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Abstract

Aggravation of Cancer, Heart Diseases and Diabetes Subsequent to Covid-19 
Lockdown 

via Mathematical Modelling 

EFİL, Fatma Neşe 
Supervisor: Prof. Dr. Evren Hınçal 
PhD, Department of Mathematics 

February, 2024, 99 pages 

 

The main aim of this thesis is to illustrate the future effect of COVID-19 on 
people who are afflicted by other deadly diseases such as cancers, heart disease, and 
diabetes. Using ordinary differential equations (ODEs), mathematical models are 
evolved to explain the affiliation between COVID-19 and cancer and between 
COVID-19 and heart disease and diabetes. Concordantly, famous mathematical 

techniques, sensitivity analysis, and equilibrium points are employed in the well-
constructed models. 

Chapter I specifies the principal factors and opinions of the proffered thesis. 
General opinions, theorems, and definitions advocating the thesis are presented in 

Chapter II. The study is separated into two sections, broadly. 

In Chapter III, the first model is proposed with the proof of existence of the 
solution. Afterwards The model is constructed with the help of ODEs to obtain the 

change in compartments at time t. Then, an analysis of the model with equilibrium 

points is given. In the analysis of the first model, disease-free equilibrium, 𝐸0,1, and 

endemic equilibrium, 𝐸∗,1, points are found with their existence proofs. Moreover, the 
globally asymptotically stability property of both points is proved under some 

conditions. This suggest that there can be a population without cancer disease at point 

𝐸0,1 and an endemic situation at point 𝐸∗,1. Model fitting is also provided for 
interpreting the relationship between real data and the results of this work respectively. 
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In Chapter IV, the second model of the paper is proposed, and the entity of the
solution is demonstrated. the analysis of the second model demonstrated two
existing 

equilibrium points for this model: the disease-free equilibrium point, 𝐸0,2,

and the 

endemic equilibrium point, 𝐸∗,2. Both points are globally asymptotically
stable with 
necessary conditions, which means that both environments are possible for
the diseases to occur. The correlation between diabetes and cardiovascular
illness is also illustrated graphically. The effects of smoking and obesity are
also found to be significant in disease compartments. Diabetic people, in
particular, need to monitor their health conditions closely and practice heart
health maintenance. People with heart diseases should undergo regular
checks so that they can protect themselves from diabetes and take some
precautions including suitable diets. 
In Chapter V, Sensitivity analysis is a method that can be applied to the
parameters of any mathematical model with the purpose of identifying the
effect of the parameters on the compartments. The purpose of this analysis is
to demonstrate how a small change in parameters can affect whether a
disease exists or dies out. In this section, a sensitivity analysis was applied to
the parameters of both models. This analysis aimed to specify the effects of
the parameters on compartments Cancer C, Heart disease H, and Diabetes D
to demonstrate the result of an increase in smoking and obesity, respectively.
The results of the sensitivity analysis should be utilized by healthcare systems
and policymakers to develop control strategies to achieve better public health. 

As a summary, both of the models indicated that the most dangerous parameter 
for the diseases is c, (a negative effect of COVID-19), which is a result of the COVID-

19 pandemic. The presented study emphasized being aware of COVID-19 and its 
results may lead to a substantial decrease in deaths due to cancer, heart disease, and 
diabetes. That, combined with frequent doctor visits, could lead to the earlier diagnosis 
and treatment of these diseases. 

Key Words: cancer, heart diseases, diabetes, mathematical modelling, 
COVID-19, sensitivity analysis 
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Özet 

Aggravation of Cancer, Heart Diseases and Diabetes Subsequent to Covid-19 
Lockdown 

via Mathematic Modelling 

Bu tezin ana amacı, COVID-19'un kanser, kalp hastalığı ve diyabet gibi 

ölümcül hastalıklarla mücadele eden insanlar üzerindeki gelecekteki etkisini açıklamaktır. Olağan diferansiyel
denklemler (ODE'ler) kullanılarak, COVID-19 ile kanser arasındaki ve COVID-
19 ile diyabet ve kalp hastalığı arasındaki ilişkiyi açıklayan matematiksel
modeller geliştirilmiştir. Buna uygun olarak oluşturulan modellerde popüler
matematiksel tekniklerden ikisi olan duyarlılık analizi ve denge noktalari
kullanılmıştır. 

Bölüm I sunulan tezin temel noktalarını ve görüşlerini içermektedir. Tezi 
destekleyen genel görüşler, teoremler ve tanımlar Bölüm II'de sunulmuştur. Çalışma 
genel olarak iki bölüme ayrılmıştır. 

Bölüm III'te, ilk model çözümün kanıtı ile birlikte verilmektedir Daha sonra, 
kompartmanlardaki değişiklikleri elde etmek için, t zamanda, ODE'lerin yardımıyla 
model oluşturulur. Ardından, denge noktaları ile modelin analizi verilir. İlk modelin 

0,1, ve endemik denge noktası E∗,1, 
kanıtları ile birlikte elde edilir. Ayrıca, her iki noktanın da bazı koşullar altında küresel 

0,1 noktasında kanser hastalığı∗,1 noktasında endemik bir durum olabileceğini öne sürer. 

analizinde, teshis olmayan denge noktası E

asimptotik kararlılık özelliği kanıtlanır. Bu, E

olmayabileceğini ve E

Model, ayrica gerçek veriler ile bu çalışmanın sonuçları arasındaki ilişkiyi 
yorumlamak için de elde edilmiştir. 
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Bölüm IV'te , ikinci model çözümün kanıtı ile birlikte verilmektedir. İkinci
modelin analizi, bu modele ait iki mevcut denge noktasını göstermektedir : teshis 

0,2, ve endemik denge noktası, 𝐸∗,2. Her iki nokta da gerekli 
koşullarla küresel olarak asimptotik olarak kararlıdır, bu da her iki durumun da 
hastalıkların ortaya çıkabileceği olası ortamlar olduğunu göstermektedir. Diyabet ile 
kardiyovasküler hastalık arasındaki ilişki grafiksel olarak da açıklanmıştır. Sigara 

onemli etkileri de 
bulunmuştur. Özellikle, diyabet hastalarının sağlık durumlarını yakından izlemesi ve 

kalp sağlığını korumaları gerektigi belirtilmistir. Kalp hastalığı olan insanlar, 
diyabetten kendilerini koruyabilmek ve uygun diyetler de dahil olmak üzere bazı 
önlemler alabilmek için düzenli olarak saglik kontrollerinden geçmeleri gerektigi 

ortaya konulmustur. 

olmayan denge noktasi, 𝐸

kullanimi ve obezitenin hastalık kompartmanları üzerindeki 

Bölüm V'te, duyarlilik analizinin, herhangi bir matematiksel modelin 
parametrelerine uygulanabilen bir yöntem oldugu ve amacinin da parametrelerin 
kompartmanlar üzerindeki etkisini belirlemek oldugu ifade edilmistir. Bu analizin 
amacınin parametrelerdeki küçük bir değişikliğin hastalığın var olup olmadığını veya 
yok olup olmadığını nasıl etkileyebileceğini göstermek oldugu belirtilmistir. Bu 

bölümde, her iki modele de parametreler üzerinden duyarlilik analizi uygulanmistir. 
Bu duyarlilik analizi, sigara içme ve obezitenin artışının Kanser C, Kalp hastalığı H 
ve Diyabet D kompartmani üzerindeki etkilerini belirlemeyi amaçlamıştır. Duyarlilik 
analizinin sonuçlarınin, sağlık sistemleri ve politikacilar tarafından daha iyi bir halk 

için kullanılabilecegi sağlığına ulaşmak 
belirtilmistir. 

için kontrol stratejileri geliştirmek 

Özetle, her iki model de hastalıklar için en tehlikeli parametrenin c (COVID-

19'un negatif etkisi) oldugu belirtilmistir, bunun da COVID-19 salgınının bir sonucu 
oldugu eklenmistir. Sunulan çalışma da, COVID-19 ve sonuçları hakkında ki 

farkındaligin kanser, kalp hastalığı ve diyabet nedeniyle ölümlerde önemli bir 

azalmaya yol açabileceği vurgulanmistir. Bu, sık doktor ziyaretleri ile 

birleştirildiğinde, bu hastalıkların daha erken teşhisi ve tedavisi ile sonuçlanabilecegi 
de ifade edilmistir. 
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Anahtar Kelimeler: kanser, kalp hastalıkları, diabet, matematiksel modelleme,
COVID-19, duyarlılık analizi. 
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CHAPTER I
Introduction 

Mathematical modelling can be defined as the use of mathematical and
predictive techniques to explain the behaviour of a given healthcare condition,
including explaining its likely occurrence and re-occurrence. The technique
leverages on equations that analyse trends of a given phenomenon and then
use such trends to underscore why the behaviour of a condition with greater
precision and certainty. Mathematical modelling has an extensive impact in the healthcare sector
including aiding in various areas such as health service planning, outcome
assessment, financing, budget impact assessment, infectious disease
surveillance, and health economic assessments. For infectious diseases,
mathematical modelling has been used to study the spread, transmission, and
control of various infections. Cassidy et al., (2019) explains that mathematical
models help describe the transmission and spread of infectious diseases,
providing insights into the factors that drive disease dynamics. Secondly,
various models help to explain disease surveillance. By analyzing disease
surveillance data, mathematical models can be used to address both the
biological process of transmission and the emergent dynamics of infection at
the population level (Christen & Conteh, 2021). The other role is in infection
control where the models can help determine the effectiveness of
interventions, such as vaccination programs, and inform public health policies
to control the spread of infectious diseases. COVID-19 is a contagious disease caused by the virus SARS-CoV-2. The 
condition which was first reported in Wuhan China, most often causes respiratory 

symptoms that can feel much like a cold, the flu, or pneumonia. The symptoms of 
COVID-19 are variable depending on the type of variant contracted, ranging from mild 

symptoms to a potentially fatal illness. Common symptoms include coughing, fever, 
loss of smell (anosmia), and taste (ageusia), with less common ones including fatigue, 

shortness of breath, vomiting, and loss of taste or smell; some cases are asymptomatic. 
The condition spreads when an infected person breathes out droplets and very small 

particles that contain the virus. 
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The importance of this study stems from the fact that there is no other
study in the literature that explains the purpose of the study with the
mathematical models used and sensitivity analyses performed in this field. 

