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Abstract
Bounded Solutions of Semi-linear Delay Parabolic Equations
Saadu Bello Muazu
PhD Thesis, Department of Mathematics
Supervisor: Prof. Dr. Allaberen Ashyralyev
September, 2023, (124) pages

In the present thesis, the initial-boundary value problems for the semi-linear
delay differential equations in a Banach space with strongly unbounded opera-
tors are considered. The main theorems on the existence and uniqueness of a
bounded solution to these problems are established. The application of the main
theorems to four different semi-linear and three different types of nonlinear delay
parabolic equations is presented. Analytic solutions of several two-dimensional
delay parabolic equations are obtained by using classical methods. The first and
second-order accuracy difference schemes for the solution of a one-dimensional
semi-linear parabolic equation with time delay are presented. Finally, certain
numerical experiments are given to confirm the agreement between experimental
and theoretical results and to make clear how effective the proposed approach is.

Numerical results are found, and error analysis is given in the tables.

Keywords: bounded solution; Banach and Hilbert spaces; unbounded operators;

semi-linear parabolic equations; existence and uniqueness.



Ozet
Yar1 Dogrusal Gecikmeli Parabolik Denklemlerin Sinirli Coziumleri
Saadu Bello Muazu
Doktora Tezi, Matematik Boliimii
Danigsman: Prof. Dr. Allaberen Ashyralyev
Eyliil 2023, (124) sayfa

Bu tezde, giiclii sinirsiz operatorlere sahip bir Banach uzayinda yar1 dogrusal
gecikmeli diferansiyel denklemler i¢in baglangic-sinir deger problemleri ele alinmigtir.
Bu problemlere yonelik sinirli bir ¢oziimiin varligi ve benzersizligine iligskin ana
teoremler olugturulmustur. Ana teoremlerin dort farkl yari dogrusal ve ti¢ farkh
tirdeki dogrusal olmayan gecikmeli parabolik denklemlere uygulanmasi sunul-
maktadir. Birkag iki boyutlu gecikmeli parabolik denklemin analitik ¢oziimleri
klasik yontemler kullanilarak elde edilir. Zaman gecikmeli tek boyutlu yar1 dogrusal
parabolik denklemin ¢6ziimii i¢in birinci ve ikinci dereceden dogruluk fark: semalar
sunulmaktadir. Son olarak deneysel ve teorik sonuglar arasindaki uyumu dogrulamak
ve oOnerilen yaklagimin ne kadar etkili oldugunu netlestirmek igin bazi sayisal
deneyler verilmigtir. Sayisal sonuglar bulunmus, hata analizleri tablolarda ver-

ilmigtir.

Anahtar Kelimeler: simirh ¢oziim; Banach ve Hilbert uzaylari; sinirsiz op-

eratorler; yar1 dogrusal parabolik denklemler; varlik ve teklik.
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CHAPTER I

Introduction

Historical Note and Literature Survey

The theory of differential equations (DEs) plays an important role in many disci-
plines, such as biology, economics, engineering, medicine, and physics. modelling
of almost any biological, technical, or physical process, such as interactions be-
tween neurons, bridge design, movement of celestial bodies, propagation of water,
heat, and sound in the atmosphere, single and multidimensional dynamic systems,
electrostatics, electrodynamics, fluid flow, elasticity, or various types of quantum
mechanics. Ordinary and partial DEs are used to describe the phenomenon. For
example, while modelling biological systems with differential equations, simplified
models created to better understand very complex events may not reflect the rich
diversity of dynamics observed in natural systems. To overcome this complexity,
many possible approaches can be devised using systems of partial and ordinary
DEs, i.e., the method involving a larger number of equations. Although these sys-
tems are quite good at approximating observed behaviour, problems arise because
many parameters representing quantities that cannot be determined empirically
are overlooked. Therefore, another approach that is gaining importance is to

include time delay terms in DEs.

Often in the generated modelling, the future state of the system is independent
of the past and is controlled only by the present. It should be borne in mind
that this is only a first approximation to the real state. More realistic models
will include some of the past states of these systems, so ideally, a real system
should be modelled as a time-delayed differential equation(DE). Of course, delay
is inevitable in routine life. In any system, there is always a delay, even for
seconds. Science makes predictions about future events by watching some events,
and while doing this, it aims to create a mathematical model of the event or
system it studies. As a matter of fact, in many applications, the newly created
model is established with the assumption that the past state of the event or system

under consideration will not affect the future state. Not adding the situations that
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have occurred in the past to the problems encountered in the model invalidates
the created system. When the perceived information from the outside world is
taken into account, there is a reaction to every effect, and there is a slight delay
in this process. Because the reaction to every action depends on a process. In
physical phenomena, the current state of a system can also be determined by
considering its past state. In order to predict how the mentioned system will
behave, it is necessary to know the differential equation describing this system

and its solutions.

Time delays occur very often in almost all cases, and to ignore them is to ig-
nore reality. Delays, gestation periods, incubation periods, transportation delays,
etc. can represent A simple example from nature is reforestation. Saplings in a
forest need 20 years to reach maturity after reforestation. For certain types of
trees, this time may be even longer. Thus, any mathematical model of forest har-
vesting and regeneration obviously involves and builds on time delays. Another
example is that animals need time to digest their food before they can perform
their activities. Delayed models have become widespread in many branches of
biological modelling. These models are used to describe some topics such as
infectious disease dynamics:(Ciupe et al., 2006; Nelson, Murray, and Perelson,
2000; Cooke, Kuang, and Bingtuan, 2005). Also, delays occur in studies of topics
such as chemostat models (Zhao, T 1995); circadian rhythms (Smolen, Baxter,
and Byrne, 2002); epidemiology (Cooke, van den Driessche, and Zou, 1999);
the respiratory system (Vielle, and Chauvet, 1998); tumour growth (Villasana,
Radunskaya, 2003); and neural networks (Campbell, Edwards, and Driessche,
2004). Statistical analysis of ecological data by (Turchin, P. 1990; Turchin, and
Taylor, 1992) showed that there is evidence of delay effects in the population

dynamics of many species.

Studies on delayed ordinary and partial DEs were carried out by many re-
searchers (Ashyralyev and Akca, 1999, 2001; Ashyralyev, Akca and Guray, 1999;
Yenicerioglu, 2007; Mohamad, Akca, and Covachev, 2009; Torelli, 1989; Ashyra-
lyev, Akca, and Yenicerioglu, 2003; Li, Bohner, and Meng, 2008; Xu et al., 2001;
Wolfgang, 1981; Liang, and Xiao, 2004; Ferreira, 2008); they generally focus

on the properties of the solution, such as oscillation, stability, periodicity, and
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asymptoticity. In general, the inclusion of an unbounded delay term in DEs
makes it difficult to analyse these types of equations. Additionally, there are a
couple of works for which analytical solutions are provided. Because of this rea-
son, the studies on numerical approaches compensate for the dearth of theoretical
research. Particularly, one of the primary techniques employed in this field is the
finite difference method. (Lu, X. 1998) investigates monotone iterative schemes
for finite-difference solutions of reaction-diffusion systems with time delays and
provides improved iterative schemes using the upper-lower solutions approach
with the Gauss-Seidel or the Jacobi method. (Gu and Wang, 2014) constructed a
linearized Crank-Nicolson difference scheme for the solution of a partial equation
with variable coefficient delay and showed that this scheme is unconditionally
stable and converges with a quadratic degree of convergence in both space and

time variables.

(Berezansky and Braverman, 2006) examined stability for non-autonomous
equations of the Carathéodory type, obtained new explicit stability conditions for
linear differential equations with some delays, and reduced the stability problem
for an equation with some delay to a stability problem for a specially constructed
unique delay equation. They applied their results to study the local asymptotic
stability of the Mackey-Glass equation with non-constant coefficients and delays.
(Yenicerioglu and Yalgnbasg, 2004) established the necessary conditions for the
stability of the solutions of second-order linear delay equations with variable

coefficients.

In addition, (Ashyralyev and Sobolevskii, 2001) consider the initial value prob-
lem for the parabolic type linear delay differential equations; they provide a
sufficient condition for the stability of the solution to this problem and obtain
the stability estimates of solutions in Holder norms. Various types of initial
and boundary value problems for delay parabolic partial differential equations
were investigated by ( Ashyralyev, and Agirseven, 2014a, 2014b, 2014c, 2014d;
Ashyralyev, Agirseven, and Agarwal, 2020; Ashyralyev, 2007; Agirseven, 2012;
Ashyralyev, and Agirseven, 2013); they gave theorems on stability and conver-
gence, found approximate solutions for the problems using first and second-order

accuracy difference schemes, and performed error analysis.
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Finally, the existence and uniqueness of a bounded solution (BS) of nonlinear
delay parabolic equations were established by (Ashyralyev, Agirseven and Cey-
lan, 2017); they provide sufficient conditions for the existence of a unique BS of
nonlinear delay parabolic equations. It should be noted that in past publications
(Diagana, and Mbaye, 2015; Iasson, and Miroslav, 2014; Igbhida, 2011; Kiguradze,
and Kusano, 2005; Mavinga, and Nkashama, 2010; Nakao, 1977; Poorkarimi,
and Wiener, 1986, 1989, 1999; Poorkarimi, Wiener, and Shah, 1989; Sadkowski,
1978; S. Shah, Poorkarimi, and Wiener, 1986; Sheng, and Agarwal, 1994; Smir-
nitskii, and Sobolevskii, 1981; Smirnitskii, 1993; Vyazmin, and Sorokin, 2017;
Wiener, 1993; Youssfi, Benkirane, and Hadfi, 2016), bounded solutions of nonlin-
ear parabolic and hyperbolic partial differential equations with or without delay
have been investigated. However, due to the generality of the strategy used in

this research, a larger class of semi-linear parabolic equations can be treated.

Layout of the Present Thesis

Semi-linear delay parabolic equations take an important place in applied sciences
and engineering applications. The theory and applications of several problems for
semi-linear delay parabolic equations have been studied in several works. Linear
problems for delay parabolic equations can be solved by classical methods like
Fourier transform method, Fourier series method and Laplace method. However,
these classical methods can be used basically in the case when the differential
equation has constant coefficients. It is well known that the most useful method
for solving nonlinear delay parabolic equations with dependent coefficients in ¢

and in the space variables is operator method.

In the Master Thesis (Burcu Ceylan, 2012); theorems on the existence and
uniqueness of bounded solutions of nonlinear delay parabolic differential equa-
tions with undepended coefficients in ¢ were studied. The book by (Ashyralyev
and Sobolevskii, 2004); is devoted to the construction and investigation of the
new high order of accuracy difference schemes of approximating the solutions of
regular and singular pertubation boundary value problems for partial differential

equations. The construction is based on the exact difference scheme and Taylor’s
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decomposition on the two or three points. This approach permitted essentially
to extend a class of problems where the theory of difference methods is applica-
ble. Namely, now it is possible to study the existence and uniqueness of bounded

solutions of semi-linear delay parabolic differential and difference equations.

In the present thesis, we investigate the abstract form of the initial value

problems:

© 1 Av(t) = f(t, B(t)o(t), B(t)v(t — d)),t € [0,00),
v(t) = ¢(t),t € [—d, 0]

(1.1)

in an arbitrary Banach space E with linear unbounded operators A and B(t)

with dense domains D(A) C D(B(t)) and

% + A(t)u(t) = g(t, u(t), u(t — w)),t € [0,00),
u(t) = ¢(t),t € [—w, 0]

(1.2)

in an arbitrary Banach space E with the unbounded operators A(t) in E with
dense domains D(A(t)) C E.

The main aim of this study is to provide the sufficient condition for the exis-

tence of a unique BS to problems (1.1) and (1.2).
The organization of this thesis is as follows:

The first chapter contains an introduction, a historical note and literature

survey, definitions, and some basic concepts.

In the second chapter, we apply classical methods and obtain analytical solu-
tions to several initial boundary value problems (IBVPs) for a two-dimensional

delay parabolic partial differential equation (DPPDE).

In the third chapter, we study the theorem on the existence and uniqueness of
the initial value problem (1.1). A semi-linear parabolic differential equation with
an unbounded delay term is used to establish the theorem, and four different semi-
linear DPPDESs are used to illustrate the main theorem’s application. Numerical
results are provided. (This chapter was published in an open access journal,
MDPI; Mathematics 2023, Volume 11, Issue 16, 3470, and some part of the
chapter is also accepted for publication in AIP Conference Proceedings, [CAAM
2022).
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In the fourth chapter, the main theorem on the existence and uniqueness of
a BS of problem (1.2) is established for a nonlinear DPPDE. The application of
the main theorem to three types of nonlinear DPPDEs is illustrated. Numerical
results are presented. (This chapter is also sent for publication in an open access

journal, Filomat, under review.)

Finally, chapter five contains conclusion and future work. MATLAB programs
made to find approximate solutions are given in the appendices.
Some Basic Concepts and Definitions

This section highlights some basic concepts and definitions on the theory of or-
dinary and partial DEs leading us to conduct and understand the works in this

thesis

Sturm-Liouville problem (Arfken, Weber, 2005)

We denote the Sturm-Liouville operator as

d dx
Ly =—— —
] = -~ [p(:v) dy] +q(z)y
and consider the Sturm-Liouville equation
Lyl + Ay =0, (1.3)

where p > 0, p and ¢ are continous functions on the interval[0,!] with local

boundary conditions

a1y(0) + azp(0)y'(0) = 0, Biy (1) + Bap(l)y' (1) = 0, (1.4)

where of + a2 # 0 and 37 + 35 # 0 or nonlocal boundary conditions

y(0) —y(l) = 0,4'(0) = 0,5/(0) —y'(1) = 0. (1.5)

The problem of finding a complex number A = p such that the boundary

value problems (1.3), (1.4) or (1.3), (1.5) have a non trivial solution are called
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Sturm-Liouville problems. The value A = p is called an eigenvalue and the

corresponding solution y(z, ) is called eigenfunction. We will consider three

types of Sturm-Liouville problems

The Sturm-Liouville problem with Dirichlet Condition

"

—u (z)+ Mu(z) =0,0 <z <lLul0)=ul)=0

has solution

km

k
ug(x) = SiH% and A\, = —(—)% k=1,2,3,....

l

In the case when [ = 7, we have that

up(z) = sinkx and A\, = —k?, k=1,2,3, ...

The Sturm-Liouville problem with Neumann Condition
—u" (z) + Mu(z) = 0,0 < z < [,/ (0) =u'(l) = 0

has solution

kmx km

ug(z) = cos —— and A\, = —(— )%, k=0,1,2,...

l l

In the case when [ = 7, we have that

up(z) = coskx and A\, = —k*, k =0,1,2, ...

The Sturm-Liouville problem with Nonlocal Condition

1"

—u (z) + Au(z) = 0,0 <z < L, u(0) = u(l),u'(0) = u'(I)

has solution

(1.7)

(1.8)
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2kmx

u(x) = sin , k=1,2,3,..

and

k
A = —4(7”)2, k=0,1,2,....

In the case when [ = 7, we have that

ug(z) = cos2kx , k=0,1,2, ...

up(xr) =sin2kx , k=1,2,3,...

and

e = —4k* k=0,1,2, ...

Fourier Series (Brown, Churchyll, 1993)

Let [ be a fixed number and f(z) be a periodic function with periodic 2, defined
on(—1,1). The Fourier Series of f(z) is a way of expanding the function f(z) into

infinite series involving sines and cosines;

fla) = % +3 an cos(”lﬂ> +3 b, sin(#) (1.9)

n=1

where the Fourier coefficients ag a,, and b, are defined by the integrals
1 [
ao — 7/ f(z)dz (1.10)
—

1 l
0 = 7/ Fla)cos(" T dr,n=1,2,3,.. (1.11)
—

and
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1 l
b, = 7/ f(x) sin(#da:,n —1,2,3,.. (1.12)
1

The Laplace transform (Franklyn, 1949)

The Laplace transform can be helpful in solving ordinary and partial differen-
tial equations because its can replace an ordinary differential equation with an
algebraic equation or replace a partial differential equation with an ordinary dif-
ferential equation. Another reason that the Laplace transform is useful is that it
can be deal with the boundary conditions of a partial differential equation on an

infinite domain.

Definition 1. Let f be a real valued function of the real variable ¢, defined
for t ) 0. Let s be a variable that we will assume to be real, and consider the

function F' defined by

F(s) = /Oo e " f(t)dt (1.13)

0
for all values of s for which this integral exists. The function F' defined by the

integral (1.13) is called the Laplace transform of the function f . we will denote
the Laplace transform F of f by L{f} and denote F(s) by L{f(t)}. Note
that for those s € C' for which the integral makes sense F'(s) is a complex-valued

function of complex number.

The Fourier transform (Bracewell, 1999)

There are several ways to define the Fourier transform of a function f :R — C.

Definition 1. Let f be a real valued function of the real variable x , defined

for x € (—o00,00).Let s be a variable and consider the function F' defined by

F(s) = /OO f(z)e ™ dz, (1.14)

for all values of s for which this integral exists. The function F' defined by the
integral (1.14) is called the Fourier transform of the function f. We will denote the
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Fourier transform F of f by F {f} and denote F(s) by F {f(z)}. Note that for
those s € C' for which the integral makes sense F'(s) is a complex-valued function

of complex number.
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CHAPTER II
Integral Transform Methods for Time-Delay Parabolic Differential

Equations

Introduction

In this section, we study the analytical solutions of several two-dimensional delay
parabolic differential equations by using classical methods such as Fourier series,
Fourier transform, and Laplace transform, we obtain the exact solution of five

initial boundary value problems.

Fourier Series Method

We consider Fourier series method for solution of two dimensional delay parabolic

differential equations with Dirichlet, Neumann and nonlocal boundary conditions.

Problem 2.1. Obtain the Fourier series solution of the following IBVP

( 1 1 1 1

ut(ta Qf,y) - §urx<t7 z, y) - §uyy(ta x7y) + Zuww(t - 17 I,y) + Zuyy(t - ]-7 X, y)
1

—t+
=——e
2

'sinasiny, 0 <t < 00,0 < x,y <,
u(t,z,y) = e 'sinwsiny, -1 < t< 0,0<x,y <,
uw(t,0,y) =u(t,my) =0,0< y< 7,0 <t< o0,

u(t,z,0) =u(t,z,7) =0,0< < 7,0 <t < oc.

\

(2.15)

Solution. In order to solve this problem, we cosider the Sturm-Liouville
problem

—u" (z) + Mu(z) = 0,0 < z < 7,u(0) = u(r) =0

generated by the space operator of problem (2.15). It is clear that the solution

of this Sturm-Liouville problem is
up(r) = sinkx, \y = k% k= 1,2, ...

Then, we will seek the Fourier series solution of problem (2.15) by the formula

oo o0

u(t, z,y) = Z Z Ay (t) sin kx sin ny.

k=1 n=1
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Here, Ag,(t),k,n = 1,2,..., are unknown functions. Applying this formula to

the two dimensional delay heat equation and initial condition, we get

o oo 1 oo o
ZZA t) sin kx sin ny + 522 (k* + n?) Ay (t) sin ka sin ny
1 oo 00 ) 1 o .
ZZZ/{: +n? Akn(t—l)smkxsmny——Z sinx siny,
k=1 n=1
0<t<oo,0<z,y<m,
and
u(t, z,y) = ZZAk” ) sin kx sin ny
k=1 n=1

=e'sinasiny, -1< t< 0,0< 2,y <.
Equating coefficients of sinkx, k = 1,2, ... and sinny,n = 1,2, ... to zero, we get
Ay + Ava(t) = A~ 1) = —ze > 0,
Apit)=e*,—-1< t>0,

and for k,n # 1

!

