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Abstract

Bounded Solutions of Semi-linear Delay Parabolic Equations

Saadu Bello Muazu

PhD Thesis, Department of Mathematics

Supervisor: Prof. Dr. Allaberen Ashyralyev

September, 2023, (124) pages

In the present thesis, the initial-boundary value problems for the semi-linear

delay differential equations in a Banach space with strongly unbounded opera-

tors are considered. The main theorems on the existence and uniqueness of a

bounded solution to these problems are established. The application of the main

theorems to four different semi-linear and three different types of nonlinear delay

parabolic equations is presented. Analytic solutions of several two-dimensional

delay parabolic equations are obtained by using classical methods. The first and

second-order accuracy difference schemes for the solution of a one-dimensional

semi-linear parabolic equation with time delay are presented. Finally, certain

numerical experiments are given to confirm the agreement between experimental

and theoretical results and to make clear how effective the proposed approach is.

Numerical results are found, and error analysis is given in the tables.

Keywords: bounded solution; Banach and Hilbert spaces; unbounded operators;

semi-linear parabolic equations; existence and uniqueness.
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Özet

Yarı Doğrusal Gecikmeli Parabolik Denklemlerin Sınırlı Çözümleri

Saadu Bello Muazu

Doktora Tezi, Matematik Bölümü

Danışman: Prof. Dr. Allaberen Ashyralyev

Eylül 2023, (124) sayfa

Bu tezde, güçlü sınırsız operatörlere sahip bir Banach uzayında yarı doğrusal

gecikmeli diferansiyel denklemler için başlangıç-sınır değer problemleri ele alınmıştır.

Bu problemlere yönelik sınırlı bir çözümün varlığı ve benzersizliğine ilişkin ana

teoremler oluşturulmuştur. Ana teoremlerin dört farklı yarı doğrusal ve üç farklı

türdeki doğrusal olmayan gecikmeli parabolik denklemlere uygulanması sunul-

maktadır. Birkaç iki boyutlu gecikmeli parabolik denklemin analitik çözümleri

klasik yöntemler kullanılarak elde edilir. Zaman gecikmeli tek boyutlu yarı doğrusal

parabolik denklemin çözümü için birinci ve ikinci dereceden doğruluk farkı şemaları

sunulmaktadır. Son olarak deneysel ve teorik sonuçlar arasındaki uyumu doğrulamak

ve önerilen yaklaşımın ne kadar etkili olduğunu netleştirmek için bazı sayısal

deneyler verilmiştir. Sayısal sonuçlar bulunmuş, hata analizleri tablolarda ver-

ilmiştir.

Anahtar Kelimeler: sınırlı çözüm; Banach ve Hilbert uzayları; sınırsız op-

eratörler; yarı doğrusal parabolik denklemler; varlık ve teklik.
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CHAPTER I

Introduction

Historical Note and Literature Survey

The theory of differential equations (DEs) plays an important role in many disci-

plines, such as biology, economics, engineering, medicine, and physics. modelling

of almost any biological, technical, or physical process, such as interactions be-

tween neurons, bridge design, movement of celestial bodies, propagation of water,

heat, and sound in the atmosphere, single and multidimensional dynamic systems,

electrostatics, electrodynamics, fluid flow, elasticity, or various types of quantum

mechanics. Ordinary and partial DEs are used to describe the phenomenon. For

example, while modelling biological systems with differential equations, simplified

models created to better understand very complex events may not reflect the rich

diversity of dynamics observed in natural systems. To overcome this complexity,

many possible approaches can be devised using systems of partial and ordinary

DEs, i.e., the method involving a larger number of equations. Although these sys-

tems are quite good at approximating observed behaviour, problems arise because

many parameters representing quantities that cannot be determined empirically

are overlooked. Therefore, another approach that is gaining importance is to

include time delay terms in DEs.

Often in the generated modelling, the future state of the system is independent

of the past and is controlled only by the present. It should be borne in mind

that this is only a first approximation to the real state. More realistic models

will include some of the past states of these systems, so ideally, a real system

should be modelled as a time-delayed differential equation(DE). Of course, delay

is inevitable in routine life. In any system, there is always a delay, even for

seconds. Science makes predictions about future events by watching some events,

and while doing this, it aims to create a mathematical model of the event or

system it studies. As a matter of fact, in many applications, the newly created

model is established with the assumption that the past state of the event or system

under consideration will not affect the future state. Not adding the situations that
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have occurred in the past to the problems encountered in the model invalidates

the created system. When the perceived information from the outside world is

taken into account, there is a reaction to every effect, and there is a slight delay

in this process. Because the reaction to every action depends on a process. In

physical phenomena, the current state of a system can also be determined by

considering its past state. In order to predict how the mentioned system will

behave, it is necessary to know the differential equation describing this system

and its solutions.

Time delays occur very often in almost all cases, and to ignore them is to ig-

nore reality. Delays, gestation periods, incubation periods, transportation delays,

etc. can represent A simple example from nature is reforestation. Saplings in a

forest need 20 years to reach maturity after reforestation. For certain types of

trees, this time may be even longer. Thus, any mathematical model of forest har-

vesting and regeneration obviously involves and builds on time delays. Another

example is that animals need time to digest their food before they can perform

their activities. Delayed models have become widespread in many branches of

biological modelling. These models are used to describe some topics such as

infectious disease dynamics:(Ciupe et al., 2006; Nelson, Murray, and Perelson,

2000; Cooke, Kuang, and Bingtuan, 2005). Also, delays occur in studies of topics

such as chemostat models (Zhao, T 1995); circadian rhythms (Smolen, Baxter,

and Byrne, 2002); epidemiology (Cooke, van den Driessche, and Zou, 1999);

the respiratory system (Vielle, and Chauvet, 1998); tumour growth (Villasana,

Radunskaya, 2003); and neural networks (Campbell, Edwards, and Driessche,

2004). Statistical analysis of ecological data by (Turchin, P. 1990; Turchin, and

Taylor, 1992) showed that there is evidence of delay effects in the population

dynamics of many species.

Studies on delayed ordinary and partial DEs were carried out by many re-

searchers (Ashyralyev and Akca, 1999, 2001; Ashyralyev, Akca and Guray, 1999;

Yenicerioglu, 2007; Mohamad, Akca, and Covachev, 2009; Torelli, 1989; Ashyra-

lyev, Akca, and Yeniçerioğlu, 2003; Li, Bohner, and Meng, 2008; Xu et al., 2001;

Wolfgang, 1981; Liang, and Xiao, 2004; Ferreira, 2008); they generally focus

on the properties of the solution, such as oscillation, stability, periodicity, and
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asymptoticity. In general, the inclusion of an unbounded delay term in DEs

makes it difficult to analyse these types of equations. Additionally, there are a

couple of works for which analytical solutions are provided. Because of this rea-

son, the studies on numerical approaches compensate for the dearth of theoretical

research. Particularly, one of the primary techniques employed in this field is the

finite difference method. (Lu, X. 1998) investigates monotone iterative schemes

for finite-difference solutions of reaction-diffusion systems with time delays and

provides improved iterative schemes using the upper-lower solutions approach

with the Gauss-Seidel or the Jacobi method. (Gu and Wang, 2014) constructed a

linearized Crank-Nicolson difference scheme for the solution of a partial equation

with variable coefficient delay and showed that this scheme is unconditionally

stable and converges with a quadratic degree of convergence in both space and

time variables.

(Berezansky and Braverman, 2006) examined stability for non-autonomous

equations of the Carathéodory type, obtained new explicit stability conditions for

linear differential equations with some delays, and reduced the stability problem

for an equation with some delay to a stability problem for a specially constructed

unique delay equation. They applied their results to study the local asymptotic

stability of the Mackey-Glass equation with non-constant coefficients and delays.

(Yenicerioglu and Yalçnbaş, 2004) established the necessary conditions for the

stability of the solutions of second-order linear delay equations with variable

coefficients.

In addition, (Ashyralyev and Sobolevskii, 2001) consider the initial value prob-

lem for the parabolic type linear delay differential equations; they provide a

sufficient condition for the stability of the solution to this problem and obtain

the stability estimates of solutions in Hölder norms. Various types of initial

and boundary value problems for delay parabolic partial differential equations

were investigated by ( Ashyralyev, and Agirseven, 2014a, 2014b, 2014c, 2014d;

Ashyralyev, Agirseven, and Agarwal, 2020; Ashyralyev, 2007; Agirseven, 2012;

Ashyralyev, and Agirseven, 2013); they gave theorems on stability and conver-

gence, found approximate solutions for the problems using first and second-order

accuracy difference schemes, and performed error analysis.
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Finally, the existence and uniqueness of a bounded solution (BS) of nonlinear

delay parabolic equations were established by (Ashyralyev, Agirseven and Cey-

lan, 2017); they provide sufficient conditions for the existence of a unique BS of

nonlinear delay parabolic equations. It should be noted that in past publications

(Diagana, and Mbaye, 2015; Iasson, and Miroslav, 2014; Igbida, 2011; Kiguradze,

and Kusano, 2005; Mavinga, and Nkashama, 2010; Nakao, 1977; Poorkarimi,

and Wiener, 1986, 1989, 1999; Poorkarimi, Wiener, and Shah, 1989; Sadkowski,

1978; S. Shah, Poorkarimi, and Wiener, 1986; Sheng, and Agarwal, 1994; Smir-

nitskii, and Sobolevskii, 1981; Smirnitskii, 1993; Vyazmin, and Sorokin, 2017;

Wiener, 1993; Youssfi, Benkirane, and Hadfi, 2016), bounded solutions of nonlin-

ear parabolic and hyperbolic partial differential equations with or without delay

have been investigated. However, due to the generality of the strategy used in

this research, a larger class of semi-linear parabolic equations can be treated.

Layout of the Present Thesis

Semi-linear delay parabolic equations take an important place in applied sciences

and engineering applications. The theory and applications of several problems for

semi-linear delay parabolic equations have been studied in several works. Linear

problems for delay parabolic equations can be solved by classical methods like

Fourier transform method, Fourier series method and Laplace method. However,

these classical methods can be used basically in the case when the differential

equation has constant coefficients. It is well known that the most useful method

for solving nonlinear delay parabolic equations with dependent coefficients in t

and in the space variables is operator method.

In the Master Thesis (Burcu Ceylan, 2012); theorems on the existence and

uniqueness of bounded solutions of nonlinear delay parabolic differential equa-

tions with undepended coefficients in t were studied. The book by (Ashyralyev

and Sobolevskii, 2004); is devoted to the construction and investigation of the

new high order of accuracy difference schemes of approximating the solutions of

regular and singular pertubation boundary value problems for partial differential

equations. The construction is based on the exact difference scheme and Taylor’s
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decomposition on the two or three points. This approach permitted essentially

to extend a class of problems where the theory of difference methods is applica-

ble. Namely, now it is possible to study the existence and uniqueness of bounded

solutions of semi-linear delay parabolic differential and difference equations.

In the present thesis, we investigate the abstract form of the initial value

problems:  dv
dt
+ Av(t) = f(t, B(t)v(t), B(t)v(t− d)), t ∈ [0,∞),

v(t) = φ(t), t ∈ [−d, 0]
(1.1)

in an arbitrary Banach space E with linear unbounded operators A and B(t)

with dense domains D(A) ⊂ D(B(t)) and du
dt

+ A(t)u(t) = g(t, u(t), u(t− ω)), t ∈ [0,∞),

u(t) = φ(t), t ∈ [−ω, 0]
(1.2)

in an arbitrary Banach space E with the unbounded operators A(t) in E with

dense domains D(A(t)) ⊂ E.

The main aim of this study is to provide the sufficient condition for the exis-

tence of a unique BS to problems (1.1) and (1.2).

The organization of this thesis is as follows:

The first chapter contains an introduction, a historical note and literature

survey, definitions, and some basic concepts.

In the second chapter, we apply classical methods and obtain analytical solu-

tions to several initial boundary value problems (IBVPs) for a two-dimensional

delay parabolic partial differential equation (DPPDE).

In the third chapter, we study the theorem on the existence and uniqueness of

the initial value problem (1.1). A semi-linear parabolic differential equation with

an unbounded delay term is used to establish the theorem, and four different semi-

linear DPPDEs are used to illustrate the main theorem’s application. Numerical

results are provided. (This chapter was published in an open access journal,

MDPI; Mathematics 2023, Volume 11, Issue 16, 3470, and some part of the

chapter is also accepted for publication in AIP Conference Proceedings, ICAAM

2022).
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In the fourth chapter, the main theorem on the existence and uniqueness of

a BS of problem (1.2) is established for a nonlinear DPPDE. The application of

the main theorem to three types of nonlinear DPPDEs is illustrated. Numerical

results are presented. (This chapter is also sent for publication in an open access

journal, Filomat, under review.)

Finally, chapter five contains conclusion and future work. MATLAB programs

made to find approximate solutions are given in the appendices.

Some Basic Concepts and Definitions

This section highlights some basic concepts and definitions on the theory of or-

dinary and partial DEs leading us to conduct and understand the works in this

thesis

Sturm-Liouville problem (Arfken, Weber, 2005)

We denote the Sturm-Liouville operator as

L [y] = − d

dx

[
p(x)

dx

dy

]
+ q(x)y

and consider the Sturm-Liouville equation

L [y] + λy = 0, (1.3)

where p > 0, p and q are continous functions on the interval[0, l] with local

boundary conditions

α1y(0) + α2p(0)y
′(0) = 0, β1y(l) + β2p(l)y

′(l) = 0, (1.4)

where α2
1 + α2

2 ̸= 0 and β2
1 + β2

2 ̸= 0 or nonlocal boundary conditions

y(0)− y(l) = 0, y′(0) = 0, y′(0)− y′(l) = 0. (1.5)

The problem of finding a complex number λ = µ such that the boundary

value problems (1.3), (1.4) or (1.3), (1.5) have a non trivial solution are called
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Sturm-Liouville problems. The value λ = µ is called an eigenvalue and the

corresponding solution y(x, µ) is called eigenfunction. We will consider three

types of Sturm-Liouville problems

The Sturm-Liouville problem with Dirichlet Condition

−u
′′
(x) + λu(x) = 0, 0 < x < l, u(0) = u(l) = 0 (1.6)

has solution

uk(x) = sin
kπx

l
and λk = −(

kπ

l
)2, k = 1, 2, 3, ....

In the case when l = π, we have that

uk(x) = sin kx and λk = −k2, k = 1, 2, 3, ....

The Sturm-Liouville problem with Neumann Condition

−u
′′
(x) + λu(x) = 0, 0 < x < l, u′(0) = u′(l) = 0 (1.7)

has solution

uk(x) = cos
kπx

l
and λk = −(

kπ

l
)2, k = 0, 1, 2, ...

In the case when l = π, we have that

uk(x) = cos kx and λk = −k2, k = 0, 1, 2, ...

The Sturm-Liouville problem with Nonlocal Condition

−u
′′
(x) + λu(x) = 0, 0 < x < l, u(0) = u(l), u′(0) = u′(l) (1.8)

has solution

uk(x) = cos
2kπx

l
, k = 0, 1, 2, ...
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uk(x) = sin
2kπx

l
, k = 1, 2, 3, ...

and

λk = −4(
kπ

l
)2, k = 0, 1, 2, ....

In the case when l = π, we have that

uk(x) = cos 2kx , k = 0, 1, 2, ...

uk(x) = sin 2kx , k = 1, 2, 3, ...

and

λk = −4k2, k = 0, 1, 2, ...

Fourier Series (Brown, Churchyll, 1993)

Let l be a fixed number and f(x) be a periodic function with periodic 2l, defined

on(−l, l). The Fourier Series of f(x) is a way of expanding the function f(x) into

infinite series involving sines and cosines;

f(x) =
a0
2

+
∞∑
n=1

an cos(
nπx

l
) +

∞∑
n=1

bn sin(
nπx

l
) (1.9)

where the Fourier coefficients a0 an and bn are defined by the integrals

a0 =
1

l

∫ l

−l

f(x)dx (1.10)

an =
1

l

∫ l

−l

f(x) cos(
nπx

l
dx, n = 1, 2, 3, ... (1.11)

and
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bn =
1

l

∫ l

−l

f(x) sin(
nπx

l
dx, n = 1, 2, 3, ... (1.12)

The Laplace transform (Franklyn, 1949)

The Laplace transform can be helpful in solving ordinary and partial differen-

tial equations because its can replace an ordinary differential equation with an

algebraic equation or replace a partial differential equation with an ordinary dif-

ferential equation. Another reason that the Laplace transform is useful is that it

can be deal with the boundary conditions of a partial differential equation on an

infinite domain.

Definition 1. Let f be a real valued function of the real variable t, defined

for t ⟩ 0. Let s be a variable that we will assume to be real, and consider the

function F defined by

F (s) =

∫ ∞

0

e−stf(t)dt (1.13)

for all values of s for which this integral exists. The function F defined by the

integral (1.13) is called the Laplace transform of the function f . we will denote

the Laplace transform F of f by L {f} and denote F (s) by L {f(t)}. Note

that for those s ϵ C for which the integral makes sense F (s) is a complex-valued

function of complex number.

The Fourier transform (Bracewell, 1999)

There are several ways to define the Fourier transform of a function f :R → C.

Definition 1. Let f be a real valued function of the real variable x , defined

for x ∈ (−∞,∞).Let s be a variable and consider the function F defined by

F (s) =

∫ ∞

−∞
f(x)e−ixsdx, (1.14)

for all values of s for which this integral exists. The function F defined by the

integral (1.14) is called the Fourier transform of the function f.We will denote the
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Fourier transform F of f by F {f} and denote F (s) by F {f(x)} . Note that for

those s ϵ C for which the integral makes sense F (s) is a complex-valued function

of complex number.
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CHAPTER II

Integral Transform Methods for Time-Delay Parabolic Differential

Equations

Introduction

In this section, we study the analytical solutions of several two-dimensional delay

parabolic differential equations by using classical methods such as Fourier series,

Fourier transform, and Laplace transform, we obtain the exact solution of five

initial boundary value problems.

Fourier Series Method

We consider Fourier series method for solution of two dimensional delay parabolic

differential equations with Dirichlet, Neumann and nonlocal boundary conditions.

Problem 2.1. Obtain the Fourier series solution of the following IBVP

ut(t, x, y)−
1

2
uxx(t, x, y)−

1

2
uyy(t, x, y) +

1

4
uxx(t− 1, x, y) +

1

4
uyy(t− 1, x, y)

= −1

2
e−t+1 sinx sin y, 0 < t < ∞, 0 < x, y < π,

u(t, x, y) = e−t sinx sin y,−1 ≤ t ≤ 0, 0 ≤ x, y ≤ π,

u(t, 0, y) = u(t, π, y) = 0, 0 ≤ y ≤ π, 0 ≤ t < ∞,

u(t, x, 0) = u(t, x, π) = 0, 0 ≤ x ≤ π, 0 ≤ t < ∞.

(2.15)

Solution. In order to solve this problem, we cosider the Sturm-Liouville

problem

−u
′′
(x) + λu(x) = 0, 0 ≤ x ≤ π, u(0) = u(π) = 0

generated by the space operator of problem (2.15). It is clear that the solution

of this Sturm-Liouville problem is

uk(x) = sin kx, λk = −k2, k = 1, 2, ....

Then, we will seek the Fourier series solution of problem (2.15) by the formula

u(t, x, y) =
∞∑
k=1

∞∑
n=1

Ak,n(t) sin kx sinny.
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Here, Ak,n(t), k, n = 1, 2, . . . , are unknown functions. Applying this formula to

the two dimensional delay heat equation and initial condition, we get

∞∑
k=1

∞∑
n=1

A
′

k,n(t) sin kx sinny +
1

2

∞∑
k=1

∞∑
n=1

(k2 + n2)Ak,n(t) sin kx sinny

−1

4

∞∑
k=1

∞∑
n=1

(k2 + n2)Ak,n(t− 1) sin kx sinny = −1

2
e−t+1 sinx sin y,

0 < t < ∞, 0 < x, y < π,

and

u(t, x, y) =
∞∑
k=1

∞∑
n=1

Ak,n(t) sin kx sinny

= e−t sinx sin y,−1 ≤ t ≤ 0, 0 ≤ x, y ≤ π.

Equating coefficients of sin kx, k = 1, 2, ... and sinny, n = 1, 2, ... to zero, we get
A

′

1,1(t) + A1,1(t)−
1

2
A1,1(t− 1) = −1

2
e−t+1, t ≥ 0,

A1,1(t) = e−t,−1 ≤ t > 0,

and for k, n ̸= 1
A

′

k,n(t) +
1

2
(k2 + n2)Ak,n(t)−

1

4
(k2 + n2)Ak,n(t− 1) = 0, t ≥ 0,

Ak,n(t) = 0,−1 ≤ t > 0.

First, we will obtain A1,1(t). It is clear that A1,1(t) is the solution of the following

initial value problem
A

′

1,1(t) + A1,1(t)−
1

2
A1,1(t− 1) = −1

2
e−t+1, t ≥ 0,

A1,1(t) = e−t,−1 ≤ t ≤ 0

for the ordinary differential equation. We denote that

A1,1(t) =

A1,1,0(t) = e−t,−1 ≤ t ≤ 0,

A1,1,m(t),m− 1 ≤ t ≤ m,m = 1, 2, . . . .

Then, A
′

1,1,1(t) + A1,1,1(t) = 0, 0 < t < 1,

A1,1,1(0) = 1.

Therefore,

A1,1,1(t) = A1,1,1(0)e
−t = e−t.
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Let A1,1,m−1(t) = e−t,m− 2 ≤ t ≤ m− 1, then A1,1,m(t) can be define by
A

′

1,1,m(t) + A1,1,m(t)−
1

2
A1,1,m−1(t− 1) = −1

2
e−t+1,m− 1 < t < m,

A1,1,m(t− 1) = A1,1,m−1(t− 1) = e−t+1.

Then, A
′

1,1,m(t) + A1,1,m(t) = 0,m− 1 < t < m,

A1,1,m(m− 1) = e−(m−1).

Therefore,

A1,1,m(t) = A1,1,m(m− 1)e−(t−m+1)

= e−(m−1)e−(t−m+1) = e−t.

So, by induction it is true for any m.

Hence,

A1,1(t) = e−t.

Recall that for k, n ̸= 1 we have
A

′

k,n(t) +
1

2
(k2 + n2)Ak,n(t)−

1

4
(k2 + n2)Ak,n(t− 1) = 0, t > 0

Ak,n(t) = 0,−1 ≤ t ≤ 0.

It is easy, to see that

Ak,n(t) = 0.

Therefore, the exact solution for the initial boundary value problem (2.15) is

u(t, x, y) =
∞∑
k=1

∞∑
n=1

Ak,n(t) sin kx sinny

= A1,1(t) sin y sinx = e−t sinx sin y

Note that using similar procedure one can obtain the solution of the following

IBVP
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

ut (t, x)−
n∑

r=1

(aruxr(t, x))xr = b
n∑

r=1

(aruxr(t− w, x))xr + f (t, x) ,

0 < t < ∞, x = (x1, ..., xn) ∈ Ω,

u (t, x) = φ (t, x) , x ∈ Ω, t ∈ [−w, 0]

u(t, x) = 0, x ∈ S, t ∈ [0,∞)

(2.16)

for the multidimensional delay parabolic equation with Dirichlet boundary con-

dition can be investigated. Here and in future Ω ⊂ Rn be a bounded open

domain with smooth boundary S,Ω̄ = Ω∪S. Under compatibility conditions prob-

lem (2.16) has a unique solution u(t, x) for the smooth functions f(t, x), (t, x) ∈

(0,∞)× Ω, ar > a > 0, φ(t, x), x ∈ Ω, t ∈ [−w, 0] .

Problem 2.2. Obtain the Fourier series solution of the following IBVP

ut(t, x, y)−
1

2
uxx(t, x, y)−

1

2
uyy(t, x, y) +

1

4
uxx(t− 1, x, y) +

1

4
uyy(t− 1, x, y)

= −1

2
e−t+1 cosx cos y, 0 < t < ∞, 0 < x, y < π,

u(t, x, y) = e−t cosx cos y,−1 ≤ t ≤ 0, 0 ≤ x, y ≤ π,

ux(t, 0, y) = ux(t, π, y) = 0, 0 ≤ y ≤ π,

uy(t, x, 0) = uy(t, x, π) = 0, 0 ≤ x ≤ π, 0 ≤ t < ∞.

(2.17)

Solution. In order to solve this problem, we consider the Sturm-Liouville

problem

−u
′′
(x) + λu(x) = 0, 0 ≤ x ≤ π, u

′
(0) = u

′
(π) = 0

generated by the space operator of problem (2.17). It is clear that the solution

of this Sturm-Liouville problem is

uk(x) = cos kx, λk = −k2, k = 0, 1, . . . .

