH WS TMAX TMIN 

H 0.641673789 0.419838736 

NH 0.070400892 0.354559083 

MODEL 

#14 

MLPNN 

#1003 
LAT Y TAV RH WS TMAX TMIN PRE 

H 0.487201484 0.501487715 

NH 0.622045409 0.227010294 

MODEL 

#15 

MLPNN 

#1006 
LONG ALT Y TAV RH WS TMIN PRE 

H 0.502870609 0.493610772 

NH 0.603269389 0.23180498 

MODEL 

#16 

MLPNN 

#1007 
LONG ALT Y TAV RH TMAX TMIN PRE 

H 0.504399995 0.492024809 

NH 0.648234231 0.218547082 

 

 



54 
 

Table 1. (Continued) 

MODEL 

#17 

MLPNN 

#1013 

LAT LONG ALT Y TAV RH WS TMAX 

TMIN 

H 0.625358049 0.428876095 

NH 0.620725324 0.227689307 

MODEL 

#18 

MLPNN 

#1014 
LAT LONG ALT Y TAV RH WS TMAX PRE 

H 0.561640661 0.46282139 

NH 0.581911813 0.237546756 

MODEL 

#19 

MLPNN 

#1015 
LAT LONG ALT Y TAV RH WS TMIN PRE 

H 0.62467095 0.42897951 

NH 0.527222218 0.305073175 

MODEL 

#20 

MLPNN 

#1016 

LAT LONG ALT Y TAV RH TMAX TMIN 

PRE 

H 0.525855855 0.485439977 

NH 0.654301524 0.216524265 

MODEL 

#21 

MLPNN 

#1019 

LAT LONG ALT TAV RH WS TMAX TMIN 

PRE 

H 0.620161597 0.431546105 

NH 0.041196704 0.360503419 

MODEL 

#22 

MLPNN 

#1022 
LONG ALT Y TAV RH WS TMAX TMIN PRE 

H 0.430850922 0.528552479 

NH 0.583849993 0.238022752 

 

The most suitable combination of the MLPNN model is demonstrated in Table 1 It 

should be noted that these models have been chosen based on the highest R-squared 

value and the least RMSE, as seen in Figure 7. This table displays the observed and 

predicted values of Hydropower and Non-Hydropower. 

 

Figure 6:  

Illustrates the comparison between the observed and predicted values based on the 

best combination of inputs. 
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4.4 Evaluating Different single empirical models for Hydropower and Non-

hydropower prediction 

The use of Artificial Neural Networks (ANNs) and mathematical regression 

method was investigated to predict hydropower and non-hydropower potential in 

Africa. A total of 1023 Multi-layer Perceptron Neural Network (MLPNN) models 

were created, evaluated, and 22 models were chosen on the grounds of heights values 

of R-squared and lowest values Root Mean Squared Error (RMSE). The effectiveness 

of the suggested methods which included the Multilayer Perceptron Neural Network 

(MLPNN), Radial Basis Function Neural Network (RBFNN) and Multiple Linear 

Regression (MLR) was investigated by various statistical indices. 

 

4.5 RBFNN 

In this research, an Artificial Intelligence system based on Radial Basis 

Function Neural Network (RBFNN) was initiated to appraise the influence of various 

climatic elements on the production of hydroelectricity and non-hydroelectric power 

in Africa. The climatic parameters included in the research were avrage temperature, 

maximum temperature, minimum temperature, relative humidity, wind speed and 

precipitation. To ensure dependable results, the observed data was used to construct 

and fine-tune the RBFNN model instead of relying on the real data itself. Moreover, 

the data was subdivided into training and testing sets for enhanced results. 

The use of Root Mean Squared Error (RMSE) was applied to appraise the 

functioning of a Radial Basis Function Neural Network (RBFNN) model with the 
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purpose of pinpointing the paramount parameters. The prognosticated values of 

hydropower and non-hydropower electricity production were in comparison to the 

observed values. It was found that the synthesis of [LAT LONG ALT Y TAV RH 

TMAX PRE] developed a R-squared value of 0.346. This outcome implies that the 

model had the potential to present an accurate forecast of the data. This investigation 

gives a valuable insight on how climate parameters affect the production of 

hydropower and non-hydropower electricity in Africa, which can be utilized in 

developing strategic decisions in the energy sector. 