1 1
A () + 5(1@2 +n?) A (t) — Z(lc2 +n?)Ap(t—1) =0,t >0,
Ak,n(t) =0,-1< t>0.

First, we will obtain A; 1(¢). It is clear that A; 1(¢) is the solution of the following

initial value problem
, 1 1
A (t) + Apa(t) — 5Am(t —1) = —§e*t+1,t >0,
Ajt)=e " -1< t< 0

for the ordinary differential equation. We denote that

Ai4(t) =
Appm(t),m =1 <t <mm=1,2,
Then,
All,l,l(t) +A111(t) =0,0<t <1,
A111(0) =1
Therefore,

Ai11(t) = A111(0)e "t =€
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Let Aj1ma(t) =e,m—2<t<m-—1, then A;,,(t) can be define by

’ 1 1
Al,l,m(t) + Al,l,m(t) - §A1717m_1(t — ]_) = —56_t+1’ m—-1<t< m,
Apgpmt—1) = A1t —1) ="

Then,
Al + At =0m—1<t<m,

ALl,m(m — 1) = ei(mil).

Therefore,

Aiim(t) = A1 m(m — 1)67(t7m+1)

— e—(m—l)e—(t—m—H) — et
So, by induction it is true for any m.
Hence,
A171<t) = €_t.

Recall that for k,n # 1 we have

/

1 1
Apn(t) + 5(/42 +n?) Ay (1) — Z(k2 +n?)Apn(t —1)=0,t>0
Apn(t)=0,-1< t < 0.

It is easy, to see that

Therefore, the exact solution for the initial boundary value problem (2.15) is

u(t, z,y) ZA t) sin kx sin ny

k=1 n=1

= A;1(t)sinysinz = e 'sinzsiny

Note that using similar procedure one can obtain the solution of the following

IBVP
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(2.16)
u(t,r) =p(t,r), v €Qte[—w/]

u(t,z) =0,z € S,t € [0,00)

\

for the multidimensional delay parabolic equation with Dirichlet boundary con-
dition can be investigated. Here and in future 2 C R"™ be a bounded open
domain with smooth boundary S, = QUS. Under compatibility conditions prob-
lem (2.16) has a unique solution u(t, z) for the smooth functions f(¢,z), (t,z) €
(0,00) X Q,a, >a >0, p(t,x),r € Qt € [-w,0].

Problem 2.2. Obtain the Fourier series solution of the following IBVP

;

1 1 1 1
ut(t:x7y) - Eua:ac(taxay) - Euyy(tvx7y) + Zuxx(t - 1,x,y) + Zuyy(t - 1,:70,y)

+

1
= ——e "lcoszcosy,0 <t <o0,0<z,y<T,

2
u(t,z,y) =e 'cosweosy,—1< t< 0,0<xzy<m,

uy(t,0,y) = u,(t,m,y) =0,0< y < 7,

uy(t,z,0) =u,(t,z,7) =0,0< < 7,0<t<o0.

\

(2.17)

Solution. In order to solve this problem, we consider the Sturm-Liouville
problem

/

—u' (z) + Mu(z) =0,0< 2 < 1,4 (0) = (1) =0

generated by the space operator of problem (2.17). It is clear that the solution

of this Sturm-Liouville problem is
up(r) = coskz, \p = —k* k=0,1,....

Then, we will seek the Fourier series solution of problem (2.17) by the formula

u(t, z,y) = Z Z A () cos kx cosny.

k=0 n=0
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Here, Ag,(t),k,n = 0,1,..., are unknown functions. Applying this formula to

the two dimensional delay heat equation and initial condition, we get

iifl t) cos kx cosny + — ZZ (k* + n?) Ay () cos kx cos ny

k=0 n=0 k: 0 n=0
Loy, |
ZZZ (k* +n? Akn(t—l)coskxcosny——ze COS T COS Y,
k=0 n=0
O0<t<oo,0<x,y<m,
and
u(t,z,y) = ZZA’”L ) cos kx cosny
k=0 n=0

=e¢'cosrcosy,—1< t< 0,0<z,y<m.

Equating coefficients of cos kx, k = 0,1, ..., and cosny,n = 0, 1, ..., to zero, we get
/ 1 1
Ay () +Aa(t) — 5141,1(?5 —-1)= —ée_tﬂ,t > 0,
Apt)y=e"*—-1< t< 0,

and for k,n # 1

!

1 1
A () + 5(1@2 +n?) A (t) — Z(lc2 +n?)Ap(t—1) =0,t >0,
Apn(t) =0,—-1< ¢t < 0.

First, we will obtain A; 1(¢). It is clear that A; 1(¢) is the solution of the following

initial value problem
, 1 1
A (t) + Apa(t) — 5Am(t —1) = —§e*t+1,t >0,
Ajt)=e " -1< t< 0

for ordinary differential equation. We denote that

Ai4(t) =
Appm(t),m =1 <t <mm=1,2,
Then,
All,l,l(t) +A111(t) =0,0<t <1,
A111(0) =1
Therefore,

Ai11(t) = A111(0)e "t =€



Let Aj1ma(t) =e,m—2<t<m-—1, then A;,,(t) can be define by

/

1 1
Al,l,m(t) + Al,l,m(t) - §A1717m_1(t — ]_) = —56_t+1’ m—-1<t< m,
Apgpmt—1) = A1t —1) ="

Then,
Al + At =0m—1<t<m,
Ajim(m—1) = e (m=1),

Therefore,

Aiim(t) = A1 m(m — 1)67(t7m+1)

— e—(m—l)e—(t—m—H) — et

So, by induction it is true for any m.

Hence,

A171 (t) = €_t.

Recall that for k,n # 1 we have

, 1 1
Apn(t) + 5(/42 +n?)Apa(t) — Z(k2 +n?) At —1)=0,t>0
Apn(t) =0,-1< t < 0.
It is easy, to see that

Therefore, the exact solution for the initial boundary value problem (2.17) is

u(t, z,y) = Z Z Ap () cos kx cos ny

k=0 n=0

= Ay 1(t)cosycosx = e ' coswcosy

27

Note that using similar procedure one can obtain the solution of the following

IBVP



28

uy (t, ) — (arte, (t,2))z, = b D (arte, (t —w,T))e, + f(t,2),

r=1 r=1
0<t<oo,z=(x1,...,%,) € Q,
(2.18)
u(t,z) =¢(t,x),x € Qt € |[—w,0|

Ou(t,z)
op

=0,z € 5,t€[0,00),

\
for the multidimensional delay parabolic equation with Neumann boundary con-
dition can be investigated. Under compatibility conditions problem (2.18) has a
unique solution u(t, z) for the smooth functions f(t,z), (t,z) € (0,00) x Q,a, >

a>0, ot z),r€Q,te|[—w0]. Here, p is the normal vector to S.

Problem 2.3. Obtain the Fourier series solution of the following IBVP

( 1 1
ut(t7x7y) - um(t,x,y) - uyy<t7$>y) + _uﬂm(t - 17xuy) + 1_6uyy(t - 17'1:73/)

16
1
= —56_8(t_1) sin2x cos2y,0 <t <oo,0<z,y <,

u(t,z,y) = e ¥sin2rcos2y, —1 < t< 0,0 <,y <,

/U/(t, 07 y) = u(t7 7T7 y)?uz(t7 07 y) = /U/I'(t? 71—7 y)?o S y S TI-’O S t < oo?

u(t,z,0) = u(t,z,m),uy(t,z,0) = uy(t,z,m),0 <z <m0 <t<o0.
\

(2.19)

Solution. In order to solve this problem, we consider the Sturm-Liouville

problem

’ ’

—u"(z) + Mu(z) = 0,0 < 2 < 7,u(0) = u(n),u (0) = u (n)

generated by the space operator of problem (2.19). It is clear that the solution

of this Sturm-Liouville problem is

Up(x) = cos2nz, A\, = —4n*,n = 0,1, ..., ux(z) = sin 2kz, \p, = —4k* n=1,2,....



29

Then, we will seek the Fourier series solution of problem (2.19) by the formula

u(t, z,y) Z Z Ap (t) cos 2kx cos 2ny + Z Z By () sin 2kx cos 2ny
k=0 n=0 k=1 n=0

+ Z Z Dy, (t) cos 2kx sin 2ny + Z Z Ej »(t) sin 2kx sin 2ny.
k=0 n=1 k=1 n=1

Here, Ay (t), Bin(t), Din(t) and Ej ,(t) are unknown functions. Applying this

formula to the two dimensional delay heat equation and initial condition, we get

i i A;m(t) cos 2kx cos 2ny + i i B,lm (t) sin 2kx cos 2ny

k=0 n=0 k=1 n=0

+ Z Z D;w(t) cos 2kx sin 2ny + Z Z E,;n(t) sin 2k sin 2ny

k=0 n=1 k=1 n=1

+ Z Z(4k2 + 4n?) Ay, () cos 2k cos 2ny

k=0 n=0

+ Z 2(4]{52 + 4n?) By, ,(t) sin 2kx cos 2ny
k=1 n=0

+ Z Z(4k2 + 4n?) Dy, (t) cos 2kx sin 2ny

k=0 n=1

+ Z (4k* + 4n*) By, . () sin 2kz sin 2ny

k=1 n=1

1
= —56_8(t_1) sin2x cos2y,0 <t <oo,0<z,y <m,

and

u(t,z,y) = ZZA’M costxcosQny—l—ZZBkn ) sin 2kx cos 2ny

k=0 n=0 k=1 n=0
+ Z Z Dy, (t) cos 2kx sin 2ny + Z Z E} »(t) sin 2kx sin 2ny
k=0 n=1 k=1 n=1

= e %sin2rcos2y, —1 < t< 0,0 <z,y <.
Equating coefficients of cos 2kx cos 2ny, sin 2kx cos 2ny, cos 2kx sin 2ny and sin 2kx sin 2ny,
to zero, we get
By () +8Bi4(t) — %Bm(t —-1) = —%e_g(t_l),t >0,

B1,1<t) == 6_8t7 —1 S t S 0,
and for k,n #£ 1

’

1
A () 4 (4K 4 4n®) Ay (t) — E(zxk? +4n*)Ap(t — 1) = 0,t > 0,

Apn(t) =0,-1< < 0,
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1
By, (t) 4 (4k* 4 4n°) By, () — 1—6(4%2 +4n?) By, (t — 1) =0, > 0,

| Bealt) = 0,1 <t <0,

(. 1
Dy, (t) + (4k* 4+ 4n®) Dy (t) — E(4k2 +4n*) Dy p(t — 1) = 0, > 0,

Din(t)=0,-1< t< 0,

, 1
By () + (4K* 4 4n®) By, (1) — E(zxkﬂ +4n*) By (t — 1) = 0,t > 0,

Eypnlt) =0,-1< t < 0.
It is easy to see that; Ay, (t) = Din(t) = Egpn(t) =0 for all k,n and By, (t) =0
for k,n # 1.
Now, we will obtain By 1(t), it is clear that By 1(t) is the solution of the following

problem
' 1 L sy
BLl(t) = G_St, —1 S t S 0
for ordinary differential equation. We denote that

Byi1o(t) = e —1<t<0,

By1(t) =
Biim(t),m—1<t<m,m=12,....
Then,
B;,1,1(t) + B111(t) =0,0<t <1,
B17171<O) — 1’
therefore,

Bi1a(t) = Byi1(0)e ™ = 7%,

Let Byim-1(t) =€ ¥ m—2<t<m—1, then By 1,,(t) can be define by

, 1 1
By 1 m(t) + 8B m(t) — 531,1,%1@ —1) = —§ef8<t*1>,m —1l<t<m,

Biym(t —1) = Brama(t —1) = e 5070,
Then,
Byim(t) +8Biim(t) =0,m—1<t<m,
Biim(m—1) = e 8(m=1)
Therefore,

Bl,1,m(t) - B1,1,m(m — 1)6—8(t—m+1)

_ o8(m=1) =8(t-m+1) _ 8t
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So, by induction it is true for any m.
Hence,

Bl,l (t) = 6_8t.

Therefore, the exact solution for the initial boundary value problem (2.19) is

u(t, x,y) i f: By, (t) sin 2kx cos 2ny

k=1 n=0

= By (t) cos 2y sin 2z = e sin 22 cos 2y.

Note that using similar procedure one can obtain the solution of the following

IBVP

w (t,) = 3 (gt (1, 2))s, = b3 (0, (t = 0.2))s, + (1,2

r=1 r=1

0<t<oo,z=(x1,...,0,) € €,
(2.20)

u(t,z) =@ (t,z),z€Qte|—w,0

re S tel0,o00)

T 0
ult, z)g, = ult, )|, , 25225, = 252

0
for the multidimensional delay parabolic differential equation with nonlocal bound-
ary condition can be investigated. Under compatibility conditions problem (2.20)
has a unique solution u(t,x) for the smooth functions f(t,z), (¢t,z) € (0,00) X
Q,a, >a>0, ¢t x),recQtec|—w0]. Here,51 NSy = 0,5 US, =S, pis the

normal vector to S.

The Laplace transform solution

We consider Laplace transform method for solution of the two dimensional delay

semi-linear parabolic equation.
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Problem 2.4. Obtain the Laplace transform solution of the following IBVP

(

1 1
ut(ta x,y) - uxx(ta x,y) - uyy(t,:r,y) + Zuxoc(t - 1,%, y) + Zuyy(t - 17 x?l/)
1
+ 3u(t, z,y) = —ée_Hl_m_y?O <t<oo,0<z,y< oo,
u(t,z,y) =e 7Y 1<t <0,0< 2,y < oo,

u(t,0,y) = e Y uy(t,0,y) = —eY,0 < y < o0,

\ u(t,z,0) = e " u,(t,2,0) = —e "7, 0 < 2 < 00,0 <t < 0.
(2.21)

Solution. Using the formulas

1

. 1 _
Lx{e }:S—l-—ley{e y}:w+1

and taking the Laplace transform for z of both sides of the parabolic equation

and using condition, u(t,0,y) = e Y, u,(¢,0,y) = —e 'Y, we can write
du(t, z,y) *u(t, z,y) Pu(t,z,y)| |, 1, [Pult—12,y)
R e L A
{ ot 022 a2 [T 922
1 OPu(t — 1,2,y) 1 e
+ZLI{ Iy +3Lz{u(t,$,y)}:—§Lx {e + y},0<t<oo,
and
Lo {ult, 2, 9)} = ——e'V. L, {u(t, z,0)} = ——¢!
xT b ) 8 + 1 ) x ) 7 S + 1 7
1
Lo{uy(t,2,0)} = ————e L-1<t<0,y>0
Then,

(

ut(t7 S, y) - {82u<t7 S, y) - Se_t_y + e—t—y} - Uyy(t, S, y)

1 1
+ 1{52U<t —1,s,y) —se” TV f TV} 4 Zuyy(t —1,5,9)

1 1
+ 3U(t, S, y) = _§e_t+1_yH—17t > 07

I,
e
s+1

u(t, s,y) = eV u(t,s,0) =

~touy,(t,s,0) = —
L s+1 S—l—le ty(t, 5,0)
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Now, taking the Laplace transform with respect to y, we get

1 1
u(t, s,w) — {SQU(t, S, w) — Se_tw——l—l + e—tw__H}
— Qw?u(t, s, w) — we™ ! tet 1
T s+1 s+1
+7 {w2u(t —1,s,w) — we‘t“H—l + @—t+1m}
1 1 1
Bu(t = st ——— >0
+ 3u(t, s, w) 5 ot zo
and
L1
u(t,s,w) = e ——_ —1<t<0.
s+1w+1
So
( 2 2 Loy 2
w(t,s,w)+ (3 —s"—w )u(t,s,w)+1(3 +wu(t —1,s,w0)
—i—(s—l)e‘tL—k(w_l)e—t 1 +(1_S)€—t+1 1
1 1 1 1
l—w)e ™ —— = ——e™———— >0
+ (1 —w)e P 5 ol 20
1 1
t =e!l———— 1<t <0.
\u(,s,w) C stlwrl TS

Now, we obtain u(t, s, w). It is clear that u(¢, s, w) is a solution of the following
initial boundary value problem,

(

1
u(t, s,w) + (3 — s* — w?)u(t, s, w) + 1(82 +w?)u(t — 1, s,w)
1 1
—(1— -t = 1 — —t -1 —t+1_ =
(1=s)e w+1+( w)e s+1+<8 Je w+1
1 1 1 1
-1 -t+1_ - - —t+1_ - - t>0
SR E s Sl e P AL
L1 1
u(t,s,w) =e — 1<t <.
\ s+1w+1

We denote that
u(t,s,w) = {up(t,sw),m—-1<t<mm=1,2,...}.

Since

1 1
—7_1§t§0a
s+1lw+1

—t

u(t—1,s,w) =e



we have that

p 1 1 1
t 3— 5% — wuy(t NP4 u)e T
ur(t, s, w) + (3 — s° —w)uy(t, s, w) 4(8 +w?)e PP
1 1
1— —t 1 — — 1 —t+1
+ ( Je —w—|—1+< w)e - +(s—1)e ——l
1 1 1 1
—t+1 —t4+1
—t>0
R S Ly b SR
(O ) 1 1
u1(0, s, w) = _
\ ! S+1w—|—1
Solving this linear problem, we get
(t,s,w) =e" L1 <<
u(t, s, w) =e —_— )
n = s+1lw+1"" — —
Let
L1
Um—1(t, s,w) =€ —— m—-2<t<m-1.
s+1lw+1

Now, we obtain w,,(t, s,w) as a solution of the problem

( 29 L s 2 B
Umt(t, $,w0) + (3 — % — W )up,(t, s, w) + Z<S + w)u,(t — 1, s,w)
1

-1 —t+1_ =
(s Je w—+ 1

1 1

:1_ -t__ - 1_ —t

) ( s)e w—|—1+( w)e s+1
1 1 1 1

-1 -t+1_ - - —t+1_ - - o 1 <t <
(w—1e s+1 2°¢ s+1w+1’m ==
1 1
u(t,s,w) =e" —— m—2<t<m-—1.
\ s+1lw-+1

Since
.1 1

m(t— 1,5, = Um-1(t, s, =e R
U ( S, W) = Upm—1(t, s,w) = e P

we have that

1 1 1
(um’t(t, s,w) + (3 — 5% — w)un(t, s,w) = —1(52 + w2)e_t8 1ot
1 1
1 o —t 1 o —t 1 —t+1
F(1=s)e g F U —we g (s - e

1)et+! [N GNETCIR 1

_ t
+(w s+1 2° Sstlw+1

\ s+1lw—+1
Therefore,
L1
U (t, s, w) = e ——m—1<t<m
s+lw+1
By induction,
1 1

34



35

is true for any m > 1. Thus

1 1 1 1
—m—lgtgm,m:m,...}:e-t —

u(t,s,w) =< e’ .
(t, 5,w) { s+1lw+1’ s+1lw+1
Taking the inverse Laplace transform, we obtain the following exact solution of
the problem

u(t,,y) =e 777V,

Note that using similar procedure one can obtain the solution of the following

IBVP
uy (t, ) — (arte, (t, )z, = b D (AU, (t —w, 7)), + f(t,2),
r=1 r=1
x=(21,...,T,) € ﬁ+, 0<t<T,
u(0,2) = p(z),x € Q' 1 € [~w,0] (2.22)

u(t,z) =a(t,x), ug(t,x)=p(t ),

\ 1<r<n0<t<T,zeS"

for the multidimensional delay differential equation. Assume that a,(x) > a9 > 0
and f (t,2), (t €(0,7),x € §+> (), <x € §+> sa(t,x), B (t,x) (t€[0,T],z € ST)
are given smooth functions. Here and in future Q% is the open cube in the n-
dimensional Euclidean space R" (0 <z, < 00,1 < k < n) with the boundary S

and
o + +
Q =QTusT.
However Laplace transform method described in solving (2.22) can be used only

in the case when (2.22) has constant coefficients.

