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Abstract

Operator Approach for the solution of the stochastic differential equations 
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In the present thesis, an abstract Cauchy problem for stochastic differential

equation  of  parabolic  type  in  a  Hilbert  space  with  the  time-dependent  positive

operators is considered. The stability of an abstract Cauchy problem for differential

equation of parabolic type is established. In practice, theorems on stability estimates

for the initial  boundary value problem for one dimensional  and multidimensional

stochastic parabolic equation with coefficients dependent in t are proved. The main

theorems of the convergence of difference schemes for approximate solutions of this

abstract Cauchy problem for differential equation of parabolic type are presented. In

applications,  the convergence estimates for the solution of difference schemes for

approximate solutions for four types of stochastic differential equations are obtained.

Numerical results for the accuracy difference schemes of the approximate solution of

Cauchy  problem  for  stochastic  differential  equations  with  Dirichlet,  Neumann

conditions are proved.

Key Words: difference scheme, stochastic parabolic equation, convergence estimates, 

stability, positive operator, Hilbert spac
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ÖZET

Stokastik diferansiyel denklemlerin çözümü için Operatör Yaklaşımı

Okur, Ülker

Doktora Tezi, Matematik Anabilim Dalı

Danışman: Prof. Dr. Allaberen Ashyralyev

Eylül, 2023, 140 sayfa

Bu tezde, Hilbert uzayında zamana bağlı pozitif operatörlerle parabolik tipte

stokastik  diferansiyel  denklem  için  soyut  bir  Cauchy  problemi  ele  alınmıştır.

Parabolik tipte bir diferansiyel denklem için soyut bir Cauchy probleminin kararlılığı

belirlenir.  Uygulamada kat  sayılari,  t'ye bağımlı  olan tek boyutlu ve çok boyutlu

stokastik  parabolik  denklem  için  başlangıç  sınır  değer  problemi  için  kararlılık

tahminlerine  ilişkin  teoremler  kanıtlanmıştır.  Bu  soyut  Cauchy  probleminin

parabolik  tipteki  diferansiyel  denklemin  yaklaşık  çözümleri  için  fark  şemalarının

yakınsaklığının  ana  teoremleri  sunulmuştur.  Uygulamalarda,  dört  tür  stokastik

diferansiyel  denklemlerin  yaklaşık  çözümleri  için  fark  şemalarının

çözümü  ve  yakınsaklık  tahminleri  elde  edilir.  Dirichlet,  Neumann  koşulları  ile

stokastik  diferansiyel  denklemler  için  Cauchy  probleminin  yaklaşık  çözümünün

doğruluk farkı şemaları için sayısal sonuçlar verilmiştir.

Anahtar Kelimeler: farkşeması; stokastik parabolik denklem; yakınsama tahmin 

etmek; kararlılık; pozitif,  operatör; Hilbert uzayı



7

Table of Contents

Approval.......................................................................................................................2

Declaration...................................................................................................................3

Acknowledgements......................................................................................................4

Abstract........................................................................................................................5

Özet..............................................................................................................................6

Table of Contents ........................................................................................................7

List of Tables ……………….……………………………………………………......9

List of Abbreviations………………………………………………………………..10

CHAPTER I

Introduction……………………………………………………………………........11

    Historical Note and Literature Survey……………………………………….......11

    Layout of the Present Thesis ……………………………………………….........14

    Basic Concept and Definions ………………………………………………........16

          Sturm-Liouville Problem ……………………………………………............16

          Fourier Series …………………………………………………………..........18

          Laplace Transform ……………………………………………………..........19

          Fourier Transform (Bracewell, 1999)…………………………………..........19

   Basic formulas ……………………………………………………………….......20

          Burkholder-Davis-Gundy intequality ………………………………….........20

          Paley-Wiener-Zygmund ……………………………………………….........20

          Ito integral ……………………………………………………………..........21

          Ito Isometrie …………………………………………………………...........22

CHAPTER II

Methods of solutions of linear stochasric parabolic differential equations.............25   

Introduction …………………………………………………………………........25

    The Fourier series method …………………………………………………......25

    The Laplace transform solution ……………………………………………......36

    The Fourier transform solution …………………………………………….......41



8

CHAPTER III

The abstract Cauchy problem for the stochastic differential equation

in Hilbert spaces with the time-dependent positive operator ………………….45

    The main theorem on stability …………………………………………...….45

    Applications……………………………………………………………….....51

CHAPTER IV

The single step stable difference schemes……………………………………...57

    Rothe difference scheme with the standard Wiener process ………………..57

       The main theorem on stability and convergence ……………………….....60

      Applications …………………………………………………………....…..66

   Rothe difference scheme without the standard Wiener process ……………..72

      The main theorem on stability and convergence …………………………..73

      Applications ……………………………………………………………......75

   Crank-Nicholson difference scheme with the standard Wiener process……..80

       The main theorem on stability ………………………………………….....83

       Applications ………………………………………………………….........90

   Crank-Nicolson Difference Scheme without the Standard Wiener Process….93

       The main theorem on stability…………………………………………......93

       Applications …………………………………………………....………….96

CHAPTER V

Numerical results ………………………………………………………………100

The mixed problem with Dirichlet condition …………………………………..100

The mixed problem with Neumann condition ………………………………....105

CHAPTER VI

Conclusion ……………………………………………………………………..112

References ……………………………………………………………………...113

Appendice…………………………………………………………………….....118



9

List of Tables

                                                                                                                       page

Table 1 …………………………………………………………………………103

Table 2 ……………………………………………………………………...….105

Table 3 …………………………………………………………………………108

Table 4 ………………………………………………………………………....111

                                             

List of Abbreviations



10

SDE                                                   Stochastic Differential Equation

SPDE                                                Stochastic Parabolic Differential Equation

IBVP                                                 Initial-Boundary Value Problem

DS                                                     Difference Scheme

RDS                                                  Rothe Difference Scheme

PD                                                     Positive Definite

CNDS                                               Crank-Nicholson Difference Schemes



 

 

 
 
 

 

 
 

NEAR EAST UNIVERSITY 
 

INSTITUTE OF GRADUATE STUDIES 
 

      DEPARTMENT OF MATHEMATICS  
 
  
 
 
 
 
 
 
 

    OPERATOR APPROACH  
FOR THE SOLUTION OF  

STOCHASTIC DIFFERENTIAL EQUATIONS 
                               

 
  

  
 
 
 
 
 
 

 
 
 
 
 
 

PhD THESIS  
 
 
 
 

 
 
 
 
 
 

 

Ülker OKUR 

  
 
 
 
 
 
 
 

 

Nicosia 
 

September, 2023   

Ü
lker O

ku
r

 
O

p
erato

r ap
p

ro
ach

 fo
r th

e so
lu

tio
n

 
o

f Sto
ch

astic d
ifferen

tial eq
u

atio
n

s 
P

h
D

 TH
ESIS

 
2

0
2

3
 



 

 

1 
 
 
 

NEAR EAST UNIVERSITY 
 

INSTITUTE OF GRADUATE STUDIES 
 

DEPARTMENT OF MATHEMATICS  
 
 

 

 
 
 
 
 
 

OPERATOR APPROACH  
FOR THE SOLUTION OF  

STOCHASTIC DIFFERENTIAL EQUATIONS  
 
 

   
 

 

  
 

 

 
 
 
 
 

PhD THESIS  
 
 
 

 
 
 

 

Ülker OKUR  
 

 

 
 
 

 

Supervisor 
 

Prof. Dr. Allaberen ASHYRALYEV  
 
 
 
 
 
 
 

Nicosia 
 

September, 2023  
 

 

 

     

  



 

 

2 

Approval   
 

 
We certify that we have read the thesis submitted by Ülker Okur titled “Operator Approach 

for the solution of the stochastic differential equations” and that in our combined opinion 

it is fully adequate, in scope and in quality, as a thesis for the degree of Doctor of Philosophy 

in Mathematics. 

 

Examining Committee              Name-Surname                                        Signature 

 

Head of the Committee:  Prof. Dr. Deniz Ağırseven   …..…..……………    

Supervisor:                      Prof. Dr. Allaberen Ashyralyev  …..…..…………… 

Committee Member*:     Prof. Dr. Evren Hınçal            …..…..…………… 

Committee Member*:     Assoc. Prof. Dr. Nuriye Sancar                  …………………… 

Committee Member*:     Assoc. Prof. Dr. Okan Gerçek                    …………………… 

 

 

 

Approved by the Head of the Department 

 

13/09/2023 

 

……………………….. 

Prof. Dr. Evren Hınçal 

Head of Department  

 

 

Approved by the Institute of Graduate Studies 

 

13/09/2023 

 

Prof. Dr. Kemal Hüsnü Can Başer 

Head of the Institute 

 
 
 



 

 

3 

Declaration  
 

 
 

I hereby declare that all information, documents, analysis and results in this thesis have 

been collected and presented according to the academic rules and ethical guidelines of 

Institute of Graduate Studies, Near East University. I also declare that as required by 

these rules and conduct, I have fully cited and referenced information and data that are 

not original to this study. 

 
 
 
 
 
 

Ülker Okur 
 
 
 
 
 
 
                                                                                                                            13/09/2023



 

 

4 

Acknowledgments  
 

 
 

Though only my name appears on the cover of this dissertation, a great many 

people have contributed to its production.  

 

I will forever be thankful to my advisor, Professor Dr. Allaberen Ashralyev for 

the continuous support of my Ph.D. study and related research, for his patience, 

motivation, and immense knowledge. His guidance helped me in all the time of research 

and writing this thesis. He was and remains a role model for a scientist, mentor, and 

teacher.  

 

Besides my advisor, I would like to thank Professor Dr. Evren Hincal and 

Professor Dr. Feyzi Basar for his encouragement.  

 

Last but not the least, I would like to thank my family: my parents, my sister 

and my brother for the support they provided me through my entire life. 

 

 

 
 
 
                                                                                                  Ülker Okur 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

5 

Abstract 

Operator Approach for the solution of the stochastic differential equations  

Okur, Ülker 

PhD, Department of Mathematics 

Supervisor: Prof. Dr. Allaberen Ashyralyev 

September, 2023, 140 pages  

In the present thesis, an abstract Cauchy problem for stochastic differential 

equation of parabolic type in a Hilbert space with the time-dependent positive 

operators is considered. The stability of an abstract Cauchy problem for differential 

equation of parabolic type is established. In practice, theorems on stability estimates 

for the initial boundary value problem for one dimensional and multidimensional  

stochastic parabolic equation with coefficients dependent in t are proved. The main 

theorems of the convergence of difference schemes for approximate solutions of this 

abstract Cauchy problem for differential equation of parabolic type are presented. In 

applications, the convergence estimates for the solution of difference schemes for 

approximate solutions for four types of stochastic differential equations are obtained. 

Numerical results for the accuracy difference schemes of the approximate solution of 

Cauchy problem for stochastic differential equations with Dirichlet, Neumann 

conditions are proved. 
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Bu tezde, Hilbert uzayında zamana bağlı pozitif operatörlerle parabolik tipte 

stokastik diferansiyel denklem için soyut bir Cauchy problemi ele alınmıştır. 

Parabolik tipte bir diferansiyel denklem için soyut bir Cauchy probleminin kararlılığı 

belirlenir. Uygulamada kat sayılari, t'ye bağımlı olan tek boyutlu ve çok boyutlu 

stokastik parabolik denklem için başlangıç sınır değer problemi için kararlılık 

tahminlerine ilişkin teoremler kanıtlanmıştır. Bu soyut Cauchy probleminin parabolik 

tipteki diferansiyel denklemin yaklaşık çözümleri için fark şemalarının 

yakınsaklığının ana teoremleri sunulmuştur. Uygulamalarda, dört tür stokastik 

diferansiyel denklemlerin yaklaşık çözümleri için fark şemalarının 

çözümü ve yakınsaklık tahminleri elde edilir. Dirichlet, Neumann koşulları ile 

stokastik diferansiyel denklemler için Cauchy probleminin yaklaşık çözümünün 

doğruluk farkı şemaları için sayısal sonuçlar verilmiştir. 
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CHAPTER I

Introduction

Historical Note and Literature Survey

Initial value and the boundary value problems for stochastic ordinary and partial

differential equations take an important place in applied sciences and engineering

applications. Methods for numerically solving the initial value and the boundary

value problems for stochastic ordinary differential equations have been studied

and developed over the last three decades. It is known that most problems in

heat flow, fusion process, modelling financial instruments like options, bonds and

interest rates and other areas which are involved with uncertainty correspond to

SDE’s. The stochastic partial equations appear in several different applications.

One of them is the random evolution of systems with a spatial extension such

as random interface growth, random evolution of surfaces and fluids subject to

random forcing. In particular, for mathematical finance they have been used

to model term structure of finance, term structure of interest rates or volatility

surfaces.

When we study SDE’s, then we commonly uses the following shorthand no-

tation:  dxt = f(t, xt)dt+ g(t, xt)dwt

x(0) = x0,

where w ∈ Rd is a Wiener process and f : R × Rn → Rn is the drift function.

Let x0 ∈ Rn be the initial condition and let g(t, x) : R × Rn → Rn the diffusion

function. The stochastic process xt is called an Itô process. So, the SDE has

a deterministic part and a random part. For a better understanding, we can

describe the equation as

dxt = deterministic part dt+ randompart dwt

The random part is given by the Wiener process.

Methods of the solutions of stochastic partial differential equations (SPDE’s)

have been studied extensively. A number of stochastic processes is given by
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(SDE), i.e. they are solutions of the corresponding integral equations. A func-

tion, which is dependent of these stochastic processes for example a portfolio of

shares can also be represented by means of a stochastic integral equation. The

stochastic integrals, which possess in the stochastics of the financial markets are

of paramount importance. The most algorithms that are used for the solution of

ordinary differential equations will work very poorly for SDEs, which have very

poor numerical convergence. Many stochastic partial differential equations are

popular to investigate the solutions to stochastic equations in Hilbert and Banach

spaces with the method of operators as a tool. Also estimate of the convergence

by the difference between the exact and approximate solution have been studied

extensively by some researches.

SDE can be derived as models of indeterministic systems and considered as

methods for solving boundary value problems and have been studied by many

authors (E. Pardoux, 1979; S. Peszat and J Zabczyk, 2000). The stochastic

partial differential equations have been studied by many authors (A. Yurtsever

and A. Yazliyev, 2000; G. Da Prato and A. Lunardi, 1998; Ashyralyev A. and

G. Michaletzky, 1993; A. Ashyralyev and I. Hasgur, 1995; A. Yurtsever and A.

Yazliyev, 2000; A. Ashyralyev and M.E. San, 2012). SDE can be derived as mod-

els of indeterministic systems and considered as methods for solving boundary

value problems and have been studied by (E. Pardoux, 1979; and S. Peszat and

J. Zabczyk, 2000). Numerical solutions of stochastic differential equations and

stochastic partial differential equations have been studied of many different al-

gorithms by (P. Kloeden and E. Platen, 1995) The partial differential equations

of parabolic type in the Banach space have been extensively studied by many

researchers ( A. Ashyralyev, P.E. Sobolevski, 1994; A. Ashyralyev and M. Akat,

2011; A. Ashyralyev and P.E. Sobolevskii, 2004). Many various properties of

boundary value problems for partial differential equations, of stability of DS’s

for partial differential equations, and of summation of Fourier series is studied in

various papers (P.E. Sobolevskii, 2005; Krein, S.G., 1966; Prato G. Da, Grisvard,

P., 1975; H.O. Fattorini, 1985). The operator approach of permitted essentially

extends a class of problems where the theory of difference methods is applicable
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are studied in many parers by (Ashyralyev, A., Michaletzky,G.,1993; A. Ashyra-

lyev and I. Hasgur, 1995; A. Yurtsever and A. Yazliyev, 2000; A. Ashyralyev,

2008; A. Ashyralyev and M.E. San, 2012; . E. San, 2012; A. Ashyralyev, and

M. Akat, 2011; N. Aggez, N., and M. Ashyralyyewa, 2012; Hausenblas, E., 2002).

The optimal regularity of the stochastic convolution is studied by (G. Da Prato

and A. Lunardi, 1998). A proof of the convergence of finite difference approxima-

tions of the solution of initial value problem for the nonlinear stochastic partial

differential equation of the form is presented by (T. Shardlow, 1998). Neverthe-

less the 3/2-th order of approximation of implicit and CNDS’s for the solution

of the initial value Cauchy problem are presented (A. Ashyralyev and I. Hasgur,

1995; A. Yurtsever and A. Yazliyev, 2000). The modified CNDS for the approxi-

mate solution of the initial value Cauchy problem was studied in (A. Ashyralyev,

2008). The multipoint nonlocal-boundary value problem for stochastic parabolic

differential equations (SPDE’s) in Hilbert spaceis studied by (A. Ashyralyev and

M.E. San, 2012). E.J. Allen, S.J. Novosel, and Z. Zhang.

In the book (A. Ashyralyev and P.E. Sobolevskii, 1994), the well-posedness

of an abstract Cauchy problem for differential equation of parabolic type

v′(t) + A(t)v(t) = f(t), 0 < t < T, v(0) = v0 (1)

in an arbitrary Banach space E with the dependent positive operators A(t) was

established. Theorems on well-posedness of initial-boundary value problems for

parabolic equations in various Banach spaces were proved. The high order of

accuracy DS’s generated by an exact difference scheme or by the Taylor’s de-

composition on the two points for the numerical solutions of the problem (1)

were presented. The well-posedness of these SD’s in various Banach spaces was

studied. The stability and coercive stability estimates in various Banach norms

for the solutions of the high order of accuracy DS’s of the mixed type boundary

value problems for parabolic equations were obtained.

The exact DS approach permitted essentially to extend a class of problems

where the theory of difference methods is applicable. Namely, now it is possible

to investigate the single step DS’s of numerical solutions for stochastic parabolic

equations with depended coeffcients A(t) in t and the space variables.
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IBVP’s for stochastic partial differential equations of parabolic type with time-

dependent coefficients and with white noise in the right-hand side have been

investigated by many scientists (see, for examples, (I. I. Gikhman, 1980; A. Ya.

Dorogovtsev, S.D. Īvasishen, A.G. Kukush, 1985;H. M. Perun,2008;A. Ichikawa,

1978;I. I. Gikhman, 1979;R. F. Curtain and A. J. Pritchard, 1976;G. Da prato

and A. Lunardi, 2007), and the references given therein).

In the papers (I. I. Gikhman, 1980; A. Ya. Dorogovtsev, S.D. Īvasishen,

A.G. Kukush, 1985;H. M. Perun, 2008) boundary-value problems for second-

order parabolic equations with white noise were investigated by different meth-

ods. In the paper (H. M. Perun, 2008) a theorem on the well-posedness of the

Cauchy problem for a linear higher-order stochastic equation of parabolic type

with time-dependent coefficients and continuous perturbations whose solutions

are subjected to pulse action at fixed times was proved.

In the paper (A. Ichikawa, 1978) linear stochastic integral evolution equations

were studied. They were associated with formal stochastic partial differential

equations as well as stochastic delay differential equations. The existence and

uniqueness of a solution was established for systems with disturbances depending

on the state, both current and past, using semigroups or more generally evolution

operators and known properties of such operators. In future, we will consider

integral equations described by mild evolution operators which were introduced

in (G. Da prato and A. Lunardi; 2007).

In the PhD Thesis M.E. San, application of semigroups method for stochastic

parabolic equations with depended in the space variables operator A(t) ≡ A was

considered. The single step DS’s for numerical solutions for the local and nonlocal

problems for stochastic parabolic equations with depended in the space variables

coeficients were studied.

1.1 Layout of the Present Thesis

In the present chapter we consider the initial value problem for the stochastic

partial differential equation of parabolic type and the single-step exact DS for

the solution of this problem.
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It is well known that various IBVP’s for stochastic parabolic equations can

be reduced to the Cauchy problem for the first order SDE

dv(t) + A(t)v(t)dt = f(t, w(t))dt+ g(t, w(t))dwt, 0 < t < T, v(0) = φ (2)

in a Hilbert space H with a self adjoint PD operator A(t) dependent in t with

the closed domain D(A(t)) ⊂ H and the restriction A(t) ≥ δI, where δ > 0 and

I is the identity operator. Let wt =
√
tξ be the standard Wiener process on the

probability space (Π, F, P ) and ξ ∈ N(0, 1) be the standard normal distribution

with mean µ = 0 and variance σ = 1. Here v(t) and f(t, wt) are the unknown

and the given abstract functions.

The main goal of this study is to construct and investigate the stable DS’s for

the approximate solution of problem (2). The RDS and CNDS generated by the

single step DS for the solution of problem (2) are presented. The convergence

estimates for the solution of these difference schemes are established. In applica-

tions, the convergence estimates for the solution of DS’s for stochastic parabolic

problems are established. For the numerical study, procedure of modified Gauss

elimination method is used to solve these DS’s.

Let us briefly describe the contents of the work. This study consists of intro-

duction and five chapters.

The first chapter a historical note and literature survey.

The second chapter is to study o the linear stochastic parabolic equations. Ap-

plying results of Chapter One and Fourier series, Laplace and Fourier transform

methods, we obtain the exact solution of several stochastic parabolic equations

with dependent coefficients.

In the third chapter, the main theorem on stability of the Linear stochastic

parabolic equations is established. In applications of the main theorem, stability

estimates for the solutions of four problems of the SDE’s with local and nonlocal

conditions are obtained.

In the fourth chapter, the initial value problem (2) for the stochastic par-

tial differential equation of parabolic type is considered. The single-step exact
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difference scheme

v(tk)− v(tk−1) +
(
I − v(tk, tk−1)

)
v(tk−1) =

∫ tk

tk−1

v(tk, s)f(s, ws)dws,

tk = kτ , 1 ≤ k ≤ N,Nτ = T, v(0) = 0

for the solution of the Cauchy problem (2) is presented.

Also, in the fourth chapter, approximate formulas for v(tk, tk−1) and∫ tk
tk−1

v(tk, s)f(s, ws)dws are presented. Applying these formulas, 1/2-th order of

accuracy in t RDS for the approximate solution of problem (2) generated by

the single step DS for the approximate solution of problem (2) is presented. The

main theorem on convergence of RDS in a Hilbert space is established. Applica-

tions, the convergence estimates for the solution of initial-boundary problems for

stochastic parabolic equations with dependent coefficients are obtained.

Furthermore, the fourth chapter also contains, applying more accurate ap-

proximate formulas for v(tk, tk−1) and∫ tk
tk−1

v(tk, s)f(s, ws)dws the CNDS is constructed. The main theorem on conver-

gence of CNDS in a Hilbert space is established. The fifth chapter is devoted to

the numerical analysis. The sixth chapter is conclusion.

Three extended abstracts are published in AIP Conferences. First paper was

published in AIP of MPDSIDA 2023, the second ICMS 2022, third paper was

published in ICAAM 2022. One paper was published in MDPI Journal AXIOM

in July 2023.

Basic Concept and Definions

This section highlights basic concepts and definitions on the theory of ordinary

and partial differential equations leading us to conduct and understand the works

in this thesis.

Sturm-Liouville Problem

(Arfken, Weber, 2005)

We denote the Sturm Liouville operator as

L[v] = − d

dx

[
p(x)

dv

dx

]
+ q(x)v
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and consider the Sturm Liouville equation

L[v] + λv = 0, (3)

where p > 0 and p and q are continuous functions on the interval [0, l] with

local boundary conditions

α1v(0) + α2p(0)v
′
(0) = 0; β1v(l) + β2p(l)v

′
(l) = 0, (4)

where α2
1 + α2

2 ̸= 0 and β2
1 + β2

2 ̸= 0 or nonlocal boundary conditions

v(0)− v(l) = 0, v′(0)− v′(l) = 0, (5)

The problem of finding a complex number λ = µ such that the boundary value

problems (3), (4) or (3), (5) have a non trivial solution are called Sturm-Liouville

problems.

The value λ = µ is called an eigenvalue and the corresponding solution y(x, µ)

is called an eigenfunction.

We will consider three types of Sturm-Liouville problem.

The Sturm-Liouville Problem with Dirichlet Condition

−u′′
(x) + λu(x) = 0, 0 < x < l, u(0) = u(l) = 0

has solution

uk(x) = sin
kx

l

and

λk = −
(
kπ

l

)2

, k = 1, 2, ....

In the case when l = π

uk(x) = sin kx

and

λk = −k2, k = 1, 2, ....
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The Sturm-Liouville Problem with Neumann Condition

−u′′
(x) + λu(x) = 0, 0 < x < l, u′(0) = u′(l) = 0

has solution

uk(x) = cos
kx

l

and

λk = (
kπ

l
), k = 0, 1, 2, ....

In the case when l = π

uk(x) = cos kx

and

λk = −k2, k = 0, 1, 2, ....

The Sturm-Liouville Problem with Nonlocal Conditions

−u′′
(x)− λu(x) = 0, 0 < x < l, u(0) = u(l), u

′
(0) = u

′
(l)

has solution

uk(x) = cos 2kx, k = 0, 1, 2, ...

uk(x) = sin 2kx, k = 1, 2, ...

and

λk = 4k2, k = 0, 1, 2, ....

Fourier Series (Brown, Churchyll, 1993)

Let l be a fixed number and f(x) be a periodic function with periodic 2l, defined

on (−l, l). The Fourier series of f(x) is a way of expanding the function f(x) into

an infinite series involving sins and cosines :

f(x) =
a0
2

+
∞∑
n=1

an cos(
nπx

l
) +

∞∑
n=1

bn sin(
nπx

l
), (6)



19

where a0, an and bn called the Fourier coefficientes of f(x), are given by these

formulas

a0 =
1

l

∫ l

−l

f(x)dx, an =
1

l

∫ l

−l

f(x) cos(
nπx

p
)dx, n = 1, 2, ...

and

bn =
1

l

∫ i

−l

sin(
nπx

p
)dx, n = 1, 2, ....

Laplace Transform (Franklyn,1 949)

Let f(t) be defined for t ⩾ 0. The Laplace transform of f(t) denoted by F (s) or

L{f(t)}, is an integral transform given by the integral

F (s) = L{f(t)} =

∞∫
0

f(t)e−stdt

provided that this (improper) integral exsists i.e that this integral is conver-

gent.

The Laplace transform is operation that transforms a function of t (i.e a

function of time domain), defined on [0,∞] to a function of s (i.e of frequency

domain). The Laplace transform can be used in some cases to solve linear dif-

ferential equations with given initial conditions. F (s) is Laplace transform or

simply transform of f(t). Together the two functions f(t) and F (s) are called a

Laplace transform pair.