Table 2:  

Best combinations of the RBFNN models 

Model 

Number 

RBFNN 

model 
Input to the RBFNN Identification R-squared RMSE 

MODEL 

#1 

RBFNN 

#1 
LAT LONG ALT Y TMAX 

H 0.138455307 0.648605 

NH 0.070345912 0.354264 

MODEL 

#2 

RBFNN 

#2 
LAT LONG Y RH PRE 

H 0.084582795 0.669201 

NH 0.10346895 0.348015 

MODEL 

#3 

RBFNN 

#3 
LAT LONG ALT Y RH PRE 

H 0.227190254 0.61434 

NH 0.094363059 0.350804 

MODEL 

#4 

RBFNN 

#4 
LAT LONG ALT Y TAV RH TMIN 

H 0.250540433 0.604877 

NH 0.139942667 0.340699 

MODEL 

#5 

RBFNN 

#5 
LAT LONG Y TAV RH WS TMAX  

H 0.127937938 0.652551 

NH 0.149811665 0.339588 

MODEL 

#6 

RBFNN 

#6 
LAT LONG Y TAV RH TMAX TMIN 

H 0.220604608 0.616856 

NH 0.112108224 0.346161 

MODEL 

#7 

RBFNN 

#7 
LAT ALT Y TAV RH WS TMAX  

H 0.118925175 0.656239 

NH 0.170776572 0.33454 

MODEL 

#8 

RBFNN 

#8 
LAT ALT Y TAV RH TMIN PRE 

H 0.131970077 0.650989 

NH 0.097923533 0.349923 

MODEL 

#9 

RBFNN 

#9 
LAT LONG ALT Y TAV RH WS TMAX 

H 0.221784228 0.616478 

NH 0.136954785 0.341486 

MODEL 

#10 

RBFNN 

#10 
LAT LONG ALT Y TAV RH TMAX PRE 

H 0.345509222 0.565316 

NH 0.13408345 0.342004 

MODEL 

#11 

RBFNN 

#11 
LAT LONG ALT Y TAV WS TMAX TMIN  

H 0.257147286 0.602256 

NH 0.118741007 0.346516 

MODEL 

#12 

RBFNN 

#12 
LAT LONG ALT RH WS TMAX TMIN PRE 

H 0.298974249 0.585012 

NH 0.043035191 0.359365 

MODEL 

#13 

RBFNN 

#13 
LAT LONG Y TAV RH WS TMAX TMIN 

H 0.205403255 0.622887 

NH 0.127015262 0.343986 

MODEL 

#14 

RBFNN 

#14 
LAT Y TAV RH WS TMAX TMIN PRE 

H 0.178899145 0.633143 

NH 0.104679581 0.347671 
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Table 2 (Continued) 

MODEL 

#15 

RBFNN 

#15 
LONG ALT Y TAV RH WS TMIN PRE 

H 0.236876252 0.610527 

NH 0.164665494 0.336658 

MODEL 

#16 

RBFNN 

#16 
LONG ALT Y TAV RH TMAX TMIN PRE 

H 0.183006355 0.632355 

NH 0.193221363 0.329957 

MODEL 

#17 

RBFNN 

#17 

LAT LONG ALT Y TAV RH WS TMAX 

TMIN 

H 0.236115577 0.611054 

NH 0.126976564 0.343259 

MODEL 

#18 

RBFNN 

#18 

LAT LONG ALT Y TAV RH WS TMAX 

PRE 

H 0.184179882 0.631172 

NH 0.093225221 0.350945 

MODEL 

#19 

RBFNN 

#19 
LAT LONG ALT Y TAV RH WS TMIN PRE 

H 0.193179599 0.627666 

NH 0.107593447 0.347362 

MODEL 

#20 

RBFNN 

#20 

LAT LONG ALT Y TAV RH TMAX TMIN 

PRE 

H 0.225399288 0.61501 

NH 0.144260078 0.340639 

MODEL 

#21 

RBFNN 

#21 

LAT LONG ALT TAV RH WS TMAX TMIN 

PRE 

H 0.200987403 0.624648 

NH 0.05684451 0.356945 

MODEL 

#22 

RBFNN 

#22 

LONG ALT Y TAV RH WS TMAX TMIN 

PRE 

H 0.172267308 0.6357 

NH 0.183277818 0.332418 

 

Figure 7: ` 

Comparison between observed and predicted values (RBFNN #10, #11, #12) 
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4.6 MLR 

This study used Multiple Linear Regression (MLR) to evaluate the effect of 

diverse climate parameters on the manufacturing of hydropower and non-hydropower 

electricity in Africa. The input variables that were put into the model were latitude, 

longitude, altitude, year, temperature average, temperature maximum, temperature 

minimum, relative humidity, wind speed, and precipitation. Utilizing this model 

enabled the investigation to understand how aspects of climate have an influence on 

electrical production. 

The MLR model was prepared with observed data to forecast the production of 

electricity in Africa. A mathematical equation was formed to forecast the amount of 

electricity produced employing the input factors. The R-Squared metric was utilized 

to appraise the exactness of the model, implying that the MLR model is competent of 
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precisely predicting the production of electricity in Africa with consideration to the 

climate parameters. 