Then, we will seek the Fourier series solution of problem (2.17) by the formula

u(t, x, y) =
∞∑
k=0

∞∑
n=0

Ak,n(t) cos kx cosny.
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Here, Ak,n(t), k, n = 0, 1, . . . , are unknown functions. Applying this formula to

the two dimensional delay heat equation and initial condition, we get

∞∑
k=0

∞∑
n=0

A
′

k,n(t) cos kx cosny +
1

2

∞∑
k=0

∞∑
n=0

(k2 + n2)Ak,n(t) cos kx cosny

−1

4

∞∑
k=0

∞∑
n=0

(k2 + n2)Ak,n(t− 1) cos kx cosny = −1

2
e−t+1 cosx cos y,

0 < t < ∞, 0 < x, y < π,

and

u(t, x, y) =
∞∑
k=0

∞∑
n=0

Ak,n(t) cos kx cosny

= e−t cosx cos y,−1 ≤ t ≤ 0, 0 ≤ x, y ≤ π.

Equating coefficients of cos kx, k = 0, 1, ..., and cosny, n = 0, 1, ..., to zero, we get
A

′

1,1(t) + A1,1(t)−
1

2
A1,1(t− 1) = −1

2
e−t+1, t > 0,

A1,1(t) = e−t,−1 ≤ t ≤ 0,

and for k, n ̸= 1
A

′

k,n(t) +
1

2
(k2 + n2)Ak,n(t)−

1

4
(k2 + n2)Ak,n(t− 1) = 0, t ≥ 0,

Ak,n(t) = 0,−1 ≤ t ≤ 0.

First, we will obtain A1,1(t). It is clear that A1,1(t) is the solution of the following

initial value problem
A

′

1,1(t) + A1,1(t)−
1

2
A1,1(t− 1) = −1

2
e−t+1, t ≥ 0,

A1,1(t) = e−t,−1 ≤ t ≤ 0

for ordinary differential equation. We denote that

A1,1(t) =

A1,1,0(t) = e−t,−1 ≤ t ≤ 0,

A1,1,m(t),m− 1 ≤ t ≤ m,m = 1, 2, . . . .

Then, A
′

1,1,1(t) + A1,1,1(t) = 0, 0 < t < 1,

A1,1,1(0) = 1.

Therefore,

A1,1,1(t) = A1,1,1(0)e
−t = e−t.
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Let A1,1,m−1(t) = e−t,m− 2 ≤ t ≤ m− 1, then A1,1,m(t) can be define by
A

′

1,1,m(t) + A1,1,m(t)−
1

2
A1,1,m−1(t− 1) = −1

2
e−t+1,m− 1 < t < m,

A1,1,m(t− 1) = A1,1,m−1(t− 1) = e−t+1.

Then, A
′

1,1,m(t) + A1,1,m(t) = 0,m− 1 < t < m,

A1,1,m(m− 1) = e−(m−1).

Therefore,

A1,1,m(t) = A1,1,m(m− 1)e−(t−m+1)

= e−(m−1)e−(t−m+1) = e−t.

So, by induction it is true for any m.

Hence,

A1,1(t) = e−t.

Recall that for k, n ̸= 1 we have
A

′

k,n(t) +
1

2
(k2 + n2)Ak,n(t)−

1

4
(k2 + n2)Ak,n(t− 1) = 0, t > 0

Ak,n(t) = 0,−1 ≤ t ≤ 0.

It is easy, to see that

Ak,n(t) = 0.

Therefore, the exact solution for the initial boundary value problem (2.17) is

u(t, x, y) =
∞∑
k=0

∞∑
n=0

Ak,n(t) cos kx cosny

= A1,1(t) cos y cosx = e−t cosx cos y

Note that using similar procedure one can obtain the solution of the following

IBVP
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

ut (t, x)−
n∑

r=1

(aruxr(t, x))xr = b
n∑

r=1

(aruxr(t− w, x))xr + f (t, x) ,

0 < t < ∞, x = (x1, ..., xn) ∈ Ω,

u (t, x) = φ (t, x) , x ∈ Ω, t ∈ [−w, 0]

∂u(t,x)
∂p̄

= 0, x ∈ S, t ∈ [0,∞) ,

(2.18)

for the multidimensional delay parabolic equation with Neumann boundary con-

dition can be investigated. Under compatibility conditions problem (2.18) has a

unique solution u(t, x) for the smooth functions f(t, x), (t, x) ∈ (0,∞)× Ω, ar >

a > 0, φ(t, x), x ∈ Ω, t ∈ [−w, 0] . Here, p̄ is the normal vector to S.

Problem 2.3. Obtain the Fourier series solution of the following IBVP

ut(t, x, y)− uxx(t, x, y)− uyy(t, x, y) +
1

16
uxx(t− 1, x, y) +

1

16
uyy(t− 1, x, y)

= −1

2
e−8(t−1) sin 2x cos 2y, 0 < t < ∞, 0 < x, y < π,

u(t, x, y) = e−8t sin 2x cos 2y,−1 ≤ t ≤ 0, 0 ≤ x, y ≤ π,

u(t, 0, y) = u(t, π, y), ux(t, 0, y) = ux(t, π, y), 0 ≤ y ≤ π, 0 ≤ t < ∞,

u(t, x, 0) = u(t, x, π), uy(t, x, 0) = uy(t, x, π), 0 ≤ x ≤ π, 0 ≤ t < ∞.

(2.19)

Solution. In order to solve this problem, we consider the Sturm-Liouville

problem

−u
′′
(x) + λu(x) = 0, 0 ≤ x ≤ π, u(0) = u(π), u

′
(0) = u

′
(π)

generated by the space operator of problem (2.19). It is clear that the solution

of this Sturm-Liouville problem is

un(x) = cos 2nx, λn = −4n2, n = 0, 1, ..., uk(x) = sin 2kx, λk = −4k2, n = 1, 2, ....
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Then, we will seek the Fourier series solution of problem (2.19) by the formula

u(t, x, y) =
∞∑
k=0

∞∑
n=0

Ak,n(t) cos 2kx cos 2ny +
∞∑
k=1

∞∑
n=0

Bk,n(t) sin 2kx cos 2ny

+
∞∑
k=0

∞∑
n=1

Dk,n(t) cos 2kx sin 2ny +
∞∑
k=1

∞∑
n=1

Ek,n(t) sin 2kx sin 2ny.

Here, Ak,n(t), Bk,n(t), Dk,n(t) and Ek,n(t) are unknown functions. Applying this

formula to the two dimensional delay heat equation and initial condition, we get

∞∑
k=0

∞∑
n=0

A
′

k,n(t) cos 2kx cos 2ny +
∞∑
k=1

∞∑
n=0

B
′

k,n(t) sin 2kx cos 2ny

+
∞∑
k=0

∞∑
n=1

D
′

k,n(t) cos 2kx sin 2ny +
∞∑
k=1

∞∑
n=1

E
′

k,n(t) sin 2kx sin 2ny

+
∞∑
k=0

∞∑
n=0

(4k2 + 4n2)Ak,n(t) cos 2kx cos 2ny

+
∞∑
k=1

∞∑
n=0

(4k2 + 4n2)Bk,n(t) sin 2kx cos 2ny

+
∞∑
k=0

∞∑
n=1

(4k2 + 4n2)Dk,n(t) cos 2kx sin 2ny

+
∞∑
k=1

∞∑
n=1

(4k2 + 4n2)Ek,n(t) sin 2kx sin 2ny

= −1

2
e−8(t−1) sin 2x cos 2y, 0 < t < ∞, 0 < x, y < π,

and

u(t, x, y) =
∞∑
k=0

∞∑
n=0

Ak,n(t) cos 2kx cos 2ny +
∞∑
k=1

∞∑
n=0

Bk,n(t) sin 2kx cos 2ny

+
∞∑
k=0

∞∑
n=1

Dk,n(t) cos 2kx sin 2ny +
∞∑
k=1

∞∑
n=1

Ek,n(t) sin 2kx sin 2ny

= e−8t sin 2x cos 2y,−1 ≤ t ≤ 0, 0 ≤ x, y ≤ π.

Equating coefficients of cos 2kx cos 2ny, sin 2kx cos 2ny, cos 2kx sin 2ny and sin 2kx sin 2ny,

to zero, we get
B

′

1,1(t) + 8B1,1(t)−
1

2
B1,1(t− 1) = −1

2
e−8(t−1), t > 0,

B1,1(t) = e−8t,−1 ≤ t ≤ 0,

and for k, n ̸= 1
A

′

k,n(t) + (4k2 + 4n2)Ak,n(t)−
1

16
(4k2 + 4n2)Ak,n(t− 1) = 0, t > 0,

Ak,n(t) = 0,−1 ≤ t ≤ 0,
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
B

′

k,n(t) + (4k2 + 4n2)Bk,n(t)−
1

16
(4k2 + 4n2)Bk,n(t− 1) = 0, t > 0,

Bk,n(t) = 0,−1 ≤ t ≤ 0,
D

′

k,n(t) + (4k2 + 4n2)Dk,n(t)−
1

16
(4k2 + 4n2)Dk,n(t− 1) = 0, t > 0,

Dk,n(t) = 0,−1 ≤ t ≤ 0,
E

′

k,n(t) + (4k2 + 4n2)Ek,n(t)−
1

16
(4k2 + 4n2)Ek,n(t− 1) = 0, t > 0,

Ek,n(t) = 0,−1 ≤ t ≤ 0.

It is easy to see that; Ak,n(t) = Dk,n(t) = Ek,n(t) = 0 for all k, n and Bk,n(t) = 0

for k, n ̸= 1.

Now, we will obtain B1,1(t), it is clear that B1,1(t) is the solution of the following

problem 
B

′

1,1(t) + 8B1,1(t)−
1

2
B1,1(t− 1) = −1

2
e−8(t−1), t ≥ 0,

B1,1(t) = e−8t,−1 ≤ t ≤ 0

for ordinary differential equation. We denote that

B1,1(t) =

B1,1,0(t) = e−8t,−1 ≤ t ≤ 0,

B1,1,m(t),m− 1 ≤ t ≤ m,m = 1, 2, . . . .

Then, B
′

1,1,1(t) +B1,1,1(t) = 0, 0 < t < 1,

B1,1,1(0) = 1,

therefore,

B1,1,1(t) = B1,1,1(0)e
−8t = e−8t.

Let B1,1,m−1(t) = e−8t,m− 2 ≤ t ≤ m− 1, then B1,1,m(t) can be define by
B

′

1,1,m(t) + 8B1,1,m(t)−
1

2
B1,1,m−1(t− 1) = −1

2
e−8(t−1),m− 1 < t < m,

B1,1,m(t− 1) = B1,1,m−1(t− 1) = e−8(t−1).

Then, B
′

1,1,m(t) + 8B1,1,m(t) = 0,m− 1 < t < m,

B1,1,m(m− 1) = e−8(m−1).

Therefore,

B1,1,m(t) = B1,1,m(m− 1)e−8(t−m+1)

= e−8(m−1)e−8(t−m+1) = e−8t.
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So, by induction it is true for any m.

Hence,

B1,1(t) = e−8t.

Therefore, the exact solution for the initial boundary value problem (2.19) is

u(t, x, y) =
∞∑
k=1

∞∑
n=0

Bk,n(t) sin 2kx cos 2ny

= B1,1(t) cos 2y sin 2x = e−8t sin 2x cos 2y.

Note that using similar procedure one can obtain the solution of the following

IBVP



ut (t, x)−
n∑

r=1

(aruxr(t, x))xr = b
n∑

r=1

(aruxr(t− w, x))xr + f (t, x) ,

0 < t < ∞, x = (x1, ..., xn) ∈ Ω,

u (t, x) = φ (t, x) , x ∈ Ω, t ∈ [−w, 0]

u(t, x)|S1
= u(t, x)|S2

, ∂u(t,x)
∂p̄

|S1 =
∂u(t,x)

∂p̄
|S2 , x ∈ S, t ∈ [0,∞)

(2.20)

for the multidimensional delay parabolic differential equation with nonlocal bound-

ary condition can be investigated. Under compatibility conditions problem (2.20)

has a unique solution u(t, x) for the smooth functions f(t, x), (t, x) ∈ (0,∞) ×

Ω, ar > a > 0, φ(t, x), x ∈ Ω, t ∈ [−w, 0] . Here,S1 ∩ S2 = ∅, S1 ∪ S2 = S, p̄ is the

normal vector to S.

The Laplace transform solution

We consider Laplace transform method for solution of the two dimensional delay

semi-linear parabolic equation.
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Problem 2.4. Obtain the Laplace transform solution of the following IBVP

ut(t, x, y)− uxx(t, x, y)− uyy(t, x, y) +
1

4
uxx(t− 1, x, y) +

1

4
uyy(t− 1, x, y)

+ 3u(t, x, y) = −1

2
e−t+1−x−y, 0 < t < ∞, 0 < x, y < ∞,

u(t, x, y) = e−t−x−y,−1 ≤ t ≤ 0, 0 ≤ x, y ≤ ∞,

u(t, 0, y) = e−t−y, ux(t, 0, y) = −e−t−y, 0 ≤ y ≤ ∞,

u(t, x, 0) = e−t−x, uy(t, x, 0) = −e−t−x, 0 ≤ x ≤ ∞, 0 ≤ t < ∞.

(2.21)

Solution. Using the formulas

Lx{e−x} =
1

s+ 1
, Ly{e−y} =

1

w + 1

and taking the Laplace transform for x of both sides of the parabolic equation

and using condition, u(t, 0, y) = e−t−y, ux(t, 0, y) = −e−t−y, we can write

Lx

{
∂u(t, x, y)

∂t

}
− Lx

{
∂2u(t, x, y)

∂x2

}
− Lx

{
∂2u(t, x, y)

∂y2

}
+

1

4
Lx

{
∂2u(t− 1, x, y)

∂x2

}
+

1

4
Lx

{
∂2u(t− 1, x, y)

∂y2

}
+ 3Lx {u(t, x, y)} = −1

2
Lx

{
e−t+1−x−y

}
, 0 < t < ∞,

and

Lx {u(t, x, y)} =
1

s+ 1
e−t−y, Lx {u(t, x, 0)} =

1

s+ 1
e−t,

Lx {uy(t, x, 0)} = − 1

s+ 1
e−t,−1 ≤ t ≤ 0, y ≥ 0.

Then,

ut(t, s, y)− {s2u(t, s, y)− se−t−y + e−t−y} − uyy(t, s, y)

+
1

4
{s2u(t− 1, s, y)− se−t+1−y + e−t+1−y}+ 1

4
uyy(t− 1, s, y)

+ 3u(t, s, y) = −1

2
e−t+1−y 1

s+ 1
, t ≥ 0,

u(t, s, y) =
1

s+ 1
e−t−y, u(t, s, 0) =

1

s+ 1
e−t, uy(t, s, 0) = − 1

s+ 1
e−t,−1 ≤ t ≤ 0.
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Now, taking the Laplace transform with respect to y, we get

ut(t, s, w)−
{
s2u(t, s, w)− se−t 1

w + 1
+ e−t 1

w + 1

}
−
{
w2u(t, s, w)− we−t 1

s+ 1
+ e−t 1

s+ 1

}
+

1

4

{
s2u(t− 1, s, w)− se−t+1 1

w + 1
+ e−t+1 1

w + 1

}
+

1

4

{
w2u(t− 1, s, w)− we−t+1 1

s+ 1
+ e−t+1 1

s+ 1

}
+ 3u(t, s, w) = −1

2
e−t+1 1

s+ 1

1

w + 1
, t ≥ 0,

and

u(t, s, w) = e−t 1

s+ 1

1

w + 1
,−1 ≤ t ≤ 0.

So 

ut(t, s, w) + (3− s2 − w2)u(t, s, w) +
1

4
(s2 + w2)u(t− 1, s, w)

+ (s− 1)e−t 1

w + 1
+ (w − 1)e−t 1

s+ 1
+ (1− s)e−t+1 1

w + 1

+ (1− w)e−t+1 1

s+ 1
= −1

2
e−t+1 1

s+ 1

1

w + 1
, t ≥ 0,

u(t, s, w) = e−t 1

s+ 1

1

w + 1
,−1 ≤ t ≤ 0.

Now, we obtain u(t, s, w). It is clear that u(t, s, w) is a solution of the following

initial boundary value problem,

ut(t, s, w) + (3− s2 − w2)u(t, s, w) +
1

4
(s2 + w2)u(t− 1, s, w)

= (1− s)e−t 1

w + 1
+ (1− w)e−t 1

s+ 1
+ (s− 1)e−t+1 1

w + 1

+ (w − 1)e−t+1 1

s+ 1
− 1

2
e−t+1 1

s+ 1

1

w + 1
, t > 0,

u(t, s, w) = e−t 1

s+ 1

1

w + 1
,−1 ≤ t ≤ 0.

We denote that

u(t, s, w) = {um(t, s.w),m− 1 ≤ t ≤ m,m = 1, 2, . . . } .

Since

u1(t− 1, s, w) = e−t 1

s+ 1

1

w + 1
,−1 ≤ t ≤ 0,
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we have that

u1,t(t, s, w) + (3− s2 − w2)u1(t, s, w) = −1

4
(s2 + w2)e−t 1

s+ 1

1

w + 1

+ (1− s)e−t 1

w + 1
+ (1− w)e−t 1

s+ 1
+ (s− 1)e−t+1 1

w + 1

+ (w − 1)e−t+1 1

s+ 1
− 1

2
e−t+1 1

s+ 1

1

w + 1
, t > 0,

u1(0, s, w) =
1

s+ 1

1

w + 1
.

Solving this linear problem, we get

u1(t, s, w) = e−t 1

s+ 1

1

w + 1
, 0 ≤ t ≤ 1.

Let

um−1(t, s, w) = e−t 1

s+ 1

1

w + 1
,m− 2 ≤ t ≤ m− 1.

Now, we obtain um(t, s, w) as a solution of the problem

um,t(t, s, w) + (3− s2 − w2)um(t, s, w) +
1

4
(s2 + w2)um(t− 1, s, w)

= (1− s)e−t 1

w + 1
+ (1− w)e−t 1

s+ 1
+ (s− 1)e−t+1 1

w + 1

+ (w − 1)e−t+1 1

s+ 1
− 1

2
e−t+1 1

s+ 1

1

w + 1
,m− 1 ≤ t ≤ m,

u(t, s, w) = e−t 1

s+ 1

1

w + 1
,m− 2 ≤ t ≤ m− 1.

Since

um(t− 1, s, w) = um−1(t, s, w) = e−t 1

s+ 1

1

w + 1
,

we have that

um,t(t, s, w) + (3− s2 − w2)um(t, s, w) = −1

4
(s2 + w2)e−t 1

s+ 1

1

w + 1

+ (1− s)e−t 1

w + 1
+ (1− w)e−t 1

s+ 1
+ (s− 1)e−t+1 1

w + 1

+ (w − 1)e−t+1 1

s+ 1
− 1

2
e−t+1 1

s+ 1

1

w + 1
.t ≥ 0,

um(m− 1, s, w) =
1

s+ 1

1

w + 1
e−(m−1).

Therefore,

um(t, s, w) = e−t 1

s+ 1

1

w + 1
,m− 1 ≤ t ≤ m.

By induction,

um(t, s, w) = e−t 1

s+ 1

1

w + 1
,m− 1 ≤ t ≤ m,
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is true for any m ≥ 1. Thus

u(t, s, w) =

{
e−t 1

s+ 1

1

w + 1
,m− 1 ≤ t ≤ m,m = 1, 2, . . .

}
= e−t 1

s+ 1

1

w + 1
.

Taking the inverse Laplace transform, we obtain the following exact solution of

the problem

u(t, x, y) = e−t−x−y.

Note that using similar procedure one can obtain the solution of the following

IBVP

ut (t, x)−
n∑

r=1

(aruxr(t, x))xr = b
n∑

r=1

(aruxr(t− w, x))xr + f (t, x) ,

x = (x1, ..., xn) ∈ Ω
+
, 0 < t < T,

u(0, x) = φ(x), x ∈ Ω
+
, t ∈ [−w, 0]

u(t, x) = α (t, x) , uxr(t, x) = β (t, x) ,

1 ≤ r ≤ n, 0 ≤ t ≤ T, x ∈ S+

(2.22)

for the multidimensional delay differential equation. Assume that ar(x) > a0 > 0

and f (t, x) ,
(
t ∈ (0, T ) , x ∈ Ω

+
)
, φ(x),

(
x ∈ Ω

+
)
, α (t, x) , β (t, x) (t ∈ [0, T ] , x ∈ S+)

are given smooth functions. Here and in future Ω+ is the open cube in the n-

dimensional Euclidean space Rn (0 < xk < ∞, 1 ≤ k ≤ n) with the boundary S+

and

Ω
+
= Ω+ ∪ S+.

However Laplace transform method described in solving (2.22) can be used only

in the case when (2.22) has constant coefficients.

The Fourier transform solution

We consider Fourier transform method for solution of the two dimensional delay

parabolic differential equation.



36

Problem 2.5. Obtain the Fourier transform solution of the following IBVP

ut(t, x, y)− uxx(t, x, y)− uyy(t, x, y) +
1

4
uxx(t− 1, x, y) +

1

4
uyy(t− 1, x, y)

+ u(t, x, y) = (2− 4x2 − 4y2)e−t−x2−y2 − 1

2
e−t+1−x2−y2 ,

0 < t < ∞,−∞ < x, y < ∞,

u(t, x, y) = e−t−x2−y2 ,−1 ≤ t ≤ 0,−∞ < x, y < ∞.

(2.23)

Solution. We denote

F{u(t, x, y)} = u(t, s, w).

Then, we have that

F

{
∂u(t, x, y)

∂t

}
= ut(t, s, w)

F

{
∂2u(t, x, y)

∂x2

}
= −s2u(t, s, w)

F

{
∂2u(t, x, y)

∂y2

}
= −w2u(t, s, w).

Taking the Fourier transform of both sides of the equation and using initial con-

dition, we get

ut(t, s, w) + s2u(t, s, w) + w2u(t, s, w)− 1

4
s2u(t− 1, s, w)

− 1

4
w2u(t− 1, s, w) + u(t, s, w) = FxFy

{
(2− 4x2 − 4y2)e−x2−y2

}
e−t

− 1

2
FxFy

{
e−x2−y2

}
e−t+1, 0 < t < ∞,

and

u(t, s, w) = FxFy

{
e−x2−y2

}
e−t,−1 ≤ t ≤ 0.

Since

Fx

{
(2− 4x2)e−x2

}
= −Fx

{
(e−x2

)
′′
}
= s2Fx

{
e−x2

}
,

Fy

{
(2− 4y2)e−y2

}
= −Fy

{
(e−y2)

′′
}
= w2Fy

{
e−y2

}
.

We can write

ut(t, s, w) + (1 + s2 + w2)u(t, s, w)− 1

4
(s2 + w2)u(t− 1, s, w)

=
(
−FxFy {2}+ s2Fx

{
e−x2

}
+ w2Fy

{
e−y2

})
e−t

− 1

2
FxFy

{
e−x2−y2

}
e−t+1, 0 < t < ∞,



37

and

u(t, s, w) = FxFy

{
e−x2−y2

}
e−t,−1 ≤ t ≤ 0.

Now, we obtain u(t, s, w). It is clear that u(t, s, w) is the solution of the initial

boundary value problem

ut(t, s, w) + (1 + s2 + w2)u(t, s, w)− 1

4
(s2 + w2)u(t− 1, s, w)

=
(
−FxFy {2}+ s2Fx

{
e−x2

}
+ w2Fy

{
e−y2

})
e−t

− 1

2
FxFy

{
e−x2−y2

}
e−t+1, 0 < t < ∞,

u(t, s, w) = FxFy

{
e−x2−y2

}
e−t,−1 ≤ t ≤ 0.

We denote that

u(t, s, w) = {um(t, s, w), (m− 1) ≤ t ≤ m,m = 1, 2, . . . }

Since u1(t− 1, s, w) = FxFy

{
e−x2−y2

}
e−t,−1 ≤ t ≤ 0, we have that

u1,t(t, s, w) + (1 + s2 + w2)u1(t, s, w) =
1

4
(s2 + w2)FxFy

{
e−x2−y2

}
e−t

+
(
−FxFy {2}+ s2Fx

{
e−x2

}
+ w2Fy

{
e−y2

})
e−t

− 1

2
FxFy

{
e−x2−y2

}
e−t+1, 0 < t < ∞,

u1(0, s, w) = FxFy

{
e−x2−y2

}
.

Solving this linear problem, we get

u1(t, s, w) = FxFy

{
e−x2−y2

}
e−t, 0 ≤ t ≤ 1.

Let

um−1(t, s, w) = FxFy

{
e−x2−y2

}
e−t,m− 2 ≤ t ≤ m− 1.