Fourier Transform (Bracewell, 1999)

The Fourier transform of a function f = f(x) denoted by F (s) or F{f(x)}, is an

integral transform given by the integral

F (s) = F{f(x)} =

∫ ∞

−∞
f(x)e−xsdx.

Basic Formulas

We will need an estimate for stochastic integrals , that is very paricular case of

the Burkholder-Davis-Gundy intequality.
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Burkholder-Davis-Gundy Intequality

Let (Π, F, Ft, P ) be as stochastic basis. H a hilbert space. Then for any p[∈ 1,∞[

there exists a constantM > 0 such that for any Ft-adapted measurable stochastic

process G : [0, T ]× Π → H satisfying
∫ T

0
∥G(t)∥2dt <∞ almost surely one has

E sup
0≤t≤T

∥
t∫

0

G(s)dws∥p ≤M E
( t∫

0

∥G(s)∥pdws

) p
2 .

Paley-Wiener-Zygmund

By theorem of Paley-Wiener-Zygmund(1933) the path of Wiener process is almost

nowhere differentiable, which is shown in the following theorem.

The Wiener process or the standard Wiener process is defined by the following

coditions:

• w0 = 0.

• The wiener process w has independent increments 0 < t1 < t2 < t3 < t4 <

T , such that wt4 − wt3 and wt2 − wt1 are independent stochastic variables.

• For t1 < t2 the stochastic variable wt2 − wt1 has the normal distribution

N(0,
√
t2 > t1)

We denote that (dwt)
2 = dt and dwt =

√
tξdt, where dwt denotes the differential

form of the wiener process. By applying the stochastic integral of the random

part is also based on the Wiener process and on the Itô formula.

For more information see in (R.F. Curtain and P.L. Falb, 1971) and (A. Kar-

czewska, 2005).

Now let us describe more about the wiener process. Let wt be an H-valued

random process on T . Then wt is a wiener process if

• E{wt − ws} = 0 for all s, t in [0, T ],

• wt is continuous in t if P (wt) = 1,

• E{[wt − ws]} ◦ {[wt − ws]}2 = (t − s)w for all s, t in [0, T ], where w is

compact, positive, bounded trace class operator mapping H into itself,
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• E{||wt − ws||2} <∞ for all s, t in [0, T ].

The operator w has countable eigenvalues λi > 0 for all i such that Tr(w) =∑∞
i=0 λi. There is also a complete orthonormal basis {ei} of H, consequently

wei = λi. Curtain, Ruth F., and Peter L. Falb studied in the paper (R.F. Curtain

and P.L. Falb, 1971) over the wiener process and devolep stochastic integral in a

Hilbert space H.

Theorem 1.4.2.1 Let (wt)t≥0 be a standard Wiener process given on the prob-

ability space (Π, F, P ). Then, we get

P{w : t→ wt is nowhere differentiable} = 1.

For the proof see (N. Gantert, 2012) in Satz 21.17, . Moreover, the solution

of this problem requires non smoothness function f(t, wt) for t > 0, since the

function f(t, wt) depends on the Wiener process wt. The equation is definite in

stochastic. A probability space (Π, F, P ) is equipped a right-continuous filtration

{Ft}t≥0 = F such that F0 contains all sets of P-measures zero. The wiener process

is assumed to be adapted to {Ft}t≥0 and for every t > s the increments wt − ws

are independent of Ft.

Likewise we regard the stochastic parabolic equation with the smooth func-

tion f(t), which is deterministic. This means f(t, wt) = f(t) ∈ L2([0, T ]) map

to f(t) : [0, T ] → R. The stochastic integral
∫ T

0
f(t)dwt has a centered distri-

bution
∫ T

0
f(t)dwt ∼ N(0,

∫ T

0
|f(t)|2dt) with mean E[

∫ T

0
f(t)dwt] = 0. For more

information see (N. Privault, 2013) in Propostition 4.6.

Itô Integral

SDEs contain a variable which has random white noise calculated as the derivative

of the Wiener process or Brownion motion. The wiener process is almost surely

nowhere differentiable. So it requires its own rules of calculus. These are the Ito

stochastic calculus and the Stratonovich stochastic calculus.

Next we will use a definition that provides the Itô integral, in order to un-

derstand it, however, we need to look at two other definitions. The following

definition describes the adapted process.
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Definition 1.4.3.1 Let (Π, F, P ) be a probability space. Furthermore let the

segment interval [0, T ] be partitioned in 0 = t1 ≤ t2 ≤ . . . ≤ tN = T and

ti − ti−1 = τ i. Assume that F = (Fτ i)τ i∈[0,T ] be a filtration (filtered Algebra)

such that F = ∪ti∈[0,T ]Fτ i is the sigma Algebra F. Additionally let (S,E) be a

measurable space and X : τ i → S be a stochastic process. The process X is

adapted to the filtration (Fτ i)τ i∈[0,T ], if the random variable Xi : τ i ×Π → S is a

(Ft,E)-measurable function for each ti ∈ [0, T ].

We further consider a subspace in the next definition.

Definition 1.4.3.2 Let M2
w([0, T ], H1) be a subspace of piecewise continuous

functions inH. Additionally let the function f(t, wt) be in the space ofM2
w([0, T ], H1).

Assume that Xi ∈ (Fτ )τ∈[0,T ]. For the partitioned segment 0 = t0 ≤ t1 ≤ . . . ≤

tN = T and ti − ti−1 = τ i, we have the stochastic definite integral of

f(t, wt) =
N∑
i=1

Xi(wt)1ti−1≤t≤ti

over the interval [ti−1, ti] ⊂ [0, T ] is defined as
∫ T

0
f(t, wt)dwt =

∫ T

0
1[ti−1,ti](t)dwt

with in particular
∫ ti−1

ti
dwt =

∫ T

0
1[ti−1,ti](t)dwt = wti−1

− wti .

Finally, we can proceed to define the Itô integral.

Definition 1.4.3.3 Let the definition of Adapted process and the function E
∫ T

0
|f(t)|2dt

be satisfied. Additionally, let be X ∈ Fti and E[X2] for all ti ∈ [0, T ]. For

f(t, wt) ∈M2
w we have the Itô integral

I(f)(wt) =

∫ T

0

f(t, wt)dwt =
N∑
i=1

Xi(wt)(wti − wti−1
).

Itô Isometrie

The next lemma is a useful result concerning Itô Isometrie on M2
w([0, T ], H1) for

our purposes. Before we analyze this lemma, we recall some well-known properties

in the following list, which we need it later in the announced lemma.

(1) Let Y1, . . . , Yn be independently random variables with E(Yt) = 0 for every

t = 1, . . . , n. Assume that the filtration Ft = σ(Y1, . . . , Yn) and Xt =∑t
s=1 Ys. Then for r < s and s < r, we have

E(Yr|Ft) = 0.
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(2) For finite sums the expectation is linear such that

E
( n∑

i=1

Xi

)
=

n∑
i=1

E(Xi).

Now we can establish the announced lemma.

Lemma 1.4.4.1 Let the definition 1.4.3.3 be satisfied. The Itô integral I is an

isometrie of M2
w ⊂ L2(dwt × dt) in L2(dwt), such that

∥I(f(t, wt))∥L2(Π) = ∥f(t, wt)∥L2(Π×[0,T ]), ∀f ∈M2
w.

Proof For L2-Norm of I(f(t, wt)), we have

∥I(f(t, wt))∥2L2(Π) = E
[( ∫ T

0

X(w)dwt

)2]
= E

[( N∑
i=1

Xi(w)(wti − wti−1
)
)2]

= E
[ N∑

i<j

XiXj

(
wti − wti−1

)(
wtj − wtj−1

)]
+
[
E

N∑
i=j

(
Xi(w)

)2(
wti − wti−1

)2]

= E
[ N∑

i<j

XiXj

(
wti −wti−1

)]
E
[(
wtj −wtj−1

)
|Ftj

]
+E
[ N∑

i=j

(
Xi(w)

)2(
wti −wti−1

)2]
N∑
i=j

E
(
Xi(w)

)2E(wti − wti−1

)2
=

N∑
i=j

EX2
i (w)

(
ti − ti−1

)
=

N∑
i=j

EX2
i (w)1ti<t<ti−1

(
ti − ti−1

)
= E

∫ T

0

∥f(t, wt)∥2dt = ∥f(t, wt)∥2L2(Π×[0,T ]).

In the fourth equation we use the properties (1) and (2) above. We apply the

property (3) in the fifth equation. This is proved.

As an application of the Ito isometry, we note that

E[
( ∫ T

0

f(t, wt)dwt

)2
] = E[

∫ T

0

∥f(t, wt)∥2dt] =
∫ T

0

E[∥f(t, wt)∥2]dt

and analogously, we note that

E[(
∫ T

0

wtdwt)
2] = E[

∫ T

0

|wt|2dt] =
∫ T

0

E[|wt|2]dt =
∫ T

0

tdt =
1

2
T 2.
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The above lemma show that the map is an isometry, so it is continuous.

Here we summerize the Itô formula by integration with respect to the Brownion

motion, which is the process

I(f)(wt) =

∫ T

0

f(t, wt)dwt =
N∑
i=1

Xi(wt)(wti − wti−1
),

where the smooth function f(t, wt) = I[0,T ](t) is measurable with respect to the

filtration F, if for every ti ∈ [0, T ] the restriction f : [0, T ] × Π → R is a mea-

surable funciton for every ti. Then every step is measurable. Furthermore every

continuous and adapted proces is measurable. Third, the process is f(t, wt) is

measurable. For more information about the Itô process, please see in the intro-

duction.
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CHAPTER II

Methods of Solution of Linear Stochastic

Parabolic Differential Equations

Introduction

Linear stochastic parabolic equations have the significant role in natural and ap-

plied sciences. Therefore, it is important to study stochastic parabolic equations.

Therefore, the main aim of this chapter is to study of the stochastic parabolic

equations with dependent coefficients. Applying results of Chapter One and

Fourier series, Laplace and Fourier transform methods, we obtain the exact solu-

tion of several stochastic parabolic equations with dependent in t coefficients.

The Fourier Series Method

First, we consider initial boundary value problem



du (t, x)− e−tuxx (t, x) dt = e−t sinxdwt + (−e−t + e−2t) sinxwtdt,

x ∈ (0, π) , 0 < t < T,

u(0, x) = 0, x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, T ]

(7)

for one dimensional stochastic parabolic equations with dependent coefficients.

For solving this problem, we consider the Sturm-Liouville problem

−u′′(x)− λu(x) = 0, u(π) = u(0) = 0, 0 < x < π

generated by the space operator of problem (7). As noted in Chapter 1 the

solution of this Sturm-Liouville problem is

λk = k2, uk(x) = sin kx, k = 1, 2, ....

Then, we obtain Fourier series solution of mixed problem (7) by the formula
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u(t, x) =
∞∑
k=1

Ak(t) sin kx, (8)

where Ak(t) are unknown functions. Applying this equation and initial condition,

we get
∞∑
k=1

dAk(t) sin kx+ e−t

∞∑
k=1

k2Ak(t) sin kxdt

= e−t sinxdwt +
(
−e−t + e−2t

)
sinxdt, x ∈ (0, π) , 0 < t < T

and
∞∑
k=1

Ak(0) sin(kx) = 0, 0 < x < π.

Equating coefficients sin kx, k = 1, 2, ...to zero, we get the initial value prob-

lems


dA1(t) + e−tA1(t)dt = e−tdwt + (−e−t + e−2t)wtdt, 0 < t < T,

A1(0) = 0,

(9)


dAk(t) + k2e−tAk(t)dt = 0, 0 < t < T,

Ak(0) = 0, k = 2, 3, · · ·

(10)

for the ordinary differential equations. First, we obtain A1(t). Putting t = s,we

get

dA1(s) + e−sA1(s)ds = e−sdws +
(
−e−s + e−2s

)
wsds.

Multiplying by e−e−s
, we get

e−e−s

dA1(s) + e−e−s

e−sA1(s)ds = e−e−s [
e−sdws +

(
−e−s + e−2s

)
wsds

]
.

We have that

e−e−s

dA1(s) + e−e−s

e−sA1(s)ds = d
(
e−e−s

A1(s)
)
.

Therefore, taking the integral with respect to s from o to t, we get

t∫
0

d
(
e−e−s

A1(s)
)
=

t∫
0

e−e−s [
e−sdws +

(
−e−s + e−2s

)
wsds

]
.
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Then

e−e−t

A1(t)− e−1A1(0) =

t∫
0

e−e−s [
e−sdws +

(
−e−s + e−2s

)
wsds

]
or

e−e−t

A1(t) =

t∫
0

e−e−s [
e−sdws +

(
−e−s + e−2s

)
wsds

]
.

Since
t∫

0

e−e−s

e−sdws = e−e−t

e−twt −
t∫

0

wsd
(
e−e−s

e−s
)

= e−e−t

e−twt −
t∫

0

e−e−s (−e−s + e−2s
)
wsds,

we can write

A1(t) = ee
−t

e−e−t

e−twt = e−twt.

Second, we obtain Ak(t), k ̸= 1. Putting t = s,we get

dAk(s) + k2e−sAk(s)ds = 0.

Multiplying by e−k2e−s
, we get

e−k2e−s

dAk(s) + k2e−k2e−s

e−sAk(s)ds = 0.

We have that

e−k2e−s

dAk(s) + k2e−k2e−s

e−sAk(s)ds = d
(
e−k2e−s

Ak(s)
)
.

Therefore, taking the integral with respect to s from o to t, we get

t∫
0

d
(
e−k2e−s

Ak(s)
)
= 0.

Then

e−k2e−t

Ak(t)− e−k2Ak(0) = 0

or

Ak(t) = 0.
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Then, applying formula (8), we can obtain Fourier series solution of mixed prob-

lem (7) by the following formula

u(t, x) =
∞∑
k=1

Ak(t) sin kx = A1(t) sinx = e−twt sinx.

Note that using similar procedure one can obtain the solution of following

initial boundary value problem

du(t, x)−
n∑

r=1

αr(t)
∂2u(t,x)

∂x2
r
dt = g(t, x)dwt + f(t, x)dt,

x = (x1, ..., xn) ∈ Ω, 0 < t < T,

u(0, x) = φ(x), x ∈ Ω,

u(t, x) = 0, x ∈ S, t ∈ [0, T ]

(11)

for the multidimensional stochastic parabolic equations with dependent coeffi-

cients in t. Suppose that αr(t) > α > 0 and g (t, x) , f (t, x) , (t, x) ∈ (0, T ] × Ω,

φ(x)
(
x ∈ Ω

)
are given smooth functions in x. Here and in future Ω is the unit

open cube in the n−dimensional Euclidean space Rn (0 < xk < 1, 1 ≤ k ≤ n) with

the boundary

S,Ω = Ω ∪ S.

However Fourier series method described in solving (11) can be used only in

the case when (11) has constant coefficients in x.

Second, we consider initial boundary value problem



du (t, x)− e−tuxx (t, x) dt

= e−4t cos 2xdwt + (−4e−4t + 4e−5t) cos 2xwtdt,

x ∈ (0, π) , 0 < t < T,

u(0, x) = 0, x ∈ [0, π],

ux(t, 0) = ux(t, π) = 0, t ∈ [0, T ]

(12)
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for one dimensional stochastic parabolic equation with dependent in t coefficients.

For solving this problem, we consider the Sturm-Liouville problem

−u′′(x)− λu(x) = 0, u′(π) = u′(0) = 0, 0 < x < π

generated by the space operator of problem (12). As noted in Chapter 2 the

solution of this Sturm-Liouville problem is

λk = −k2, uk(x) = cos(kx), k = 0, 1, 2, ....

Thus we will seek the Fourier series solution of (12) by the formula

u(t, x) =
∞∑
k=0

Ak(t) cos(kx), (13)

where Ak(t), k = 0, 1, ... are unknown functions. Putting u(t, x) into the equation

(12) and using the given initial condition, we obtain

∞∑
k=0

dAk(t) cos(kx) + e−t

∞∑
k=1

k2Ak(t) cos(kx)dt

= e−4t cos 2xdwt +
(
−4e−4t + 4e−5t

)
cos 2xdt, 0 < x < π

and

u(0, x) =
∞∑
k=0

Ak(0) cos(kx) = 0, 0 ≤ x ≤ π.

Equating coeficients cos kx, k = 0, 1, 2, ... to zero, we get the initial value

problems 
dA2(t) + 4e−tA2(t)dt

= e−4tdwt + (−4e−4t + 4e−5t)wtdt, 0 < t < T,

A2(0) = 0, dAk(t) + k2e−tAk(t)dt = 0, 0 < t < T,

Ak(0) = 0, k = 0, 1, 3, ...

for the ordinary differential equations. First, we obtainA2(t). Putting t = s,we

get

dA2(s) + 4e−sA2(s)ds = e−4sdw +
(
−4e−4s + 4e−5s

)
wsds.

Multiplying by e−4e−s
, we get

e−4e−s

dA2(s) + e−4e−s

4e−sA2(s)ds
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= e−4e−s

[e−4sdws +
(
−4e−4s + 4e−5s

)
wsds].

We have that

e−4e−s

dA2(s) + 4e−4e−s

e−sA2(s)ds = d(e−4e−s

A2(s)).

Therefore, taking the integral with respect to s from 0 to t, we get

t∫
0

d
(
e−4e−s

A2(s)
)
=

t∫
0

e−4e−s

[e−4sdws +
(
−4e−4s + 4e−5s

)
wsds].

Then

e−4e−t

A2(t)− 4e−4A2(0) =

t∫
0

e−4e−s

[e−4sdws +
(
−4e−4s + 4e−5s

)
wsds]

or

e−4e−t

A2(t) =

t∫
0

e−4e−s

[e−4sdws +
(
−4e−4s + 4e−5s

)
wsds].

Since
t∫

0

e−4e−s

e−4sdws = e−4e−t

e−4twt −
t∫

0

wsd
(
e−4e−s

e−4s
)

= e−4e−t

e−4twt −
t∫

0

e−4e−s (−4e−4s + 4e−5s
)
wsds,

we can write

A2(t) = e−4e−t

e−4twte
4e−t

= e−4twt.

Second, we obtain Ak(t), k ̸= 2. Putting t = s,we get

dAk(s) + k2e−sAk(s)ds = 0.

Multiplying by e−k2e−s
, we get

e−k2e−s

dAk(s) + k2e−k2e−s

e−4sAk(s)ds = 0.

We have that

e−k2e−s

dAk(s) + k2e−k2e−s

e−sAk(s)ds = d
(
e−k2e−s

Ak(s)
)
.

Therefore, taking the integral with respect to s from o to t, we get
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t∫
0

d
(
e−k2e−s

Ak(s)
)
= 0.

Then

e−k2e−t

Ak(t)− e−k2Ak(0) = 0

or

Ak(t) = 0.

Then, applying formula (13), we can obtain Fourier series solution of mixed prob-

lem (12) by the following formula

u(t, x) =
∞∑
k=1

Ak(t) cos k2x = A2(t) cos 2x = e−4twt cos 2x

u(t, x) = e−4t cos 2xwt.

Note that using similar procedure one can obtain the solution of following

initial boundary value problem

du(t, x)−
n∑

r=1

αr(t)
∂2u(t,x)

∂x2
r
dt = g(t, x)dwt + f(t, x)dt,

x = (x1, ..., xn) ∈ Ω, 0 < t < T,

u(0, x) = φ(x), x ∈ Ω,

∂u
∂m

(t, x) = 0, x ∈ S, t ∈ [0, T ]

(14)

for the multidimensional stochastic parabolic equations with dependent coef-

ficients in t. Suppose that αr(t) > α > 0 and f (t, x) , g (t, x) , (t, x) ∈ (0, T ]× Ω,

φ(x)
(
x ∈ Ω

)
are given smooth functions in x. Here and in future m is the normal

to S. However Fourier series method described in solving (14) can be used only

in the case when (14) has constant coefficients in x.

Third, we consider initial boundary value problem
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du (t, x)− e−4tuxx (t, x) dt

= e−4t sin 2xdwt + (−4e−4t + 4e−8t) sin 2xwtdt,

x ∈ (0, π) , 0 < t < T,

u(0, x) = 0, x ∈ [0, π],

u(t, 0) = u(t, π), ux(t, 0) = ux(t, π), t ∈ [0, T ]

(15)

for one dimensional stochastic parabolic equations with dependent coefficients.

For solving this problem, we consider the Sturm Liouville problem

−u′′(x)− λu(x) = 0, 0 < x < π

u(π) = u(0), u′(π) = u′(0) generated by the space operator of problem (15).

As noted in Chapter 1 the solution of this Sturm-Liouville problem is

λk = −4k2, k = 0, 1, 2, ...,

uk(x) = sin(2kx), k = 1, 2, ...., uk(x) = sin(2kx), k = 1, 2, ...

Then, applying formulas

u(t, x) =
∞∑
k=1

Ak(t) sin(2kx) +
∞∑
k=0

Bk(t) cos(2kx), (16)

where Ak(t), 1, 2, ... and Bk(t), k = 0, 1, ... are unknown functions. Putting u(t, x)

into the equation (15) and using the given initial condition, we obtain

∞∑
k=1

dAk(t) cos(2kx) +
∞∑
k=0

dBk(t) sin(2kx)

+e−4t

∞∑
k=1

4k2Ak(t) cos(2kx) + e−4t

∞∑
k=0

4k2Bk(t) sin(2kx)

= e−4t sin(2x)dwt +
(
−4e−4t + 4e−8t

)
sin(2x)wtdt, x ∈ (0, π), 0 < t < 1

and

u(0, x) =
∞∑
k=1

Ak(0) cos(2kx) +
∞∑
k=0

Bk(0) sin(2kx) = 0, 0 ≤ x ≤ π.
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Equating coefficients of cos(2kx), k = 0, 1, ... and sin(2kx), k = 1, 2, ... to zero, we

get


dB1(t) + 4e−4tB1(t)dt

= e−4t sin(2x)dwt + (−4e−4t + 4e−8t) sin(2x)dt, 0 < t < T

B1(0) = 0, dBk(t) + 4k2e−4tBk(t)dt = 0, 0 < t < T

Bk(0) = 0, k = 2, 3, ...

and  dAk(t) + 4k2e−4tAk(t)dt = 0, 0 < t < T

Ak(0) = 0, k = 0, 1, ....

We obtain Ak(t) for the ordinary differential equations. Putting t = s,we get

dAk(s) + 4k2e−4sAk(s)ds = 0.

Multiplying by e−4k2e−4s
, we get

e−4k2e−4s

dAk(s) + 4k2e−4k2e−4s

e−4sAk(s)ds = 0.

We have that

e−4k2e−4s

dAk(s) + 4k2e−4k2e−4s

e−4sAk(s)ds = d
(
e−4k2e−4s

Ak(s)
)
.

Therefore, taking the integral with respect to s from 0 to t, we get

t∫
0

d
(
e−4k2e−4s

Ak(s)
)
= 0.

Then

e−4k2e−4t

Ak(t)− e−4k2Ak(0) = 0

or

Ak(t) = 0.

For Bk(t), t = 2, 3, ..., we have

dBk(t) + 4k2e−4tBk(t)ds = 0.
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Multiplying with e−4k2e−4s
an set t = s, we get

e−4k2e−4s

dBk(s) + 4k2e−4k2e−4s

e−4sBk(s)ds =

t∫
0

d(e−4k2e−4s

Bk(s)).

∫
0

td(e−4k2e−4s

Bk(s)) = e−4k2e−4t

Bk(t)− e−4k2Bk(0).

Then

Bk(t) = 0.

For B1(t), we have

dB1(s) + 4e−4sB1(s)ds = e−4tdws +
(
−4e−4s + 4e−8s

)
wsds.

Multiplying by e−e−4s
, we get

e−e−4s

dB1(s) + e−e−4s

4e−4sB1(s)ds

= e−e−4s

[e−4tdws +
(
−4e−4s + 4e−8s

)
wsds].

We have that

e−e−4s

dB1(s) + 4e−e−4s

e−4sB1(s)ds = d(e−e−4s

B1(s)).

Therefore, taking the integral with respect to s from 0 to t, we get

t∫
0

d
(
e−e−4s

B1(s)
)
=

t∫
0

e−e−4s

[e−4tdws +
(
−4e−4s + 4e−8s

)
wsds].

Then

e−e−4t

B1(t)− e−4B1(0) =

t∫
0

e−e−4s

[e−4tdws +
(
−4e−4s + 4e−8s

)
wsds]

or

e−e−4t

B1(t) =

t∫
0

e−e−4s

[e−4sdws +
(
−4e−4s + 4e−8s

)
wsds].

Since
t∫

0

e−e−4s

e−4sdws = e−e−4t

e−4twt −
t∫

0

wsd
(
e−4e−4s

e−4s
)
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= e−e−4t

e−4twt −
t∫

0

e−e−4s (−4e−4s + 4e−8s
)
wsds,

we can write

B1(t) = (e−e−4t

e−4twt)e
e−4t

= e−4twt.

Then, applying formula (16), we can obtain Fourier series solution of mixed

problem (15) by the following formula

u(t, x) =
∞∑
k=0

Ak(t) cos(2kx) +
∞∑
k=1

Bk(t) sin(2kx)

= B1(t) sin(2x) = e−4twt sin(2x).

Note that using similar procedure one can obtain the solution of following

initial boundary value problem

du(t, x)−
n∑

r=1

ar(t)
∂2u(t,x)

∂x2
r
dt = g(t, x)dt+ f(t, x)dwt,

x = (x1, ..., xn) ∈ Ω, 0 < t < T,

u(0, x) = φ(x), x ∈ Ω,

u(t, x)|S1 = u(t, π)|S2 ,
∂u(t,x)
∂m

|S1 =
∂u(t,x)
∂m

|S2 , t ∈ [0, T ]

(17)

for the multididimensional SDE. Assume that ar(t) > a0 > 0 and g (t, x) , f (t, x) , (t, x) ∈

(0, T )× Ω, φ(x),
(
x ∈ Ω

)
are smooth functions. Here S = S1 ∪ S2, ∅ = S1 ∩ S2.