The Fourier transform solution

We consider Fourier transform method for solution of the two dimensional delay

parabolic differential equation.
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Problem 2.5. Obtain the Fourier transform solution of the following IBVP

( 1 1
ut(taxvy) - ux:c(taxvy) - uyy(t%.ﬂ) + Zuxa:(t - laxay) + Zuyy(t - 17%9)

1
+ U(t, x, y) - (2 — 4372 — 4y2)67t7x27y2 _ §€7t+17127yQ7

0<t<oo,—00 <,y <00,

t—

\ u(t,z,y) =e IQ’yQ,—l <t<0,—00 <,y < oo.

(2.23)

Solution. We denote
Flu(t,z,y)} = u(t, s,w).

Then, we have that
ou(t, x,
F{—( y y)} = w(t, s,w)

O%ult, x,y)
F {T} = —s2u(t, s, w)

O®ult, ,y)
F {8—y2} = —wu(t,s,w).

Taking the Fourier transform of both sides of the equation and using initial con-

dition, we get
1
ug(t, s, w) + su(t, s, w) + wu(t, s, w) — ZSQu(t —1,5,w)

1
_ —wQU(t - 17 87 w) —I— u(t, 87 ’LU) = FZ‘Fy {(2 . 4x2 o 4y2)6_1=2_y2} e_t

4
1
- SBF, {e*x“f} et 0 < ¢ < oo,
and
u(t, s, w) = F, F, {6_5‘2_‘1’2} e, —-1<t<0
Since

We can write
2 9 Lo o
u(t, s, w) + (14 s° + w)u(t, s,w) — Z(S +w )u(t — 1, 5,w)
- (—FmFy {2} + $°F, {e‘xQ} + w*F, {e‘y2}> e’

1
-3 wF, {e’xz’yQ} e 0 <t < oo,
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and

u(t,s,w) = F, F, {e’IQ’yQ} et —1<t<0.

Now, we obtain u(t, s, w). It is clear that u(t, s, w) is the solution of the initial

boundary value problem

(

1
ut(ta S, w) + (1 + 82 + w2)u(t, S,U)) - 1(82 + wQ)U(t -1, Saw)

= <—FxFy {2} + §*F, {e‘xQ} + w?F, {e_y2}> et

1
— EFxFy {6_“”2_‘”2} e 0 <t < oo,

u(t,s,w) = F,F, { - _yQ}e_t,—lgtSO.

\

We denote that
u(t, s,w) = {uy(t,s,w),(m—1) <t <m,m=12,...}

Since uy (t — 1, s,w) = F, F, {e‘“’”2_92} e, —1 <t <0, we have that

(

]‘ 2
urelt5,0) + (L 57 + 0 5,0) = 357+ w?) ELF, {0 o
+ (~RF, @)+ 2R e} wuth, (o)) o
1
2
0

“F,F, { 2=y }e*t“,0<t<oo,

u1(0,s,w) = F, F, {e"ELyQ} :
Solving this linear problem, we get
w (t, s, w) = F,F, {e‘xz_yz} et o<t<l.
Let
Upm—1(t, 5, w) = F, F, {e’IQ’yQ} et m—-2<t<m-1.

Now, we obtain w,,(t, s, w) as the solution of problem

;

1
Up t(t, 8, W) + (14 82 + wHuy, (¢, s, w) — 1(82 + W)U, (t — 1, 5,w)

= (_Fwa {2} + $°F, {67#} + w*F, {e*yZ}) et

1
- §FxFy {e’zzfyz} e m—1<t<m,

U (t, s, w) = F, F, {e’IQ’yQ} etm—2<t<m-—1.

\
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2

Since up,(t — 1, s,w) = upm_1(t, s,w) = F, F, {e‘x _yg} e~!, we have that

' 1
Um,t<t7 S, U)) + (1 + 52 + w2>um(t, s, w) = Z<S2 T w2>FxFy {6712,742} et

+ (—FmFy {2} + $*F, {e’mQ} + w*F, {e’y2}> e

1
— §FxFy {e‘x2_y2} e m—1<t<m,

um(m —1,s,w) = F, F, {e‘x2_y2} e~(m=b,
x

Therefore,

um(t,s,w) = F,F, {e‘xz_yQ} etm—1<t<m.
By induction,

U (t, s,w) = F,F, {e’“Q’yQ} etm—1<t<m,

is true for any m > 1. Thus,

— F,F, {e—l’?—yz} et

Taking the inverse Fourier transform, we obtain the following exact solution of

the problem

g2 y?

u(t,z,y) =e
Note that using the same manner one obtain the solution of the following IBVP

Uy (t7 x) - (aTuwr (tv x))m =b Z (aruxr(t - w, x))wr + f (t7 x) )

r n n
r=1 r=1

O<t<T,z,r e R"|r|=r1+ ..+, (2.24)

u(0,2) = p(z),x € R”

\

for the multidimensional delay parabolic differential equations. Assume that
a, > a>0and f(t,z), (t€[0,7],2€R"), p(z),(xr € R") are given smooth

functions.

However Fourier transform method described in solving (2.24) can be used only

in the case when (2.24) has constant coefficients.
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CHAPTER III
Stability of the Time-Delay Parabolic Differential Equations

Introduction

In this section, the necessary conditions for the existence of unique bounded
solutions of the semi-linear delay parabolic differential equation in an arbitrary
Banach space E with strongly unbounded operators are established. In practice,
theorems on stability estimation for the solution of the initial boundary value

problem for four different semi-linear delay parabolic equations are obtained.

Auxiliary Statements

Necessary definitions, estimates, lemmas, and theorems by ( Ashyralyev, 2014;

Kreyszig, 1978; and Kolmogorov, 1965) are given below.

Banach and Hilbert Spaces
Let L be linear space.Then

r,y€ L,dx+y € L and \x € L, \is a number.

E = (L,]|"]|) be normed space

Ve € L, o(z) = |z,
Llz]| > 0, ||lz]l =0 <= 2 =0 (zero element),
2.zl = ALl

Blle+yl < lzll + [lyll for any z,y € L.

Then we say that, E is a Banach spaces if F- is normed space and E - is complete

<= Every Cauchy sequence is convergent <= From ||z,, — z,,|| — 0 = 3z €
—00

)

E, ||z, — z|| — 0. We denote it by E, the all Banach spaces.
n—oo
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H = (L, (-)) be inner product space

L{z,y) = (y,2),
2.(x1+a2,y) = (z1,9) + (22,9),
3.(Ar,y) = Mazy),
4(z,x) = 0=2x=0

|z|| = v/{z, x). So all inner product spaces are also normed spaces. We say that,

H is a Hilbert space if H - is an inner product space and H - is a complete space.

Linear Operators: Boundedness, Norm of Operator

A: E — Ej is called the linear operator if D (A) is the linear space and
A(ax + By) = aAx+ fAy for any «, f numbers, z,y € D (A),
D(A) = {z€E, 3 Az},
R(A) = {z€FE), z=Axforanyx € D(A)}.

FE and E; be Banach spaces. In the case when F} = (—o00,00), A: E — (—00,00)

is called the linear functional.

Definition 3.2.2.1. Let E and E; be Banach spaces. A : E — Ej is called

the bounded operator if there is a real positive M > 0 such that
|Az|| g, < M |[|z]| for all z € D(A).
inf M = ||Al| ;_ p, is called norm of the operator A. If £ = E,

A g = 1Al g = 1AL

Theorem 3.1. The following formulas are valid:

| Az||
JAl = sup [[Azlly= sup [Azfp= sup 1AZlE
el <1 el p=1 leloer 1Zlg

Linear Positive Operators in a Hilbert Space

Let A : H — H be a linearly bounded operator in a Hilbert Space H. Then
A* . H — H is defined to be the operator satisfying

(Az,y) = (x, A%y) for any z,y € H.
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A* is called the Hilbert adjoint operator A* to A. A is said to be self adjoint or

Hamiltonian, if
A=A"= (Az,y) = (z, Ay) for any z,y € H.
Let A: H — H is said to be positive and written A > 0 if
(Ax,z) > 0 for any x € H.
A: H — H is said to be positive definite and written A > 01 > 0 if
(Az,x) > 6 (x,x) for any z € H.
We consider some examples of positive operators in a Hilbert space

Let Ls[0,1] be the space of all square integrable functions v(x) difened on [0, /]

1 2
a0 = ( / |7($)|2da:> |

First, we introduce the differential operator A defined by the formula

Au = _di:lv (a (x) dz;_(;)) + du(x) (3.25)

equipped with the norm

with the domain
D(A)={u:u,u" € Ly[0,]],u(0) =u(l) =0}.

Lemma 3.1. Let a(z) > a > 0 and A be a differential operator defined by
formula (3.25). Prove that A is the positive definite and self-adjoint operator in

H = L,[0,1].

Proof of lemma 3.1. Assume that u,v € D(A). Applying the following

formula
!
< u,v >:/ u(z)v(x)de,
0

we get

!
< Au,v > = / Au(z)v(z)dx
0

= —a () (D)v(l) + a(0) u' (0)v(0)

+AZ() dx+/6u
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and

!
<wu,Av > = / u(z)Av(z)dx
0

- /Olu(x) (—% (a () dz;x>) + Mm)) .

= —a (1) v'(Du(l) +a (0) v (0)u(0)

+ /O o () (@) (2)do + / ' Su(w)o(w)ds.

0

From (3.26) and (3.27) it follows
l / , l
< Au,v >=< u, Av >= / a(z)u (z)v (x)dx +/ du(z)v(z)de. (3.28)
0 0
That means A is a self-adjoint operator. Putting u = v in (3.28), we get

I !
< Au,u >:/0 a(x) u/(x)u/(x)dx—i—/o du(z)u(z)dz.

Moreover, using the condition u(0) = 0, we get

u(y) = /Oy dq;(;)d:c = /Oy Wdt.

We will introduce the following function u, defined by formula

Wy o<t <y, yelol,

dui(y —t)
dt B
0, otherwise.

Then

_ [Mduy—1)
u(y)—/o Tdt.

Applying the Minkowsky inequality and the definition of the function w.(z), we
get



43

IN
CJ\,XN

Therefore,

(u, u) = /0 )y < P /0 l (dz—f))de (3.29)
_ /0 | dz(;) d‘;f)dxzﬁ (2l

Applying the estimate (3.29), we get

< Au,u >> (%4—5) <u,u > .

That means A is a positive definite equation operator. Therefore A is a self-

adjoint and positive operator in a Hilbert space H = L5|0,[].

Now, we introduce the differential operator A defined by the formula (3.25)

with the domain
D (A) ={u:u,u" € Ly[0,1],u' (0) = (I) =0}. (3.30)

Lemma 3.2. Let a(x) > 0 and A be a differential operator defined by formula
(3.25) with the domain (3.30). Prove that A is the positive definite and self-

adjoint operator in H = Ls[0,].

Proof of lemma3.2. Assume that u,v € D(A). Then, we have formulas
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(3.26) and (3.27). Applying these formulas, we get

!
< Au,v > = / Au(z)v(z)dx
0

:chjg(a@yﬁgw)+5m@)vumx (3.31)

and

l
<u,Av > = / u(z)Av(z)dx
0

-/ () (-2 (D) row) e 32

= /l a(x)u (z)v (z)de + /l du(z)v(x)dx.
0 0
From (3.31) and (3.32) it follows
< Au,v >=< u, Av >= /Ol a(x)u (z)v (z)dz + /Ol du(z)v(z)de. (3.33)
That means A is a self-adjoint operator. Putting u = v in (3.33), we get
< Au,u >= /Ola(:zr) u (z)u (x)dz + /Ol u(x)u(z)dr > 0 < u,u > .

That means A is a positive definite operator. Therefore A is a self-adjoint and

positive operator in a Hilbert space H = Ly|0, ].

Next, we introduce the differential operator A defined by the formula (3.25)

with the domain
D(A) ={u:u,u" € Ly[0,]],u(0) =u(l),u (0)=u'(I)}. (3.34)

Lemma 3.3. Let a(x) > 0 and a(0) = a(l) and A be a differential operator
defined by formula (3.25) with the domain (3.34). Prove that A is the positive
definite and self-adjoint operator in H = Ls[0, ].

Proof of lemma 3.3. Assume that u,v € D(A). Then, we have formulas

(3.26) and (3.27). Applying these formulas, we get

< Au,v > =< u, Av >

-/ l (_% (a (x) dq;i”) +6u<x)) v@ds  (335)

:AE@J@M@M+KM@MWM
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That means A is a self-adjoint operator. Putting u = v in (3.35), we get

l I
< Au,u >= /0 a(x)u (z)u (r)de +/0 du(x)u(z)dr > 0 < u,u > .

That means A is a positive definite operator. Therefore A is a self-adjoint and

positive operator in a Hilbert space H = L0, ].

Finally, we introduce the differential operator A defined by the formula (3.25)

with the domain
D(A) ={u:u,u" € Ly[0,]],u(0) =bu'(0),—u(l) =cu' ()}. (3.36)

Lemma 3.4. Let a(z) > 0, b,c > 0 and A be a differential operator defined by
formula (3.25) with the domain (3.36). Prove that A is the positive definite and
self-adjoint operator in H = L0, 1].

Proof of lemma 3.4. Assume that u,v € D(A). Then, we have formulas

(3.26) and (3.27). Applying these formulas, we get

< Au,v > =< u, Av >

_ /0 l (_% (a (2) dq;f)) + 5u(:v)) o(a)dz

= ca (1) u (D)o’ (1) + a (0) bu (0)v'(0)

+/Ol() dm+/6u

That means A is a self-adjoint operator. Putting u = v in (3.37), we get
, 2
<Z>) +a(0)b (u'(0))

I
+/ (z)u dx—l—/du x)dr >0 < u,u > .
0

(3.37)

!

< Auy,u > = ca (1) (u

That means A is a positive definite operator. Therefore A is a self-adjoint and

positive operator in a Hilbert space H = Ly|0, ].

Banach Fixed-Point Theorem and Its Applications

Definition 3.2.5.1. Let £ = (E, d) be a metric space. A fixed pointof a mapping
T : E — E of aset F into itself is an element x € F which is mapped onto itself,
that is, Tx = x, the image Tx coincides with x. Note that the Banach fixed-

point theorem to be stated below is an existence and uniqueness theorem for
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fixed points of certain mappings, and it also gives a constructive procedure for

obtaining better and better approximations to the solution of the equation
x="Tu. (3.38)

Actually, we choose an arbitrary xg € E and determine successively a sequence

{x;},°, defined by the relation
€Ty = TJ?j_l, j S Nl. (339)

Here and in this Thesis we will put , = {j € Z; 7 > k}.

This procedure is called an iteration. Banach’s fixed-point theorem gives
sufficient conditions for the existence and uniqueness of a fixed point of a class of

mappings, called contractions.

Definition 3.2.5.2. A mapping 7' : £ — F is called a contraction on F, if

there is a positive real number a < 1 such that for all x,y € F
d(Tz,Ty) < ad(z,y). (3.40)

Theorem 3.2. Assume that E # @& is complete and let T be a contraction map-

ping on E. Then, T has precisely one fized point.

Theorem 3.3. Let T' be a mapping of a complete metric space E into itself.
Assume that T is a contraction on a closed ball F = {z|d(z,x¢) < r}, that is, T

satisfies assumption (3.40) for all x,y € F. Moreover, assume that
d(zo, Txg) < (1 —a)r. (3.41)

Then, the sequence {x;}7°, defined by recursive formula (5.59) with arbitrary
x9 € E converges to an x € F. This x is a fized point of the mapping T and is
the only fixed point of T in F. Now, we study the applications of the fixed-point

theorem to integral equations.

Definition 3.2.5.3. An integral equation of the form

(1) :M/ k(¢ 52 (s)) ds + f (£) (3.42)
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is called a Fredholm equation of the second kind. Here, [a,b] is a given interval,
@ is a given parameter, f is a given function defined on [a,b], = is an unknown
function defined on [a, b]. The kernel k of the equation is a given function defined

on [a,b]x [a,b] x R

Integral equations can be considered on various function spaces. We consider
equation (3.42) on Cla,b], the space of all continuous functions defined on the

interval [a,b] with the metric d defined by

d(x,y) = max |z(t) — y(t)| - (3.43)

t€la,b]
Cla,b] = (Cla,b],d) is complete. We assume that f € Cla, b] and k is a continuous
function defined on [a,b]x [a,b] x R'. Moreover, k satisfies on [a,b]x [a,b] x R!

the Lipschitz condition of the form

|k (t,s;u1) — k(t, s;u9)] < |ug — us. (3.44)
Obviously, equation (3.42) can be written x = Tz, where

Tx(t) = ,u/b k(t,s;x(s))ds+ f(t). (3.45)

Since f and k are continuous functions, formula (3.45) defines an operator T :
Cla,b] — Cla,b]. We now impose a restriction on g such that 7" becomes a

contraction. Applying formulas (3.43), (3.45), and condition (3.44), we get

d(Tx,Ty) = max |Tx(t) — Ty(t)]

tela,b]
b
— o | [ (ks () K (s (5) ds
tela
< l]u|max/ |z (s ]ds<l|u!max\x ]/ds

— 1|l (b — a)d(z, ).

So, d(Tz,Ty) < ad(z,y), where a = [|pu| (b — a). We see that T becomes a

contraction if

| < ﬁ (3.46)

Banach’s fixed-point theorem now gives the following theorem.

Theorem 3.4. Assume that k and f in equation (3./2) are continuous functions

n la,b]x [a,b] x RY and [a,b], respectively. Moreover, k satisfies on [a,b]x
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[a,b] xRY the Lipschitz condition (3.44). Suppose that u satisfies condition (3.46).
Then, equation (3./2) has a unique solution x defined on [a,b]. This function x

15 the limit of the iterative sequence {xj};io defined by the recursive formula

b
zj(t) = u/ k(t,s;zj_q(s)ds+ f(t), j=1,2,.., (3.47)

xo (t) is the given continuous function.

Definition 3.2.5.4. An integral equation of the form

x(t) = u/ k(t,s;x(s))ds+ f(t) (3.48)

is called a Volterra equation of the second kind. Here, pu is a given parameter, f
is a given function defined on [a,b], x is an unknown function defined on |[a, b].
The kernel k of the equation is a given function defined on D x R!, where D is

the triangular region in the ts—plane given by a < s <t,a <t <b.

The difference between (3.42) and (3.48) is that in (3.42) the upper limit of
integration b is constant, whereas in (3.48) it is variable. This is essential. In fact,
without any restriction on p we now get the following existence and uniqueness

theorem.

Theorem 3.5. Assume that k and f in equation (3.48) are continuous functions
on [a,b]x [a,t] x R' and [a,b], respectively. Moreover, k satisfies on [a,b]x
[a,t] x R! the Lipschitz condition (3.44). Then, equation (3.42) has a unique
solution x defined on |a,b] for every u. This function x is the limit of the iterative

sequence {x,} ~ defined by the recursive formula

zj(t) = p,/ k(t,s;zj—q(s))ds+ f(t), j=1,2,.., (3.49)

xo (t) is a given continuous function.