Now, we obtain um(t, s, w) as the solution of problem

um,t(t, s, w) + (1 + s2 + w2)um(t, s, w)−
1

4
(s2 + w2)um(t− 1, s, w)

=
(
−FxFy {2}+ s2Fx

{
e−x2

}
+ w2Fy

{
e−y2

})
e−t

− 1

2
FxFy

{
e−x2−y2

}
e−t+1,m− 1 ≤ t ≤ m,

um(t, s, w) = FxFy

{
e−x2−y2

}
e−t,m− 2 ≤ t ≤ m− 1.
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Since um(t− 1, s, w) = um−1(t, s, w) = FxFy

{
e−x2−y2

}
e−t, we have that

um,t(t, s, w) + (1 + s2 + w2)um(t, s, w) =
1

4
(s2 + w2)FxFy

{
e−x2−y2

}
e−t

+
(
−FxFy {2}+ s2Fx

{
e−x2

}
+ w2Fy

{
e−y2

})
e−t

− 1

2
FxFy

{
e−x2−y2

}
e−t+1,m− 1 < t < m,

um(m− 1, s, w) = FxFy

{
e−x2−y2

}
e−(m−1).

Therefore,

um(t, s, w) = FxFy

{
e−x2−y2

}
e−t,m− 1 ≤ t ≤ m.

By induction,

um(t, s, w) = FxFy

{
e−x2−y2

}
e−t,m− 1 ≤ t ≤ m,

is true for any m ≥ 1. Thus,

u(t, s, w) =
{
FxFy

{
e−x2−y2

}
e−t, (m− 1) ≤ t ≤ m,m = 1, 2, . . .

}
= FxFy

{
e−x2−y2

}
e−t.

Taking the inverse Fourier transform, we obtain the following exact solution of

the problem

u(t, x, y) = e−t−x2−y2 .

Note that using the same manner one obtain the solution of the following IBVP

ut (t, x)−
n∑

r=1

(aruxr(t, x))xr = b
n∑

r=1

(aruxr(t− w, x))xr + f (t, x) ,

0 < t < T, x, r ∈ Rn, |r| = r1 + ...+ rn,

u(0, x) = φ(x), x ∈ Rn

(2.24)

for the multidimensional delay parabolic differential equations. Assume that

αr ≥ α ≥ 0 and f (t, x) , (t ∈ [0, T ] , x ∈ Rn) , φ(x), (x ∈ Rn) are given smooth

functions.

However Fourier transform method described in solving (2.24) can be used only

in the case when (2.24) has constant coefficients.
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CHAPTER III

Stability of the Time-Delay Parabolic Differential Equations

Introduction

In this section, the necessary conditions for the existence of unique bounded

solutions of the semi-linear delay parabolic differential equation in an arbitrary

Banach space E with strongly unbounded operators are established. In practice,

theorems on stability estimation for the solution of the initial boundary value

problem for four different semi-linear delay parabolic equations are obtained.

Auxiliary Statements

Necessary definitions, estimates, lemmas, and theorems by ( Ashyralyev, 2014;

Kreyszig, 1978; and Kolmogorov, 1965) are given below.

Banach and Hilbert Spaces

Let L be linear space.Then

x, y ∈ L,∃ x+ y ∈ L and λx ∈ L, λ is a number.

E = (L, ∥·∥) be normed space

∀x ∈ L, φ(x) = ∥x∥ ,

1. ∥x∥ ≥ 0, ∥x∥ = 0 ⇐⇒ x = 0̃ (zero element) ,

2. ∥λx∥ = |λ| ∥x∥ ,

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for any x, y ∈ L.

Then we say that, E is a Banach spaces if E- is normed space and E - is complete

⇐⇒ Every Cauchy sequence is convergent⇐⇒ From ∥xn − xm∥ −→
n,m→∞

0 ⇒ ∃x ∈

E, ∥xn − x∥ −→
n→∞

0. We denote it by E, the all Banach spaces.
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H = (L, ⟨·⟩) be inner product space

1. ⟨x, y⟩ = ⟨y, x⟩ ,

2. ⟨x1 + x2, y⟩ = ⟨x1, y⟩+ ⟨x2, y⟩ ,

3. ⟨λx, y⟩ = λ ⟨x, y⟩ ,

4. ⟨x, x⟩ = 0 ⇐⇒ x = 0̃

∥x∥ =
√

⟨x, x⟩. So all inner product spaces are also normed spaces. We say that,

H is a Hilbert space if H - is an inner product space and H - is a complete space.

Linear Operators: Boundedness, Norm of Operator

A : E → E1 is called the linear operator if D (A) is the linear space and

A(αx+ βy) = αAx+ βAy for any α, β numbers, x, y ∈ D (A) ,

D (A) = {x ∈ E, ∃ Ax} ,

R (A) = {z ∈ E1, z = Ax for any x ∈ D (A)} .

E and E1 be Banach spaces. In the case when E1 = (−∞,∞) , A : E → (−∞,∞)

is called the linear functional.

Definition 3.2.2.1. Let E and E1 be Banach spaces. A : E → E1 is called

the bounded operator if there is a real positive M > 0 such that

∥Ax∥E1
≤ M ∥x∥E for all x ∈ D (A) .

infM = ∥A∥E→E1
is called norm of the operator A. If E = E1,

∥A∥E→E1
= ∥A∥E→E = ∥A∥ .

Theorem 3.1. The following formulas are valid:

∥A∥ = sup
∥x∥E≤1

∥Ax∥E = sup
∥x∥E=1

∥Ax∥E = sup
∥x∥E ̸=0̃∈E

∥Ax∥E
∥x∥E

.

Linear Positive Operators in a Hilbert Space

Let A : H → H be a linearly bounded operator in a Hilbert Space H. Then

A∗ : H → H is defined to be the operator satisfying

⟨Ax, y⟩ = ⟨x,A∗y⟩ for any x, y ∈ H.



41

A∗ is called the Hilbert adjoint operator A∗ to A. A is said to be self adjoint or

Hamiltonian, if

A = A∗ ⇒ ⟨Ax, y⟩ = ⟨x,Ay⟩ for any x, y ∈ H.

Let A : H → H is said to be positive and written A ≥ 0̃ if

⟨Ax, x⟩ ≥ 0 for any x ∈ H.

A : H → H is said to be positive definite and written A ≥ δI > 0̃ if

⟨Ax, x⟩ ≥ δ ⟨x, x⟩ for any x ∈ H.

We consider some examples of positive operators in a Hilbert space

Let L2[0, l] be the space of all square integrable functions γ(x) difened on [0, l]

equipped with the norm

||γ||L2[0,l] =

(∫ l

0

|γ(x)|2dx
)2

.

First, we introduce the differential operator A defined by the formula

Au = − d

dx

(
a (x)

du (x)

dx

)
+ δu(x) (3.25)

with the domain

D (A) = {u : u, u′′ ∈ L2 [0, l] , u (0) = u (l) = 0} .

Lemma 3.1. Let a (x) ≥ a ≥ 0 and A be a differential operator defined by

formula (3.25). Prove that A is the positive definite and self-adjoint operator in

H = L2[0, l].

Proof of lemma 3.1. Assume that u, v ∈ D(A). Applying the following

formula

< u, v >=

∫ l

0

u(x)v(x)dx,

we get

< Au, v > =

∫ l

0

Au(x)v(x)dx

=

∫ l

0

(
− d

dx

(
a (x)

du (x)

dx

)
+ δu(x)

)
v(x)dx

= −a (l)u
′
(l)v(l) + a (0)u

′
(0)v(0)

+

∫ l

0

a (x)u
′
(x)v

′
(x)dx+

∫ l

0

δu(x)v(x)dx,

(3.26)
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and

< u,Av > =

∫ l

0

u(x)Av(x)dx

=

∫ l

0

u(x)

(
− d

dx

(
a (x)

dv (x)

dx

)
+ δv(x)

)
dx

= −a (l) v
′
(l)u(l) + a (0) v

′
(0)u(0)

+

∫ l

0

a (x)u
′
(x)v

′
(x)dx+

∫ l

0

δu(x)v(x)dx.

(3.27)

From (3.26) and (3.27) it follows

< Au, v >=< u,Av >=

∫ l

0

a (x)u
′
(x)v

′
(x)dx+

∫ l

0

δu(x)v(x)dx. (3.28)

That means A is a self-adjoint operator. Putting u = v in (3.28), we get

< Au, u >=

∫ l

0

a (x)u
′
(x)u

′
(x)dx+

∫ l

0

δu(x)u(x)dx.

Moreover, using the condition u(0) = 0, we get

u(y) =

∫ y

0

du(x)

dx
dx =

∫ y

0

du(y − t)

dt
dt.

We will introduce the following function u∗ defined by formula

du∗(y − t)

dt
=


du(y−t)

dt
, 0 ≤ t ≤ y, y ∈ [0, l],

0, otherwise.

Then

u(y) =

∫ l

0

du∗(y − t)

dt
dt.

Applying the Minkowsky inequality and the definition of the function u∗(x), we

get
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(∫ l

0

u2(y)dy

) 1
2

≤
∫ l

0

(∫ l

0

(
du∗(y − t)

dt

)2

dy

) 1
2

dt

≤
∫ l

0

(∫ l

0

(
du(x)

dx

)2

dy

) 1
2

dt

= l

(∫ l

0

(
du(x)

dx

)2

dy

) 1
2

.

Therefore,

⟨u, u⟩ =

∫ l

0

u2(y)dy ≤ l2
∫ l

0

(
du(x)

dx

)2

dx (3.29)

= l2
∫ l

0

du(x)

dx

du(x)

dx
dx = l2 ⟨u′, u′⟩ .

Applying the estimate (3.29), we get

< Au, u >≥
( a
l2

+ δ
)
< u, u > .

That means A is a positive definite equation operator. Therefore A is a self-

adjoint and positive operator in a Hilbert space H = L2[0, l].

Now, we introduce the differential operator A defined by the formula (3.25)

with the domain

D (A) = {u : u, u′′ ∈ L2 [0, l] , u
′ (0) = u′ (l) = 0} . (3.30)

Lemma 3.2. Let a (x) ≥ 0 and A be a differential operator defined by formula

(3.25) with the domain (3.30). Prove that A is the positive definite and self-

adjoint operator in H = L2[0, l].

Proof of lemma3.2. Assume that u, v ∈ D(A). Then, we have formulas
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(3.26) and (3.27). Applying these formulas, we get

< Au, v > =

∫ l

0

Au(x)v(x)dx

=

∫ l

0

(
− d

dx

(
a (x)

du (x)

dx

)
+ δu(x)

)
v(x)dx

=

∫ l

0

a (x)u
′
(x)v

′
(x)dx+

∫ l

0

δu(x)v(x)dx

(3.31)

and

< u,Av > =

∫ l

0

u(x)Av(x)dx

=

∫ l

0

u(x)

(
− d

dx

(
a (x)

dv (x)

dx

)
+ δv(x)

)
dx

=

∫ l

0

a (x)u
′
(x)v

′
(x)dx+

∫ l

0

δu(x)v(x)dx.

(3.32)

From (3.31) and (3.32) it follows

< Au, v >=< u,Av >=

∫ l

0

a (x)u
′
(x)v

′
(x)dx+

∫ l

0

δu(x)v(x)dx. (3.33)

That means A is a self-adjoint operator. Putting u = v in (3.33), we get

< Au, u >=

∫ l

0

a (x)u
′
(x)u

′
(x)dx+

∫ l

0

δu(x)u(x)dx ≥ δ < u, u > .

That means A is a positive definite operator. Therefore A is a self-adjoint and

positive operator in a Hilbert space H = L2[0, l].

Next, we introduce the differential operator A defined by the formula (3.25)

with the domain

D (A) = {u : u, u′′ ∈ L2 [0, l] , u (0) = u (l) , u′ (0) = u′ (l)} . (3.34)

Lemma 3.3. Let a (x) ≥ 0 and a (0) = a (l) and A be a differential operator

defined by formula (3.25) with the domain (3.34). Prove that A is the positive

definite and self-adjoint operator in H = L2[0, l].

Proof of lemma 3.3. Assume that u, v ∈ D(A). Then, we have formulas

(3.26) and (3.27). Applying these formulas, we get

< Au, v > =< u,Av >

=

∫ l

0

(
− d

dx

(
a (x)

du (x)

dx

)
+ δu(x)

)
v(x)dx

=

∫ l

0

a (x)u
′
(x)v

′
(x)dx+

∫ l

0

δu(x)v(x)dx.

(3.35)
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That means A is a self-adjoint operator. Putting u = v in (3.35), we get

< Au, u >=

∫ l

0

a (x)u
′
(x)u

′
(x)dx+

∫ l

0

δu(x)u(x)dx ≥ δ < u, u > .

That means A is a positive definite operator. Therefore A is a self-adjoint and

positive operator in a Hilbert space H = L2[0, l].

Finally, we introduce the differential operator A defined by the formula (3.25)

with the domain

D (A) = {u : u, u′′ ∈ L2 [0, l] , u (0) = bu′ (0) ,−u (l) = cu′ (l)} . (3.36)

Lemma 3.4. Let a (x) ≥ 0, b, c > 0 and A be a differential operator defined by

formula (3.25) with the domain (3.36). Prove that A is the positive definite and

self-adjoint operator in H = L2[0, l].

Proof of lemma 3.4. Assume that u, v ∈ D(A). Then, we have formulas

(3.26) and (3.27). Applying these formulas, we get

< Au, v > =< u,Av >

=

∫ l

0

(
− d

dx

(
a (x)

du (x)

dx

)
+ δu(x)

)
v(x)dx

= ca (l)u
′
(l)v

′
(l) + a (0) bu

′
(0)v

′
(0)

+

∫ l

0

a (x)u
′
(x)v

′
(x)dx+

∫ l

0

δu(x)v(x)dx.

(3.37)

That means A is a self-adjoint operator. Putting u = v in (3.37), we get

< Au, u > = ca (l)
(
u

′
(l)
)2

+ a (0) b
(
u

′
(0)
)2

+

∫ l

0

a (x)u
′
(x)u

′
(x)dx+

∫ l

0

δu(x)u(x)dx ≥ δ < u, u > .

That means A is a positive definite operator. Therefore A is a self-adjoint and

positive operator in a Hilbert space H = L2[0, l].

Banach Fixed-Point Theorem and Its Applications

Definition 3.2.5.1. Let E = (E, d) be a metric space. A fixed pointof a mapping

T : E → E of a set E into itself is an element x ∈ E which is mapped onto itself,

that is, Tx = x, the image Tx coincides with x. Note that the Banach fixed-

point theorem to be stated below is an existence and uniqueness theorem for
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fixed points of certain mappings, and it also gives a constructive procedure for

obtaining better and better approximations to the solution of the equation

x = Tx. (3.38)

Actually, we choose an arbitrary x0 ∈ E and determine successively a sequence

{xj}∞n=0 defined by the relation

xj = Txj−1, j ∈ N1. (3.39)

Here and in this Thesis we will put k = {j ∈ Z; j ≥ k} .

This procedure is called an iteration. Banach’s fixed-point theorem gives

sufficient conditions for the existence and uniqueness of a fixed point of a class of

mappings, called contractions.

Definition 3.2.5.2. A mapping T : E → E is called a contraction on E, if

there is a positive real number α < 1 such that for all x, y ∈ E

d(Tx, Ty) ≤ αd(x, y). (3.40)

Theorem 3.2. Assume that E ̸= ∅ is complete and let T be a contraction map-

ping on E. Then, T has precisely one fixed point.

Theorem 3.3. Let T be a mapping of a complete metric space E into itself.

Assume that T is a contraction on a closed ball F = {x|d(x, x0) ≤ r} , that is, T

satisfies assumption (3.40) for all x, y ∈ F. Moreover, assume that

d(x0, Tx0) < (1− α)r. (3.41)

Then, the sequence {xj}∞j=0 defined by recursive formula (3.39) with arbitrary

x0 ∈ E converges to an x ∈ F. This x is a fixed point of the mapping T and is

the only fixed point of T in F. Now, we study the applications of the fixed-point

theorem to integral equations.

Definition 3.2.5.3. An integral equation of the form

x (t) = µ

∫ b

a

k (t, s;x (s)) ds+ f (t) (3.42)
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is called a Fredholm equation of the second kind. Here, [a, b] is a given interval,

µ is a given parameter, f is a given function defined on [a, b], x is an unknown

function defined on [a, b]. The kernel k of the equation is a given function defined

on [a, b]× [a, b]× R1.

Integral equations can be considered on various function spaces. We consider

equation (3.42) on C[a, b], the space of all continuous functions defined on the

interval [a, b] with the metric d defined by

d(x, y) = max
t∈[a,b]

|x(t)− y(t)| . (3.43)

C[a, b] = (C[a, b], d) is complete. We assume that f ∈ C[a, b] and k is a continuous

function defined on [a, b]× [a, b]×R1. Moreover, k satisfies on [a, b]× [a, b]×R1

the Lipschitz condition of the form

|k (t, s;u1)− k (t, s;u2)| ≤ l |u1 − u2| . (3.44)

Obviously, equation (3.42) can be written x = Tx, where

Tx(t) = µ

∫ b

a

k (t, s;x (s)) ds+ f (t) . (3.45)

Since f and k are continuous functions, formula (3.45) defines an operator T :

C[a, b] → C[a, b]. We now impose a restriction on µ such that T becomes a

contraction. Applying formulas (3.43), (3.45), and condition (3.44), we get

d(Tx, Ty) = max
t∈[a,b]

|Tx(t)− Ty(t)|

= |µ| max
t∈[a,b]

∣∣∣∣∫ b

a

(k (t, s;x (s))− k (t, s; y (s))) ds

∣∣∣∣
≤ l |µ| max

t∈[a,b]

∫ b

a

|x (s)− y (s)| ds ≤ l |µ| max
s∈[a,b]

|x (s)− y (s)|
∫ b

a

ds

= l |µ| (b− a)d(x, y).

So, d(Tx, Ty) ≤ αd(x, y), where α = l |µ| (b − a). We see that T becomes a

contraction if

|µ| < 1

l(b− a)
. (3.46)

Banach’s fixed-point theorem now gives the following theorem.

Theorem 3.4. Assume that k and f in equation (3.42) are continuous functions

on [a, b]× [a, b] × R1 and [a, b], respectively. Moreover, k satisfies on [a, b]×
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[a, b]×R1 the Lipschitz condition (3.44). Suppose that µ satisfies condition (3.46).

Then, equation (3.42) has a unique solution x defined on [a, b]. This function x

is the limit of the iterative sequence {xj}∞j=0 defined by the recursive formula

xj (t) = µ

∫ b

a

k (t, s;xj−1 (s)) ds+ f (t) , j = 1, 2, ..., (3.47)

x0 (t) is the given continuous function.

Definition 3.2.5.4. An integral equation of the form

x (t) = µ

∫ t

a

k (t, s;x (s)) ds+ f (t) (3.48)

is called a Volterra equation of the second kind. Here, µ is a given parameter, f

is a given function defined on [a, b], x is an unknown function defined on [a, b].

The kernel k of the equation is a given function defined on D × R1, where D is

the triangular region in the ts−plane given by a ≤ s ≤ t, a ≤ t ≤ b.

The difference between (3.42) and (3.48) is that in (3.42) the upper limit of

integration b is constant, whereas in (3.48) it is variable. This is essential. In fact,

without any restriction on µ we now get the following existence and uniqueness

theorem.

Theorem 3.5. Assume that k and f in equation (3.48) are continuous functions

on [a, b]× [a, t] × R1 and [a, b], respectively. Moreover, k satisfies on [a, b]×

[a, t] × R1 the Lipschitz condition (3.44). Then, equation (3.42) has a unique

solution x defined on [a, b] for every µ. This function x is the limit of the iterative

sequence {xn}∞n=0 defined by the recursive formula

xj (t) = µ

∫ t

a

k (t, s;xj−1 (s)) ds+ f (t) , j = 1, 2, ..., (3.49)

x0 (t) is a given continuous function.

Proof of theorem 3.5. We consider equation (3.48) on C∗[a, b], the space

of all continuous functions defined on the interval [a, b] with the metric d∗ defined

by

d∗(x, y) = max
t∈[a,b]

e−L(t−a) |x(t)− y(t)| , L > l |µ| . (3.50)

Since e−L(b−a) ≤ e−L(t−a) ≤ 1, we have that

e−L(b−a)d(x, y) ≤ d∗(x, y) ≤ d(x, y) for any x, y ∈ C[a, b]. (3.51)
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C∗[a, b] = (C∗[a, b], d) is complete. Obviously, equation (3.48) can be written as

x = Tx, where

Tx(t) = µ

∫ t

a

k (t, s;x (s)) ds+ f (t) . (3.52)

Since f and k are continuous functions, formula (3.45) defines an operator T :

C∗[a, b] → C∗[a, b]. Applying formulas ( 3.52), (3.50), and condition (3.44), we

get

d∗(Tx, Ty) = max
t∈[a,b]

e−L(t−a) |Tx(t)− Ty(t)|

= |µ| max
t∈[a,b]

e−L(t−a)

∣∣∣∣∫ t

a

(k (t, s;x (s))− k (t, s; y (s))) ds

∣∣∣∣
≤ l |µ| max

t∈[a,b]

∫ t

a

e−L(t−s)e−L(s−a) |x (s)− y (s)| ds

≤ l |µ| max
s∈[a,t]

e−L(s−a) |x (s)− y (s)| max
t∈[a,b]

∫ t

a

e−L(t−s)ds

= max
t∈[a,b]

l |µ|
L

(1− e−L(t−a))d∗(x, y) ≤
l |µ|
L

d∗(x, y).

So, d(Tx, Ty) ≤ αd(x, y), where α = l|µ|
L
. Since L > l |µ| , we have that α < 1.

That means T is a contraction mapping on C∗[a, b]. Then, equation (3.42) has a

unique solution x defined on [a, b] for every µ. This function x is the limit of the

iterative sequence {xj}∞j=0 defined by recursive formula (3.42). Theorem 3.2.5.4

is proved.

The Main Theorem on Existence and Uniqueness

First, We consider the IVP dv
dt
+ Av(t) = f(t, B(t)v(t), B(t)v(t− d)), t ∈ [0,∞),

v(t) = φ(t), t ∈ [−d, 0].
(3.53)

for the semi-linear differential equation in a Banach space E with linear un-

bounded operators A and B(t) with dense domains D(A) ⊂ D(B(t)). Assume

that A is a very positive operator in E. That means −A is the generator of the

analytic semigroup exp{−tA}t ∈ [0,∞) of the linear bounded operators with

exponentially decreasing norm when t → ∞. The following estimates are valid:

∥ exp{−tA}∥E→E ≤ Pe−δt, ∥tA exp{−tA}∥E→E ≤ P, t ∈ (0,∞) (3.54)
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for some P > 0, δ > 0. Let B(t) be closed operators. The operator function B(t)

is strongly continuous on D(A) and
∥∥B(t)A−1/2

∥∥
E→E

≤ H.

A function v(t) is called a solution to problem (3.53) if it satisfied the following

conditions:

1. v(t) is a continuously differentiable function on [−d,∞).

2. The element v(t) ∈ D(A) ∀t ∈ [−d,∞), and the function Av(t) is continu-

ous on [−d,∞).

3. v(t) satisfies the equation and the initial condition (3.53).

We reduced problem (3.53) into an integral equation of the form

v(t) = e−A(t−(m−1)θ)v((m− 1)d) +

∫ t

(m−1)d

e−A(t−s)f(s, B(s)v(s), B(s)v(s− d))ds,

t ∈ [(m− 1)d,md],m ∈ N, v(t) = φ(t), t ∈ [−d, 0]

in [0,∞) × E, and the recursive formula for the solution of problem (3.53) by

using successive approximations is

vi(t) = e−A(t−(m−1)d)vi((m− 1)d) +

∫ t

(m−1)d

e−A(t−s)f(s, B(s)vi−1(s), B(s)vi(s− d))ds,

v0(t) = e−A(t−(m−1)d)v((m− 1)d), t ∈ [(m− 1)d,md],m ∈ N, i ∈ N,

v(t) = φ(t), t ∈ [−d, 0]. (3.55)

Here, N is the set of natural numbers.

Theorem 3.6. Assume that the hypotheses below are fulfilled:

1. φ : [−d, 0]×D
(
A

1
2

)
−→ E be continuous function and

∥φ(t)∥
D
(
A

1
2

) ≤ H. (3.56)

2. f : [0,∞)×D
(
A

1
2

)
×D

(
A

1
2

)
−→ E is a bounded and continuous function,

i.e.,

∥f(A
1
2v, A

1
2u)∥E ≤ H̄ (3.57)

and with respect to z, the Lipschitz condition holds:

∥f(A
1
2v, A

1
2 z)− f(A

1
2u,A

1
2 z)∥E ≤ L∥A

1
2v − A

1
2u∥E. (3.58)
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Here, H, H̄, L are positive constants and L < 1

2Pd
1
2
. Then, the problem (3.53)

has a unique BS in [0,∞)× E.

Proof of theorem 3.6. Using the interval t ∈ [0, d], we can written problem

(3.53) as
dv

dt
+ Av(t) = f(t, B(t)v(t), B(t)φ(t− d)), v(0) = φ(0)

which in an equivalent integral form, becomes

v(t) = e−Atφ(0) +

∫ t

0

e−A(t−s)f(s, B(s)v(s), B(s)φ(s− d))ds. (3.59)

In accordance with the recursive approximation approach (3.55), we obtain

vi(t) = e−Atφ(0) +

∫ t

0

e−A(t−s)f(s, B(s)vi−1(s), B(s)φ(s− d))ds, i = 1, 2, . . .