However Fourier series method described in solving (21) can be used only in the

case when (21) has constant coefficients.
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The Laplace Transform Solution

First, we consider the initial boundary value problem

du (t, x)− e−tuxx (t, x) dt = e−te−xdwt + (−e−t − e−2t) e−xwtdt,

x ∈ (0,∞) , 0 < t < T,

u(0, x) = 0, x ∈ [0,∞),

u(t, 0) = e−twt, ux(t, 0) = −e−twt, t ∈ [0, T ]

(18)

for the one dimensional SDE.

For solving this problem, we consider Laplace transform. Using formula,

L{e−x} =
1

s+ 1
(19)

and taking the Laplace transform of both sides of the differential equation and

using conditions u(t, 0) = e−twt, ux(t, 0) = −e−twt, we can write

L{du(t, x)} − L{e−tuxxdt} = L{e−te−xdws}+ L{(−e−t − e−2t)e−xwtdt}

0 < t < T,L{u(0, x)} = 0

or

du(t, s)−e−t(s2u(t, s)−su(t, 0)−ux(t, 0))dt =
1

1 + s
e−tdwt+(−e−t−e−2t)

1

1 + s
wtdt.

Then

du(t, s)− (e−ts2u(t, s)− se−2twt + e−2twt)dt

=
1

1 + s
e−tdwt + (−e−t − e−2t)

1

1 + s
wtdt, u(0, s) = 0.

Therefore, we can write

du(t, s)−s2e−tu(t, s)dt =
1

1 + s
e−tdwt+(−e−t−e−2t)

1

1 + s
wtdt−((s−1)e−2twt)dt

Multiplying by es
2e−t

, we get

es
2e−t

du(t, s)− es
2e−t

s2e−tu(t, s)dt = es
2e−t

[
1

1 + s
e−tdwt
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+(−e−t(1 + e−t))
1

1 + s
wtdt+ ((1− s)e−2twt)dt

]
.

= es
2e−t

e−t

[
1

1 + s
dwt + wt

(
1− s2

1 + s
− (1 + e−2t)

1

1 + s

)
dt

]
= es

2e−t

e−t 1

1 + s

[
dwt − wt(s

2e−t + 1))dt
]

Putting t = v, we get

es
2e−v

du(v, s)− es
2e−v

s2e−vu(v, s)dv = es
2e−v

e−v 1

1 + s
[dwv − wv(s

2e−v + 1))dv]

We have that

d
(
es

2e−v

u(v, s)
)
= es

2e−v

du(v, s)− es
2e−2v

s2e−vu(v, s)dv (20)

Therefore, taking the integral with respect to v from 0 to t, we get

t∫
0

d
(
es

2e−v

u(v, s)
)
=

1

1 + s

t∫
0

es
2e−v

e−v[dwv − wv(s
2e−t + 1)dv]

Then

es
2e−v

u(v, s)− es
2

u(0, s) =
1

1 + s

t∫
0

es
2e−v

e−v[dwv − wv(s
2e−t + 1)dv]

or

es
2e−t

u(t, s) =
1

1 + s

t∫
0

es
2e−v

e−v[dwv − wv(s
2e−t + 1)dv]

Since

1

1 + s

t∫
0

es
2e−v

e−vdwv = es
2e−t 1

1 + s
e−twt −

1

1 + s

t∫
0

wvd(e
s2e−v

e−v)

= es
2e−t 1

1 + s
e−twt −

1

1 + s

t∫
0

es
2e−v

e−v(−s2e−t − 1)wvdv,

we can write

u(t, s) = e−s2e−t

es
2e−t 1

1 + s
e−twt =

1

1 + s
e−twt.

Taking the inverse Laplace transform with respect to x, we obtain

u(t, x) = e−x−twt.
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Note that using same manner one can obtain the solution of following initial

boundary value problem

du(t, x)−
n∑

r=1

ar(t)
∂2u(t,x)

∂x2
r
dt = g(t, x)dt+ f(t, x)dwt,

x = (x1, ..., xn) ∈ Ω+, 0 < t < T,

u(0, x) = φ(x), x ∈ Ω
+
,

u(t, x) = α (t, x) , uxr(t, x) = βr (t, x) ,

1 ≤ r ≤ n, (t, x) ∈ [0, T ]× S+

(21)

for the multidimensional SDE. Assume that ar(t) > a0 > 0 and g (t, x) , f (t, x) , (t, x) ∈

(0, T )× Ω+, φ(x),
(
x ∈ Ω

+
)
, α (t, x),

βr (t, x) (t, x) ∈ [0, T ]× S+) are smooth functions. Here and in future Ω+ is the

open cube in the n-dimensional Euclidean space Rn (0 < xk <∞, 1 ≤ k ≤ n) with

the boundary S+ and

Ω
+
= Ω+ ∪ S+.

However the Laplace transform method described in solving (21) can be used

only in the case when (21) has constant coefficients.

Second, we consider the initial boundary value problem

du (t, x)− e−tuxx (t, x) dt = e−te−xdwt + (−e−t − e−2t) e−xwtdt,

x ∈ (0,∞) , 0 < t < T,

u(0, x) = 0, x ∈ [0,∞),

u(t, 0) = e−twt, u(t,∞) = 0, t ∈ [0, T ]

(22)

Applying formula ((19)) and taking the Laplace transform of both sides of

the differential equation and noting γ(t) = ux(t, 0) and using condition u(t, 0) =
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e−twt, we can write

L{du(t, x)} − L{e−tuxxdt} = L{e−te−xdwt}+ L{(−e−t − e−2t)e−xwtdt}

0 < t < T,L{u(0, x)} = 0

or

du(t, s)− (s2e−tu(t, s)− se−2twt + γ(t)e−t)dt

= e−t 1

s+ 1
dwt + (−e−t − e−2t)

1

s+ 1
wtdt, u(0, s) = 0.

Then

du(t, s)− (e−ts2u(t, s)− se−2twt + e−2twt)dt+
(
−e−twt − γ(t)

)
dt

=
1

1 + s
e−tdwt + (−e−t − e−2t)

1

1 + s
wtdt, u(0, s) = 0.

Therefore, we can write

du(t, s)− s2e−tu(t, s)dt

=
1

1 + s
e−tdwt + (−e−t − e−2t)

1

1 + s
wtdt− ((s− 1)e−2twt)dt+

(
e−twt + γ(t)

)
dt.

Multiplying by es
2e−t

, we get

es
2e−t

du(t, s)− es
2e−t

s2e−tu(t, s)dt = es
2e−t

[
1

1 + s
e−tdwt

+(−e−t(1 + e−t))
1

1 + s
wtdt+ ((1− s)e−2twt)dt+

(
e−twt + γ(t)

)
dt

]
.

= es
2e−t

[
e−t

[
1

1 + s
dwt + wt

(
1− s2

1 + s
− (1 + e−2t)

1

1 + s

)
dt

]
+
(
e−twt + γ(t)

)
dt

]

= es
2e−t

e−t 1

1 + s

[
dwt − wt(s

2e−t + 1))dt
]
+ es

2e−t (
e−twt + γ(t)

)
dt

Putting t = v, we get

es
2e−v

du(v, s)− es
2e−v

s2e−vu(v, s)dv

= es
2e−v

e−v 1

1 + s
[dwv − wv(s

2e−v + 1))dv] + es
2e−v (

e−vwv + γ(v)
)
dv
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We have that

d
(
es

2e−v

u(v, s)
)
= es

2e−v

du(v, s)− es
2e−2v

s2e−vu(v, s)dv

Therefore, taking the integral with respect to v from 0 to t, we get

t∫
0

d
(
es

2e−v

u(v, s)
)
=

1

1 + s

t∫
0

es
2e−v

e−v[dwv − wv(s
2e−t + 1)dv]

+

t∫
0

es
2e−v (

e−vwv + γ(v)
)
dv

Then

es
2e−t

u(v, s)− es
2

u(0, s)

=
1

1 + s

t∫
0

es
2e−v

e−v[dwv − wv(s
2e−v + 1)dv]

+

t∫
0

es
2e−v (

e−vwv + γ(v)
)
dv

or

es
2e−t

u(t, s) =
1

1 + s

t∫
0

es
2e−v

e−v[dwv − wv(s
2e−t + 1)dv]

+

t∫
0

es
2e−v (

e−vwv + γ(v)
)
dv

Since

1

1 + s

t∫
0

es
2e−v

e−vdwv = es
2e−t 1

1 + s
e−twt −

1

1 + s

t∫
0

wvd(e
s2e−v

e−v)

= es
2e−t 1

1 + s
e−twt −

1

1 + s

t∫
0

es
2e−v

e−v(−s2e−t − 1)wvdv,

we can write

u(t, s) = e−s2e−t

es
2e−t 1

1 + s
e−twt + e−s2e−t

t∫
0

es
2e−v (

e−vwv + γ(v)
)
dv

=
1

1 + s
e−twt + e−s2e−t

t∫
0

es
2e−v (

e−vwv + γ(v)
)
dv.
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Taking the inverse Laplace transform with respect to x, we obtain

u(t, x) = e−x−twt + L−1

e−s2e−t

t∫
0

es
2e−v (

e−vwv + γ(v)
)
dv


= e−x−twt +

t∫
0

(
e−vwv + γ(v)

)
L−1

{
e−s2e−t

es
2e−v
}
dv

Therefore, passing to limit when x→ ∞, we get

u(t,∞) = e−twt lim
x→∞

e−x +

t∫
0

(
e−vwv + γ(v)

)
lim
x→∞

L−1
{
e−s2e−t

es
2e−v
}
dv.

From that it follows

e−vwv + γ(v) = 0.

Therefore, u(t, x) = e−x−twt is the solution of the given initial boundary value

problem.

Note that using same manner one can obtain the solution of following initial

boundary value problem

du(t, x)−
n∑

r=1

αr(t)
∂2u(t,x)

∂x2
r
dt = g(t, x)dwt + f(t, x)dt,

x = (x1, ..., xn) ∈ Ω+, 0 < t < T,

u(0, x) = φ(x), x ∈ Ω
+
,

u(t, x) = α (t, x) , 1 ≤ r ≤ n, (t, x) ∈ [0, T ]× S+

(23)

for the multidimensional stochastic parabolic equations with dependent coef-

ficients in t. Assume that ar(t) > a0 > 0 and g (t, x) , f (t, x) , (t, x) ∈ (0, T )×Ω+,

φ(x),
(
x ∈ Ω

+
)
, α (t, x) , (t, x) ∈ [0, T ]× S+) are smooth functions. However the

Laplace transform method described in solving (23) can be used only in the case

when (23) has constant coefficients in x.

The Fourier Transform Solution

We consider the initial-value problem
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du (t, x)− e−tuxxdt = e−te−x2
dwt

+(−e−t − (−2 + 4x2) e−2t)e−x2
wtdt,

x ∈ (−∞,∞) , 0 < t < T,

u(0, x) = 0, x ∈ (−∞,∞)

(24)

for the one dimensional stochastic partial differential equation.

For solving this problem, we consider Fourier transform method. We denote

u (t, s) = F {u (t, x)} , q(s) = F
{
e−x2

}
.

Taking the Fourier transform, we get the following initial value problem

du (t, s)− s2e−tu(t, s)dt = e−tq(s)dwt

+
[
−e−tq(s)− e−2tF

{
(−2 + 4x2) e−x2

}]
wtdt,

0 < t < T, u(0, s) = 0

for the one stochastic ordinary differential equation.

Since F{(−2 + 4x2)e−x2} = F{
(
e−x2

)′′2
F{e−x2}, we can write

du (t, s)− s2e−tu(t, s)dt = e−tq(s)dwt

+
[
−e−tq(s)− e−2ts2F{e−x2}

]
wtdt,

0 < t < T, u(0, s) = 0

or 

du (t, s)− s2e−tu(t, s)dt = e−tq(s)dwt

+ [−e−tq(s)− e−2ts2q(s)]wtdt,

0 < t < T, u(0, s) = 0.
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Multiplying both sides by es
2te−t

, we get

es
2te−t

(du (t, s)−s2e−tu(t, s)dt) = es
2te−t

e−tq(s)dwt+e
s2te−t [−e−tq(s)− e−2ts2q(s)

]
wtdt.

Putting t = y, we get

es
2ye−y

(du (y, s)−s2e−yu(y, s)dy) = es
2ye−y

e−yq(s)dwy+e
s2ye−y [−e−yq(s)− e−2ys2q(s)

]
wydy.

We have that

d
(
es

2ye−y

u(y, s)
)
= es

2ye−y

du(y, s)− es
2ye−y

e−ys2u(y, s)dy.

Therefore, taking the integral with respect to y from 0 to t, we get

t∫
0

d
(
es

2ye−y

u(y, s)
)
=

t∫
0

es
2ye−y

e−yq(s)dwy+

t∫
0

es
2ye−y [−e−yq(s)− e−2ys2q(s)

]
wydy

or

es
2ye−y

u(t, s)−u(0, s) =
t∫

0

es
2ye−y

e−yq(s)dwy+

t∫
0

es
2ye−y [−e−yq(s)− e−2ys2q(s)

]
wydy.

Then,

es
2ye−y

u(t, s) =

t∫
0

es
2ye−y

e−yq(s)dwy + q(s)

t∫
0

es
2ye−y

e−y
[
−1− e−ys2

]
wydy.

Since

t∫
0

es
2ye−y

e−yq(s)dwy = es
2ye−y

e−tq(s)dwt − q(s)

t∫
0

wyd(e
s2ye−y

e−y)

= es
2te−t

e−tq(s)dwt − q(s)

t∫
0

es
2e−y

e−y(−s2e−y − 1)wydy,

we have that

u(t, s) = es
2e−t

e−s2e−t

e−tq(s)wt = e−tq(s)wt.

Therefore using the inverse Fourier transform, we get

u(t, x) = e−tF−1 {q(s)}wt = e−te−x2

wt

is the exact solution of the given initial boundary value problem.
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Note that using similar procedure we can get the solution of following initial

boundary value problem

du(t, x)−
n∑

r=1

αr(t)
∂2u(t,x)

∂x2
r
dt = g(t, x)dwt + f(t, x)dt,

x = (x1, ..., xn) ∈ Rn, 0 < t < T, |r| = r1 + ...+ rn,

u(0, x) = φ(x), x ∈ Rn

(25)

for the multidimensional stochastic parabolic equations with dependent coef-

ficients in t. Assume that ar(t) > a0 > 0 and g (t, x) , f (t, x) , (t, x) ∈ (0, T )×Rn,

φ(x), (x ∈ Rn) are smooth functions. However the Fourier transform method

described in solving (25) can be used only in the case when (25) has constant

coefficients in x.
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CHAPTER III

The Abstract Cauchy Problem for the SDE in

Hilbert Spaces with the Time-Dependent

Positive Operator

The Main Theorem on Stability

It is well known that various IBVP’s for stochastic parabolic equations can be

reduced to the Cauchy problem for the SDE

dv(t) + A(t)v(t)dt = f(t, w(t))dt+ g(t, w(t))dwt, 0 < t < T, v(0) = φ (26)

in a Hilbert space H with the unbounded operators A(t). Here wt =
√
tξ is a

standard Wiener process given on the probability space (Π, F, P ) and ξ ∈ N(0, 1)

is the standard normal distribution. Moreover, v(t), f(t, w(t)) and g(t, w(t)) are

the unknown and given functions, respectively, defined on (0, T )×Π with values

in H. Furthermore, assume that f(t, w(t)) and g(t, w(t)) are elements of space

M2
w([0, T ]× Π, H1), which consists of H1-value process for which the conditions

E

∫ T

0

∥f(t, w(t))∥2H1
dt, E

∫ T

0

∥g(t, w(t))∥2H1
dt <∞ (27)

are satisfied. Here H1 ⊂ H and E is the expectation and the integrals are

understood in the sense of Bochner.

Suppose that for each t ∈ [0, T ] the operator −A(t) generates an analytic

semigroup exp{−sA(t)}(s ≥ 0) with exponentially decreasing norm, when s →

+∞, i.e. the following estimates

∥exp(−sA(t))∥H→H , ∥sA(t) exp(−sA(t))∥H→H ≤Me−δs(s > 0) (28)

hold for some M ∈ [1,+∞), δ ∈ (0,+∞). From this inequality it follows the

operator A−1(t) exists and bounded and hence A(t) is closed in H1 ⊂ H, such

that A(t) : D(A(t)) → H and D(A(t)) = D(A(0)) for 0 ≤ t ≤ T .

Suppose that the operator A(t)A−1(s) is Holder continuous in t in the uniform

operator topology for each fixed s, that is,∥∥[A(t)− A(τ)]A−1(s)
∥∥
H→H

≤M |t− τ |ε, 0 < ε ≤ 1, (29)
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whereM and ε are positive constants independent of t, s and τ for 0 ≤ t, s, τ ≤ T .

An operator-valued function v(t, s), defined and strongly continuous jointly

in t, s for 0 ≤ s < t ≤ T , is called a fundamental solution of (26) if

1) the operator v(t, s) is strongly continuous in t and s for 0 ≤ s < t ≤ T,

2) the following identity holds:

v(t, s) = v(t, τ)v(τ , s), v(t, t) = I (30)

for 0 ≤ s ≤ τ ≤ t ≤ T, where, I is the identity operator,

3) the operator v(t, s) maps the region D into itself. The operator u(t, s) =

A(t)v(t, s)A−1(s) is bounded and strongly strongly continuous in t and s

for 0 ≤ s < t ≤ T,

4) on the region D the operator v(t, s) is differentiable relative to t and s,

while
∂v(t, s)

∂t
+ A(t)v(t, s) = 0, (31)

and
∂v(t, s)

∂s
− v(t, s)A(s) = 0. (32)

Applying (30) and (31), we get the following formula, (see, (R.F. Curtain and

P.L. Falb, 1971) and (D.A. Dawson, 1975)).

v(t) = v(t, 0)v(0) +

t∫
0

v(t, y){f(y, w(y))dy + g(y, w(y))dwy} (33)

for a mild solution of the problem (26) under the assumptions (27).

Lemma 3.1.1 For any 0 ≤ s ≤ t ≤ T and β ≤ α ∈ (0, 1] the following estimates

hold (A. Ashyralyev and P.E.Sobolevskii, 2004; P.E. Sobolevskii, 1964)

∥v(t, s)∥H→H ≤ M, (34)

∥Aα(t)v(t, s)A−β(p)∥H→H ≤ M

(t− s)α−β
, (35)

∥A(t)A−1(s)∥H→H ≤ M. (36)

The following Tubaro theorem was established in the paper (L. Tubaro; 1984).
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Theorem 3.1.2 Suppose that e−tA is a C0-semigroup on H satisfying

∥e−tA∥H→H ≤ e−δt

for some δ ≥ 0 and all t ≥ 0. Then for every p ∈]0,∞[ there exists a constant

Mp (δ) <∞ such that

E sup
0≤t≤T

∥∥∥∥∥∥
t∫

0

e−A(t−s)f(y, w(y))dwy

∥∥∥∥∥∥
p

≤Mp (δ)E

 T∫
0

∥f(y, w(y))dwy∥2Hdy


p
2

(37)

for f ∈M2
w([0, T ]× Π, H1).

We have that

Theorem 3.1.3 Suppose that

E∥v(0)∥H , E
T∫

0

∥f(y, w(y))∥Hdy, E
T∫

0

∥g(y, w(y))∥2Hdy <∞. (38)

Then, for the solution of problem (26) the following estimates hold

max
t∈[0,T ]

E∥v(t)∥H ≤M [E∥v(0)∥H

+E

T∫
0

∥f(y, w(y))∥Hdy +

E T∫
0

∥g(y, w(y))∥2Hdy


1
2

 . (39)

Proof. Using formula (33) and the triangle inequality, we get

max
t∈[0,T ]

E∥v(t)∥2H ≤ max
t∈[0,T ]

E∥v(t, 0)v(0)∥H

+max
t∈[0,T ]

E

∥∥∥∥∥∥
t∫

0

v(t, y)f(y, w(y))dy

∥∥∥∥∥∥
H

+ max
t∈[0,T ]

E

∥∥∥∥∥∥
t∫

0

v(t, y)g(y, w(y))dwy

∥∥∥∥∥∥
H

= I1 + I2 + I3.

Here,

I1 = max
t∈[0,T ]

E∥v(t, 0)v(0)∥H ,
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I2 = max
t∈[0,T ]

E

∥∥∥∥∥∥
t∫

0

v(t, y)f(y, w(y))dy

∥∥∥∥∥∥
H

,

I3 = max
t∈[0,T ]

E

∥∥∥∥∥∥
t∫

0

v(t, y)g(y, w(y))dwy

∥∥∥∥∥∥
H

.

We will estimate Ir for all r = 1, 2, 3, separately. We start with I1. Applying

estimate (34), we can write

I1 = max
t∈[0,T ]

E∥v(t, 0)∥H→H∥v(0)∥H ≤M3∥v(0)∥H .

Now let us estimate I2. Using estimate (34), we get

I2 ≤ max
t∈[0,T ]

E

t∫
0

∥v(t, y)∥H→H ∥f(y, w(y))∥Hdy ≤M4E

t∫
0

∥f(y, w(y))∥Hdy.

Finally, let us estimate I3. Using estimate (34), we get

I3 ≤ max
t∈[0,T ]

E

 t∫
0

∥v(t, y)g(y, w(y))∥2Hdy


1
2

≤ max
t∈[0,T ]

E

 t∫
0

∥v(t, y)∥2H→H∥g(y, w(y))∥2Hdy


1
2

≤M5E

 T∫
0

∥g(y, w(y))∥2Hdy


1
2

.

Combining the estimates for Ir for all r = 1, 2 and 3, we get (39). Theorem 3.1.3

is established.

Theorem 3.1.4 Suppose that

E∥v(0)∥2H , E
T∫

0

∥f(y, w(y))∥2Hdy, E
T∫

0

∥g(y, w(y))∥2Hdy <∞. (40)

Then, for the solution of problem (26) the following estimates holdE T∫
0

∥v(t)∥2Hdt


1
2

≤M(δ)
[(
E∥v(0)∥2H

) 1
2 (41)

+

E T∫
0

∥f(y, w(y))∥2Hdy


1
2

+

E T∫
0

∥g(y, w(y))∥2Hdy


1
2

 .
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Proof. Using formula (33) and the triangle inequality, we getE T∫
0

∥v(t)∥2H dt


1
2

≤

E T∫
0

∥v(t, 0)v(0)∥2Hdt


1
2

+

E T∫
0

∥∥∥∥∥∥
t∫

0

v(t, y)f(y, w(y))dy

∥∥∥∥∥∥
2

H

dt


1
2

+

E T∫
0

∥∥∥∥∥∥
t∫

0

v(t, y)g(y, w(y))dwy

∥∥∥∥∥∥
2

H

dt


1
2

= J1 + J2 + J3.

Here,

J1 =

E T∫
0

∥v(t, 0)v(0)∥2Hdt


1
2

,

J2 =

E T∫
0

∥∥∥∥∥∥
t∫

0

v(t, y)f(y, w(y))dy

∥∥∥∥∥∥
2

H

dt


1
2

,

J3 =

E T∫
0

∥∥∥∥∥∥
t∫

0

v(t, y)g(y, w(y))dwy

∥∥∥∥∥∥
2

H

dt


1
2

.

We will estimate Jr for all r = 1, 2, 3, separately. We start with J1. Applying

estimate (34), we can write

J1 ≤

E T∫
0

∥v(t, 0)∥2H→H∥v(0)∥2Hdt


1
2

≤M1TE
(
∥v(0)∥2H

) 1
2 .

Now let us estimate J2. Making the substitution s = t− y, we get

t∫
0

v(t, y)f(y, w(y))dy =

t∫
0

v(t, t− s)f(t− s, w(t− s))ds

=

T∫
0

v(t, t− s)f∗(t− s, w(t− s))ds.

Using the Minkowski inequality and estimate (34), we get

J2 ≤ E

T∫
0

Me−δs

 T∫
0

∥f∗(t− s, w(t− s))∥2H dt


1
2

ds

≤ E

T∫
0

Me−δs

 T∫
0

∥f(y, w(y))∥2H dy


1
2

ds
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=M4 (δ)

E T∫
0

∥f(y, w(y))∥2Hdy


1
2

.

Finally, let us estimate J3. Making the substitution s = t− y, we get

t∫
0

v(t, y)g(y, w(y))dwy =

t∫
0

v(t, t− s)g(t− s, w(t− s))dwt−s

=

T∫
0

v(t, t− s)g∗(t− s, w(t− s))dwt−s.

Here

g∗(t− s, w(t− s)) =


g∗(t− s, w(t− s)), 0 ≤ s ≤ t,

0, t− s /∈ [0, T ] .

Using the Minkowski inequality and estimate (34) and the estimate from The-

orem 1.1 it follows that

J2 ≤ E

T∫
0

Me−δs

 T∫
0

∥g∗(t− s, w(t− s))∥2H (dwt−s)
2


1
2

ds

≤ E

T∫
0

Me−δs

 T∫
0

∥g(y, w(y))∥2H dy


1
2

ds

=M4 (δ)

E T∫
0

∥g(y, w(y))∥2Hdy


1
2

.

Combining the estimates for Jr for all r = 1, 2 and 3, we get (41). Theorem 3.1.4

is proved.
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Applications

Now, consider the applications of the abstract theorems. First, we consider one

dimensional stochastic parabolic equations

du (t, x, w(t)) + (− (a (t, x)ux (t, x, w(t)))x + δu (t, x, w(t))) dt

= f (t, x, w(t)) dt+ g (t, x, w(t)) dw(t), 0 < t < T, x ∈ (0, l) ,

u (0, x, w(0)) = φ (x) , x ∈ [0, l] ,

u (t, 0, w(t)) = u (t, l, w(t)) , ux (t, 0, w(t)) = ux (t, l, w(t)) , t ∈ [0, T ]

(42)

with nonlocal conditions. Under compatibility conditions problem (42) has as

weak unique solution u(t, x, w(t)) for the smooth in x functions f(t, x, w(t)) and

g (t, x, w(t))

(t ∈ (0, T ) × Π × (0, l)), φ(x), a (t, x) ≥ a > 0, x ∈ [0, l], a (t, l) = a (t, 0) , t ∈

(0, T ) .

Problem (42) can be written as the Cauchy problem (26) in a Hilbert space

H = L2[0, l] with self-adjoint PD operator A(t) = Ax(t) defined by the formula

Ax(t)v(x) = − (a(t, x)vx(x)x + δv (x) (43)

with the domain D(Ax) = {v ∈ W 2
2 [0, l] : v (0) = v (l) , vx (0) = vx (l)} .Here, the

Sobolev space W 2
2 [0, l] is defined as the set of all functions v(x) defined on [0, l]

such that v(x) and the second order derivative function v′′(x) are all locally

integrable in L2[0, l], equipped the norm

∥v∥W 2
2 [0,l]

=

 l∫
0

|v(x)|2 dx


1
2

+

 l∫
0

|v′(x)|2 dx


1
2

+

 l∫
0

|v′′(x)|2 dx


1
2

.