Table 3:  

Regression Equations obtained from MLR for response (Hydropower and Non-

hydropower) 

Model 

Number 

MLR 

model 
Input to the MLR Equation 

MODEL 

#1 

MLR 

#1 
LAT LONG ALT Y TMAX 

H=-

10.288+0.001LAT+0.005LONG+0.0ALT+0.005Y+0.019T

MAX 

NH=-10.281-

0.001LAT+0.0LONG+0.00005394ALT+0.005Y+0.007TM

AX 

MODEL 

#2 

MLR 

#2 
LAT LONG Y RH PRE 

H=-10.832+0.003LAT+0.006LONG+0.006Y-

0.002RH+0.027PRE 

NH=-10.118-0.002LAT+0.00002882LONG+0.005Y-

0.002RH-0.008PRE 

MODEL 

#3 

MLR 

#3 
LAT LONG ALT Y RH PRE 

H=-

10.951+0.004LAT+0.005LONG+0.00009913ALT+0.006Y

-0.001RH+0.024PRE 

NH=-10.149-

0.002LAT+0.0LONG+0.00002583ALT+0.005Y-0.002RH-

0.009PRE 

MODEL 

#4 

MLR 

#4 
LAT LONG ALT Y TAV RH TMIN 

H=-12.332+0.005LAT+0.008LONG+0.0ALT+0.007Y-

0.032TAV+0.005RH-0.022TMIN 

NH=-10.522-0.001LAT+0.001LONG+0.0ALT+0.006Y-

0.02TAV-0.003RH-0..002TMIN 

MODEL 

#5 

MLR 

#5 
LAT LONG Y TAV RH WS TMAX  

H=-11.454+0.004LAT+0.01LONG+0.006Y-

0.061TAV+0.004RH-0.057WS+0.053TMAX 

NH=-10.388-0.001LAT+0.0LONG+0.005Y-0.012TAV-

0.002RH+0.003WS+0.004TMAX 

MODEL 

#6 

MLR 

#6 

LAT LONG Y TAV RH TMAX 

TMIN 

H=-10.318+0.002LAT+0.008LONG+0.005Y-

0.132TAV+0.002RH+0.082TMAX+0.047TMIN 

NH=-10.389-0.001LAT+0.0LONG+0.005Y-0.012TAV-

0.002RH+0.003TMAX+0.0TMIN 

MODEL 

#7 

MLR 

#7 
LAT ALT Y TAV RH WS TMAX  

H=-11.319-0.003LAT+0.0ALT+0.006Y-0.072TAV-

0.001RH-0.052WS+0.035TMAX 

NH=-10.444-0.002LAT-0.00009055ALT+0.006Y-

0.021TAV-0.003RH+0.001WS+0.001TMAX 

MODEL 

#8 

MLR 

#8 
LAT ALT Y TAV WS TMAX TMIN 

H=-11.683+0.001LAT+0.0ALT+0.007Y-

0.039TAV+0.001RH-0.009TMIN-0.001PRE 

NH=-10.448-0.002LAT-0.00009066ALT+0.006Y-

0.019TAV-0.002RH-0.001TMIN-0.008PRE 
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Table 3. Continue  