This thesis is conducted to forecast the future effects of the uncertainty and fear
created by COVID-19 on chronic diseases including cancer, heart diseases, and
diabetes.
These 3 chronic diseases are chosen to study that cannot be treated by themselves and
generally cannot be cured completely. Also, they are the leading most common causes
of death and disability all over the world. They are additionally very serious like
immediate life-threatening such as heart disease and stroke and need intensive
management such as diabetes. 

It is also possible to leverage on some of the models to predict the outcome of
an infectious disease, including studying patterns of their occurrence. A good
example that demonstrates the value of mathematical modelling is in the
study of diseases like COVID-19 pandemic. Mathematical modelling has been
extensively used to predict the spread and impact of COVID-19 pandemic.
Various mathematical models have been developed to estimate and predict
the outbreak of COVID-19, both with and without preventive measures. Other
than COVID-19 mathematical modelling can be used to predict the existence
of conditions like diabetes, cancer and other cardiovascular conditions. For
instance, proposed a mathematical model to depict the risk of cancer in
individuals with type-2 diabetes mellitus, highlighting the positive relationship
between diabetes and cancer (Deepak et al., 2021). Additionally,
mathematical models have been constructed to simulate and comprehend the
dynamics of the diabetes population, offering insights into the prevalence of
diabetes and its complications, as well as suggesting preventive measures. As
explained by Brady & Enderling, (2019), it is also possible to use mathematical
modelling techniques to explain the prevalence of specific types of cancer
within a given demographic by studying previous prevalence cases. Purpose of the Study 

Significance of the Study 
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Research Questions / Hypotheses 
The main research question of this thesis is whether individuals may not have
sought medical attention adequately (like not going to medical institutions)
due to the fear of contracting the contagious disease COVID-19 and whether
or not it will be a hazard for these diseases in the future. 

The hypothesis is due to the effect of COVID-19, there might be a decline in
the number of patients with cancer, heart diseases, and diabetes in the future
and it will be a sign of danger for these chronic diseases because of without
cure or diagnosis. Therefore, a decrease in the number of patients will not
present the right data to help these people who are suffering. 

The reason for using two different mathematical models in this study is the
observation of a relationship between diabetes and heart disease during
the research. Based on this relationship, it was decided that using separate
mathematical models for cancer, and for diabetes & heart diseases would
be more appropriate. 
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Theoretical Framework and Definitions 

CHAPTER II

Literature Review 

This section consists of the theories, definitions and information about
mathematical modelling process, its relation with health sciences and
breast cancer are stated. 

In this section, definitions, concepts and theorems related to mathematical
modelling used in this study are presented. The relationship between
mathematical modelling and health sciences is clarified in terms of COVID-19,
cancer, diabetes, and cardiovascular diseases, respectively. 

In this chapter, information related to the topic of the presented thesis,
including existing literature, conceptual definitions, relevant theorems, and
cause-and-effect relationships, is provided. 

To formally depict some system in mathematical notation is the job of a
mathematical model. Developing such a mathematical model is the focus of the
field known as mathematical modelling. Mathematical models are used in many
disciplines, both in the hard sciences and in the social sciences. The purpose of
a mathematical model is to help solve a real-world problem by elucidating and
illuminating its hidden dynamics (often in the form of equations). The
development of state-of-the-art technologies and our general comprehension
of the world's systems are both reliant on modelling to a significant extent. We
may use models to view deep into the universe, investigate how atoms
function, and foretell the future of our climate. Mathematicians use a method
known as "mathematical modelling," which entails creating a mathematical
representation of the condition, to foretell or gain insight into an event in the
actual world. Developing a mathematical relationship is different from simply
using 

a formula (Brauer et al, et al., 2019). 

Mathematical Modelling 
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General weather predictions, global warming, aviation simulation, hurricane
forecasting, nuclear winter, nuclear arms race, and so on are all examples of
large mathematical models that could have profound effects on society.
Mathematical models describe a wide range of phenomena, including traffic
dynamics, stock market potential, predator-prey dynamics, and search
techniques (Tuan et al., 2020). 
“In health service planning, techniques from gravitational physics can be used 
to estimate catchment areas of new facilities, models utilising network analysis can be 

used to study patients' travel requirements to services, and so on. Queuing theory-based 
models can be used to predict the effects of changes on access to services and calculate 

the required capacity of services given assumptions about patterns of demand and levels 
of utilisation. Epidemiology, health impact assessment, and clinical auditing are also 

further applications of modelling. They are useful for pinpointing problem areas, setting 
priorities, and directing attention (Jewell et al., 2020). If the underlying mathematical 

problems cannot be solved directly, a simulation is used instead. Modeling is crucial in 
many different fields: 

• To project future health care requirements, such as the prevalence of eye diseases, use 

the National Eye Health Epidemiological Model. 

Showing the potential outcomes of not acting on pressing public health issues. 
Projecting the continued rise in childhood obesity, for instance, has helped to establish 

this problem as a national priority and direct resources toward resolving it. 

•  

• Examining how changes to services affect variables like patient wait times and hospital 

bed utilization. 

In the absence of precise data, an estimate of the prevailing condition can be made. 

Service demand forecasting for specific populations, such as those at high risk for 
unplanned hospitalization or readmission. 

•  

•  

In order to better assist their staff in developing and enforcing health policies, 
decision- and policy-makers are frequently urged to make greater use of a wide range of 

resources. To better connect modellers, policymakers, and implementers, it is important to 
be able to convey modelling knowledge and experience. Authorities in the health care field 
have profited greatly from mathematical modelling on a variety of difficulties, but 
researchers may be underusing models of real repercussions. Therefore, it is crucial to keep 
an eye on how a complete framework for translating model-based findings into policy and 
code is being put into practise (Atangana & İğret Araz, 2020). 
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As an example, The Diabetes Prevalence Model is a spreadsheet-based tool for
estimating the annual rate of new diabetes diagnoses among the model's
population. The local authority and CCG can provide estimates of patients at
risk of re-hospitalization (PARR model). Clinical Commissioning Groups (CCGs)
have replaced primary care trusts (PCTs) as the local commissioning authority
in the NHS. Prior to this change, PCTs employed a risk prediction system called
PARR to identify patients who were at a high risk of being readmitted. Predict a
Readmittance from Regular Inpatient Data (PARR+) was the first set of
algorithms to do this (Heffernan et al., 2019). 
Infectious disease epidemiology is a field of study dedicated to learning more about 
the spread of illness throughout a population. Things include the progress of an epidemic, 
how to keep it under control, what vaccines to use, etc. Researchers can learn more about 
an epidemic's spread and, hopefully, cut it down, by modelling the epidemic's development. 
Public health and plant health measures can be informed by mathematical models that 

anticipate the spread of infectious illnesses, revealing the likely outcome of an epidemic 
(even in plants). The study of epidemiology focuses on the effects of disease on 

communities and the causes of disease outbreaks. Medicine's field of epidemiology 
attempts to answer questions about the who, what, where, and when of disease outbreaks. 
Another benefit is that it aids in the study of aetiology, or the study of cause, and so provides 
insight into the topic of why the incidence of specific diseases varies so considerably. The 
third function of epidemiology is the formulation and testing of hypotheses. The fourth 
obligation is to plan, implement, and evaluate surveillance, preventive, and control 
activities. The preceding two applications illustrate the utility of epidemiological modelling 
(Liang, 2020). 

The Susceptible-Infected-Recovered (SIR) models can be used in many contexts, 
presuming that infected people can disseminate the disease to others. SEIR models, on the 
other hand, take into consideration latent infections in the exposed compartment (E) (He et 
al., 2020). It classifies a population of size N into four states: susceptible (S), exposed (E), 
infective (I), and removed (R). (R) characteristic of a particular population, habitat, or 

location. The SEIR model is an epidemiological framework for projecting the development 
of infectious illnesses. Examples of endemic diseases include the yearly recurrence of 
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chicken pox among American schoolchildren and the prevalence of malaria in certain
regions of Africa (Mwalili et al., 2020). 