Therefore the abstract theorems 1.1 and 1.1 permit to get the following result

on the stability of problem (42).

Theorem 3.2.1 Suppose that

E||φ||2L2[0,l]
, E

T∫
0

∥f(t, ·, wt)∥2L2[0,l]
dt, E

T∫
0

∥g(t, ., wt)∥2L2[0,l]
dt <∞. (44)
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Then, for the solution of problem (42) the following estimates hold

max
t∈[0,T ]

E||u(t)||L2[0,l] ≤M
[
E||φ||L2[0,l]

+E

T∫
0

||f(y, w(y))||L2[0,l]dy +

E T∫
0

||g(y, w(y))||2L2[0,l]
dy


1
2

 ,
E T∫

0

∥u(t)∥2L2[0,l]
dt


1
2

≤M(δ)
[(
E∥φ∥2L2[0,l]

) 1
2

+

E T∫
0

∥f(y, w(y))∥2L2[0,l]
dy


1
2

+

E T∫
0

∥g(y, w(y))∥2L2[0,l]
dy


1
2

 .
Proof. The proof of Theorem 3.2.1 is based on the Theorems 3.1.3 and 3.1.4,

on the self-adjointness and positivity of operator A(t) = Ax(t) defined by the

formula (43).

Second, we consider one dimensional stochastic parabolic equations

du (t, x, w(t)) + (− (a (t, x)ux (t, x, w(t)))x + δu (t, x, w(t))) dt

−β (a(t,−x)u(t,−x,w(t)) + δu(t,−x,w(t))dt

= f (t, x, w(t)) dt+ g (t, x, w(t)) dw(t), 0 < t < T, x ∈ (−l, l) ,

u (0, x, w(0)) = φ (x) , x ∈ [−l, l] ,

u (t,−l, w(t)) = u (t, l, w(t)) = 0, t ∈ [0, T ]

(45)

with involution and Dirichlet conditions. Under compatibility conditions prob-

lem (45) has as weak unique solution u(t, x, w(t)) for the smooth in x functions

f(t, x, w(t)) and g (t, x, w(t)) (t ∈ (0, T )× Π× (−l, l)), φ(x), a (t, x) , x ∈ [−l, l],

a ≥ a (t, x) = a (t,−x) ≥ δ > 0, δ − a |β| ≥ 0, t ∈ (0, T ) .

Problem (45) can be written as the Cauchy problem (26) in a Hilbert space

H = L2[−l, l] with self-adjoint PD operator A(t) = Ax(t) defined by the

formula
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A(t)v(x) = − (a(t, x)vx(x)x − β (a(t,−x)vx (−x))x + δv (x) (46)

with the domainD(A(t)) = {v ∈ W 2
2 [−l, l] : v (−l) = v (l) = 0} .Here, the Sobolev

space W 2
2 [−l, l] is defined as the set of all functions v(x) defined on [−l, l] such

that v(x) and the second order derivative function v′′(x) are all locally integrable

in L2[−l, l], equipped the norm

∥v∥W 2
2 [−l,l] =

 l∫
−l

|v(x)|2 dx


1
2

+

 l∫
−l

|v(x)′′|2 dx


1
2

We have that

Lemma 3.2.2 Let a ≥ a (t, x) = a (−x, t) ≥ σ > 0 and δ − a |β| ≥ 0. Then,

the operator A(t) defined by formula (46) is the self-adjoint and PD operator

in L2[−l, l] space. Therefore the abstract theorems permit to get the following

result on the stability of problem (45).

Theorem 3.2.3 Suppose that

E||φ||2L2[−l,l], E

T∫
0

∥f(t, ·, wt)∥2L2[−l,l] dt, E

T∫
0

∥g(t, ., wt)∥2L2[−l,l] dt <∞. (47)

Then, for the solution of problem (45) the following estimates hold

max
t∈[0,T ]

E||u(t)||L2[−l,l] ≤M
[
E||φ||L2[−l,l]

+E

T∫
0

||f(y, w(y))||L2[−l,l]dy +

E T∫
0

||g(y, w(y))||2L2[−l,l]dy


1
2

 ,
E T∫

0

∥u(t)∥2L2[−l,l] dt


1
2

≤M(δ)
[(
E∥φ∥2L2[−l,l]

) 1
2

+

E T∫
0

∥f(y, w(y))∥2L2[−l,l]dy


1
2

+

E T∫
0

∥g(y, w(y))∥2L2[−l,l]dy


1
2

 .
Proof. The proof of Theorem 3.2.3 is based on the Theorems 3.1.3 and 3.1.4

and Lemma 3.2.2 on the self-adjointness and positivity of operator A(t) = Ax(t)

defined by the formula (46).
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Third, let Ω be the unit open cube in the n-dimensional Euclidean space

Rn = {x = (x1, · · · , , xn) : 0 < xi < 1, i = 1, · · · , n} with boundary S,

Ω = Ω ∪ S. In [0, T ]× Ω, the mixed problem for the multidimensional stochastic

parabolic equation

du(t, x, w(t)) +

[
−

n∑
r=1

(ar(t, x)uxr)xr + δu(t, x, w(t))

]
dt

= g(t, x, w(t))dt+ f(t, x, w(t))dwt,

0 < t < T, x = (x1, . . . , xn) ∈ Ω,

u(0, x, w(0)) = φ(x), x ∈ Ω,

u(t, x, w(t)) = 0, x ∈ S, t ∈ [0, T ]

(48)

with the Dirichlet condition is considered. Under compatibility conditions prob-

lem (48) has as weak unique solution u(t, x, w(t)) for the smooth in x functions

f(t, x, w(t)) and g (t, x, w(t)) (t ∈ (0, T ) × Π × Ω, φ(x) ∈ Ω, a (t, x) ≥ δ > 0, x ∈

(0, T )× Ω.

Problem (48) can be written as the Cauchy problem (26) in a Hilbert space

H = L2

(
Ω
)
with self-adjoint-positive definite operator A(t) = Ax(t) defined

by the formula

A(t)v(x) = −
n∑

r=1

(ar(t, x)vxr)xr + δv(x) (49)

with domain

D(A(t)) = {v(x) : v(x), (ar(x)vxr)xr ∈ L2(Ω), 1 ≤ r ≤ n, u(x) = 0, x ∈ S} .

Theorem 3.2.4 Suppose that

E∥φ∥2L2(Ω), E

T∫
0

∥f(t, ·, wt)∥2L2(Ω) dt, E

T∫
0

∥g(t, ., wt)∥2L2(Ω) dt <∞. (50)

Then, for the solution of problem (48) the following estimates hold

max
t∈[0,T ]

E∥u(t)∥L2(Ω) ≤M
[
E∥φ∥L2(Ω)
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+E

T∫
0

∥f(y, w(y))∥L2(Ω)dy +

E T∫
0

∥g(y, w(y))∥2L2(Ω)dy


1
2

 ,
E T∫

0

∥u(t)∥2L2(Ω) dt


1
2

≤M(δ)
[(
E∥φ∥2L2(Ω)

) 1
2

+

E T∫
0

∥f(y, w(y))∥2L2(Ω)dy


1
2

+

E T∫
0

∥g(y, w(y))∥2L2(Ω)dy


1
2

 .
Proof. The proof of Theorem 3.2.4 is based on the Theorems 3.1.3 and 3.1.4,

on the self-adjointness and positivity of operator A(t) = Ax(t) defined by the

formula (49) and the theorem on coercivity inequality for the solution of the

elliptic problem in L2(Ω).

Fourth, in [0, T ]× Ω, the mixed problem for the multidimensional stochastic

parabolic equation

du(t, x, w(t)) +

(
−

n∑
r=1

(ar(t, x)uxr)xr + δu(t, x, w(t))

)
dt

= g(t, x, w(t))dt+ f(t, x, w(t))dwt,

0 < t < T, x = (x1, . . . , xn) ∈ Ω,

u(0, x, w(0)) = φ(x), x ∈ Ω,

∂
∂µ
u(t, x, w(t)) = 0, x ∈ S, t ∈ [0, T ]

(51)

with the Neumann condition is considered. Here, µ is the normal vector to

Ω. Under compatibility conditions problem (51) has as weak unique solution

u(t, x, w(t)) for the smooth in x functions f(t, x, w(t)) and

g (t, x, w(t)) (t ∈ (0, T )× Π× Ω, φ(x) ∈ Ω,

a (t, x) ≥ δ > 0, x ∈ (0, T )× Ω.

Problem (51) can be written as the Cauchy problem (26) in a Hilbert space

H = L2

(
Ω
)
with self-adjoint positive definite operator A(t) = Ax(t) defined

by the formula
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A(t)v(x) = −
n∑

r=1

(ar(t, x)vxr)xr + δv(x) (52)

with domain

D(A(t)) = {v(x) : v(x), (ar(x)vxr)xr ∈ L2(Ω), 1 ≤ r ≤ n, u(x) = 0, x ∈ S} .

Theorem 3.2.5 Suppose that all assumptions of Theorem 3.1 are satisfied. Then,

for the solution of problem (51) the following estimates hold

max
t∈[0,T ]

E∥u(t)∥L2(Ω) ≤M
[
E∥φ∥L2(Ω)

+E

T∫
0

∥f(y, w(y))∥L2(Ω)dy +

E T∫
0

∥g(y, w(y))∥2L2(Ω)dy


1
2

 ,
E T∫

0

∥u(t)∥2L2(Ω) dt


1
2

≤M(δ)
[(
E∥φ∥2L2(Ω)

) 1
2

+

E T∫
0

∥f(y, w(y))∥2L2(Ω)dy


1
2

+

E T∫
0

∥g(y, w(y))∥2L2(Ω)dy


1
2

 .
Proof. The proof of Theorem 3.2.5 is based on the Theorems 3.1.3 and 3.1.4,

on the self-adjointness and positivity of operator A(t) = Ax(t) defined by the

formula (52) and the theorem on coercivity inequality for the solution of the

elliptic problem in L2(Ω)[35].
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CHAPTER IV

The Single Step Stable Difference Scheme

Introduction

In this section, we consider the single-step DS’s generated by an exact DS for

the approximate solution of problem (26) and their applications.Namely 1/2-th

and 3/2-th order of accuracy in t DS’s generated by the single-step exact DS

for the approximate solution of problem (26) for stochastic equation in Hilbert

spaces are presented.The main theorems on convergence of these DS in Hilbert

spaces are established. Applications, the convergence estimates for the solution

of initial-boundary problems for stochastic parabolic equations with dependent

coefficients are obtained.

Rothe Difference Scheme with the Standard Wiener Pro-

cess

On the segment [0, T ], we consider the uniform grid space

[0, T ]τ = {tk = kτ , k = 0, 1, . . . , N,Nτ = T}

with step τ > 0. Here N is a fixed positive integer. On the grid space [0, T ]τ

we define the grid function {v(tk)}Nk=0. In the following theorem we consider the

single-step exact DS for the solution of problem (26) on grid points tk ∈ [0, T ]τ .

Theorem 4.2.1 Let v(t) of (33) be the solution of (26) at the grid points t = tk.

Then {v(tk)}Nk=0 is the solution of the initial-value problem for the first-order

difference equation
v(tk)− v(tk−1) +

(
I − v(tk, tk−1)

)
v(tk−1)

= fk + gk, 1 ≤ k ≤ N, v(0) = φ,

(53)

where

fk =

∫ tk

tk−1

v(tk, s)f(s, ws)ds, gk =

∫ tk

tk−1

v(tk, s)g(s, ws)dws.
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Proof. Putting in (33) t = tk, tk−1, we get

v(tk) =
k∑

i=1

v(tk, ti)

ti∫
ti−1

v(ti, s)
(
f(s, ws)ds+ g(s, ws)dws

)
,

v(tk−1) =
k−1∑
i=1

v(tk−1, ti)

ti∫
ti−1

v(ti, s)
(
f(s, ws)ds+ g(s, ws)dws

)
.

Multiplying the last equation by v(tk, tk−1) and using semigroup property of

v(tk, s), we get

v(tk, tk−1)v(tk−1) =
k−1∑
i=1

v(tk, ti)

∫ ti

ti−1

v(ti, s)
(
f(s, ws)ds+ g(s, ws)dws

)
.

Taking the difference, we get

v(tk)− v(tk, tk−1)v(tk−1)

=

∫ tk

tk−1

v(tk, s)
(
f(s, ws)ds+ g(s, ws)dws

)
, 1 ≤ k ≤ N.

From that it follows (53).

Note that the solution v(t) of problem (26) at the grid points tk is the solution

of difference problem (53). Therefore, the initial-value problem (53) is called the

single-step exact DS for the solution of problem (26) on grid points tk ∈ [0, T ]τ .

Further, we will consider the applications of the exact difference scheme (53)

for construction of single-step DS’s in time for the approximate solutions of

problem (26). From the mentioned DS (53) it is clear that for the approximate

solutions of problem (26) it is necessary to approximate the expressions

v(tk, tk−1) and

∫ tk

tk−1

v(tk, s)
(
f(s, ws)ds+ g(s, ws)dws

)
.

Now, we will present approximate formulas for these expressions. First of all let

us establish a lemma which we will be need later.

Lemma 4.2.2 (A. Ashyralyev and P.E. Sobolevskii, 2004; P.E. Sobolevskii, 1965).

For any 0 ≤ s ≤ p ≤ t ≤ T and u ∈ D the following identities hold:

v(t, s)u = e−(t−s)A(s)u

+

t∫
s

v(t, z)[A(z)− A(s)]A−1(s)e−(z−s)A(s)A(s)udz, (54)
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v(t, s)u = e−(t−s)A(t)u+

t∫
s

e−(t−z)A(t)[A(z)− A(t)]v(z, s)udz. (55)

According the Lemma 4.2.2, we get

v(tk, tk−1)u = e−Akτu+ o(τ)

for all elements u ∈ H and

v(tk, tk−1)u = e−Akτu+ o(τ 2)

for all elements u ∈ D. It is easy to show that

e−Akτu = R(τAk)u+ o(τ) (56)

for all elements u ∈ D and

e−Akτu = R(τAk)u+ o(τ 2)

for all elements u ∈ D(A2
k). Therefore,

v(tk, tk−1)u = R(τAk)u+ o(τ) (57)

for all elements u ∈ D and

v(tk, tk−1)u = R(τAk)u+ o(τ 2)

for all elements u ∈ D(A2
k). Here R(τAk) =

(
I + τAk

)−1
. In the future, we will

put uτ (k, k − 1) = (I + τAk)
−1 = R(τAk).

Now, we consider the expression
∫ tk
tk−1

v(tk, s)
(
f(s, ws)ds + g(s, ws)dws

)
. We

will present the approximate formula for the expression v(tk, s) for all tk−1 ≤ s ≤

tk. Applying formula (55) and putting t = tk, we get

v(tk, s) = e−A(s)(tk−s) +

tk∫
s

e−A(s)(tk−p)
[
A(s)− A(p)

]
v(p, s)dp.

Therefore,

v(tk, s)u = e−A(s)(tk−s)u+ o(τ)

for all elements u ∈ H and

v(tk, s)u = e−A(s)(tk−s)u+ o(τ 2)
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for all elements u ∈ D. We have that

e−A(s)(tk−s)u = e−Akτu+ o(τ) (58)

for all elements u ∈ D. Therefore,

v(tk, s)u = R(τAk)u+ o(τ)

for all elements u ∈ D and tk−1 ≤ s ≤ tk, 1 ≤ k ≤ N. Thus

R(τAk)φk = R(τAk)

∫ tk

tk−1

(
f(s, ws)ds+ g(s, ws)dws

)
is the approximation of the expression

∫ tk
tk−1

v(tk, s)
(
f(s, ws)ds+ g(s, ws)dws

)
∫ tk

tk−1

v(tk, s)
(
f(s, ws)ds+ g(s, ws)dws

)
= R(τAk)φk + o(τ

1
2 ).

Replacing v(tk, tk−1) by R(τAk) = uτ (k, k − 1), v(tk) by uk and elements fk

by elements R(τAk)φk, we get RDS

uk − uk−1 +
(
I − uτ (k, k − 1)

)
uk−1 = R(τAk)φk, 1 ≤ k ≤ N, u0 = φ

for the approximate solution of (26). From the DS above it follows

uk − uk−1 + τAkuk = φk, 1 ≤ k ≤ N, u0 = φ. (59)

It is clear that RDS (59) is uniquely solvable and the following formula holds

uk = uτ (k, 0)φ+
k∑

i=1

uτ (k, i)R(τAi)φi

= uτ (k, 0)φ+
k∑

i=1

uτ (k, i− 1)

∫ ti

ti−1

(
f(s, ws)ds+ g(s, ws)dws

)
, (60)

where

uτ (k, i) =

 uτ (k, k − 1) · · ·uτ (i+ 1, i), k > i,

I, k = i.

The Main Theorem on Stability and Convergence

Now, we will investigate the convergence of RDS (59). Note that uτ (k, i) is the

approximation of v(tk, ti). Therefore, we have that
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Lemma 4.2.1 (A. Ashyralyev and P.E. Sobolevskii, 2004; P.E. Sobolevskii; 1977),

For any 0 ≤ ti < tk ≤ T and α ∈ (0, 1], the following estimates hold:

∥uτ (k, i)∥H→H ≤ M, (61)

∥Aα
kuτ (k, i)A

−α
i ∥H→H ≤ M, (62)

∥Aα
kuτ (k, i)∥H→H ≤ M

1

((k − i)τ)α
, (63)

where M does not depend on τ , k and i.

Lemma 4.2.2 (A. Ashyralyev and P.E. Sobolevskii, 2004; P.E. Sobolevskii, 1975;

P.E. Sobolevskii, 1971) For any 0 ≤ ti−1 ≤ s ≤ ti < tk ≤ T , the following esti-

mates hold: ∥∥∥[v(tk, ti)− uτ (k, i)
]
A−1

i

∥∥∥
H→H

≤ Mτ, (64)∥∥∥uτ (k, i)(v(ti, s)− uτ (i, i− 1)
)
A−1

i

∥∥∥
H→H

≤ Mτ, (65)

where M does not depend on τ , k, s and i.

We have the following main theorem on stability of difference scheme (59).

Theorem 4.2.3 Suppose that

E∥φ∥H <∞, E
N∑
i=1

∥∥φ1
i

∥∥
H
<∞, E

N∑
i=1

∥∥φ2
i

∥∥2
H
<∞, (66)

where φ1
i = 1

τ

∫ ti
ti−1

f(s, ws)ds, φ
2
i = 1√

τ

∫ ti
ti−1

g(s, ws)dws. Then, for the solution

of DS (59) the following estimate holds

max
1≤k≤N

E∥uk∥H ≤M [E∥φ∥H

+E
N∑
i=1

∥∥φ1
i

∥∥
H
τ +

(
E

N∑
i=1

∥∥φ2
i

∥∥2
H
τ

) 1
2

 . (67)

Proof. Using formula (60) and the triangle inequality, we get

max
1≤k≤N

E∥uk∥H ≤ max
1≤k≤N

E∥uτ (k, 0)φ∥H

+ max
1≤k≤N

E
k∑

i=1

∥uτ (k, i)φ1
i ∥Hτ + max

1≤k≤N
E

k∑
i=1

∥uτ (k, i)φ2
i ∥Hτ



62

= P1 + P2 + P3.

Here,

P1 = max
1≤k≤N

E∥uτ (k, 0)φ∥H ,

P2 = max
1≤k≤N

E

k∑
i=1

∥uτ (k, i)φ1
i ∥Hτ ,

P3 = max
1≤k≤N

E
k∑

i=1

∥uτ (k, i)φ2
i ∥Hτ .

We will estimate Pr for all r = 1, 2, 3, separately. We start with P1. Applying

estimate (61), we can write

P1 = max
1≤k≤N

∥uτ (k, 0)∥H→HE∥φ∥H ≤M3E∥φ∥H .

Now let us estimate P2. Using estimate (61), we get

P2 ≤ max
1≤k≤N

E
k∑

i=1

∥uτ (k, i)∥H→H ∥φ1
i ∥Hτ ≤M4E

N∑
i=1

∥φ1
i ∥Hτ .

Finally, let us estimate P3. Using estimate (61), we get

I3 ≤ max
1≤k≤N

E

(
k∑

i=1

∥uτ (k, i)φ2
i ∥Hτ

) 1
2

≤ max
1≤k≤N

E

(
k∑

i=1

∥uτ (k, i)∥2H→H

∥∥φ2
i

∥∥
H
τ 2

) 1
2

≤M5E

(
N∑
i=1

∥∥φ2
i

∥∥2
H
τ

) 1
2

.

Combining the estimates for Pr for all r = 1, 2 and 3, we get (67). Theorem 4.2.3

is established.

Theorem 4.2.4 Suppose that

E∥φ∥2H , E
N∑
i=1

∥∥φ1
i

∥∥2
H
τ , E

N∑
i=1

∥∥φ2
i

∥∥2
H
τ <∞. (68)

Then, for the solution of DS (59) the following estimate holds(
E

N∑
i=1

∥uk∥Hτ

) 2
2

≤M
[
(E∥φ∥H)

1
2

+

(
E

N∑
i=1

∥∥φ1
i

∥∥2
H
τ

) 1
2

+

(
E

N∑
i=1

∥∥φ2
i

∥∥2
H
τ

) 1
2

 . (69)
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Proof. Using formula (60) and the triangle inequality, we get(
E

N∑
i=1

∥uk∥Hτ

) 1
2

≤M(δ)

(E N∑
i=1

∥uτ (k, 0)φ∥2Hτ

) 1
2

(70)

+

(
E

N∑
i=1

k∑
i=1

∥uτ (k, i)φ1
i ∥2Hτ

) 1
2

+

(
E

N∑
i=1

k∑
i=1

∥uτ (k, i)φ2
i ∥2Hτ

) 1
2

 .
= R1 +R2 +R3.

Here,

R1 =

(
E

N∑
i=1

∥uτ (k, 0)φ∥2Hτ

) 1
2

,

R2 =

(
E

N∑
i=1

k∑
i=1

∥uτ (k, i)φ1
i ∥2Hτ

) 1
2

,

R3 =

(
E

N∑
i=1

k∑
i=1

∥uτ (k, i)φ2
i ∥2Hτ

) 1
2

.

We will estimate Rr for all r = 1, 2, 3, separately. We start with R1. Applying

estimate (34), we can write

R1 ≤

(
E

N∑
i=1

∥uτ (k, 0)∥2H→H ∥φ∥2Hτ

) 1
2

≤M1TE
(
∥φ∥2H

) 1
2 .

Now let us estimate R2. Making the substitution m = k − i+ 1, we get

k∑
i=1

∥uτ (k, i)φ1
i ∥2Hτ =

k∑
m=1

∥uτ (k, k −m+ 1)φ1
k−m+1∥2Hτ

=
N∑

m=1

∥uτ (k, k −m+ 1)φ∗1
k−m+1∥2Hτ .

Here

φ∗1
k−m+1 =


φ1
k−m+1, 1 ≤ m ≤ k,

0, (k −m) τ /∈ [0, T ]τ .

Using the Minkowski inequality and estimate (61), we get

R2 ≤ E

N∑
m=1

Me−δmτ

(
N∑

m=1

∥∥φ∗1
k−m+1

∥∥2
H
τ

) 1
2

τ



64

≤MTE

(
N∑

m=1

∥∥φ1
k−m+1

∥∥2
H
τ

) 1
2

.

Finally, let us estimate R3. Making the substitution m = k − i+ 1, we get

k∑
i=1

∥uτ (k, i)φ2
i ∥2Hτ =

k∑
m=1

∥uτ (k, k −m+ 1)φ2
k−m+1∥2Hτ

=
N∑

m=1

∥uτ (k, k −m+ 1)φ∗2
k−m+1∥2Hτ .

Here

φ∗2
k−m+1 =


φ2
k−m+1, 1 ≤ m ≤ k,

0, (k −m) τ /∈ [0, T ]τ .

Using the Minkowski inequality and estimate (61), we get

R3 ≤ E
N∑

m=1

Me−δmτ

(
N∑

m=1

∥∥φ∗2
k−m+1

∥∥2
H
τ

) 1
2

τ

≤MTE

(
N∑

m=1

∥∥φ2
k−m+1

∥∥2
H
τ

) 1
2

.

Combining the estimates for Rr for all r = 1, 2 and 3, we get (69). Theorem 4.2.4

is proved.

We say that the difference problem has an m-th order of accuracy on the

solution v(t) of the Cauchy problem (26), if the error vector

{v(tk)− uk}Nk=0

satisfies the estimate (
N∑
k=0

E ∥v(tk)− uk∥2H

) 1
2

≤Mτm, (71)

where M does not dependent on τ .

The estimate of convergence for the solution of the DS (59) is shown in the

following main theorem.

Theorem 4.2.5 Assume that

E ∥A(0)φ∥2H , E
T∫

0

∥A(t)f(t, wt)∥2H dt, E
T∫

0

∥A(t)g(t, wt)∥2H dt <∞, (72)
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then the following convergence estimate is valid(
N∑
k=0

E ∥v(tk)− uk∥2H

) 1
2

≤ M̃(δ)τ
1
2 . (73)

Here, M and M̃(δ) do not depend on τ .

Proof. Using formulas (60) and (27), we get

v(tk)− uk =
k−1∑
i=1

[
v(tk, ti)− uτ (k, i)

] ti∫
ti−1

v(ti, s)
(
f(s, ws)ds+ g(s, ws)dws

)
(74)

+
k∑

i=1

uτ (k, i)

ti∫
ti−1

[
v(ti, s)−R(τAi)

](
f(s, ws)ds+ g(s, ws)dws

)
= D1,k +D2,k,

where

D1,k =
k−1∑
i=1

[
v(tk, ti)− uτ (k, i)

] ti∫
ti−1

v(ti, s)
(
f(s, ws)ds+ g(s, ws)dws

)
,

D2,k =
k∑

i=1

uτ (k, i)

ti∫
ti−1

[
v(ti, s)−R(τAi)

](
f(s, ws)ds+ g(s, ws)dws

)
.

