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Abstract 

 

SVIR Model of Varicella Virus in Jordan 

 

Manal Ghannam 

Assoc. Prof. Dr. Bilgen Kaymakamzade 

M.Sc., Department of Mathematics 

June, 2023, (60) Pages 

 

Varicella virus, also referred to as chickenpox, is an extremely infectious 

disease. Mathematical modelling is a very helpful technique, that used to Study the 

structure of the infectious diseases transmission and assess possible treatments 

needed. In this thesis we propose a SVIR model for Varicella Virus in Jordan and 

analyse the dynamics of transmission using mathematical modelling and simulation. 

  

Firstly, the model is formulated using four compartments, susceptible (S), 

Vaccinated (V), Infected (I), and Recovery (R), with four differential equations. Then 

two equilibrium points are found and the local stability of them are existing depending 

on the basic reproduction number (𝑅0). If 𝑅0 > 1,the endemic equilibrium point is 

stable and the infectious disease is present between individuals continuously, while 

when 𝑅0 < 1, then the disease-free equilibrium remains stable and the disease will be 

under control. Sensitivity analysis is conducted in order to identify the parameters that 

would have the greatest influence on the fundamental reproduction ratio (𝑅0). 

 

Overall, the results of this research help to clarify the mechanisms of varicella 

virus transmission and guide policy decisions related to public safety. Governments 

and medical organizations can develop solid strategies that reduce the impact of 

varicella virus and secure those most affected with the help of the knowledge gathered 

from this study. 

 

Key Words: SVIR model, Varicella virus, basic reproduction number, local stability, 

sensitivity analysis.  

 



 

5 
 

ÖZET 

 

SVIR Model of Varicella Virus in Jordan 

 

Manal Ghannam 

Assoc. Prof. Dr. Bilgen Kaymakamzade 

M.Sc., Department of Mathematics 

June, 2023, (60) Pages 

 

Suçiçeği olarak da adlandırılan varisella virüsü son derece bulaşıcı bir 

hastalıktır. Matematiksel modelleme, bulaşıcı hastalıkların bulaşma yapısını 

incelemek ve ihtiyaç duyulan olası tedavileri değerlendirmek için kullanılan çok 

yararlı bir tekniktir. Bu tezde, Ürdün'de Varisella Virüsü için bir SVIR modeli 

önermekte ve matematiksel modelleme ve simülasyon kullanarak bulaşma 

dinamiklerini analiz etmekteyiz. 

  

İlk olarak, model, dört diferansiyel denklem ile duyarlı (S), Aşılanmış (V), 

Enfekte (I) ve İyileşme (R) olmak üzere dört bölme kullanılarak formüle edilmiştir. 

Daha sonra iki denge noktası bulunmuş ve bunların yerel kararlılığı temel üreme 

sayısına (𝑅0) bağlı olarak mevcut olmuştur. 𝑅0 > 1 ise, endemik denge noktası 

kararlıdır ve bulaşıcı hastalık bireyler arasında sürekli olarak mevcuttur, 𝑅0 < 1 

olduğunda ise hastalıksız denge kararlı kalır ve hastalık kontrol altında olur. Temel 

üreme oranı (𝑅0) üzerinde en büyük etkiye sahip olacak parametreleri belirlemek için 

duyarlılık analizi yapılmıştır. 

 

Genel olarak, bu araştırmanın sonuçları suçiçeği virüsü bulaşma 

mekanizmalarının açıklığa kavuşturulmasına yardımcı olmakta ve kamu güvenliği ile 

ilgili politika kararlarına rehberlik etmektedir. Hükümetler ve sağlık kuruluşları, bu 

çalışmadan elde edilen bilgiler yardımıyla suçiçeği virüsünün etkisini azaltan ve en 

çok etkilenenleri güvence altına alan sağlam stratejiler geliştirebilir. 

Anahtar Kelimeler: SVIR modeli, Varisella virüsü, temel üreme sayısı, yerel 

kararlılık, duyarlılık analizi.  
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CHAPTER I 
 

Introduction 
 

 

 

1.1 Statement of the Problem 

The varicella Virus, also called chickenpox, is an extremely transmissible 

viral infectious disease.  Although there is a vaccination for varicella, it is still a 

serious public health issue in Jordan. Children, who are more likely to experience 

more severe symptoms, are among those who are at risk from the virus's spread. 

Thus, in order to decrease the effects of this infectious disease in Jordan, it is 

essential to comprehend the dynamics of varicella transmission to determine 

efficient management techniques.  

 

The varicella Virus infection dynamics specifically in Jordan have received 

relatively little academic attention. Current research depends frequently on models 

created for various populations or regions in the world, that might not correctly 

reflect the varicella spread in Jordan. In addition, limited study has been done on 

how well different management methods including vaccination drives and 

preventive measures work in the Jordanian conditions. This thesis was inspired by 

worries concerning the serious nature of the Varicella virus infection (chickenpox) 

in Jordan. 

 
 

1.2 Purpose of the Study 

 

 The aim of this thesis is to create and evaluate a Susceptible-Vaccinated-

Infected-Recovered (SVIR) model that is specifically adapted to the varicella virus 

spread dynamics in Jordan. Utilizing the epidemiological information currently 

accessible.  

 

 

1.3 Research Question 

 

How the different parameters of the SIVR model affect the Varicella virus 

potential spread and how the number of infected people daily contact will affect or 

even stop the spread of the disease in Jordan. 
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1.4 Significance of the Study 

 

 

Studying the dynamics of Varicella virus transmission in Jordan is significant, 

especially these days, to take immediate actions before the massive increase of 

infections by examining the SVIR model's essential parameters which aid the 

government in establishing new governing policies and plans for future occurrences 

of situations resembling the current one. 

 

In Jordan, 82856 cases of chickenpox were documented between 2008 till 

2021 as showed in table 1.1 (Annual Statistical Report of Communicable Diseases 

2021).   

 

 

Table 1.1 Varicella Virus history in Jordan from 2008 to 2021 

 

Year Chickenpox Cases 

2008 11356 

2009 6906 

2010 9362 

2011 6181 

2012 6435 

2013 6706 

2014 7888 

2015 4715 

2016 4074 

2017 6880 

2018 6211 

2019 3515 

2020 999 

2021 1628 

 

 

The number of the total cases clearly increased in 2014 with percentage of 

19.24% linked to the immigration of Syrian refugees, while the least number of 

cases (2.44%) was recorded in 2020 as a result of the COVID-19 as well as 

quarantine during the pandemic, which was particularly due to the closure of clinics 

and schools (Alfauri, et al., 2022). 
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People who got infected with Varicella virus can easily infect those who did 

not previously experience the virus or received no vaccinations against it. If 

an individual gets it, up to 90% of their nearby non-immune contacts will catch it 

as well (CDC, 2021). The probability for Varicella virus to transmit in the 

susceptible individuals is estimated to be about 0.09 (Steiner, Wallrafen, & Weiss, 

2018).  

 

1.5 Limitations 

 

In order to make the study easier to understand, mathematical models 

frequently introduce a few assumptions. Such presumptions might fail to fully 

represent the level of detail of actual-life dynamics, which could restrict the 

accuracy or utility of the model, for example, age and gender’s effects are neglected  

to simplify the model and decrease the parameters. 

 

It is necessary to clarify that increasing the number of the parameters will 

make the structure of the model more complicated. It is challenging to determine 

all the factors with objectivity in the absence of epidemiological data (Harb, & Harb, 

2020). Large uncertainty in the model's forecast will result from having so many 

unknown parameters. In order to minimize the uncertainty, this work developed a 

simplified SVIR model with the fewest available parameters using the limited data 

available. 

 

Each area or nation has its own distinct qualities, such as population 

statistics, medical facilities, and traditions of culture. In this SVIR model in 

Jordan, it was very difficult to take these factors under consideration because of 

the limit of resources and the lack of data, also an increase in population due to 

different nations immigration to Jordan could be a relevant factor to consider 

when studying the spread of infectious diseases, including varicella, and that is 

neglected in this study, because of that it is considered one of the important 

limitations. 
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1.6 Definition of Terms 

 

1.6.1 Infectious disease  

 

A variety of species, including fungus, virus, parasites, and bacteria can cause 

infectious disorders. Direct contact between people or animals can result in the 

direct transmission of infectious diseases. Additionally, they can be transferred by 

indirect contact, which includes touching object like a doorknob. Furthermore, 

insects and polluted food may transfer diseases (UMAR, 2021). 

 

Infectious diseases happened to be the greatest cause of death globally at the 

start of the 20th century. In 1900 a new born baby had a nearly 10% risk of passing 

away before reaching the age of 4, mainly from asthma or diarrhea. However, 

overall life duration significantly rose as a result of advancements in living 

conditions, cleanliness, and the reach of healthier water and food. The higher 

predicted life expectancy is also a result of the development of antibiotics during 

the middle of the 20th century. In 1969, Surgeon General William H. Stewart stated 

to the US Congress to "close the book on infectious diseases" due to the incredible 

advancements achieved in the fight against illness. He had no idea of the rise in 

newly emerging and resistance to antibiotics infections that occurred over the 

period of the next 30 years. For example, less than 100 people died from the 

H5N1(avian flu) in 2007, while 2.1 million people died from AIDS at the same year 

(Avila, Saïd, & Ojcius, 2008). 