(3.60)

Consequently,

v(t) = v0(t) +
∞∑
i=0

(vi+1(t)− vi(t)), (3.61)

where

v0(t) = e−Atφ(0).

From (3.54) and (3.56), it follows that

∥A
1
2v0(t)∥E = ∥e−At∥E→E∥A1/2φ(0)∥E ≤ HP.

Using Equation (3.60) along with estimates (3.54) and (3.57), we obtain

∥A
1
2v1(t)− A

1
2v0(t)∥E

≤
∫ t

0

∥A
1
2 e−A(t−s)∥∥f(s, B(s)A− 1

2A
1
2v0, B(s)A− 1

2A
1
2φ(s− d))∥Eds ≤ 2H̄P t

1
2 .

By triangle inequality, we have

∥A
1
2v1(t)∥E ≤ HP + 2H̄P t

1
2 .

Using Formula (3.60) along with estimates (3.54), (3.57), and (3.58), we obtain

∥A
1
2v2(t)− A

1
2v1(t)∥E

≤
∫ t

0

∥A
1
2 e−A(t−s)∥∥f(s, B(s)v1, B(s)φ(s− d))− f(s, B(s)v0, B(s)φ(s− d))∥Eds

≤ LP

∫ t

0

1

(t− s)
1
2

∥B(s)v1(s)−B(s)v0(s)∥Eds ≤ 2LP 2H̄

∫ t

0

1

(t− s)
1
2

s
1
2ds

≤ 4LP 2H̄t.
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Then,

∥A
1
2v2(t)∥E ≤ HP + 2H̄P t

1
2 + 4LP 2H̄t.

Let

∥A
1
2vn(t)− A

1
2vn−1(t)∥E ≤ H̄

L
(2LPt

1
2 )n.

Therefore, we obtain

∥A
1
2vn+1(t)− A

1
2vn(t)∥E

≤
∫ t

0

∥A
1
2 e−A(t−s)∥∥f(B(s)vn, B(s)φ(s− d))− f(B(s)vn−1, B(s)φ(s− d))∥Eds

≤ P

∫ t

0

L∥B(s)vn(s)−B(s)vn−1(s)∥Eds ≤ P

∫ t

0

L
H̄

L
(2LPs

1
2 )nds

≤ H̄

L
(2LPt

1
2 )n+1.

Henceforth, for any n, n ≥ 1, we obtain

∥A
1
2vn+1(t)− A

1
2vn(t)∥E ≤ H̄

L
(2LPt

1
2 )n+1

and

∥A
1
2vn+1(t)∥E ≤ HP + 2H̄P t

1
2 + . . .+

H̄

L
(2LPt

1
2 )n+1

by mathematical induction. It is implied by that equation and Equation (3.61)

that

∥A
1
2v(t)∥E ≤ ∥A

1
2v0(t)∥E +

∞∑
i=0

∥A
1
2vi+1(t)− A

1
2vi(t)∥E

≤ HP +
∞∑
i=0

H̄

L
(2LPt

1
2 )i+1 < ∞, t ∈ [0, d].

This shows that problem (3.53) solution exists and is bounded in [0, d]× E.

From t ∈ [d, 2d], it follows that 0 ≤ t− d ≤ d. We denote that

φ1(t) = v(t− d), t ∈ [d, 2d],

and suppose that problem (3.53) has a BS in [d, 2d]× E. Replacing t and t− d,

we can write

∥A
1
2φ1(t)∥ ≤ H1

and

∥f(A
1
2v0(t), A

1
2φ1(t))∥E ≤ H̄1.
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According to successive approximation of Formula (3.55), we can write

v0(t) = e−A(t−d)φ1(d)

vi(t) = e−A(t−d)φ1(d) +

∫ t

d

e−A(t−s)f(B(s)vi−1(s), B(s)φ1(s))ds, i = 1, 2, . . .

In the same way, for any r, r ≥ 1, we obtain

∥A
1
2vr+1(t)− A

1
2vr(t)∥E ≤ H̄1

L
(2LPt

1
2 )r+1,

and

∥A
1
2vr+1(t)∥E ≤ H1P + 2H̄1Pt

1
2 + . . .+

H̄1

L
(2LPt

1
2 )r+1.

From that, it implies that

∥A
1
2v(t)∥E ≤ ∥A

1
2v0(t)∥E +

∞∑
i=0

∥A
1
2vi+1(t)− A

1
2vi(t)∥E

≤ H1P +
∞∑
i=0

H̄1

L
(2LPt

1
2 )i+1 < ∞, t ∈ [d, 2d].

This proves that problem (3.53)’s solution exists, and it is bounded in [d, 2d]×E.

In the same procedure one, can establish that

∥A
1
2v(t)∥E ≤ H1P +

∞∑
i=0

H̄1

L
(2LPt

1
2 )i+1, t ∈ [nd, (n+ 1)d],

where Hn and H̄n are bounded. This shows that problem (3.53)’s solution exists

and is bounded in [nd, (n+ 1) d] × E. Overall, the constructed function v(t) of

problem (3.53) is a BS in [0,∞)× E.

We shall now show that this solution to problem (3.53) is unique. Suppose

that problem (3.53) has a BS solution u(t) and that u(t) ̸= v(t). We write down

z(t) = u(t)− v(t). Hence, for z(t), we obtain that

dz
dt
+ Az(t) = f(B(s)u(t), B(s)u(t− d))− f(B(s)v(t), B(s)v(t− d)),

t ∈ (0,∞),

z(t) = 0, t ∈ [−d, 0].

We consider t ∈ [0, d]. As u(t− d) = u(t− d) = φ(t− d), we obtain

dz
dt
+ Az(t) = f(B(s)u(t), B(s)φ(t− d))− f(B(s)v(t), B(s)φ(t− d)),

t ∈ (0,∞),

z(t) = 0, t ∈ [−d, 0].
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Henceforth,

z(t) = e−Atz(0)+

∫ t

0

e−A(t−s) [f(B(s)v(s), B(s)φ(s− d))− f(B(s)u(s), B(s)φ(s− d))] ds.

Using (3.54) and (3.57), we obtain

∥A
1
2 z(t)∥E ≤

∫ t

0

∥A
1
2 e−A(t−s)∥∥f(B(s)v(s), B(s)φ(s− d))

− f(B(s)u(s), φ(s− d))∥Eds

≤ PL

∫ t

0

∥B(s)v(s)−B(s)u(s)∥Eds ≤ PL

∫ t

0

∥A
1
2 z(s)∥Eds.

By means of integral inequality, we can write

∥A
1
2 z(t)∥E ≤ 0.

This implies that A
1
2 z(t) = 0, which proves that problem (3.53)’s solution is

unique and bounded in [0, d]× E.

Using a similar procedure and mathematical induction, we can show that

problem (3.53)’s solution is unique and bounded in [0,∞)×E. Hence the proved.

Remark 3.1. The approach used in the current study also makes it possible to

demonstrate, under certain presumptions, that there exists a unique BS to the

IVP for semi-linear parabolic equations dv
dt
+ A(t)v(t) = f(t, B(t)v(t), B(t)v([t])), 0 < t < ∞,

v(0) = φ
(3.62)

in a Banach space E with unbounded operators A(t) and B(t).

Remark 3.2. It is known that various problems in fluid mechanics dynamics,

elasticity and other areas of physics lead to fractional parabolic-type differen-

tial equations. Methods of solutions of problems for linear fractional differential

equations have been studied extensively by many researchers (see, e.g., (Pod-

lubny, 1999; Samko, Kilbas, and Marichev, 1993; Lavoie, Osler, and Trembly,

1976; Tarasov, 2007; El-Mesiry et al., 2005; El-Sayed, and Gaafar, 2001; Goren-

flo, and Mainardi, 2008; Ashyralyev, 2009) and the references given therein). The

approach used in the current study also makes it possible to demonstrate, under

certain presumptions, that there exists a unique BS to the IVP for semi-linear
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fractional parabolic equations dv
dt
+ Av(t) +Dαv(t) = f(t, B(t)v(t), B(t)v(t− d)), t ∈ [0,∞),

v(t) = φ(t), t ∈ [−d, 0]
(3.63)

in a Banach space E with unbounded operators A and B(t). Here, α ∈ [0, 1).

Applications

We begin by considering an IBVP for semi-linear one-dimensional DPPDEs with

the Dirichlet condition:

vt(t, x)− a(x)vxx(t, x) + δv(t, x) = f(t, x, vx(t, x), vx(t− d, x)),

t ∈ (0,∞), x ∈ (0, l)

v(t, x) = φ(t, x), φ(t, 0) = φ(t, l) = 0, t ∈ [−d, 0], x ∈ [0, l] ,

v(t, 0) = v(t, l) = 0, t ∈ [−d,∞),

(3.64)

where φ(t, x), a(x) are given sufficiently smooth functions (SSFs) and a delta

greater than zero is a significant enough number. Suppose that a(x) ≥ a > 0.

We can reduce the IBVP (3.64) to IVP (3.53) in E = C [0, l] with the strong

positive operator Ax in C [0, l] according to the following formula:

Axv = −a(x)
d2v

dx2
+ δv (3.65)

with domain D(Ax) =
{
v ∈ C(2) [0, l] : v (0) = v (l) = 0

}
(Bazarov, 1989). More-

over, we have the following estimates:

∥ exp{−tAx}∥C[0,l]→C[0,l] ≤ P, t ∈ [0,∞),

∥tAx exp{−tAx}∥C[0,l]→C[0,l] ≤ P, t ∈ (0,∞).

Therefore, from that and abstracting Theorem 3.6, we have the following:

Theorem 3.7. Suppose the hypotheses below:

1. φ : [−d, 0]× [0, l]× C(1) [0, l] → C [0, l] is a continuous function and

∥φx(t, .)∥C[0,l] ≤ H. (3.66)
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2. f : [0,∞)×(0, l)×C(1) [0, l]×C(1) [0, l] → C [0, l] is a bounded and continuous

function, i.e.,

∥f(t, ., vx, ux))∥C[0,l] ≤ H (3.67)

and with respect to z, the Lipschitz condition holds:

∥f(t, ., vx, zx)− f(t, ., ux, zx)∥C[0,l] ≤ L ∥vx − ux∥C[0,l] , (3.68)

where L,H,H, are positive constants and L < 1

2Pd
1
2
. Then, problem (3.64)

has a unique BS in [0,∞)× C [0, l].

In addition, we consider the IBVP for semi-linear one-dimensional DPPDEs

with the Neumann condition:

vt(t, x)− a(x)vxx(t, x) + δv(t, x) = f(t, x, vx(t, x), vx(t− d, x)),

t ∈ (0,∞), x ∈ (0, l)

v(t, x) = φ(t, x), φx(t, 0) = φx(t, l) = 0, t ∈ [−d, 0], x ∈ [0, l] ,

vx(t, 0) = vx(t, l) = 0, t ∈ [−d,∞),

(3.69)

where φ(t, x), a(x) are given SSFs and delta greater than zero is a significant

enough number. We suppose that a(x) ≥ a > 0.

We can reduce the IBVP (3.69) to IVP (3.53) in E = C [0, l] with the strong

positive operator Ax in C [0, l] according to the formula (3.65) with domain:

D(Ax) =
{
v ∈ C(2) [0, l] : v′ (0) = v′ (l) = 0

}
(Bazarov, 1989).

Moreover, we have the following estimates:

∥ exp{−tAx}∥C[0,l]→C[0,l] ≤ P, t ∈ [0,∞),

∥tAx exp{−tAx}∥C[0,l]→C[0,l] ≤ P, t ∈ (0,∞).

Therefore, from that and abstracting Theorem 3.6, we have the following:

Theorem 3.8. Suppose that assumptions (3.66)–(3.68) hold. Then, problem

(3.69) has a unique BS in [0,∞)× C [0, l].
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Furthermore, we consider the IBVP for semi-linear one-dimensional DPPDEs

with nonlocal conditions:

vt(t, x)− a(x)vxx(t, x) + δv(t, x) = f(x, vx(t, x), vx(t− d, x)),

t ∈ (0,∞), x ∈ (0, l) ,

v(t, x) = φ(t, x), φ(t, 0) = φ(t, l), φx(t, 0) = φx(t, l),

t ∈ [−d, 0], x ∈ [0, l] ,

v(t, 0) = v(t, l), vx(t, 0) = vx(t, l), t ∈ [−d,∞),

(3.70)

where φ(t, x), a(x) are given SSFs and a delta greater than zero is a significant

enough number. We suppose that a(x) ≥ a > 0.

We can reduce the IBVP (3.70) to IVP (3.53) in E = C [0, l] with the strong

positive operator Ax in C [0, l] according to the formula (3.65) with domain:

D(Ax) =
{
v ∈ C(2) [0, l] : v (0) = v (l) , v′ (0) = v′ (l)

}
(Bazarov, 1989).

Moreover, we have the following estimates:

∥ exp{−tAx}∥C[0,l]→C[0,l] ≤ P, t ∈ [0,∞),

∥tAx exp{−tAx}∥C[0,l]→C[0,l] ≤ P, t ∈ (0,∞).

Therefore, from that and abstracting Theorem 3.6, we have the following:

Theorem 3.9. Suppose that assumptions (3.66)–(3.68) hold. Then, problem

(3.70) has a unique BS in [0,∞)× C [0, l].

Finally, we consider the IBVP for semi-linear one-dimensional DPPDEs with
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Robin condition:

vt(t, x)− (a(x)vx(t, x))x + δv(t, x) = f(x, vx(t, x), vx(t− d, x)),

t ∈ (0,∞), x ∈ (0, l) ,

v(t, x) = φ(t, x), φ (t, 0) = bφx (t, 0) , − φ (t, l) = cφx (t, l) ,

t ∈ [−d, 0], x ∈ [0, l] ,

v (t, 0) = bvx (t, 0) , − v (t, l) = cvx (t, l) , t ∈ [−d, 0],

(3.71)

where φ(t, x), a(x) are given SSFs. Here, a (x) ≥ a > 0 and b, c, δ are positive

constants.

We can reduce the IBVP (3.71) to IVP (3.53) in E = L2[0, l] with the self-

adjoint positive-definite operator Ax in L2[0, l] according to the following formula:

Az = − d

dx

(
a(x)

dv(x)

dx

)
+ δv(x) (3.72)

with domain D(Ax) = {v : v, v
′
2[0, l], v(0) = bv

′
(0),−v(l) = cv

′
(l)} (Ashyralyev,

Urun, & Parmaksizoglu, 2022). Moreover, we have the following estimates:

∥ exp{−tAx}∥L2[0,l]→L2[0,l] ≤ 1, t ∈ [0,∞),

∥tAx exp{−tAx}∥L2[0,l]→L2[0,l] ≤ 1, t ∈ (0,∞).

Therefore, from that and abstracting Theorem 3.6, we have the following:

Theorem 3.10. Suppose the hypotheses below:

1. φ : [−d, 0]× [0, l]× L2[0, l] → C [0, l] is a continuous function and

∥φx(t, .)∥W 1
2 [0,l]

≤ H. (3.73)

2. f : [0,∞)×(0, l)×W 1
2 [0, l]×W 1

2 [0, l] → L2[0, l] is a bounded and continuous

function, i.e.,

∥f(t, ., vx, ux))∥L2[0,l]
≤ H (3.74)
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and with respect to z, the Lipschitz condition holds:

∥f(t, ., vx, zx)− f(t, ., ux, zx)∥L2[0,l]
≤ L ∥vx − ux∥L2[0,l]

, (3.75)

where L,H,H, are positive constants and L < 1

2Pd
1
2
. Then, problem (3.71)

has a unique BS in [0,∞)× L2[0, l].

Numerical Results

Generally speaking, semi-linear problems cannot be solved precisely. The numer-

ical methods for obtaining approximate solutions of partial differential equations

play an important role in applied mathematics. We need numerical experiments

to confirm the agreement between theoretical and experimental results and to

make clear how effective the approach is, especially when one cannot know the

concrete values of constants in stability estimates. In the present section, we

obtain the numerical algorithms for the approximate solution of one-dimensional

delay parabolic differential equations. Henceforth, the iterative first-order and

second-order accuracy difference schemes (FSADSs) for the approximate solution

of semi-linear one-dimensional delay parabolic equations are described, numerical

results were obtained, and error analysis was given in tables.

Problem 3.6. Consider the IBVP

vt (t, x)− vxx (t, x) = vx (t, x) {v ([t− 1] , x) cosx− vx ([t− 1] , x) sinx} ,

t ∈ (0,∞), x ∈ (0, π),

v (0, x) = sinx, x ∈ [0, π],

v (t, 0) = v (t, π) = 0, t ∈ [0,∞)

(3.76)

for the semi-linear DPPDE. Here, [·] is notation of an integer function. The ES

of this problem is v (t, x) = e−t sinx.

We obtain the following iterative FADS for the approximate solution of the
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IBVP (3.76)

rvkn−rv
k−1
n

τ
− rvkn+1−2rvkn+rvkn−1

h2

= r−1vkn+1−r−1vkn−1

2h

{
rv

[k−N ]
n cosxn − rv

[k−N ]
n+1 −rv

[k−N ]
n−1

2h
sinxn

}
,

tk = kτ, xn = nh, k ∈ 1,∞, n ∈ 1,M − 1,

rv
0
n = sinxn, xn = nh, n ∈ 0,M,

rv
k
0 = rv

k
M = 0, k ∈ 0,∞

(3.77)

for the numerical solution of the semi-linear delay parabolic equation.

Here, r stands for the iteration number, 0v
k
n, k ∈ 0, N , and n ∈ 0,M is the

initial starting value. Numerically, we use the steps listed below to solve the

difference scheme (3.77). For k ∈ 0, N , n ∈ 0,M

• r = 1

• r−1v
k
n is known;

• rv
k
n is determined;

• r = r+1 is taken, and we proceed to step 2 if the maximum absolute error

between r−1v
k
n and rv

k
n is more than the specified tolerance value. If not,

stop the iteration process and use rv
k
n as the solution to the given problem.

We write (3.77) in matrix form:

ArV
k +BrV

k−1 = Rφ(r−1v
k, rv

k−N), k ∈ 1, N,

rV
0 = {sinxn}Mn=0 , n ∈ 0,M,

(3.78)

Additionally, using the SADS for the AS of problem (3.76), we have the fol-
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lowing SEs:

rvkn−rv
k−1
n

τ
− rvkn+1−2rvkn+rvkn−1

h2 + τ
rvkn+2−4rvkn+1+6rvkn−4rvkn−1+rvkn−2

2h4

= 1
2

{
r−1vkn+1−r−1vkn−1

2h

} {
rv

k−N
n cosxn − rv

k−N
n+1 −rv

k−N
n−1

2h
sinxn

}
+1

2

{
r−1v

k−1
n+1−r−1v

k−1
n−1

2h

}{
rv

k−1−N
n cosxn − rv

k−1−N
n+1 −rv

k−1−N
n−1

2h
sinxn

}
− τ

4

{
r−1vkn+2−r−1vkn

2h

}
rv

k−N
n+1 cosxn+1−

rv
k−N
n+2 −rv

k−N
n

2h
sinxn+1

h2

− τ
4

{
r−1vkn+1−r−1vkn−1

2h

}
−2rv

k−N
n cosxn+2

rv
k−N
n+1 −rv

k−N
n−1

2h
sinxn

h2

− τ
4

{
r−1vkn−r−1vkn−2

2h

}
rv

k−N
n−1 cosxn−1−

rv
k−N
n −rv

k−N
n−2

2h
sinxn−1

h2

− τ
4

{
rv

k−1
n+2−rv

k−1
n

2h

}
r−1v

k−1−N
n+1 cosxn+1−

r−1v
k−1−N
n+2 −r−1v

k−1−N
n

2h
sinxn+1

h2

− τ
4

{
rv

k−1
n+1−rv

k−1
n−1

2h

}
−2r−1v

k−1−N
n cosxn+2

r−1v
k−1−N
n+1 −r−1v

k−1−N
n−1

2h
sinxn

h2

− τ
4

{
rv

k−1
n −rv

k−1
n−2

2h

}
r−1v

k−1−N
n−1 cosxn−1−

r−1v
k−1−N
n −r−1v

k−1−N
n−2

2h
sinxn−1

h2 ,

tk = kτ, xn = nh, k ∈ 1, N, n ∈ 2,M − 2,

rv
0
n = φ(xn) = sinxn, n ∈ 0,M, rv

k
0 = rv

k
M = 0, k ∈ 0, N,

rv
k
3 = 4rv

k
2 − 5rv

k
1 , rv

k
M−3 = 4rv

k
M−2 − 5rv

k
M−1, k ∈ 0, N.

(3.79)

We obtain again (M + 1) × (M + 1) SLEs, and we reformat them into matrix

form (3.78).

Consequently, we obtain a second-order difference equation with respect to k

matrix coefficients. Using (3.78), we can obtain this difference scheme’s solution.

The initial guess in computations for both FSADSs is set as 0v
k
n = e−tk sinxn,

and the iterative procedure is stopped when the maximum errors between two

successive outcomes of the difference schemes (3.77) and (3.79) become less than

10−8.

For various values ofM andN , we provide numerical results and rv
k
n represents

the numerical solutions of these difference schemes at (tk, xn) . Tables 1-3 are

constructed for M = N = 30, 60, 120 in that order for t ∈ [r, r + 1], r = 0, 1, 2

and the errors are calculated using the following formula:

r

(
EN

M

)
p
= max

pN+1≤k≤(p+1)N,p=0,1,....

1≤n≤M−1

∣∣v (tk, xn)− rv
k
n

∣∣ . (3.80)
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To finish iteration process, we used the following condition in each sub-

interval:

max
pN+1≤k≤(p+1)N,p=0,1,....

1≤n≤M−1

∣∣
rv

k
n − r−1v

k,
n

∣∣ < 10−8 (3.81)

Table 1.

Error comparison between difference schemes (3.77) and (3.79)

in t ∈ [0, 1] (Number of iterations = r)

Method M = N = 30 M = N = 60 M = N = 120

(3.77) 6.3783× 10−3, r = 2 3.1279× 10−2, r = 2 1.5485× 10−3, r = 2

(3.79) 4.5864× 10−4, r = 3 1.1212× 10−4, r = 3 2.7577× 10−5, r = 2

Table 2.

Error comparison between difference schemes (3.77) and (3.79)

in t ∈ [1, 2] (Number of iterations = r)

Method M = N = 30 M = N = 60 M = N = 120

(3.77) 2.3464× 10−3, r = 3 1.5070× 10−3, r = 3 5.6964× 10−4, r = 2

(3.79) 1.6358× 10−4, r = 3 4.2149× 10−5, r = 2 1.0698× 10−5, r = 2
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Table 3.

Error comparison between difference schemes (3.77) and (3.79)

in t ∈ [2, 3] (Number of iterations = r)

Method M = N = 30 M = N = 60 M = N = 120

(3.77) 8.6321× 10−4, r = 3 4.2332× 10−4, r = 2 2.0956× 10−4, r = 2

(3.79) 5.3201× 10−5, r = 2 1.3581× 10−5, r = 2 3.4122× 10−6, r = 2

Problem 3.7. We also consider the IBVP

vt (t, x)− vxx (t, x) + sin(v (t, x))

= vx (t, x) {2v ([t− 1] , x) cos 2x− vx ([t− 1] , x) sin 2x}+ f(t, x),

t ∈ (0,∞), x ∈ (0, π),

v (0, x) = sin 2x, x ∈ [0, π],

v (t, 0) = v (t, π) , vx (t, 0) = vx (t, π) , t ∈ [0,∞)

(3.82)

for the semi-linear DPPDE. The ES of this problem is v (t, x) = e−4t sin 2x and

f(t, x) = sin (e−4t sin 2x).

We obtain the following FADS for the approximate solution of the IBVP (3.82)

rvkn−rv
k−1
n

τ
− rvkn+1−2rvkn+rvkn−1

h2 = 2
{

r−1vkn+1−r−1vkn−1

2h

}
rv

[k−N ]
n cos 2xn

−
{

r−1vkn+1−r−1vkn−1

2h

}
rv

[k−N ]
n+1 −rv

[k−N ]
n−1

2h
sin 2xn − sin

(
r−1v

k
n

)
+ f(tk, xn),

tk = kτ, xn = nh, k ∈ 1, N, n ∈ 1,M − 1,

rv
0
n = sin 2xn, xn = nh, n ∈ 0,M,

rv
k
0 = rv

k
M , rv

k
1 − rr

k
0 = rv

k
M − rv

k
M−1,

pN + 1 ≤ k ≤ (p+ 1)N, p = 0, 1, ...

(3.83)
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for the numerical solution of the delay parabolic equation with nonlocal condi-

tions.