We will estimate

(
N∑
k=0

E∥Dr,k∥2H
) 1

2

for r = 1 and 2, separately. First, let us

estimate

(
N∑
k=0

E ∥D1,k∥2H

) 1
2

. Using formula (60) , estimates (64), (35) and the

triangle inequality, we obtain (
N∑
k=0

E ∥D1,k∥2H

) 1
2

=

( N∑
k=0

E
∥∥∥ k−1∑

i=1

(
v(tk, ti)− uτ (k, i)

)
A−1

i

×
ti∫

ti−1

Aiv(ti, s)A
−1(s)A(s)

(
f(s, ws)ds+ g(s, ws)dws

)∥∥∥2
H

) 1
2

≤
( N∑

k=0

k−1∑
i=1

∥∥∥(v(tk, ti)− uτ (k, i)
)
A−1

i

∥∥∥2
H→H

×
ti∫

ti−1

∥∥∥Aiv(ti, s)A
−1(s)

∥∥∥2
H→H

E
∥∥∥A(s)(f(s, ws)ds+ g(s, ws)dws

)∥∥∥2
H
ds

) 1
2
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≤ M0τ

( N∑
k=0

k−1∑
i=1

M2
1

[ ti∫
ti−1

E
∥∥∥A(s)f(s, ws)

∥∥∥2
H
ds+

ti∫
ti−1

E
∥∥∥A(s)g(s, ws)

∥∥∥2
H
ds

]) 1
2

≤ M0τM1

( N∑
k=0

k−1∑
i=1

[ ti∫
ti−1

E
∥∥∥A(s)f(s, ws)

∥∥∥2
H
ds+

ti∫
ti−1

E
∥∥∥A(s)g(s, ws)

∥∥∥2
H
ds

]) 1
2

≤ M2τ

( N∑
k=0

[ T∫
0

E
∥∥∥A(s)f(s, ws)

∥∥∥2
H
ds+

T∫
0

E
∥∥∥A(s)g(s, ws)

∥∥∥2
H
ds

]) 1
2

≤ M2Mτ
1
2 .

Second, let us estimate

(
N∑
k=0

E ∥D2,k∥2H

) 1
2

. Using the triangle inequality, formula

(60) and estimates (65), we get(
N∑
k=0

E ∥D2,k∥2H

) 1
2

=

( N∑
k=0

E
∥∥∥ k∑

i=1

uτ (k, i)

∫ ti

ti−1

(
v(ti, s)−uτ (i, i−1)

)
A−1(s)A(s)

(
f(s, ws)ds+g(s, ws)dws

)∥∥∥2
H

) 1
2

≤
( N∑

k=0

k∑
i=1

∫ ti

ti−1

∥∥∥uτ (k, i)(v(ti, s)− uτ (i, i− 1)
)
A−1(s)

∥∥∥2
H→H

×E
∥∥∥A(s)(f(s, ws)ds+ g(s, ws)dws

)∥∥∥2
H
ds

) 1
2

≤
( N∑

k=0

k∑
i=1

M2
3 τ

2

[ ∫ ti

ti−1

E
∥∥∥A(s)f(s, ws)

∥∥∥2
H
ds+

ti∫
ti−1

E
∥∥∥A(s)g(s, ws)

∥∥∥2
H
ds

]) 1
2

≤ M4τ

( N∑
k=0

[ T∫
0

E
∥∥∥A(s)f(s, ws)

∥∥∥2
H
ds+

T∫
0

E
∥∥∥A(s)g(s, ws)

∥∥∥2
H
ds

]) 1
2

≤ M4Mτ
1
2 .

Then combining both estimates, we get(
N∑
k=0

E ∥D1,k +D2,k∥2H

) 1
2

≤ M̃(δ)τ
1
2 .

From that it follows (73) . Theorem 4.2.5 is proved.

Applications

We consider the applications of Theorem 4.2.5 to stochastic parabolic equations.

First, let us consider the IBVP(26) for one dimensional stochastic parabolic equa-
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tion with nonlocal conditions.

The discretization of problem (26) is carried out in two steps. In the first

step, we define the grid space

[0, l]h = {x = xn : xn = nh, 0 ≤ n ≤M, Mh = l}.

Let us introduce the Hilbert space L2h = L2([0, l]h) of the grid functions φh(x) =

{φn}M0 defined on [0, l]h, equipped with the norm

∥φh∥L2h
=

 ∑
x∈[0,l]h

|φ(x)|2h

1/2

.

To the differential operator Ax(t) generated by problem (1), we assign the differ-

ence operator Ax
h(t) by the formula

Ax
h(t)φ

h(x) = {−(a(t, x)φx)x,n + δφn}M−1
1 (75)

acting in the space of grid functions φh(x) = {φn}M0 satisfying the conditions

φ0 = φM , φ1 −φ0 = φM −φM−1. It is well-known that Ax
h(t) is a self-adjoint PD

operator in L2h. With the help of Ax
h(t), we arrive at the initial value problem

duh(t, x, wt) + Ax
h(t)u

h(t, x, wt)dt

= fh(t, x, wt)dt+ gh(t, x, wt)dwt, 0 < t < T, x ∈ [0, l]h,

uh(0, x, 0) = φh(x), x ∈ [0, l]h

(76)

for the stochastic ordinary differential equation. In the second step, we replace

(76) with the DS

uhk(x)− uhk−1(x) + τAx
h,ku

h
k(x) = R(τAx

h,k)φ
h
k,

φh
k =

∫ tk
tk−1

(
f(s, ws)ds+ g(s, ws)dws

)
,

Ax
h,k = Ax

h(tk), tk = kτ , 1 ≤ k ≤ N, x ∈ [0, l]h,

uh0(x) = φh(x), x ∈ [0, l]h.

(77)



68

Theorem 4.2.2.1 Assume that

E
∥∥∥φ∥∥∥2

W 4
2 [0,l]

, E

T∫
0

∥∥∥f(t, wt)
∥∥∥2
W 4

2 [0,l]
dt, E

T∫
0

∥∥∥g(t, wt)
∥∥∥2
W 4

2 [0,l]
dt <∞. (78)

Then, the solutions of DS (77) satisfy the following convergence estimate:(
N∑
k=0

E
∥∥vh(tk)− uhk

∥∥2
L2h

) 1
2

≤ C(δ)
(
τ

1
2 + h

)
,

where C(δ) do not depend on τ and h.

The proof of Theorem 4.2.2.1 is based on the abstract Theorem 4.2.5 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (75).

Second, let us consider the IBVP (45) for one dimensional stochastic parabolic

equation with involution and Dirichlet conditions.

The discretization of problem (45) is carried out in two steps. In the first

step, we define the grid space

[−l, l]h = {x = xn : xn = nh,−M ≤ n ≤M, Mh = l}.

We introduce the Hilbert spaces L2h = L2([−l, l]h) and W 2
2h = W 2

2 ([−l, l]h) of the

grid functions φh(x) = {φj}M−M defined on [−l, l]h, equipped with the norms

∥∥φh
∥∥
L2h

=

 ∑
x∈[−l,l]h

∣∣φh(x)
∣∣2 h
1/2

and

∥∥φh
∥∥
W 2

2h

=
∥∥φh

∥∥
L2h

+

 ∑
x∈[−l,l]h

∣∣∣(φh
)
xx,j

∣∣∣2 h
1/2

,

respectively. To the differential operator Ax(t) generated by problem (45), we

assign the difference operator Ax
h(t) by the formula

Ax
h(t)φ

h(x) = {−(a(t, x)φx)x,n − β(a(t,−x)φx)x,n + δφn}M−1
−M+1 (79)

acting in the space of grid functions φh(x) = {φn}M−M satisfying the conditions

φ−M = φM = 0. It is well-known that Ax
h(t) is a self-adjoint PD operator in L2h.
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With the help of Ax
h(t), we arrive at the initial value problem

duh(t, x, wt) + Ax
h(t)u

h(t, x, wt)dt

= fh(t, x, wt)dt+ gh(t, x, wt)dwt, 0 < t < T, x ∈ [0, l]h,

uh(0, x, 0) = φh(x), x ∈ [0, l]h

(80)

for the stochastic ordinary differential equation. In the second step, we replace

(80) with the DS

uhk(x)− uhk−1(x) + τAx
h,ku

h
k(x) = R(τAx

h,k)φ
h
k,

φh
k =

∫ tk
tk−1

(
f(s, ws)ds+ g(s, ws)dws

)
,

Ax
h,k = Ax

h(tk), tk = kτ , 1 ≤ k ≤ N, x ∈ [−l, l]h,

uh0(x) = φh(x), x ∈ [−l, l]h.

(81)

Theorem 4.2.2.2 Assume that

E
∥∥∥φ∥∥∥2

W 4
2 [−l,l]

, E

T∫
0

∥∥∥f(t, wt)
∥∥∥2
W 4

2 [−l,l]
dt, E

T∫
0

∥∥∥g(t, wt)
∥∥∥2
W 4

2 [−l,l]
dt <∞. (82)

Then, the solutions of DS (81) satisfy the following convergence estimate:(
N∑
k=0

E
∥∥vh(tk)− uhk

∥∥2
L2h

) 1
2

≤ C(δ)
(
τ

1
2 + h

)
,

where C(δ) do not depend on τ and h.

The proof of Theorem 4.2.2.2 is based on the abstract Theorem 4.2.5 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (79).

Third, the mixed problem (48) for the multidimensional stochastic parabolic

equation with the Dirichlet condition is considered.

The discretization of problem (48) is carried out in two stages. In the first stage,

let us define the grid sets

Ωh = {x = xr = (h1r1, ..., hnrn), r = (r1, ..., rn),
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0 ≤ rj ≤ Nj, hjNj = 1, j = 1, ..., n} ,

Ωh = Ωh ∩ Ω, Sh = Ωh ∩ S.

We introduce the Banach spaces L2h = L2(Ωh) and W r
2h = W r

2 (Ωh), r = 1, 2 of

the grid functions φh(x) = {φ(h1r1, ..., hnrn)} defined on Ωh, equipped with the

norms

∥∥φh
∥∥
L2h

=

∑
x∈Ωh

∣∣φh(x)
∣∣2 h1 · · · hn

1/2

and

∥∥φh
∥∥
W 1

2h

=
∥∥φh

∥∥
L2h

+

∑
x∈Ωh

n∑
r=1

∣∣∣(φh
)
xr,jr

∣∣∣2 h1 · · · hn
1/2

,

∥∥φh
∥∥
W 2

2h

=
∥∥φh

∥∥
L2h

+

∑
x∈Ωh

n∑
r=1

∣∣∣(φh
)
xrxr,jr

∣∣∣2 h1 · · · hn
1/2

,

respectively. To the differential operator A (t) generated by problem (48), we

assign the difference operator Ax
h (t) by the formula

Ax
h(t)u

h(t, x) = −
n∑

r=1

(
ar(t, x)u

h
xr

)
xr,jr

, (83)

where the difference operator Ax
h(t) is defined on those grid functions uh(x) = 0,

for all x ∈ Sh. It is well-known that Ax
h(t) is a self-adjoint PD operator in L2h.

Using (48) and (83), we get the following initial-value problem
duh(t, x, wt) + Ax

h(t)u
h(t, x, wt)dt = fh(t, x, wt)dt+ gh(t, x, wt)dwt,

0 < t < T, x ∈ Ωh,

uh(0, x, 0) = φh(x), x ∈ Ω̃h

(84)

for the stochastic ordinary differential equation. In the second step, we replace
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(84) with the DS

uhk(x)− uhk−1(x) + τAx
h,ku

h
k(x) = R(τAx

h,k)φ
h
k,

φh
k =

∫ tk
tk−1

(
f(s, ws)ds+ g(s, ws)dws

)
,

Ax
h,k = Ax

h(tk), tk = kτ , 1 ≤ k ≤ N, x ∈ Ωh,

uh0(x) = φh(x), x ∈ Ω̃h.

(85)

Theorem 4.2.2.3 Assume that

E
∥∥∥φ∥∥∥2

W 4
2 (Ω)

, E

T∫
0

∥∥∥f(t, wt)
∥∥∥2
W 4

2 (Ω)
dt, E

T∫
0

∥∥∥g(t, wt)
∥∥∥2
W 4

2 (Ω)
dt <∞. (86)

Then, the solution of DS (85) satisfy the following convergence estimate:(
N∑
k=0

E
∥∥vh(tk)− uhk

∥∥2
L2h

) 1
2

≤ C(δ)
(
τ

1
2 + |h|2

)
, (87)

where C(δ) do not depend on τ and |h|.

The proof of Theorem 4.2.2.3 is based on the abstract Theorem 4.2.5 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (83) and

the following theorem on the coercivity inequality for the solution of the elliptic

difference problem in L2h.

Fourth, the mixed problem (51) for the multidimensional stochastic parabolic

equation with the Neumann condition is considered. The discretization of prob-

lem (51) is carried out in two steps. The differential operator Ax(t) in (51) is

replaced with

Ax
h(t)u

h(x) = −
n∑

r=1

(
ar(t, x)u

h
xr

)
xr,jr

+ δuh(x), (88)

where the difference operator Ax
h(t) is defined on those grid functions Dhuh(x) =

0, for all x ∈ Sh, where D
huh(x) = 0 is the second order of approximation of

∂u(t,x,wt)
∂n⃗

. It is well-known that Ax
h(t) is a self-adjoint PD operator in L2h.
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Using (51) and (88), we get the following initial-value problem
duh(t, x, wt) + Ax

h(t)u
h(t, x, wt)dt = fh(t, x, wt)dt+ gh(t, x, wt)dwt,

0 < t < T, x ∈ Ωh,

uh(0, x, 0) = φh(x), x ∈ Ω̃h

(89)

for the stochastic ordinary differential equation. In the second step, we replace

(89) with the DS

uhk(x)− uhk−1(x) + τAx
h,ku

h
k(x) = R(τAx

h,k)φ
h
k,

φh
k =

∫ tk
tk−1

(
f(s, ws)ds+ g(s, ws)dws

)
,

Ax
h,k = Ax

h(tk), tk = kτ , 1 ≤ k ≤ N, x ∈ Ωh,

uh0(x) = φh(x), x ∈ Ω̃h.

(90)

Theorem 4.2.2.4 Assume that all assumptions of Theorem 4.2.2.3 are satisfied.

Then, for the solution of (90) the estimate 4.2.2.3 holds.

The proof of Theorem 4.2.2.4 is based on the abstract Theorem 4.2.5 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (88) and

the following theorem on the coercivity inequality for the solution of the elliptic

difference problem in L2h. (P.E. Sobolevskii, 1975)

Rothe Difference Scheme Without the Standard Wiener

Process

Now, we consider problem (26), when the source term f(t, wt), g(t, wt) does not

depend on stochastic noise term wt. That means f(t, wt) = f(t), g(t, wt) = g(t)

is an abstract function defined on the segment [0, T ] with values in H. Assume

that the function f(t), g(t) is continuous and smooth. Replacing R(τAk)φk =

R(τAk)
tk∫

tk−1

f(s)ds+
tk∫

tk−1

g(s)dws by
tk∫

tk−1

g(tk)dws = g(tk)(wtk−wtk−1
) and

tk∫
tk−1

f(tk)ds =

f(tk)(tk − tk−1) in (59), we get RDS

uk − uk−1 + τAkuk
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= R(τAk)
[
f(tk)τ + g(tk)(wtk − wtk−1

)
]
, 1 ≤ k ≤ N, u0 = φ (91)

for the approximate solution of the Cauchy problem

dv(t) =
(
− A(t)v(t) + f(t)

)
dt+ g(t)dwt, 0 < t < T, v(0) = φ (92)

in a Hilbert space H with a self adjoint PD operator A(t). It is clear that RDS

(91) is uniquely solvable and the following formula holds

uk =
k∑

i=1

uτ (k, i− 1)
(
f(ti)τ + g(ti)(wti − wti−1

)
)
. (93)

The Main Theorem on Stability and Convergence

The estimate of convergence for the solution of the DS (91) is shown in the

following main theorem.

Theorem 4.3.1 Assume that

∥A(0)φ∥2H ,
T∫

0

∥f ′(t)∥2H dt+
T∫

0

∥A(t)f(t)∥2H dt,
T∫

0

∥g′(t)∥2H dt+
T∫

0

∥A(t)g(t)∥2H dt <∞,

(94)

then the following convergence estimate is valid(
N∑
k=0

E ∥v(tk)− uk∥2H

) 1
2

≤ M̃(δ)τ
1
2 .

Here, M and M̃1(δ) do not depend on τ .

Proof. Applying formulas (93) and (27), we get

v(tk)− uk =
k−1∑
i=1

[
v(tk, ti)− uτ (k, i)

] ti∫
ti−1

v(ti, s)
(
f(s)ds+ g(s)dws

)
(95)

+
k∑

i=1

uτ (k, i)
{ ti∫
ti−1

v(ti, s)
(
f(s)ds+ g(s)dws

)
−uτ (i, i− 1)

(
f(ti)τ + g(ti)(wti − wti−1

)
}

= P1,k + P2,k,
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where

P1,k =
k−1∑
i=1

(
v(tk, ti)− uτ (k, i)

) ti∫
ti−1

v(ti, s)
(
f(s)ds+ g(s)dws

)
, (96)

P2,k =
k∑

i=1

uτ (k, i)
{ ti∫
ti−1

v(ti, s)
(
f(s)ds+ g(s)dws

)
−uτ (i, i− 1)

(
f(ti)τ + g(ti)(wti − wti−1

)
)}
. (97)

We will estimate

(
N∑
k=0

E∥Pr,k∥2H
) 1

2

for r = 1 and 2, separately. First, let us

estimate

(
N∑
k=0

E ∥P1,k∥2H

) 1
2

. Using formula (93) , estimates (64), (35) and the

triangle inequality, we obtain

N∑
k=0

E ∥P1,k∥2H

≤
N∑
k=0

k−1∑
i=1

∥∥∥(v(tk, ti)− uτ (k, i)
)
A−1

i

∥∥∥2
H→H

ti∫
ti−1

∥∥∥Aiv(ti, s)A
−1(s)

∥∥∥2
H→H

×
∥∥∥A(s)(f(s) + g(s)

)∥∥∥2
H
ds

≤ M0τ
2

N∑
k=0

k−1∑
i=1

M2
1

ti∫
ti−1

∥∥∥A(s)(f(s) + g(s)
)∥∥∥2

H
ds

≤ M0τ
2M2

1

N∑
k=0

k−1∑
i=1

ti∫
ti−1

∥∥∥A(s)(f(s) + g(s)
)∥∥∥2

H
ds

≤ M2τ
2

N∑
k=0

( T∫
0

∥∥∥A(s)f(s)∥∥∥2
H
ds+

T∫
0

∥∥∥A(s)g(s)∥∥∥2
H
ds
)
≤M2Mτ.

Now, we estimate

(
N∑
k=0

E ∥P2,k∥2H

) 1
2

. Then from formula (97) and Minkowski

inequality, we obtain
N∑
k=0

E ∥P2,k∥2H

≤
N∑
k=0

E
∥∥∥ k∑

i=1

uτ (k, i)

ti∫
ti−1

(
v(ti, s)− uτ (i, i− 1)

)
A−1(s)A(s)

(
f(s)ds+ g(s)dws

)∥∥∥2
H
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+
N∑
k=0

E
∥∥∥ k∑

i=1

uτ (k, i− 1)

ti∫
ti−1

[(
f(s)− f(ti−1)

)
ds

+
(
g(s)− g(ti−1)

)
dws

]∥∥∥2
H

≤
N∑
k=0

k∑
i=1

∥∥∥uτ (k, i)∥∥∥2
H→H

ti∫
ti−1

∥∥∥(v(ti, s)− uτ (i, i− 1)
)
A

− 1
2

s

∥∥∥2
H→H

×
∥∥∥A 1

2
s

(
f(s) + g(s)

)∥∥∥2
H
ds

+
N∑
k=0

k∑
i=1

∥∥∥uτ (k, i− 1)
∥∥∥
H→H

ti∫
ti−1

s∫
ti−1

∥∥∥f ′(z) + g′(z)
∥∥∥2
H
dzds.

Then, (
N∑
k=0

E ∥P2,k∥2H

) 1
2

≤
( N∑

k=0

k∑
i=1

M1M2τ
1
2

ti∫
ti−1

∥∥A(s)(f(s) + g(s)
)∥∥2

H
ds

) 1
2

+

( N∑
k=0

k∑
i=1

M3

ti∫
ti−1

∥∥∥f ′(z) + g′(z)
∥∥∥2
H
dz

ti∫
ti−1

ds

) 1
2

≤M1M2τ
1
2

( T∫
0

∥A(s)f(s)∥2H ds+
T∫

0

∥A(s)g(s)∥2H ds

) 1
2

+M3τ
1
2

( T∫
0

∥∥∥f ′(z)
∥∥∥2
H
dz +

T∫
0

∥∥∥g′(z)∥∥∥2
H
dz

) 1
2

≤ M̃τ
1
2 .

Then combining both estimates, we get(
N∑
k=0

E ∥P1,k + P2,k∥2H

) 1
2

≤ M̃(δ)τ
1
2 .

Theorem 4.3.1 is proved.

Applications

Now, we consider applications of Theorem 4.3.1. First, let us consider the IBVP

(1) for one dimensional stochastic parabolic equation with nonlocal conditions.

The discretization of problem (1) is carried out in two steps. The first step is
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the same as in the previous case. With the help of Ax
h(t), we arrive at the initial

value problem

duh(t, x, wt) + Ax
h(t)u

h(t, x, wt)dt = fh(t, x)dt+ gh(t, x)dwt,

0 < t < T, x ∈ [0, l]h,

uh(0, x, 0) = φh (x) , x ∈ [0, l]h

(98)

for the stochastic ordinary differential equation. In the second step, we replace

(98) with the DS

uhk(x)− uhk−1(x) + τAx
h,ku

h
k(x)

= R(τAx
h,k)
[
fh
k (x)τ + ghk (x)(wt − wt−1)

]
,

fh
k (x) = fh(tk, x), g

h
k (x) = gh(tk, x), A

x
h,k = Ax

h(tk),

tk = kτ , 1 ≤ k ≤ N, x ∈ [0, l]h,

uh0(x) = φh (x) , x ∈ [0, l]h.

(99)

Theorem 4.3.2.1 Assume that

∥∥∥φ∥∥∥2
W 4

2 [0,l]
,

T∫
0

∥∥∥f ′(t)
∥∥∥2
L2[0,l]

dt+

T∫
0

∥∥∥f(t)∥∥∥2
W 4

2 [0,l]
dt <∞, (100)

T∫
0

∥∥∥g′(t)∥∥∥2
L2[0,l]

dt+

T∫
0

∥∥∥g(t)∥∥∥2
W 4

2 [0,l]
dt <∞. (101)

Then, the solutions of DS (99) satisfy the following convergence estimate:

max
0≤k≤N

(
E
∥∥vh(tk)− uhk

∥∥2
L2h

) 1
2 ≤ C(δ)

(
τ

1
2 + h

)
,

where C(δ) do not depend on τ and h.
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The proof of Theorem 4.3.2.1 is based on the abstract Theorem 4.3.1 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (75).

Second, we consider the IBVP (99) for one dimensional stochastic parabolic

equation with involution and Dirichlet conditions.

The discretization of problem (99) is carried out in two stages. The first step

is the same as in the previous case. With the help of Ax
h (t), we arrive at the

following problem
duht (t, x, w(t)) + Ax

h(t)u
h(t, x, w(t))dt = fh(t, x)dt+ gh(t, x)dwt,

x ∈ [−l, l]h , 0 < t < T,

uh(0, x, w(0)) = φh(x), x ∈ [−l, l]h .

(102)

In the second stage, we replace the differential equation (102) with a first order

of accuracy DS 

uhk(x)− uhk−1(x) + τAx
h(t)u

h
k(x)

= R(τAx
h,k)
[
fh
k (x)τ + ghk (x)(wt − wt−1)

]
,

fh
k (x) = fh(tk, x), g

h
k (x) = gh(tk, x),

x ∈ [−l, l]h , 1 ≤ k ≤ N,

uh0(x) = φh(x), x ∈ [−l, l]h .

(103)

Theorem 4.3.2.2 Assume that

∥∥∥φ∥∥∥2
W 4

2 [−l,l]
, E

T∫
0

∥∥∥f(t, wt)
∥∥∥2
W 4

2 [−l,l]
dt, E

T∫
0

∥∥∥g(t, wt)
∥∥∥2
W 4

2 [−l,l]
dt <∞.

Let τ and h be sufficiently small numbers. For the solution of DS (103) the

following convergence estimates hold(
N∑
k=0

E
∥∥vh(tk)− uhk

∥∥2
C([0,T ]τ ,L2h)

) 1
2

≤ C(δ)
(
τ

1
2 + |h|

)
, (104)

The proof of Theorem 4.3.2.2 is based on the abstract Theorem 4.3.1 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (79).
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Third, the mixed problem (48) for the multidimensional stochastic parabolic

equation with the Dirichlet condition is considered.

The first step is the same as in the previous case. With the help of Ax
h(t), we

arrive at the initial value problem
duh(t, x, wt) + Ax

h(t)u
h(t, x, wt)dt = fh(t, x)dt+ gh(t, x)dwt,

0 < t < T, x ∈ Ωh,

uh(0, x, 0) = φh (x) , x ∈ Ω̃h

(105)

for the stochastic ordinary differential equation. In the second step, we replace

(105) with the DS (91)

uhk(x)− uhk−1(x) + τAx
h,ku

h
k(x)

= R(τAx
h,k)
[
fh
k (x)τ + ghk (x)(wt − wt−1)

]
,

fh
k (x) = fh(tk, x), g

h
k (x) = gh(tk, x), A

x
h,k = Ax

h(tk),

tk = kτ , 1 ≤ k ≤ N, x ∈ Ωh,

uh0(x) = φh (x) , x ∈ Ω̃h.

(106)

Theorem 4.3.2.3 Assume that

∥∥∥φ∥∥∥2
W 4

2 (Ω)
,

T∫
0

∥∥∥f ′(t)
∥∥∥2
L2(Ω)

dt+

T∫
0

∥∥∥f(t)∥∥∥2
W 4

2 (Ω)
dt <∞ (107)

and
T∫

0

∥∥∥g′(t)∥∥∥2
L2(Ω)

dt+

T∫
0

∥∥∥g(t)∥∥∥2
W 4

2 (Ω)
dt <∞. (108)

Then, the solution of DS (106) satisfy the following convergence estimate:

max
0≤k≤N

(
E
∥∥vh(tk)− uhk

∥∥2
L2h

) 1
2 ≤ C(δ)

(
τ

1
2 + |h|2

)
, (109)

where C(δ) do not depend on τ and |h|.
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The proof of Theorem 4.3.2.3 is based on the abstract Theorem 4.3.2.1 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (83) and

the Theorem 4.2.2.4 on the coercivity inequality for the solution of the elliptic

difference problem in L2h.