 

In 2011, the Health and Social Act developed an effective statement which 

was “Good infection prevention and control are essential to ensure that people who 

use health and social care services receive safe and effective care," (Török, Moran, 

& Cooke, 2017). 

 

Recently, a very dangerous virus attacked all the populations causing a lot of 

death, it is Coronavirus Disease also known as CoViD-19, which is a type of 

infectious disease caused by a virus called SARS-CoV-2 virus. The novel virus is 

transmitted by a very small drop of liquid (droplets) that escape through the lungs 

(Wang, et al., 2020). Globally, as of December 2022, there have been 642,924,560 
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confirmed cases of COVID-19, including 6,625,029 deaths, reported to WHO 

(WHO, 2022).  

Health Ministries alone are unable to protect public health. It takes the 

participation of several sectors to develop awareness. The world has a 

comprehensive grasp at this stage in history of how well-prepared most nations are 

to handle pandemics and what needs to be taken to increase readiness. A well-

planned action should be executed at scale as quickly as possible. This will create 

the safest life (Shahpar, et al., 2019).  

 

1.6.2 Varicella Virus 

Varicella-zoster Virus (VZV), only affects humans. VZV is a very contagious 

disease that affects millions of individuals all over the world each year. Acute 

varicella, sometimes known as "chickenpox," results from a primary infection, 

which generally occurs through direct touching with a bump on the infected skin or 

through the breathing of droplets from the lungs. After initial infection, VZV 

develops permanent latency in the cranial nerve and dorsal root ganglia and may 

become active decades or even years later as "shingles" or herpes zoster (HZ) 

(Pergam, Limaye, & AST Infectious Diseases Community of Practice, 2009). 

Usually, a person has their first symptoms two to three weeks after being infected. 

It started by fever, exhaustion, and a lack of desire for food which are followed by 

a widespread rash later. The rash begins as itching red spots but quickly develops 

into blisters that appears more common on the arms, legs, face, and head. The 

blisters remain for three to four days before they heal over and dry out. Kids and 

adults with good health often recover in ten days. It can be treated by paracetamol 

to reduce the fever, but usually the majority of individuals don't need medical help. 

Fluid intake and rest are advised. Maintaining nails short and using anti-itch soaps 

and creams can help to reduce the risk of infection (Centre for Disease Control, 

2023). 
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In the 1970s and 1980s, a live attenuated VZV (Oka strain) vaccine was 

created and experimentally evaluated. In 1984 Sweden and Germany started using 

the vaccine. Today these vaccines can be either varicella vaccine only or (MMR) 

which is combined with rubella, mumps and measles (WHO, 2014). 

 

In 1995, USA approved the vaccination and advised to routinely provide the 

live, attenuated varicella vaccine, created by Takahashi in 1974, to healthy infants 

between the ages of 12 and 18 months and to older kids who have not yet 

experienced chickenpox. There exists a present additional finding from case-control 

research that is currently being conducted on the impact of age at vaccination as 

well as the effectiveness of this vaccine after a certain period of time (Vázquez, et 

al., 2004). While it is commonly thought of this virus to be a mild childhood disease, 

it can have serious consequences in select populations, including adults and 

immunocompromised people. 

 

1.6.3 Herd immunity 

 

Herd immunity is a phrase used in the field of healthcare to explain how a 

group of people might be immunized from disease by reaching a certain percentage 

of immunized members. Vaccination is the major technique used to create herd 

immunity. Herd immunity plays an essential role in preventing the spread of the 

infectious disease that has only human as host. Herd immunity is considered to be 

maintained when at least 90% of a community is immune to the infectious disease; 

however, even when this crucial threshold is reached, still the problem of the annual 

cases that is increasing specially in developed countries occurs (Wessel, 2016).  
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1.6.4 Mathematical Modelling 

A mathematical modelling is using mathematical equations and concepts to 

illustrate real-world issues. Many sectors, including the social sciences, agriculture, 

medicine, and economy frequently employ mathematical models. These models 

might be stochastic or deterministic, linear or nonlinear. Mathematical models have 

been used to forecast disease epidemics and understanding how a virus spreads 

within a population. Currently, there are various mathematical models used to 

explain disease processes (Ahmed, et al., 2021). 

There have been several models created since Kermack and McKendrick first 

published epidemic models in 1927, including SIR, SIS, SEIR, SVIR, SVEIR, and 

others. Analysis of stability and existence of equilibria is a common task for writers 

(Ramadani, & Aldila, 2019).  

 

Kermack Mckendrick's SIR model studied epidemics of measles in United 

Kingdom a constant population was assumed in the model which is divided into 

three compartments. Individuals in the susceptibility compartment have no 

immunity to the infectious disease; any member of the susceptible class could 

contract it. Individuals in the infectious compartment are those who are currently 

infected and can spread the virus to others. Individuals in the Recovered 

compartment have recovered from the infection and have achieved permanent 

immunity. Their research showed that the infection threshold happens whenever 

the reproduction rate 𝑅0equals one. If the 𝑅0 > 1, the infectious disease will 

spread. If the 𝑅0 < 1, the disease vanished out in the susceptible individuals. This 

is known as the SIR model (Narsingani, & Bhathawala, 2017). 

 

Li, J., & Zou, X. (2009) wrote Generalization of the Kermack-McKendrick 

SIR model to a patchy environment for a disease with latency, their research 

believed that an infectious disease had a defined latent period in a population. A 

demographic framework for two distinct towns was developed. Their framework 

uses a system of delay differential equations with a fixed delay to account for 

latency and non-local components induced by the people' movement throughout 

the latent time frame. The infection eventually fades out, with just a small 

percentage of the susceptible individuals unaffected. Their approach was later 

shown to be incompatible with the Kermack-McKendrick (1927) model. 
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Basic reproduction statistics are constructed to illustrate the model's degree 

of endemic regions. One of the most effective mathematical models for illustrating 

the spread of a pandemic is the susceptible-vaccinate-infectious-recovered (SVIR) 

model (Abou-Ismail, 2020). Usually, individuals only get chickenpox once. 

Assuming a SVIR model, where individuals transition from being susceptible to 

being infected to recovering, or from susceptible to being vaccinated then recovered 

without being infected to make the model more realistic. Consequently, this 

model has four sections (Steiner, Wallrafen, & Weiss, 2018). 

 

The analysis of various scenarios and the comprehension of Varicella 

transmission can be done with the use of mathematical modelling. However, rather 

than concentrating on which model is true, we should acknowledge that "one model 

cannot answer it all" and that we need more models that provide answers to related 

questions in order to put the puzzle together and stop the spread of the disease 

(Mohamadou, Halidou, & Kapen, 2020).  

 

 

1.7 Thesis Structure 

 

There are six essential chapters in the thesis. The introduction to the thesis is 

presented in Chapter 1. Relevant studies and articles are reviewed in chapter two. 

Chapter three presents the mathematical model's construction. The analysis and 

findings of the model are presented in Chapter 4. In Chapter 5 the discussion of the 

findings is written there, and in chapter six conclusion and recommendations for 

additional research are clarified, at the end of this thesis references and appendices 

are listed to finalize the research process correctly.
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CHAPTER II 
 

Literature Review 
 

 

2.1 Theoretical Framework 

 

A conceptual platform for comprehending of varicella virus transmission 

dynamics and the variables and parameters affecting its transmission is provided by 

the SVIR model theoretical framework of the varicella virus in Jordan. These 

theoretical frameworks can be summarized the following points: 

 

2.1.1 Concepts related to epidemiology 

 

To measure the spreading ability of the varicella virus, the theoretical 

framework uses the concepts of the basic reproduction number (𝑅0), which will be 

defined later in details in chapter 3. Then the framework clarifies the disease 

Progress by showing the movement of the individuals between the susceptible, 

vaccinated, infected, and recovered compartments, by taking into account the life 

cycle of varicella virus, which includes the contagious duration, and healing time. 

 

2.1.2 Vaccination Regulations 

 

The theoretical framework shows the vaccination coverage percentages in 

Jordan, taking into account the efficiency of the varicella vaccination, which will 

be clear while dealing with the parameters of the model. 

 

2.1.3 Control Techniques 

 

Assess how the application of quarantine measures such as rules for 

susceptible and isolation of infected individuals, in addition to health awareness and 

education, the effect of all of these factors in decreasing the Varicella virus infection 

transmission will be proved. 
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2.2 Literature Review of Infectious Diseases Modelling 

 

This section reviews some of the previously published studies on the 

transmission of contagious infectious diseases, particularly varicella virus. 

Mathematical modelling for infectious diseases has been successfully used to 

investigate the transmission of numerous infectious diseases. These 

models sometimes couldn't describe the real-life situation or provided a realistic 

result for the disease.  

In particular the research of Varicella virus's epidemiology has not received 

much attention in Jordan. The spread of this infectious disease can be investigated 

using mathematical models. Various researchers have modelled the chickenpox 

disease in a number of ways throughout the years. As an example, Diekmann, et al. 