MODEL 

#9 

MLR 

#9 

LAT LONG ALT Y TAV RH WS 

TMAX 

H=-11.776+0.002LAT+0.012LONG+0.0ALT+0.007Y-

0.1TAV-0.002RH-0.072WS+0.044TMAX 

NH=-10.479-0.001LAT+0.001LONG+0.0ALT+0.006Y-

0.023TAV-0.003RH+.001TMAX 

MODEL 

#10 

MLR 

#10 

LAT LONG ALT Y TAV RH TMAX 

PRE 

H=-11.725+0.003LAT+0.009LONG+0.0ALT+0.006Y-

0.075TAV+0.009RH+0.056TMAX+0.004PRE 

NH=-10.454-0.001LAT+0.001LONG-

0.00009924ALT0.006Y-0.022TAV-

0.003RH+0.002TMAX-0.005PRE 

MODEL 

#11 

MLR 

#11 

LAT LONG ALT Y TAV WS TMAX 

TMIN  

H=-11.542+0.002LAT+0.011LONG+0.0ALT+0.006Y-

0.112TAV-0.061WS+0.59TMAX+0.011TMIN 

NH=-10.746-0.001LAT+0.001LONG-

0.00008044ALT+0.006Y-

0.007TAV+0.002WS+0.0TMAX-0.009TMIN 

MODEL 

#12 

MLR 

#12 

LAT LONG ALT TAV WS TMAX 

TMIN PRE 

H=-0.132+0.003LAT+0.011LONG+0.0ALT+0.011RH-

0.069WS+0.027TMAX-0.042TMIN-0.039PRE 

NH=0.192-0.001LAT+0.001LONG-

0.00005201+0.0RH+0.001WS-0.001TMAX-0.01TMIN-

0.011PRE 

MODEL 

#13 

MLR 

#13 

LAT LONG ALT RH WS TMAX 

TMIN PRE 

H=-10.534+0.003LAT+0.009LONG+0.006Y-0.117TAV-

0.002RH-0.053WS+0.07TMAX+0.035TMIN 

NH=-10.376-0.001LAT+0.0LONG+0.005Y-0.013TAV-

0.002RH+0.003WS+0.004TMAX+0.0TMIN 

MODEL 

#14 

MLR 

#14 

LAT ALT TAV RH WS TMAX 

TMIN PRE 

H=-9.85-0.003LAT+0.006Y-0.128TAV-0.001RH-

0.049WS+0.068TMAX+0.044TMIN-0.053PRE 

NH=-10.344-0.001LAT+0.005Y-0.012TAV-

0.001RH+0.003WS+0.004TMAX+0.00003717TMIN-

0.009PRE 

MODEL 

#15 

MLR 

#15 

LONG ALT Y TAV RH WS TMAX 

PRE 

H=-12.14+0.01LON+0.0ALT+0.008Y-0.065TAV-

0.006RH-0.086WS-0.021TMIN-0.017PRE 

NH=-10.596+0.001LONG-0.00009399+0.006Y-

0.018TAV-0.002RH-0.001WS-0.003TMIN-0.004PRE 

MODEL 

#16 

MLR 

#16 

LONG ALT Y TAV RH WS TMIN 

PRE 

H=-10.378+0.008LONG+0.0ALT+0.006Y-0.153TAV-

0.001RH+0.08TMAX+0.049TMIN+0.009PRE 

NH=-10.597+0.001LONG-0.00009172ALT+0.006Y-

0.018TAV-0.002RH-0.00007186TMAX-0.003TMIN-

0.004PRE 

MODEL 

#17 

MLR 

#17 

ALT Y TAV RH WS TMAX TMIN 

PRE  

H=-10.946+0.001LAT+0.011LONG+0.0ALT+0.007Y-

0.145TAV-0.007RH-0.068WS+0.06TMAX+0.031TMIN 

NH=-10.496-0.001LAT+0.001LONG+0.0ALT+0.006Y-

0.022TAV-0.003RH-0.001WS+0.001TMAX-0.001TMIN 
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Table 3. Continue  

MODEL 

#18 

MLR 

#18 

LAT LONG ALT Y TAV RH WS 

TMAX TMIN 

H=-11.664+0.02LAT+0.011LONG+0.0ALT+0.007Y-

0.1TAV+0.00009903RH-0.074WS+0.046TMAX-

0.026PRE 

NH=-10.453-0.002LAT+0.001LONG+0.0ALT+0.006Y-

0.023TAV-0.003RH-0.001WS+0.002TMAX-0.006PRE 

MODEL 

#19 

MLR 

#19 

LAT LONG ALT Y TAV RH WS 

TMAX PRE 

H=-12.345+0.004LAT+0.011LONG+0.0ALT+0.008Y-

0.063TAV-0.005RH-0.084WS-0.022TMIN-0.013PRE 

NH=-10.513-0.001LAT+0.001LONG+0.0ALT+0.006Y-

0.019TAV-0.002RH-0.002WS-0.002TMIN-0.006PRE 

MODEL 

#20 

MLR 

#20 

LAT LONG ALT Y TAV RH WS 

TMIN PRE 

H=-10.513+0.002LAT+0.008LOMG+0.0ALT+0.006Y-

0.149TAV-

0.001RH+0.078TMAX+0.047TMIN+0.011PRE 

NH=-10.474-0.001LAT+0.001LONG-

0.00009922ALT+0.006Y-0.021TAV-

0.002RH+0.002TMAX-0.001TMIN-0.006PRE 

MODEL 

#21 

MLR 

#21 

LAT LONG ALT Y RH WS TMAX 

TMIN PRE 

H=2.176+0.001LAT+0.011LONG+0.0ALT-0.142TAV-

0.004RH-0.067WS+0.064TMAX+0.031TMIN-0.023PRE 

NH=0.492-0.002LAT+0.001LONG-0.00007167ALT-

0.019TAV-0.002RH+0.001WS+0.004TMAX+0.0TMIN-

0.009PRE 

MODEL 

#22 

MLR 

#22 

LONG ALT Y TAV RH WS TMAX 

TMIN PRE 

H=-10.819+0.011LONG+0.0ALT+0.007Y-0.147TAV-

0.006RH-0.07WS+0.062TMAX+0.031TMIN-0.021PRE 

NH=-10.604+0.001LONG-0.00009484ALT+0.006Y-

0.018TAV-0.002RH-0.001WS+0.0TMAX-0.003TMIN-

0.004PRE 

 

 

Figure 8:  

Comparison between observed and predicted values (MLR #11, #17, #22) 
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4.7 Comparison of ANN models with mathematical regression model.  