We write (3.83) in matrix form:

ArV
k +BrV

k−1 = Rr−1θ
k, k ∈ p(N + 1), (p+ 1)N, p = 0, 1, ...,

rV
0 = {sin 2xn}Mn=0 ,

(3.84)

where

rV
k =

{
rv

k
n

}M
n=0

,

r−1θ
k
n = − sin

(
r−1v

k
n

)
+ f(tk, xn) + 2

{
r−1v

k
n+1 − r−1v

k
n−1

2h

}
rv

[k−N ]
n cos 2xn

−
{

r−1v
k
n+1 − r−1v

k
n−1

2h

}
rv

[k−N ]
n+1 − rv

[k−N ]
n−1

2h
sin 2xn,

n = 0, ...,M, k ∈ p(N + 1), (p+ 1)N, p = 0, 1, ...,

Furthermore, using the SADS for the AS of problem (3.82), we obtain the
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following SEs:

rvkn−rv
k−1
n

τ
− rvkn+1−2rvkn+rvkn−1

h2 + τ
rvkn+2−4rvkn+1+6rvkn−4rvkn−1+rvkn−2

2h4

−1
2

{
r−1vkn+1−r−1vkn−1

2h

}[
rv

[k−N ]
n cos 2xn − rv

[k−N ]
n+1 −rv

[k−N ]
n−1

2h
sin 2xn

]
−1

2

{
r−1v

k−1
n+1−r−1v

k−1
n−1

2h

}[
rv

[k−1−N ]
n cos 2xn − rv

[k−1−N ]
n+1 −rv

[k−1−N ]
n−1

2h
sin 2xn

]
+ τ

4

{
r−1vkn+2−r−1vkn

2h

}
rv

[k−N ]
n+1 cos 2xn+1−

rv
[k−N ]
n+2 −rv

[k−N ]
n

2h
sin 2xn+1

h2

+ τ
4

{
r−1vkn+1−r−1vkn−1

2h

}
−2rv

[k−N ]
n cos 2xn+2

rv
[k−N ]
n+1 −rv

[k−N ]
n−1

2h
sin 2xn

h2

+ τ
4

{
r−1vkn−r−1vkn−2

2h

}
rv

[k−N ]
n−1 cos 2xn−1−

rv
[k−N ]
n −rv

[k−N ]
n−2

2h
sin 2xn−1

h2

+ τ
4

{
r−1v

k−1
n+2−r−1v

k−1
n

2h

}
rv

[k−1−N ]
n+1 cos 2xn+1−

rv
[k−1−N ]
n+2 −rv

[k−1−N ]
n

2h
sin 2xn+1

h2

+ τ
4

{
r−1v

k−1
n+1−r−1v

k−1
n−1

2h

}
−2rv

[k−1−N ]
n cos 2xn+2

rv
[k−1−N ]
n+1 −rv

[k−1−N ]
n−1

2h
sin 2xn

h2

+ τ
4

{
r−1v

k−1
n −r−1v

k−1
n−2

2h

}
rv

[k−1−N ]
n−1 cos 2xn−1−

rv
[k−1−N ]
n −rv

[k−1−N ]
n−2

2h
sin 2xn−1

h2

+sin
(
r−1v

k
n

)
= f(tk, xn),

tk = kτ, xn = nh, k ∈ 1, N, n ∈ 2,M − 2,

rv
0
n = sin 2xn, 0 ≤ n ≤ M,

rv
k
0 = rr

k
M ,−rv

k
2 + 4rv

k
1 − 3rv

k
0 = 3rv

k
M − 4rv

k
M−1 + rv

k
M−2,

−rv
k
3 + 4rv

k
2 − 5rv

k
1 + 2rv

k
0

= 2rv
k
M − 5rv

k
M−1 + 4rv

k
M−2 − rv

k
M−3,

−3rv
k
4 + 14rv

k
3 − 24rv

k
2 + 18rv

k
1 − 5rv

k
0

= 5rv
k
M − 18rv

k
M−1 + 24rv

k
M−2 − 14rv

k
M−3 + 3rv

k
M−4,

k ∈ p(N + 1), (p+ 1)N, p = 0, 1, ....

(3.85)

We obtain another (M + 1)× (M + 1) SLE; they are then rewritten in matrix

form (3.84).

For a range of M and N values, we provide numerical results, and rv
k
n repre-

sents the numerical solutions of these difference schemes at (tk, xn) . Tables 4–6

are constructed forM = N = 30, 60, 120 in that order for t ∈ [r, r + 1], r = 0, 1, 2,

and the errors are calculated using Formulas (3.80) and (3.81).
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Table 4.

Error comparison between difference schemes (3.83) and (3.85)

in t ∈ [0, 1] (Number of iterations = r)

Method M = N = 30 M = N = 60 M = N = 120

(3.83) 2.4431× 10−2, r = 2 1.2259× 10−2, r = 2 6.1304× 10−3, r = 2

(3.85) 2.0589× 10−3, r = 8 5.4628× 10−4, r = 8 1.3865× 10−4, r = 7

Table 5.

Error comparison between difference schemes (3.83) and (3.85)

in t ∈ [1, 2] (Number of iterations = r)

Method M = N = 30 M = N = 60 M = N = 120

(3.83) 5.3731× 10−3, r = 9 2.5664× 10−3, r = 8 1.2517× 10−3, r = 8

(3.85) 3.0514× 10−4, r = 8 7.5756× 10−5, r = 7 1.9241× 10−5, r = 6

Table 6.

Error comparison between difference schemes (3.83) and (3.85)

in t ∈ [2, 3] (Number of iterations = r)

Method M = N = 30 M = N = 60 M = N = 120

(3.83) 1.0838× 10−4, r = 7 4.9176× 10−5, r = 6 2.3435× 10−5, r = 6

(3.85) 1.5588× 10−5, r = 7 2.0085× 10−6, r = 5 4.8130× 10−7, r = 3
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These numerical experiments back up the theoretical claims, as shown in

Tables 1–6. With more grid points, the maximum errors and the number of

iterations are reduced. As we doubled the values ofN andM each time, beginning

with M = N = 30. In the FADSs (3.77) and (3.83) in Tables 1-6 respectively,

the errors decrease roughly by a proportion of 1/2, while in the SADSs (3.79)

and (3.85) in Tables 1-6 respectively, the errors decrease roughly by a proportion

of 1/4. Errors shown in the tables demonstrate the consistency of the different

schemes and the reliability of the findings. Accordingly, the SADS increases faster

than the FADS. These numerical experiments back up the theoretical claims as

shown in the tables. With more grid points, the maximum errors can be reduced.
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CHAPTER IV

Stability of the Time-Delay Parabolic Differential Equations with

Dependent Coefficients

Introduction

In this section, the necessary conditions for the existence of unique bounded

solutions of nonlinear delay parabolic differential equations in an arbitrary Banach

space with strongly unbounded operators dependent in t are established. In

practise, theorems on stability estimation for the solution of the initial boundary

value problem for three different types of nonlinear delay parabolic equations are

obtained.

The Main Theorem on Existence and Uniqueness

We consider the IVP du
dt

+ A(t)u(t) = g(t, u(t), u(t− ω)), t ∈ [0,∞),

u(t) = φ(t), t ∈ [−ω, 0]
(4.86)

in an arbitrary Banach space E with the unbounded operators A(t) in E with

dense domains D(A(t)) ⊂ E. Suppose that for each t ∈ [0,∞) the operator

−A(t) generates an analytic semi-group exp{−sA(t)}(s ≥ 0) with exponentially

decreasing norm, when s → +∞, i.e. the following estimates

∥exp(−sA(t))∥E→E , ∥sA(t) exp(−sA(t))∥E→E ≤ Me−δs(s > 0) (4.87)

hold for some M ∈ [1,+∞), δ ∈ (0,+∞). From this inequality it follows the

operator A−1(t) exists and bounded and hence A(t) is closed in E1 ⊂ E, such

that A(t) : D(A(t)) → E and D(A(t)) = D(A(0)) for 0 ≤ t < ∞.

Assume that the operator A(t)A−1(s) is Holder continuous in t in the uniform

operator topology for each fixed s, that is,

∥∥[A(t)− A(τ)]A−1(s)
∥∥
E→E

≤ M |t− τ |ε, 0 < ε ≤ 1, (4.88)

whereM and ε are positive constants independent of t, s and τ for 0 ≤ t, s, τ < ∞.
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An operator-valued function V (t, y), defined and strongly continuous jointly

in t, y for 0 ≤ y < t < ∞, is called a fundamental solution of (4.86) if

1) the operator V (t, y) is strongly continuous in t and y for 0 ≤ y < t < ∞,

2) the following identity holds:

V (t, y) = V (t, τ)V (τ, y), V (y, y) = I (4.89)

for 0 ≤ y ≤ τ ≤ t < ∞, where, I is the identity operator,

3) the operator V (t, y) maps the region D into itself. The operator U(t, y) =

A(t)V (t, y)A−1(y) is bounded and strongly continuous in t and y for 0 ≤

y < t < ∞,

4) on the region D the operator V (t, y) is differentiable relative to t and y,

while

Vt(t, y) + A(t)V (t, y) = 0, (4.90)

and

Vy(t, y)− V (t, y)A(y) = 0, (4.91)

5) the subsequent estimates hold:

∥V (t, y)∥E→E ≤ Pe−δ(t−y), t ≥ y ≥ 0 (4.92)

for some δ ∈ [0,∞) and P ∈ [1,∞).

A function u(t) is called a solution of problem (4.86) if the conditions below

are satisfied:

1. u(t) is continuously differentiable on [−ω,∞).

2. The element u(t) ∈ D(A(t)), ∀t ∈ [−ω,∞), and the function A(t)u(t) is

continuous on [−ω,∞).

3. u(t) satisfies the equation and the initial condition (4.86).
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We reduced problem (4.86) into an integral equation of the form

u(t) = V (t,mω)u(mω) +

∫ t

mω

V (t, y)g(y, u(y), u(y − ω))dy,

mω ≤ t ≤ (m+ 1)ω,m = 0, 1, ..., u(t) = φ(t),−ω ≤ t ≤ 0

in [−ω,∞)×E and using successive approximations, obtained recursive formula

for the solution of problem (4.86) is

ui(t) = V (t,mω)ui(mω) +

∫ t

mω

V (t, y)g(y, ui−1(y), ui(y − ω))dy,

u0(t) = V (t,mω)u(mω),mω ≤ t ≤ (m+ 1)ω,m = 0, 1, ...,

i = 1, 2, ..., u(t) = φ(t),−ω ≤ t ≤ 0. (4.93)

Theorem 4.11. Assume the hypotheses below:

1. φ : [−ω, 0]× E −→ E be continuous function and

∥φ(t)∥E ≤ M. (4.94)

2. g : [0,∞)× E × E −→ E be bounded and continuous function, i.e.;

∥g(t, u, v)∥E ≤ M̄ (4.95)

and with respect to z, the Lipschitz condition holds uniformly

∥g(t, v, z)− g(t, u, z)∥E ≤ L∥v − u∥E (4.96)

where L,M, M̄ are positive constants. Then problem (4.86) has a unique bounded

solution in [0,∞)× E.

Proof of theorem 4.11. Using the interval t ∈ [0, ω], problem (4.86) can be

written as
du

dt
+ A(t)u(t) = g(t, u(t), φ(t− ω)), u(0) = φ(0)

which in an equivalent integral form, becomes

u(t) = V (t, 0)φ(0) +

∫ t

0

V (t, y)g(y, u(y), φ(y − ω))dy. (4.97)

In accordance with the recursive approximation approach (4.93), we get

ui(t) = V (t, 0)φ(0) +

∫ t

0

V (t, y)g(y, ui−1(y), φ(y − ω))dy, i = 1, 2, .... (4.98)
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Therefore,

u(t) = u0(t) +
∞∑
i=1

(ui(t)− ui−1(t)), (4.99)

where

u0(t) = V (t, 0)φ(0).

From (4.92) and (4.94), we obtain

∥u0(t)∥E = ∥V (t, 0)∥∥φ(0)∥E ≤ MP.

Using formula (4.98) along with estimates (4.92) and (4.95), we get

∥u1(t)− u0(t)∥E ≤
∫ t

0

∥V (t, y)∥∥g(y, u0, φ(y − ω))∥Edy ≤ M̄P t.

By the triangle inequality, we have

∥u1(t)∥E ≤ MP + M̄P t.

Applying formula (4.98) along with estimates (4.96),(4.92) and (4.95), we obtain

∥u2(t)− u1(t)∥E ≤
∫ t

0

∥V (t, y)∥∥g(y, u1(y), φ(y−ω))− g(y, u0(y), φ(y−ω))∥Edy

≤ LP

∫ t

0

∥u1(y)− u0(y)∥Edy ≤ LP 2M̄

∫ t

0

ydy =
M̄

L

(PLt)2

2!
.

Then, by the triangle inequality, we have

∥u2(t)∥E ≤ MP + M̄P t+
M̄

L

(PLt)2

2!
.

Let

∥ui(t)− ui−1(t)∥E ≤ M̄

L

(LPt)i

i!
.

Then, we obtain

∥ui+1(t)−ui(t)∥E ≤
∫ t

0

∥V (t, y)∥∥g(y, ui(y), φ(y−ω))−g(y, ui−1 (y) , φ(y−ω))∥Edy

≤ P

∫ t

0

L∥ui(y)− ui−1(y)∥Edy ≤ P

∫ t

0

L
M̄

L

(LPy)i

i!
dy

=
M̄

L

(LPt)i+1

(i+ 1)!
.

Consequently, for any i, i ≥ 1, we have that

∥ui+1(t)− ui(t)∥E ≤ M̄

L

(LPt)i+1

(i+ 1)!
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and

∥ui+1(t)∥E ≤ PM + M̄P t+
M̄

L

(PLt)2

2!
+ ...+

M̄

L

(LPt)i+1

(i+ 1)!

by mathematical induction. It is implied by that and formula (4.99) that

∥u(t)∥E ≤ ∥u0(t)∥E +
∞∑
i=1

∥ui(t)− ui−1(t)∥E ≤ MP +
∞∑
i=1

M̄

L

(LPt)i

i!

≤ MP +
M̄

L
eLPt, 0 ≤ t ≤ ω

which shows that solution of problem (4.86) exists and is bounded in [0, ω]× E.

Next, for t ∈ [ω, 2ω], note that 0 ≤ t− ω ≤ ω. We denote that

φ1(t) = u(t− ω), t ∈ [ω, 2ω].

and suppose that problem (4.86) has a BS in [ω, 2ω]× E. Replacing t and t− ω

and assuming that

∥g(t, u0(t), φ1(t))∥E ≤ M̄1

and

∥φ1(t)∥E ≤ M1.

Hence,

u0(t) = V (t, ω)φ1(ω)

ui(t) = V (t, ω)φ1(ω) +

∫ t

ω

V (t, y)g(y, ui−1(y), φ1(y))dy, i = 1, 2, ....

In the same way, for any i, i ≥ 1, we have

∥ui+1(t)− ui(t)∥E ≤ M̄1

L

(LPt)i+1

(i+ 1)!

and

∥ui+1(t)∥E ≤ PM1 + M̄1Pt+
M̄1

L

(LPt)2

2!
+ ...+

M̄1

L

(LPt)i+1

(i+ 1)!
.

Then it follows that

∥u(t)∥E ≤ M1P +
M̄1

L
eLP (t−ω), ω ≤ t ≤ 2ω

this proves that solution of problem (4.86) exists and is bounded in [ω, 2ω]× E.

In the same procedure, we can obtain that

∥u(t)∥E ≤ MmP +
M̄m

L
eLP (t−mω),mω ≤ t ≤ (m+ 1)ω,
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where Mm and M̄m are bounded. This proves the existence of a BS of problem

(4.86) in [mω, (m+ 1)ω]× E. The function u(t) constructed for problem (4.86)

has a BS in [0,∞)× E.

We shall now prove that this solution of problem (4.86) is unique. Assume that

problem (4.86) has a BS v(t) and that v(t) ̸= u(t). We denote w(t) = v(t)− u(t).

Hence for w(t), we obtain that dw
dt

+ A(t)w(t) = g(t, v(t), v(t− ω))− g(t, u(t), u(t− ω)), t ∈ (0,∞),

w(t) = 0, t ∈ [−ω, 0].

We consider 0 ≤ t ≤ ω. As v(t− ω) = u(t− ω) = φ(t− ω), we get dw
dt

+ A(t)w(t) = g(t, v(t), φ(t− ω))− g(t, u(t), φ(t− ω)), t ∈ (0,∞),

w(t) = 0, t ∈ [−ω, 0].

Therefore,

w(t) =

∫ t

0

V (t, y) [g(y, v(y), φ(y − ω))− g(y, u(y), φ(y − ω))] dy

Applying estimates (4.92) and (4.95), we get

∥w(t)∥E ≤
∫ t

0

∥V (t, s)∥ ∥g(y, v(y), φ(y − ω))− g(y, u(ω), φ(y − ω))∥Edy

≤ PL

∫ t

0

∥v(y)− u(y)∥Edy ≤ PL

∫ t

0

∥w(y)∥Edy.

By means of integral inequality, we obtain

∥w(t)∥E ≤ 0.

This implies that, w(t) = 0 which proves that solution of problem (4.86) is unique

and bounded in [0, ω]× E.

Using similar procedure and mathematical induction, we can prove that solution

of problem (4.86)is unique and bounded in [0,∞)× E.

Remark 4.3. The approach used in the current study also makes it possible to

prove, under certain assumptions, that there exists a unique bounded solution of

the IVP for semi-linear parabolic equations du
dt

+ A(t)u(t) = g(t, B(t)u(t), B(t)u(t− ω)), t ∈ [0,∞),

u(t) = φ(t), t ∈ [−ω, 0].
(4.100)

in an arbitrary Banach space E with unbounded operators A(t) and B(t) with

dense domains D(A(t)) ⊂ D(B(t)).
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Applications

First, we consider the IBVP for nonlinear one dimensional DPPDEs with Dirichlet

condition



ut(t, x)− a(t, x)uxx(t, x) + δu(t, x) = g(t, x, u(t, x), u(t− ω, x)),

t ∈ (0,∞), x ∈ (0, b) ,

u(t, x) = φ(t, x), φ(t, 0) = φ(t, b) = 0, t ∈ [−ω, 0], x ∈ [0, b] ,

u(t, 0) = u(t, b) = 0, t ∈ [0,∞),

(4.101)

where φ(t, x), a(t, x) are given SSFs and δ > 0 is the sufficiently large number.

Assume that a(t, x) ≥ a > 0.

Theorem 4.12. Assume the hypotheses below:

i φ : [−ω, 0]× C [0, b] → C [0, b] be continuous function and

∥φ(t, .)∥C[0,b] ≤ M. (4.102)

ii g : (0,∞) × (0, b) × C [0, b] × C [0, b] → C [0, b] be bounded and continuous

function, i.e.;

∥g(t, ., u, v))∥C[0,b] ≤ M (4.103)

and with respect to z, the Lipschitz condition holds uniformly.

∥g(t, ., u, z)− g(t, ., v, z)∥C[0,b] ≤ L ∥u− v∥C[0,b] , (4.104)

where, L,M,M are positive constants. Then problem (4.101) has a unique BS in

[0,∞)× C [0, b].

The proof of the Theorem 4.12 is based on the abstract Theorem 4.11, on the

strong positivity of a differential operator Ax in C [0, b] according to the following

formula:

Ax(t)v(x) = −a(t, x)
d2v(x)

dx2
+ δv(x) (4.105)
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with domain D(Ax(0)) =
{
v ∈ C(2) [0, b] : v (0) = v (b) = 0

}
(Poorkarimi, and

Wiener, 1989) and on the estimate

∥V (t, y)∥C[0,b]→C[0,b] ≤ M1, t ≥ y ≥ 0. (4.106)

Second, we consider the IBVP for nonlinear one dimensional DPPDEs with

nonlocal conditions

ut(t, x)− a(t, x)uxx(t, x) + δu(t, x) = g(t, x, u(t, x), u(t− ω, x)),

t ∈ (0,∞), x ∈ (0, b) ,

u(t, x) = φ(t, x), φ(t, 0) = φ(t, b), φx(t, 0) = φx(t, b),

t ∈ [−ω, 0], x ∈ [0, b] ,

u(t, 0) = u(t, b), ux(t, 0) = ux(t, b), t ∈ [0,∞),

(4.107)

where φ(t, x), a(t, x) are SSFs given and δ > 0 is the sufficiently large number.

Assume that a(t, x) ≥ a > 0.

Theorem 4.13. Suppose that the assumptions (4.102), (4.103) and (4.104) hold.

Then problem (4.107) has a unique BS in [0,∞)× C [0, b].

The proof of the Theorem 4.13 is based on the abstract Theorem 4.11, on the

strong positivity of a differential operator Ax in C [0, b] according to the following

formula:

Ax(t)v(x) = −a(t, x)
d2v(x)

dx2
+ δv(x) (4.108)

with domainD(Ax(0)) =
{
v ∈ C(2) [0, b] : v (0) = v (b) , v′ (0) = v′ (b)

}
(Ashyralyev,

2007) and on estimate (4.106).

Third, we consider the initial value problem on the range

{0 ≤ t < ∞, x = (x1, · · ·, xn) ∈ Rn, r = (r1, · · ·, rn)}
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for 2m-th order multidimensional nonlinear DPPDEs

ut(t, x) +
∑

|r|=2m

ar(t, x)ux
r1
1 ...xrn

n
(t, x) + δu(t, x)

= g(t, x, u(t, x), u(t− ω, x)), t ∈ (0,∞), x ∈ Rn,

u(t, x) = φ(t, x), t ∈ [−ω, 0], x ∈ Rn,

(4.109)

where ar(t, x) and φ(t, x) are given SSFs and δ > 0 is the sufficiently large number.

We will suppose that the symbol [ξ = (ξ1, · · ·, ξn) ∈ Rn] and |r| = r1 + ...+ rn,

Ax(t, ξ) =
∑

|r|=2m

ar(t, x) (iξ1)
r1 ... (iξn)

rn

of the differential operator of the form

Ax
1(t) =

∑
|r|=2m

ar(t, x)
∂|r|

∂xr1
1 ...∂xrn

n

(4.110)

acting on functions defined on the space Rn, the inequalities are satisfied.

0 < M1|ξ|2m ≤ (−1)mAx(t, ξ) ≤ M2|ξ|2m < ∞

for ξ ̸= 0, where |ξ| = (|ξ1|2 + · · ·+ |ξn|2)
1
2 . We can reduce the initial value

problem (4.109) to the initial value problem (4.86) in Banach space E = C(Rn)

with a strongly positive operator Ax(t) = Ax
1(t)+ δI defined by (4.110) (Smirnit-

skii, and Sobolevskii, 1981; Smirnitskii, 1993). The corollary below follows from

the abstract Theorem 4.1.

Theorem 4.14. Assume the hypotheses below:

i φ : [−ω, 0]× C(Rn) → C(Rn) be bounded and continuous function and

∥φ(t, .)∥C(Rn) ≤ M.

ii g : (0,∞)×C(Rn)×C(Rn) → C(Rn) be bounded and continuous function,

i.e.;

∥g(t, ., u, v))∥C(Rn) ≤ M

and with respect to z, the Lipschitz condition holds uniformly.

∥g(t, ., v, z)− g(t, ., u, z)∥C(Rn) ≤ L ∥v − u∥C(Rn) ,
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where L,M,M are positive constants. Then problem (4.109) has a unique bounded

solution in [0,∞)× C(Rn).

The proof of Theorem 4.14 is based on the abstract Theorem 4.11, on the

strong positivity of a differential operator Ax (t) in C(Rn) according to the for-

mula (4.110), and on the estimate

∥V (t, y)∥C(Rn)→C(Rn) ≤ M3, t ≥ y ≥ 0.

Numerical Results

Generally speaking, nonlinear problems cannot be solved precisely. Therefore

the FSADSs for the solution of nonlinear one-dimensional DPPDE are presented.

Numerical results are given.

Problem 4.8. Consider the IBVP

ut (t, x)− uxx (t, x) = u (t, x)
[
u ([t− 1] , x) cosx− ∂u([t−1],x)

∂x
sinx

]
,

t ∈ (0,∞), x ∈ (0, π),

u (0, x) = sinx, x ∈ [0, π],

u (t, 0) = u (t, π) = 0, t ∈ [0,∞)

(4.111)

for the nonlinear delay parabolic equation.Here [·] is notation of integer function.

The exact solution (ES) of this test example is u (t, x) = e−t sinx.

We get the following iterative FADS for the approximate solution (AS) of the

IBVP (4.111)
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

muk
n−muk−1

n

τ
− muk

n+1−2muk
n+muk

n−1

h2 − m−1u
k
nmu

[k−N ]
n cosxn

+m−1u
k
n

mu
[k−N ]
n+1 −mu

[k−N ]
n−1

2h
sinxn = 0,

tk = kτ, xn = nh, k ∈ 1,∞, n ∈ 1,M − 1,

mu
0
n = sinxn, xn = nh, n ∈ 0,M,

mu
k
0 = mu

k
M = 0, k ∈ 0,∞

(4.112)

for the nonlinear delay parabolic equation.