(1990) gave the meaning of the basic reproduction ratio 𝑅0 as the anticipated 

individual of secondary cases that an infected person should cause over the course 

of the disease's infectiousness in a community that is entirely susceptible. The well-

known threshold principle then indicates that if 𝑅0 > 1, the infectious disease could 

attack but if 𝑅0 < 1 , it couldn't (Diekmann, et al., 1990). Any new infectious 

disease's risk of an epidemic is calculated using the magnitude of 𝑅0 (Sayan, et al., 

2018). This magnitude of R0, is typically computed from a population to anticipate 

the potential seriousness of epidemics of infectious diseases like SARS, 

tuberculosis, HIV, and chickenpox (Breban, Vardavas, & Blower, 2007), and 

recently in covid-19 pandemic, R0 and Rt (the effective reproduction number) used 

as herd immunity to fight this pandemic in North Cyprus (Hincal, Kaymakamzade, 

& Gokbulut, 2020). Capaldi, et al. discussed the use of sensitivity analysis and 

asymptotic statistical theory to determine measures of uncertainty for estimations 

of model parameters and (𝑅0) (Capaldi, et al., 2012).  

 

In 2014 a model of the Varicella zoster virus with vaccination was created and 

stability study was performed by Stephen et al. The model's computer simulations 

demonstrated that the best strategy for controlling the spread of VZV in the 

community is to combine vaccination with therapy (Edward, Kuznetsov, & Mirau, 

2014). Another study shows that it is possible that the seasonal variation in the 

predicted contact rates represents how vacations affect the spread of chickenpox 
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among students using SEIR model (Deguen, Thomas, & Chau 2000). While some 

researchers studied the potential effects of varicella vaccinations by examining 

the epidemics of measles virus before and after vaccination (Ferguson, Anderson, 

& Garnett, 1996). 

 

As Daley and Gani introduced in their book, to make the model fit the 

prediction, three aims should be satisfied. The first is to research the most effective 

methods for disease transmission. Second to forecast how the epidemic may 

develop in the future, and the third to comprehend how quarantine, vaccine, and 

awareness can be used to control the epidemic's spread (Daley, & Gani, 2001). 

Steiner model explained that because of vaccination, a specific percentage of the 

susceptible population transfers each day from the susceptible to the recovered 

compartment without being infected (Steiner, Wallrafen, & Weiss, 2018). Forde, & 

Meeker (2010), proposed a model of varicella-zoster reactivation. They analysed 

the model's implications for vaccine enhancement plans intended to avoid herpes 

zoster after building the model and showing that it displays the kind of periodic 

pattern required for ongoing latency period and activation. 

 

Based on the number of chickenpox cases recorded in Assam's Kamrup Metro 

district in India, where a pandemic of the disease occurred in 2017, SIR model has 

been developed by Devi (2018), to estimate the number of susceptible, infected, and 

recovered people. The SIR model reveals that the impact on the 𝑅0 is unity, 

indicating that the disease is totally curable. Thus, the outcomes of this SIR model 

explained how chickenpox propagated in that region and aided in the forecasting of 

disease outbreaks. 

 

Witbooi, Muller, & Van Schalkwyk, (2015) demonstrated almost certain 

exponential stability of the disease-free equilibrium for the stochastic differential 

equation-based SVIR model using includes vaccine, when 𝑅0 is less than 1 and in 

their research, they studied the optimal control and created an effective technique 

to use vaccine. The results succeed to decrease the transmission of the virus and 

balance the total cost of vaccine. 
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For the purpose to describe the impact of vaccination upon a viral infectious 

disease by the SVIR, Ozdemir, Ucar, & Avcı, (2022) presented a research of a 

nonlinear fractional order system. The model provided by the ordinary differential 

equation is redone using the Caputo fractional derivative to observe the impact of 

memory on the system components. Following a stability analysis and justifications 

of the disease SVIR model, the system's existence and uniqueness are established. 

The results produced with the use of MATLAB show that the infection remains 

controllable by vaccination when 𝑅0 < 1. 

 

 

Mathematical modelling of chickenpox transmission dynamics can provide 

useful insights into the disease's spread and improve public health methods for 

controlling and preventing its spread. The prevalence of chickenpox in Jordan has 

progressively increased in recent years, underscoring the need for a better 

understanding of its epidemiology. The purpose of this thesis is to create a 

mathematical model for the transmission of chickenpox in Jordan that incorporates 

demographic, social, and environmental elements, and to use the model to assess 

the impact of various management efforts. The findings of this study can assist 

policymakers in Jordan in making educated decisions about chickenpox prevention 

and control, as well as serve as a valuable resource for future research in this field. 
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CHAPTER III 
 

Methodology 
 

 

3.1 Model Assumptions 

In epidemiological research, the SVIR Model is applied to calculate the 

proportion of susceptible, vaccinated, infected, and recovered individuals in a 

community. Additionally, it is employed to describe how the number 

of individuals in need of medical care during the outbreak. SVIR model can be 

applied appropriately if the recovered individual has a lifetime immunity from the 

disease (Johnson, & McQuarrie, 2009). The population (N) is made up of four 

different compartments of people, which are represented by Susceptible (S), 

Vaccinated (V), Infected (I), and Recovered (R), all of them are functions 

of time(t) that depends on a set of differential equations. In order to create our 

SVIR model, we have to assume many assumptions which can be very helpful in 

our analysis. These assumptions are: 

i.             Population homogeneity—the model does not take into account the 

possibility that individuals may differ from one another in ways that are important for 

the spread of infection. 

ii. Susceptible persons who have received vaccinations may still be 

susceptible because of vaccination failure, or they can transfer to recovery 

compartment without getting infected if the vaccine offers strong protection. 

iii. Permanent immunity is granted after being infected and recovered. 

iv. Age and gender do not affect the probability of getting the 

infection. 

v. Every parameter in this model is assumed to be positive. 

vi. Exponentially distributed duration of infection—this is a reference 

to the model's assumption that a person becomes infectious as soon as it is 

infected. 
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3.2 Model Formulation 

 

 The basic strategy that modelers can use to answer questions is to build 

more complex models, swapping out some of the unrealistic assumptions with more 

realistic ones, and then analyse how the behaviour of the models changes when the 

assumptions are changed. My SVIR model consists of four compartments: 

1. Susceptible individuals that may catch the virus. 

2. Vaccinated individuals that took the vaccine and have lifelong 

immunity from the virus. 

3. Infected individuals that have the virus and can infect others 

4. Recovered individuals that took the virus and recovered with lifelong 

immunity from the virus. 

 The suggested model, segmented the total population size, N, into four 

stages of disease: S, susceptible; V, vaccinated; I, infected; R, recovered, and can 

be written by  

𝑁(𝑡) =  𝑆(𝑡) + 𝑉(𝑡) +  𝐼(𝑡) +  𝑅(𝑡),                                  (3.1) 

the interaction between these four stages is illustrated in figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Transfer diagram of the model 
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3.3 Model Equations 

 

Now by using the Mass Action Law of infectious diseases, we get the 

following system of nonlinear ODEs to explain the Varicella outbreak in Jordan: 

𝑑𝑆

𝑑𝑡
= П𝑁 − (𝜇 + 𝛾 + 𝜃𝐼)𝑆,                               (3.2) 

𝑑𝑉

𝑑𝑡
= 𝛾𝑆 − (𝛼𝐼 + 𝜏 + 𝜇)𝑉,                                          (3.3) 

𝑑𝐼

𝑑𝑡
= 𝜃𝐼𝑆 + 𝛼𝐼𝑉 − (𝛽 + 𝜇)𝐼,                                           (3.4) 

𝑑𝑅

𝑑𝑡
= 𝛽𝐼 + 𝜏𝑉 − 𝜇𝑅,                                                  (3.5) 

where, 

 

 
𝑑𝑆

𝑑𝑡
 ,
𝑑𝑉

𝑑𝑡
 ,
𝑑𝐼

𝑑𝑡
 , 𝑎𝑛𝑑 

𝑑𝑅

𝑑𝑡
 measure the rates of change of the quantities S(t), V(t), I(t), 

and R(t). All the descriptions and definitions of the parameters and the variables 

that used in the model are listed in tables 3.1 and 3.2. 

 

Table 3.1 Variables of the model 

Variables Descriptions 

𝑆 Individuals who may get infected 

with Varicella virus 

𝐼 Individuals who are infected with 

Varicella virus 

𝑅 Individuals who have recovered 

from infection and acquired immunity 

𝑉 individuals who are vaccinated 

𝑁 The total number of population 

   t Time 
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Table 3.2 Parameters of the model 

Parameters Descriptions 

П The birth rate 

𝜃 The contact rate (transmission rate) 

𝛽 The recovery rate 

𝜇 The natural death rate  

𝛾 The rate that susceptible persons 

become vaccinated 

𝛼 The rate that vaccinated persons become 

infected because of vaccination failure 

𝜏 The effect rate of vaccine in protecting 

from the infection(get immunity) 

 

 

 

3.4 Equilibrium Points of the Model 

 

As our model system is represented by the above four differential equations 

(3.2 to 3.5) which explained the dynamics of the virus and the outbreak in Jordan. 

This system of equations considered non-linear differential equations.  