The performance of ANN (MLPNN, RBF) models is compared with the 

mathematical models (MLR) to select the best model for predicting the Hydropower 

and Non-hydropower electricity Production in Africa. Various statistical performance 

indices were utilized such as R-squared, and RMSE, to measure the accuracy of the 

models. The R-squared value, ranging from 0 to 1, gives an indication of the variance 

proportion in the observed data and it is highly accepted that the value of R-squared 

be higher than 0.5 (Chicco, et al. 2021). All the proposed models have shown a high 

prediction accuracy and the highest values for R-squared were achieved by the 

MLPNN model. The RMSE indicates an exact match between the observed and 

predicted data when RMSE=0, i.e., an increasingly poor match when RSME>0. The 

MLPNN, RBFNN, and MLR model reported RMSE values ranging between 0.7 and 

0.213, which indicates that the performance rate for these models can be considered 
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Excellent (MLPNN #886) and good respectively. In conclusion, it can be stated that 

the MLPNN model with the combination of key parameters [LAT LONG Y TAV RH 

TMAX TMIN], latitude (LAT), longitude (LONG), altitude (ALT), year (Y), relative 

humidity (RH), temperature average (TAV), temperature maximum (TMAX), 

temperature minimum (TMIN), wind speed (WS), and precipitation (PRE) has given 

the least error compared to other models. 

Table 4:  

Comparison of ANN models with mathematical regression model. 

Statistical 

indices 

Model 

number 
Input to model 

Identifi

cation 
MLPNN RBFNN MLR 

R-

squared 

MLPNN 

#389 
LAT LONG ALT Y TMAX 

H 0.12743908 0.138455307 0.043404734 

NH 0.589371391 0.070345912 0.041102665 

MLPNN 

#415 
LAT LONG Y RH PRE 

H 0.036695924 0.084582795 0.026334128 

NH 0.613462141 0.10346895 0.046748912 

MLPNN 

#646 
LAT LONG ALT Y RH PRE 

H 0.281392422 0.227190254 0.031237394 

NH 0.618574042 0.094363059 0.047952859 

MLPNN 

#850 

LAT LONG ALT Y TAV RH 

TMIN 

H 0.448526491 0.250540433 0.079084691 

NH 0.604321282 0.139942667 0.065507932 

MLPNN 

#883 

LAT LONG Y TAV RH WS 

TMAX  

H 0.461916058 0.127937938 0.169494175 

NH 0.664036735 0.149811665 0.059214823 

MLPNN 

#886 

LAT LONG Y TAV RH TMAX 

TMIN 

H 0.599855682 0.220604608 0.140442752 

NH 0.666035716 0.112108224 0.058727123 

MLPNN 

#904 
LAT ALT Y TAV RH WS TMAX  

H 0.363744468 0.118925175 0.123278651 

NH 0.624150666 0.170776572 0.06417422 

MLPNN 

#909 
LAT ALT Y TAV RH TMIN PRE 

H 0.343089286 0.131970077 0.049610274 

NH 0.599721758 0.097923533 0.064730008 

MLPNN 

#968 

LAT LONG ALT Y TAV RH WS 

TMAX 

H 0.654396059 0.221784228 0.191957841 

NH 0.390164175 0.136954785 0.065612423 

MLPNN 

#972 

LAT LONG ALT Y TAV RH 

TMAX PRE 

H 0.589166026 0.345509222 0.132645219 

NH 0.639932321 0.13408345 0.065833965 

MLPNN 

#974 

LAT LONG ALT Y TAV WS 

TMAX TMIN  

H 0.62130158 0.257147286 0.192581628 

NH 0.101097861 0.118741007 0.062369835 

MLPNN 

#988 

LAT LONG ALT RH WS TMAX 

TMIN PRE 

H 0.632352308 0.298974249 0.147027604 

NH 0.009919405 0.043035191 0.031826603 

MLPNN 

#989 

LAT LONG Y TAV RH WS 

TMAX TMIN 

H 0.641673789 0.205403255 0.176748606 

NH 0.070400892 0.127015262 0.059220716 

MLPNN 

#1003 

LAT Y TAV RH WS TMAX 

TMIN PRE 

H 0.487201484 0.178899145 0.13945374 

NH 0.622045409 0.104679581 0.059787958 
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Table 4: (Continue) 