Here m denotes the iteration number and an initial guess 0u
k
n, k ∈ 0, N, n ∈ 0,M

is to be made. For solving difference scheme (4.112), we follow the numerical

steps given below. The algorithm is as follows for k ∈ 0, N ,n ∈ 0,M :

1. m = 1

2. m−1u
k
n is known

3. mu
k
n is calculated

4. If the max absolute error between m−1u
k
n and mu

k
n is greater than the given

tolerance value, take m = m + 1 and go to step 2. Otherwise, terminate

the iteration process and take mu
k
n as the result of the given problem.

We write (4.112) in matrix form

AmU
k +BmU

k−1 = Rφ(m−1u
k,mu

k−N), k ∈ 1, N,

mU
0 = {sinxn}Mn=0 , (4.113)
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where

A =



1 0 0 0 0 . . . 0 0 0 0

a c a 0 0 . . . 0 0 0 0

0 a c a 0 . . . 0 0 0 0

0 0 a c a . . . 0 0 0 0

0 0 0 a c . . . 0 0 0 0

. . . . . . . . . . . .

0 0 0 0 0 . . . a c a

0 0 0 0 0 . . . 0 0 0 1



,

B =



0 0 0 0 0 . . . 0 0 0 0

0 b 0 0 0 . . . 0 0 0 0

0 0 b 0 0 . . . 0 0 0 0

0 0 0 b 0 . . . 0 0 0 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 0 0 0 . . . 0 b 0 0

0 0 0 0 0 . . . 0 0 b 0

0 0 0 0 0 . . . 0 0 0 0


and

a = − 1

h2
, , b =

1

τ
, c =

1

τ
+

2

h2
,

R is identity matrix of size M + 1, mu
k
n = e−tk sinxn for k ∈ −N, 0 and

φ(m−1u
k,mu

k−N) ,U s are (M + 1)× 1 column vectors as

φ(m−1u
k,mu

k−N) =



0

φk
1

...

φk
M−1

0


(M+1)×1

,m U s =



mU
s
0

mU
s
1

...

mU
s
M−1

mU
s
M


(M+1)×1

, s = k, k±1,
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where

φk
n = m−1u

k
nmu

[k−N ]
n cosxn − m−1u

k
n
mu

[k−N ]
n+1 − mu

[k−N ]
n−1

2h
sinxn, n ∈ 1,M − 1.

So, we have the first order difference equation with respect to k with matrix

coefficients. From (4.113) it follows that

mU
k = −A−1BmU

k−1 + A−1Rφk, k ∈ pN + 1, (p+ 1)N, p = 0, 1, 2, ...,

mU
0 = {sinxn}Mn=0 . (4.114)

Additionally, using the SADS for the AS of problem (4.111), we obtain the

following system of equations

muk
n−muk−1

n

τ
− muk

n+1−2muk
n+muk

n−1

h2 + τ
muk

n+2−4muk
n+1+6muk

n−4muk
n−1+muk

n−2

2h4

= 1
2m

uk
n

[
m−1u

k−N
n cosxn − m−1u

k−N
n+1 −m−1u

k−N
n−1

2h
sinxn

]
+1

2m
uk−1
n

[
m−1u

k−1−N
n cosxn − m−1u

k−1−N
n+1 −m−1u

k−1−N
n−1

2h
sinxn

]
− τ

4m
uk
n+1

m−1u
k−N
n+1 cosxn+1−

m−1u
k−N
n+2 −m−1u

k−N
n

2h
sinxn+1

h2

− τ
4m

uk
n
−2m−1u

k−N
n cosxn+2

m−1u
k−N
n+1 −m−1u

k−N
n−1

2h
sinxn

h2

− τ
4m

uk
n−1

m−1u
k−N
n−1 cosxn−1−

m−1u
k−N
n −m−1u

k−N
n−2

2h
sinxn−1

h2

− τ
4m

uk−1
n+1

m−1u
k−1−N
n+1 cosxn+1−

m−1u
k−1−N
n+2 −m−1u

k−1−N
n

2h
sinxn+1

h2

− τ
4m

uk−1
n

−2m−1u
k−1−N
n cosxn+2

m−1u
k−1−N
n+1 −m−1u

k−1−N
n−1

2h
sinxn

h2

− τ
4m

uk−1
n−1

m−1u
k−1−N
n−1 cosxn−1−

m−1u
k−1−N
n −m−1u

k−1−N
n−2

2h
sinxn−1

h2 ,

tk = kτ, xn = nh, k ∈ 1, N − 1, n ∈ 2,M − 2,

mu
0
n = sinxn, n ∈ 0,M,mu

k
0 = mu

k
M = 0, k ∈ 0,∞,

mu
k
3 = 4mu

k
2 − 5mu

k
1,mu

k
M−3 = 4mu

k
M−2 − 5mu

k
M−1, k ∈ 0,∞.

(4.115)

We obtain again (M + 1)× (M + 1) SLE and we reformat them into matrix form
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(4.113), where

A =



1 0 0 0 0 0 . . . 0 0 0 0 0

0 0 0 0 0 0 . . . 0 0 0 0 1

e f g f e . . . . 0 0 0 0 0

0 e f g f e . . . 0 0 0 0 0

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

0 0 . . . . . . . e f g f e

0 0 0 0 0 0 . . . . −1 4 −5 0

0 −5 4 −1 0 0 . . . . 0 0 0 0



,

B =



0 0 0 0 0 . . . 0 0 0 0

0 0 0 0 0 . . . 0 0 0 0

0 0 l 0 0 . . . 0 0 0 0

0 0 0 l 0 . . . 0 0 0 0

0 0 0 0 . . . . 0 0 0 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 0 0 0 . . . 0 0 l 0

0 0 0 0 0 . . . 0 0 0 0

0 0 0 0 0 . . . 0 0 0 0



.

Here

e =
τ

2h4
, f = − 1

h2
− 2τ

h4
,

g =
1

τ
+

2

h2
+

3τ

h4
, l = −1

τ
,
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φ(m−1u
k,mu

k−N) =



0

0

φk
2

...

φk
M−2

0

0


(M+1)×1

,

where

φk
n =

1

2
mu

k
n

[
m−1u

k−N
n cosxn −

m−1u
k−N
n+1 − m−1u

k−N
n−1

2h
sinxn

]
+

1

2
mu

k−1
n

[
m−1u

k−1−N
n cosxn −

m−1u
k−1−N
n+1 − m−1u

k−1−N
n−1

2h
sinxn

]

− τ

4
mu

k
n+1

m−1u
k−N
n+1 cosxn+1 − m−1u

k−N
n+2 −m−1u

k−N
n

2h
sinxn+1

h2

− τ

4
mu

k
n

−2m−1u
k−N
n cosxn + 2m−1u

k−N
n+1 −m−1u

k−N
n−1

2h
sinxn

h2

− τ

4
mu

k
n−1

m−1u
k−N
n−1 cosxn−1 − m−1u

k−N
n −m−1u

k−N
n−2

2h
sinxn−1

h2

− τ

4
mu

k−1
n+1

m−1u
k−1−N
n+1 cosxn+1 − m−1u

k−1−N
n+2 −m−1u

k−1−N
n

2h
sinxn+1

h2

− τ

4
mu

k−1
n

−2m−1u
k−1−N
n cosxn + 2m−1u

k−1−N
n+1 −m−1u

k−1−N
n−1

2h
sinxn

h2

− τ

4
mu

k−1
n−1

m−1u
k−1−N
n−1 cosxn−1 − m−1u

k−1−N
n −m−1u

k−1−N
n−2

2h
sinxn−1

h2

for n ∈ 2,M − 2. Hence, we have a second order difference equation with respect

to k matrix coefficients. Applying (4.113), we can obtain the solution of this

difference scheme. In computations for both first and second order of accuracy

difference schemes, the initial guess is chosen as 0u
k
n = e−tk sinxn and when the

maximum errors between two consecutive results of iterative difference schemes

(4.112) and (4.115) become less than 10−8, the iterative process is terminated.
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We provide numerical results for various values of M and N and the numerical

solutions of these difference schemes are represented by mu
k
n at (tk, xn) . Tables

7-9 are constructed for N = M = 30, 60, 120 in t ∈ [n, n+ 1], n = 0, 1, 2,

respectively. The errors are calculated using the following formula.

m

(
EN

M

)
p
= max

pN+1≤k≤(p+1)N,p=0,1,....

1≤n≤M−1

∣∣u (tk, xn)− mu
k
n

∣∣ . (4.116)

To finish iteration process it was used condition

max
pN+1≤k≤(p+1)N,p=0,1,....

1≤n≤M−1

∣∣
mu

k
n − m−1u

k,
n

∣∣ < 10−8 (4.117)

in each sub-interval.

Table 7.

Error comparison between difference schemes (4.112) and (4.115)

in t ∈ [0, 1] (Number of iterations = m)

Method M = N = 30 M = N = 60 M = N = 120

(4.112) 6.3783× 10−3,m = 2 3.1279× 10−2,m = 2 1.5485× 10−3,m = 2

(4.115) 4.5864× 10−4,m = 3 1.1212× 10−4,m = 3 2.7577× 10−5,m = 2
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Table 8.

Error comparison between difference schemes (4.112) and (4.115)

in t ∈ [1, 2] (Number of iterations = m)

Method M = N = 30 M = N = 60 M = N = 120

(4.112) 2.3464× 10−3,m = 3 1.5070× 10−3,m = 3 5.6964× 10−4,m = 2

(4.115) 1.6358× 10−4,m = 3 4.2149× 10−5,m = 2 1.0698× 10−5,m = 2

Table 9.

Error comparison between difference schemes (4.112) and (4.115)

in t ∈ [2, 3] (Number of iterations = m)

Method M = N = 30 M = N = 60 M = N = 120

(4.112) 8.6321× 10−4,m = 3 4.2332× 10−4,m = 2 2.0956× 10−4,m = 2

(4.115) 5.3201× 10−5,m = 2 1.3581× 10−5,m = 2 3.4122× 10−6,m = 2

Problem 4.9. We also consider the IBVP

∂u(t,x)
∂t

− ∂2u(t,x)
∂x2 + sin(u (t, x))

= u (t, x)
[
2u ([t− 1] , x) cos 2x− ∂u([t−1],x)

∂x
sin 2x

]
+ f(t, x),

u (0, x) = sin 2x, 0 ≤ x ≤ π,

u (t, 0) = u (t, π) , ux (t, 0) = ux (t, π) , t ∈ [0,∞)

(4.118)

for the nonlinear delay parabolic differential equation. The ES of this test example

is u (t, x) = e−4t sin 2x and f(t, x) = sin (e−4t sin 2x).
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We get the following FASD for the AS of the IBVP (4.118)



muk
n−muk−1

n

τ
− muk

n+1−2muk
n+muk

n−1

h2 − 2m−1u
k
nmu

[k−N ]
n cos 2xn

+m−1u
k
n

mu
[k−N ]
n+1 −mu

[k−N ]
n−1

2h
sin 2xn = sin

(
mu

k
n

)
+ f(tk, xn),

tk = kτ, xn = nh, k ∈ 1,∞, n ∈ 1,M − 1,

mu
0
n = sin 2xn, xn = nh, n ∈ 0,M,

mu
k
0 = mu

k
M ,mu

k
1 − mu

k
0 = mu

k
M − mu

k
M−1, k ∈ pN + 1, (p+ 1)N, p = 0, 1, ...

(4.119)

for the nonlinear delay parabolic equation with nonlocal conditions. We write

(4.119) in matrix form

AmU
k +BmU

k−1 = Rθ, k ∈ pN + 1, (p+ 1)N, p = 0, 1, ...,

mU
0 = {sin 2xn}Mn=0 , (4.120)

where

mU
k =

{
mu

k
n

}M
n=0

, θkn = sin
(
mu

k
n

)
+ f(tk, xn),

n = 0, ...,M, k ∈ pN + 1, (p+ 1)N, p = 0, 1, ...,

A =



1 0 0 0 0 . . . 0 0 0 1

a ck1 a 0 0 . . . 0 0 0 0

0 a ck2 a 0 . . . 0 0 0 0

0 0 a ck3 a . . . 0 0 0 0

0 0 0 a ck4 a . . 0 0 0 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 0 0 0 . . . 0 a ckM−1 a

1 −1 0 0 0 . . . 0 0 −1 1



,
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B =



0 0 0 0 0 . . . 0 0 0 0

0 l 0 0 0 . . . 0 0 0 0

0 0 l 0 0 . . . 0 0 0 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 0 0 0 . . . l 0 0 0

0 0 0 0 0 . . . 0 l 0 0

0 0 0 0 0 . . . 0 0 l 0

0 0 0 0 0 . . . 0 0 0 0


and

a = − 1
h2 , l = − 1

τ
,

ckn = 1
τ
+ 2

h2 − 2u
[k−N ]
n cos 2xn +

u
[k−N ]
n+1 −u

[k−N ]
n−1

2h
sin 2xn

and R is identity matrix of sizeM+1, θ is zero matrix with (M + 1)×1 dimension.

So, we have the first order difference equation with respect to k with matrix

coefficients. From (4.120) it follows that

mU
k = −A−1BmU

k−1 + A−1Rθk, k ∈ pN + 1, (p+ 1)N, p = 0, 1, ...,

mU
0 = {sin 2xn}Mn=0 . (4.121)

Furthermore, using the SADS for the AS of problem (4.118), we obtain the

following system of equations
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

muk
n−muk−1

n

τ
− muk

n+1−2muk
n+muk

n−1

h2 + τ
muk

n+2−4muk
n+1+6muk

n−4muk
n−1+muk

n−2

2h4

−1
2

[
mu

k
nm−1u

[k−N ]
n cos 2xn − mu

k
n

m−1u
[k−N ]
n+1 −m−1u

[k−N ]
n−1

2h
sin 2xn

]
−1

2

[
mu

k−1
n m−1u

[k−1−N ]
n cos 2xn − mu

k−1
n

m−1u
[k−1−N ]
n+1 −m−1u

[k−1−N ]
n−1

2h
sin 2xn

]
+ τ

4

muk
n+1m−1u

[k−N ]
n+1 cos 2xn+1−muk

n+1
m−1u

[k−N ]
n+2 −m−1u

[k−N ]
n

2h
sin 2xn+1

h2

+ τ
4

−2muk
nm−1u

[k−N ]
n cos 2xn+2muk

n
m−1u

[k−N ]
n+1 −m−1u

[k−N ]
n−1

2h
sin 2xn

h2

+ τ
4

muk
n−1m−1u

[k−N ]
n−1 cos 2xn−1−muk

n−1
m−1u

[k−N ]
n −m−1u

[k−N ]
n−2

2h
sin 2xn−1

h2

+ τ
4

muk−1
n−1m−1u

[k−1−N ]
n+1 cos 2xn+1−muk−1

n+1
m−1u

[k−1−N ]
n+2 −m−1u

[k−1−N ]
n

2h
sin 2xn+1

h2

+ τ
4

−2muk−1
n m−1u

[k−1−N ]
n+1 cos 2xn+2muk−1

n
m−1u

[k−1−N ]
n+1 −m−1u

[k−1−N ]
n−1

2h
sin 2xn−1

h2

+ τ
4

muk−1
n−1m−1u

[k−1−N ]
n+1 cos 2xn−1−muk−1

n−1
m−1u

[k−1−N ]
n −m−1u

[k−1−N ]
n−2

2h
sin 2xn−1

h2

+sin
(
mu

k
n

)
= f(tk, xn),

tk = kτ, xn = nh, k ∈ 1, N − 1, n ∈ 2,M − 2,

mu
0
n = sin 2xn, n ∈ 0,M,

mu
k
0 = mu

k
M ,−mu

k
2 + 4mu

k
1 − 3mu

k
0 = 3mu

k
M − 4mu

k
M−1 + mu

k
M−2,

−mu
k
3 + 4mu

k
2 − 5mu

k
1 + 2mu

k
0 = 2mu

k
M − 5mu

k
M−1 + 4mu

k
M−2 − mu

k
M−3,

−3mu
k
4 + 14mu

k
3 − 24mu

k
2 + 18mu

k
1 − 5mu

k
0

= 5mu
k
M − 18mu

k
M−1 + 24mu

k
M−2 − 14mu

k
M−3 + 3mu

k
M−4,

k ∈ pN + 1, (p+ 1)N, p = 0, 1, ....

(4.122)

We obtain another (M + 1)× (M + 1) SLE they are then rewritten in matrix
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form (4.120), where

A =



1 0 0 0 0 . 0 0 0 0 −1

2 −5 4 −1 0 . 0 1 −4 5 −2

e fk
3 gk3 wk

3 e . 0 0 0 0 0

0 e fk
4 gk4 wk

4 . 0 0 0 0 0

. . . . . . . . . . .

0 0 0 0 0 . fk
M−2 gkM−2 wk

M−2 e 0

0 0 0 0 0 . e fk
M−1 gkM−1 wk

M−1 e

−3 4 −1 0 0 . 0 0 −1 4 −3

−5 18 −24 14 −3 . 3 −14 24 −18 5



,

B =



0 0 0 0 0 0 . 0 0 0 0 0

0 0 0 0 0 0 . 0 0 0 0 0

0 zk3 lk3 mk
3 0 0 . 0 0 0 0 0

0 0 zk3 lk3 mk
3 0 . 0 0 0 0 0

0 0 0 zk4 lk4 mk
4 . 0 0 0 0 0

. . . . . . . . . . . .

0 0 0 0 0 0 . zkM−2 lkM−2 mk
M−2 0 0

0 0 0 0 0 0 . 0 zkM−1 lkM−1 mk
M−1 0

0 0 0 0 0 0 . 0 0 0 0 0

0 0 0 0 0 0 . 0 0 0 0 0



.

Here

fk
n = − 1

h2 − 2τ
h4 +

τ
2h2u

[k−N ]
n−1 cos 2xn−1 − τ

8h3 u
[k−N ]
n sin 2xn−1 +

τ
8h3 u

[k−N ]
n−2 sin 2xn−1,

e = τ
2h4 , g

k
n = 1

τ
+ 2

h2 +
3τ
h4 − u

[k−N ]
n cos 2xn +

1
4h
u
[k−N ]
n+1 sin 2xn

− 1
4h
u
[k−N ]
n−1 sin 2xn − τ

h2u
[k−N ]
n cos 2xn +

τ
4h3u

[k−N ]
n+1 sin 2xn − τ

4h3u
[k−N ]
n−1 sin 2xn,

wk
n = − 1

h2 − 2τ
h4 +

τ
2 h2u

[k−N ]
n+1 cos 2xn+1 − τ

8h3u
[k−N ]
n+2 sin 2xn+1 +

τ
8h3u

[k−N ]
n sin 2xn+1,

zkn = τ
2h2u

[k−N ]
n−1 cos 2xn−1 − τ

8h3u
[k−N ]
n sin 2xn−1 +

τ
8h3u

[k−N ]
n−2 sin 2xn−1,

lkn = − 1
τ
− u

[k−N ]
n cos 2xn +

1
4h
u
[k−N ]
n+1 sin 2xn − 1

4h
u
[k−N ]
n−1 sin 2xn

− τ
h2u

[k−N ]
n cos 2xn +

τ
4h3u

[k−N ]
n+1 sin 2xn − τ

4h3u
[k−N ]
n−1 sin 2xn,

mk
n = τ

2h2u
[k−N ]
n+1 cos 2xn+1 − τ

8h3u
[k−N ]
n+2 sin 2xn+1 +

τ
8h3u

[k−N ]
n sin 2xn+1.

We provide numerical results for a range of values of M and N and mu
k
n

represent the numerical solutions of these difference schemes at (tk, xn) . Table 10,
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Table 11 and Table 12 are constructed for M = N = 30, 60, 120 in t ∈ [p, p+ 1],

p = 0, 1, 2, and the errors are computed by the formulas (4.116) and (4.117).

Table 10.

Error comparison between difference schemes (4.119) and (4.122)

in t ∈ [0, 1] (Number of iterations = m)

Method M = N = 30 M = N = 60 M = N = 120

(4.119) 2.4431× 10−2,m = 2 1.2259× 10−2,m = 2 6.1304× 10−3,m = 2

(4.122) 2.0589× 10−3,m = 8 5.4628× 10−4,m = 8 1.3865× 10−4,m = 7

Table 11.

Error comparison between difference schemes (4.119) and (4.122)

in t ∈ [1, 2] (Number of iterations = m)

Method M = N = 30 M = N = 60 M = N = 120

(4.119) 5.3731× 10−3,m = 9 2.5664× 10−3,m = 8 1.2517× 10−3,m = 8

(4.122) 3.0514× 10−4,m = 8 7.5756× 10−5,m = 7 1.9241× 10−5,m = 6
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Table 12.

Error comparison between difference schemes (4.119) and (4.122)

in t ∈ [2, 3] (Number of iterations = m)

Method M = N = 30 M = N = 60 M = N = 120

(4.119) 1.0838× 10−4,m = 7 4.9176× 10−5,m = 6 2.3435× 10−5,m = 6

(4.122) 1.5588× 10−5,m = 7 2.0085× 10−6,m = 5 4.8130× 10−7,m = 3

As we doubled the values of N andM each time, beginning withM = N = 30.

In the FADSs (4.112) and (4.119) in Tables 1-6 respectively, the errors decrease

roughly by a proportion of 1/2, while in the SADSs (4.115) and (4.122) in Tables

7-12 respectively, the errors decrease roughly by a proportion of 1/4. Errors

shown in the tables demonstrate the consistency of the different schemes and

the reliability of the findings. Accordingly, the SADS increases faster than the

FADS. These numerical experiments back up the theoretical claims as shown in

the tables. With more grid points, the maximum errors can be reduced.
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CHAPTER V

Conclusion

This thesis is devoted to constructing the necessary conditions for the ex-

istence of a unique bounded solution of semi-linear delay parabolic differential

equations. The following results were achieved:

• Historical note and relevant literature are studied.

• The classical methods such as the Fourier series, Laplace transform, and

Fourier transform are used to get the exact solution of five semi-linear two-

dimensional delay parabolic equations.

• The initial-boundary value problems for the parabolic delay differential

equations in a Banach space with strongly unbounded operators are in-

vestigated.

• The main theorems on the existence and uniqueness of a bounded solution

to these problems are established.

• The application of the main theorems to four different semi-linear and three

different types of nonlinear delay parabolic equations is presented.

• The first and second-order iterative accuracy difference schemes for the ap-

proximate solution of one-dimensional delay parabolic differential equations

are obtained.

• Numerical experiments and error analysis are performed; results are pro-

vided in the tables.

• The Matlap implementation of these iterative difference schemes is pre-

sented.



92

References

Ciupe, M., Bivort, B.L., Bortz, D.M., & Nelson, P.W. (2006). Estimating kinetic

parameters from HIV primary infection data through the eyes of three dif-

ferent mathematical models. Mathematical biosciences, 200 1, 1-27

Nelson, P.W., Murray, J.D., & Perelson, A.S. (2000). A model of HIV-1 patho-

genesis that includes an intracellular delay. Mathematical biosciences, 163

2, 201-15.

Cooke, K.L., Kuang, Y., & Bingtuan, L. (2005). Analyses of an Antiviral Immune

Response Model with Time Delays

Zhao, T. (1995). Global periodic solutions for a differential delay system modeling

a microbial population in the chemostat, Journal of mathematical analysis

and applications, 193, 329–352.

Smolen, P., Baxter, D. A., & Byrne, J. H. (2002). A reduced model clarifies the

role of feedback loops and time delays in the Drosophila circadian oscilla-

tor. Biophysical journal, 83 (5), 2349–2359. https://doi.org/10.1016/S0006-

3495(02)75249-1

Cooke, K., van den Driessche, P., & Zou, X. (1999). Interaction of maturation de-

lay and nonlinear birth in population and epidemic models. Journal of math-

ematical biology, 39 (4), 332–352. https://doi.org/10.1007/s002850050194

Vielle, B., & Chauvet, G. (1998). Delay equation analysis of human respiratory

stability Mathematical biosciences, 152 (2), 105–122.

Villasana, M., & Radunskaya, A, (2003). A delay differential equation

model for tumor growth. journal of mathematical biology, 47, 270–294.

https://doi.org/10.1007/s00285-003-0211-0.

Campbell, S.A., Edwards, R., & Driessche, P.V. (2004). Delayed Coupling Be-

tween Two Neural Network Loops. SIAM J. Appl. Math., 65, 316-335.



93

Turchin, P. (1990). Rarity of density dependence or population regulation with

lags?. Nature 344, 660–663. https://doi.org/10.1038/344660a0

Turchin, P., & Taylor, A.D. (1992). Complex dynamics in ecological time series,

Ecology, 73, 289–305.

Ashyralyev, A., & Akca, H., (1999). On difference schemes for semilinear de-

lay differential equations with constant delay, Proceeding of the Conference

TSU: Actual Problems of Applied Mathematics, Ashgabat, 18-27.