Now, as we mentioned in equation 3.1, N(t) represents the total population in 

Jordan which is about 10,888,834 till the end of 2021 according to Statistical Report 

of Communicable Diseases in Jordan. We can re-write each compartment as a ratio 

of the total population to get, 

 

𝑃𝑠(𝑡) =
𝑆(𝑡)

𝑁
,                                                     (3.6) 

𝑃𝑉(𝑡) =
𝑉(𝑡)

𝑁
,                                                     (3.7) 

𝑃𝐼(𝑡) =
𝐼(𝑡)

𝑁
,                                                       (3.8) 

𝑃𝑅(𝑡) =
𝑅(𝑡)

𝑁
,                                                      (3.9) 

𝑃𝑁(𝑡) =
𝑁(𝑡)

𝑁
= 𝑃𝑠(𝑡) + 𝑃𝑉(𝑡) + 𝑃𝐼(𝑡) + 𝑃𝑅(𝑡) = 1.                            (3.10) 
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By substituting the equations (3.6-3.9) in the system of equations (3.2-3.5), 

we get, 

 

𝑑𝑃𝑆

𝑑𝑡
= П − (𝜇 + 𝛾 + 𝜃𝑃𝐼)𝑃𝑆,                                   (3.11) 

𝑑𝑃𝑉

𝑑𝑡
= 𝛾𝑃𝑆 − (𝛼𝑃𝐼 + 𝜏 + 𝜇)𝑃𝑉,                                              (3.12) 

𝑑𝑃𝐼

𝑑𝑡
= 𝜃𝑃𝐼𝑃𝑆 + 𝛼𝑃𝐼𝑃𝑉 − (𝛽 + 𝜇)𝑃𝐼 ,                                (3.13) 

𝑑𝑃𝑅

𝑑𝑡
= 𝛽𝑃𝐼 + 𝜏𝑃𝑉 − 𝜇𝑃𝑅 ,                                                     (3.14) 

𝑑𝑃𝑆

𝑑𝑡
+ 

𝑑𝑃𝑉

𝑑𝑡
+ 

𝑑𝑃𝐼

𝑑𝑡
+
𝑑𝑃𝑅

𝑑𝑡
= 0.                                               (3.15) 

 

Definition 3.1 

 SVIR model can have an equilibrium point 𝐸∗, if 𝐸∗ = (𝑃𝑆
∗, 𝑃𝑉

∗, 𝑃𝐼
∗, 𝑃𝑅

∗), 

satisfies: 

{
 
 

 
 
𝑑𝑃𝑆
𝑑𝑡

= 0,

𝑑𝑃𝑉
𝑑𝑡

= 0,

𝑑𝑃𝐼
𝑑𝑡

= 0.

 

 

To determine the equilibrium points of the model, first the system of non-

linear equations must be linearized, the three equations of the reduced system are 

3.11, 3.12 and 3.13, each of them is equal to zero, to get, 

 

𝑑𝑃𝑆

𝑑𝑡
= П − (𝜇 + 𝛾 + 𝜃𝑃𝐼)𝑃𝑆 = 0,                                      (3.16) 

 

𝑑𝑃𝑉

𝑑𝑡
= 𝛾𝑃𝑆 − (𝛼𝑃𝐼 + 𝜏 + 𝜇)𝑃𝑉 = 0,                                                (3.17) 

 

𝑑𝑃𝐼

𝑑𝑡
= 𝜃𝑃𝐼𝑃𝑆 + 𝛼𝑃𝐼𝑃𝑉 − (𝛽 + 𝜇)𝑃𝐼 = 0.                                          (3.18) 

  

There are two equilibrium points of this SVIR model system: 

1.  𝐸0, the disease-free equilibrium point (DFE) and that when 𝑃𝐼 = 0. 

2.  𝐸∗ , the endemic equilibrium point when 𝑃𝐼 > 0. 
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Now let assume that the infection is not existing and substitute 𝑃𝐼 = 0, 

𝑎𝑛𝑑 𝑃𝑅 = 0 in equation (3.16) and (3.17) to get, 

 

𝑃𝑆 =
П

(𝜇+𝛾)
,                                                                   (3.19) 

 

𝑃𝑉 =
П𝛾

(𝜇+𝛾)(𝜏+𝜇)
,                                                                     (3.20) 

 

therefore, the infection free equilibrium or (DFE) point is 

 

 𝐸0 = (𝑃𝑆0
 , 𝑃𝑉0, 𝑃𝐼0, 𝑃𝑅0) = (

П

(𝜇+𝛾)
,

П𝛾

(𝜇+𝛾)(𝜏+𝜇)
, 0,0).                         (3.21)                                                            

 

 

To find the second equilibrium point for the system while assuming the 

existence of the infection, equation (3.16) will be used and solved for 𝑃𝑆 to get, 

 

𝑃𝑆 =
П

𝜇+𝛾+𝜃𝑃𝐼
∗ ,                                                                (3.22) 

 

now by solving (3.17) for 𝑃𝑉 to get, 

 

𝑃𝑉 =
𝛾П

(𝛼𝑃𝐼
∗+𝜏+𝜇)(𝜇+𝛾+𝜃𝑃𝐼

∗)
,                                                (3.23) 

 

by substituting (3.22) and (3.23) in (3.18), we get, 

 

𝜃П

𝜇+𝛾+𝜃𝑃𝐼
∗ +

П𝛼𝛾

(𝜇+𝛾+𝜃𝑃𝐼
∗)(𝛼𝑃𝐼

∗+𝜏+𝜇)
− 𝜇 − 𝛽 = 0,   (3.24) 

 

then by rearranging equation 3.24 in a quadratic equation form, we get, 

 

𝐶1𝑃𝐼
∗2 + 𝐶2𝑃𝐼

∗ + 𝐶3(1 − 𝑘) = 0,    (3.25) 
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where, 

𝐶1 = 𝛼𝜃(𝜇 + 𝛽) > 0,   

𝐶2 = (𝜇 + 𝛽)[𝛼(𝜇 + 𝛾) + 𝜃(𝜏 + 𝜇)] − 𝛼𝜃𝜇,  

𝐶3 = (𝜇 + 𝛽)(𝜇 + 𝛾)(𝜏 + 𝜇) > 0,  

 𝑘 =
𝜃П

(𝜇+𝛽)(𝜇+𝛾)
+

П𝛼𝛾

(𝜇+𝛽)(𝜇+𝛾)(𝜏+𝜇)
, 

 

now after finding the roots of 3.25, we have, 

 

𝑃𝐼
∗
1,2
=

−𝐶2±√𝐶2
2−4𝐶1𝐶3(1−𝑘)

2𝐶1
,  

 

it is clear that 𝑃𝐼
∗ > 0, and 𝑘 > 1.    

 

Thus, the second equilibrium point which is called the Endemic equilibrium 

point of the system when the infection is existing is, 

 

𝐸∗ = (𝑃𝑆
∗, 𝑃𝑉

∗, 𝑃𝐼
∗, 𝑃𝑅

∗) = (
П

𝜇+𝛾+𝜃𝑃𝐼
∗ ,

𝛾П

(𝛼𝑃𝐼
∗+𝜏+𝜇)(𝜇+𝛾+𝜃𝑃𝐼

∗)
, 𝑃𝐼

∗, 0).   (3.26)   
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3.5 Basic Reproduction Rate 

 

The basic reproduction number (𝑅0) can be explained as the estimated 

number of individuals of secondary infections caused by a particular individual in 

a population that is totally susceptible. (𝑅0) can be a good indicator for the 

probability that a certain infectious disease will spread through a population 

causing a pandemic or not (Van den Driessche, & Watmough, 2008).  

 

If (𝑅0 > 1), it means that the infectious disease could attack causing a 

pandemic but if 𝑅0 < 1, it couldn't (Diekmann, et al., 1990). Awareness of the 

overall epidemiological studies of infectious diseases and the effects of 

prevention efforts requires an understanding of the basic reproduction rate, or 

(𝑅0) which it should be decreased to be less than unity in order to get rid of an 

infection (Anderson, & May,1982). 

 

Table 3.3 lists a few approximated basic reproduction rates. Diverse 

populations of individuals could be related to various values of (𝑅0) for the same 

kind of infection because of variations in population size rates, and the effect of 

the environment, the surroundings, and the contact structure. 

 

Table 3.3 Estimated 𝑅0 for infectious diseases (Rodrigues, 2012). 

Infectious disease Estimated(𝑹𝟎) 

Influenza 3-4 

Foot and mouth disease 3.5-4.5 

Smallpox 3.5-6 

Rubella 6-7 

Dengue 1.3-11.6 

Chickenpox 10-12 

Measles 16-18 
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3.5.1 Next Generation Matrix  

 

The method used to calculate the basic reproduction number is the Next 

Generation matrix (Diekmann, Heesterbeek, & Roberts, 2010). This method 

described any nonlinear system of ODE as, 

𝑥𝑖 = 𝑓𝑖 = 𝐹𝑖(𝑥) − 𝑉𝑖(𝑥),    

 

and 𝑉𝑖 can be expressed as 

 

𝑉𝑖 = 𝑉𝑖(𝑜𝑢𝑡) − 𝑉𝑖(𝑖𝑛),  

 

where 𝐹𝐼 is the rate of the new infection occurrence into the 𝑖𝑡ℎ compartment, 

𝑉𝑖(𝑖𝑛) is the rate of input individuals transfer to 𝑖𝑡ℎ compartment, 𝑉𝑖(𝑜𝑢𝑡) is the 

rate of the output of 𝑖𝑡ℎ compartment, and if 𝐹𝑖(𝑥) is set to zero, then all 

eigenvalues of the derivatives of 𝑓(𝑥0), have negative real parts. 