R-

squared 

MLPNN 

#1006 

LONG ALT Y TAV RH WS TMIN 

PRE 

H 0.502870609 0.236876252 0.158244224 

NH 0.603269389 0.164665494 0.063757023 

MLPNN 

#1007 

LONG ALT Y TAV RH TMAX 

TMIN PRE 

H 0.504399995 0.183006355 0.145123279 

NH 0.648234231 0.193221363 0.063703471 

MLPNN 

#1013 

LAT LONG ALT Y TAV RH WS 

TMAX TMIN 

H 0.625358049 0.236115577 0.197679622 

NH 0.620725324 0.126976564 0.065621262 

MLPNN 

#1014 

LAT LONG ALT Y TAV RH WS 

TMAX PRE 

H 0.561640661 0.184179882 0.19353204 

NH 0.581911813 0.093225221 0.065913139 

MLPNN 

#1015 

LAT LONG ALT Y TAV RH WS 

TMIN PRE 

H 0.62467095 0.193179599 0.161818306 

NH 0.527222218 0.107593447 0.065879759 

MLPNN 

#1016 

LAT LONG ALT Y TAV RH 

TMAX TMIN PRE 

H 0.525855855 0.225399288 0.145826705 

NH 0.654301524 0.144260078 0.065845605 

MLPNN 

#1019 

LAT LONG ALT TAV RH WS 

TMAX TMIN PRE 

H 0.620161597 0.200987403 0.186150817 

NH 0.041196704 0.05684451 0.034227 

MLPNN 

#1022 

LONG ALT Y TAV RH WS 

TMAX TMIN PRE 

H 0.430850922 0.172267308 0.198317556 

NH 0.583849993 0.183277818 0.063762367 

RMSE 

MLPNN 

#389 
LAT LONG ALT Y TMAX 

H 0.665804129 0.648604619 0.683368862 

NH 0.237345008 0.354263714 0.3597154 

MLPNN 

#415 
LAT LONG Y RH PRE 

H 0.685796204 0.669201388 0.689439316 

NH 0.230731675 0.348015237 0.358654786 

MLPNN 

#646 
LAT LONG ALT Y RH PRE 

H 0.592483484 0.614339561 0.687701158 

NH 0.229362421 0.350803826 0.358428225 

MLPNN 

#850 

LAT LONG ALT Y TAV RH 

TMIN 

H 0.520611888 0.604877304 0.670503298 

NH 0.23429053 0.340699069 0.355108269 

MLPNN 

#883 

LAT LONG Y TAV RH WS 

TMAX  

H 0.512701046 0.652551353 0.636740411 

NH 0.216178617 0.339587972 0.356301958 

MLPNN 

#886 

LAT LONG Y TAV RH TMAX 

TMIN 

H 0.442151175 0.61685607 0.647781403 

NH 0.212605051 0.346160527 0.356394299 

MLPNN 

#904 
LAT ALT Y TAV RH WS TMAX  

H 0.557419452 0.6562393 0.654217057 

NH 0.227461018 0.334539857 0.355361585 

MLPNN 

#909 
LAT ALT Y TAV RH TMIN PRE 

H 0.567899704 0.650988642 0.68114871 

NH 0.232571834 0.349923327 0.355256044 

MLPNN 

#968 

LAT LONG ALT Y TAV RH WS 

TMAX 

H 0.412573507 0.616478265 0.628070047 

NH 0.294382789 0.341486387 0.355088415 

MLPNN 

#972 

LAT LONG ALT Y TAV RH 

TMAX PRE 

H 0.448155763 0.565315617 0.650712966 

NH 0.238566747 0.342004028 0.355046317 

 

 

 

 



74 
 

Table 4: (Continue) 