Based on the number of contacts, the probability of disease transmission, the 
incubation time, and the infectiousness rate, the SEIR model has been utilised in research 
to predict the number of infected, recovered, and dead in an epidemic situation. Throughout 
human history, numerous infectious diseases have appeared and spread. Diseases including 
dengue fever, malaria, the flu, the plague, and HIV/AIDS are just a handful. Developing a 

reliable epidemiological model for such epidemics is challenging. Some researchers have 
begun to see the transmission of disease as a sophisticated network in order to better 

understand, forecast, and model it. (Zou 2020) created a network-based model based on the 
connections between cities and the circulation of cars to more accurately depict the 
COVID-19 epidemic in Hubei province. It is currently possible to model epidemics using 
the SIS, SIR, and SEIR models. The study's findings have been published in several 
different journals. Taken as a whole, these findings show that the SIS, SIR, and SEIR 
models are good surrogates for the dynamics of different epidemics. The COVID-19 has 
also been modelled in this way. A comprehensive epidemiological model called SEIR has 
been investigated by scientists. SEIR takes into account quarantine, isolation, and 
treatment. Alternative representations of the COVID-19 exist. The number of confirmed 
cases of coronavirus disease in Wuhan in 2019 was calculated using Zhang's phase-adjusted 
technique (Piccirillo, 2021). 

The SEIR model is a popular choice among the numerous mathematical models 
designed to characterise epidemic dynamics and predict the spread of infectious 

diseases. In the event of a pandemic, the SEIR model can be utilised to assess the 
efficiency of potential responses, such as lock-down. A set of dynamic ordinary 

differential equations (ODE) takes into account the number of susceptible individuals, 
the rate at which infected individuals recover, and the number of deaths that occur over 

time (López & Rodo, 2021). 

The 2019 coronavirus (COVID-19) has been detected in over 200 nations, 

posing a threat to economic growth and social stability in addition to people's day-
to-day lives. As of August 24, 2021, the World Health Organization had confirmed 
211,730,035 cases and 4,430,697 deaths from the outbreak. In a recent study, 
numerous academics all came to the same conclusion that was investigated 
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In this section, the essential and significant features for the creation and proof 

of a mathematical model are presented, along with the necessary theorems. 

vaccination methods against the COVID-19 disease, tuberculosis, and
Rotavirus epidemic. (Baart, &” Ahmed, 2020; Nkamba et al., 2019;
Kaymakamzade et al., 2022) 

Existence of a Mathematical Model. A mathematical model is an
abstract description of a real-world system using mathematical
concepts and language. It involves describing a real-world problem
in mathematical terms, usually in the form of equations, and then
using mathematics to solve the resulting equations (Kohen &
Orenstein, 2021). Mathematical modelling which is the concept of
developing mathematical models entails writing relevant equations,
simplifying as much as possible, solving the equations, and
comparing the results against data. The existence of solutions for
mathematical models depends on the specific problem and the
assumptions made in the model. In the context of linear
simultaneous equations, a unique solution exists if and only if the
number of unknowns and the number of equations is equal, all
equations are consistent, and there is no linear 

dependence between any two or more equations, meaning all

equations are 
independent (Erbas et al., 2014). However, there are cases where
solutions 
may not be unique or may not exist at all. 

In the context of partial differential equations (PDEs), uniqueness is 
important because it ensures that the model can make a single prediction about 
the behavior of the system. Non-uniqueness can indicate that the model is not 

powerful enough to make a single prediction, or that the system has multiple 
different equilibria, some of which can occur in reality. Engineers care about 
uniqueness because it helps them determine the accuracy of their models and 
avoid potential issues caused by non-uniqueness. 

The existence of unique solutions in mathematical problems has significant 
implications. A solution is unique if and only if a certain condition is met, 

Properties of a Mathematical Model 
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such as the invertibility of a matrix in the case of linear equations.
This uniqueness ensures that the model can make a single
prediction about the behavior of the system, which is important in
various applications, such as physical modeling and engineering.
On the other hand, non-uniqueness of solutions means that there
is more than one solution to the problem. This can arise in various
contexts, such as systems of linear equations or PDEs. Non-
uniqueness can indicate that the model is not powerful enough to
make a single prediction about the system's behavior, or that the
system has multiple different equilibria, some of which can occur
in reality. Uniqueness of Solutions of a Mathematical Model. This section contains 

theorems and definitions related to the unique solutions of any mathematical 
model.

The uniqueness of solutions in a mathematical model is a fundamental concept 
with broad applications. It is often formalized through uniqueness theorems, 
which assert the existence of a single solution under certain conditions. These 
theorems are essential in various mathematical fields, including differential 
equations, electromagnetism, and finite group theory. The first mathematical 
definition of the uniqueness of the solutions of a mathematical model is the 
unicity theorem, states the uniqueness of a mathematical object, indicating that 
there is only one object fulfilling given properties, or that all objects of a given 
class are equivalent (Schlömerkemper & Žabenský, 2018). This concept is 
important in ensuring that a mathematical model can make a single prediction 
about the behaviour of the system. Lack of uniqueness can indicate that the 

model is not powerful enough to make a single prediction, or that the system 
has multiple different equilibria. 
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When a:Cn→Cm,ACnj : →Cmxm,(j=0,...,n−1)are analytic at 0. 

So, there exist an analytic solution and an open set 

. 

This analytic solution is unique between the functions from 
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Definition 1. (Existence and Uniqueness Theorem) 

In general, on the rectangular region including the point 

(t0,y0) if and are continuous functions, therefore there consists of 

an interval :|t−t0|h centered at on which there exists one and only one 

solution to the initial value problem 

 = ( , ), ( ) = .  

(Abell &Braselton, 2018) 

Another mathematical definition is Picard–Lindelöf theorem and the Cauchy–

Kowalevski–Kashiwara theorem in differential equations. The theorem 
guarantees the existence and uniqueness of solutions under specific conditions. 
In electromagnetism, the uniqueness theorem for the solution of Maxwell's 

equations is another important application of uniqueness theorem. 

Cauchy–Kowalevski–Kashiwara theorem: A wide generalization of the 
Cauchy–Kowalevski theorem for analytic PDEs. It guarantees the existence and 
uniqueness of solutions to certain PDEs under specific conditions (Sugiki & 
Takeuchi, 2001). 

Theorem 1. The Cauchy-Kovalevskaya Theorem): Consider the Cauchy (or 
Initial value) problem. 
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Proof. (Gantumur,2014)
The second theory is the Black hole uniqueness theorem - This theorem states
that, given boundary conditions, the electric and magnetic fields in a region are
uniquely determined, which has implications for understanding the behavior of
electric and magnetic fields in various scenarios. The third theorem is the
existence and uniqueness theorem for linear equations which states that the
solution to a system of linear equations is unique if and only if the matrix
representing the system is invertible. The last theorem is the Cauchy’s rigidity
three-dimensional
polyhedra: These theorems assert the uniqueness of a mathematical object,
which usually means that there is only one object fulfilling given properties, or
that all objects of a given class are equivalent (i.e., they can be represented by
the same model). 

Basic Reproduction Number, Equilibrium Points and Stability. 

theorem and Alexandrov's uniqueness theorem for 

The basic reproduction number, denoted as (R0), is a fundamental 
concept in mathematical modeling, particularly in epidemiology. It is defined as 
the expected number of secondary cases produced by a typical infective 
individual in a completely susceptible population. In other words, it represents 

the average number of individuals who will catch a disease from a single 
infected person in a population where everyone is susceptible to the disease 

(Allen & van den Driessche, 2008). The value of (R0) is crucial in forecasting 
whether a disease will persist or vanish. If (R0) is greater than 1, the disease is 
likely to persist, while if it is less than 1, the disease is likely to die out. The 

estimation of (R0) is often done using complex mathematical models that 
consider various biological, sociobehavioral, and environmental factors 
governing pathogen transmission. The basic reproduction number is a key 
parameter in understanding the contagiousness or transmissibility of infectious 
diseases and plays a significant role in guiding control strategies. 

In dynamical systems and ODEs, the basic reproduction number is used 
to determine the stability of the disease-free equilibrium point. Specifically, if 

the value of (R0) is less than or equal to 1, the disease-free equilibrium point is 
stable, meaning that the disease will eventually die out. If the value of (R0) is 
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greater than 1, the disease-free equilibrium point is unstable, meaning
that the disease will persist and spread throughout the population
(Hussain & Dutta Borah, 2021). For example, consider the SIR model,
which is a system of ODEs used to model the spread of infectious
diseases. The basic reproduction number for this model is given by 

R0 = N(β/γ) where (β) is the transmission rate, (γ) is the recovery rate, 
and (N) is the total population size Van (den Driessche & Watmough, 2008). 

If (R0) is greater than 1, the disease will persist and spread throughout 

the population, while if it is less than 1, the disease will eventually die out. 