 

Lemma 3.2 (Driesschea, & Wamough, 2002): If 𝐸0 is a disease-free equilibrium 

point, then the derivatives of 𝐹(𝑥0), and the derivatives of 𝑉(𝑥0), can be 

expressed as: 

 

𝐹 = [
𝜕𝑓𝑖

𝜕𝑥𝑗
(𝑥0)], and 𝑉 = [

𝜕𝑉𝑖

𝜕𝑥𝑗
(𝑥0)], 1 ≤ 𝑖, 𝑗 ≤ 𝑚. 

 

Thus, the derivation of basic reproduction number depends on the 

linearization of the ordinary differential equations of the SVIR model. By 

applying lemma 3.2 on the system of equations (3.16) - (3.18), we get, 

 

 

𝐹 = ⌈
𝜃𝑃𝑆0 + 𝛼𝑃𝑉0 0

0 0
⌉, 

 

 𝑉 = ⌈
𝛽 + 𝜇 0
0 𝛼𝑃𝐼 + 𝜏 + 𝜇

⌉,  
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𝑉−1 = ⌈

1

𝛽+𝜇
0

0
1

𝛼𝑃𝐼+𝜏+𝜇

⌉, 

𝐹𝑉−1 = ⌈
𝜃𝑃𝑆0

 +𝛼𝑃𝑉0
 

𝛽+𝜇
0

0 0
⌉,  

 

we get two eigenvalues of the matrix  𝐹𝑉−1, which are (0, 
𝜃𝑃𝑆0

 +𝛼𝑃𝑉0
 

𝛽+𝜇
) . 

 

 

Definition 3.3 (Burden, Faires, & Burden, 2015).  

 

A matrix A has a spectral radius 𝜌(𝐴) which is determined by the formula 

𝜌(𝐴) = 𝑚𝑎𝑥|𝜆|, where 𝜆  is the calculated eigenvalue of A. 

 

Thus, using definition 3.3 the basic reproduction number is 

 

  𝑅0 = 𝜌[𝐹𝑉−1] =
𝜃𝑃𝑆0

 +𝛼𝑃𝑉0
 

𝛽+𝜇
,    (3.27) 

 

now by substituting 𝑃𝑆0  and 𝑃𝑉0  in equation 3.27 we get, 

 

𝑅0 =
П𝜃

(𝜇+𝛽)(𝜇+𝛾)
+

П𝛼𝛾

(𝜇+𝛽)(𝜇+𝛾)(𝜏+𝜇)
=

П𝜃(𝜏+𝜇)+П𝛼𝛾

(𝜇+𝛽)(𝜇+𝛾)(𝜏+𝜇)
,  (3.28) 

  

   

which is the same value of k in 3.25, and that makes sense, if Ro< 1, then it is 

free disease stage and the infectious disease is under control, while if the value of  

𝑅0 > 1, then the disease is spread and the pandemic is starting. 
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3.6 Existence and Uniqueness  

 

It is vital to demonstrate the existence and uniqueness of solutions for the 

SVIR model. Researchers can prove the model's reliability, validate its 

assumptions, and enable detailed investigation and prediction of infection 

dynamics among a population by showing the existence and uniqueness of 

solutions for the SVIR model, and provide a solid mathematical foundation for 

studying the model. Take the first-order ordinary differential equation in the form: 

 

𝑥 ̀ = 𝑓(𝑡, 𝑥),             𝑥(𝑡0) = 𝑥0,       (3.29) 

 

for equation (3.29), 

i- When the solution of equation (3.29) exists? 

ii- When there is a unique solution to equation (3.29)? 

 

Assume the following: 

𝑓1 = П− (𝜇 + 𝛾 + 𝜃𝑃𝐼)𝑃𝑆,                                   

𝑓2 = 𝛾𝑃𝑆 − (𝛼𝑃𝐼 + 𝜏 + 𝜇)𝑃𝑉,                                             

𝑓3 = 𝜃𝑃𝐼𝑃𝑆 + 𝛼𝑃𝐼𝑃𝑉 − (𝛽 + 𝜇)𝑃𝐼, and                              

𝑓4 = 𝛽𝑃𝐼 + 𝜏𝑃𝑉 − 𝜇𝑃𝑅 ,       

                                                

now to show the existence and the uniqueness of the SVIR model, we have two 

theorems (Sowole, et. Al., 2019). 

 

Theorem 3.3 (Uniqueness of the Solution) 

 

Assuming that 𝐷 represent the domain, and 𝑓(𝑡, 𝑥) satisfies the Lipschitz 

condition, then  

 

|𝑡 − 𝑡0| ≤ 𝑎 , ‖𝑥 − 𝑥0 ≤ 𝑏 ‖, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑥0 = (𝑥10, 𝑥20, … , 𝑥𝑛0), (3.30) 

 

and, 

 

‖𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖ ≤ 𝑘‖𝑥1 − 𝑥2 ‖,     (3.31) 
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If 𝑓(𝑡, 𝑥1) and 𝑓(𝑡, 𝑥2) are in the domain D, and k is a positive constant, 

then, there exists a constant 𝜎 > 0, such that a unique vector solution 𝑥(𝑡) exists 

for the system 3.29 in the interval |𝑡 − 𝑡0| ≤ 𝜎, where the inequality (3.31) satisfies 

if, 

{
𝜕𝑓𝑖
𝜕𝑥𝑗

, 𝑖, 𝑗 = 1,2, … , 𝑛 

is continuous and bounded in the domain D 

 

Lemma 3.4 

 

 If 𝑓(𝑡, 𝑥) has continuous partial derivative 
𝜕𝑓𝑖

𝜕𝑥𝑗
 on a bounded closed 

convex domain of real number R, then it satisfies a Lipschitz condition in R.  

Assume the domain is, 

1 ≤ 𝜎 ≤ 𝑅,       (3.32) 

 

then, the proof will be completed if a bounded solution found in a form of, 

0 < 𝑅 < ∞. 

 

Theorem 3.5 (Existence of the Solution) 

Let D denote the domain defined in (3.30) such that (3.31) and (3.32) hold. Then 

there exist a solution of model system of equations (3.11)-(3.14) which is bounded 

in the domain D. 

Proof: 

Let, 

𝑓1 = П − (𝜇 + 𝛾 + 𝜃𝑃𝐼)𝑃𝑆,                                       (3.33) 

𝑓2 = 𝛾𝑃𝑆 − (𝛼𝑃𝐼 + 𝜏 + 𝜇)𝑃𝑉,                                        (3.34) 

𝑓3 = 𝜃𝑃𝐼𝑃𝑆 + 𝛼𝑃𝐼𝑃𝑉 − (𝛽 + 𝜇)𝑃𝐼  , and     (3.35)                            

𝑓4 = 𝛽𝑃𝐼 + 𝜏𝑃𝑉 − 𝜇𝑃𝑅 ,              (3.36) 

 

to prove that 
𝜕𝑓𝑖

𝜕𝑥𝑗
 are continuous and bounded, the partial derivatives for every 

equation should be obtained. 
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Starting with equation (3.33), 

𝜕𝑓1
𝜕𝑃𝑆

= −(𝜇 + 𝛾 + 𝜃𝑃𝐼), |
𝜕𝑓1
𝜕𝑃𝑆

| = |−(𝜇 + 𝛾 + 𝜃𝑃𝐼)| < ∞, 

𝜕𝑓1
𝜕𝑃𝑉

= 0, |
𝜕𝑓1
𝜕𝑃𝑉

| = |0| < ∞,   

𝜕𝑓1
𝜕𝑃𝐼

= −𝜃, |
𝜕𝑓1
𝜕𝑃𝑉

| = |−𝜃| < ∞, 

𝜕𝑓1
𝜕𝑃𝑅

= 0, |
𝜕𝑓1
𝜕𝑃𝑅

| = |0| < ∞.   

 

Similarly, from equation 3.34, we get, 

 

𝜕𝑓2
𝜕𝑃𝑆

= 𝛾, |
𝜕𝑓2
𝜕𝑃𝑆

| = |𝛾| < ∞, 

𝜕𝑓2
𝜕𝑃𝑉

= −(𝛼𝑃𝐼 + 𝜏 + 𝜇), |
𝜕𝑓2
𝜕𝑃𝑉

| = |−(𝛼𝑃𝐼 + 𝜏 + 𝜇)| < ∞, 

𝜕𝑓2
𝜕𝑃𝐼

= −𝛼, |
𝜕𝑓2
𝜕𝑃𝐼

| = |−𝛼| < ∞, 

𝜕𝑓2
𝜕𝑃𝑅

= 0, |
𝜕𝑓2
𝜕𝑃𝑅

| = |0| < ∞. 