Proof of theorem 3.5. We consider equation (3.48) on C*[a, b], the space
of all continuous functions defined on the interval [a, b] with the metric d, defined
by

d,(x,y) = max e XD z(t) —y(t)|, L >1|p|. (3.50)

tela,b]

Since e~ H0—a) < ¢=L(t=a) < 1 we have that

e M7 d(z,y) < du(x,y) < d(z,y) for any z,y € Cla,b.  (3.51)
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C*[a,b] = (C*[a,b],d) is complete. Obviously, equation (3.48) can be written as
x = Tx, where

Tx(t) = ,u/ k(t,s;x(s))ds+ f(t). (3.52)

Since f and k are continuous functions, formula (3.45) defines an operator T :

C*[a,b] — C*[a,b]. Applying formulas ( 3.52), (3.50), and condition (3.44), we

get
d.(T, Ty) = max e”"™ [T (t) - Ty()|
t
= Il o e / k(1,512 (5)) — k (1, 51 (5))) ds

t
< 1 ma / e UL~ |1 (5) g (s)] ds

t
< I |p| max e 6= |z (s) — y ()] max/ o L5 g
s€la,t] tefab] /,

Lpl (- Lpl
- (1 — e Ll=an g < 24, .
max — (1-e Jd.(z,y) < 7 (z,y)

So, d(Tz,Ty) < ad(z,y), where o = Lf‘ Since L > [|u|, we have that o < 1.
That means T is a contraction mapping on C*[a, b]. Then, equation (3.42) has a
unique solution z defined on [a, b] for every p. This function x is the limit of the
iterative sequence {xj};io defined by recursive formula (3.42). Theorem 3.2.5.4

is proved.

The Main Theorem on Existence and Uniqueness

First, We consider the IVP

D Au(t) = f(t, B(t)o(t), Bt)v(t — d)),t € [0, 00),
v(t) = p(t),t € [—d,0].

(3.53)

for the semi-linear differential equation in a Banach space E with linear un-
bounded operators A and B(t) with dense domains D(A) C D(B(t)). Assume
that A is a very positive operator in E. That means —A is the generator of the
analytic semigroup exp{—tA}t € [0,00) of the linear bounded operators with

exponentially decreasing norm when ¢ — oco. The following estimates are valid:

lexp{~tA}||p~p < Pe™™, |tAexp{~tA}|pp < Pt € (0,00)  (3.54)
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for some P > 0, 6 > 0. Let B(t) be closed operators. The operator function B(t)

||E~>E < H.

is strongly continuous on D(A) and || B(t)A~'/?
A function v(t) is called a solution to problem (3.53) if it satisfied the following

conditions:

1. v(t) is a continuously differentiable function on [—d, 00).

2. The element v(t) € D(A) Vt € [—d, 00), and the function Av(¢) is continu-

ous on [—d, ).

3. v(t) satisfies the equation and the initial condition (3.53).

We reduced problem (3.53) into an integral equation of the form

v(t) = e_A(t_(m_l)e)v((m —1)d) + / e_A(t_s)f(s, B(s)v(s), B(s)v(s — d))ds,

(m—1)d
t €[(m—1)d,md],m € N,v(t) = p(t),t € [—d, 0]
in [0,00) x E, and the recursive formula for the solution of problem (3.53) by

using successive approximations is

t

wilt) = e ANy ((m — 1)) + / e~ £ (s, Bs);_1(s), B(s)ui(s — d))ds,

(m-1)d
vo(t) = e At=m=Udy((m —1)d),t € [(m — 1)d,md],m € N,i € N,

v(t) = p(t),t € [—d,0]. (3.55)
Here, N is the set of natural numbers.

Theorem 3.6. Assume that the hypotheses below are fulfilled:

1

1. ¢:[—=d,0] x D <A§> — E be continuous function and

IIsD(t)HD(A%) <H (3.56)

2. f:]0,00)xD (A%) x D <A5> — FE is a bounded and continuous function,
i.€.,

If(A20, A2u)|p < H (3.57)
and with respect to z, the Lipschitz condition holds:

I f(AZv, A22) — f(A2u, A22)|| g < L||A2v — Azul|g. (3.58)
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Here, H, H, L are positive constants and L < 2P1d%' Then, the problem (3.53)

has a unique BS in [0,00) X E.

Proof of theorem 3.6. Using the interval ¢ € [0, d], we can written problem

(3.53) as
dv

- T Au) = (8, B(t)o(t), B(t)e(t = d)), v(0) = »(0)

which in an equivalent integral form, becomes

v(t) = e Mp(0) + /0 e_A(t_s)f(s, B(s)v(s), B(s)¢(s — d))ds. (3.59)

In accordance with the recursive approximation approach (3.55), we obtain

t
vi(t) = e %(0) + / A f(s, B(s)y_1(s), B(s)pls — d))ds,i = 1,2, ..
0
(3.60)
Consequently,

v(t) = vo(t) + D (via (t) = vilt)), (3.61)
where o
vo(t) = e p(0).
From (3.54) and (3.56), it follows that
14200(t) |5 = lle™*[lom | AY2(0) | < HP.
Using Equation (3.60) along with estimates (3.54) and (3.57), we obtain

Az 01 (t) — A2vo(t)||

[NIES

< /Ot |AzeAC9)](|| f(s, B(s)A™2 AZvg, B(s)A™2 Azp(s — d))|| pds < 2HPt3.
By triangle inequality, we have
|AZ0y(t)||p < HP + 2HPt>.
Using Formula (3.60) along with estimates (3.54), (3.57), and (3.58), we obtain
|A%ua(t) — AZur(1) [
= /ot |42~ 2| £ (s, B(s)r, B(s)g(s — d) = f(s, B(s)vo, B(s)(s — d)) | wds

1 14
-s2ds
(t—s)2

t 1 o [
< LP/0 ) | B(s)vi(s) — B(s)vo(s)||gds < 2LP H/O

< ALP%*Ht.
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Then,

|Az0y(t)|| 2 < HP + 2HPt> + 4LP*Ht.
Let -
1 1 H 1
[A2v,(t) — A2v, ()] 5 < f( LPt2)".

Therefore, we obtain
|42 041 () — A2va ()]

/||A26 N f(B(s)vn, B(s)e(s —d)) = f(B(s)var, B(s)e(s — d))|| ds

t

. _
H
P/ L||B(s)vn(s) — B(s)vp—-1(s)||gds < P Lf(2LP3%)”ds
0 0
H
—(2LPtz)"+,
< 2 (oLPt})
Henceforth, for any n,n > 1, we obtain
L 1 a Lint1
[AZ 0041 (8) = Azva ()]l < 7 (2LP12)

and _
1 — 1 H 1
|AZv, 1 (H)||g < HP +2HPt2 + ... + Z(ZLPﬁ)”“

by mathematical induction. It is implied by that equation and Equation (3.61)
that

[4z0(t)]1 < | AZu(0)]15+ D A2 v (1) = Avi()|1

=0

<HP+Z (2LPt2)* < oo, t € [0, d].

This shows that problem (3.53) solution exists and is bounded in [0,d] x E.

From ¢ € [d, 2d], it follows that 0 <t — d < d. We denote that
e1(t) =v(t —d),t € [d,2d],

and suppose that problem (3.53) has a BS in [d, 2d] x E. Replacing ¢t and ¢ — d,
we can write

1Az, (8)]| < Hy

and
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According to successive approximation of Formula (3.55), we can write
vo(t) = e~y (d)

vi(t) = e A D (d) + /d e~ A9 f(B(s)v;i_1(s), B(s)p1(s))ds, i = 1,2, ...

In the same way, for any r,7 > 1, we obtain

1 H 1
|47 0044 (8) = AFun(t) s < - LPEE) ™,

and

1 — 1 H 1
|AZv, 1 ()|l g < HiP + 2H, Pt? 4+ ... + TI(ZLPﬁ)’”“.

From that, it implies that
1AZo(t)]| 2 < [|AZ00() | + D | AZvia (t) — Azvi(®)] g
1=0

“H "
<HP+)Y TI(QLPtE)Z“ < o0,t € [d, 2d).
=0

This proves that problem (3.53)’s solution exists, and it is bounded in [d, 2d] x E.

In the same procedure one, can establish that

[A%u(t) s < HiP+ 3 (LPE) ™t € [nd, (n+1)d),
=0

where H,, and H,, are bounded. This shows that problem (3.53)’s solution exists
and is bounded in [nd, (n 4+ 1)d] x E. Overall, the constructed function v(t) of
problem (3.53) is a BS in [0, 00) X E.

We shall now show that this solution to problem (3.53) is unique. Suppose
that problem (3.53) has a BS solution u(t) and that u(t) # v(t). We write down
2(t) = u(t) — v(t). Hence, for z(t), we obtain that
(

%+ Ax(t) = [(B(s)u(t), B(s)u(t — d)) — f(B(s)v(t), B(s)v(t — d)),
t € (0,00),

| 2(t) =0,t € [=d,0].
We consider ¢ € [0,d]. As u(t —d) = u(t — d) = ¢(t — d), we obtain

( L Az(t) = f(B(s)u(t), B(s)e(t — d)) — f(B(s)v(t), B(s)p(t — d)),
t € (0, 00),

| 2(t) = 0.t € [~d,0].
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Henceforth,

2(t) = e_AtZ(O)Jr/O e M f(B(s)v(s), B(s)g(s — d)) — f(B(s)u(s), B(s)p(s — d))] ds.

Using (3.54) and (3.57), we obtain

t
1 1 A(—s
[A22(t)] S/ |Aze= 4| F(B(s)o(s), B(s)g(s — d))
— f(B(s)u(s), ¢(s — d))|pds
t
< PL/ |B(s)ols) — B(s)u(s)|| pds < PL/ | A3 2(s)l| .
0
By means of integral inequality, we can write
|4z <.
This implies that A2z(t) = 0, which proves that problem (3.53)’s solution is
unique and bounded in [0,d] x E.

Using a similar procedure and mathematical induction, we can show that

problem (3.53)’s solution is unique and bounded in [0, 00) X E. Hence the proved.

Remark 3.1. The approach used in the current study also makes it possible to
demonstrate, under certain presumptions, that there exists a unique BS to the

IVP for semi-linear parabolic equations

b A(tyo(t) = f(t, Bt)u(t), B(t)v([t])),0 < t < oo,
v(0) = ¢

(3.62)

in a Banach space E with unbounded operators A(t) and B(t).

Remark 3.2. It is known that various problems in fluid mechanics dynamics,
elasticity and other areas of physics lead to fractional parabolic-type differen-
tial equations. Methods of solutions of problems for linear fractional differential
equations have been studied extensively by many researchers (see, e.g., (Pod-
lubny, 1999; Samko, Kilbas, and Marichev, 1993; Lavoie, Osler, and Trembly,
1976; Tarasov, 2007; El-Mesiry et al., 2005; El-Sayed, and Gaafar, 2001; Goren-
flo, and Mainardi, 2008; Ashyralyev, 2009) and the references given therein). The
approach used in the current study also makes it possible to demonstrate, under

certain presumptions, that there exists a unique BS to the IVP for semi-linear
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fractional parabolic equations

Dt Au(t) + D*o(t) = f(t, B(t)v(t), B(t)v(t — d)),t € [0, 00),
v(t) = ¢(t),t € [—d, 0]

(3.63)

in a Banach space E with unbounded operators A and B(t). Here, a € [0, 1).

Applications

We begin by considering an IBVP for semi-linear one-dimensional DPPDEs with
the Dirichlet condition:

(

v(t, z) — a(x)ve (t, ) + dv(t,z) = f(t, x,v.(t, z), v.(t — d,x)),

t € (0,00),z € (0,1)
4 (3.64)
v(t,x) = @(t,x),p(t,0) = ¢(t,l) =0,t € [-d, 0],z € [0,1],

| v(t,0) =v(t,1) = 0,1 € [—d, 00),
where ¢(t,z),a(z) are given sufficiently smooth functions (SSFs) and a delta

greater than zero is a significant enough number. Suppose that a(z) > a > 0.

We can reduce the IBVP (3.64) to IVP (3.53) in £ = C'[0,!] with the strong
positive operator A” in C'[0, (] according to the following formula:

2
A%y = —a(x)ﬂ + v (3.65)

dx?
with domain D(A”) = {v € C?[0,1] : v(0) = v (I) = 0} (Bazarov, 1989). More-

over, we have the following estimates:
| exp{—t A" }|cpn-cpoy < P, t € [0,00),

[LA” exp{—tA"}||cpy-cpg < Pyt € (0,00).
Therefore, from that and abstracting Theorem 3.6, we have the following:

Theorem 3.7. Suppose the hypotheses below:

1. ¢ :[=d,0] x [0,]] x CV[0,1] = C'[0,1] is a continuous function and

‘|§0x(t7 ')HC[O,Z] < H. (3.66)
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2. f:1]0,00)x(0,1)xCW[0,]xCMV [0,1] — C[0,1] is a bounded and continuous
function, i.e.,

||f(t7 °y Ufm uz>)||C[0,l] S ﬁ (367)

and with respect to z, the Lipschitz condition holds:

1f (s ve 22) — F(s o tas 2oy < Lllve — wallgpo (3.68)

where L, H, H, are positive constants and L < ——. Then, problem (3.6})

2Pdz
has a unique BS in [0,00) x C'[0,].

In addition, we consider the IBVP for semi-linear one-dimensional DPPDESs

with the Neumann condition:

(

v(t, ) — a(2)ve (L, x) + dv(t, z) = f(t, x,v.(t, x),v.(t — d,x)),

t € (0,00),z € (0,1)
(3.69)
U(t,l’) = @(t7x>a@x(t70) = %(tal) =0,t¢e [_dv 0]7‘7: S [O’Z] )

U1<t70> = Ux(t, l) = Oat € [_d7 OO),

\
where ¢(t,x),a(z) are given SSFs and delta greater than zero is a significant

enough number. We suppose that a(z) > a > 0.

We can reduce the IBVP (3.69) to IVP (3.53) in E = C'[0,1] with the strong

positive operator A% in C'[0,[] according to the formula (3.65) with domain:
D(A") = {ve C®|0,1] : v/ (0) =/ (I) = 0} (Bazarov, 1989).
Moreover, we have the following estimates:
| exp{—tA"}H|cpn-cpoy < P, t €10,00),

[tA” exp{—t A" }H|cpn—cpy < Pt € (0,00).

Therefore, from that and abstracting Theorem 3.6, we have the following:

Theorem 3.8. Suppose that assumptions (3.66)-(3.68) hold. Then, problem
(3.69) has a unique BS in [0,00) x C'[0,].
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Furthermore, we consider the IBVP for semi-linear one-dimensional DPPDEs

with nonlocal conditions:

( v(t, ) — a(x)ve (L, x) + dv(t, z) = f(x,v.(t, z),v.(t — d,x)),

t€(0,00),z € (0,1),

U(t7 l’) = 90(t7 ZE), 90<t’ 0) = gp(t, l)v @x(ta 0) = ¢z(t7 l)v (370)

te[—d, 0],z €]0,1],

v(t,0) = v(t, 1), v,(,0) = v, (t,1),t € [—d, 0),

\
where ¢(t,z),a(x) are given SSFs and a delta greater than zero is a significant

enough number. We suppose that a(z) > a > 0.

We can reduce the IBVP (3.70) to IVP (3.53) in E = C'[0,1] with the strong

positive operator A” in C'[0,[] according to the formula (3.65) with domain:
DAY ={ve C10,1:v(0)=v(),v (0) =1 ()} (Bazarov, 1989).
Moreover, we have the following estimates:
| exp{—tA"}|cpo,0-cpy < Pt € 0,00),

||tAx eXp{_tAJC}HC[O,l]AC[O,l] S P,t € (0, OO)

Therefore, from that and abstracting Theorem 3.6, we have the following:

Theorem 3.9. Suppose that assumptions (3.66)—-(3.68) hold. Then, problem
(5.70) has a unique BS in [0,00) x C'[0,1].

Finally, we consider the IBVP for semi-linear one-dimensional DPPDEs with
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Robin condition:

( v(t, ) — (a(x)vg(t, ), + 0v(t, x) = f(z,v.(t, ), v (t — d, x)),

t € (0,00),z € (0,1),

u(t,z) = p(t,2), 0 (£,0) = be, (1,0),  —@(t,1) =cps (1), (3.71)

t € [—d,0],z €]0,1],

| v (t,0) =bv, (1,0), — v (t, 1) = cv, (t,1),t € [—d, 0],

where o(t,z),a(x) are given SSFs. Here, a(z) > a > 0 and b,¢,d are positive

constants.

We can reduce the IBVP (3.71) to IVP (3.53) in E = L[0,[] with the self-

adjoint positive-definite operator A” in Ls[0, (] according to the following formula:

Az = —% (a(:z:)dZ—(;)> + dv(x) (3.72)

with domain D(A®) = {v : v,1,[0,1],v(0) = bv'(0), —v(l) = cv'(I)} (Ashyralyev,

Urun, & Parmaksizoglu, 2022). Moreover, we have the following estimates:
| exp{—t A" }|| Lyjo1— L0000 < 1, t € [0, 00),

[A” exp{—tA" }| Lo 0.0 Lofoq) < 1, € (0, 00).

Therefore, from that and abstracting Theorem 3.6, we have the following:

Theorem 3.10. Suppose the hypotheses below:
1. ¢ :[=d,0] x [0,1] x Ly]0,1] — C'[0,1] is a continuous function and
a2 (¢, ')||W21[0,l] < H. (3.73)

2. f:1]0,00)x(0,1) x W3 [0,1] x W2H0,1] = L3[0,1] is a bounded and continuous
function, 1.e.,

1t v u) o < H (3.74)
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and with respect to z, the Lipschitz condition holds:

Hf(t’ o Uz, 233) B f(t’ o Uz, ZI)HLQ[O,Z] <L HUI B UIHLQ[O,I] ) (3'75)

where L, H, H, are positive constants and L < zpldl' Then, problem (5.71)
has a unique BS in [0,00) x Ly[0,1].

Numerical Results

Generally speaking, semi-linear problems cannot be solved precisely. The numer-
ical methods for obtaining approximate solutions of partial differential equations
play an important role in applied mathematics. We need numerical experiments
to confirm the agreement between theoretical and experimental results and to
make clear how effective the approach is, especially when one cannot know the
concrete values of constants in stability estimates. In the present section, we
obtain the numerical algorithms for the approximate solution of one-dimensional
delay parabolic differential equations. Henceforth, the iterative first-order and
second-order accuracy difference schemes (FSADSs) for the approximate solution
of semi-linear one-dimensional delay parabolic equations are described, numerical

results were obtained, and error analysis was given in tables.

Problem 3.6. Consider the IBVP

(

U (t, ) — Vg (L) = v, (E,2) {v ([t — 1] ,2) cosz — v, ([t — 1] ,x) sinz},
t €(0,00), x € (0,m),

v(0,2) =sinz,z € [0, 7],

| v(t,0)=v(t,m) =0, t €[0,00)
(3.76)

for the semi-linear DPPDE. Here, [-] is notation of an integer function. The ES

of this problem is v (t,x) = e 'sinz.

We obtain the following iterative FADS for the approximate solution of the
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IBVP (3.76)
( rl)bl*r’l)ﬁ_l . TU£+1_2TU§+TUZ,1
T h?
T*1”£+1_T*1”§—1 [k—N] TULk-FlN]*TULf—_lN] .
== Y A— rUn COS Ty — - on SIN Ty ¢,

ty = kT,2, =nh,k€l,00,necl, M —1, (3.77)

0 _ o _ 0T
»U sinx,,x, = nh,n €0, M,

n —

\ Sk = 0k =0,k €0, 00

for the numerical solution of the semi-linear delay parabolic equation.

Here, r stands for the iteration number, qv¥, k € 0, N, and n € 0, M is the

initial starting value. Numerically, we use the steps listed below to solve the

difference scheme (3.77). For k € 0, N, n € 0, M

e r=1
ks k .
o v, is known;
e v is determined;

e r =1+ 1 is taken, and we proceed to step 2 if the maximum absolute error
between ,n_lvffb and rvﬁ is more than the specified tolerance value. If not,

stop the iteration process and use ,v* as the solution to the given problem.