Ashyralyev, A., Akca, H., & Guray, U. (1999). Second order of accuracy difference

scheme for approximate solutions of delay differential equations, Functional

Differential Equations, vol. 6, 223-231.

Yenicerioglu, A.F. (2007), The behavior of solutions of second order delay differ-

ential equations, Journal of Mathematical Analysis and Applications, 332

(2), 1278-1290.

Mohamad, S., Akca, H., & Covachev, V. (2009). Discrete-time Cohen-Grossberg

neural networks with transmission delays and impulses, Differential and Dif-

ference Equations and Applications Book Series: Tatra Mountains Mathe-

matical Publications, 43, 145-161.

Torelli, L. (1989). Stability of numerical methods for delay differential equations.

Journal of Computational and Applied Mathematics, 25, 11-26.

Ashyralyev, A., & Akça, H. (2001). Stability estimates of difference schemes for

neutral delay differential equations.A Nonlinear Analysis-theory Methods &

Applications, 44, 443-452.

Ashyralyev, A., Akça, H., & Yenicerioglu, A.F., (2003). Stability properties of

difference schemes for neutral differential equations . Differential equations

and Applications (2004 Nova Science Publishers, Inc.) 27–34.

Li, B., Bohner, M., & Meng, F. (2008). Periodic solutions of functional dynamic

equations with infinite delay. Nonlinear Analysis, 68, 1226-1245



94

Xu, D. Y., Li, S.Y., Zhou, X.P., & Pu, Z.L. (2001). Invariant set and stable

region of a class of partial differential equations with time delays. Nonlinear

Analysis, 2, 161-169.

Wolfgang, V. (1981). Nonlinear parabolic differential-functional inequalities with

boundary-functional conditions. Beitrge Anal. 18, 85-89.

Liang, J., & Xiao, T.J. (2004). Solvability of the Cauchy problem for infinite

delay equations. Nonlinear Analysis, 58, 271-297

Ferreira, J.A. (2008). Energy estimates for delay diffusion-reaction equations.

Journal of Computational Mathematics, 26, 536-553

Lu, X. (1998). Combined iterative methods for numerical solutions of parabolic

problems with time delays. Applied Mathematics and Computations, 89,

213-224

Gu, W., & Wang, P. (2014). A Crank-Nicolson Difference Scheme for

Solving a Type of Variable Coefficient Delay Partial Differential

Equations. Journal of Applied Mathematics, Article ID 560567 —

https://doi.org/10.1155/2014/560567

Berezansky, L., & Braverman, E. (2006). On stability of some linear and non-

linear delay differential equations. Journal of Mathematical Analysis and

Applications, 314 (2), 391-411.

Yenicerioglu, A.F., & Yalcinbas, S. (2004). On the stability of the second-order

delay differential equations with variable coefficients Applied Mathematics

and Computation, 152 (3), 667–673.

Ashyralyev, A. & Sobolevskii, P.E. (2001). On the stability of the linear delay

differential and difference equations. Abstract and Applied Analysis,6 (5),

267-297.

Ashyralyev, A., & Agirseven, D. (2014). Stability of Parabolic Equations with



95

Unbounded Operators Acting on Delay Terms. Electronic Journal of Dif-

ferential Equations, 160, 1-13.

Ashyralyev, A., & Agirseven, D. (2014). Stability of Delay Parabolic Difference

Equations, Filomat, 28 (5), 995–1006.

Ashyralyev, A., & Agirseven, D. (2014). On source identification problem for a

delay parabolic equation, Nonlinear Analysis, 19 (3), 335-349.

Ashyralyev, A., & Agirseven, D. (2014). Well-posedness of delay parabolic equa-

tions with unbounded operators acting on delay terms Boundary Value

Problems, 126.

Ashyralyev, A., Agirseven, D. & Agarwal, R.P. (2020). Stability estimates for de-

lay parabolic differential and difference equations. J. Comput. Appl. Math.

19, 175–204

Ashyralyev, A., (2007). Fractional spaces generated by the positivite differential

and difference operator in a Banach space.In: Tas, K, Tenreiro Machado,

JA, Baleanu, D, (eds.) Proceedings of the Conference Mathematical Methods

and Engineering. Springer, Netherlands, 1322.

Agirseven, D. (2012). Approximate solutions of delay parabolic equations with

the Dirichlet condition. Abstract and Applied Analysis,(682752)

Ashyralyev, A., & Agirseven, D. (2013). On convergence of difference schemes for

delay parabolic equations. Computers & Mathematics with Applications,

66 (7), 1232-1244.

Ashyralyev, A., Agirseven, D., & Ceylan, B. (2017). Bounded solutions of delay

nonlinear evolutionary equations. Journal of Computational and Applied

Mathematics, 318, 69–78.

Diagana, T., & Mbaye, M.M. (2015). Existence of bounded solutions for nonlinear

hyperbolic partial differential equations Electronic Journal of Differential

Equations, 241, 1–10



96

Iasson, K., & Miroslav, K. (2014). On the relation of delay equations to first-order

hyperbolic partial differential equations, ESAIM: Control, Optimisation and

Calculus of Variations 20, 894–923.

Igbida, J. (2011). Bounded Solutions to Nonlinear Parabolic Equations,. Inter-

national Scholarly Research Notices, (Article ID 574382).

Kiguradze, T., & Kusano, T. (2005). Bounded and Periodic in a Strip Solutions of

Nonlinear Hyperbolic Systems with Two Independent Variables, Computers

and Mathematics with Applications 49, 335–364.

Mavinga, N., & Nkashama, M.N, (2010). Bounded Solutions of Nonlinear

Parabolic Equations. Electronic Journal of Differential Equations Conf.

19, 207–220.

Nakao, M. (1977). Bounded, Periodic or Almost-Periodic Solutions of Nonlinear

Hyperbolic Partial Differential Equations, Journal of Differential Equations

23 (3), 368–386.

Poorkarimi, H., & Wiener, J. (1986). Bounded solutions of non-linear hyperbolic

equations with delay, Proceedings of the VII International Conference on

Non-Linear Analysis, Lakshmikantham, Ed. 1, 471–478.

Poorkarimi, H., & Wiener, J. (1989). On the structure of fractional spaces, Pro-

ceedings of the XXVII All-Union Scientific Student Conference,Novosibirsk.

Gos. Univ. 3-7.

Poorkarimi, H., & Wiener, J. (1999). Bounded Solutions of Nonlinear Parabolic

Equations with Time Delay, Conference of Applied Mathematics, Univ. of

Central Oklahoma,Electronic Journal of Differential Equations 02l, 87–91.

Poorkarimi, H.; Wiener, J., & Shah, S.M. (1989). On the exponential growth of

solutions to non-linear hyperbolic equations. Internat. Joun. Math. Sci. 12,

539–546.

Sadkowski, M. (1978). Boundedness of Solutions of some non-linear hyperbolic



97

equations, Demonstratio Mathematica XI (1), 127–138

Shah, S.M., Poorkarimi, H., & Wiener, J. (1986). Bounded solutions of retarded

nonlinear hyperbolic equations. Bull. Allahabad Math. Soc. 1, 1–14.

Sheng, Q., & Agarwal, R.P. (1994). Existence and uniqueness of periodic solutions

for higher order hyperbolic partial differential equations. J. Math. Anal.

Appl. 181 (2), 392–406.

Smirnitskii, Yu.A., & Sobolevskii, P.E. (1981). Positivity of multidimensional

difference operators in the Cnorm. Usp. Mat.Nauk, 36 (4), 202–203.

Smirnitskii, Yu.A. (1993). Fractional powers of elliptic difference operators, PhD

Thesis, Voronezh State University, Voronezh, (Russian)

Vyazmin, A. V., & Sorokin, V. G. (2017). Exact solutions to nonlinear delay

differential equations of hyperbolic type. Journal of Physics, 788 (012037)

Wiener, J. (1993). Generalized Solutions of Functional Differential Equations.

World Scientific, Singapore.

Youssfi, A., Benkirane, A. & Hadfi, Y.E. (2016). On Bounded Solutions for

Nonlinear Parabolic Equations with Degenerate Coercivity. Mediterranean

Journal of Mathematics, 13, 3029–3040.

Ceylan, B. (2012). Bounded Solutions of Nonlinear Parabolic Equations With

Time Delay. , Master’s Thesis Trakya University, Edirne,, Turkey.

Ashyralyev, A. & Sobolevskii, P.E. (2004). New Difference Schemes for Partial

Differential Equations. Birkhauser Verlag: Basel, Boston, Berlin

Podlubny, I. (1999). Fractional Differential Equations Vol. 198 of Mathematics in

Science and Engineering. Academic Press: San Diego, CA, USA.

Samko,S.G., Kilbas, A.A., & Marichev, O.I. (1993). Fractional Integrals and

Derivatives; Gordon and Breach: Yverdon, Switzerland.



98

Lavoie, J.L., Osler, T.J., & Trembly, R. (1976). Fractional derivatives and special

functions. SIAM Rev. 18, 240–268.

Tarasov, V.E. (2007). Fractional derivative as fractional power of derivative. Int.

J. Math. 18, 281–299.

El-Mesiry, A.E.M.; El-Sayed, A.M.A.; & El-Saka, H.A.A. (2005). Numerical

methods for multi-term fractional arbitrary orders differential equations.

Applied Mathematics and Computations, 160, 683–699.

El-Sayed, A.M.A.; & Gaafar, F.M. (2001). Fractional-order differential equations

with memory and fractional-order relaxation-oscillation model. Pure Math.

Appl. Ser. A, 12, 296–310.

Gorenflo, R.; & Mainardi, F. (2008). Fractional calculus: Integral and differential

equations of fractional order. J. Math. Phys. 223–276.

Ashyralyev, A. (2009). A note on fractional derivatives and fractional pow-

ers of operators. Journal of Mathematical Analysis and Applications, 357,

232–236.

Bazarov, A. (1989). On the structure of fractional spaces. In Proceedings of

the XXVII All-Union Scientific Student Conference “The Student and

Scientific-Technological Progress”, Gos. Univ. Novosibirsk: Novosibirsk,

Russian, 3–7.

Ashyralyev, A.; Urun, M.; & Parmaksizoglu, I. (2009). Mathematical modeling

of the energy consumption problem. Bull. Karaganda Univ. Math. 105,

13–24.

Ashyralyev, A. (2007).Fractional spaces generated by the positivite differential

and difference operator in a Banach space, In: Tas, K, Tenreiro Machado,

JA, Baleanu, D, (eds.) Proceedings of the Conference Mathematical Methods

and Engineering, 1322, Springer, Netherlands.



99

Appendices

Appendix A

Matlab Implementation for the Approximate Solution of the One-

Dimensional First Order of Accuracy Difference Scheme (3.77)

function (parabolic Dirichlet(N,M))

h=pi/M; tau=1/N;

u(:,:,1)=zeros(N+1, M+1);

for k=1:N+1;

for n=1:M+1;

u(n,k,1)=exp(-(k-1)*tau)*sin((n-1)*h);

end;

end;

a=-1/(h2); b = −1/tau;

c = 1/tau+ 2/(h2);

A = zeros(M + 1,M + 1);B = A;C = A;

A(1, 1) = 1;A(M + 1,M + 1) = 1;

forn = 2 : M ;

A(n, n− 1) = a;A(n, n) = c;A(n, n+ 1) = a;

B(n, n) = b;

end;

G = inv(A);

R = eye(M + 1,M + 1);

m = 0; difference = 1; tolerance = 10−8

; disp(′firstinterval′)

whiledifference > tolerance,

m = m+ 1;

fii = zeros(M + 1,M + 1); psi = fii; psi2 = fii;

fork = 1 : N + 1;

fii(1, k) = 0; fii(M + 1, k) = 0;

forn = 2 : M ;

fii(n, k) = 1/(2 ∗ h) ∗ (u(n + 1, k,m) − u(n − 1, k,m)) ∗ (exp(−(k − 1 − N) ∗



100

tau) ∗ sin((n− 1) ∗ h) ∗ cos((n− 1) ∗ h)− (exp(−(k− 1−N) ∗ tau) ∗ sin(n ∗ h)−

exp(−(k − 1−N) ∗ tau) ∗ sin((n− 2) ∗ h))/(2 ∗ h) ∗ sin((n− 1) ∗ h));

end;

end;

fii = zeros(M + 1,M + 1); psi = fii; psi2 = fii;

forn = 1 : M + 1;

u(n, 1,m+ 1) = sin((n− 1) ∗ h);

end;

fork = 2 : N + 1;

u(:, k,m+ 1) = G ∗ (R ∗ fii(:, k − 1)−B ∗ u(:, k − 1,m+ 1));

end;

forj = 1 : M + 1;

fork = 1 : N + 1;

t(k) = (k − 1) ∗ tau;

x(j) = (j − 1) ∗ h;

es(j, k) = exp(−t(k)) ∗ sin(x(j));

end;

end;

difference = max(max(abs(u(:, :,m+ 1)− u(:, :,m))));

maxerror = max(max(abs(es− u(:, :,m+ 1))));

str1 = strcat(′m =′, num2str(m),′ error =′, num2str(maxerror),′

dif =′, num2str(difference));

end;

disp(str1)

v(:, :, 1) = zeros(N + 1,M + 1);

fork = N + 1 : 2 ∗N + 1;

forn = 1 : M + 1;

v(n, k, 1) = exp(−(k − 1) ∗ tau) ∗ sin((n− 1) ∗ h);

end;

end;

m = 0; difference = 1; tolerance = 10−8;

disp(′secondinterval′)
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whiledifference > tolerance,

m = m+ 1;

fork = N + 1 : 2 ∗N + 1;

psi(1, k) = 0; psi(M + 1, k) = 0;

forn = 2 : M ;

t = (k − 1) ∗ tau;

psi(n, k) = 1/(2 ∗ h) ∗ (v(n + 1, k,m)− v(n− 1, k,m)) ∗ (u(n, k −N) ∗ cos((n−

1) ∗ h)− (u(n+ 1, k −N)− u(n− 1, k −N))/(2 ∗ h) ∗ sin((n− 1) ∗ h));

end;

end;

forn = 1 : M + 1;

fork = 1 +N : 2 ∗N + 1;

v(n,N + 1,m+ 1) = exp(−N ∗ tau) ∗ sin((n− 1) ∗ h);

end;

end;

fork = 2 +N : 2 ∗N + 1;

v(:, k,m+ 1) = G ∗ (R ∗ psi(:, k − 1)−B ∗ v(:, k − 1,m+ 1));

end;

forj = 1 : M + 1;

fork = N + 1 : 2 ∗N + 1;

t(k) = (k − 1) ∗ tau;

x(j) = (j − 1) ∗ h;

es2(j, k) = exp(−t(k)) ∗ sin(x(j));

end;

end;

difference = max(max(abs(v(:, :,m+ 1)− v(:, :,m))));

maxerror = max(max(abs(es2− v(:, :,m+ 1))));

str1 = strcat(′m =′, num2str(m),′ error =′, num2str(maxerror),′

dif =′, num2str(difference));

end;

disp(str1)

w(:, :, 1) = zeros(N + 1,M + 1);
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fork = 2 ∗N + 1 : 3 ∗N + 1;

forn = 1 : M + 1;

w(n, k, 1) = exp(−(k − 1) ∗ tau) ∗ sin((n− 1) ∗ h);

end;

end;

m = 0; difference = 1; tolerance = 10−8;

disp(′thirdinterval′)

whiledifference > tolerance,

m = m+ 1;

fork = 2 ∗N + 1 : 3 ∗N + 1;

psi2(1, k) = 0; psi2(M + 1, k) = 0;

forn = 2 : M ;

t = (k − 1) ∗ tau;

psi2(n, k) = 1/(2 ∗ h) ∗ (w(n+1, k,m)−w(n− 1, k,m)) ∗ (v(n, k−N) ∗ cos((n−

1) ∗ h)− (v(n+ 1, k −N)− v(n− 1, k −N))/(2 ∗ h) ∗ sin((n− 1) ∗ h));

end;

end;

forn = 1 : M + 1;

fork = 1 +N : 2 ∗N + 1;

w(n, 2 ∗N + 1,m+ 1) = exp(−2 ∗N ∗ tau) ∗ sin((n− 1) ∗ h);

end;

end;

fork = 2 + 2 ∗N : 3 ∗N + 1;

w(:, k,m+ 1) = G ∗ (R ∗ psi2(:, k − 1)−B ∗ w(:, k − 1,m+ 1));

end;

forj = 1 : M + 1;

fork = 2 ∗N + 1 : 3 ∗N + 1;

t(k) = (k − 1) ∗ tau;

x(j) = (j − 1) ∗ h;

es3(j, k) = exp(−t(k)) ∗ sin(x(j));

end;

end;
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difference = max(max(abs(w(:, :,m+ 1)− w(:, :,m))));

maxerror = max(max(abs(es3− w(:, :,m+ 1))));

str1 = strcat(′m =′, num2str(m),′ error =′, num2str(maxerror),′

dif =′, num2str(difference));

end;

disp(str1)
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Appendix B

Matlab Implementation for the Approximate Solution of the One-

Dimensional Second Order of Accuracy Difference Scheme (3.79)

function (parabolic Dirichlet second(N,M))

h=pi/M; tau=1/N;

u(:,:,1)=zeros(N+1, M+1);

for k=1:N+1;

for n=1:M+1;

u(n,k,1)=exp(-(k-1)*tau)*sin((n-1)*h);

end;

end;

a=tau/(2*h4); b = −1/h2 − 2 ∗ tau/h4;

c = 1/tau+ 2/h2 + 3 ∗ tau/h4; e = −1/tau;

A = zeros(M + 1,M + 1);B = A;

A(1, 1) = 1;A(2,M + 1) = 1;A(M,M) = −5;A(M,M − 1) = 4;A(M,M − 2) =

−1;

A(M + 1, 2) = −5;A(M + 1, 3) = 4;A(M + 1, 4) = −1;

forn = 3 : M − 1;

fork = 1 : N + 1;

A(n, n− 2) = a;A(n, n− 1) = b;A(n, n) = c;

A(n, n+ 1) = b;A(n, n+ 2) = a;B(n, n) = e;

end;

end;

G = inv(A);

R = eye(M + 1,M + 1);

m = 0; difference = 1; tolerance = 10−8;

disp(′firstinterval′)

whiledifference > tolerance,

m = m+ 1;

fii = zeros(M + 1,M + 1); psi = fii; psi2 = fii;

fork = 2 : N ;
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fii(1, k) = 0; fii(2, k) = 0;

fii(M,k) = 0; fii(M + 1, k) = 0;

forn = 3 : M − 1;

t = (k − 1) ∗ tau;

fii(n, k−1) = 1/(4∗h)∗(u(n+1, k,m)−u(n−1, k,m))∗(cos(n∗h)∗exp(−(k−N−

1)∗tau)∗sin(n∗h)−(sin((n+1)∗h)∗exp(−(k−N−1)∗tau)−exp(−(k−1−N)∗

tau)∗sin((n−1)∗h))/(2∗h)∗sin(n∗h))+1/(4∗h)∗(u(n+1, k−1,m)−u(n−1, k−

1,m))∗(cos(n∗h)∗exp(−(k−N−2)∗tau)∗sin(n∗h)−(sin((n+1)∗h)∗exp(−(k−

N−2)∗tau)−exp(−(k−2−N)∗tau)∗sin((n−1)∗h))/(2∗h)∗sin(n∗h))−tau/(8∗

h3)∗(u(n+2, k,m)−u(n, k,m))∗(cos((n+1)∗h)∗sin((n+1)∗h)∗exp(−(k−1−

N)∗ tau)− (sin((n+2)∗h)∗ exp(−(k−1−N)∗ tau)−sin(n∗h)∗ exp(−(k−1−

N)∗tau))/(2∗h)∗sin((n+1)∗h))−tau/(8∗h3)∗(u(n+1, k,m)−u(n−1, k,m))∗

(−2∗ exp(−(k−1−N)∗ tau)∗sin(n∗h)∗ cos(n∗h)+sin(n∗h)∗ (exp(−(k−1−

N)∗tau)∗sin((n+1)∗h)−exp(−(k−1−N)∗tau)∗sin((n−1)∗h))/h)−tau/(8∗

h3)∗(u(n, k,m)−u(n−2, k,m))∗(cos((n−1)∗h)∗sin((n−1)∗h)∗exp(−(k−1−

N)∗tau)−sin((n−1)∗h)∗(sin(n∗h)∗exp(−(k−1−N)∗tau)−sin((n−2)∗h)∗

exp(−(k−1−N)∗tau))/(2∗h))−tau/(8∗h3)∗(u(n+2, k−1,m)−u(n, k−1,m))∗

(cos((n+1)∗h)∗sin((n+1)∗h)∗exp(−(k−2−N)∗tau)−(sin((n+2)∗h)∗exp(−(k−

2−N)∗tau)−sin(n∗h)∗exp(−(k−2−N)∗tau))/(2∗h)∗sin((n+1)∗h))−tau/(8∗

h3)∗(u(n+1, k−1,m)−u(n−1, k−1,m))∗(−2∗exp(−(k−2−N)∗tau)∗sin(n∗

h)∗cos(n∗h)+sin(n∗h)∗(exp(−(k−2−N)∗tau)∗sin((n+1)∗h)−exp(−(k−2−

N)∗ tau)∗sin((n−1)∗h))/h)− tau/(8∗h3)∗(u(n, k−1,m)−u(n−2, k−1,m))∗

(cos((n−1)∗h)∗sin((n−1)∗h)∗exp(−(k−2−N)∗tau)−sin((n−1)∗h)∗(sin(n∗

h)∗ exp(−(k−2−N)∗ tau)− sin((n−2)∗h)∗ exp(−(k−2−N)∗ tau))/(2∗h));

end;

end;

forn = 1 : M + 1;

u(n, 1,m+ 1) = sin((n− 1) ∗ h);

end;

fork = 2 : N + 1;

u(:, k,m+ 1) = G ∗ (R ∗ fii(:, k − 1)−B ∗ u(:, k − 1,m+ 1));

end;
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forj = 1 : M + 1;

fork = 1 : N + 1;

t = (k − 1) ∗ tau;

x = (j − 1) ∗ h;

es(j, k) = exp(−t) ∗ sin(x);

end;

end;

difference = max(max(abs(u(:, :,m+ 1)− u(:, :,m))));

maxerror = max(max(abs(es− u(:, :,m+ 1))));

str1 = strcat(′m =′, num2str(m),′ error =′, num2str(maxerror),′

dif =′, num2str(difference));

end;

disp(str1)

v(:, :, 1) = zeros(N + 1,M + 1);

fork = N + 1 : 2 ∗N + 1;

forn = 1 : M + 1;

v(n, k, 1) = exp(−(k − 1) ∗ tau) ∗ sin((n− 1) ∗ h);

end;

end;

m = 0; difference = 1; tolerance = 10−8;

disp(′secondinterval′)

whiledifference > tolerance,

m = m+ 1;

fork = N + 2 : 2 ∗N + 1;

forn = 3 : M − 1;

psi(1, k) = 0; psi(2, k) = 0;

psi(M + 1, k) = 0; psi(M,k) = 0;

t = (k − 1) ∗ tau;

psi(n, k−N) = 1/(4∗h)∗(v(n+1, k,m)−v(n−1, k,m))∗(cos(n∗h)∗u(n, k−N)−

(u(n+1, k−N)−u(n−1, k−N))/(2∗h)∗sin(n∗h))+1/(4∗h)∗(v(n+1, k−1,m)−

v(n−1, k−1,m))∗(cos(n∗h)∗u(n, k−N−1)−sin(n∗h)∗(u(n+1, k−N−1)−u(n−

1, k−N−1))/(2∗h))−tau/(8∗h3)∗(v(n+2, k,m)−v(n, k,m))∗(cos((n+1)∗h)∗
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u(n+1, k−N)−sin((n+1)∗h)∗(u(n+2, k−N)−u(n, k−N))/(2∗h))−tau/(8∗h3)∗