Fourth, the mixed problem (51) for the multidimensional stochastic parabolic

equation with the Neumann condition is considered. The discretization of prob-

lem (51) is carried out in two steps. The discretization of problem (51) in x is

done in the same as above. Then, in the second step, we replace (105) with the

DS 

uhk(x)− uhk−1(x) + τAx
h,ku

h
k(x)

= R(τAx
h,k)
[
fh
k (x)τ + ghk (x)(wt − wt−1)

]
,

fh
k (x) = fh(tk, x), g

h
k (x) = gh(tk, x), A

x
h,k = Ax

h(tk),

tk = kτ , 1 ≤ k ≤ N, x ∈ Ωh,

uh0(x) = φh (x) , x ∈ Ω̃h.

(110)

Theorem 4.3.2.4 Assume that the assumptions of Theorem 4.3.2.1 are satisfied.

Then, for the solution of (110) the estimate (109) holds.

The proof of Theorem 4.3.2.4 is based on the abstract Theorem 4.3.2.1 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (88) and

the Theorem 4.3.2.4 on the coercivity inequality for the solution of the elliptic

difference problem in L2h.
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Crank-Nicholson Difference Scheme with the StandardWiener

Process

Let us consider again the expression v(tk, tk−1). Applying formula (4.2.2) and

putting t = tk, s = tk−1, p = tk− 1
2
= (k − 1

2
)τ , we get

v(tk, tk−1) = e−Akτ +

∫ tk

tk−1

e−Ak(tk−z)
[
A(z)− Ak

]
v(z, tk−1)dz, (111)

where Ak = A(tk − τ
2
), 1 ≤ k ≤ N. Since∫ tk

tk−1

[
tk− 1

2
− z
]
dz = 0, (112)

we have that

v(tk, tk−1)u = e−Akτu+ o(τ 2)

for all elements u ∈ D and

v(tk, tk−1)u = e−Akτu+ o(τ 3)

for all elements u ∈ D(A2
k) ∩D(A′

k).Therefore,

v(tk, tk−1)u = B(τAk)u+ o(τ 2)

for all elements u ∈ D(A2
k). Here B(τAk) =

(
I − τAk

2

)(
I + τAk

2

)−1
. We will put

uτ (k, k − 1) =
(
I − τAk

2

)(
I + τAk

2

)−1
= B(τAk).

Now, we consider again the expression

fk =
tk∫

tk−1

v(tk, s)
(
f(s, ws)ds+ g(s, ws)dws

)
.

We will present the approximate formula for the expression v(tk, s) for all

tk−1 ≤ s ≤ tk. First, we have that

v(tk, s) = v(tk, tk− 1
2
) +

s∫
t
k− 1

2

v(tk, p)A(p)dp. (113)

Applying the triangle inequality, estimates (34) and (36), we get∥∥∥[v(tk, s)− v(tk, tk− 1
2
)
]
A−1

k

∥∥∥
H→H

≤
∫ tk

s

∥v(tk, p)∥H→H

∥∥A(p)A−1
k

∥∥
H→H

dp ≤M1τ .
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Therefore,

v(tk, s)u = v(tk, tk− 1
2
)u+ o(τ),

tk∫
tk−1

v(tk, s)dsu = τv(tk, tk− 1
2
)u+ o(τ 2)

for all elements u ∈ D. Moreover, using formulas (112) and (113), we get

tk∫
tk−1

v(tk, s)ds = τv(tk, tk− 1
2
) +

tk∫
tk−1

s∫
t
k− 1

2

(v(tk, p)− I)A(p)dpds

+

tk∫
tk−1

s∫
t
k− 1

2

(A(p)− Ak) dpds.

Applying the triangle inequality, estimates (36) and condition (29), we get∥∥∥∥∥∥
 tk∫
tk−1

v(tk, s)ds− τv(tk, tk− 1
2
)

A−2
k

∥∥∥∥∥∥
H→H

≤
tk∫

tk−1

∫ tk

s

∥∥(v(tk, p)− I)A−1(p)
∥∥
H→H

∥∥A2(p)A−2
k

∥∥
H→H

dpds

+

tk∫
tk−1

s∫
t
k− 1

2

∥∥(A(p)− Ak)A
−2
k

∥∥
H→H

dpds

≤
tk∫

tk−1

∫ tk

s

M(tk − p)Mdpds+

tk∫
tk−1

∫ tk

s

M
∣∣∣tk− 1

2
− p
∣∣∣Mdpds ≤M1τ

3.

Therefore,

tk∫
tk−1

v(tk, s)dsu = τv(tk, tk− 1
2
)u+ o(τ 3) (114)

for all elements u ∈ D(A2
k).

Second, using formula (??), we get

v(tk, tk− 1
2
)u = e−Ak

τ
2u+ o(τ 2) (115)

for all elements u ∈ D. Third, we have that

e−A(s)(tk−s) − e−Ak(tk−s)
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=

1∫
0

(tk − s)e−pA(s)(tk−s)
[
− A(s) + Ak

]
e−(1−p)Akτdp.

Using estimate (29), (36) and (28), we get

∥∥[e−A(s)(tk−s) − e−Ak(tk−s)
]
A−1

k

∥∥
H→H

≤ (tk − s)

1∫
0

∥∥e−pA(s)(tk−s)
∥∥
H→H

∥∥[− A(s) + Ak

]
A−1

k

∥∥
H→H

×
∥∥e−(1−p)Ak(tk−s)

∥∥
H→H

dp ≤M1(tk − s)
∣∣∣s− tk− 1

2

∣∣∣ ≤M3τ
2.

From that it follows

e−A(s)(tk−s)u = e−Ak(tk−s)u+ o(τ 2) (116)

for all elements u ∈ D. Fourth, we have that

tk∫
tk−1

e−Ak(tk−s)ds = A−1
k

(
I − e−Akτ

)
,

tk∫
tk−1

e−Ak(tk−s)ds− τe−Ak
τ
2 =

tk∫
tk−1

[
e−Ak(tk−s) − e−Ak

τ
2

]
ds.

Using estimate (116), we get∥∥∥∥∥∥
tk∫

tk−1

e−Ak(tk−s)ds− τe−Ak
τ
2

∥∥∥∥∥∥
H→H

≤
tk∫

tk−1

∥∥e−Ak(tk−s) − e−Ak
τ
2

∥∥
H→H

ds ≤M3τ
2

for all elements u ∈ D. Therefore,

tk∫
tk−1

v(tk, s)dsu = A−1
k

(
I − e−Akτ

)
u+ o(τ 3) (117)

for all elements u ∈ D(A2
k).Then, applying formula (117), we get

tk∫
tk−1

v(tk, s)dsu =
(
I +

τ

2
Ak

)−1

u+ o(τ 2) (118)
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for all elements u ∈ D(A2
k) and tk−1 ≤ s ≤ tk, 1 ≤ k ≤ N. Thus(

I +
τ

2
Ak

)−1

φk

=
(
I +

τ

2
Ak

)−1
∫ tk

tk−1

(
f(s, ws)ds+ g(s, ws)dws

)
is the approximation of the expression fk =

tk∫
tk−1

v(tk, s)
(
f(s, ws)ds+ g(s, ws)dws

)
such that

fk =
(
I +

τ

2
Ak

)−1

φk + o(τ
5
2 ).

Replacing v(tk, tk−1) by B(τAk) = uτ (k, k − 1), v(tk) by uk and expression∫ tk
tk−1

v(tk, s)
(
f(s, ws)ds+ g(s, ws)dws

)
by
(
I + τ

2
Ak

)−1
φk, we get 3/2-th order of

approximation CNDS

uk − uk−1 +
(
I − uτ (k, k − 1)

)
uk−1 =

(
I +

τ

2
Ak

)−1

φk,

1 ≤ k ≤ N, u0 = φ

for the approximate solution of (26). From the above difference scheme it follows

uk − uk−1 +
τ

2
Ak(uk + uk−1) = φk, 1 ≤ k ≤ N, u0 = φ. (119)

It is clear that the DS (119) is uniquely solvable and the following formula holds

uk =
k∑

i=1

uτ (k, i)
(
I +

τ

2
Ai

)−1

φi (120)

=
k∑

i=1

uτ (k, i)
(
I +

τ

2
Ai

)−1
∫ ti

ti−1

[
f(s, ws)ds+ g(s, ws)dws

]
,

where

uτ (k, i) =

 uτ (k, k − 1) · · ·uτ (i+ 2, i+ 1), k > i,

I, k = i.
(121)

The Main Theorem on Stability

Now, we will investigate the convergence of the DS (119). Note that uτ (k, i) is

the approximation of v(tk, ti). Therefore, we have that
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Theorem 4.4.1.1 (A. Ashyralyev and P.E. Sobolevskii, 2004; P.E. Sobolevskii,

1978) For any 0 ≤ ti < tk ≤ T and α ∈ (0, 1
2
], the following estimates hold:

∥uτ (k, i)∥H→H ≤M,

∥Aα
kuτ (k, i)A

−α
i ∥H→H ≤M,

∥Aα
kuτ (k, i)

(
I + τ

2
Ai

)−1 ∥H→H ≤M 1
((k−i)τ)α

where M does not depend on τ , k and i.

Theorem 4.4.1.2 (A. Ashyralyev and P.E. Sobolevskii, 2004; P.E. Sobolevskii,

1978)For any 0 ≤ ti−1 ≤ s ≤ ti < tk ≤ T , the following estimates hold:∥∥∥[v(tk, ti)− uτ (k, i)
]
A−2

i

∥∥∥
H→H

≤ Mτ 2, (122)∥∥∥uτ (k, i)(v(ti, s)− (I + τ

2
Ai

)−1 )
A−2

i

∥∥∥
H→H

≤ Mτ 2, (123)

where M does not depend on τ , k, s and i.

We have the following main theorem on stability of difference scheme (119).

Theorem 4.4.1.3 Suppose that

E∥φ∥H , E
N∑
i=1

∥∥φ1
i

∥∥
H
, E

N∑
i=1

∥∥φ2
i

∥∥2
H
<∞, (124)

where φ1
i = 1

τ

∫ ti
ti−1

f(s, ws)ds, φ
2
i = 1√

τ

∫ ti
ti−1

g(s, ws)dws. Then, for the solution

of DS (119) the following estimate holds

max
1≤k≤N

E∥uk∥H ≤M [E∥φ∥H

+E
N∑
i=1

∥∥φ1
i

∥∥
H
τ +

(
E

N∑
i=1

∥∥φ2
i

∥∥2
H
τ

) 1
2

 . (125)

Proof. Using formula (120) and the triangle inequality, we get

max
1≤k≤N

E∥uk∥H ≤ max
1≤k≤N

E∥uτ (k, 0)φ∥H

+ max
1≤k≤N

E
k∑

i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

φ1
i ∥Hτ+ max

1≤k≤N
E

k∑
i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

φ2
i ∥Hτ

= P1 + P2 + P3.
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Here,

P1 = max
1≤k≤N

E∥uτ (k, 0)φ∥H ,

P2 = max
1≤k≤N

E

k∑
i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

φ1
i ∥Hτ ,

P3 = max
1≤k≤N

E
k∑

i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

φ2
i ∥Hτ .

We will estimate Pr for all r = 1, 2, 3, separately. We start with P1. Applying

estimate (61), we can write

P1 = max
1≤k≤N

∥uτ (k, 0)∥H→HE∥φ∥H ≤M3E∥φ∥H .

Now let us estimate P2. Using estimate (61), we get

P2 ≤ max
1≤k≤N

E

k∑
i=1

∥∥∥∥uτ (k, i)(I + τ

2
Ai

)−1
∥∥∥∥
H→H

∥φ1
i ∥Hτ ≤M4E

N∑
i=1

∥φ1
i ∥Hτ .

Finally, let us estimate P3. Using estimate (61), we get

I3 ≤ max
1≤k≤N

E

(
k∑

i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

φ2
i ∥Hτ

) 1
2

≤ max
1≤k≤N

E

(
k∑

i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

∥2H→H

∥∥φ2
i

∥∥
H
τ 2

) 1
2

≤M5E

(
N∑
i=1

∥∥φ2
i

∥∥2
H
τ

) 1
2

.

Combining the estimates for Pr for all r = 1, 2 and 3, we get (??.4.1.3. Theorem

4.4.1.3 is established.

Theorem 4.4.1.4 Suppose that

E∥φ∥2H , E
N∑
i=1

∥∥φ1
i

∥∥2
H
τ , E

N∑
i=1

∥∥φ2
i

∥∥2
H
τ <∞. (126)

Then, for the solution of DS (119) the following estimate holds(
E

N∑
i=1

∥uk∥Hτ

) 2
2

≤M
[
(E∥φ∥H)

1
2

+

(
E

N∑
i=1

∥∥φ1
i

∥∥2
H
τ

) 1
2

+

(
E

N∑
i=1

∥∥φ2
i

∥∥2
H
τ

) 1
2

 . (127)
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Proof. Using formula (120) and the triangle inequality, we get(
E

N∑
i=1

∥uk∥Hτ

) 1
2

≤M(δ)

(E N∑
i=1

∥uτ (k, 0)φ∥2Hτ

) 1
2

(128)

+

(
E

N∑
i=1

k∑
i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

φ1
i ∥2Hτ

) 1
2

+

(
E

N∑
i=1

k∑
i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

φ2
i ∥2Hτ

) 1
2

 .
= R1 +R2 +R3.

Here,

R1 =

(
E

N∑
i=1

∥uτ (k, 0)φ∥2Hτ

) 1
2

,

R2 =

(
E

N∑
i=1

k∑
i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

φ1
i ∥2Hτ

) 1
2

,

R3 =

(
E

N∑
i=1

k∑
i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

φ2
i ∥2Hτ

) 1
2

.

We will estimate Rr for all r = 1, 2, 3, separately. We start with R1. Applying

estimate (34), we can write

R1 ≤

(
E

N∑
i=1

∥uτ (k, 0)∥2H→H ∥φ∥2Hτ

) 1
2

≤M1TE
(
∥φ∥2H

) 1
2 .

Now let us estimate R2. Making the substitution m = k − i+ 1, we get

k∑
i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

φ1
i ∥2Hτ =

k∑
m=1

∥uτ (k, k−m+1)
(
I +

τ

2
Am

)−1

φ1
k−m+1∥2Hτ

=
N∑

m=1

∥uτ (k, k −m+ 1)
(
I +

τ

2
Am

)−1

φ∗1
k−m+1∥2Hτ .

Here

φ∗1
k−m+1 =


φ1
k−m+1, 1 ≤ m ≤ k,

0, (k −m) τ /∈ [0, T ]τ .

Using the Minkowski inequality and estimate (61), we get

R2 ≤ E
N∑

m=1

M

(
N∑

m=1

∥∥φ∗1
k−m+1

∥∥2
H
τ

) 1
2

τ
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≤MTE

(
N∑

m=1

∥∥φ1
k−m+1

∥∥2
H
τ

) 1
2

.

Finally, let us estimate R3. Making the substitution m = k − i+ 1, we get

k∑
i=1

∥uτ (k, i)
(
I +

τ

2
Ai

)−1

φ2
i ∥2Hτ =

k∑
m=1

∥uτ (k, k−m+1)
(
I +

τ

2
Am

)−1

φ2
k−m+1∥2Hτ

=
N∑

m=1

∥uτ (k, k −m+ 1)
(
I +

τ

2
Am

)−1

φ∗2
k−m+1∥2Hτ .

Here

φ∗2
k−m+1 =


φ2
k−m+1, 1 ≤ m ≤ k,

0, (k −m) τ /∈ [0, T ]τ .

Using the Minkowski inequality and estimate (61), we get

R3 ≤ E
N∑

m=1

M

(
N∑

m=1

∥∥φ∗2
k−m+1

∥∥2
H
τ

) 1
2

τ

≤MTE

(
N∑

m=1

∥∥φ2
k−m+1

∥∥2
H
τ

) 1
2

.

Combining the estimates for Rr for all r = 1, 2 and 3, we get (127). Theorem

4.4.1.4 is proved.

The estimate of convergence for the solution of the DS (119) is shown in the

following main theorem.

Theorem 4.4.1.5 Assume that

∥∥∥A2(0)φ
∥∥∥2
H
, E

T∫
0

∥∥A2(t)f(t, wt)
∥∥2
H
dt, E

T∫
0

∥∥A2(t)g(t, wt)
∥∥2
H
dt <∞, (129)

then the following convergence estimate is valid(
N∑
k=0

E ∥v(tk)− uk∥2H

) 1
2

≤ M̃(δ)τ
3
2 . (130)

Here, M and M̃(δ) do not depend on τ .
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Proof. Using formulas (33) and (120), we get

v(tk)− uk =
k−1∑
i=1

[
v(tk, ti)− uτ (k, i)

] ti∫
ti−1

v(ti, s)
[
f(s, ws)ds+ g(s, ws)dws

]

+
k∑

i=1

uτ (k, i)

ti∫
ti−1

[
v(ti, s)−

(
I +

τ

2
Ai

)−1 ][
f(s, ws)ds+ g(s, ws)dws

]
(131)

= G1,k +G2,k,

where

G1,k =
k−1∑
i=1

[
v(tk, ti)− uτ (k, i)

] ti∫
ti−1

v(ti, s)

[
f(s, ws)ds+ g(s, ws)dws

]
, (132)

G2,k =
k∑

i=1

uτ (k, i)

ti∫
ti−1

[
v(ti, s)−

(
I +

τ

2
Ai

)−1 ]
×
[
f(s, ws)ds+ g(s, ws)dws

]
. (133)

We will estimate

(
N∑
k=0

E∥Gr,k∥2H
) 1

2

for r = 1 and 2, separately. First, let us

estimate (
N∑
k=0

E ∥G1,k∥2H

) 1
2

.

Using formula (132), estimates (122), (35) and the triangle inequality, we obtain(
N∑
k=0

E ∥G1,k∥2H

) 1
2

≤
( N∑

k=0

k−1∑
i=1

∥∥∥(v(tk, ti)− uτ (k, i)
)
A−2

i

∥∥∥2
H→H

ti∫
ti−1

∥∥∥A2
i v(ti, s)A

−2(s)
∥∥∥2
H→H

E
∥∥∥A2(s)

×
[
f(s, ws)ds+ g(s, ws)dws

]∥∥∥2
H
ds

) 1
2
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≤ M0τ
2

( N∑
k=0

k−1∑
i=1

M2
1

ti∫
ti−1

E
∥∥∥A2(s)

[
f(s, ws)ds+ g(s, ws)dws

]∥∥∥2
H
ds

) 1
2

≤ M0τ
2M1

( N∑
k=0

k−1∑
i=1

ti∫
ti−1

E

[∥∥∥A2(s)f(s, ws)
∥∥∥2
H
+
∥∥∥A2(s)g(s, ws)

∥∥∥2
H

]
ds

) 1
2

≤ M2τ
2

( N∑
k=0

T∫
0

E

[∥∥∥A2(s)f(s, ws)
∥∥∥2
H
+
∥∥∥A2(s)g(s, ws)

∥∥∥2
H

]
ds

) 1
2

≤ M2Mτ
3
2 .

Second, let us estimate

(
N∑
k=0

E ∥G2,k∥2H

) 1
2

. Using the triangle inequality, formula

(133), and estimates (123), we get(
N∑
k=0

E ∥G2,k∥2H

) 1
2

≤
( N∑

k=0

k∑
i=1

∫ ti

ti−1

∥∥∥uτ (k, i)(v(ti, s)− τe−Ai
τ
2

)
A−2(s)

∥∥∥2
H→H

×E
[∥∥∥A2(s)f(s, ws)

∥∥∥2
H
+
∥∥∥A2(s)g(s, ws)

∥∥∥2
H

]
ds

) 1
2

+

( N∑
k=0

k∑
i=1

∫ ti

ti−1

∥∥∥uτ (k, i)(e−Ai
τ
2 −

(
I +

τ

2
Ai

)−1 )
A−2(s)

∥∥∥2
H→H

×E
[∥∥∥A2(s)f(s, ws)

∥∥∥2
H
+
∥∥∥A2(s)g(s, ws)

∥∥∥2
H

]
ds

) 1
2

≤
( N∑

k=0

k∑
i=1

M2
3 τ

4

∫ ti

ti−1

E

[∥∥∥A2(s)f(s, ws)
∥∥∥2
H
+
∥∥∥A2(s)g(s, ws)

∥∥∥2
H

]
ds

) 1
2

+

( N∑
k=0

k∑
i=1

M2
31τ

4

∫ ti

ti−1

E

[∥∥∥A2(s)f(s, ws)
∥∥∥2
H
+
∥∥∥A2(s)g(s, ws)

∥∥∥2
H

]
ds

) 1
2

≤ M4τ
2

( N∑
k=0

T∫
0

E

[∥∥∥A2(s)f(s, ws)
∥∥∥2
H
+
∥∥∥A2(s)g(s, ws)

∥∥∥2
H

]
ds

) 1
2

≤ M4Mτ
3
2 .

Then combining both estimates, we get(
N∑
k=0

E ∥G1,k +G2,k∥2H

) 1
2

≤M2Mτ
3
2 +M4Mτ

3
2 ≤ M̃(δ)τ

3
2 .

From that it follows (130). Theorem 4.4.1.5 is proved.
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Applications

Now, we consider an applications of Theorem 4.4.1.5. First, let us consider the

initial-value problem for one dimensional stochastic parabolic equation. In the

same manner, the discretization of problem (76) is carried out in two steps. The

first step is the same as in the previous case. In the second step, we replace (76)

with the DS (119)

uhk(x)− uhk−1(x) +
τ
2
Ax

h,k

(
uhk(x) + uhk−1(x)

)
= φh

k(x),

φh
k(x) =

tk∫
tk−1

fh(s, x, ws)ds+
tk∫

tk−1

gh(s, x, ws)dws,

Ax
h,k = Ax

h(tk− 1
2
), tk = kτ , 1 ≤ k ≤ N, x ∈ [0, l]h,

uh0(x) = φh(x), x ∈ [0, l]h.

(134)

Theorem 4.4.2.1 Assume that

E
∥∥∥φ∥∥∥2

W 4
2 [0,l]

, E

T∫
0

∥∥∥f(t, wt)
∥∥∥2
W 4

2 [0,l]
dt, E

T∫
0

∥∥∥g(t, wt)
∥∥∥2
W 4

2 [0,l]
dt <∞. (135)

Then, the solutions of DS (134) satisfy the following convergence estimate:(
N∑
k=0

E
∥∥vh(tk)− uhk

∥∥2
L2h

) 1
2

≤ C(δ)
(
τ

3
2 + h

)
, (136)

where C(δ) do not depend on τ and h.

The proof of Theorem 4.4.2.1 is based on the abstract Theorem 4.4.1.5 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (75).

Second, we study the one dimensional stochastic parabolic equations with

involution and Dirichlet conditions. In the same manner, the discretization of

problem (80) is carried out in two steps. The first step is same as previous case.
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In the second step, we replace (80) with the DS (119)

uhk(x)− uhk−1(x) +
τ
2
Ax

h,k

(
uhk(x) + uhk−1(x)

)
= φh

k,

φh
k =

∫ tk
tk−1

(
f(s, ws)ds+ g(s, ws)dws

)
,

Ax
h,k = Ax

h(tk− 1
2
), tk = kτ , 1 ≤ k ≤ N, x ∈ [−l, l]h,

uh0(x) = φh(x), x ∈ [−l, l]h.

Theorem 4.4.4.2 Assume that

E
∥∥∥φ∥∥∥2

W 4
2 [−l,l]

, E

T∫
0

∥∥∥f(t, wt)
∥∥∥2
W 4

2 [−l,l]
dt, E

T∫
0

∥∥∥g(t, wt)
∥∥∥2
W 4

2 [−l,l]
dt <∞. (137)

Let τ and h be sufficiently small numbers. For the solution of DS (103) the

following convergence estimates hold(
N∑
k=0

E
∥∥vh(tk)− uhk

∥∥2
C([0,T ]τ ,L2h)

) 1
2

≤ C(δ)
(
τ

3
2 + |h|

)
,

where C(δ) do not depend on τ and h.

Proof. The proof of Theorem 4.4.2.2 is based on the Theorems 4.4.1.5 and on

the self-adjointness and positivity of operator Ax
h(t) defined by formula (79).

Third, let us consider the initial value problem (48) for the multidimensional

parabolic equation. The discretization of problem (84) is done in the same manner

as above. In the second step, we replace (84) with the DS (119)

uhk(x)− uhk−1(x) + τAx
h,k

(
uhk(x) + uhk−1(x)

)
= φh

k(x),

φh
k(x) =

tk∫
tk−1

(
fh(s, x, ws)ds+ gh(s, x, ws)dws

)
,

Ax
h,k = Ax

h(tk− 1
2
), 1 ≤ k ≤ N, x ∈ Ωh,

uh0(x) = 0, x ∈ Ω̃h.

(138)



92

Theorem 4.4.4.3 Assume that

E
∥∥∥φ∥∥∥2

W 4
2 (Ω)

, E

T∫
0

∥∥∥f(t, wt)
∥∥∥2
W 4

2 (Ω)
dt, E

T∫
0

∥∥∥g(t, wt)
∥∥∥2
W 4

2 (Ω)
dt <∞. (139)

Then, the solution of DS (138) satisfy the following convergence estimate:(
N∑
k=0

E
∥∥vh(tk)− uhk

∥∥2
L2h

) 1
2

≤ C(δ)
(
τ

3
2 + |h|2

)
, (140)

where C(δ) do not depend on τ and |h|.

Proof. The proof of Theorem 4.4.4.3 is based on the Theorems 4.4.1.5 and on the

self-adjointness and positivity of operator Ax
h(t) by formula (83) and the theorem

on the coercivity inequality for the solution of the elliptic difference problem in

L2h.