If the basic reproduction number is greater than 1, the disease is likely 
to persist and spread throughout the population. This means that each infectious 

individual, on average, infects more than one other individual, leading to a 
continuous increase in the number of infected individuals. In this case, the 

disease is considered contagious and may require intervention measures to 
control its spread. If the basic reproduction number is less than 1, the disease is 

likely to die out. This means that each infectious individual, on average, infects 
fewer than one other individual, leading to a decrease in the number of infected 

individuals. In this case, the disease may become extinct over time, as the 
number of infected individuals decreases and if the basic reproduction number 

is equal to 1, the disease is at the threshold of persistence. In this case, the 
disease can persist in the population, but the number of infected individuals 

remains stable. Small changes in the value of (R0) can cause the disease to either 
die out or persist, making it a critical value for determining the long-term 
behaviour of the disease. 

Solutions with vectors that are either approaching or receding from the 
equilibrium value are shown in a phase portrait of a dynamical system that has 
a constant solution. In the form of an attractor, a stable equilibrium value is one 
that the system's values tend to approach. If the values in the system tend to 
move away from the equilibrium value, it is unstable and acts as a repelling 
point. It's been observed that some values tend to drift closer to the equilibrium 
point, while others prefer to move further away. This area is characterised by a 
saddle point. It's a precarious scenario (Widyaningsih et al., 2018). 
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An equilibrium point may occur at the starting point in some cases, but
the pathways that approach it will always show some degree of
divergence. Although a balance has been attained, it is not globally
asymptotically stable. Because the value of x(t) diminishes with time,
the ensuing equilibrium point is stable on a global scale, and the
resulting phase picture shows all trajectories converging on the
equilibrium point. If both eigenvectors are linearly independent and
have real, negative, and equal eigenvalues, then the phase picture
represents a globally stable equilibrium point. 
At the outset, every person in a community is included in the S group; 
but, over time, some individuals are "removed" from the S group due to sickness 
and quarantine, or because they are isolated from the population for other 
reasons. For the S' group, we account for births by assuming a constant rate of 
addition to the vulnerable population. Multiplying the death rate per person by 

the total population yields the total number of people "removed" from the R' 
group (it is a function of how many individuals are removed, not constant like 

the birth rate). 

At a state of equilibrium, all of the determinants of that state's condition 
remain unchanged. This is the same as asserting that at equilibrium locations in 

the model, the derivatives are zero because they represent changes in the state 
variables. The point at which there are no diseases in the population is known 

as the disease-free equilibrium, and it is represented in the model by the 
equation I1 = I2 = I3 = 0. The set of equations is made simpler to. S = Λ − µS. 

An infectious disease-free equilibrium point, where the number of infected 
people is zero, and maybe other equilibrium points where the number of infected 

people is less than zero and equal to zero. According to the setting, these are 
either endemic equilibrium points or outbreak equilibrium points). 

It is the attractors of a dynamical system, which are connected to the 
idea of equilibrium, that define its long-term behaviour. Any given dynamical 
system may have no equilibrium point, a single equilibrium point, or numerous 
equilibrium points, any of which may be stable or unstable. A pendulum is a 
nice illustration of a straightforward mechanical tool. Since the system will 

remain in the bottom position of the pendulum forever, this is an equilibrium 
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point. There is no doubt that this equilibrium is stable (if fraction is
considered). To a similar extent, standing upright is obviously an
unstable equilibrium. An understanding of these equilibria is crucial for
extracting the model's defining system behaviours. For a full
appreciation of the model, it is essential to grasp these. 

An SEIR model with density-dependent mortality and constant infection 
rate was tested in (Jiao et al., 2020). A total of three equilibria were found in the 

system: I when the population is wiped out, (ii) when the disease is wiped out, 
and (iii) while the disease is present in the population. This third equilibrium 

was found to exist and be unstable close by. Variable-amplitude disease cycles 
were found numerically for a wide variety of parameters. After showing that the 

SEIR model is globally stable even when the overall population size changes, 
(Rezapour et al., 2020) looked at an SEIR model with vertical transmission in a 

fixed population and an incidence term expressed as a bilinear mass action. 

When an infection is not fatal, both the global disease-free equilibrium 
and the local endemic equilibrium become stable. Taking into account the effect 
of diffusion on various population subgroups, (Wintachai & Prathom, 2021) 
created an SEIS model to account for the nonhomogeneous mixing, which leads 
to differing incidence rates for the exposed and infected populations. Analyzing 
the diffusive model with matrix stability theory, we obtain the criteria for Turing 
bifurcation. Finding a globally exact solution for the traditional SIRS model 
required the application of modal expansion infinite series (Etxeberria-Etxaniz 
et al., 2020). They demonstrated that the modal expansion series converges for 
practical initial points. 

Sensitivity Analysis 

Sensitivity analysis (SA), which can aid in identifying influential model
parameters and optimising model structure, has not been frequently
implemented in 

infectious disease modelling despite its usefulness. The aim of doing a

sensitivity 
analysis on a mathematical model or system is to ascertain the degree of
influence that 
individual variables have on the final result. 
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In recent years, sensitivity analysis has become increasingly popular across
many scientific and technological fields. Sensitivity and uncertainty analysis
is widely used by scientists who apply mathematical models to simulate
biological processes because of its usefulness in establishing key
parameters for model performance. This model can be helpful in many
contexts, including experiment analysis, parameter estimate, decision
making, and policy guidance (De la Sen et al., 2021). 

“SAs are performed for an analysis of reasons, including but not limited to: 
characterising the response of model outputs to parameter variation; isolating major 
sources of parametric uncertainty; identifying parameters that can be shed to yield a 
simpler model; clarifying the plausible range of system outcomes; forecasting when 
data is unavailable; and determining the robustness of a modelling stucture. There ought 
to be a resurgence of interest in SA since newer methods can produce significantly 
higher levels of comprehension than their predecessors. Once data collection is 

complete, a posterior distribution over all model parameters should be estimated. 
Today's SA is analogous to parameter estimation methods for complex models, which 
are usually based on Bayesian approaches using, for example, Markov Chain Monte 

Carlo algorithms (Brauer et al, et al., 2019). It is possible to use this posterior 
information to marginalise the joint distribution, so revealing the sensitivity of the 
model fit (often a log likelihood) to each parameter. As a measure of how dependent 
events are on one another, we use the log probability. But because we don't know 
enough about the sensitivity of the parameters influencing the other intriguing model 
outputs, many potential for considerable SA would remain. One's comprehension of a 
modelled complex system can be enhanced by employing SA before commencing to 
collect data; in fact, utilising SA can help one decide what data should be collected in 
order to most informatively narrow parameter and output uncertainty. The idea of 
elastic demand in economics and ecology, the response surface methodology, and the 
design of experiments are all approaches that may be used to a variety of contexts and 
have many similarities in methodology. The Fisher Information Matrix can also be used 

to characterise gradients on the log-likelihood surface and to determine which 
parameters, if investigated, would provide the greatest benefit from experimental 

investigation. To achieve this goal, it is vital to determine which parameters would most 
benefit from further laboratory investigation. This exemplifies the power of SA 
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techniques like these for studying the parameter-sensitivity of the log-likelihood surface
(Widyaningsih et al., 2018).” 

When discussing viruses, the term "coronavirus" is used to refer to any member
of the family Coronaviridae. Coronavirus virions (viral particles) are typically
approximately 120 nm (1 nm = 109 meters) in diameter. Glycoprotein spikes in
the envelope of these viruses take on a club form, giving the virus a coronal
appearance. Nucleocapsids are protein capsids that encase viral nucleic acids
in a helical or tubular shape. The coronavirus genome is a single-stranded,
positive-sense RNA (ribonucleic acid). It is generally accepted that there are
only two genera under the family Coronaviridae, namely Coronavirus and
Torovirus, which may be identified from one another by the shape of their
nucleocapsids (helical vs. tubular). Humans, hens, and cows are all susceptible
to coronavirus infections, which can lead to severe gastrointestinal symptoms.
A human respiratory disease known as SARS coronavirus 
(or severe acute respiratory syndrome coronavirus) is extremely infectious and 
manifests with high body temperature, a hacking cough, and aching muscles,

followed 
by trouble breathing. (Singhal, 2020). 

The Natural History of Covid-19. The virus was first found in humans in

2002, 
and it is believed that it was transmitted to humans from horseshoe
bats, its 
initial animal reservoir. In order to infect humans, the SARS (severe

acute 
respiratory syndrome) coronavirus must have undergone a genetic
change. 
While the SARS virus in horseshoe bats cannot infect people directly, 
researchers assume that the palm civet was the first host of these
modifications 
(Singhal, 2020). Bats, cats, and camels are all frequent hosts for the

coronavirus. It appears that 

the viruses are able to live in harmony with the animals without infecting
them. 
Viruses can change to infect new hosts, such as other species of

animals. 

Transmission to new species increases the likelihood that the viruses

Covid-19 
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animals are suspected as the first transmission sites for SARS-CoV-19
(He et al., 2020). 