 

Now, from equation 3.35, we get, 

 

𝜕𝑓3
𝜕𝑃𝑆

= 𝜃𝑃𝐼 , |
𝜕𝑓3
𝜕𝑃𝑆

| = |𝜃𝑃𝐼| < ∞, 

𝜕𝑓3
𝜕𝑃𝑉

= 𝛼𝑃𝐼 , |
𝜕𝑓3
𝜕𝑃𝑉

| = |𝛼𝑃𝐼| < ∞, 

𝜕𝑓3
𝜕𝑃𝐼

= 𝜃𝑃𝑆 + 𝛼𝑃𝑉 +−(𝛽 + 𝜇) , |
𝜕𝑓3
𝜕𝑃𝐼

| = |𝜃𝑃𝑆 + 𝛼𝑃𝑉 + −(𝛽 + 𝜇) | < ∞, 

𝜕𝑓3
𝜕𝑃𝑅

= 0, |
𝜕𝑓3
𝜕𝑃𝑅

| = |0| < ∞. 
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Last one, from equation 3.36, we get, 

         

𝜕𝑓4
𝜕𝑃𝑆

= 0, |
𝜕𝑓4
𝜕𝑃𝑆

| = |0| < ∞, 

𝜕𝑓4
𝜕𝑃𝑉

= 𝜏, |
𝜕𝑓4
𝜕𝑃𝑉

| = |𝜏| < ∞, 

𝜕𝑓4
𝜕𝑃𝐼

= 𝛽, |
𝜕𝑓4
𝜕𝑃𝐼

| = |𝛽| < ∞, 

𝜕𝑓4
𝜕𝑃𝑅

= −𝜇, |
𝜕𝑓4
𝜕𝑃𝑅

| = |−𝜇| < ∞. 

 

Thus, by using theorem 3.3, it is clearly established that all these partial 

derivatives are continuous and bounded, hence, by Theorem (3.3), In the domain D, 

there exists a unique solution of the model system of equations (3.11) - (3.14). 

 

3.7 The Stability Analysis of the Model 

 

The stability of equilibrium points must be tested since it allows us to 

understand the disease's long-term behaviour and forecast how it will spread in a 

community. We can predict whether the infection will die out or continue by 

studying the stability, as well as how the different compartments (S, V, I, R) change 

through time.  

 

To study the stability of the two equilibrium points of the SVIR model which 

has nonlinear differential equations, we have to define the method that we will use. 

One of the methods is Hartman Grobman method (linearization method). 

  

Definition 3.6 (Sastry, 2013) 

 

Assume that 𝑓: 𝑅𝑛 → 𝑅𝑛 is a map that has m which is a point that  

𝑓(𝑚) = 0,  

where m is a fixed point for the ordinary differential equation 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥(𝑡)), 

While 𝐷𝑓(𝑚), is the partial derivatives matrix at m,  

For 𝑥𝜖𝑅𝑛  
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𝐷𝑓(𝑚) =

⌈
⌈
⌈
⌈
⌈
⌈
⌈
 

 

𝜕𝑓1

𝜕𝑥1
(𝑚)     

𝜕𝑓1

𝜕𝑥2
(𝑚)    …       

𝜕𝑓1

𝜕𝑥𝑛
(𝑚)

𝜕𝑓2

𝜕𝑥1
(𝑚)     

𝜕𝑓2

𝜕𝑥2
(𝑚)   …       

𝜕𝑓2

𝜕𝑥𝑛
(𝑚)

⋮                       ⋮               ⋮             ⋮          
⋮                       ⋮                …          ⋮          
𝜕𝑓𝑛

𝜕𝑥1
(𝑚)       

𝜕𝑓𝑛

𝜕𝑥2
(𝑚)            

𝜕𝑓𝑛

𝜕𝑥𝑛
(𝑚) 

  ⌉
⌉
⌉
⌉
⌉
⌉
⌉
 

. 

 

 

Definition 3.7 

  

Hartman Grobman theorem said that if the result of the linearization of the 

equations has no zero or imaginary eigenvalues, at that point there is a continuous 

function with a continuous inverse in the neighbourhood of this point into 𝑅𝑛. 

Thus, we can write Jacobian matrix for the model ( 𝑃𝑆, 𝑃𝑉 , 𝑃𝐼) to be 

 

𝐽 = ⌈

−(𝜇 + 𝛾 + 𝜃𝑃𝐼)    0   −𝜃𝑃𝑆
𝛾 −(𝛼𝑃𝐼 + 𝜏 + 𝜇) −𝛼𝑃𝑉
𝜃𝑃𝐼 𝛼𝑃𝐼  𝜃𝑃𝑆 + 𝛼𝑃𝑉 − 𝛽 − 𝜇

⌉.(3.37) 

 

 

3.7.1 Local Stability of DFE 

 

Now apply this matrix to the first equilibrium point which is the disease-

free equilibrium point (DFE) from equation 3.21 to have, 

 

𝐽 = ⌈

−(𝜇 + 𝛾)    0   −𝜃𝑃𝑆
𝛾 −(𝜏 + 𝜇) −𝛼𝑃𝑉
0 0  𝜃𝑃𝑆 + 𝛼𝑃𝑉 − 𝛽 − 𝜇

⌉.  (3.38) 

 

 

Theorem 3.8  

To prove the stability of DFE point we should prove that the eigenvalues of 

the Jacobian matrix have a negative real part, then we can say that the point is 

locally asymptotically stable (Hethcote, & van den Driessche,1991).  
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Using Maple software, we found 3 eigenvalues of DFE, which are, 

𝜆1 = −(𝜏 + 𝜇), 

𝜆2 = −(𝜇 + 𝛾), 

𝜆3 = 𝜃𝑃𝑆 + 𝛼𝑃𝑉 − 𝛽 − 𝜇, 

 

using theorem 3.8, it is clear that 𝜆1 and 𝜆2 have negative real values as we used 

nonnegative parameters. Now we have to check 𝜆3 and check if it is negative, it means 

our DFE is locally stable. 

 

 

𝜃𝑃𝑆 + 𝛼𝑃𝑉 − 𝛽 − 𝜇 < 0, 
 

𝜃𝑃𝑆 + 𝛼𝑃𝑉 < 𝛽 + 𝜇, 
 

𝜃𝑃𝑆 + 𝛼𝑃𝑉
𝛽 + 𝜇

< 1, 

which is the same value of Ro, that means,Ro < 1 , which is true in case of 

disease-free equilibrium point, then we can say that our system is locally stable 

when 𝑃𝐼 = 0.While if Ro > 1, then 𝜆3 is positive and that means 𝐸0 is unatable. 

 

 

 

3.7.2 Local Stability of the Endemic Equilibrium Point 

 

Now apply this matrix to the second equilibrium point which is called the 

endemic equilibrium point of the system from equation 3.25 to have, 

 

𝐽 = ⌈

−(𝜇 + 𝛾 + 𝜃𝑃𝐼
∗)    0   −𝜃𝑃𝑆

𝛾 −(𝛼𝑃𝐼
∗ + 𝜏 + 𝜇) −𝛼𝑃𝑉

𝜃𝑃𝐼
∗ 𝛼𝑃𝐼

∗  𝜃𝑃𝑆 + 𝛼𝑃𝑉 − 𝛽 − 𝜇

⌉,(3.39) 

 

 

now, if we rearrange the parameters elements in 𝑎𝑖𝑖 in the matrix (3.39), 

(Kaymakamzade, Baba, & Hincal, 2016), we will get the following: 
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−(𝜇 + 𝛾 + 𝜃𝑃𝐼) =
−𝜇

𝑃𝑆
∗, 

 

−(𝛼𝑃𝐼
∗
 
+ 𝜏 + 𝜇) =

−𝛾𝑃𝑆
∗

𝑃𝑉
∗ , 

 

and from equation 3.18, we can conclude that 𝜃𝑃𝑆 + 𝛼𝑃𝑉 − 𝛽 − 𝜇 = 0. 

Thus, we get, 

 

𝐽 =

⌈
⌈
⌈
⌈
 
−𝜇

𝑃𝑆
∗    0   −𝜃𝑃𝑆

∗
 

𝛾
−𝛾𝑃𝑆

∗

𝑃𝑉
∗ −𝛼𝑃𝑉

∗

𝜃𝑃𝐼
∗ 𝛼𝑃𝐼

∗  0 ⌉
⌉
⌉
⌉
 

.    (3.40) 

 

Theorem 3.6 (Routh-Hurwitz stability criterion) 

From the characteristic polynomial of the matrix,  

 𝑞(𝜆) = 𝜆𝑚 + 𝑎1𝜆
𝑚−1 +⋯+ 𝑎𝑚 , where 𝑎𝑖 represents all the real 

coefficients for all 𝑖 = 1,2,3, … ,𝑚. The roots found for this polynomial when 

𝑞(𝜆) = 0 all are negative or have negative real part if and only if all the 

determinants of all Routh-Hurwitz matrices are nonnegative. (Islam, 

Asaduzzaman, & Mondal, 2014). 