RMSE 

MLPNN 

#974 

LAT LONG ALT Y TAV WS 

TMAX TMIN  

H 0.433479613 0.602255966 0.627827574 

NH 0.34921 0.346516 0.35570401 

MLPNN 

#988 

LAT LONG ALT RH WS TMAX 

TMIN PRE 

H 0.42664366 0.58501171 0.645295387 

NH 0.367130644 0.359365312 0.361451098 

MLPNN 

#989 

LAT LONG Y TAV RH WS TMAX 

TMIN 

H 0.419838736 0.622886794 0.633953362 

NH 0.354559083 0.343986156 0.356300842 

MLPNN 

#1003 

LAT Y TAV RH WS TMAX TMIN 

PRE 

H 0.501487715 0.633142855 0.648153966 

NH 0.227010294 0.347670945 0.35619341 

MLPNN 

#1006 

LONG ALT Y TAV RH WS TMIN 

PRE 

H 0.493610772 0.610526701 0.641038517 

NH 0.23180498 0.336657841 0.355440787 

MLPNN 

#1007 

LONG ALT Y TAV RH TMAX 

TMIN PRE 

H 0.492024809 0.632355142 0.646015321 

NH 0.218547082 0.329956976 0.355450952 

MLPNN 

#1013 

LAT LONG ALT Y TAV RH WS 

TMAX TMIN 

H 0.428876095 0.611053532 0.625842402 

NH 0.227689307 0.343258797 0.355086736 

MLPNN 

#1014 

LAT LONG ALT Y TAV RH WS 

TMAX PRE 

H 0.46282139 0.631172432 0.627457957 

NH 0.237546756 0.350945143 0.355031271 

MLPNN 

#1015 

LAT LONG ALT Y TAV RH WS 

TMIN PRE 

H 0.42897951 0.627665997 0.639676149 

NH 0.305073175 0.347362444 0.355037614 

MLPNN 

#1016 

LAT LONG ALT Y TAV RH 

TMAX TMIN PRE 

H 0.485439977 0.61500956 0.645749483 

NH 0.216524265 0.340638906 0.355044105 

MLPNN 

#1019 

LAT LONG ALT TAV RH WS 

TMAX TMIN PRE 

H 0.431546105 0.624647557 0.630322831 

NH 0.360503419 0.35694519 0.361002746 

MLPNN 

#1022 

LONG ALT Y TAV RH WS TMAX 

TMIN PRE 

H 0.528552479 0.635699978 0.625593545 

NH 0.238022752 0.332417621 0.355439773 

 

The best models are in bold for all the three models based on the highest R-squared 

and the least of RMSE. 

 

Importance of Climate Parameters: 

The analysis revealed that average temperature, maximum temperature, and 

precipitation were the most influential climate parameters for hydropower production. 

While the non-hydropower electricity production, wind speed, temperature average, 

and relative humidity were found to have the most significant impact. 

Machine Learning Models and Mathematical Models: 

When analyzing the prediction of energy production, both MLPNN and RBF 

showed better results than MLR, confirming the supremacy of machine learning 
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models in tackling complex correlations between climate parameters and energy 

production. 

MLPNN turned out to be particularly successful in forecasting energy production, 

getting the best accuracy scores in both hydropower and non-hydropower predictions. 

This indicates the potential of this algorithm in making accurate prognoses. 

Comparative Analysis of Models: 

The performance of machine learning models in comparison to the traditional 

mathematical models reveals the potential of complex algorithmic strategies when it 

comes to predicting relationship between climate parameters and power production. 

They showed greater accuracy and predictive power, thus proving the benefit of using 

cutting-edge models when studying the factors behind climate and energy events. 

MLPNN and RBF demonstrated the ability to capture non-linear relationships between 

climate parameters and energy production, surpassing the limitations of traditional 

mathematical models. 
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CHAPTER V 

Conclusion and Recommendation 

 

This chapter presents conclusions based on the research findings according to 

the objective of the research and gives recommendations accordingly. 

5.1 Conclusion  

This chapter provides a comprehensive summation based on the results of the 

analysis and investigation of hydropower and non-hydropower electricity production 

in Africa. This study was done in order to evaluate the effects of climate parameters 

on electricity generation and pinpoint the climatic factor with the most influential 

impact on either hydropower or non-hydropower power sources. Machine learning 

models, mathematical and statistical models were utilized to grasp understanding in 

the association between climate and energy vigor in Africa. 

The research undertaken for this research question has revealed that numerous 

climate factors have an effect on both hydroelectric and non-hydroelectric energy 

production in Africa. These encompass temperature average, maximum, minimum, 

relative humidity, wind speed, and precipitation. Therefore, the climate parameters 

identified shaped the accessibility of resources and are thought to have an impact on 

energy generation. Additionally, the results of this research will be beneficial as it can 

provide insight into how energy production can be more efficiently managed in the 

continent. 

The machine learning models Multilayer Perceptron Neural Network 

(MLPNN) and Radial Basis Function (RBF) have displayed impressive results in 

identifying complicated patterns and connections between climate parameters and 

electricity production. After being tested, the models showed extremely accurate 

prediction results of electricity production from climate inputs. 

Comparing machine learning models to mathematical models such as Multiple Linear 

Regression, as well as statistical models, further demonstrated the efficacy of the 

former in detecting the dynamic nature of climate-energy relationships. The results 

were much better with the machine learning models than the traditional mathematical 

models. They were particularly effective in considering complicated dependencies in 

the data and non-linear connections. 
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The analysis revealed that a number of different climate parameters can affect 

hydropower and non-hydropower electricity production. Despite all the factors being 

important, some demonstrated stronger associations with energy output. Notably, 

precipitation and temperature factors appeared to be the key determinants in the case 

of hydropower, as water availability is fundamental to hydroelectric plants. At the 

same time, wind speed and temperature variables showed a more marked consequence 

on non-hydropower sources such as wind and solar energy. 

A comparative analysis was conducted to assess the relationship between 

climate parameters and the generation of electricity in Africa. The investigation 

produced important clues into the difficulties and potentials posed by climate 

transformations and their repercussions for electricity production in the continent. It 

supplied useful data to aid better comprehension of the challenges and opportunities 

facing the African energy sector due to climate change. 