We write (3.77) in matrix form:

AVE 4+ BV = Ro(,_10%, 0" M) k€ TN, a78)
3.78
VO = {sinz, }M .0 €0, M,

Additionally, using the SADS for the AS of problem (3.76), we have the fol-
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lowing SEs:
( rvﬁ—rU§71 o T”§+1_2TUE+T”§—1 + 7.TUEL+2_4T1)1]’CL+1+6TU7]2_4Tv7lfl:/—l+7‘vfl—2
T h2 2h4
k k k—N k—N
_ l T*1Un+1_7"*1vn71 kE—N _ Tvn+l —rUn_1 :
=3 {—2h } {wn COS T, — — =t sin T,
k—1 k—1 k—1-N k—1-N
_qv —r_1v, 1 v —rv, .
+1 {—T T 1} {rvﬁ =N cos @, — et smq:n}
k—N__ k—N
k k k—N TVn42 TTVn s
T {rflvn+2_rflvn } rvn+1 CcOos $n+1_+ SIN 41
4 2h h?
ok ok _9 k=N +2’"”21¥_”§:11V :
T {r—l 11 n—l} rUn COS T, _ o sin zp,
4 2h h
k k k—N rvffN*rvf;JQV .
T {T_lvn—r_lvn72} rU,_] COSTp_1—— 95— sinTp_1
4 2h h2
k=1 k—1 k—1-N T e L
1 [ rUngo—rtn r—1V, 1] COS Tpp4-1— oh sin Tp41
4 2h h2 (3 79)
k—1-N _ k—1—-N .
T rvﬁjr}—rvf;i —2T,1U§_1_Ncosxn+2r_1v"+1 Zhr_lv"_l sin zp,
4 2h h?
k—1 k—1 k—1-N T*l“iﬂl_l_N_rflqu:é_N
T [ron =5 | rm19 COSTp—1— oh sinxp—1
T4 2h h2 ’
ty = kT,x, =nh,k €1, N,n €2, M — 2,
V0 = p(x,) =sinz,,n €0, M, vk =05 =0, k€0, N
rn—(pn— ny ) »rvYog — r¥YpM — Yo 9 9
k __ k k k _ k k
1“/03 — 4r’l)2 - 5T‘U1 9 TUM*S — 47'UM72 - 57/‘)]\4717 k; G 0, N

We obtain again (M + 1) x (M + 1) SLEs, and we reformat them into matrix
form (3.78).

Consequently, we obtain a second-order difference equation with respect to k
matrix coeflicients. Using (3.78), we can obtain this difference scheme’s solution.

ki — e~ sin x,,,

The initial guess in computations for both FSADSs is set as gv; =
and the iterative procedure is stopped when the maximum errors between two
successive outcomes of the difference schemes (3.77) and (3.79) become less than

1078,

For various values of M and N, we provide numerical results and ,v* represents
the numerical solutions of these difference schemes at (tx,x,). Tables 1-3 are
constructed for M = N = 30, 60, 120 in that order for t € [r,r + 1], r = 0,1,2

and the errors are calculated using the following formula:

r EN — t n) — o, k ) 330
(B0, S, Pzl 30

1<n<M—1
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To finish iteration process, we used the following condition in each sub-

interval:
max o — b <1078 (3.81)
pN+1<k<(p+1)N,p=0,1,....
1<n<M-1
Table 1.

Error comparison between difference schemes (3.77) and (3.79)

int €[0,1] (Number of iterations = r)

Method M=N =30 M=N =060 M=N =120

(3.77) 6.3783 x 1073, r =2 3.1279 x 1072,r =2 1.5485 x 1073,r =2

(3.79) 45864 x 1074, r=3 1.1212x 1074 r=3 27577 x 107°,r =2
Table 2.

Error comparison between difference schemes (3.77) and (3.79)

int €[1,2] (Number of iterations = r)

Method M =N =230 M =N =60 M =N =120

(3.77) 2.3464 x 1073, r =3 1.5070 x 1073, r =3 5.6964 x 107*,r = 2
(3.79) 1.6358 x 1074, r =3 4.2149 x 1075, r =2 1.0698 x 107°,r = 2
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Table 3.

Error comparison between difference schemes (3.77) and (5.79)

int € [2,3] (Number of iterations = 1)

Method M =N =30 M =N =60 M =N =120
(3.77) 8.6321 x 107, r =3 4.2332x 107, r =2 2.0956 x 10~%,r =2
(3.79) 53201 x 107°,r =2 1.3581 x 107°,r =2 3.4122 x 1076, r =2

Problem 3.7. We also consider the IBVP
(
v (t, @) — Vg (, ) + sin(v (¢, z))
=, (t,z) {20 ([t — 1] ,x) cos 2z — v, ([t — 1] ,x) sin 2z} + f(, x),

t € (0,00), = € (0,7),
(3.82)

v(0,2) =sin2z, z € [0, 7],

| v (t0) =v(t,m), v (t,0) = v, (t,7), ¢ €[0,00)
for the semi-linear DPPDE. The ES of this problem is v (t,z) = e * sin 2z and

f(t,z) = sin (e * sin 2).

We obtain the following FADS for the approximate solution of the IBVP (3.82)

(k- okt . T“ﬁ+1*2rvﬁ+T”§71 —9 T_lvﬁ+1fr_1v271 [k—N] 2
- - =2 by cos 21,
7”71”5,+1*7"71”ﬁ—1 TULk-ElN]*TUf—TV : : k
— S S sin 2z,, — sin (r_lvn) + f(tg, ),

ty =kr,z, =nh,k€ 1, Nne1l,M —1,
(3.83)

200 =sin 2z, z, = nh,n €0, M,

n —

k _ k k k __ k k
rvo - TUM - 7"va17

— rUMa rvl - T‘TO
pN+1<k<(p+1)N,p=0,1,..
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for the numerical solution of the delay parabolic equation with nonlocal condi-

tions.

We write (3.83) in matrix form:

AVE+BVFT =R, 10" kep(N+1),(p+1)N,p=0,1,..., (354
VO = {sin2z,} Y

n=0"
where
k_ M
Tv - {T‘Un}n:o7
k k 10k 1_7"71711g 1 kE—N
10, = —sin (r,lvn) + f(t, zn) + 2 { nt n= } TUT[L M os 2z,

2h
k k [k—N] [k—N]
- {T—lanrl —r=1Uy_4 } rUpt1 —rUpq

2h 2h

sin 2z,,,

n=0,..MkepN+1),(p+1)N,p=0,1,..,

Furthermore, using the SADS for the AS of problem (3.82), we obtain the



following SEs:

ty =kr,z, =nh, k€1, N ne€ 2, M —2,

200 =sin2x,,0 <n < M,

R =k — ok 4 0f — 30 = 30k, — 40k, + 0k,
—ﬂ)éf + 47«1)]2€ — 5rvlf + 2TU§

= 2,05, — 5,08 + 4,05, — ok,

=308 + 14,05 — 24,05 + 18,0F — 5,0}

=508 — 18,0k, | + 240k, , — 140k, .+ 3,08,

| kep(N+1),(p+1)N,p=0,1,....

(kb Pk = 20080k n 7_Tu§+274w,’j+1+6rvﬁf4rv§_1+rv§_2
g h2 2h4
k plF=N] [k—N]
1v —1v, k—N —rU, _ .
%{T ) — 1} N o 22, — %sm 2:1:71}
k—1 [k—1—N] [k—1—N]
1ok —1Vy, k—1-N . —rUp_
l r— n+1 r n—1 TUL ]COS an _ "n41 T'n—1
2 2h
. SN e Lk+2N]7rvafN] -
4z {T 1vn+2 re vn} Upyq  €OS2Tniq —2 o sin 2@ 41
4 h
LN NI_, plk=N]
+7_ {r 1vn+1 r—1 vﬁ 1} —2TU,[17 ]cos2xn+2% sin 2xy,
4 h2
[k—N] bt Nl o N
+Z {T 11} —r— 1vn 2} rU,_q cosanfl—ﬁ sin 2z, 1
4 h
k—1—-N k—1—-N
1y k1N by Mg N
+I {T 1vn+2 r—10n } rUp 11 COS 2%y 41— 5K sin 2xp41
4 h2
. . plk=1=N]_ [k=1-N]
4T {'r 1”n+1 vn:%} —2TU,[1 T ]cos2xn+2 ntl o n—1 sin 2z,
4 h2
< i (b—1—N] Tvii“‘l‘NLwL’“_‘l‘N] '
. {T 1ok~ vn72} U1 COS 2Ty _1— 5 sin 22,1
+3 h?
+ sin ’Uk = f(tg, xn)
r—1 ks4tn),
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(3.85)

We obtain another (M + 1) x (M + 1) SLE; they are then rewritten in matrix

form (3.84).

For a range of M and N values, we provide numerical results, and ,vF repre-

sents the numerical solutions of these difference schemes at (tx,x,). Tables 4-6

are constructed for M = N = 30, 60, 120 in that order for ¢ € [r,r + 1], r

and the errors are calculated using Formulas (3.80) and (3.81).

=0,1,2,
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Table 4.
Error comparison between difference schemes (3.83) and (3.85)

int €[0,1] (Number of iterations = r)

Method M =N =30 M =N =60 M =N =120

(3.83) 24431 x 1072, r =2 12259 x 1072, =2 6.1304 x 107, 7 = 2

(3.85) 2.0589 x 1073, r =8 5.4628 x 107%,7 =8 1.3865 x 1074, =7
Table 5.

Error comparison between difference schemes (3.83) and (3.85)

int €[1,2] (Number of iterations = r)

Method M=N =230 M =N =60 M =N =120

(3.83) 53731 x 1073, r =9 2.5664 x 1073, r =8 1.2517 x 1073, 7 = 8

(3.85) 3.0514 x 1074, r =8 7.5756 x 107°,r =7 1.9241 x 107°,r =6
Table 6.

Error comparison between difference schemes (3.83) and (3.85)

int € (2,3] (Number of iterations = r)

Method M =N =30 M =N =60 M =N =120

(3.83) 1.0838 x 1074, 7 =7 4.9176 x 1075, 7 =6 2.3435x 1075,7 = 6
(3.85) 1.5588 x 1075, 7 =7 2.0085x 10°6,7 =5 4.8130 x 10~7,7 = 3
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These numerical experiments back up the theoretical claims, as shown in
Tables 1-6. With more grid points, the maximum errors and the number of
iterations are reduced. As we doubled the values of N and M each time, beginning
with M = N = 30. In the FADSs (3.77) and (3.83) in Tables 1-6 respectively,
the errors decrease roughly by a proportion of 1/2, while in the SADSs (3.79)
and (3.85) in Tables 1-6 respectively, the errors decrease roughly by a proportion
of 1/4. Errors shown in the tables demonstrate the consistency of the different
schemes and the reliability of the findings. Accordingly, the SADS increases faster
than the FADS. These numerical experiments back up the theoretical claims as

shown in the tables. With more grid points, the maximum errors can be reduced.
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CHAPTER IV
Stability of the Time-Delay Parabolic Differential Equations with
Dependent Coefficients

Introduction

In this section, the necessary conditions for the existence of unique bounded
solutions of nonlinear delay parabolic differential equations in an arbitrary Banach
space with strongly unbounded operators dependent in ¢ are established. In
practise, theorems on stability estimation for the solution of the initial boundary
value problem for three different types of nonlinear delay parabolic equations are

obtained.

The Main Theorem on Existence and Uniqueness

We consider the IVP

by A(t)u(t) = g(t, u(t), u(t —w)),t € [0,00),
u(t) = 90<t)’t € [_w’ 0]

(4.86)

in an arbitrary Banach space E with the unbounded operators A(t) in E with
dense domains D(A(t)) C E. Suppose that for each t € [0,00) the operator
—A(t) generates an analytic semi-group exp{—sA(¢)}(s > 0) with exponentially

decreasing norm, when s — 400, i.e. the following estimates
lexp(—sAM) g [SAE) exp(—sAD) ]y < Me™(s >0)  (487)

hold for some M € [1,400), § € (0,+00). From this inequality it follows the
operator A7!(¢) exists and bounded and hence A(t) is closed in £y C E, such
that A(t) : D(A(t)) — E and D(A(t)) = D(A(0)) for 0 <t < oc.

Assume that the operator A(t)A~!(s) is Holder continuous in ¢ in the uniform

operator topology for each fixed s, that is,
|[A(t) = A(T)]AT(s)|| pp S M|t —7]7,0 <e <1, (4.88)

where M and ¢ are positive constants independent of ¢, s and 7 for 0 < ¢, 5,7 < 0.
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An operator-valued function V' (¢,y), defined and strongly continuous jointly

int,y for 0 <y <t < oo, is called a fundamental solution of (4.86) if

1) the operator V(¢,y) is strongly continuous in ¢ and y for 0 < y <t < o0,

2) the following identity holds:
Vit,y) =V, 7)V(Ty), Viy,y) =1 (4.89)
for 0 <y <7 <t < oo, where, [ is the identity operator,

3) the operator V(¢,y) maps the region D into itself. The operator U(t,y) =
A(t)V(t,y) A7 (y) is bounded and strongly continuous in ¢ and y for 0 <

y <t < oo,

4) on the region D the operator V(¢,y) is differentiable relative to ¢ and v,
while

Vilt,y) + AV (t,y) =0, (4.90)

and

Vy(t,y) = VI(t,y)Aly) = 0, (4.91)
5) the subsequent estimates hold:
IVt y)llp—p < Pe?t9 >y >0 (4.92)

for some § € [0,00) and P € [1, 00).

A function u(t) is called a solution of problem (4.86) if the conditions below

are satisfied:

1. wu(t) is continuously differentiable on [—w, 00).

2. The element u(t) € D(A(t)), Vt € [—w,00), and the function A(t)u(t) is

continuous on [—w, 00).

3. u(t) satisfies the equation and the initial condition (4.86).
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We reduced problem (4.86) into an integral equation of the form

t

u(t) = V(t, mw)u(muw) + / V(t, 9)g(y, u(y), uly — w))dy,

mw

mw<t<(m+1Dwm=0,1,..,ut) =¢t),—w<t<0

in [—w,00) X E and using successive approximations, obtained recursive formula

for the solution of problem (4.86) is

t

wlt) = V(tmwhu(mw) + / V(t, 9)g(ys w1 (), sy — w))dy,

mw

up(t) = V(t,mw)u(mw),mw <t <(m+1lw,m=0,1,..,
i=1,2,..u(t) =), —w <t <0. (4.93)
Theorem 4.11. Assume the hypotheses below:

1. ¢ :[-w,0] x B — E be continuous function and

lo(®)]|z < M. (4.94)

2. g:10,00) X E x E— E be bounded and continuous function, i.e.;
lg(t, u,v)||p < M (4.95)
and with respect to z, the Lipschitz condition holds uniformly

lg(t, v, 2) = g(t,u, 2)l|p < Llv — ulle (4.96)

where L, M, M are positive constants. Then problem (4.586) has a unique bounded

solution in [0,00) x E.

Proof of theorem 4.11. Using the interval ¢ € [0, w], problem (4.86) can be

written as

du
dt

which in an equivalent integral form, becomes

+ A@)u(t) = g(t, u(t), p(t = w)), u(0) = ¢(0)

) = Vit.00) + Vel ) oly— )y (497

In accordance with the recursive approximation approach (4.93), we get

u;(t) = V(t,0)¢(0) +/OtV(t,y)g(y,ui_1(y),<p(y —w))dy,i=1,2,.... (4.98)
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Therefore,
mw:udw+§:mmy—m4@» (4.99)

where
uo(t) = V(,0)¢(0).

From (4.92) and (4.94), we obtain
luo(@)]lz = IV (&, 0)[[ll¢(0)]| e < M P.
Using formula (4.98) along with estimates (4.92) and (4.95), we get
[ur (8) = o ()| e < /Ot V(& »)llllg(y, wo, ¢y — w))l[pdy < MPt.
By the triangle inequality, we have
lui(t)||z < MP + MPt.

Applying formula (4.98) along with estimates (4.96),(4.92) and (4.95), we obtain

Hw(t)—ul(t)HES/O IV lg(y: w(y), vy = w) = 9(y, uo(y), ¢y —w))lledy

t t
SLP/mmw—MMM@SLWM/y@:
0 0

Then, by the triangle inequality, we have

Juz(t)||lp < MP + MPt +

Let

lui(t) — uima (t)|| 2 < T

Then, we obtain

”uiJrl(t)_ui(t)HES/O V(&) llg(y, wiy), o(y—w) =gy, wi1 (y) , p(y—w)) | edy

' Y M (LPy)
<P [ Lhuty) vty < P [ 27 E
0 0

7!
M (LPt)"*!
L (1)
Consequently, for any 7,7 > 1, we have that

i1 () —wi(t)|| e < %%
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and

M (PLt)? M (LPt)*!
; < PM+MPt+ ——" .+ —
luisa (&)l * T L (i+1)

by mathematical induction. It is implied by that and formula (4.99) that

M (LPt)

7!

lu®lls < lluo@lle + 3 uit) = wia (Bl < MP + Z

M
§MP+feLPt,O§t§w

which shows that solution of problem (4.86) exists and is bounded in [0,w] x E.

Next, for t € [w, 2w], note that 0 <t —w < w. We denote that

o1(t) = u(t —w),t € [w,2w].

and suppose that problem (4.86) has a BS in |w, 2w| x E. Replacing t and ¢t — w

and assuming that
lg(t, uo(t), w1 (t))|le < M
and
o1 (W)l < M.
Hence,
up(t) = V(t,w)er(w)
)= Vitder@) + [ Vnolo i )10 = 1.2,
In the same way, for any 4,7 > 1, we have

ucet) — (0] < S PO

and _ _
) M, (LPt)? M, (LPt)™*!
) < R —_— -
luina(B)lle < PMy+ MyPE+ —= L (i+1)

Then it follows that

M
lu(®)||p < My P + Ll P9 <t < 2w

this proves that solution of problem (4.86) exists and is bounded in [w, 2w] X E.

In the same procedure, we can obtain that

Mm LP(t mw)
E
u(®lls < M P+ << (4 1,
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where M,, and M,, are bounded. This proves the existence of a BS of problem
(4.86) in [mw, (m 4+ 1)w] x E. The function u(t) constructed for problem (4.86)
has a BS in [0,00) X E.
We shall now prove that this solution of problem (4.86) is unique. Assume that
problem (4.86) has a BS v(t) and that v(t) # u(t). We denote w(t) = v(t) — u(t).
Hence for w(t), we obtain that
dd_zf + A(t)’ll)(t) = g(t7 ’U(t), U(t - (,U)) - g(tv u(t)7 U(t - W)),t € (07 OO),
w(t) =0,t € [-w,0].

We consider 0 <t <w. As v(t —w) = u(t —w) = ¢(t —w), we get
w(t) =0,t € [~w,0].

Therefore,

w(t) = /0 V(t,y) lg(y,v(y), p(y — w)) — gy, u(y), p(y — w))] dy

Applying estimates (4.92) and (4.95), we get

||w(t)||E§/0 V(& )l gy, v(y), p(y — w)) — gy, u(w), (y — w)) | edy

<PL / lo(y) — u(y)||pdy < PL / () ey

By means of integral inequality, we obtain
[w(t)]z <0.

This implies that, w(t) = 0 which proves that solution of problem (4.86) is unique
and bounded in [0,w] X E.
Using similar procedure and mathematical induction, we can prove that solution

of problem (4.86)is unique and bounded in [0, 00) x E.
Remark 4.3. The approach used in the current study also makes it possible to
prove, under certain assumptions, that there exists a unique bounded solution of
the IVP for semi-linear parabolic equations
duy A(t)u(t) = g(t, B(t)u(t), B(t)u(t — w)),t € [0, 00),
u(t) = ¢(t),t € [—w,0].