 

Now using theorem 3.6 and following Routh- Hurwitz stability equation we 

have the following results: 

The characteristic equation for (3.40) matrix is, 

 

𝜆3 + 𝑏1𝜆
2 + 𝑏2𝜆

 + 𝑏3 = 0, 

where, 

𝑏1 =
𝜇

𝑃𝑆
∗ +

𝛾𝑃𝑆
∗

𝑃𝑉
∗ > 0, 

 

𝑏2 =
𝛾𝑃𝑆

∗

𝑃𝑉
∗ + 𝛼

2𝑃𝑉
∗𝑃𝐼

∗ + 𝜃2𝑃𝑆
∗𝑃𝐼

∗ > 0, 

 

𝑏3 = 𝛾𝛼𝜃𝑃𝑆
∗𝑃𝐼

∗ +
𝛾𝜃2𝑃𝐼

∗𝑃𝑆
∗2

 

 

𝑃𝑉
∗ +

𝜇𝛼2𝑃𝑉
∗𝑃𝐼

∗

𝑃𝑆
∗ > 0, 
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now, if  𝑏1𝑏2 − 𝑏3 > 0, then the endemic equilibrium point is locally stable as 

Routh-Hurwitz stability criterion said, to check that we substitute in the last 

inequality to have, 

 

𝛾𝜇2

𝑃𝑆
∗𝑃𝑉

∗ + (𝜇 + 𝜃𝑃𝐼
∗)𝜃2𝑃𝐼

∗𝑃𝑆
∗ +

𝛾2𝜇𝑃𝑆
∗

𝑃𝑉
∗2

+ 𝛼𝑃𝐼
∗𝑃𝑆

∗(𝜃 − 𝛼)2 + 𝛾𝛼𝜃𝑃𝑆
∗𝑃𝐼

∗ > 0. 

 

As a result of applying Routh-Hurwitz stability criterion, it is clear that all 

the eigenvalues of the matrix are negative and we can conclude that the endemic 

equilibrium point is locally stable. 

 

 

3.8 Sensitivity Analysis of 𝑹𝟎  

 

 

 Sensitivity analysis of 𝑅0 in SVIR model is examining the effect of 

varying the basic reproduction number (𝑅0) on the dynamics and outcomes of the 

model. The basic reproduction number's sensitivity is the key to understand 

the essential parameters employed throughout the model. The calculation of 

𝑅0 was shown in previous Section. The calculation of the indices of normalized 

local sensitivity of 𝑅0 proportional to the parameters that occurred in it’s formula. 

In this model, the parameters that related to 𝑅0 are 𝜆 = {П,𝜃, 𝛽, 𝛾, 𝜏, 𝜇, 𝛼}. 

We can write 𝑅0 by using the normalized local sensitivity index according to a 

certain parameter found in 𝜆 , where 𝜆 can be expressed as Ω 𝜆
R0 =

𝜕𝑹𝟎

𝜕𝜆

𝜆

𝑹𝟎
   .  Now 

by applying this new difinition, we can calculate the indices below using table 3.1 

and that will give 𝑅0 according to each parameter occured in. (Bagkur, et. Al., 

2022).  
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  Ω𝜃
𝑅0 =

𝜕𝑹𝟎

𝜕𝜃

𝜃

𝑹𝟎
=

П

(𝜇+𝛽)(𝜇+𝛾)

𝜃(𝜇+𝛽)(𝜇+𝛾)(𝜏+𝜇)

𝜃П(𝜏+𝜇)+П𝛼𝛾
=

𝜃(𝜏+𝜇)

𝜃(𝜏+𝜇)+𝛼𝛾
,         (3.41)           

     

 

 

Ω𝛽
𝑹𝟎 =

𝜕𝑹𝟎

𝜕𝛽

𝛽

𝑹𝟎
=

−[𝜃П(𝜏+𝜇)+П𝛼𝛾](𝜇+𝛾)(𝜏+𝜇)

[(𝜇+𝛾)(𝜏+𝜇))(𝛽+𝜇)]2
𝛽(𝜇+𝛽)(𝜇+𝛾)(𝜏+𝜇)

𝜃П(𝜏+𝜇)+П𝛼𝛾
=

−𝛽

(𝛽+𝜇)
, (3.42) 

                  

                                                    

 

Ω𝛼
𝑹𝟎 =

𝜕𝑹𝟎

𝜕𝛼

𝛼

𝑹𝟎
=

(𝛾П)

(𝜇+𝛽)(𝜇+𝛾)(𝜏+𝜇)

𝛼(𝜇+𝛽)(𝜇+𝛾)(𝜏+𝜇)

𝜃П(𝜏+𝜇)+П𝛼𝛾
=

𝛼𝛾

𝜃(𝜏+𝜇)+𝛼𝛾
,    (3.43) 

 

    

                                               

 

Ω𝜇
𝑹𝟎 =

𝜕𝑹𝟎

𝜕𝜇

𝜇

𝑹𝟎
=

[𝜃𝜏+2𝜃𝜇+𝛼𝛾][(𝜇+𝛽)(𝜇+𝛾)(𝜏+𝜇)]+[−2𝜏𝜇−𝜏𝛾−𝛽𝜏−3𝜇2−2𝜇𝛾−2𝜇𝛽−𝛽𝛾][𝜃𝜇(𝜏+𝜇)+𝜇𝛼𝛾]

(𝜇+𝛽)(𝜇+𝛾)(𝜏+𝜇)[𝜃(𝜏+𝜇)+𝛾𝛼]
, 

           

                                                                                                                             (3.44) 

                                  

 

                                                             

Ω𝜏
𝑹𝟎 =

𝜕𝑹𝟎

𝜕𝜏

𝜏

𝑹𝟎
=

−𝜏𝛼𝛾

(𝜏+𝜇)[𝜃(𝜏+𝜇)+𝛼𝛾]
,     (3.45)  

                                                                                                      

 

 

Ω𝛾
𝑹𝟎 =

𝜕𝑹𝟎

𝜕𝛾

𝛾

𝑹𝟎
=

𝛾[𝛼(𝜇+𝛾)−𝜃(𝜏+𝜇)−𝛾𝛼]

(𝜇+𝛾)[𝜃(𝜏+𝜇)+𝛼𝛾]
,           (3.46) 

 

 

 

  ΩП
𝑅0 =

𝜕𝑹𝟎

𝜕𝜃

П

𝑹𝟎
=

𝜃(𝜏+𝜇)+𝛼𝛾

(𝜇+𝛽)(𝜇+𝛾)(𝜏+𝜇)

П(𝜇+𝛽)(𝜇+𝛾)(𝜏+𝜇)

𝜃П(𝜏+𝜇)+П𝛼𝛾
= 1.           (3.47)          
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CHAPTER IV 
 

Findings and Discussion 
 
 
 

Numerical Simulation of the model 

 

In the model simulation we will use table 3.1 which included parameter 

values for the system of equations of the SVIR model in (3.11) − (3.14) taking 

under consideration the situation of infection in Jordan, and how the individuals 

transfer from susciptible, vaccinated, or infected to recovered. 

In this model we stareted assuming that the population converts from being 

free of disease to the situation of endemicity.  

 

 

Table 4.1 The values of the Parameters of the Model 

 

 

 

 

 

 

 

Parameters Descriptions Value 

𝜃 The contact rate 

(transmission rate) 

0.15 

𝛽 The recovery rate 1/14 

П The birth rate 0.024 

𝜇 The natural death rate  0.003916 

𝛾 The rate that susceptible 

persons become vaccinated 

0.05 

𝛼 The rate that vaccinated 

persons become susceptible 

because of vaccination 

failure 

0.08 

𝜏 The effect rate of vaccine in 

protecting from the 

infection(get immunity) 

0.92 



 

43 
 

 

4.1 𝑹𝟎 for Varicella Virus in Jordan 

The basic reproduction number 𝑅0 is created by using next generation matrix 

as shown in the previous section, which was our indicator to check the infectious 

disease potential, as we mentioned if 𝑅0 < 1 , that means the infectious disease is 

vanishing, while if 𝑅0 > 1 ,  this means that it is spreading. By using the equation 

3.27, we can calculate 𝑅0 for the varicella virus in Jordan yearly depending on the 

number of real cases in table 1.1 to get, 

 

Figure 4.1: 𝑅0 values for Varicella virus in Jordan from 2008 to 2021 

 

In figure 4.1 summarized the situation in Jordan, and it is obvious from this 

graph that since 2016 there is a big decreasing in 𝑅0 and the cases became under 

control and that when Jordanian health officials discussed their intended approach 

for fighting infectious diseases from 2016 to 2020 in public, with a plan to add 

additional vaccinations like varicella virus vaccination to the Jordan's national 

immunization program (Abdullat, et al., 2021). The severe viral infection, Varicella 

Virus, is still very contagious. The number of cases and the statistical data of 

varicella in Jordan are not clearly available. Even though estimates suggest that 

varicella infection likely represents a sizable health and financial burden in the 

country that could be reduced through universal varicella vaccination, 

unfortunately, the varicella vaccine remains absent in Jordan's vaccination program 

and it is not mandatory. 
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4.2 Simulating SVIR model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The dynamics of the various compartments during 

the outbreak with 𝑃𝑉0 = 0.24   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: The dynamics of the various compartments during 

the outbreak with 𝑃𝑉0 = 0.05   
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Figure 4.2, shows that when the starting percentage of infected individuals is 

0.05, and the vaccination percentage is 0.24 It is clear that the susceptible 

individuals’ percentage starts decreasing with time as we take the initial value is 

0.71, and the infected ratio started to increase with time and the individuals transfer 

to recovery compartment with the time. While, in figure 4.3 the vaccination 

percentage decreases to 0.05, keeping the same percentage of infected individuals. 

As a result, the infected cases increase rapidly with time comparing to graph 4.2. 