Fourth, we consider the multi-dimensional parabolic equation (51) with the

Neumann condition. The discretization of problem (51) is done in the same

manner as above. Then, in the second step, we replace (89) with the DS (119)

uhk(x)− uhk−1(x) +
τ
2
Ax

h,k

(
uhk(x) + uhk−1(x)

)
= φh

k(x),

φh
k(x) =

tk∫
tk−1

(
fh(s, x, ws)ds+ gh(s, x, ws)dws

)
,

Ax
h,k = Ax

h(tk− 1
2
), tk = kτ , 1 ≤ k ≤ N, x ∈ Ωh,

uh0(x) = φh(x), x ∈ Ω̃h.

(141)

Theorem 4.4.4.4 Assume that all assumptions of Theorem 4.4.3.4 are satisfied.

Then, for the solution of (141) the estimate (140) holds.

The proof of Theorem 4.4.4.4 is based on the abstract Theorem 4.4.1.5 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (88) and

the theorem on the coercivity inequality for the solution of the elliptic difference

problem in L2h.



93

Crank-Nicolson Difference Scheme Without the Standard

Wiener Process

Now, we consider problem (26), when the sourse term f(t, wt) and g(t, wt) does

not dependent on stochastic noise term wt. That means f(t, wt) = f(t) and

g(t, wt) = g(t) is an abstract function defined on the segment [0, T ] with values

in H. Assume that the function f(t) and g(t) is continuous and smooth. In

the similary manner in section 3.2, replacing φk =
tk∫

tk−1

(
f(s)ds + g(s)dws

)
by

tk∫
tk−1

f(tk− 1
2
)dws = f(tk− 1

2
)τ + g(tk− 1

2
)(wtk − wtk−1

) in (119), we get the CNDS

uk − uk−1 +
τ

2
Ak(uk + uk−1)

= f(tk− 1
2
)τ + g(tk− 1

2
)(wtk − wtk−1

), 1 ≤ k ≤ N, u0 = φ (142)

for the approximate solution of the Cauchy problem (92). It is clear that the

CNDS (142) is uniquely solvable and the following formula holds

uk =
k∑

i=1

uτ (k, i)
(
I +

τ

2
Ai

)−1 (
f(tk− 1

2
)τ + g(ti− 1

2
)(wti − wti−1

)
)
. (143)

The Main Theorem on Stability

The estimate of convergence for the solution of the CNDS (142) is shown in the

following theorem.

Theorem 4.5.1.1 Assume that

∥∥A2(0)φ
∥∥
H
,

T∫
0

∥f ′(t)∥2H dt+
T∫

0

∥∥A2(t)f(t)
∥∥2
H
dt <∞ (144)

and
T∫

0

∥g′(t)∥2H dt+
T∫

0

∥∥A2(t)g(t)
∥∥2
H
dt <∞, (145)

then the following convergence estimate is valid(
N∑
k=0

E ∥v(tk)− uk∥2H

) 1
2

≤ M̃(δ)τ
3
2 . (146)

Here, M and M̃1(δ) do not depend on τ .
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Proof. Using formulas (33),(143), we get

v(tk)− uk =
k−1∑
i=1

[
v(tk, ti)− uτ (k, i)

] ti∫
ti−1

v(ti, s)
(
f(s)ds+ g(s)dws

)

+
k∑

i=1

uτ (k, i)
{ ti∫
ti−1

v(ti, s)
(
f(s)ds+ g(s)dws

)
−
(
I +

τ

2
Ai

)−1 (
f(ti− 1

2
)τ + g(ti− 1

2
)(wti − wti−1

)
)}

= K1,k +K2,k,

where

K1,k =
k−1∑
i=1

(
v(tk, ti)− uτ (k, i)

) ti∫
ti−1

v(ti, s) (147)

×
] ti∫
ti−1

v(ti, s)
(
f(s)ds+ g(s)dws

)
,

K2,k =
k∑

i=1

uτ (k, i)
{ ti∫
ti−1

v(ti, s)
(
f(s)ds+ g(s)dws

)
−
(
I +

τ

2
Ai

)−1 (
f(ti− 1

2
)τ + g(ti− 1

2
)(wti − wti−1

)
)}
. (148)

We will estimate

(
N∑
k=0

E∥Kr,k∥2H
) 1

2

for r = 1 and 2, separately. First, let us

estimate (
N∑
k=0

E ∥K1,k∥2H

) 1
2

.

Using formula (147), estimates (122), (35) and the triangle inequality, we obtain(
N∑
k=0

E ∥K1,k∥2H

) 1
2

=

( N∑
k=0

E
∥∥∥ k−1∑

i=1

(
v(tk, ti)−uτ (k, i)

)
A−2

i

ti∫
ti−1

A2
i v(ti, s)A

−2(s)A2(s)
(
f(s)ds+g(s)dws

)∥∥∥2
H

) 1
2

≤
( N∑

k=0

k−1∑
i=1

∥∥∥(v(tk, ti)− uτ (k, i)
)
A−2

i

∥∥∥2
H→H

ti∫
ti−1

∥∥∥A2
i v(ti, s)A

−2(s)
∥∥∥2
H→H



95

×
[∥∥∥A2(s)f(s)

∥∥∥2
H
+
∥∥∥A2(s)g(s)

∥∥∥2
H

]
ds

) 1
2

≤ M0τ
2

( N∑
k=0

k−1∑
i=1

M2
1

ti∫
ti−1

[∥∥∥A2(s)f(s)
∥∥∥2
H
+
∥∥∥A2(s)g(s)

∥∥∥2
H

]
ds

) 1
2

≤ M0τ
2M1

( N∑
k=0

k−1∑
i=1

ti∫
ti−1

[∥∥∥A2(s)f(s)
∥∥∥2
H
+
∥∥∥A2(s)g(s)

∥∥∥2
H

]
ds

) 1
2

≤ M2τ
2

( N∑
k=0

T∫
0

[∥∥∥A2(s)f(s)
∥∥∥2
H
+
∥∥∥A2(s)g(s)

∥∥∥2
H

]
ds

) 1
2

≤M2Mτ
3
2 .

Now, we estimate

(
N∑
k=0

E ∥K2,k∥2H

) 1
2

. Then from formula (148) and Minkowski

inequality it follows that
N∑
k=0

E ∥K2,k∥2H

=
N∑
k=0

E
∥∥∥ k∑

i=1

uτ (k, i)

{ ti∫
ti−1

v(ti, s)
(
f(s)ds+ g(s)dws

)
−
(
I +

τ

2
Ai

)−1 (
f(ti− 1

2
)τ + g(ti− 1

2
)(wti − wti−1

)
)}∥∥∥2

H

≤ τ
N∑
k=0

E
∥∥∥ k∑

i=1

uτ (k, i)

ti∫
ti−1

(
v(ti, s)−

(
I +

τ

2
Ai

)−1 )

×A−2(s)A2(s)
(
f(s)ds+ g(s)dws

)∥∥∥∥2
H

+
N∑
k=0

E
∥∥∥ k∑

i=1

uτ (k, i)
(
I +

τ

2
Ai

)−1

×
[ ti∫
ti−1

(
f(s)− f(ti− 1

2
)
)
ds+

ti∫
ti−1

(
g(s)− g(ti− 1

2
)
)
dws

∥∥∥2
H

]

≤
N∑
k=0

k∑
i=1

∥∥∥uτ (k, i)∥∥∥2
H→H

ti∫
ti−1

∥∥∥(v(ti, s)− (I + τ

2
Ai

)−1 )
A−2(s)

∥∥∥2
H→H

×
[∥∥∥A2(s)g(s)

∥∥∥2
H
+
∥∥∥A2(s)f(s)

∥∥∥2
H

]
ds

+
N∑
k=0

k∑
i=1

∥∥∥uτ (k, i)(I + τ

2
Ai

)−1 ∥∥∥
H→H

ti∫
ti−1

ti∫
s

[∥∥∥f ′(z)
∥∥∥2
H
+
∥∥∥g′(z)∥∥∥2

H

]
dzds.
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Then,

(
N∑
k=0

E ∥K2,k∥2H

) 1
2

≤
( N∑

k=0

k∑
i=1

M1M2τ
2

ti∫
ti−1

[ ∥∥A2(s)f(s)
∥∥2
H
+
∥∥A2(s)g(s)

∥∥2
H

]
ds

) 1
2

+

( N∑
k=0

k∑
i=1

M3

ti∫
ti−1

[∥∥∥f ′(z)
∥∥∥2
H
+
∥∥∥g′(z)∥∥∥2

H

]
dz

ti∫
ti−1

ds

) 1
2

≤M1M2τ
3
2

( T∫
0

[
∥A(s)f(s)∥2H ∥A(s)g(s)∥2H

]
ds

) 1
2

+M3τ
3
2

( T∫
0

[∥∥∥f ′(z)
∥∥∥2
H
+
∥∥∥g′(z)∥∥∥2

H

]
dz

) 1
2

≤ M̃τ
3
2 .

Then combining both estimates, we get(
N∑
k=0

E ∥K1,k +K2,k∥2H

) 1
2

≤M2Mτ
3
2 + M̃τ

3
2 ≤ M̃(δ)τ

3
2 .

Theorem 4.5.1.1 is proved.

Applications

Now, we consider applications of Theorem 4.5.1.1. First, let us consider the

initial-value problem for one dimensional stochastic parabolic equation (1). In

the same manner, the discretization of problem (1) is carried out in two steps.

The first step is the same as in the previous case. In the second step, we replace

(76) with the DS (142)

uhk(x)− uhk−1(x) +
τ
2
Ax

h,k

(
uhk(x) + uhk−1(x)

)
= φh

k(x),

φh
k(x) = fh(tk− 1

2
, x)τ + gh(tk− 1

2
, x)(wtk − wtk−1

),

tk = kτ , 1 ≤ k ≤ N, x ∈ [0, l]h, A
x
h,k = Ax

h(tk− 1
2
),

uh0(x) = φh(x), x ∈ [0, l]h.

(149)
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Theorem 4.5.2.1 Assume that

∥∥∥φ∥∥∥2
W 4

2 [0,l]
,

T∫
0

∥∥∥f ′(t)
∥∥∥2
L2[0,l]

dt+

T∫
0

∥∥∥f(t)∥∥∥2
W 4

2 [0,l]
dt <∞ (150)

and
T∫

0

∥∥∥g′(t)∥∥∥2
L2[0,l]

dt+

T∫
0

∥∥∥g(t)∥∥∥2
W 4

2 [0,l]
dt <∞. (151)

Then, the solutions of DS (149) satisfy the following convergence estimate:

max
0≤k≤N

(
E
∥∥vh(tk)− uhk

∥∥2
L2h

) 1
2 ≤ C(δ)

(
τ

3
2 + h

)
,

where C(δ) do not depend on τ and h.

The proof of Theorem 4.5.2.1 is based on the abstract Theorem 4.5.1.1 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (75).

Second, let us consider the initial value problem for one dimensional stochastic

parabolic equation (99) with involution and Dirichlet conditions. The discretiza-

tion of problem (99) is the same with as in the previous case. In the second step,

we replace (102) with the DS (142)



uhk(x)− uhk−1(x) +
τ
2
Ax

h,k

(
uhk(x) + uhk−1(x)

)
= φh

k(x),

φh
k(x) =

[
fh
k (x)τ + ghk (x)(wt − wt−1)

]
,

fh
k (x) = fh(tk, x), g

h
k (x) = gh(tk, x)

x ∈ [−l, l]h , 1 ≤ k ≤ N,

uh0(x) = φh(x), x ∈ [−l, l]h .

(152)

Theorem 4.5.2.2 Assume that

∥∥∥φ∥∥∥
W 4

2 [−l,l]
,

T∫
0

∥∥∥f ′(t)
∥∥∥2
L2[−l,l]

dt+

T∫
0

∥∥∥f(t)∥∥∥2
W 4

2 [−l,l]
dt <∞ (153)

and
T∫

0

∥∥∥g′(t)∥∥∥2
L2[−l,l]

dt+

T∫
0

∥∥∥g(t)∥∥∥2
W 4

2 [−l,l]
dt <∞. (154)
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Let τ and h be sufficiently small numbers. For the solution of DS (152) the

following convergence estimates hold(
N∑
k=0

E
∥∥vh(tk)− uhk

∥∥2
C([0,T ]τ ,L2h)

) 1
2

≤ C(δ)
(
τ

3
2 + |h|

)
,

Proof. The proof of Theorem 4.5.2.2 is based on the abstract Theorem 4.5.1.1

and the symmetry properties of the difference operator Ax
h(t) defined by formula

(79).

Third, we the mixed problem (48) for the multidimensional stochastic parabolic

equation with the Dirichlet condition is considered. The discretization of problem

(105) is done in the same as above. Then, in the second step, we replace (105)

with the DS (142)



uhk(x)− uhk−1(x) +
τ
2
Ax

h,k

(
uhk(x) + uhk−1(x)

)
= φh

k(x),

φh
k(x) =

[
fh
k (x)τ + ghk (x)(wt − wt−1)

]
,

fh
k (x) = fh(tk, x), g

h
k (x) = gh(tk, x), A

x
h,k = Ax

h(tk− 1
2
),

tk = kτ , 1 ≤ k ≤ N, x ∈ Ωh,

uh0(x) = φh (x) , x ∈ Ω̃h.

(155)

Theorem 4.5.2.3 Assume that∥∥∥φ∥∥∥
W 4

2 (Ω)
,

T∫
0

∥∥∥f ′(t)
∥∥∥2
L2(Ω)

dt+

T∫
0

∥∥∥f(t)∥∥∥2
W 4

2 (Ω)
dt <∞ (156)

and
T∫

0

∥∥∥g′(t)∥∥∥2
L2(Ω)

dt+

T∫
0

∥∥∥g(t)∥∥∥2
W 4

2 (Ω)
dt <∞. (157)

Then, the solution of DS (155) satisfy the following convergence estimate:

max
0≤k≤N

(
E
∥∥vh(tk)− uhk

∥∥2
L2h

) 1
2 ≤ C(δ)

(
τ

3
2 + |h|2

)
, (158)

where C(δ) do not depend on τ and |h|.



99

The proof of Theorem 4.5.2.3 is based on the abstract Theorem 4.5.1.1 and

the symmetry properties of the difference operator Ax
h(t) defined by formula (83)

and the Theorem 3.6 on the coercivity inequality for the solution of the elliptic

difference problem in L2h.

Fourth, the mixed problem (51) for the multidimensional stochastic parabolic

equation with the Neumann condition is considered. The discretization of prob-

lem (51) is carried out in two steps. The discretization of problem (51) in x is

done in the same as above. Then, in the second step, we replace (105) with the

DS 

uhk(x)− uhk−1(x) +
τ
2
Ax

h,k

(
uhk(x) + uhk−1(x)

)
= φh

k(x),

φh
k(x) =

[
fh
k (x)τ + ghk (x)(wt − wt−1)

]
,

fh
k (x) = fh(tk, x), g

h
k (x) = gh(tk, x), A

x
h,k = Ax

h(tk− 1
2
),

tk = kτ , 1 ≤ k ≤ N, x ∈ Ωh,

uh0(x) = φh (x) , x ∈ Ω̃h.

(159)

Theorem 4.5.2.3 Assume that the assumptions of Theorem 3.23 are satisfied.

Then, for the solution of (159) the estimate (158) holds.

The proof of Theorem 4.5.2.3 is based on the abstract Theorem 4.5.1.1 and the

symmetry properties of the difference operator Ax
h(t) defined by formula (88) and

the Theorem 4.5.1.1 on the coercivity inequality for the solution of the elliptic

difference problem in L2h.
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CHAPTER V

Numerical Results

Introduction

When the analytical methods do not work properly, the numerical methods for

obtaining approximate solutions of partial differential equations play an impor-

tant role in applied mathematics. In this section the single-step DS’s in time for

the solution of one dimensional stochastic partial differential equations are pre-

sented. Numerical results are provided. We apply a procedure of modified Gauss

elimination method to solve the problem. The theoretical statements for the so-

lution of these difference schemes are supported by the result of the numerical

experiment.

The Mixed Problem with Dirichlet Condition

We consider the IBVP with Dirichlet condition

dv(t, x, wt)− 2(1 + t)vxx(t, x, wt)dt = e−(t+1)2 sin(x)dwt,

0 < t < 1, 0 < x < π,

v(0, x, 0) = 0, 0 ≤ x ≤ π,

v(t, 0, wt) = v(t, π, wt) = 0, wt =
√
tξ, ξ ∈ N(0, 1), 0 ≤ t ≤ 1

(160)

for the one dimensional stochastic partial differential equations. The exact solu-

tion of problem (160) is

u(t, x, wt) = e−(t+1)2 sin(x)wt.

Here and in the future, we consider the uniform grid space

[0, 1]τ × [0, π]h = {(tk, xn) : tk = kτ , 0 ≤ k ≤ N, Nτ = 1; xn = nh, 0 ≤ n ≤M},
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where Nτ = 1,Mh = π. First, we consider the DS 1/2-th order of accuracy in t

and second order of accuracy in x for the approximate solution of the IBVP (160)

ukn − uk−1
n − τ

h22(1 + kτ)(ukn+1 − 2ukn + ukn−1)

= f(tk, xn)(
√
kτ −

√
(k − 1)τ)ξ,

f(tk, xn) = e−(tk+1)2 sin(xn), 1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

u0n = 0, 0 ≤ n ≤M,

uk0 = ukM = 0, 0 ≤ k ≤ N.

(161)

Thus we have (N + 1)× (M + 1) system of linear equations. We will write it in

the matrix form
Aun+1 +Bun + Cun−1 = Dφn, 1 ≤ n ≤M − 1,

u0 = 0⃗, uM = 0⃗.

(162)

Here

φn =



φ0
n

φ1
n

φ2
n

...

φN
n


(N+1)×1

,

φ0
n = 0, φk

n = f(tk, xn)
(√

kτ −
√

(k − 1)τ
)
ξ, 1 ≤ k ≤ N, 1 ≤ n ≤M,

A =



0 0 0 . . . 0 0

0 a1 0 . . . 0 0

0 0 a2 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . aN−1 0

0 0 0 . . . 0 aN


(N+1)×(N+1)

,



102

B =



1 0 0 . . . 0 0

b c1 0 . . . 0 0

0 b c2 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . cN−1 0

0 0 0 . . . b cN


(N+1)×(N+1)

,

ak = − τ
h2 (2(1 + tk)), b = −1, ck = 1 + 2τ

h2 (2(1 + tk)) and C = A,

D =



1 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0

0 0 1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . 1 0 0

0 0 0 . . . 0 1 0


(N+1)×(N+1)

,

us =



u0s

u1s

u2s
...

uNs


(N+1)×1

, s = n − 1, n n + 1. For the solution of the last matrix equation, we use the

modified Gauss elimination method. We seek a solution of the matrix equation

by the following form

un = αn+1un+1 + βn+1, n =M − 1, . . . , 1, uM = 0⃗, (163)

where αj, are (N + 1)× (N + 1) square matrices and βj, are (N + 1)× 1 column

matrices and (j = 1, . . . ,M − 1) defined by

αn+1 = −(B + Cαn)
−1A, (164)

βn+1 = (B + Cαn)
−1(Dφn − Cβn), n = 1, . . . ,M − 1.

Here α1 = [0](N+1)×(N+1), β1 = [0](N+1)×1. Finally, we generate 1000 random

numbers with mean 0 and variance 1, set ξ = [y1, y2, . . . , y1000]
T : set ξj = yj, j : 1
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to 1000 result of error analysis. The errors are computed by

EN
M =

 N∑
k=0

1

1000

1000∑
mξ=1

M−1∑
n=1

∣∣u(tk, xn,mξ)− ukn(mξ)
∣∣2 h
 1

2

(165)

of the numerical solutions, where u(tk, xn) = u(tk, xn,mξ) represents the exact

solution at ξ and ukn = ukn(mξ) represents the numerical solution at (tk, xn, ξ)

and the results are given in the following table:

Table 1.

Numerical results of difference scheme (161)

DS’s/N,M 10, 10 20, 20 40, 40

DS (161) 0.0018 0.0010 0.0004782

As it is seen in Table 1 , we get some numerical results. If N and M are

doubled, the value of errors decrease by a factor of approximately 1/
√
2 for 1

2
−th

order of accuracy difference scheme.

Second, we consider the CNDS 3/2-th order of accuracy in t and second order

of accuracy in x for the approximate solution of the IBVP (160)

ukn − uk−1
n − τ

h2 (1 + tk− τ
2
)
(
ukn+1 − 2ukn + ukn−1

)
− τ

h2 (1 + tk− τ
2
)
(
uk−1
n+1 − 2uk−1

n + uk−1
n−1

)
= f(tk− 1

2
, xn)

(√
kτ −

√
(k − 1)τ

)
ξ,

f(tk− 1
2
, xn) = e

−(t
k− 1

2
+1)2

sin(xn),

tk− 1
2
=
(
k − 1

2

)
τ , xn = nh, 1 ≤ k ≤ N, 1 ≤ n ≤M − 1,

u0n = 0, 0 ≤ n ≤M,

uk0 = ukM = 0, 0 ≤ k ≤ N.

(166)
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Thus, we have (N + 1)× (M + 1) system of linear equations. Therefore, we

can transform it in matrix form (162). Here

φn =



φ0
n

φ1
n

φ2
n

...

φN
n


(N+1)×1

,

φ0
n = 0, φk

n = f(tk− τ
2
, xn)

(√
kτ −

√
(k − 1)τ

)
ξ, 1 ≤ k ≤ N, 1 ≤ n ≤M,

A =



0 0 0 . . . 0 0

a1 a1 0 . . . 0 0

0 a2 a2 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . aN−1 0

0 0 0 . . . aN aN


(N+1)×(N+1)

,

,

B =



1 0 0 . . . 0 0

b1 c1 0 . . . 0 0

0 b2 c2 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . cN−1 0

0 0 0 . . . bN cN


(N+1)×(N+1)

,

ak = − τ
h2 (1 + tk − τ

2
), bk = −1 + τ

h2 (2(1 + tk− 1
2
)), ck = 1 + 2τ

h2 (1 + tk− τ
2
) and

C = A,

D =



1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 1 0

0 0 0 . . . 0 1


(N+1)×(N+1)
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,

us =



u0s

u1s

u2s
...

uNs


(N+1)×1

, s = n− 1, n n+ 1.

For the solution of the last matrix equation, we use the modified Gauss elim-

ination method. We seek a solution of the matrix equation by the following form

(163) and (164).

The following table is of the error of the CNDS 3/2-th order of accuracy in

t and second order of accuracy in x for the approximate solution of the IBVP

(160):

Table 2.

Numerical result of difference scheme (166)

DS’s/N,M 10, 10 20, 20 40, 40

DS (166) 0.00077724 0.00034105 0.00015924

As it is seen in the above Table 2, we get some numerical results. If N and

M are doubled, the value of errors decrease by a factor of approximately
√
2/4

for 3
2
−th order of accuracy difference scheme.

The Mixed Problem with Neumann Condition

For the numerical experiment,we consider the IBVP with Neumann condition

dv(t, x, wt)− 2(1 + t)vxx(t, x, wt)dt = e−(t+1)2 cos(x)dwt,

0 < t < 1, 0 < x < π,

v(0, x, 0) = 0, 0 ≤ x ≤ π,

vx(t, 0, wt) = vx(t, π, wt) = 0, wt =
√
tξ, ξ ∈ N(0, 1), 0 ≤ t ≤ 1

(167)
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for the one dimensional stochastic partial differential equations. The exact solu-

tion of problem (167) is

u(t, x, wt) = e−(t+1)2 cos(x)wt.

For numerical solution of problem (167) we consider the same uniform grid space

[0, 1]τ × [0, π]h.First, we consider the DS 1/2-th order of accuracy in t and first

order of accuracy in x for the approximate solution of the IBVP (167)

ukn − uk−1
n − τ

h22(1 + kτ)(ukn+1 − 2ukn + ukn−1)

= f(tk, xn)(
√
kτ −

√
(k − 1)τ)ξ,

f(tk, xn) = e−(tk+1)2 cos(xn), 1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

u0n = 0, 0 ≤ n ≤M,

uk0 = uk1, u
k
M = ukM−1, 0 ≤ k ≤ N.

(168)

Thus we have (N + 1)× (M + 1) system of linear equations. We will write it in

the matrix form
Aun+1 +Bun + Cun−1 = Dφn, 1 ≤ n ≤M − 1,

u0 = u⃗1, uM = ⃗uM−1.

(169)

Here

φn =



φ0
n

φ1
n

φ2
n

...

φN
n


(N+1)×1

,

φ0
n = 0, φk

n = f(tk, xn)
(√

kτ −
√

(k − 1)τ
)
ξ, 1 ≤ k ≤ N, 1 ≤ n ≤M,
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A =



0 0 0 . . . 0 0

0 a1 0 . . . 0 0

0 0 a2 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . aN−1 0

0 0 0 . . . 0 aN


(N+1)×(N+1)

,

B =



1 0 0 . . . 0 0

b c1 0 . . . 0 0

0 b c2 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . cN−1 0

0 0 0 . . . b cN


(N+1)×(N+1)

,

ak = − τ
h2 (2(1 + tk)), b = −1, ck = 1 + 2τ

h2 (2(1 + tk)) and C = A,

D =



1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 1 0

0 0 0 . . . 0 1


(N+1)×(N+1)

,

us =



u0s

u1s

u2s
...

uNs


(N+1)×1

,

s = n ± 1, n . For the solution of the last matrix equation, we use the modified

Gauss elimination method. We seek a solution of the matrix equation by the

following form

un = αn+1un+1 + βn+1, n =M − 1, . . . , 1, uM = (I − αu)βM , (170)
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where αj, are (N + 1)× (N + 1) square matrices and βj, are (N + 1)× 1 column

matrices and (j = 1, . . . ,M − 1) defined by

αn+1 = (B + Cαn)
−1A, (171)

βn+1 = −(B + Cαn)
−1(Dφn − Cβn), n = 1, . . . ,M − 1.

Here α1 = [1](N+1)×(N+1), β1 = [0](N+1)×1. Finally, we generate 1000 random

numbers with mean 0 and variance 1, set ξ = [y1, y2, . . . , y1000]
T : set ξj = yj, j : 1

to 1000 result of error analysis. The errors are computed by

EN
M =

 N∑
k=0

1

1000

1000∑
mξ=1

M∑
n=0

∣∣u(tk, xn,mξ)− ukn(mξ)
∣∣2 h
 1

2

(172)

of the numerical solutions, where u(tk, xn) = u(tk, xn,mξ) represents the exact

solution at ξ and ukn = ukn(mξ) represents the numerical solution at (tk, xn, ξ)

and the results are given in the following table:

Table 3.