 

5.2 Recommendation 

In order to ensure a sustainable and resilient energy future in Africa, several 

phased recommendations should be taken into account by policymakers, energy 

planners, and stakeholders. 

Climate Change Resiliency Planning: It is imperative to incorporate the 

findings of this study into climate change resiliency planning for the energy sector in 

Africa. Strategies should be established that consider the specific impacts of climate 

parameters on hydropower and non-hydropower sources to guarantee the persistence 

and dependableness of electricity generation in the presence of changing climatic 

conditions. 

The ever-changing climate necessitates careful consideration of the varying 

effects of environmental changes on the various energy sources available to us. To 

maintain greater security and resilience in our energy system, it can be beneficial to 

diversify the different energy sources which we rely upon. Investment in a blend of 

hydro-powered, wind-powered, solar powered and other renewable energy sources is 

likely to provide a more stable energy system, reducing any reliance on a single energy 

source. 
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Strengthening the capacity of data collection and monitoring of both climate 

and energtic parameters in Africa is highly essential in order to create an edifice that 

aids in proper decision-making. To build a better understanding and derive more 

accurate results out of the analysis being done with respect to the impacts of climate 

on the production of electricity, working in collaboration with trustable organisations 

is highly necessary. In this context, it would be highly desirable to work with 

organisations such as the Nasa and the US Energy Information Administration to get 

access to real-time, verifiable datasets that are updated to the latest information. 

Integrating climate change considerations into infrastructure planning for 

power infrastructure is critical to ensure energy sustainability as the world faces an 

uncertain climate future. To this end, it is important to account for potential changes 

in temperature, precipitation and other relevant variables when designing and 

evaluating hydropower and non-hydropower projects. This will help to ensure the long 

term viability of energy infrastructure and allow greater resilience to future climate 

changes. 

Encouraging capacity building and knowledge sharing will improve 

comprehension of the framework of climate and energy in Africa. It is essential to 

bring together climate scientists, energy professionals, and decision-makers in diverse 

research and development initiatives to push developments and make wise decisions. 

This will promote meaningful interdisciplinary cooperation and inspire innovation. 

Create strategies to bolster the development of renewable energy sources by 

utilizing supportive policies and providing incentives. Utilize various approaches to 

encourage the adoption of clean and sustainable energy sources, such as providing 

financial remuneration through feed-in tariffs, tax reductions, and devising regulatory 

procedures that prioritize renewable energy integration. 

As the global community faces the challenges initiated by climate change and 

the demand for sustainable energy solutions, international cooperation and 

partnerships must be fostered to address the needs of the African continent. This 

endeavour should be supported by regional and international organizations, research 

institutions, as well as funding agencies, to ensure the best possible access to expertise, 

resources, and financial aid that will make sustainable energy projects feasible. By 

collaborating, the world can foster progress in this area so that Africa can work 
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towards a more sustainable future. By introducing and executing these strategies, 

Africa can work towards an energy sector that is more economical, adaptive to climate 

changes, and diversified. This can bring energy safety, economic expansion, and 

sustainability to the continent. 

 

5.3 Limitations and Future Research 

This study of hydropower versus non-hydropower electricity production in 

Africa provides useful insights. Nonetheless, it is crucial to acknowledge certain 

limitations of this research. 

This study drew upon existing datasets from sources such as NASA POWER and the 

U.S. EIA database. It is important to note, though, that data availability and quality 

may be different across different parts of Africa, potentially impacting the 

applicability of the outcomes. Future investigations should endeavor to fill these data 

gaps and improve the collection of information. 

Africa is a continent with a diverse landscape, climate, energy infrastructure, 

and socio-economic circumstances. Therefore, results found by this study may not 

apply to all regions of the continent evenly. To get a better understanding of the 

climate-energy dynamic, further research remains necessary that looks closely at 

regional-specific data. This would enable better assessment of local impacts and 

challenges. This research study was mainly centred around climate factors, however, 

there are other elements such as economic status, policy regulations, and advances in 

technology that also have sway in the production of electricity. To gain a full 

appreciation of the energy landscape in Africa these areas need to be considered. To 

this end, further research should not only look at climate characteristics but in equal 

measure also inspect related factors in order to get a comprehensive overview. 

This study mainly focused on climate parameters, yet there are a number of 

other elements that affect electricity production, such as policy frameworks, economic 

circumstances, and advancements in technology. As a result, more extensive research 

should be conducted to include these factors with the aim of gaining a better insight 

into the African energy landscape. In conclusion, this comparative study explores the 

relation between climate parameters and hydropower and non-hydropower electricity 

production across Africa. It is clear that climate resilience and diversification should 
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be taken into account in energy planning, as overlooked changes in climate can 

dramatically affect the energy industry. Thus, our study provides input to 

policymakers and stakeholders in developing strategies to assure a sustainable energy 

future in the continent. 
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