Individuals keep moving from the infected compartment to the recovered, and that 

causes the increase in the recovered individuals. As noticed from both graphs, the 

transmission of the virus can be reduced by vaccination susceptible individuals, 

lowering the overall illness burden. Vaccination protects people from becoming 

infected with varicella virus and causing health problems. Varicella vaccination 

provides lasting immunity, lowering the possibility of outbreaks and promoting a 

healthier community. By decreasing the total burden of varicella virus infection, 

medical funding can be better directed to other health challenges. 
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4.3 Simulating the Sensitivity of 𝑹𝟎 

 

For the purpose of demonstrating how every single parameter affect 𝑅0, we 

will use the local sensitivity analysis. The sensitivity values for every parameter can 

be determined by substituting the values from table 3.1 in the equations from 3.41 

to 3.47. Table 4.2 displays the computed sensitivity values. 

 

 Table 4.2 The sensitivity values for each parameter in 𝑅0 

 

Sensitivity Sinsitivity Values 

Ω𝜃
𝑹𝟎 0.972 

Ω𝛽
𝑹𝟎 -0.948 

Ω𝛼
𝑹𝟎 0.0281 

ΩП
𝑹𝟎  1.000 

Ω𝜇
𝑹𝟎 -0.021 

Ω𝜏
𝑹𝟎 -0.028 

𝛺𝛾
𝑹𝟎 -0.899 

 

 

From table 4.2 we can decide the effect of each parameter on 𝑅0, starting with 

the transmission rate 𝜃, the value demonstrate that if it increased by for example 10% 

that will make 𝑅0 to increase with percentage of 9.72%. 

While for the recovery rate 𝛽 and the rate of vaccination for the susceptible 𝛾 

the situation is different, here it is noticeable that the increase in 𝛽 and 𝛾 by 10% will 

make 𝑅0 decrease by 9.48%, and 8.99% respectively and that makes sense. 

For the parameter 𝛼, which is the rate that vaccinated persons become infected 

because of vaccination failure, if it increases by 10%, that will make 𝑅0 to increase by 

0.281%, while the opposite for 𝜏 which is the rate of getting immunity from the virus 

by vaccination, if it increases by 10%, 𝑹𝟎 will decrease by 0.28%. 

If 𝝁 which is the death rate increased by 10% that will decrease 𝑅0 by 0.21%, 

but, if the birth rate increases by 10%, that will increase 𝑹𝟎by 10%. The parameters 

are graphically illustrated in the following figures (4.4) - (4.10). 
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Figure 4.4: Proportion of Population that infected with Varicella Virus 

estimated by the model with the value of the original 𝜃 in Table 4.2 and 

with increasing of 10% in 𝜃 parameter. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.5: Proportion of Population that infected with Varicella 

Virus estimated by the model with the value of the original β in Table 

4.2 and with increasing of 10% in β parameter. 
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Figure 4.6: Proportion of Population that infected with Varicella Virus 

estimated by the model with the value of the original 𝛾 in Table 4.2 and 

with increasing of 10% in 𝛾 parameter. 

 
 

 
 

Figure 4.7: Proportion of Population that infected with Varicella Virus 

estimated by the model with the value of the original 𝛼 in Table 4.2 and 

with increasing of 10% in 𝛼 parameter. 
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Figure 4.8: Proportion of Population that infected with Varicella Virus 

estimated by the model with the value of the original 𝜇 in Table 4.2 and 

with increasing of 10% in 𝜇 parameter. 

 

 

 

 

 

 
 

Figure 4.9: Proportion of Population that infected with Varicella Virus 

estimated by the model with the value of the original 𝜏 in Table 4.2 and 

with increasing of 10% in 𝜏 parameter. 
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Figure 4.10: Proportion of Population that infected with Varicella Virus 

estimated by the model with the value of the original П in Table 4.1 and 

with increasing of 10% in П parameter. 

 

As noted from the previous graphs, we studied the effect of each parameter on 

the infection proportion of population, and the results from the simulation of the 

system gave the same result as the calculated ones in table 4.2. starting from the effect 

of increasing the contact rate by 10%, from the graph, we can notice that the infection 

increases by this change in figure 4.4, also if the failure of vaccination increases that 

will increase the infection as shown in figure 4.7.  

 

In the other hand if the recovery rate and the vaccination rate increase that will 

decrease the infection transmission between individuals as shown in figure 4.5 and 

4.6. In addition to these two parameters, we have in figure 4.9, the graph that clarifies 

if the vaccination successes to give immunity and the rate of transfer from vaccination 

compartment to recovery compartment increases that will decrease the infection 

between individual. 
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By evaluating the effects of parameter changes on the model's results and 

offering opinions on the robustness and reliability of the model, sensitivity analysis 

performs an important role in this model for the SVIR of varicella virus. One of these 

roles is locating the parameter which has the greatest impact on the results of the 

model. Experts can focus their attention on precisely determining or evaluating this 

essential parameter. Sensitivity analysis is commonly utilized to identify parameters 

that have a substantial impact on the dynamics of the varicella virus disease inside the 

framework of the SVIR model. These parameters include vaccination effectiveness, 

immunity duration, interaction rates, and the vaccination availability. 

 

In addition, Sensitivity analysis aids in achieving optimal performance of 

treatments by evaluating the impact of parameter changes on the performance of 

control strategies. Policymakers may determine the most significant factors and create 

measures that have a major effect on lowering varicella occurrence by examining how 

modifications in key parameters affect the final results of vaccine schedules, additional 

doses or specific treatments.  
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CHAPTER V 

 
 

Conclusion and Recommendations 
 

 

This research investigates the SVIR model's dynamics and numerical simulation 

was provided for the model. The model's equilibrium points were determined, along 

with the basic reproduction number 𝑅0, existence and uniqueness of the solution of the 

model, and local stability. Existence and uniqueness Proofs verify that the forecasts 

made by the model are reasonable and can be utilized to make decisions. We found 

that when 𝑅0 > 1, the endemic equilibrium point is stable and disease are present 

between individuals continuously. But when 𝑅0 < 1, it is proved that the disease-free 

equilibrium remains stable. 

 

By changing the values of the parameters while leaving all other health-related 

variables constant, we measure the sensitivity of 𝑅0 and explained it graphically, and 

it was clear that increasing the contact rate will increase 𝑅0, while when the rate of the 

vaccination increases 𝑅0 decrases, and here the role of the public health awareness 

campaigns, educational initiatives, and behavioural interventions will contribute in 

promoting varicella prevention measures, vaccine acceptance, and adherence to 

control strategies, in addition to the healthcare resources, such as hospital beds and 

medical personnel, to evaluate the capacity for managing varicella cases and the 

potential strain on healthcare systems during outbreaks if needed.  

 

Sensitivity analysis of 𝑅0 plays an essential role in the SVIR model 

of varicella virus. It aids in the identification of crucial parameters, the assessment 

of model flexibility, and improving the effectiveness of intervention techniques. By 

performing sensitivity analysis of  𝑅0 in SVIR model, researchers can obtain a better 

knowledge of the dynamics of infectious diseases, analyse the possible 

consequences of various control measures, and inform public health strategies to 

reduce disease spread.  
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In conclusion, SVIR model does not account for changes in population size 

or demographic composition resulting from immigration, it could be considered, 

including such factor can provide a more realistic representation of disease 

dynamics and allow for better predictions and policy recommendations. As a 

varicella virus places a significant load on Jordan's medical system because of that 

a universal varicella vaccination is necessary, and the Jordanian Ministry of Health 

should implement vaccination programs to fully control the disease. Varicella 

vaccination provides lasting immunity, lowering the possibility of outbreaks and 

promoting a healthier community. By decreasing the total burden of varicella virus 

infection, medical funding can be better directed to other health challenges. 

 

 

Finally, more studies are recommended, especially for non-constant and varied 

populations, also employing fractional-order differential equations instead of ordinary 

differential equations can assist us in minimizing the mistakes brought on by the 

omitted parameters while simulating real-world processes, and that what I 

recommended for next study to improve this model. 
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Appendices 

 

Appendix A 
 

function fval=svir(t,y) 

  
S=y(1); 
V=y(2); 
I=y(3); 
R=y(4); 

  
theta=0.15; 
pi=0.024; 
beta=0.0714; 
mu=0.003916; 
gamma=0.05; 
alpha=0.08; 
tau=0.92; 
%legend('Susceptible', 'Infected', 'vaccinated', 'Recovered'); 
%xlabel('Time'); 
%ylabel('Population'); 
%title('SVIR Model'); 

  
fval(1,1)=pi-gamma*S-theta*S*I-mu*S; 
fval(2,1)= gamma*S-tau*V-alpha*V*I-mu*V; 
fval(3,1)= theta*S*I-beta*I-mu*I+alpha*I*V; 
fval(4,1)=beta*I+tau*V-mu*R; 

 
 
 
 

y0=[0.71;0.05;0.24;0]; 
t=[0 100]; 
[tsol, ysol]=ode45(@tamara,t,y0);  
I1org=ysol(:,3);  
[tsolincr, ysol]=ode45(@tamara1,t,y0);  
I1incr=ysol(:,3); 

 

plot(tsol,I1org,'--',tsolincr,I1incr) 
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Appendix B 

 

 
 