When infected with a coronavirus (CoV), both people and animals are

at risk 
for developing symptoms in their respiratory and digestive systems.
Since its 
discovery in Wuhan, China in response to reports of severe

pneumonia, the 
current coronavirus illness pandemic (COVID-19) has been traced back
to 
SARS-CoV-2 (Yan et al., 2020). It was discovered late in 2019 that

Wuhan, China has a coronavirus quite similar 

to the one that caused SARS. Once known as COVID-19, the disease was
later 
shown to be caused by Coronavirus Type 2. (SARS-CoV-2). Similarly, the

virus 
was highly contagious and had spread from China to the United
States and 
Europe via sick travelers by the beginning of the year 2020. Since the

World 
Health Organization declared the pandemic in March 2020, several
countries 
have severely restricted travel to and from affected areas. Several

municipalities 
instituted "stay-at-home" policies, which strongly advised locals to
remain 
indoors after the closing of local schools and businesses. By 2020,

SARS-CoV-
2 vaccinations were readily available, allowing a plethora of formerly
closed 
establishments to reopen (Zu et al, 2020). 

There are several variants of the COVID-19 virus, including SARS and

MERS 
(Middle East respiratory syndrome) variants. SARS-CoV-2 virus is
genetically 
similar to the SARS-CoV virus, which caused the 2003 SARS outbreak.

SARS 
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Diagnosis and Treatment of Covid-19. The COVID-19 coronavirus,
which causes the disease, is covered with spike-like proteins on every
one of its particles. Aiding in viral attachment and disease
transmission, these spikes are a common feature of many virus
capsids. Some vaccines for coronaviruses are designed to "recognize"
and eliminate the viruses by targeting their spike proteins (Li et al..,
2020). 

If there were an effective vaccination, people wouldn't have to worry

about 
ending up in the hospital or even dying. Widespread vaccination has the 

potential to significantly lessen the virus's capacity to propagate inside 
populations and evolve into new forms (Stokes et al., 2020). 

MERS caused significant morbidity and mortality in the region, with a
high fatality rate and considerable economic, social, and health
security effects. MERS-CoV was also classified as a zoonotic virus,
meaning it is transmitted between animals and people, and is
contractable through direct or indirect contact with infected animals
(WHO, n.d). Therefore, its implication spread from people to animals,
causing a high mortality. 
SARS-CoV-2, the virus that causes COVID-19, belongs to the same 
Betacoronavirus genus as the viruses responsible for SARS and MERS 
(Petrosillo et al., 2020). While both COVID-19 and MERS are caused by 
coronaviruses, they are genetically different and have distinct epidemiological, 
clinical, and virological characteristics. 
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Cancer 

 

The term "cancer" is used to describe a group of diseases in which abnormal 
cells multiply out of control, invade neighboring tissues, and ultimately destroy them. 
Cancer is an aggressive disease that can swiftly spread to other parts of the body. Cancer 
is the second leading killer worldwide. The symptoms of cancer will change depending 
on where it is located in the body. Cancer patients often encounter the following non-
specific symptoms: Weariness a bulging subcutaneous lump or enlarged area Rapid 
changes in weight gain or decrease Variations in the skin's color, texture, or general 

appearance, such as the development of a new mole or the transformation of an existing 
one. Modifications affecting the regularity with which one urinates or defecates 

Persistent respiratory distress or coughing Trouble swallowing that causes chest pain 
Hoarseness Recurring discomfort or soreness in the stomach after eating Muscle or joint 
pain that persists and for no apparent reason Persistent nighttime sweats and/or fever 
unusually heavy or frequent bleeding (Cox, 2021). 

Cancer can develop if there are alterations (mutations) to the DNA within cells. 
The DNA of a cell is structured into genes, each of which directs a specific aspect of 
the cell's life cycle. The cell may become dysfunctional or cancerous if the code is 
flawed (Hanahan, 2022). 

Some persons are more likely to acquire cancer because of preexisting 
conditions. Tabacco use, excessive alcohol use, a diet high in red and processed meat, 

sugary beverages and salty snacks, starchy meals, and refined carbohydrates such as 
sugars and processed grains were all highlighted as risk factors for chronic illness in 

the 2017 evaluation. Air pollution, radiation, and unprotected exposure to UV light, as 
well as hepatitis A, B, C, and HIV infection, are all risk factors for developing cancer 

(sunlight). Cancer incidence also rises with age. The chance of having cancer tends to 
grow until age 70–80, when it seems to level off, as reported by the most reliable 

sources (Goodall & Wickramasinghe, 2021). 
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Breast Cancer: Symptoms like a lump or tumor forming in the breast, armpit, or
collarbone area. While most bumps won't cause any discomfort, some people
are particularly hypersensitive to them. Male hormones can cause breast growth
in females. Redness, scaling, itching, and dimpling (which can make some
people's skin look like an orange peel) are all symptoms of breast skin disorders.
Discomfort in the breast or genital area Symptoms of a nappy rash other than
breast milk The Nipple Pulls Back (sometimes called a "dented" or "bent
inward" nipple) These signs, however, are not always indicative of breast
cancer. 

Lung Cancer: persistent, intensifying, hacking cough Blood can be seen in the 
patient's cough. suffering from breathlessness or wheezing Constant discomfort 

in the chest Skeletal pain, or arthralgia Changes in the voice's quality, such as 
infection (like 
pneumonia or bronchitis) Constant and unstoppable weight reduction The 
Ignorance of Hunger Constant ache in the head Clotted blood Symptoms of lung 
cancer typically do not show up until the disease has spread extensively (also 

referred to as late-stage cancer). Lung tumors typically generate no symptoms 
since there are so few nerve endings in the area (Dai et al., 2018). 

hoarseness Frequent recurrence of an acute respiratory 

Types, Risk Factors, Diagnosis and Treatment of Cancer. Non-
melanoma Skin Cancer: Basal cell carcinoma and squamous cell
carcinoma are examples of the non-melanoma skin cancers that occur
most frequently. Over a million people in the United States are affected
annually. Many of these newly diagnosed cases go unreported to
cancer registries because of how easily they may be diagnosed and
treated, making it impossible to pin down an exact annual occurrence
rate. Basal cell carcinoma can be diagnosed by looking out for the
following signs: Repeated episodes of bleeding, whether permanent or
transient. Raise, red, and scaly spots caused by scarring. Tiny, smooth,
shiny, pink, red, or white pimples. In particular, flat, pale skin
discolorations are frequently misunderstood as scars. Any kind of skin
growth or lesion characterized by obvious blood vessels, itching, or
bleeding. raised or sunken pink lumps. Basal cell carcinoma most
frequently manifests itself on the skin of the head and neck, followed
by the trunk (Cao et al., 2020). 
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Prostate Cancer: Problems with the urinary system, such as inability to
start or control urination, leakage, pauses in urine flow, or an urgent and
unanticipated need to urinate. Discomfort in the urethra (which may
also be described as a burning sensation) urinary frequency, especially
at night A difficulty in getting or keeping an erection Changes in
ejaculatory behavior, such as decreased fluid flow or discomfort during
ejaculation Urinary or vaginal bleeding Experiencing pain in one's hips,
groin, or lower back Discomfort or pressure in the genitalia Prostate
cancer rarely presents with symptoms until it has advanced. If
Individual is a man over 55 who hasn't been experiencing any
symptoms, he should talk to his doctor about getting checked out
(Leone & Powell, 2020) 

Colon and Rectal Cancers: Symptoms of colorectal cancer sometimes

do not 
appear until the disease has already spread. Colorectal cancer
symptoms, while 
serious, might be caused by other conditions including hemorrhoids or

irritable 
bowel syndrome. effortlessly reducing fat percentage Defeat due to
exhaustion 
and weakness Changes in bowel habits over time (such as constipation, 

diarrhea, or thin stools) Continual yet sporadic abdominal pain (lasting
more 
than a few days) Pressure felt internally in the abdomen or genitalia.

Another 

possible side effect is an increased need to use the restroom.
Punctured flesh 
Where the toilet paper is stored (which may look dark red or black)

Bleeding 
due to rectum damage. This could look like a bright red stain on the toilet
paper 
(NagY et al., 2021). There are many other common type of cancers

such as 
Melanoma, Bladder Cancer, Kidney, etc. 

Factors such as obesity, poor diet, tobacco use, and hereditary

predisposition all 
contribute to an increased risk of developing cancer. However, having
a risk 
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context of breast cancer patients affected by chemotherapy response, if
the basic reproduction number is less than one, the endemic condition
will not be achieved, providing an early prediction of the disease's
behavior (Harper & Jones, 2005). Mathematical modeling has been used
to study the effect of chemotherapy on the growth of solid cancer with
angiogenesis. In this study, the reproduction number of the model was
obtained, and simulations were conducted to show the effect of
chemotherapy on cancer growth. 