Numerical result of difference scheme (168)

DS’s/N,M 10, 10 20, 20 40, 40

DS (168) 0.1082 0.0770 0.0522

As it is seen in Table 3 , we get some numerical results. If N and M are

doubled, the value of errors decrease by a factor of approximately 1/
√
2 for 1

2
−th

order of accuracy difference scheme.

Second, we consider the CNDS 3/2-th order of accuracy in t and first order
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of accuracy in x for the approximate solution of the IBVP (167 )

ukn − uk−1
n − τ

h2 (1 + tk− τ
2
)
(
ukn+1 − 2ukn + ukn−1

)
− τ

h2 (1 + tk− τ
2
)
(
uk−1
n+1 − 2uk−1

n + uk−1
n−1

)
= f(tk− 1

2
, xn)

(√
kτ −

√
(k − 1)τ

)
ξ,

f(tk− 1
2
, xn) = e

−(t
k− 1

2
+1)2

cos(xn),

tk− 1
2
=
(
k − 1

2

)
τ , xn = nh, 1 ≤ k ≤ N, 1 ≤ n ≤M − 1,

u0n = 0, 0 ≤ n ≤M,

uk0 = uk1, u
k
M = ukM−1, 0 ≤ k ≤ N.

(173)

Thus, we have (N + 1)× (M + 1) system of linear equations. Therefore, we

can transform it in matrix form (162). Here

φn =



φ0
n

φ1
n

φ2
n

...

φN
n


(N+1)×1

,

φ0
n = 0, φk

n = f(tk− τ
2
, xn)

(√
kτ −

√
(k − 1)τ

)
ξ, 1 ≤ k ≤ N, 1 ≤ n ≤M,

A =



0 0 0 . . . 0 0

a1 a1 0 . . . 0 0

0 a2 a2 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . aN−1 0

0 0 0 . . . aN aN


(N+1)×(N+1)

,
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,

B =



1 0 0 . . . 0 0

b1 c1 0 . . . 0 0

0 b2 c2 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . cN−1 0

0 0 0 . . . bN cN


(N+1)×(N+1)

,

ak = − τ
h2 (1 + tk − τ

2
), bk = −1 + τ

h2 (2(1 + tk− 1
2
)), ck = 1 + 2τ

h2 (1 + tk− τ
2
) and

C = A,

D =



1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 1 0

0 0 0 . . . 0 1


(N+1)×(N+1)

,

us =



u0s

u1s

u2s
...

uNs


(N+1)×1

,

s = n± 1, n.

For the solution of the last matrix equation, we use the modified Gauss elim-

ination method. We seek a solution of the matrix equation by the following form

(163) and (164). We get the following table of the error of the CNDS 3/2-th order

of accuracy in t and second order of accuracy in x for the approximate solution

of the IBVP (167)
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Table 4.

Numerical result of difference scheme (173)

DS’s/N,M 10, 10 20, 20 40, 40

DS (173) 0.10578 0.0706 0.0475

As it is seen in Table, we get some numerical results. If N andM are doubled,

the value of errors decrease by a factor of approximately
√
2/4 for 3

2
−th order of

accuracy difference scheme.
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CHAPTER VI

Conclusion

In this study, the stability of an abstract Cauchy problem for the for the

solution of SDE in a Hilbert space with the time-dependent positive operator

is established. In practice, theorems on stability estimates for the solution of

four types of the initial boundary value problems for the one dimensional and

multidimensional stochastic parabolic equation with dependent in t and space

variables are proved. Single step DS’s generated by exact DS are presented. The

main theorems of the convergence of these difference schemes for the approximate

solutions of the time-dependent abstract Cauchy problem for the parabolic equa-

tions are established. In applications, the convergence estimates for the solution

of DS’s for the SPDE’s are obtained. Numerical results for the 1
2
and 3

2
th order

of accuracy difference schemes of the approximate solution of mixed problems

for the stochastic parabolic equations with Dirichlet, Neumann conditions are

provided. Numerical results are given.

Investigate a high order of accuracy absolute stable difference schemes for the

numerical solution of stochastic parabolic equation with dependent in t and space

variables.

Investigate a high order of accuracy absolute stable DS’s for the numerical

solution of stochastic hyperbolic equation with dependent in t and space variables

d
·
v(t) + A(t)v(t)dt = f(t, w(t))dt+ g(t, w(t))dwt, 0 < t < T, v(0) = φ,

·
v(0) = ψ.

(174)

in a Hilbert space H with the unbounded operators A(t).



113

References

Allen, E. J., Novosel, S. J., Zhang, Z. (1998). Finite element and difference ap-

proximation of some linear stochastic partial differential equations. Stochas-

tics: An International Journal of Probability and Stochastic Processes,

64(1-2), 117-142.

Curtain, R. F., Falb, P. L. (1971). Stochastic differential equations in Hilbert

space. Journal of Differential equations, 10(3), 412-430.

Hausenblas, E. (2002). Numerical analysis of semilinear stochastic evolution equa-

tions in Banach spaces. Journal of Computational and Applied Mathematics,

147 (2), 485-516.

Da Prato, G., Grisvard, P. (1982). On extrapolation spaces. Atti della Accademia

Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali.

Rendiconti, 72, 330-332.

Da Prato, G., Zabczyk, J. (2014). Stochastic equations in infinite dimensions.

Cambridge university press.

Shardlow, T. (1999). Numerical methods for stochastic parabolic PDEs. Numer-

ical functional analysis and optimization, 20 (1-2), 121-145.

Da Prato, G., Zabczyk, J. (1996). Ergodicity for infinite dimensional systems

(Vol. 229). Cambridge university press.
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Appendices

Appendix A

Phyton Implementation of One Dimension First Order of Accuracy

Difference Schemes of Problem (160)

function (Dirichlet condition)

import random

import numpy as np

import matplotlib.pyplot as plt

from numpy.linalg import inv

#Input 1: N as the number of time intervals and M as the number of position

intervals

N = 26

M = 26

# Input 2: Exact solution function

def u(t,x,w):

return np.exp(-(t+1)**2)*np.sin(x)*w

# Define (N+1) x (M+1) spacetime grid matrix by limits and interval

# lengths for the plot (for some reason we need this ’if conition’

# because ogrid tends produce more coordinates)

tau = 1/N

h = np.pi/M

if (N t, x = np.ogrid[0:(N+1)*tau:tau, 0:(M+1)*h:h]

else:

t, x = np.ogrid[0:(N+1)/N:1/N, 0:(M+1)*h:h]

# Value grid matrix of the exact solution exact u = u(t,x,np.sqrt(t))

# Recover lists of coordinates

t list = []

for line in t:

t list.append(line[0])

x list = []

for entry in x[0]:

x list.append(entry)
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# Here we calculate the approximate solution values

# Construct zero vector of N+1 entries

N zero vector = []

for n in range(N+1):

N zero vector.append(0)

N one vector = []

for n in range(N+1):

N one vector.append(1)

# Construct A matrix

A = []

for n in range(N+1):

aux line = []

for n2 in range(N+1):

if n == 0:

aux line.append(0)

elif n == n2:

aux line.append(-2*tau/(h**2)*(1+n*tau))

else:

aux line.append(0)

A.append(aux line)

A = np.array(A)

# Construct B matrix

B = []

for n in range(N+1):

aux line = []

for n2 in range(N+1):

if n == n2 and n != 0:

aux line.append(1+(4*tau)/(h**2)*(1+n*tau))

elif n == 0 and n2 == 0:

aux line.append(1)

elif n == n2+1:

aux line.append(-1)
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else:

aux line.append(0)

B.append(aux line)

B = np.array(B)

# Construct alpha matrices, ”alpha” = list of alpha matrics

# and construct beta vectors, ”beta” = list of beta vectors

alpha = []

aux matrix = []

for n in range(N+1):

aux matrix.append(N zero vector)

aux matrix = np.array(aux matrix)

alpha.append(aux matrix)

del aux matrix

beta = []

beta.append(np.array(N zero vector))

for m in range(1,M-1):

aux matrix 1 = B + np.matmul(A, alpha[m-1])

aux matrix 2 = inv(aux matrix 1)

aux matrix 3 = - np.matmul(aux matrix 2,A)

alpha.append(aux matrix 3)

phi m = []

for n in range(N+1):

if n == 0:

phi m.append(0)

else:

phi mn = u(t list[n],x list[m],1)*(np.sqrt(n/N)-p.sqrt((n-1)/N))

phi m.append(phi mn)

phi m = np.array(phi m)

aux vector 1 = phi m - np.matmul(A,beta[m-1])

aux vector 2 = np.matmul(aux matrix 2, aux vector 1)

beta.append(aux vector 2)

# Construct array of approximate solution vectors
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approx u = []

approx u.append(np.array(N zero vector))

for m in range(1,M):

aux vector = np.matmul(alpha[M-1-m],approx u[0]) + beta[M-1-m]

approx u.insert(0, aux vector)

approx u.insert(0,np.array(N zero vector))

approx u = np.array(approx u)

# The transpose of this array is needed for the plot approx u = approx u.transpose()

# Calculate numerical error between exact and approximate solution

# Generate a list of 1000 uniformly random real numbers in [0,1] random list =

[]

for i in range(0,1000):

random list.append(random.uniform(0,1))

def ESum(xi):

quad sum = 0

for l in range(len(exact u)):

for e in range(len(exact u[l])):

diff = abs(exact u[l][e]*xi-approx u[l]
e

*xi)**2*h

quad sum = quad sum + diff

return quad sum

quad Error NM = 0

for xi in random list:

quad Error NM = quad Error NM + ESum(xi)

Error NM = np.sqrt(1/1000*quad Error NM)

# Output of Error value into the terminal

print(”The error by 1000 uniformly random numbers with mean 0 and variance

1 is:”)

print(str(Error NM))

# Exact solution plot

# Set up ax as plot object

ax1 = plt.figure().add subplot(projection=’3d’)
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# create surface with on values

ax1.plot surface(t, x, exact u, cmap=’autumn’, cstride=1, rstride=1)

# Name axes

ax1.set xlabel(”time t”)

ax1.set ylabel(”position x”)

ax1.set zlabel(”exact solution u(t,x)”)

# Set function value axis limts

ax1.set zlim(-0.02, 0.12)

# Approximate solution plot

ax2 = plt.figure().add subplot(projection=’3d’)

# create surface with on values

ax2.plot surface(t, x, approx u, cmap=’autumn’, cstride=1, rstride=1)

# Name axes

ax2.set xlabel(”time t”)

ax2.set ylabel(”position x”)

ax2.set zlabel(”approximate solution u(t,x)”)

# Set function value axis limts

ax2.set zlim(-0.02, 0.12)

# output the plot plt.show()
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Appendix B

Phyton Implementation of second Order of Accuracy Difference Schemes

of Problem (166)

function (Dirichlet condition)

import random

import numpy as np

import matplotlib.pyplot as plt

from numpy.linalg import inv

# Input 1: N as the number of time intervals and M as the number of position

intervals

N = 20

M = 20

# Input 2: Exact solution function

def u(t,x,w):

return np.exp(-(t+1)**2)*np.sin(x)*w

# Define (N+1) x (M+1) spacetime grid matrix by limits and interval

# lengths for the plot. The data format of the t, x-arrays is chosen

# to fit the requirements of the ’plot surface’-routine.

tau = 1/N

h = np.pi/M

t = []

for n in range(N+1):

t.append([n*tau])

t = np.array(t)

x = [[]]

for m in range(M+1):

x[0].append(m*h)

x = np.array(x)

# Value grid matrix of the exact solution

exact u = u(t,x,np.sqrt(t))

# Interpolated time points

t2 = []
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for n in range(1,N+1):

t2.append([(n - 0.5)*tau])

t2 = np.array(t2)

# Here we calculate the approximate solution values

# Construct zero vector of N+1 entries

N zero vector = []

for n in range(N+1):

N zero vector.append(0)

# Construct A matrix

A = []

for n in range(N+1):

aux line = []

for n2 in range(N+1):

if n == 0:

aux line.append(0)

elif n == n2:

aux line.append(-tau/(h**2)*(1+(n-0.5)*tau))

elif n == n2+1:

aux line.append(-tau/(h**2)*(1+(n-0.5)*tau))

else:

aux line.append(0)

A.append(aux line)

A = np.array(A)

# Construct B matrix

B = []

for n in range(N+1):

aux line = []

for n2 in range(N+1):

if n == n2 and n != 0:

aux line.append(1+(2*tau)/(h**2)*(1+(n-0.5)*tau))

elif n == 0 and n2 == 0:
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aux line.append(1)

elif n == n2+1:

aux line.append(-1+(2*tau)/(h**2)*(1+(n-0.5)*tau))

else:

aux line.append(0)

B.append(aux line)

B = np.array(B)

# Construct alpha matrices, ”alpha” = list of alpha matrics

# and construct beta vectors, ”beta” = list of beta vectors

alpha = []

aux matrix = []

for n in range(N+1):

aux matrix.append(N zero vector)

aux matrix = np.array(aux matrix)

alpha.append(aux matrix)

del aux matrix

beta = []

beta.append(np.array(N zero vector))

for m in range(1,M-1):

aux matrix 1 = B + np.matmul(A, alpha[m-1])

aux matrix 2 = inv(aux matrix 1)

aux matrix 3 = - np.matmul(aux matrix 2,A)

alpha.append(aux matrix 3)

ph m = []

for n in range(N+1):

if n == 0:

phi m.append(0)

else:

phi mn = u(t2[n-1][0],x[0][m],1)*(np.sqrt(n/N)-np.sqrt((n-1)/N))

phi m.append(phi mn) phi m = np.array(phi m)

aux vector 1 = phi m - np.matmul(A,beta[m-1])

aux vector 2 = np.matmul(aux matrix 2, aux vector 1)
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beta.append(aux vector 2)

# Construct array of approximate solution vectors

approx u = []

approx u.append(np.array(N zero vector))

for m in range(1,M):

aux vector = np.matmul(alpha[M-1-m],approx u[0]) + beta[M-1-m]

approx u.insert(0, aux vector)

approx u.insert(0,np.array(N zero vector))

approx u = np.array(approx u)

# The transpose of this array is needed for the plot approx u = approx u.transpose()

# Calculate numerical error between exact and approximate solution

# Generate a list of 1000 uniformly random real numbers in [0,1]

random list = []

for i in range(0,1000):

random list.append(random.uniform(0,1))

def ESum(xi):

quad sum = 0

for l in range(len(exact u)):

for e in range(len(exact u[l])):

diff = abs(exact u[l][e]*xi-approx u[l][e]*xi)**2*h

quad sum = quad sum + diff

return quad sum

quad Error NM = 0

for xi in random list:

quad Error NM = quad Error NM + ESum(xi)

Error NM = np.sqrt(1/1000*quad Error NM)

# Output of Error value into the terminal print(”The error by 1000 uniformly

random numbers with mean 0 and variance 1 is:”)

print(str(Error NM))

# Exact solution plot

# Set up ax as plot object

ax1 = plt.figure().add subplot(projection=’3d’)
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# create surface with on values

ax1.plot surface(t, x, exact u, cmap=’autumn’, cstride=1, rstride=1)

# Name axes

ax1.set xlabel(”time t”)

ax1.set ylabel(”position x”) ax1.set zlabel(”exact solution u(t,x)”)

# Set function value axis limts

ax1.set zlim(-0.02, 0.12)

# Approximate solution plot

ax2 = plt.figure().add subplot(projection=’3d’)

# create surface with on values

ax2.plot surface(t, x, approx u, cmap=’autumn’, cstride=1, rstride=1)

# Name axes

ax2.set xlabel(”time t”) ax2.set ylabel(”position x”)

ax2.set zlabel(”approximate solution u(t,x)”)

# Set function value axis limts

ax2.set zlim(-0.02, 0.12)

# output the plot

plt.show()
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Appendix C

Phyton Implementation of One Dimension First Order of Accuracy

Difference Schemes of Problem (167)

function (Neumann condition)

import random

import numpy as np

import matplotlib.pyplot as plt

from numpy.linalg import inv

# Input 1: N as the number of time intervals and M as the number of position

intervals.

N = 50

M = 50

# Input 2: Exact solution function

def u(t,x,w):

return np.exp(-(t+1)**2)*np.cos(x)*w

# Define (N+1) x (M+1) spacetime grid matrix by limits and interval

# lengths for the plot (for some reason we need this ’if conition’

# because ogrid tends produce more coordinates)

tau = 1/N

h = np.pi/M

if (N t, x = np.ogrid[0:(N+1)*tau:tau, 0:

(M+1)*h:h]

else:

t, x = np.ogrid[0:(N+1)/N:1/N, 0:

(M+1)*h:h]

# Value grid matrix of the exact solution

exact u = u(t,x,np.sqrt(t))

# Recover lists of coordinates

t list = []

for line in t:

t list.append(line[0])

x list = []
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for entry in x[0]: x list.append(entry)

# Here we calculate the approximate solution values

# Construct zero vector of N+1 entries

N zero vector = []

for n in range(N+1):

N zero vector.append(0)

N unit matrix = []

for n in range(N+1):

aux vector = []

for n2 in range(N+1):

if n == n2:

aux vector.append(1) else:

aux vector.append(0)

N unit matrix.append(aux vector)

# Construct A matrix

A = []

for n in range(N+1):

aux line = []

for n2 in range(N+1):

if n == 0:

aux line.append(0)

elif n == n2:

aux line.append(-2*tau/(h**2)*(1+n*tau))

else:

aux line.append(0)

A.append(aux line)

A = np.array(A)

# Construct B matrix

B = []

for n in range(N+1):

aux line = []

for n2 in range(N+1):
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if n == n2 and n != 0:

aux line.append(1+(4*tau)/(h**2)*(1+n*tau))

elif n == 0 and n2 == 0:

aux line.append(1)

elif n == n2+1:

aux line.append(-1)

else:

aux line.append(0)

B.append(aux line)

B = np.array(B)

# Construct alpha matrices, ”alpha” = list of alpha matrics

# and construct beta vectors, ”beta” = list of beta vectors

alpha = []

alpha.append(np.array(N unit matrix))

beta = []

beta.append(np.array(N zero vector))

for m in range(1,M-1):

aux matrix 1 = B + np.matmul(A, alpha[m-1])

aux matrix 2 = inv(aux matrix 1)

aux matrix 3 = - np.matmul(aux matrix 2,A)

alpha.append(aux matrix 3)

phi m = []

for n in range(N+1):

if n == 0:

phi m.append(0)

else:

phi mn = u(t list[n],x list[m],1)*(np.sqrt(n/N)-np.sqrt((n-1)/N))

phi m.append(phi mn)

phi m = np.array(phi m)

aux vector 1 = phi m - np.matmul(A,beta[m-1])

aux vector 2 = np.matmul(aux matrix 2, aux vector 1)

beta.append(aux vector 2)
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# Construct array of approximate solution vectors

approx u = []

u M = np.matmul(inv(np.array(N unit matrix)-alpha[M-2]),beta[M-2])

approx u.append(u M)

for m in range(1,M):

aux vector = np.matmul(alpha[M-1-m],approx u[0]) + beta[M-1-m]

approx u.insert(0, aux vector)

approx u.insert(0,np.matmul(alpha[0],approx u[1]) + beta[0])

approx u = np.array(approx u)

# The transpose of this array is needed for the plot

approx u = approx u.transpose()

print(u M)

print(np.matmul(alpha[M-2],u M)+beta[M-2])

# Calculate numerical error between exact and approximate solution

# Generate a list of 1000 uniformly random real numbers in [0,1]

random list = []

for i in range(0,1000):

random list.append(random.uniform(0,1))

def ESum(xi):

quad sum = 0

for l in range(len(exact u)):

for e in range(len(exact u[l])):

diff = abs(exact u[l][e]*xi-approx u[l][e]*xi)**2*h

quad sum = quad sum + diff

return quad sum

quad Error NM = 0

for xi in random list:

quad Error NM = quad Error NM + ESum(xi)

Error NM = np.sqrt(1/1000*quad Error NM)

# Output of Error value into the terminal

print(”The error by 1000 uniformly random numbers with mean 0 and variance

1 is:”)
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print(str(Error NM))

# Exact solution plot

# Set up ax as plot object

ax1 = plt.figure().add subplot(projection=’3d’)

# create surface with on values

ax1.plot surface(t, x, exact u, cmap=’autumn’, cstride=1, rstride=1)

# Name axes

ax1.set xlabel(”time t”)

ax1.set ylabel(”position x”)

ax1.set zlabel(”exact solution u(t,x)”)

# Set function value axis limts

ax1.set zlim(-0.02, 0.12)

# Approximate solution plot

ax2 = plt.figure().add subplot(projection=’3d’)

# create surface with on values

ax2.plot surface(t, x, approx u, cmap=’autumn’, cstride=1, rstride=1)

# Name axes

ax2.set xlabel(”time t”)

ax2.set ylabel(”position x”)

ax2.set zlabel(”approximate solution u(t,x)”)

# Set function value axis limts

ax2.set zlim(-0.02, 0.12)

# output the plot

plt.show()
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Appendix D

Phyton Implementation of second Order of Accuracy Difference Schemes

of Problem (173)

function (Neumann condition)

import random

import numpy as np

import matplotlib.pyplot as plt

from numpy.linalg import inv

# Input 1: N as the number of time intervals and M as the number of

# position intervals

N = 20

M = 20

# Input 2: Exact solution function

def u(t,x,w):

return np.exp(-(t+1)**2)*np.cos(x)*w

# Define (N+1) x (M+1) spacetime grid matrix by limits and interval

# lengths for the plot. The data format of the t, x-arrays is chosen

# to fit the requirements of the ’plot surface’-routine.

tau = 1/N

h = np.pi/M

t = []

for n in range(N+1):

t.append([n*tau])

t = np.array(t)

x = [[]]

for m in range(M+1):

x[0].append(m*h)

x = np.array(x)

# Value grid matrix of the exact solution

exact u = u(t,x,np.sqrt(t))

# Interpolated time points

t2 = []
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for n in range(1,N+1):

t2.append([(n - 0.5)*tau])

t2 = np.array(t2)

# Here we calculate the approximate solution values

# Construct zero vector of N+1 entries

N zero vector = []

for n in range(N+1):

N zero vector.append(0)

N unit matrix = []

for n in range(N+1):

aux vector = []

for n2 in range(N+1):

if n == n2:

aux vector.append(1)

else:

aux vector.append(0)

N unit matrix.append(aux vector)

# Construct A matrix

A = []

for n in range(N+1):

aux line = []

for n2 in range(N+1):

if n == 0:

aux line.append(0)

elif n == n2:

aux line.append(-tau/(h**2)*(1+(n-0.5)*tau))

elif n == n2+1:

aux line.append(-tau/(h**2)*(1+(n-0.5)*tau))

else:

aux line.append(0)

A.append(aux line)

A = np.array(A)
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# Construct B matrix

B = []

for n in range(N+1):

aux line = []

for n2 in range(N+1):

if n == n2 and n != 0:

aux line.append(1+(2*tau)/(h**2)*(1+(n-0.5)*tau))

elif n == 0 and n2 == 0:

aux line.append(1)

elif n == n2+1:

aux line.append(-1+(2*tau)/(h**2)*(1+(n-0.5)*tau))

else:

aux line.append(0)

B.append(aux line)

B = np.array(B)

# Construct alpha matrices, ”alpha” = list of alpha matrics

# and construct beta vectors, ”beta” = list of beta vectors

alpha = []

alpha.append(np.array(N unit matrix))

beta = []

beta.append(np.array(N zero vector))

for m in range(1,M-1):

aux matrix 1 = B + np.matmul(A, alpha[m-1])

aux matrix 2 = inv(aux matrix 1)

aux matrix 3 = - np.matmul(aux matrix 2,A)

alpha.append(aux matrix 3)

phi m = []

for n in range(N+1):

if n == 0:

phi m.append(0)

else:

phi mn = u(t2[n-1][0],x[0][m],1)*(np.sqrt(n/N)-np.sqrt((n-1)/N))
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phi m.append(phi mn)

phi m = np.array(phi m)

aux vector 1 = phi m - np.matmul(A,beta[m-1])

aux vector 2 = np.matmul(aux matrix 2, aux vector 1)

beta.append(aux vector 2)

# Construct array of approximate solution vectors

approx u = []

u M = np.matmul(inv(np.array(N unit matrix)-alpha[M-2]),beta[M-2])

approx u.append(u M)

for m in range(1,M):

aux vector = np.matmul(alpha[M-1-m],approx u[0]) + beta[M-1-m]

approx u.insert(0, aux vector)

approx u.insert(0,np.matmul(alpha[0],approx u[1]) + beta[0])

approx u = np.array(approx u)

# The transpose of this array is needed for the plot

approx u = approx u.transpose()

# Calculate numerical error between exact and approximate solution

# Generate a list of 1000 uniformly random real numbers in [0,1]

random list = []

for i in range(0,1000):

random list.append(random.uniform(0,1)) def ESum(xi): quad sum = 0 for l in

range(len(exact u)):

for e in range(len(exact u[l])):

diff = abs(exact u[l][e]*xi-approx u[l][e]*xi)**2*h

quad sum = quad sum + diff

return quad sum

quad Error NM = 0

for xi in random list: quad Error NM = quad Error NM + ESum(xi)

Error NM = np.sqrt(1/1000*quad Error NM)

# Output of Error value into the terminal

print(”The error by 1000 uniformly random numbers with mean 0 and variance

1 is:”)
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print(str(Error NM))

# Exact solution plot

# Set up ax as plot object

ax1 = plt.figure().add subplot(projection=’3d’)

# create surface with on values

ax1.plot surface(t, x, exact u, cmap=’autumn’, cstride=1, rstride=1)

# Name axes

ax1.set xlabel(”time t”)

ax1.set ylabel(”position x”)

ax1.set zlabel(”exact solution u(t,x)”)

# Set function value axis limts

ax1.set zlim(-0.02, 0.12)

# Approximate solution plot

ax2 = plt.figure().add subplot(projection=’3d’)

# create surface with on values

ax2.plot surface(t, x, approx u, cmap=’autumn’, cstride=1, rstride=1)

# Name axes

ax2.set xlabel(”time t”)

ax2.set ylabel(”position x”)

ax2.set zlabel(”approximate solution u(t,x)”)

# Set function value axis limts

ax2.set zlim(-0.02, 0.12)

# output the plot

plt.show()
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