(4.100)

in an arbitrary Banach space E' with unbounded operators A(t) and B(t) with
dense domains D(A(t)) C D(B(t)).
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Applications

First, we consider the IBVP for nonlinear one dimensional DPPDESs with Dirichlet

condition

u(t, ) — a(t, v)ug (t, x) + du(t,x) = g(t, z,u(t, z), u(t —w, x)),

t € (0,00),z € (0,b),
(4.101)
u(t,z) = p(t,x), p(t,0) = p(t,b) = 0,t € [—w,0],z € [0,0],

u(t,0) = u(t,b) = 0,t € [0, 00),

\
where @(t,z),a(t,z) are given SSFs and § > 0 is the sufficiently large number.

Assume that a(t,z) > a > 0.

Theorem 4.12. Assume the hypotheses below:

i ¢:[—w,0] x C[0,b] = C[0,b] be continuous function and
e, Mepy < M. (4.102)
it g : (0,00) x (0,b) x C'[0,b] x C'[0,b] = C[0,b] be bounded and continuous

function, i.e.;
||g(t7 5 Uy U))HC[O,b] < M (4103)
and with respect to z, the Lipschitz condition holds uniformly.

Hg(t7 - U, Z) - g(ta U, Z)HC[O,b} <L ”u - v”C[O,b] ) (4'104)
where, L, M, M are positive constants. Then problem (4.101) has a unique BS in

[0, 00) x C[0,0].

The proof of the Theorem 4.12 is based on the abstract Theorem 4.11, on the
strong positivity of a differential operator A* in C'[0, b] according to the following

formula:
d*v(x)

dz?

A*(t)v(z) = —a(t, x) + dv(x) (4.105)
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with domain D(A(0)) = {v e C@[0,b]: v(0) =0 (b) = 0} (Poorkarimi, and
Wiener, 1989) and on the estimate

IV (D leopsopn < M1, 2y >0. (4.106)

Second, we consider the IBVP for nonlinear one dimensional DPPDEs with

nonlocal conditions

(

u(t, ) — at, v)ug (t, x) + du(t,x) = g(t, z,u(t, z), u(t —w, x)),

t € (0,00),z € (0,b),

u(t,z) = @(t, ), o(t,0) = (t, ), p.(t,0) = @.(t,0), (4.107)

t€[—w,0],z €0,b],

u(t,0) = u(t,b), u,(t,0) = u,(t,b),t € [0,00),

\
where ¢(t, z),a(t,x) are SSFs given and § > 0 is the sufficiently large number.

Assume that a(t,z) > a > 0.

Theorem 4.13. Suppose that the assumptions (4.102), (4.103) and (4.104) hold.
Then problem (4.107) has a unique BS in [0,00) x C'[0,b].

The proof of the Theorem 4.13 is based on the abstract Theorem 4.11, on the
strong positivity of a differential operator A* in C'[0, b] according to the following

formula:

d*v(x)

dx?
with domain D(A%(0)) = {v € C@[0,b] : v (0) = v (b) , v’ (0) = v’ (b) } (Ashyralyev,
2007) and on estimate (4.106).

A*(t)v(z) = —alt, x)

+ u() (4.108)

Third, we consider the initial value problem on the range

{0<t<oo,z= (21, xn) € R r = (ry, - -,rn)}
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for 2m-th order multidimensional nonlinear DPPDEs

2 w(t,x)+ 3 ar(t, w)ugn e (t, ) + 6u(t, z)

|r|=2m

=g(t,r,u(t,z),u(t —w,)),t € (0,00),x € R", (4.109)

u(t,z) = p(t,z),t € [-w,0],z € R",

where a,(t, z) and (t, z) are given SSFs and 6 > 0 is the sufficiently large number.
We will suppose that the symbol [§ = (&1, -+, &) € R"] and |r| =711 + ... + 7y,
Ax(t7 g) - Z aT<t7 l’) (igl)rl (Zg’ﬂ)rn
|r|=2m
of the differential operator of the form
A o 4.11
(t) = t, ) m———F— .
1( ) ||z2: aT( "'L‘)ax?axzn ( 0)

acting on functions defined on the space R™, the inequalities are satisfied.

0 < MiJE]P™ < (—1)™A*(t,€) < Mpl¢l™ < o0

1
for £ # 0, where [¢| = (|&1]* + - - - + [€a]*)2.
problem (4.109) to the initial value problem (4.86) in Banach space F = C'(R")

We can reduce the initial value

with a strongly positive operator A%(t) = A (t) + 01 defined by (4.110) (Smirnit-
skii, and Sobolevskii, 1981; Smirnitskii, 1993). The corollary below follows from
the abstract Theorem 4.1.

Theorem 4.14. Assume the hypotheses below:
i ¢ [~w,0] x C(R") = C(R") be bounded and continuous function and
lo (s logrny < M-

ii g :(0,00) x C(R") x C(R"™) — C(R") be bounded and continuous function,
1.€.;

Hg(ta U, U))HC(Rn) S M

and with respect to z, the Lipschitz condition holds uniformly.

”g<t> -, Z) - g(t7 - Uy Z)HC(R”) <L ||U - uHC(R") )
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where L, M, M are positive constants. Then problem (/.109) has a unique bounded
solution in [0,00) x C(R").

The proof of Theorem 4.14 is based on the abstract Theorem 4.11, on the
strong positivity of a differential operator A* (t) in C'(R"™) according to the for-

mula (4.110), and on the estimate

IV (& Yllerny—omny < Mz, t>y>0.

Numerical Results

Generally speaking, nonlinear problems cannot be solved precisely. Therefore
the FSADSs for the solution of nonlinear one-dimensional DPPDE are presented.

Numerical results are given.

Problem 4.8. Consider the IBVP

( ug (t, @) — Uy (t,2) = w (¢, x) [u([t— 1],z)cosx — Wsinx] :

t € (0,00), x € (0,m),
(4.111)

u(0,x) =sinz,z € [0, 7],

| u(t,0)=u(t,m)=0,te]0,00)
for the nonlinear delay parabolic equation.Here [-] is notation of integer function.

The exact solution (ES) of this test example is u (t,x) = e 'sinx.

We get the following iterative FADS for the approximate solution (AS) of the
IBVP (4.111)
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( k_ k=1 muk 2wk uk k—N
m Uy, 7tnun _ n+1 h2n n—1 __ mfluﬁmu[ ] COS Ty,
PR o Y Lo
+m 1 Uy — == sinw, = 0,
t, = k7,2, =nh,k € l,oo,n € 1,M — 1, (4.112)

mul =sinz,,z, = nh,n €0, M,

n —

k_ ok _ 0 o
[ mUy = muy = 0,k € 0,00

for the nonlinear delay parabolic equation.

Here m denotes the iteration number and an initial guess gu®, k € 0, N,n € 0, M
is to be made. For solving difference scheme (4.112), we follow the numerical

steps given below. The algorithm is as follows for k € 0, N,n € 0, M:

1. m=1
2. moquf is known
3. wuF is calculated

n

4. If the max absolute error between m,luﬁ and muﬁ is greater than the given
tolerance value, take m = m + 1 and go to step 2. Otherwise, terminate

the iteration process and take ,,uf as the result of the given problem.
We write (4.112) in matrix form
AnU* 4+ B, U = Rop(moiuf, " N), k € )N,

WU = {sinz, }2 . (4.113)
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where ~ _
10000 .00 00
a c a 00 .00 00
0 a c a0 .00 00
A 0 0 a c a .00 00 7
000 ac .00 00
00 0O00O0 a ¢ a
| 0000 0. 000 1]
(00000 0000 ]
0b 00O 00 00
00 b 00 00 00
00 0%DbO 00 00
B =
00 00O 0 b 00
00 00O 00 b 0
| 0000 0. 000 0|
and
L Lo, 112
h?’’ T T h?

R is identity matrix of size M + 1, ,,u’ = e "* sinx, for k € —N,0 and

O(m_1uf, ,uN) U are (M + 1) x 1 column vectors as

_ . - _ s -
2 mUT
Pl Ny = U = : L s=k, k1,
YPM—1 mUnr_1
L 0 4 (m+1)x1 L mUis 4 (m+1)x1
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where

ulf= N1 ulF=N
k_ k . [k—N gmUnpr = — mUp_
P = m,lunmuL Veosx, — m—1Uy, 57

sinx,, nel, M —1.

So, we have the first order difference equation with respect to k& with matrix

coefficients. From (4.113) it follows that

mUF = —A'B U+ A RY* ke pN +1,(p+1)N,p=0,1,2, ...,
mU° = {sinz, }M . (4.114)

Additionally, using the SADS for the AS of problem (4.111), we obtain the

following system of equations

r
muk — bt mul  —2muk+muk ) mul o —dmul  +6mul —dpmuf _ muk
- 2 + 7 1
p h 2h
1k k—N moU Y —m 1ty Y
= Sml, [m,lun_ COS T, — ST n=L sin 2,
1, k-1 k—1-N mo1up 1N =gy T1 Y
_ 1 —1U, —1u, _
+5mUs, [m_lun COS Ty — 7 sin xn}
- k—N
_ —1u —m—1u .
T k m—luﬁ+]1v COS Ty 1— - 2hm . SIN T4 1
—ymUny h2
RN kN
- k —2m,1uﬁ_Ncosmn+2m ntl th n=1 sinz,
_Zm n h2
k—N m—l“"rcliN*m—lqu:]Qv .
, k m—1Up_] COSTp_1— 5 sin Ty _1
_Zmun—l h2
1N o quRTIeN_ k1N
r k—1m—1u,; ]  COSTpi1— n+2 T Sin Tn41
{ Timlni w2 (4.115)
Luk1=N_ k1N
r k1 72m_1uﬁ717Ncosxn+2m7 n+tl 2hm7 n—1 sin xn,
_Zmun h2
k—1—N m—l"ﬁiliN*m—lukilgiN
r k—1m—1U,_7 = COSTp_1— 5 no sin o1
_Zmun_l h2 )
ty, =k, =nh,k € 1, N —-1,ne2, M — 2,
u? =sinz,,n €0, M, ,uf = ut, =0,k 0,00
mWn — ns ) ym% ) — mWYWpr — Y ) I
k __ k k k _ k k
mUs = 4us — 5 Uy, Ui g = 4o — Spul_q, k € 0, 00.

\

We obtain again (M + 1) x (M + 1) SLE and we reformat them into matrix form



(4.113), where

1 0 0 0 00
0O 0 0 0 00
e f g [ e

0 e f g f e

o o o o o
o o o o o
o~

o o o O

Here
-

= o
1 2

9= T  h?

(&

f=

o o o o

o o o o o
o o o o o

1 2T

AT
1
3T o1

ht’ T

o o o o

Y

o O o o O

o o o o

o O o o O

o o o O

o O = O

e}
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0
0
k
¥2
k. k—N
Olm—1u”, mu™ ") = ;
k
Prm—2
0
0
L 4 (M+1)x1
where
k—N k—N
1 m—1 — 1l
_ 1 m—1 —1
o =— | N cos a,, — nt = sinx,
2 2h
k—1-N k—1-N
1 m—1 — U
_ 11— - 1 m—1%np_1
+ =k N cos ay, — et L sin @,
27T " 2h
k—N m71Uﬁ1§—m71u’fL—N .
T o m—1Up 1 COS Tpp1 — o sSin o, 1
- m
4 n+1 h2
k—N k—N
k—N mflun+1 —m—1U, 1 :
T )~ 2m_1U, " COSTy, + 2 o sin x,,
— =l
gmem h?
k—N k—N
k—N —1u —m—1U, _
T o m—1Uy_| COSTy_ 1 — "2 sin &,y
— ok
4 n—1 h2
k—1—N k—1—N
—1— —1U —m—1U .
T B m_luﬁ TN coswpyy — Dtz mo i Sin &, 41
oy + 2h
- m
4 n+1 hQ
k—1-N e LA R S T R
T g 2m-1Uy cosx, + 2 o, sin x,
— =l
m
47" h?
k—1—N k—1—N
_1— _qu _qu,
T N cog g, — R T n=?  Sina,_
k—1 n—1 2h
T gmtin B2

for n € 2, M — 2. Hence, we have a second order difference equation with respect
to k matrix coefficients. Applying (4.113), we can obtain the solution of this
difference scheme. In computations for both first and second order of accuracy

difference schemes, the initial guess is chosen as gu* = e~ sinz, and when the
maximum errors between two consecutive results of iterative difference schemes

(4.112) and (4.115) become less than 107%, the iterative process is terminated.
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We provide numerical results for various values of M and N and the numerical
solutions of these difference schemes are represented by ,,u¥ at (t,z,). Tables
7-9 are constructed for N = M = 30, 60, 120 in t € [n,n+1], n = 0,1,2,

respectively. The errors are calculated using the following formula.

(B30, = ape5, o, ultom) —pid] . (110
1<n<M-1

To finish iteration process it was used condition

k

max |l — poquly| <1078 (4.117)

pN+1<k<(p+1)N,p=0,1,....
1<n<M-—1

in each sub-interval.

Table 7.
Error comparison between difference schemes (4.112) and (4.115)

int €[0,1] (Number of iterations = m)

Method M =N =230 M =N =60 M =N =120

(4.112) 6.3783 x 1073, m =2 3.1279 x 1072,m =2 1.5485 x 1073, m = 2

(4.115) 4.5864 x 1074, m =3 1.1212x 1074, m =3 2.7577 x 107>, m = 2
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Table 8.

Error comparison between difference schemes (/.112) and (4.115)

int € [1,2] (Number of iterations = m)

Method M=N =230 M =N =60 M =N =120

(4.112) 2.3464 x 1073, m =3 1.5070 x 1073, m =3 5.6964 x 107*, m = 2

(4.115) 1.6358 x 1074, m =3 42149 x 1075 m =2 1.0698 x 107°,m = 2
Table 9.

Error comparison between difference schemes (/.112) and (4.115)

int € [2,3] (Number of iterations = m)

Method M =N =30 M =N =60 M =N =120
(4.112) 8.6321 x 1074, m =3 4.2332x 1074, m =2 2.0956 x 104, m = 2
(4.115) 5.3201 x 1075, m =2 1.3581 x 1075, m =2 3.4122 x 1076, m = 2

Problem 4.9. We also consider the IBVP

( u €T 2u €T .
Quib) _ F40D  sin(u(t, o))

=u(t,x) |2u ([t — 1], ) cos2x — Wsirﬂx + f(t,x),

(4.118)
u(0,z) =sin2z,0 <z <,

\ u(t,0) =u(t,m),u; (t,0) =u, (t,7), t €[0,00)

for the nonlinear delay parabolic differential equation. The ES of this test example

is u(t,z) = e *sin2zx and f(t,z) = sin (e~ *sin 2x).



85

We get the following FASD for the AS of the IBVP (4.118)

( k_ k=1 wk =2 uk 4,k N
minmin  _ Tonl mon ol 2m_1uflmu£l Veos 21,
[k—N] [k—N]

+m_1uflmu"“ Q_hmu”*l sin 2x,, = sin (mufl) + f(tg, ),

ty = kT, =nh,k€l,oo,nel, M —1,

0 _ _ ar
ml sin 2x,, x, = nh,n € 0, M,

n —

mulg - rnulje\/jv'mullC - mulg - mulf\/[ - mulfw—h k€ pN + 17 (p+ 1)N7p = 07 ]‘7
(4.119)

for the nonlinear delay parabolic equation with nonlocal conditions. We write

(4.119) in matrix form

AU + B, U =RO.kepN +1,(p+1)N,p=0,1,...,

mU° = {sin2z,}M | (4.120)

where

nU* = {3008 = sin (ul) + f(t @),

n=0,..M,kepN+1,(p+1)N,p=0,1,...,

1 0 0 0 O 00 0 1
a ¢ a 0 0 00 0 0
0 a c& a 0 00 0 O
0 0 a ¢ a 00 0 0
A=10 0 0 a & a 00 0 0f,
0 0 0 0 O 0 a & | a
1 -1 0 0 0 00 -1 1]
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(00000 . 000 0]
01000 . 0000
00100 . 0000
B =
00000 1000
00000 0100
00000 0010
(00000 0000
and
a:—#,l:—f,

k 1 2 [k—N] wlf o N BN
Cp ==+ — 2un cos 2x,, + —+——"=1gin 2z,

h 2h
and R is identity matrix of size M +1, 6 is zero matrix with (M + 1) x 1 dimension.
So, we have the first order difference equation with respect to k£ with matrix

coefficients. From (4.120) it follows that

mU¥ = —AT'B U+ AT RO* ke pN +1,(p+1)N,p=0,1, ...,
mU° = {sin 2z, }M . (4.121)

Furthermore, using the SADS for the AS of problem (4.118), we obtain the

following system of equations



k k
mUy —mUn mun+1_2mun+mu

k

m“ﬁ+2 _4mulr€z+1 +6muf —dmul | +muk

k [k—N]
munm—lu

k—1
n

mU m—1Un

|
DO [

N]

uk ulf”
Tm nt1m—1Un g

[k—1—N]

cos 2$n+1—muﬁ+1

h2 n—1 +7_

[k—N]

2h*

[k—N]
“m—1U, g

coS 2T, — mU

k—

COS 2T, — U,

[k—=N]

m—1Y%p42

km—1Up iy
n

2h

[k—1-N]

1m—1Up4q

sin 2x,,

[k—1—N]
m—1U,_1

_ [k—N]
m—1U%n

2h

2h

sin 2z 41

4
[k—N]

—2mu§m_1u

CcoS 2&n+2mu

12
WE= N1
km—1%n41

[k—N]

m—1%,_1

n 2h

sin 2z,

+
+

[k—N]

k
mUy _1m—1Uy,

COS 2Xp—1 —muk

h2

[k—N]

m—1Y%n

Tm—1%,_2

[k—N]

n—1

2h

sin 2x,, 1

+

k—1 [k—1-N]

h2

[k—1—N]

k—1m—1%p

+2 m—1U%n

[k—1—N]

COS 2%y 41 —mUy, ]

2h

sin 2xp 41

+I mUpy_1m—1%,4q

W~

k—
—2mUn m—1 n+1

k—1—
1 u[

h2

N] k—1m—1Y

[k—1—N]
n+1 B

m—

JulE=1=N]

n—1

2h

sin 22, 1

_|_

!

k—1 [k—1—N]

CcoS 2T +2mun
h2

k—1m—1Y%n

[k—1-N]

COS 2Tp—1—mU, |

+I mUy_1m—1Up4q
4

+ sin (mufl) = f(tx

mU, = SIn2x,,n €
k k
mUq

h2

7',”671)7

07 M?

—3mufj + 14mu’§ — 24mu’§ + 18mu’f -5

tr=kr,x,=nh,kel,N—-1,ne2, M -2,

_ k k E_ k k
= Ui, —mUs + 4puf — 3pug = 3nuyy — dnty g +

k
mUq
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sin 2z,

k k k k _ k k k k

= 5puk, — 18,,uk, | + 24uk, o — 14,0k, 5+ 3,0k,

| k€PN +1,(p+1)N,p=0,1,....