On March 1, 2021, it was reported that over 113 million people had
contracted COVID-19, leading to over 2.5 million deaths. The number of
verified cases in Norway is incredibly low. Age and co-morbidities like
cancer are known to increase the likelihood of a poor result from SARS-
CoV-2 infection. No reliable information is available on the outlook for
cancer patients with COVID-19 disease. Males and those with
hematological malignancies have been found to have a higher chance of
developing SARS-CoV-2 than females and those without cancer,
according to certain studies. The elderly, particularly those with cancer,
as well as those with chronic illnesses or compromised immune
systems, are thought to be at a higher risk of hospitalization, treatment
in an intensive care unit (ICU), or death as a result of COVID-19. Patients
with COVID-19 had 
an increased risk of mortality due to the presence of many chronic
conditions. 
These conditions included hypertension, diabetes, cardiovascular

disease, 
respiratory disease, and cancer. Mortality from COVID-19 was higher
among 
individuals with cancer (21% vs. 7.8%). British researchers analyzed

data from 
16,749 hospitalized patients and found an increased risk of dying from
cancer 

(hazard ratio 1.13, 95% CI 1.02-1.24) (Miller et al., 2019). 

The negative impact of covid-19 on cancer. 
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Diabetes 

Type1: In those with type 1 diabetes, “the immune system erroneously
attacks healthy cells. The risk factors for developing type 1 diabetes are
less well understood than those for developing prediabetes or type 2
diabetes. Having a parent, sibling, or first cousin with type 1 diabetes
increases your chance of having the condition, therefore genetic testing
can help determine if you are at an elevated risk for developing it. Type
1 diabetes is more frequent in 

Diabetes is a chronic illness that disrupts the metabolic process, making it
difficult for the body to use food as fuel. Humans convert the majority of the
food they consume into glucose (sugar) and then inject it into the
bloodstream. When there is an excessive amount of glucose in the blood, the
pancreas will respond by releasing insulin into the bloodstream. Insulin is a
hormone that serves as a gatekeeper for cells, enabling glucose to enter the
cell so that it may be utilised as fuel. People who have diabetes either do not
produce enough insulin or are unable to use the insulin that they do produce
in an efficient manner. Insufficient insulin production or cellular insulin
resistance both contribute to the persistence of glucose in the circulation.
Some of the long-term consequences include cardiovascular disease,
blindness, and even kidney failure. There is currently no treatment for
diabetes; but, improvements in food, exercise, and other aspects of daily life
can help (Cole & Florez, 2020). Diabetes is brought on by high blood glucose levels, sometimes known as sugar. 
Humans rely heavily on glucose in the blood, which originates from the food they 
consume, for their energy needs. Pancreatic insulin facilitates cellular uptake of sugar 
from meals. Diabetes develops when either the body's insulin production is inadequate 
or its use is inefficient (Bloomgarden, 2020). It is impossible for glucose in the blood 

to reach cells without the hormone insulin. Negative health outcomes have been linked 
to chronic exposure to elevated blood glucose levels. Although there is currently no 
treatment for diabetes, those with the disease can take measures to keep themselves 
healthy through proper management of their condition. Diabetes is sometimes known 
as "a touch of sugar" or "borderline diabetes" by certain people. Despite what these 
labels might imply, every case of diabetes is dangerous (Hill-Briggs et al., 2021). 

Types, Risk Factors, Diagnosis and Treatment of Diabetes. 
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adolescents, teenagers, and young adults, while it can afflict anybody at
any age. The onset of type 1 diabetes has no known preventative
measures (Corbin et al., 2018). 

Type2: Prediabetic people, those who are overweight, those who are 45

or older, 
those who exercise fewer than three times per week, and those who
have a first-

degree relative with diabetes are all at increased risk for developing

type 2 
diabetes, has ever delivered a baby weighing more than 9 pounds or
suffered 

from gestational diabetes. Some Asian and Pacific Islander Americans

are 
likewise at a higher risk. Individuals at high risk for acquiring type 2
diabetes, 

such as those with non-alcoholic fatty liver disease, can delay or

prevent the 
onset of the illness by adopting adjustments to their lifestyle. Regular
exercise, 

a healthy diet, and weight loss, if necessary, are all excellent examples

(Mitri et 
al., 2019). 

Insulin is produced by diabetics with type 2 diabetes, which is not the

case for 
those with type 1. However, their insulin production is inadequate, or
their cells 
are resistant to the hormone, thus their blood sugar levels continue

to rise. 
Obesity and other lifestyle choices are linked by doctors' research to the 
development of type 2 diabetes (Bellou et al., 2018).” 

Age, ethnicity, obesity, a personal or family history of diabetes, and

cigarette 
smoking are only few of the risk factors that might contribute to the 
development of type 2 diabetes. In a variety of ways, smoking is

associated with 
an increased risk of acquiring type 2 diabetes, as detailed in the 2014
Surgeon 
General's Report. Cigarette smoke contains compounds that are toxic to

cells and can disrupt their 
normal function. Inflammation throughout the body can reduce insulin's 
efficacy, thus avoiding this is important. Cell damage, known as oxidative 
stress, can also be caused by the interaction of chemicals from cigarette
smoke 

with oxygen in the body. The risk of developing diabetes may be

influenced by 
both oxidative stress and inflammation. There is a 30–40% increased
risk of 
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The high quantities of nicotine in cigarettes reduce the efficacy of insulin,
making it more insulin is needed to manage blood sugar in smokers than
in nonsmokers. Heart disease, blindness, kidney failure, and damage to
the feet and legs' nerves and blood vessels, which can ultimately lead to
amputation, are just some of the complications that can arise from
uncontrolled diabetes. 8, 9 Diabetic problems are also more likely to
occur in smokers (Campagna et al., 2019).” 

Experts predict that this increase would lead to over a million new cases

of type 
2 diabetes, cardiovascular disease, and cancer. “Even though the risk of 

becoming obese increases with age, the prevalence of obesity in young

adults is 
on the rise, Public Health England reports that 31.2% of children
between the 

ages of 2 and 15 are overweight (Kotsis et al., 2018). 

Many of the risk factors for having diabetes mellitus are within a

person's 
control. No one knows for sure what causes diabetes mellitus in
humans. 
Possessing a body mass index (BMI) of 30 or more, which defines

one as 
overweight or obese, is a risk factor for developing type 2 diabetes.
People with 
a body mass index (BMI) of 80 or higher have up to 80 times the

chance of 
having type 2 diabetes compared to those with a BMI of 22 or below,
according 
to recent studies, leading many to conclude that obesity is responsible

for 80-
85% of the risk of developing type 2 diabetes (Zhou et al., 2021). 

One's risk of developing the disease increases if either parent has the

disease. A 
higher prevalence of prediabetes has also been observed, If a
person has a 
prediabetes or diabetes history in their family, they should discuss this

with their 
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been devoted to understanding glucose-insulin dynamics in diabetes
with the models providing insights into the physiological processes
related to glucose and insulin regulation, which are essential for the
diagnosis and treatment of diabetes (Optus et al., 2012). The spread of
diabetes transmission through social contact can as well be modelled,
which can provide valuable information for understanding the
dynamics of the disease and developing strategies for its diagnosis and
treatment. 
Negative effects of Covid-19 on diabetes 

The correlation between COVID-19 and type 2 diabetes is intricate and
multifaceted. On the one hand, diabetes mellitus is suspected to have a
significant role in determining the severity of COVID-19's progression.
Age, a proinflammatory and hypercoagulable state, hyperglycemia, and
underlying comorbidities including hypertension, cardiovascular disease,
chronic renal disease, and obesity are all factors that are associated with
diabetes mellitus and raise this risk. Hyperglycemia is already a problem
for those with diabetes, but a severe COVID-19 infection and the
medicines used to treat it can make the condition significantly worse by
increasing insulin resistance and decreasing -cell secretory function. An increase in hyperglycemia may slow the development of COVID-19. As the
pandemic progresses, more data will become accessible, but
understanding the effects of COVID-19 on diabetes will 

require overcoming some significant challenges (Marfella et al., 2020). 
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Cardiovascular Disorders(CVD) 

Cardiovascular disorders refer to the dysfunction of the heart and constriction
of blood vessels leading to failure in the functioning of body organs. The term
covers all the disorders that normally occur due to fatty deposits in arteries,
which can be a causal factor for life-risking clots (NHS, 2017). Plaque
formation can be observed in all major arteries, including the carotid and
coronary arteries. Cardiovascular disorders are one of the biggest causes of
increasing mortality rates all over the globe. 

Coronary heart diseases are disorders that result from the inactivity
of heart muscles due to a blocked supply of blood caused by
constricted arteries. The fatty deposits (atheroma) in the coronary
arteries can restrict the blood supply to heart muscles which is the
ultimate cause of death of heart muscles leading to a heart attack. In
initial and less severe cases, the constriction of coronary arteries can
cause chest pain which is termed angina. However, if the arteries are
completely blocked and no blood reaches to heart, then it can lead to
cardiac arrest (Valerio et al., 2016). 

Stroke is another form of CVD that causes the death of a part of the brain, 
increasing the risk of fatality. Like all organs, the brain also needs a continuous 

supply of oxygen which is made possible with the help of carotid arteries. When 
blood reaches the brain through carotid arteries, oxygen is provided to the brain 

for its proper functioning. If the supply of oxygen to any part of the brain, due 
to fatty deposits or clots in coronary arteries, is restricted that it causes the death 

of brain cells and results in a stroke. A stroke is a serious medical emergency 
that can lead to the death of an individual with life-long disabilities. 