(v(n+1, k,m)−v(n−1, k,m))∗(−2∗u(n, k−N)∗cos(n∗h)+sin(n∗h)∗(u(n+1, k−

N)−u(n−1, k−N))/h)−tau/(8∗h3)∗(v(n, k,m)−v(n−2, k,m))∗(cos((n−1)∗h)∗

u(n−1, k−N)−sin((n−1)∗h)∗(u(n, k−N)−u(n−2, k−N))/(2∗h))−tau/(8∗h3)∗

(v(n+2, k−1,m)−v(n, k−1,m))∗(cos((n+1)∗h)∗u(n+1, k−N−1)−sin((n+1)∗

h)∗(u(n+2, k−N−1)−u(n, k−N−1))/(2∗h))−tau/(8∗h3)∗(v(n+1, k−1,m)−

v(n−1, k−1,m))∗(−2∗u(n, k−N−1)∗cos(n∗h)+sin(n∗h)∗(u(n+1, k−N−1)−

u(n−1, k−N−1))/h)−tau/(8∗h3)∗(v(n, k−1,m)−v(n−2, k−1,m))∗(cos((n−1)∗

h)∗u(n−1, k−N−1)−sin((n−1)∗h)∗(u(n, k−N−1)−u(n−2, k−N−1))/(2∗h));

end;

end;

forn = 1 : M + 1;

v(n,N + 1,m+ 1) = exp(−N ∗ tau) ∗ sin((n− 1) ∗ h);

end;

fork = 2 +N : 2 ∗N + 1;

v(:, k,m+ 1) = G ∗ (R ∗ psi(:, k − 1)−B ∗ v(:, k − 1,m+ 1));

end;

forj = 1 : M + 1;

fork = N + 1 : 2 ∗N + 1;

t = (k − 1) ∗ tau;

x = (j − 1) ∗ h;

es2(j, k) = exp(−t) ∗ sin(j);

end;

end;

difference = max(max(abs(v(:, :,m+ 1)− v(:, :,m))));

maxerror = max(max(abs(es2− v(:, :,m+ 1))));

str1 = strcat(′m =′, num2str(m),′ error =′, num2str(maxerror),′

dif =′, num2str(difference));

end;

disp(str1)

w(:, :, 1) = zeros(N + 1,M + 1);

fork = 2 ∗N + 1 : 3 ∗N + 1;
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forn = 1 : M + 1;

w(n, k, 1) = exp(−(k − 1) ∗ tau) ∗ sin((n− 1) ∗ h);

end;

end;

m = 0; difference = 1; tolerance = 10−8;

disp(′thirdinterval′)

whiledifference > tolerance,

m = m+ 1;

fork = 2 ∗N + 2 : 3 ∗N + 1;

psi2(1, k) = 0; psi2(2, k) = 0;

psi2(M,k) = 0; psi2(M + 1, k) = 0;

forn = 3 : M − 1;

t = (k − 1) ∗ tau;

psi2(n, k) = 1/(4∗h)∗(w(n+1, k,m)−w(n−1, k,m))∗(cos(n∗h)∗v(n, k−N)−

(v(n+1, k−N)− v(n− 1, k−N))/(2 ∗h) ∗ sin(n ∗h))+ 1/(4 ∗h) ∗ (w(n+1, k−

1,m)−w(n−1, k−1,m))∗ (cos(n∗h)∗v(n, k−N −1)−sin(n∗h)∗ (v(n+1, k−

N−1)−v(n−1, k−N−1))/(2∗h))− tau/(8∗h3)∗(w(n+2, k,m)−w(n, k,m))∗

(cos((n+ 1) ∗ h) ∗ v(n+ 1, k−N)− sin((n+ 1) ∗ h) ∗ (v(n+ 2, k−N)− v(n, k−

N))/(2 ∗h))− tau/(8 ∗h3) ∗ (w(n+1, k,m)−w(n− 1, k,m)) ∗ (−2 ∗ v(n, k−N) ∗

cos(n ∗ h) + sin(n ∗ h) ∗ (v(n+ 1, k −N)− v(n− 1, k −N))/h)− tau/(8 ∗ h3) ∗

(w(n, k,m)−w(n−2, k,m))∗ (cos((n−1)∗h)∗v(n−1, k−N)−sin((n−1)∗h)∗

(v(n, k−N)−v(n−2, k−N))/(2∗h))−tau/(8∗h3)∗(w(n+2, k−1,m)−w(n, k−

1,m))∗(cos((n+1)∗h)∗v(n+1, k−N−1)−sin((n+1)∗h)∗(v(n+2, k−N−1)−

v(n, k−N −1))/(2∗h))− tau/(8∗h3)∗ (w(n+1, k−1,m)−w(n−1, k−1,m))∗

(−2∗v(n, k−N−1)∗cos(n∗h)+sin(n∗h)∗(v(n+1, k−N−1)−v(n−1, k−N−

1))/h)−tau/(8∗h3)∗(w(n, k−1,m)−w(n−2, k−1,m))∗(cos((n−1)∗h)∗v(n−

1, k−N − 1)− sin((n− 1) ∗ h) ∗ (v(n, k−N − 1)− v(n− 2, k−N − 1))/(2 ∗ h));

end;

end;

forn = 1 : M + 1;

w(n, 2 ∗N + 1,m+ 1) = exp(−2 ∗N ∗ tau) ∗ sin((n− 1) ∗ h);

end;
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fork = 2 + 2 ∗N : 3 ∗N + 1;

w(:, k,m+ 1) = G ∗ (R ∗ psi2(:, k − 1)−B ∗ w(:, k − 1,m+ 1));

end;

forj = 1 : M + 1;

fork = 2 ∗N + 1 : 3 ∗N + 1;

t = (k − 1) ∗ tau;

x = (j − 1) ∗ h;

es3(j, k) = exp(−t) ∗ sin(x);

end;

end;

difference = max(max(abs(w(:, :,m+ 1)− w(:, :,m))));

maxerror = max(max(abs(es3− w(:, :,m+ 1))));

str1 = strcat(′m =′, num2str(m),′ error =′, num2str(maxerror),′

dif =′, num2str(difference));

end;

disp(str1)
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Appendix C

Matlab Implementation for the Approximate Solution of the One-

Dimensional First Order of Accuracy Difference Scheme (3.83)

function (parabolic Nonlocal(N,M))

h=pi/M;tau=1/N;

u(:,:,1)=zeros(N+1, M+1);

for k=1:3*N+1;

t(k)=(k-1)*tau;

end;

for n=1:M+1;

x(n)=(n-1)*h;

end;

for n=1:M+1;

for k=1:N+1;

u(n,k,1)=exp(-4*t(k))*sin(2*x(n));

end;

uN(n)=u(n,1,1);

end;

a=-1/(h2); b = −1/tau;

A = zeros(M + 1,M + 1);B = A;C = A;

A(1, 1) = 1;A(1,M + 1) = −1;

A(M + 1, 1) = −1;A(M + 1, 2) = 1;A(M + 1,M) = 1;A(M + 1,M + 1) = −1;

forn = 2 : M ;

A(n, n− 1) = a;A(n, n+ 1) = a;B(n, n) = b;

c = 1/tau+2/h2 − 2 ∗ uN(n) ∗ cos(2 ∗ x(n)) + (uN(n+1)− uN(n− 1))/(2 ∗ h) ∗

sin(2 ∗ x(n));

A(n, n) = c;

end;

G = inv(A);

R = eye(M + 1,M + 1);

m = 0; difference = 1; tolerance = 10−8;
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disp(′firstinterval′)

whiledifference > tolerance,

m = m+ 1;

fii = zeros(M + 1,M + 1); psi = fii; psi2 = fii; psi3 = fii;

fork = 1 : N + 1;

fii(1, k) = 0; fii(2, k) = 0;

fii(M,k) = 0; fii(M + 1, k) = 0;

forn = 3 : M − 1;

fii(n, k) = −sin(u(n, k,m)) + sin(exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(n)));

end;

end;

fii = zeros(M + 1,M + 1); psi = fii; psi2 = fii; psi3 = fii;

forn = 1 : M + 1;

u(n, 1,m+ 1) = sin(2 ∗ x(n));

end;

fork = 1 : N ;

u(:, k + 1,m+ 1) = G ∗ (R ∗ fii(:, k)−B ∗ u(:, k,m+ 1));

end;

forj = 1 : M + 1;

fork = 1 : N + 1;

es(j, k) = exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(j));

end;

end;

difference = max(max(abs(u(:, :,m+ 1)− u(:, :,m))));

maxerror = max(max(abs(es− u(:, :,m+ 1))));

str1 = strcat(′m =′, num2str(m),′ error =′, num2str(maxerror),′

dif =′, num2str(difference));

end;

disp(str1)

v(:, :, 1) = zeros(N + 1,M + 1);

forn = 1 : M + 1;

fork = N + 1 : 2 ∗N + 1;
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v(n, k, 1) = exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(n));

end;

end;

uN(:) = u(:, N + 1,m);

m = 0; difference = 1; tolerance = 10−8;

disp(′secondinterval′)

whiledifference > tolerance,

m = m+ 1;

fork = N + 1 : 2 ∗N + 1;

psi(1, k) = 0; psi(2, k) = 0;

psi(M,k) = 0; psi(M + 1, k) = 0;

forn = 3 : M − 1;

psi(n, k) = −sin(v(n, k,m)) + sin(exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(n)));

end;

end;

forn = 1 : M + 1;

v(n,N + 1,m+ 1) = uN(n);

end;

fork = 1 +N : 2 ∗N ;

forn = 2 : M ;

c = 1/tau+2/h2 − 2 ∗ uN(n) ∗ cos(2 ∗ x(n)) + (uN(n+1)− uN(n− 1))/(2 ∗ h) ∗

sin(2 ∗ x(n));

A(n, n) = c;

end;

G = inv(A);

v(:, k + 1,m+ 1) = G ∗ (R ∗ psi(:, k)−B ∗ v(:, k,m+ 1));

end;

forj = 1 : M + 1;

fork = N + 1 : 2 ∗N + 1;

es2(j, k) = exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(j));

end;

end;
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difference = max(max(abs(v(:, :,m+ 1)− v(:, :,m))));

maxerror = max(max(abs(es2− v(:, :,m+ 1))));

str1 = strcat(′m =′, num2str(m),′ error =′, num2str(maxerror),′

dif =′, num2str(difference));

end;

disp(str1)

w(:, :, 1) = zeros(N + 1,M + 1);

uN(:) = v(:, 2 ∗N + 1,m);

fork = 2 ∗N + 1 : 3 ∗N + 1;

forn = 1 : M + 1;

w(n, k, 1) = exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(n));

end;

end;

m = 0; difference = 1; tolerance = 10−8;

disp(′thirdinterval′)

whiledifference > tolerance,

m = m+ 1;

fork = 2 ∗N + 1 : 3 ∗N + 1;

psi2(1, k) = 0; psi2(2, k) = 0;

psi2(M,k) = 0; psi2(M + 1, k) = 0;

forn = 3 : M − 1;

psi2(n, k) = −sin(w(n, k,m)) + sin(exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(n)));

end;

end;

forn = 2 : M ;

c = 1/tau+2/h2 − 2 ∗ uN(n) ∗ cos(2 ∗ x(n)) + (uN(n+1)− uN(n− 1))/(2 ∗ h) ∗

sin(2 ∗ x(n));

A(n, n) = c;

end;

G = inv(A);

forn = 1 : M + 1;

w(n, 2 ∗N + 1,m+ 1) = uN(n);
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end;

fork = 1 + 2 ∗N : 3 ∗N ;

w(:,k+1,m+1)=G*(R*psi2(:,k)-B*w(:,k,m+1));

end;

for j=1:M+1;

for k=2*N+1:3*N+1;

t(k)=(k-1)*tau;

es3(j,k) = exp(-4*t(k))*sin(2*x(j));

end;

end;

difference=max(max(abs(w(:,:,m+1)-w(:,:,m))));

maxerror=max(max(abs(es3-w(:,:,m+1))));

str1=strcat(’m=’,num2str(m),’ error=’,num2str(maxerror),’

dif=’,num2str(difference));

end;

disp(str1)
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Appendix D

Matlab Implementation for the Approximate Solution of the One-

Dimensional Second Order of Accuracy Difference Scheme (3.85)

function (parabolic Nonlocal seconds(N,M))

h=pi/M;tau=1/N;

u(:,:,1)=zeros(N+1, M+1);

for k=1:3*N+1;

t(k)=(k-1)*tau;

end;

for n=1:M+1;

x(n)=(n-1)*h;

end;

for n=1:M+1;

for k=1:N+1;

u(n,k,1)=exp(-4*t(k))*sin(2*x(n));

end;

uN(n)=sin(2*x(n));

end;

a=tau/(2*h4);

A = zeros(M + 1,M + 1);B = A;

A(1, 1) = 1;A(1,M + 1) = −1;

A(2, 1) = 2;A(2, 2) = −5;A(2, 3) = 4;A(2, 4) = −1;

A(2,M + 1) = −2;A(2,M) = 5;A(2,M − 1) = −4;A(2,M − 2) = 1;

A(M, 1) = −3;A(M, 2) = 4;A(M, 3) = −1;

A(M,M + 1) = −3;A(M,M) = 4;A(M,M − 1) = −1;

A(M + 1, 1) = −5;A(M + 1, 2) = 18;A(M + 1, 3) = −24;A(M + 1, 4) =

14;A(M + 1, 5) = −3;

A(M + 1,M + 1) = −5;A(M + 1,M) = 18;A(M + 1,M − 1) = −24;A(M +

1,M − 2) = 14;A(M + 1,M − 3) = −3;

forn = 3 : M − 1;

A(n, n− 2) = a;A(n, n+ 2) = a;
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end;

forn = 3 : M − 1;

b = −1/h2 − 2 ∗ tau/h4 + tau/(2 ∗ h2) ∗ uN(n− 1) ∗ cos(2 ∗ x(n− 1))− tau/(8 ∗

h3) ∗ uN(n) ∗ sin(2 ∗ x(n− 1)) + tau/(8 ∗ h3) ∗ uN(n− 2) ∗ sin(2 ∗ x(n− 1));

c = 1/tau+ 2/h2 + 3 ∗ tau/h4 − uN(n) ∗ cos(2 ∗ x(n)) + 1/(4 ∗ h) ∗ uN(n+ 1) ∗

sin(2∗x(n))−1/(4∗h)∗uN(n−1)∗sin(2∗x(n))−tau/h2∗uN(n)∗cos(2∗x(n))+

tau/(4 ∗ h3) ∗ uN(n+1) ∗ sin(2 ∗ x(n))− tau/(4 ∗ h3) ∗ uN(n− 1) ∗ sin(2 ∗ x(n));

d = −1/h2 − 2 ∗ tau/h4 + tau/(2 ∗ h2) ∗ uN(n+ 1) ∗ cos(2 ∗ x(n+ 1))− tau/(8 ∗

h3) ∗ uN(n+ 2) ∗ sin(2 ∗ x(n+ 1)) + tau/(8 ∗ h3) ∗ uN(n) ∗ sin(2 ∗ x(n+ 1));

e = tau/(2 ∗ h2) ∗ uN(n− 1) ∗ cos(2 ∗ x(n− 1))− tau/(8 ∗ h3) ∗ uN(n) ∗ sin(2 ∗

x(n− 1)) + tau/(8 ∗ h3) ∗ uN(n− 2) ∗ sin(2 ∗ x(n− 1));

f = −1/tau−uN(n)∗ cos(2∗x(n))+1/(4∗h)∗uN(n+1)∗ sin(2∗x(n))−1/(4∗

h) ∗ uN(n − 1) ∗ sin(2 ∗ x(n)) − tau/h2 ∗ uN(n) ∗ cos(2 ∗ x(n)) + tau/(4 ∗ h3) ∗

uN(n+ 1) ∗ sin(2 ∗ x(n))− tau/(4 ∗ h3) ∗ uN(n− 1) ∗ sin(2 ∗ x(n));

g = tau/(2∗h2)∗uN(n+1)∗ cos(2∗x(n+1))− tau/(8∗h3)∗uN(n+2)∗ sin(2∗

x(n+ 1)) + tau/(8 ∗ h3) ∗ uN(n) ∗ sin(2 ∗ x(n+ 1));

A(n, n− 1) = b;A(n, n) = c;A(n, n+ 1) = d;

B(n, n− 1) = e;B(n, n) = f ;B(n, n+ 1) = g;

end;

G = inv(A);

R = eye(M + 1,M + 1);

m = 0; difference = 1; tolerance = 10−8;

disp(′firstinterval′)

whiledifference > tolerance,

m = m+ 1;

fii = zeros(M + 1,M + 1); psi = fii; psi2 = fii; psi3 = fii;

fork = 1 : N + 1;

fii(1, k) = 0; fii(2, k) = 0;

fii(M,k) = 0; fii(M + 1, k) = 0;

forn = 3 : M − 1;

fii(n, k) = −sin(u(n, k,m)) + sin(exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(n)));

end;
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end;

forn = 1 : M + 1;

u(n, 1,m+ 1) = sin(2 ∗ x(n));

end;

fork = 1 : N ;

u(:, k + 1,m+ 1) = G ∗ (R ∗ fii(:, k)−B ∗ u(:, k,m+ 1));

end;

forj = 1 : M + 1;

fork = 1 : N + 1;

es(j, k) = exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(j));

end;

end;

difference = max(max(abs(u(:, :,m+ 1)− u(:, :,m))));

maxerror = max(max(abs(es− u(:, :,m+ 1))));

str1 = strcat(′m =′, num2str(m),′ error =′, num2str(maxerror),′

dif =′, num2str(difference));

end;

disp(str1)

v(:, :, 1) = zeros(N + 1,M + 1);

forn = 1 : M + 1;

fork = N + 1 : 2 ∗N + 1;

v(n, k, 1) = exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(n));

end;

end;

uN(:) = u(:, N + 1,m);

forn = 3 : M − 1;

b = −1/h2 − 2 ∗ tau/h4 + tau/(2 ∗ h2) ∗ uN(n− 1) ∗ cos(2 ∗ x(n− 1))− tau/(8 ∗

h3) ∗ uN(n) ∗ sin(2 ∗ x(n− 1)) + tau/(8 ∗ h3) ∗ uN(n− 2) ∗ sin(2 ∗ x(n− 1));

c = 1/tau+ 2/h2 + 3 ∗ tau/h4 − uN(n) ∗ cos(2 ∗ x(n)) + 1/(4 ∗ h) ∗ uN(n+ 1) ∗

sin(2∗x(n))−1/(4∗h)∗uN(n−1)∗sin(2∗x(n))−tau/h2∗uN(n)∗cos(2∗x(n))+

tau/(4 ∗ h3) ∗ uN(n+1) ∗ sin(2 ∗ x(n))− tau/(4 ∗ h3) ∗ uN(n− 1) ∗ sin(2 ∗ x(n));

d = −1/h2 − 2 ∗ tau/h4 + tau/(2 ∗ h2) ∗ uN(n+ 1) ∗ cos(2 ∗ x(n+ 1))− tau/(8 ∗
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h3) ∗ uN(n+ 2) ∗ sin(2 ∗ x(n+ 1)) + tau/(8 ∗ h3) ∗ uN(n) ∗ sin(2 ∗ x(n+ 1));

e = tau/(2 ∗ h2) ∗ uN(n− 1) ∗ cos(2 ∗ x(n− 1))− tau/(8 ∗ h3) ∗ uN(n) ∗ sin(2 ∗

x(n− 1)) + tau/(8 ∗ h3) ∗ uN(n− 2) ∗ sin(2 ∗ x(n− 1));

f = −1/tau−uN(n)∗ cos(2∗x(n))+1/(4∗h)∗uN(n+1)∗ sin(2∗x(n))−1/(4∗

h) ∗ uN(n − 1) ∗ sin(2 ∗ x(n)) − tau/h2 ∗ uN(n) ∗ cos(2 ∗ x(n)) + tau/(4 ∗ h3) ∗

uN(n+ 1) ∗ sin(2 ∗ x(n))− tau/(4 ∗ h3) ∗ uN(n− 1) ∗ sin(2 ∗ x(n));

g = tau/(2∗h2)∗uN(n+1)∗ cos(2∗x(n+1))− tau/(8∗h3)∗uN(n+2)∗ sin(2∗

x(n+ 1)) + tau/(8 ∗ h3) ∗ uN(n) ∗ sin(2 ∗ x(n+ 1));

A(n, n− 1) = b;A(n, n) = c;A(n, n+ 1) = d;

B(n, n− 1) = e;B(n, n) = f ;B(n, n+ 1) = g;

end;

G = inv(A);

m = 0; difference = 1; tolerance = 10−8;

disp(′secondinterval′)

whiledifference > tolerance,

m = m+ 1;

fork = N + 1 : 2 ∗N + 1;

psi(1, k) = 0; psi(2, k) = 0;

psi(M,k) = 0; psi(M + 1, k) = 0;

forn = 3 : M − 1;

psi(n, k) = −sin(v(n, k,m)) + sin(exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(n)));

end;

end;

forn = 1 : M + 1;

v(n,N + 1,m+ 1) = uN(n);

end;

fork = 1 +N : 2 ∗N ;

v(:, k + 1,m+ 1) = G ∗ (R ∗ psi(:, k)−B ∗ v(:, k,m+ 1));

end;

forj = 1 : M + 1;

fork = N + 1 : 2 ∗N + 1;

es2(j, k) = exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(j));
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end;

end;

difference = max(max(abs(v(:, :,m+ 1)− v(:, :,m))));

maxerror = max(max(abs(es2− v(:, :,m+ 1))));

str1 = strcat(′m =′, num2str(m),′ error =′, num2str(maxerror),′

dif =′, num2str(difference));

end;

disp(str1)

w(:, :, 1) = zeros(N + 1,M + 1);

uN(:) = v(:, 2 ∗N + 1,m);

forn = 3 : M − 1;

b = −1/h2 − 2 ∗ tau/h4 + tau/(2 ∗ h2) ∗ uN(n− 1) ∗ cos(2 ∗ x(n− 1))− tau/(8 ∗

h3) ∗ uN(n) ∗ sin(2 ∗ x(n− 1)) + tau/(8 ∗ h3) ∗ uN(n− 2) ∗ sin(2 ∗ x(n− 1));

c = 1/tau+ 2/h2 + 3 ∗ tau/h4 − uN(n) ∗ cos(2 ∗ x(n)) + 1/(4 ∗ h) ∗ uN(n+ 1) ∗

sin(2∗x(n))−1/(4∗h)∗uN(n−1)∗sin(2∗x(n))−tau/h2∗uN(n)∗cos(2∗x(n))+

tau/(4 ∗ h3) ∗ uN(n+1) ∗ sin(2 ∗ x(n))− tau/(4 ∗ h3) ∗ uN(n− 1) ∗ sin(2 ∗ x(n));

d = −1/h2 − 2 ∗ tau/h4 + tau/(2 ∗ h2) ∗ uN(n+ 1) ∗ cos(2 ∗ x(n+ 1))− tau/(8 ∗

h3) ∗ uN(n+ 2) ∗ sin(2 ∗ x(n+ 1)) + tau/(8 ∗ h3) ∗ uN(n) ∗ sin(2 ∗ x(n+ 1));

e = tau/(2 ∗ h2) ∗ uN(n− 1) ∗ cos(2 ∗ x(n− 1))− tau/(8 ∗ h3) ∗ uN(n) ∗ sin(2 ∗

x(n− 1)) + tau/(8 ∗ h3) ∗ uN(n− 2) ∗ sin(2 ∗ x(n− 1));

f = −1/tau−uN(n)∗ cos(2∗x(n))+1/(4∗h)∗uN(n+1)∗ sin(2∗x(n))−1/(4∗

h) ∗ uN(n − 1) ∗ sin(2 ∗ x(n)) − tau/h2 ∗ uN(n) ∗ cos(2 ∗ x(n)) + tau/(4 ∗ h3) ∗

uN(n+ 1) ∗ sin(2 ∗ x(n))− tau/(4 ∗ h3) ∗ uN(n− 1) ∗ sin(2 ∗ x(n));

g = tau/(2∗h2)∗uN(n+1)∗ cos(2∗x(n+1))− tau/(8∗h3)∗uN(n+2)∗ sin(2∗

x(n+ 1)) + tau/(8 ∗ h3) ∗ uN(n) ∗ sin(2 ∗ x(n+ 1));

A(n, n− 1) = b;A(n, n) = c;A(n, n+ 1) = d;

B(n, n− 1) = e;B(n, n) = f ;B(n, n+ 1) = g;

end;

G = inv(A);

fork = 2 ∗N + 1 : 3 ∗N + 1;

forn = 1 : M + 1;

w(n, k, 1) = exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(n));
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end;

end;

m = 0; difference = 1; tolerance = 10−8;

disp(′thirdinterval′)

whiledifference > tolerance,

m = m+ 1;

fork = 2 ∗N + 1 : 3 ∗N + 1;

psi2(1, k) = 0; psi2(2, k) = 0;

psi2(M,k) = 0; psi2(M + 1, k) = 0;

forn = 3 : M − 1;

psi2(n, k) = −sin(w(n, k,m)) + sin(exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(n)));

end;

end;

forn = 1 : M + 1;

w(n, 2 ∗N + 1,m+ 1) = uN(n);

end;

fork = 1 + 2 ∗N : 3 ∗N ;

w(:, k + 1,m+ 1) = G ∗ (R ∗ psi2(:, k)−B ∗ w(:, k,m+ 1));

end;

forj = 1 : M + 1;

fork = 2 ∗N + 1 : 3 ∗N + 1;

t(k) = (k − 1) ∗ tau;

es3(j, k) = exp(−4 ∗ t(k)) ∗ sin(2 ∗ x(j));

end;

end;

difference = max(max(abs(w(:, :,m+ 1)− w(:, :,m))));

maxerror = max(max(abs(es3− w(:, :,m+ 1))));

str1 = strcat(′m =′, num2str(m),′ error =′, num2str(maxerror),′

dif =′, num2str(difference));

end;

disp(str1)
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