(4.122)

We obtain another (M + 1) x (M + 1) SLE they are then rewritten in matrix
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form (4.120), where

1 0 0 0 O 0 0 0 |
2 -5 4 -1 0 0 1 —4 5 =2
e f¥ g whb e 0 0 0 0 0
0 e f¥ g& wh 0 0 0 0 0
A= :
0 0 0 0 0 . fr o gf o wh o, e 0
0 0 0 0 0 . e f¥. gk wh_, e
-3 4 -1 0 0 . O 0 -1 4 =3
| -5 18 —24 14 -3 . 3 —-14 24 —-18 5 |
(000 0 0 0 0 o 0 0 0 0]
o0 0 0 0 O 0 0 0 0 0
0 28 1% mt 0 0 0 0 0 0 0
0 0 28 5 ms o0 0 0 0 0 0
B 0 0 0 =zF & mk 0 0 0 0 0
00 0 0 0 O ey o, omb, 0 0
00 0 0 0 O 0 28, k. mhk 0
o0 0 0 0 O 0 0 0 0 0
(000 0 0 0 0 0 0 0 0 0
Here
Ik = —# — % + #uf__lm COS2Tp 1 — 473 u¥ M gin 20, 1+ g3 uyf_}N] sin 22,1,
e=z,9f=14+%+4+ 35— ulb N cos 22, + ﬁuﬂtlm sin 2z,
—rl}buf:fv] sin 2z, — 7 ol cos 2a, + #uﬂtﬁv] sin 2x,, — #ufflm sin 2,
wh=—L - 24 4 T ul" "N cos 2, 4 — #uﬂl}m SN 2%y 41 + 3 ol M gin 22,44,
zﬁ = 2h2u£f 1 M cos 20,1 — 8h3u7[f M gin 2,1 + Shguif 9 N gin 22,1,
Ik = —% — ulF Meos 2z, + ﬁuﬂiﬁv] sin 2x,, — ﬁu,[fle] sin 2,
—#u,[f_m o8 22, + 373 u[:H I sin 2z, — e ulf 1 M sin 2%,
mfl = 5= uyfﬂ Veos 2% — 8h3 uny Vsin 2Tp41 + 8h3 uﬂc N gin 2Ty 1.

We provide numerical results for a range of values of M and N and ,,u”

represent the numerical solutions of these difference schemes at (t, ,,) . Table 10,
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Table 11 and Table 12 are constructed for M = N = 30, 60, 120 in t € [p,p + 1],
p=0,1,2, and the errors are computed by the formulas (4.116) and (4.117).

Table 10.

Error comparison between difference schemes (/.119) and (4.122)
int € [0,1] (Number of iterations = m)

Method M=N=230 M =N =60 M =N =120

(4.119) 2.4431 x 10_2,m =2 1.2259 x 10_2, m=2 6.1304 x 10_3,m =2

(4.122) 20589 x 1073, m =8 54628 x 1074, m=8 1.3865x 1074, m="7
Table 11.

Error comparison between difference schemes (/.119) and (4.122)
int € [1,2] (Number of iterations = m)

Method M =N =230 M =N =60 M =N =120

(4.119) 53731 x 1073, m=9 25664 % 1073, m=8 1.2517x 1073, m =8
(4.122) 3.0514 x 1074, m =8 7.5756 x 1075, m =7 1.9241 x 1075, m = 6
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Table 12.
Error comparison between difference schemes (/.119) and (4.122)
int € [2,3] (Number of iterations = m)

Method M =N =230 M =N =60 M =N =120
(4.119) 1.0838 x 1074, m =17 49176 x 1075, m =6 2.3435x 1075, m =6
(4.122) 1.5588 x 107>, m =7 2.0085 x 107, m =5 4.8130 x 10~",m =3

As we doubled the values of N and M each time, beginning with M = N = 30.
In the FADSs (4.112) and (4.119) in Tables 1-6 respectively, the errors decrease
roughly by a proportion of 1/2, while in the SADSs (4.115) and (4.122) in Tables
7-12 respectively, the errors decrease roughly by a proportion of 1/4. Errors
shown in the tables demonstrate the consistency of the different schemes and
the reliability of the findings. Accordingly, the SADS increases faster than the
FADS. These numerical experiments back up the theoretical claims as shown in

the tables. With more grid points, the maximum errors can be reduced.
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CHAPTER V

Conclusion

This thesis is devoted to constructing the necessary conditions for the ex-
istence of a unique bounded solution of semi-linear delay parabolic differential

equations. The following results were achieved:

e Historical note and relevant literature are studied.

e The classical methods such as the Fourier series, Laplace transform, and
Fourier transform are used to get the exact solution of five semi-linear two-

dimensional delay parabolic equations.

e The initial-boundary value problems for the parabolic delay differential
equations in a Banach space with strongly unbounded operators are in-

vestigated.

e The main theorems on the existence and uniqueness of a bounded solution

to these problems are established.

e The application of the main theorems to four different semi-linear and three

different types of nonlinear delay parabolic equations is presented.

e The first and second-order iterative accuracy difference schemes for the ap-
proximate solution of one-dimensional delay parabolic differential equations

are obtained.

e Numerical experiments and error analysis are performed; results are pro-

vided in the tables.

e The Matlap implementation of these iterative difference schemes is pre-

sented.
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Matlab Implementation for the Approximate Solution of the One-

Dimensional First Order of Accuracy Difference Scheme (3.77)

function (parabolic Dirichlet(N,M))
h=pi/M; tau=1/N;
u(:,:,1)=zeros(N+1, M+1);

for k=1:N+1;

for n=1:M+1;
u(n,k,1)=exp(-(k-1)*tau)*sin((n-1)*h);
end;

end;

a=-1/(h?);b = —1/tau;
c = 1/tau+ 2/(h?);
A=zeros(M+1,M +1);B=A;C = A
ALY =LAM+1,M +1) = 1;
forn=2: M,
An,n—1)=a;A(n,n) =c; A(n,n+1) = a;
B(n,n) = b;
end,
G =inv(A);
R =eye(M +1,M +1);
m = 0;dif ference = 1;tolerance = 10~8
s disp(’ firstinterval’)
whiledi f ference > tolerance,
m=m+1;
fit = zeros(M + 1, M + 1); psi = fii; psi2 = fii;
fork=1:N +1,;
Fii(1, k) = 0; fii(M +1,k) = 0;
forn =2: M;

fii(n,k) = 1/(2 % h) x (u(n + 1, k,m) — u(n — 1,k,m)) * (exp(—(k — 1 — N) %
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tau) * sin((n —1) * h) xcos((n — 1) * h) — (exp(—(k — 1 — N) x tau) * sin(n* h) —
exp(—(k — 1 — N) s tau) * sin((n —2) x h))/(2* h) x sin((n — 1) * h));
end,

end,

fit = zeros(M + 1, M + 1); psi = fii; psi2 = fii;

forn=1: M+ 1,

u(n,1,m+1) = sin((n — 1) * h);

end,

fork=2:N+1,

u(k,m+1) =G (Rx* fii(:,k—1) — Bxu(t,k—1,m+1));
end,

forj=1:M+1,

fork=1:N+1;

t(k) = (k—1) = tau;

v(j) = (- 1) by

es(g, k) = exp(=t(k)) * sin(z(7));

end,

end,

dif ference = max(maz(abs(u(:,:;m+1) —u(:,:,m))));
maxerror = maz(mazx(abs(es — u(:,:;m + 1))));

strl = strcat('m =", num2str(m),’ error =", num2str(mazerror),
dif =',num2str(dif ference));

end,

disp(strl)

v(s,:, 1) = zeros(N + 1, M + 1);

fork=N+1:2%xN +1;

forn=1: M+ 1,

v(n,k,1) = exp(—(k — 1) * tau) * sin((n — 1) x h);

end,

end,

m = 0;dif ference = 1;tolerance = 1078;

disp('secondinterval’)



101

whiledi f ference > tolerance,

m=m-+1;

fork=N+1:2xN+1;

psi(1,k) = 0;psi(M + 1, k) = 0;

forn =2: M;

t=(k—1)x*tay;

psi(n,k) = 1/(2xh) * (v(n+ 1,k,m) —v(n —1,k,m)) * (u(n,k — N) % cos((n —
1)xh)—(un+1,k—N)—un—1,k—N))/(2%h)*sin((n — 1) x h));
end,

end,

forn=1:M+1;

fork=14+N:2x N +1;

v(n, N+ 1,m+ 1) = exp(—N = tau) * sin((n — 1) * h);

end,

end,

fork=2+ N :2x N +1;

v(k,m+1)=Gx* (R*psi(c,k—1)— Bxov(s,k—1,m+1));
end,

forj=1:M+1,

fork=N-+1:2xN+1;

t(k) = (k—1) = tau;

2(j) = =1 *h;

es2(j, k) = exp(=t(k)) * sin(z(7));

end;

end,;

dif ference = max(maz(abs(v(:,:;m+ 1) —v(:,:,m))));
maxerror = maz(maz(abs(es2 — v(:,:;,m+ 1))));

strl = strcat('m =", num2str(m),’ error =", num2str(mazerror),
dif =',num2str(dif ference));

end,

disp(strl)

w(:,: 1) = zeros(N + 1, M + 1);
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fork=2xN+1:3xN+1;

forn=1: M +1;

w(n, k,1) = exp(—(k — 1) * tau) * sin((n — 1) x h);

end,

end;

m = 0;dif ference = 1;tolerance = 1078;
disp("thirdinterval’)

whiledi f ference > tolerance,

m=m-+1;

fork=2xN+1:3xN+1;

psi2(1,k) = 0;psi2(M + 1, k) = 0;

forn =2: M;

t=(k—1)x*tay;

psi2(n, k) =1/(2xh)* (win+1,k,m) —w(n—1,k,m)) * (v(n,k— N) *cos((n —
)xh)—(v(n+1,k—=N)—v(n—1,k—N))/(2%h)*sin((n —1) % h));
end,

end,

forn=1:M+1;

fork=14+N:2x N +1;

w(n,2+« N+ 1,m+1) =exp(—2x* N * tau) x sin((n — 1) x h);
end,

end,

fork=24+2xN:3xN + 1,

w(,k,m+1)=Gx* (R*psi2(:,k—1) — Bxw(:,k—1,m+1));
end,

forj=1:M+1,

fork=2xN+1:3%xN + 1,

t(k) = (k—1) = tau;

2(j) = =1 *h;

es3(j, k) = exp(=t(k)) * sin(z(7));

end;

end,
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dif ference = max(maz(abs(w(:,;,m+ 1) —w(:,:,m))));
maxerror = maz(maz(abs(es3 — w(:,;,m+ 1))));

strl = streat('m =', num2str(m)," error =', num2str(mazxerror),’
dif =, num2str(dif ference));

end;

disp(strl)
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Appendix B

Matlab Implementation for the Approximate Solution of the One-
Dimensional Second Order of Accuracy Difference Scheme (3.79)
function (parabolic Dirichlet second(N,M))

h=pi/M; tau=1/N;

u(:,:,1)=zeros(N+1, M+1);

for k=1:N+1;

for n=1:M+1;

u(n,k,1)=exp(-(k-1)*tau)*sin((n-1)*h);

end;

end;

a=tau/(2*h*);b = —1/h* — 2 x tau/h*;
c=1/tau+ 2/h* + 3 * tau/h*;e = —1/tau;
A= zeros(M+1,M +1); B = A;
A1) = LA@R M +1) = 1AM, M) = —5; A(M, M — 1) = 4; A(M, M — 2) =
—1;
AM+1,2) = —5; A(M +1,3) = 4, A(M + 1,4) = —1;
forn=3: M — 1,
fork=1:N+1;
A(n,n—2) =a; A(n,n — 1) =b; A(n,n) = ¢
An,n+1) =b;A(n,n+2) = a; B(n,n) = ¢;
end,
end,
G =inv(A);
R =eye(M +1,M +1);
m = 0;dif ference = 1;tolerance = 1078,
disp(’ firstinterval’)
whiledi f ference > tolerance,
m=m+1;
fit = zeros(M + 1, M + 1); psi = fii; psi2 = fii;
fork =2: N;,



105

Fii(1, k) = 0; fii(2, k) = 0;

fii(M, k) = 0; fii(M + 1, k) = 0;

forn=3: M —1,

t=(k—1)x*tau;

fit(n,k—1) = 1/(4xh)*(u(n+1,k,m)—u(n—1,k m))x(cos(nxh)*xexp(—(k—N —
1)xtau)xsin(nxh)— (sin((n+1)xh)xexp(—(k— N —1)xtau) —exp(—(k—1—N)x*
tau)xsin((n—1)%h))/(2xh)*sin(nxh))+1/(4*h)*(u(n+1,k—1,m)—u(n—1,k—
1,m))*(cos(n*h)*exp(—(k—N —2)xtau)*sin(n*h)—(sin((n+1)*xh)*xexp(—(k—
N —=2)xtau)—exp(—(k—2—N)*tau)xsin((n—1)*h))/(2xh)xsin(n*h))—tau/ (8
R3) % (u(n+2, k,m) —u(n, k,m))*(cos((n+1)xh)*sin((n+1)xh)xexp(—(k—1—
N)xtau) — (sin((n+2)xh) xexp(—(k—1— N) *xtau) — sin(nxh) x exp(—(k—1—
N)xtau))/(2xh)*xsin((n+1)xh)) —tau/(8+h3)* (u(n+1,k,m)—u(n—1,k m))*
(—2xexp(—(k—1— N)*tau)* sin(n*h)*cos(nxh)+sin(nxh)* (exp(—(k—1—
N)stau)xsin((n+1)xh)—exp(—(k—1— N)*tau)*sin((n—1)*h))/h) —tau/(8*
h3)* (u(n, k,m) —u(n—2,k,m))*(cos((n—1)xh)xsin((n—1)*h)xexp(—(k—1—
N)xtau)—sin((n—1)xh)x(sin(nxh)xexp(—(k—1— N)*xtau)—sin((n—2)xh)*
exp(—(k—1—N)*tau))/(2xh)) —tau/(8%h3)* (u(n+2,k—1,m)—u(n,k—1,m))x*
(cos((n+1)*h)xsin((n+1)*h)xexp(—(k—2—N)xtau)—(sin((n+2)*h)*exp(—(k—
2— N)xtau)—sin(nxh)xexp(—(k—2—N)x*tau))/(2xh)xsin((n+1)*h))—tau/(8x
3« (u(n+1,k—1,m)—u(n—1,k—1,m))* (=2xexp(—(k—2— N)*tau) * sin(nx*
h)xcos(nxh)+sin(nxh)*(exp(—(k—2—N)*tau)*sin((n+1)*xh)—exp(—(k—2—
N)xtau)xsin((n—1)xh))/h) —tau/(8*h®)* (u(n, k—1,m) —u(n—2,k—1,m)) *
(cos((n—1)xh)*xsin((n—1)xh)xexp(—(k—2—N)*tau)—sin((n—1)*xh)*(sin(nx*
h)xexp(—(k—2— N)*tau) — sin((n—2) xh) xexp(—(k—2— N)*xtau))/(2%h));
end,;

end;

forn=1: M+ 1,

u(n,l,m+1) = sin((n — 1) * h);

end,

fork=2:N+1,

u(k,m+1) =G (Rx* fii(:,k—1) — Bxu(t,k—1,m+1));

end,
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forj=1: M+ 1,
fork=1:N+1,
t=(k—1)x*tay;

x=(j—1)h

es(j, k) = exp(—t) x sin(z);
end,

end,

dif ference = max(maz(abs(u(:,:;m + 1) —u(:,:;m))));

maxerror = maz(maz(abs(es — u(:,:;m + 1))));

strl = streat('m =', num2str(m)," error =', num2str(mazxerror),’

dif =, num2str(dif ference));

end;

disp(strl)

v(s,:, 1) = zeros(N + 1, M + 1);

fork=N+1:2xN +1;

forn=1: M+ 1;

v(n, k,1) = exp(—(k — 1) * tau) * sin((n — 1) x h);

end,

end;

m = 0;dif ference = 1;tolerance = 1078;

disp(’secondinterval’)

whiledi f ference > tolerance,

m=m-+1;

fork=N+2:2xN+1;

forn=3: M —1,

psi(1,k) = 0;psi(2,k) = 0;

psi(M + 1, k) = 0; psi(M, k) = 0;

t=(k—1)x*tau;

psi(n,k—N) = 1/(4*h)*(v(n+1,k,m)—v(n—1,k,m))*(cos(n*xh)*u(n,k—N)—
(u(n+1,k—=N)—u(n—1,k—N))/(2xh)xsin(nxh))+1/(4xh)*(v(n+1,k—1,m)—
v(in—1,k—1,m))x(cos(nxh)xu(n, k—N—1)—sin(nxh)x(u(n+1,k—N—1)—u(n—
L,k—N-1))/(2%h))—tau/(8h*)x(v(n+2,k,m)—v(n,k,m))x(cos((n+1)*h)x
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u(n+1,k—N)—=sin((n+1)xh)*(u(n+2,k—N)—u(n,k—N))/(2xh))—tau/(8*h3)x
(v(n+1,k,m)—v(n—1,k,m))*(—2xu(n, k—N)xcos(nxh)+sin(nxh)*(u(n+1, k—
N)—u(n—1,k—N))/h)—tau/(8%h3)x(v(n, k,m)—v(n—2, k,m))*(cos((n—1)xh)x*
u(n—1,k—N)—sin((n—1)xh)*(u(n, k—N)—u(n—2,k—N))/(2%h))—tau/(8xh>)*
(v(n+2,k—1,m)—v(n, k—1,m))*(cos((n+1)*h)xu(n+1,k—N—1)—sin((n+1)x*
h)*(u(n+2,k—N—1)—u(n,k—N—1))/(2xh))—tau/(8%h3)*(v(n+1,k—1,m)—
v(n—1,k—1,m))*(—2%u(n, k—N—1)xcos(n*xh)+sin(nxh)*(u(n+1,k—N—1)—
u(n—1,k—N—1))/h)—tau/(8«h3)x(v(n, k—1,m)—v(n—2,k—1,m))*(cos((n—1)x
h)xu(n—1,k—N—1)—sin((n—1)xh)*(u(n, k—N—1)—u(n—2,k—N—1))/(2xh));
end,

end,

forn=1: M+ 1,

v(n, N+ 1,m+1) = exp(—N = tau) * sin((n — 1) *x h);

end,

fork=24+ N:2xN +1;

v(ik,m+1)=G*x (Rxpsi(:,k—1) — Bxov(:,k—1,m+1));

end,

forj=1:M+1;

fork=N+1:2xN +1;

t=(k—1)x*tay;