Many risk factors lead to CVD and, consequently, a rise in the global fatality 
rate (Mozaffarian et al., 2008). One of the most common risk factors is tobacco 

smoking. Smoking leads to the thickening of blood in arteries, and hence clots 
are formed easily. Nicotine and other chemicals in cigarette smoke cause the 

thickening of arteries, termed atherosclerosis. The plaque formation or fatty 
deposits constrict the arteries supplying blood to the heart, brain, and other parts 
of the body. This is the major causal factor of CVD. 

Types, Risk Factors, Diagnosis and Treatment of Cardiovascular 

Disorders(CVD). 
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Furthermore, the infamous Covid-19 pandemic is now a subject of
consideration and has profound links with cardiovascular disorders. A

noteworthy elevation of cardiac troponins was reported in a study that focused
on the onset of CVD in Covid-19 victims (Pina & Castelletti, 2021). This acute
cardiac injury was reported in approximately 8 to 12% of all the patients. The
postulated mechanisms leading to cardiac injury include the viral involvement 

Obesity is the other major factor leading to the onset of Cardiovascular
Disorders through the alterations in body composition. The hemodynamics can
deteriorate, and as a result, the structure of the heart may be deformed. Obese
people have a high percentage of adipose tissues, which release pro-
inflammatory cytokines leading to the dysfunction of the heart (Carbone et al.,
2019). This might also cause the thickening and constriction of arteries due to
plaques. The atherosclerotic condition is a risk factor for cardiac arrest and,
ultimately, death of the individual. 

Another noteworthy factor leading to CVD is family history with related cases. 
A study suggested that positive family history is associated with a greater 
prevalence of Cardiovascular Diseases (non-stroke in nature) (Valerio et al., 
2016). Hypertension, in this regard, is a causal factor for cardiovascular 
diseases, which leads to myocardial infarction or strokes.

Mathematical models are used to develop risk prediction models that estimate 

an individual's likelihood of developing cardiovascular events, such as heart 
attacks or strokes. These models consider various risk factors such as age, 
gender, blood pressure, cholesterol levels, and smoking status. The other way 
through which the models are used is in optimizing treatment approaches. The 
models can help to optimize treatment strategies for cardiovascular diseases 
(Pajouheshnia, 2017). For example, models may be used to simulate the impact 
of different drug regimens or interventions on disease progression, allowing 
identify the most effective and efficient 
researchers and clinicians 
approaches. 

to 

Negative effects of Covid-19 on CVD 
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of cardiomyocytes. Apart from that, systemic inflammation is also a
leading mechanism. 

Sedentary lifestyle habits induced by the Covid-19 pandemic have posed

a life-
threatening risk to people, particularly due to an increase in the ratio of
CVD. A 
sedentary way of living and lower activity levels might lead to obesity;

this is a 
serious risk to cause the onset of heart-related disorders and stroke. 

Many studies have been carried out using mathematical models and statistical
tools to understand the extent of Covid-19 as an infectious disease. The model
has been applied to contain the spread of the infection, undertake risk
analysis, and make accurate decisions that can help to reduce the
transmission rates. Kucharski et al.; (2020) explored the use of transmission
dynamics modelling to understand, predict, prevent, and control the spread of
the infectious disease. The model employed in the study helped understand
the disease, predict the trend of its spread, and then evaluate control
measures that would help to inform further decision-making processes,
especially in times of uncertainty. 
For the identification of the epidemiological features, the model was used to 
understand the virus’ epidemiological features like the period of incubation and the 

secondary number of infections that emerge from the first infectious individual in a 
vulnerable population. The parameters employed at the epidemiological level helped to 

understand the key features of the infectious condition. As more data was generated, 
the model was able to be applied to short-term prediction. The model was fit with actual 

data, and then properly refined to help predict future trends like understanding the 
number of infections as well as the hospitalization needs (Kucharski et al., 2020). The 

model was particularly important in explaining short-term trends, proving to be key in 
disease prevention and control. 

One of the ways through which the model was used is by comparing the 
observed against predicted infections controls. The comparison provided a quantitative 

assessment that helped to understand the prevention and control measures. For instance, 
using the mathematical model, it was possible to undertake the Wuhan shutdown and 

Related Research 
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improve the national emergency response that delayed the spread of the epidemic and
also averted the high number of infections. 

The mathematical model was also important in exploring the uncertainty that 
came with the Covid-19 pandemic. It was also possible to underscore the sensitivity of 
the model by assessing the relationship between diverse parameters used in the study. 
For instance, the mathematical model warned against completely lifting the non-
pharmacological interventions even with the vaccines that were noted to be highly 

effective. The model showed that such lifting would eventually result in a notable 
the 

understanding of the condition and the dynamics within which its spread could be 
controlled. 

increase in transmissions. Therefore, the mathematical model improved 

Extensive research has demonstrated the use of mathematical models and 
statistical techniques to explore the progress of cancer, including its treatment. Yin et 
al., (2019) underscored the use of mathematical model to explain how different changes 

in the cancer strain results in challenges in cancer treatment. The authors note that the 
use of mathematical models has helped to understand the heterogeneity of tumors and 

the general evolution of different types of cancers. Through the mathematical models, 
a more detailed characteristic understanding of the health condition and the subsequent 
treatment approach was determined through the model analysis. it is possible to achieve 
a better characterization of cancer evolution and the subsequent use of personalized 
treatment mechanisms that would achieve notable resistance to cancer treatment. Both 

partial and ordinary differential equations as well as algebraic equations helped to 
characterize cancer tumors. 

The purpose of the study was to explore the extent to which mathematical-based 
models can be used to explore the opportunities and challenges of characterizing 

changes in the size of tumor cells and the evolution of resistance to treatment. The 
inhibition dynamic approach employed in the model underscored the understanding of 

tumor growth and the overall clonal evolution of drug resistance (Yin et al., 2019). The 
article explains that cancer treatment evolution can be better explained and a 

personalized treatment approach developed based on the understanding of cancer 
resistance variants. The research also underscores the diverse stochastic and 

deterministic models in the evolution of tumor resistance. 
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The significance of the article is that it provides a clear overview of the progress
that has been made in exploring the treatment of cancer. The knowledge
gained in the study can be extended to ascertain unique the response to anti-
cancer treatment as a function of the highlighted models The findings could
support the analysis of anticancer treatment responses using modeling
approaches that consider both the inhibition of tumor growth and the evolution
of resistance. However, it's crucial to acknowledge that there are significant
challenges that still need to be addressed in this context. 
The aim of the study by Awad et al., (2022) was to characterize and then forecast 
the burden of type 2 diabetes mellitus between 2020 and 2050 in Qatar. The overall 

population is composed of 89% expatriates who come from more than 150 countries. 
The model applied in the study was an age-structured mathematical model which was 

noted to be effective in understanding the weight of type 2 diabetes. The influence of 
other risk factors such as excessive smoking, prevalence of obesity, and lack of physical 

activity was also assessed with the help of the model. The data used as part of the input 
parameters were the natural history studies of the disease, a stepwise survey, and an 

observatory study (Awad et al., 2022). Using the epidemiological and natural history 
data, it was possible to forecast the prevalence of type 2 diabetes. 

The purpose of the mathematical model was to try and improve the 
characterization of the diabetes burden among the expatriate resident population which 
constitutes 89% of the total Qatar population. The findings noted using the model were 
that the prevalence of diabetes was set to double by 2050, with the incidence of the 
condition projected to increase by 80% (Awad et al., 2022). Another aspect noted in the 

research was that the diabetes burden and the drivers of the condition substantially 
varied in diverse nationalities staying in Qatar and that while obesity was perceived to 

be the main driver of the condition, it was arguably not the main reason for diabetes 
prevalence among the expatriate population living in Qatar. The research is significant 
since it provides valuable insights into the epidemiology of T2DM in Qatar and 
demonstrates the importance of mathematical modeling in understanding and 
addressing the disease. 

A machine learning prediction model was employed in research by Karthick et 
al., (2022) to explain the risks of cardiovascular conditions. The study employs various 

machine learning algorithms, such as multi-layer perceptron (MLP), K-nearest 
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neighbor (K-NN), support vector machine (SVM), Gaussian Naive Bayes, logistic
regression, LightGBM, XGBoost, and random forest, to develop a heart disease
risk prediction model using the Cleveland heart disease dataset. The approach
involves data preprocessing and selection of specific attributes from the
Cleveland heart disease dataset using the chi-square statistical test. The
second step is training the selected dataset using the chosen machine learning
algorithms before the performance of the model is assessed based on their
accuracy, area-under-the-curve value, and other relevant metrics. 

The purpose of using machine learning mathematical models in explaining the 
prevalence of heart attacks is to develop effective predictive tools that can aid in the 
early detection and assessment of heart disease. Machine learning techniques can 
analyze various health record data and parameters, such as cholesterol levels, genetic 
factors, blood pressure, physical activity, obesity, and smoking, to identify patterns and 

risk factors associated with heart disease. By training machine learning models on 
relevant datasets, it is possible to create accurate prediction models that can assist 

diagnosticians in reducing misdiagnosis and making more precise health decisions for 
patients. These models can help in identifying individuals at risk of heart disease, thus 
enabling timely intervention and medical care. 