= (j—1)xh

es2(j, k) = exp(—t) * sin(j);
end,

end,

dif ference = max(maz(abs(v(:,:,m+ 1) —v(:,:,m))));
maxerror = maz(maz(abs(es2 — v(:,:;,m+ 1))));

strl = streat('m =', num2str(m)," error =', num2str(mazxerror),’
dif =, num2str(dif ference));

end,

disp(strl)

w(s,:, 1) = zeros(N + 1, M + 1);

fork=2xN+1:3xN+1;
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forn=1: M+ 1,

w(n,k,1) = exp(—(k — 1) * tau) * sin((n — 1) * h);

end,

end,

m = 0;dif ference = 1;tolerance = 1078,

disp("thirdinterval’)

whiledi f ference > tolerance,

m=m+1;

fork=2xN+2:3xN+1;

psi2(1, k) = 0; psi2(2, k) = 0;

psi2(M, k) = 0; psi2(M + 1, k) = 0;

forn=3: M —1;

t=(k—1)x*tay;

psi2(n, k) = 1/(4xh)x(w(n+1,k,m)—w(n—1,k,m))*(cos(nxh)*xv(n,k—N)—
(vin+1,k—=N)—v(n—1,k—N))/(2*h)*sin(nxh))+1/(4dxh)* (wn+ 1,k —
IL,m)—w(n—1,k—1,m))*(cos(nxh)*xv(n,k— N —1)—sin(n*xh)*(v(n+1,k—
N—-1)—v(n—1,k—N—1))/(2xh)) —tau/(8*h®)* (w(n+2,k,m) —w(n, k,m))*
(cos((n+1)xh)xv(n+1,k—N)—sin((n+1)xh)*(v(n+2,k—N)—v(n, k—
N))/(2xh)) —tau/(8*h3)* (w(n+1,k,m) —w(n—1,km))*(=2*v(n,k— N)x*
cos(n*h)+ sin(nxh) x (v(n+ 1,k — N) —v(n— 1,k — N))/h) — tau/(8 * h®) *
(w(n,k,m)—w(n—2,k,m))*(cos((n—1)xh)xv(n—1,k—N)—sin((n—1)xh)*
(v(n,k—N)—v(n—2,k—N))/(2xh))—tau/(8+h3)x (w(n+2,k—1,m) —w(n, k—
1,m))x(cos((n+1)xh)xv(n+1,k—N—1)—sin((n+1)xh)*(v(n+2,k—N—1)—
v(n,k—N—1))/(2%h)) —tau/(8*h3) x (wn+1,k—1,m)—wn—1,k—1,m))
(=2%v(n,k—N—1)xcos(nxh)+sin(nxh)x(v(n+1,k—N—-1)—v(n—1,k— N —
1)/h)—tau/(8*h®)* (w(n,k—1,m)—w(n—2,k—1,m))*(cos((n—1)xh)xv(n—
Lk—=N-1)—sin((n—1)xh)x(v(n,k—=N—=1)—v(n—2,k— N —1))/(2*h));
end,

end,

forn=1: M+ 1;

w(n,2+« N+ 1,m+1) =exp(—2x* N * tau) * sin((n — 1) x h);

end,
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fork=2+2%«N:3xN +1;
w(k,m+1)=Gx(R+psi2(:,k—1) — Bxw(;,k—1,m+ 1));
end,

forj=1: M+ 1,

fork=2xN+1:3xN +1;

t=(k—1)x*tay;
r=(j—1)xh

es3(j, k) = exp(—t) * sin(z);
end,

end,

dif ference = max(maz(abs(w(:,;,m+1) —w(:,:,m))));
maxerror = maz(maz(abs(es3 — w(:,;,m + 1))));

strl = streat('m =', num2str(m)," error =', num2str(mazxerror),’
dif =, num2str(dif ference));

end,

disp(strl)
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Appendix C

Matlab Implementation for the Approximate Solution of the One-
Dimensional First Order of Accuracy Difference Scheme (3.83)
function (parabolic Nonlocal(N,M))

h=pi/M;tau=1/N;

u(:,:,1)=zeros(N+1, M+1);

for k=1:3*N+1;

t(k)=(k-1)*tau;

end;

for n=1:M+1;

x(n)=(n-1)*h;

end;

for n=1:M+1;

for k=1:N+1;

u(n,k,1)=exp(-4*t(k))*sin(2*x(n));

end;

ulN(n)=u(n,1,1);

end;

a=-1/(h?);b = —1/tau;
A=zeros(M+1,M+1); B=A;C = A,
A1) =L A(LM +1) = —1;
AM+1,1) =~ AM +1,2) = LAM + 1, M) = LAM +1,M +1) = —1;
forn =2: M;
An,n—1)=a;A(n,n+1) =a; B(n,n) =b;
c=1/tau+2/h*—2*xuN(n)*cos(2*x(n)) + (uNn+1) —uN(n—1))/(2*h) *

sin(2* z(n));

A(n,n) = ¢
end,
G = inv(A);

R =eye(M +1,M +1);

m = 0;dif ference = 1;tolerance = 1078;



disp(’ firstinterval’)

whiledi f ference > tolerance,

m=m+ 1,

fii = zeros(M + 1, M + 1); psi = fii; psi2 = fii; psi3 = fii;
fork=1:N+1;

fii(1, k) = 05 fii(2, k) = 0;

fit(M, k) =0; fii(M + 1,k) = 0;

forn=3: M — 1,

fii(n, k) = —sin(u(n, k,m)) + sin(exp(—4 * t(k)) * sin(2 * x(n)));
end,

end,

fit = zeros(M + 1, M + 1); psi = fii; psi2 = fii; psi3 = fii;
forn=1: M+ 1,

u(n,I,m+1) = sin(2 * z(n));

end,

fork=1:N;

u(hk+1,m+1)=Gx (Rx fii(:,k) — Bxu(:,k,m+1));
end,

forj=1:M+1,

fork=1:N+1;

es(j, k) = exp(—4 x t(k)) * sin(2 x z(j));

end,

end,

dif ference = max(maz(abs(u(:,:;m + 1) —u(:,:;m))));
maxerror = maz(mazx(abs(es — u(:,:;m + 1))));

strl = streat('m =', num2str(m)," error =', num2str(maxerror),’
dif =", num2str(dif ference));

end,

disp(strl)

v(:,:, 1) = zeros(N + 1, M + 1);

forn=1:M+1;

fork=N+1:2xN +1;
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v(n, k,1) = exp(—4 x t(k)) * sin(2 * z(n));
end,

end,

ulN(:) =u(:, N+ 1,m);

m = 0;dif ference = 1;tolerance = 1078,
disp('secondinterval’)

whiledi f ference > tolerance,
m=m+1;

fork=N+1:2%xN +1;

psi(1,k) = 0;psi(2, k) = 0;

psi(M, k) = 0; psi(M + 1, k) = 0;
forn=3: M —1;

psi(n, k) = —sin(v(n, k,m)) + sin(exp(—4 x t(k)) * sin(2 * x(n)));
end,

end,

forn=1: M+ 1;

v(n, N+1,m+1)=uN(n);

end,
fork=1+ N :2x N,
forn =2: M,

c=1/tau+2/h? —2xuN(n)xcos(2+xx(n))+ (uN(n+1) —uN(n—1))/(2%h)

sin(2* z(n));

A(n,n) = ¢
end,
G = inv(A);

v k+1,m+1)=Gx* (Rx*xpsi(:,k) — Bxv(:, k,m+1));
end,

forj=1:M +1;

fork=N+1:2xN +1;

es2(j, k) = exp(—4 x t(k)) * sin(2 x x(j));

end,

end,



dif ference = max(maz(abs(v(:,:,m+ 1) —v(:,:,;m))));
maxerror = maz(maz(abs(es2 — v(:,:;,m+ 1))));

strl = streat('m =', num2str(m)," error =', num2str(mazxerror),’

dif =, num2str(dif ference));

end;

disp(strl)

w(:,:, 1) = zeros(N + 1, M + 1);

ulN(:) =v(;,2%x N+ 1,m);
fork=2xN+1:3%xN + 1,
forn=1:M+1;

w(n, k,1) = exp(—4 * t(k)) * sin(2 x 2(n));
end;

end,

m = 0;dif ference = 1;tolerance = 1078,
disp("thirdinterval’)

whiledi f ference > tolerance,

m=m+ 1,

fork=2xN+1:3xN+1;

psi2(1, k) = 0; psi2(2, k) = 0;

psi2(M, k) = 0;psi2(M + 1, k) = 0;
forn=3: M — 1,

psi2(n, k) = —sin(w(n, k,m)) + sin(exp(—4 x t(k)) * sin(2 * z(n)));

end,
end,

forn=2: M,
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c=1/tau+2/h? —2xuN(n) *xcos(2*x(n))+ (uN(n+1) —uN(n—1))/(2xh) *

sin(2 x x(n));

A(n,n) = ¢
end,
G = inv(A);

forn=1:M+1;
w(n,2« N+ 1,m+1)=uN(n);



end,

fork=14+2%N:3xN;

w(:,k+1,m+1)=G*(R*psi2(:,k)-B*w(:,k,m+1));
end;
for j=1:M-+1;
for k=2*N-+1:3*N+1;
t(k)=(k-1)*tau;
es3(7.K) = exp(-4%t (k) *sin(2*x(}));
end;
end;
difference=max(max(abs(w(:,;;m+1)-w(:,:;m))));
maxerror=max(max(abs(es3-w(:,;,;m+1))));
strl=strcat('m="num2str(m),” error="num2str(maxerror),’
dif=" num2str(difference));
end;

disp(strl)
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Appendix D

Matlab Implementation for the Approximate Solution of the One-
Dimensional Second Order of Accuracy Difference Scheme (3.85)
function (parabolic Nonlocal seconds(N,M))

h=pi/M;tau=1/N;

u(:,:,1)=zeros(N+1, M+1);

for k=1:3*N+1;

t(k)=(k-1)*tau;

end;

for n=1:M+1;

x(n)=(n-1)*h;

end;

for n=1:M+1;

for k=1:N+1;

u(n,k,1)=exp(-4*t(k))*sin(2*x(n));

end;

uN(n)=sin(2*x(n));

end;

a=tau/(2¥h%);
A= zeros(M+1,M +1); B = A;
A(L1) =1L A(LM +1) = —1;
A2,1) = 2 A(2,2) = —5; A(2,3) = 4, A(2,4) = —1;
AR, M +1) = =2, A2, M) =5; A2, M — 1) = —4; A(2, M — 2) = 1;
AM,1) = —3; A(M,2) = 4; A(M, 3) = —
AM, M +1) = —3; A(M, M) = 4, A(M, M — 1) = —1;
AM +1,1) = —5;AM + 1,2) = 1AM +1,3) = —24; A(M + 1,4) =
14; A(M +1,5) = —3;
AM +1,M +1) = =5 A(M + 1, M) = 1&AM + 1,M — 1) = —24; A(M +
1,M —2) = 14; AM +1,M — 3) = —3;
forn=3:M —1,
Aln,n —2) =a; A(n,n+2) = a;



116

end,

forn=3: M —1;

b= —1/h? -2 xtau/h* +tau/(2 x h?) x uN(n — 1) x cos(2 * z(n — 1)) — tau/(8 *
B3) % ulN (n) % sin(2  z(n — 1)) + tau/(8 « h?) « uN(n — 2)  sin(2 % 2(n — 1)):
c=1/tau+2/h* + 3 * tau/h* — uN(n) * cos(2* x(n)) + 1/(4 x h) x uN(n +
sin(2xx(n))—1/(4xh)*xuN(n—1)*sin(2*x(n)) —tau/h**uN (n)*cos(2xx(n)) +

1) %
tau/(4* h?)x uN(n+ 1) * sin(2xx(n)) — tau/(4 % h3) x uN(n — 1) * sin(2 * z(n)
8

);

d= —1/h? =2 xtau/h* + tau/(2 * h*) * uN(n + 1) * cos(2 x x(n + 1)) — tau/(8 x

h3) x uN(n+2) * sin(2* z(n+ 1)) + tau/(8 x h3) * uN(n) x sin(2 * z(n + 1));

e =tau/(2* h?) xuN(n — 1) * cos(2* x(n — 1)) — tau/(8 * h*) x uN(n) * sin(2 *

z(n —1)) +tau/(8 * h3) x uN(n — 2) * sin(2 * x(n — 1));

f=—-1/tau—uN(n)*cos(2xx(n))+1/(4*h)«uN(n+1)*sin(2xx(n))—1/(4x*

h) * uN(n — 1) * sin(2 * x(n)) — tau/h* * uN(n) * cos(2 * x(n)) + tau/(4 x h3) *

uN(n+ 1) x sin(2x x(n)) — tau/(4 % h3) * uN(n — 1) * sin(2 * z(n));
=tau/(2*xh?)*uN(n+1)xcos(2*xx(n+1)) —tau/(8* h3) x ulN(n + 2) x sin(2 x

x(n+1)) +tau/(8 x h3) * uN(n) * sin(2 * z(n + 1));

A(n,n—1)=b; A(n,n) = c¢; A(n,n + 1) = d;

B(n,n—1)=e;B(n,n) = f; B(n,n+ 1) = g;

end;

G =inv(A);

R =eye(M +1,M +1);

m = 0;dif ference = 1;tolerance = 1078,

disp(’ firstinterval’)

whiledi f ference > tolerance,

m=m+1;

fit = zeros(M + 1, M + 1); psi = fii; psi2 = fii;psi3 = fii;

fork=1:N+1;

Fii(1, k) = 0; fii(2, k) = 0;

Fii(M, k) = 0; fii(M +1,k) = 0;

forn=3: M —1;

fii(n, k) = —sin(u(n, k,m)) + sin(exp(—4 * t(k)) * sin(2 * x(n)));

end,



end,

forn=1: M +1;

u(n,1,m+1) = sin(2 * z(n));

end,

fork=1:N;

u(,k+1,m+1)=Gx* (Rx fii(:,k) — Bxu(:,k,m+1));
end,

fory=1:M+1;

fork=1:N+1,

es(7, k) = exp(—4 x t(k)) * sin(2 * z(j));

end,

end;

dif ference = max(maz(abs(u(:,:;m + 1) —u(:,:,m))));

mazerror = max(max(abs(es — u(:,:,m + 1))));

strl = streat('m =', num2str(m)," error =', num2str(maxerror),’

dif =',num2str(dif ference));
end,

disp(strl)

v(:,5, 1) = zeros(N + 1, M + 1);
forn=1: M+ 1,
fork=N+1:2xN+1;

v(n, k,1) = exp(—4 x t(k)) * sin(2 * z(n));
end,

end,

ulN(:) =u(:, N+ 1,m);
forn=3: M — 1,
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b= —1/h?—2xtau/h* +tau/(2* h*) * uN(n — 1) * cos(2 * z(n — 1)) — tau/(8 *
h3) x uN(n) * sin(2 x x(n — 1)) + tau/(8 * h?) x uN(n — 2) * sin(2 * z(n — 1));

c=1/tau +2/h?+ 3 x tau/h* — uN(n) * cos(2 x x(n)) + 1/(4* h) x uN(n + 1) *
sin(2xx(n))—1/(4xh)*xuN(n—1)*sin(2*x(n)) —tau/h**uN (n)*cos(2xx(n)) +
tau/(4* h3) x uN(n+1)* sin(2* x(n)) — tau/(4* h3) xuN(n — 1) x sin(2* x(n));
d=—1/h?—2xtau/h* +tau/(2 * h?) * uN(n + 1) * cos(2 x x(n + 1)) — tau/(8
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h3) x uN(n+2) % sin(2* z(n + 1)) + tau/(8 x h3) * uN(n) x sin(2 * z(n + 1));

e =tau/(2* h?) xuN(n — 1) * cos(2* x(n — 1)) — tau/(8 * h*) x uN (n) * sin(2 *
x(n —1)) +tau/(8 * h3) x uN(n — 2) * sin(2 * x(n — 1));
f=—1/tau—uN(n)*cos(2xx(n))+1/(4*h)xuN(n+1)*sin(2*x(n)) —1/(4x*
h) * uN(n — 1) % sin(2 x x(n)) — tau/h* * uN(n) * cos(2 * x(n)) + tau/(4 x h3) *
uN(n + 1) x sin(2 * z(n)) — tau/(4 % h®) x uN(n — 1) x sin(2 * z(n));

g =tau/(2xh?)xuN(n+1)xcos(2xx(n+1)) —tau/(8*h®) x ulN(n+2) x sin(2 x
z(n+1)) + tau/(8 x h3) * uN(n) * sin(2 * z(n + 1));

A(n,n—1)=b;A(n,n) =c;A(n,n+1) =d;

B(n,n—1)=e¢;B(n,n) = f;B(n,n+1) =g;

end,

G = inv(A);

m = 0;dif ference = 1;tolerance = 1078;

disp(’secondinterval’)

whiledi f ference > tolerance,

m=m-+1;

fork=N+1:2xN+1;

psi(1,k) = 0;psi(2,k) = 0;

psi(M, k) = 0;psi(M + 1, k) = 0;

forn=3: M —1;

psi(n, k) = —sin(v(n, k,m)) + sin(exp(—4 * t(k)) * sin(2 * x(n)));

end,

end,

forn=1:M+1;

v(n, N+1,m+1)=uN(n);

end;

fork=1+ N :2x N,

v k4+1,m+1)=Gx* (Rx*xpsi(:,k) — Bxv(:, k,m+ 1));

end,

forj=1:M+1,

fork=N+1:2xN+1;

es2(j, k) = exp(—4 x t(k)) * sin(2 * x(5));
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end,

end,

dif ference = max(maz(abs(v(:,:;m+ 1) —v(:,:,m))));

mazerror = max(max(abs(es2 — v(:,:;m + 1))));

strl = streat('m =', num2str(m),’ error =', num2str(mazxerror),’

dif =", num2str(dif ference));

end,

disp(strl)

w(,:, 1) = zeros(N + 1, M + 1);

ulN(:) =v(:;, 2% N +1,m);

forn=3: M — 1,

b= —1/h*— 2 xtau/h* + tau/(2 x h*) x uN(n — 1) * cos(2 * x(n — 1)) — tau/(8 *
h3) x uN(n) * sin(2 x x(n — 1)) + tau/(8 * h3) x uN (n — 2) * sin(2 * z(n — 1));
c=1/tau +2/h?® + 3 x tau/h* — uN(n) * cos(2 x x(n)) +1/(4* h) x uN(n + 1) *
sin(2xx(n))—1/(4xh)*xuN(n—1)*sin(2*x(n)) —tau/h**uN (n)*cos(2xx(n)) +
tau/(4* h3) x uN(n+1) * sin(2*x x(n)) — tau/(4* h3) x uN(n — 1) x sin(2* x(n));
d=—1/h? =2 xtau/h* +tau/(2 * h?) * uN(n + 1) * cos(2 x x(n + 1)) — tau/(8 x
h3) x uN(n+2) % sin(2* z(n+ 1)) + tau/(8 x h3) * uN(n) x sin(2 * z(n + 1));

e =tau/(2* h?) xuN(n — 1) * cos(2* x(n — 1)) — tau/(8 * h?) x uN (n) * sin(2 *
x(n —1)) +tau/(8 * h3) x uN(n — 2) * sin(2 * z(n — 1));

[ =—1/tau—uN(n)*cos(2xx(n))+1/(4*h)*uN(n+1)*sin(2xz(n)) —1/(4x*
h) * uN(n — 1) % sin(2 x x(n)) — tau/h* * uN(n) * cos(2 * x(n)) + tau/(4 x h3) *
uN(n + 1) x sin(2 * z(n)) — tau/(4 % h®) x uN(n — 1) x sin(2 * z(n));

g =tau/(2xh?)xuN(n+1)xcos(2xzx(n+1)) —tau/(8x h®) x uN (n+2) * sin(2 *
z(n+1)) +tau/(8 * h3) x* uN(n) * sin(2 * x(n + 1));

A(n,n—1)=0b;A(n,n) =c;A(n,n+1) =dj;

B(n,n—1)=e¢;B(n,n) = f;B(n,n+1) = g;

end,

G = inv(A);

fork=2xN+1:3xN+1;

forn=1:M+1;

w(n, k,1) = exp(—4 * t(k)) x sin(2 * z(n));
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end,

end,

m = 0;dif ference = 1;tolerance = 1078;
disp("thirdinterval’)

whiledif ference > tolerance,

m=m+1;

fork=2xN+1:3xN+1;

psi2(1, k) = 0; psi2(2, k) = 0;

psi2(M, k) = 0;psi2(M + 1, k) = 0;

forn=3: M —1,

psi2(n, k) = —sin(w(n, k,m)) + sin(exp(—4 x t(k)) * sin(2 * z(n)));
end;

end,

forn=1:M+1;

w(n,2% N+1,m+1) =uN(n);

end,

fork=14+2%«N:3% N,

wik+1,m+1)=Gx* (Rxpsi2(:;, k) — Bxw(:,k,m+1));
end;

forj=1:M+1;

fork=2xN+1:3xN+1;

t(k) = (k—1) x tau;

es3(j, k) = exp(—4 x t(k)) * sin(2 x x(j));

end,

end,;

dif ference = max(mazx(abs(w(:,:;m + 1) —w(:,:;m)))):
mazxerror = max(maz(abs(es3 —w(:,:;,m + 1))));

strl = strcat('m =", num2str(m),’ error =", num2str(mazerror),
dif =',num2str(dif ference));

end,

disp(strl)
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