The different machine learning techniques provide the data visualization feature 
that provides an easier way of presenting the risks of cardiovascular conditions. The 

visualization approaches include the use of heat maps and sub-set attribute correlation 
that gives a better pictorial view of how to present data. The tools also help to provide 

a better correlation between risk features of cardiovascular disease and other closely 
linked lifestyle conditions. 
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Framework of the Thesis 
The main purpose of this thesis can be summarized as investigating the
future impact of COVID-19 on the patient numbers of the chronic
diseases cancer, diabetes, and heart diseases, given in order. The
mathematical models used in this study employed 'sensitivity analysis.'
The summary of the thesis including purpose and significant of the
study, and research questions and hypotheses are stated in Chapter I. 

For a better understanding of the future impact of COVID-19 on the patient
numbers of the chronic diseases cancer, diabetes, and heart diseases, and
the relationship between mathematical model and health sciences, a
literature review is done and explained in Chapter II including the
mathematical tools (solution techniques, definitions, theorems and
corollaries) that are used in the thesis. The data of cancer, diabetes, and
heart diseases diagnosed patients is opted for with the aim of designing
mathematical models. Chapter III consists of the constructed mathematical
model 1 with its necessary properties and theorems with proofs. Chapter IV
consists of the constructed mathematical model 2 with its necessary
properties and theorems with proofs. Numerical simulations of the results of
the model I and model II are also presented in Chapter V respectively. The findings of all thesis and discussions are provided in Chapter VI with the
comparison of other works in literature. Chapter VII comprises the
conclusions and 
recommendations of the thesis. In this chapter, overall conclusions and what
can be 
done in future in this field are discussed. 



49 

Data Analysis 

Data Collection 

Research Design and Limitations 

CHAPTER III
Methodology 

In this chapter, the data is obtained from the references. 

In this section of the thesis, analysis of the obtained data is given. 

Mathematical Model and Its Analysis 

While constructing the model, the whole population, denoted by 𝑁(𝑡) at time 
𝑡, is divided into 2 compartments, that is, the model consists of 2 state variables. 

These are: susceptible individuals (𝑆(𝑡)), and cancer diagnosed individuals (𝐶(𝑡)). 
For determining the necessary parameters, the obtained data is analyzed. Hence, the 
model is constructed as follows: 

In this section, the evaluation of the number of diagnosed cancer patients is
proposed through mathematical modelling. The aim of this section is to create a
mathematical model between susceptible individuals to cancer and the number of
cancer patients. In doing so, the aim is to assess the relationship between
subcategories and find the most effective parameters on state variables or
compartments using sensitivity analysis. For this purpose, first, the design and
limitations of the research are provided. Following that, the obtained data is
explained. Lastly, necessary theorems and proofs are presented in the analysis of the
model, accompanied by numerical simulations. 

A mathematical model has been constructed through ODEs to assess the
relationship between susceptible individuals to cancer and the number of
cancer patients. Subsequently, the proof of the existence of solutions and
equilibrium points has been demonstrated and calculated using various
computational techniques and theorems. 
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𝑑𝑆𝑑𝑡 =𝜋−𝑓1𝐶𝑆−(𝑜+𝑏)𝑆−𝜇𝑆+𝛾𝐶+𝑐𝐶 

𝑑𝐶
𝑑𝑡

=𝑓1𝐶𝑆+(𝑜+𝑏)𝑆−𝜇𝐶−𝜂𝐶−𝛾𝐶−𝑐𝐶. 

Description of Variables used in the Mathematical Model 

Description of Parameters used in the Mathematical Model 

Table 2. 

Variables 

𝑆 

𝐶 

Parameters 

𝜋 

𝑓1 

𝑜 

𝑏 

𝛾 

𝑐 

𝜂 

𝜇 

Descriptions 

Susceptible individuals 

Cancer patients 

Descriptions 

Recruitment rate 

Transmission rate of hereditary 

Rate of obese individuals with cancer 

Rate of smokers with cancer 

Recovery rate 

Negative effect of COVID-19 

Disease-caused death rate 

Natural death rate 

In Table 1 and Table 2, descriptions of variables and parameters of the model 

are explained, respectively. 

Table 1. 
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Figure 1: The Flow Diagram of The Model (1) 

we obtain 

As it is obvious from the above inequality, 

the inequality with respect to 𝑡, we get 
𝑡 𝑡

For the proof of existence of solutions of the proposed model, the following 

theorem is stated and demonstrated. 

Theorem 2. Let (𝑆,𝐶) be a solution of the proposed system with the 
following initial conditions: 

𝑆≥0,𝐶≥0. 

Then, the set Λ below is biological feasible, that is, positive and invariant. 

Moreover, all of the solutions in ℝ2+ stay in 𝜋 with respect to the proposed system. 
Λ={(𝑆,𝐶) ∈ ℝ2+: 𝑆+𝐶≤𝜋}. 

Proof. Firstly, all terms of the equations in the system should be added. Then, 

. Integrating both sides of 

𝑁(𝑡)𝑒≤𝜋𝑒+𝑘, 

for some arbitrary constant 𝑘. Applying Rota and Birkhoff stated in Birkhoff

and Rota (1991) to the differential inequality, it is concluded that as 𝑡 tends

to infinity (∞), 0≤𝑁≤𝜋 holds. As a result, all of the solutions of the proposed

system enter the region 𝜋. Hence, it is concluded that the proposed model is

biologically feasible, and it will be enough to consider the dynamics on the

model in the set Λ. 

𝑑𝑁𝑑𝑡 =𝜋−𝜇(𝑆+𝐶). 

𝑑𝑁
𝑑𝑡

≤ 𝜋
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for 

and 

where 

It is obvious that 

 is the solution of 

At the disease-free equilibrium point,

Endemic equilibrium point, denoted by 

 attracts the region so that 

 and 

 is unique and is obtained as 

. That is, 

Basic Reproduction Number and Equilibrium Points. As it is mentioned in
Chapter II, existence of equilibrium points and their stability improves the
strength of mathematical models. For the constructed model in Chapter III, 2
equilibrium points: 

disease-free equilibrium point, denoted by 𝐸0,1 and endemic equilibrium point,

denoted 

by 𝐸∗,1 are evaluated. For the presented model, one hand, 𝐸0,1 is the point
where cancer 

does not exist in the population. On the other hand, 𝐸∗,1, is the point where the

disease 

is maintained with no need of external inputs. The basic reproduction number
𝑅0,1 is 

𝑆

𝐸

𝐸

𝐸

=(𝑆

𝐸

={(𝑆

𝐴(𝑆

,𝐶

)+𝐵𝑆 +𝐹=0, 

,𝐶+0,1) ∈ 𝑅2:𝐶=0}. 

𝐸∗,1, consists of 𝑆

=(𝑆∗,1,𝐶∗,1), 

𝐸0,1

𝜋
)=( ,0).𝑜 + 𝑏 + 𝜇

𝐶

𝐴=𝑓1[(𝑜+𝑏)(1+𝛾+𝑐)−(𝑜+𝑏+𝜇)],

𝐵=(𝜇+𝜂+𝛾+𝑐)[(𝑜+𝑏)(1−𝛾−𝑐)+𝜇]−𝑓1𝜋, 

𝐹=−(𝜇+𝜂+𝛾+𝑐)𝜋, 

∗,1

0,1

0,1

0,1

0,1

∗,1

0,1

0,1

2
∗,1 ∗,1

∗,1 ∗,1
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𝛾+𝑐>𝑓1

𝐶
(𝑜 + 𝑏)𝑆

= 𝜇 + 𝜂 + 𝛾 + 𝑐 − 𝑓 𝑆

𝑆𝑉(𝑆,𝐶)=𝑆−𝑆0,1−𝑆0,1𝑙𝑛( )+𝐶. 
𝑆0,1

𝐸0,1 0

�̇�̇

𝑆̇
�̇�̇ =�̇�̇−𝑆0,1 +�̇�̇

𝑆
=𝜋−(𝑓1𝐶+𝑜+𝑏+𝜇)𝑆+(𝛾+𝑐)𝐶
𝑆0,1

− [𝜋−(𝑓𝐶+𝑜+𝑏+𝜇)𝑆+(𝛾+𝑐)𝐶]+(𝑓𝐶+𝑜+𝑏)𝑆𝑆 1 1

−(𝜇+𝜂+𝛾+𝑐)𝐶. 

Since 𝜋=𝑆0,1(𝑜+𝑏+𝜇), 

𝑆0,1
𝑆𝜋−(𝑓1𝐶+𝑜+𝑏+𝜇)𝑆+(𝛾+𝑐)𝐶− [𝜋−(𝑓1𝐶+𝑜+𝑏+𝜇)𝑆+(𝛾+𝑐)𝐶]

+(𝑓1𝐶+𝑜+𝑏)𝑆−(𝜇+𝜂+𝛾+𝑐)𝐶
𝑆0,1 𝐶𝑆=𝜋(2− )+(𝑓1−𝛾−𝑐) 𝑆0,1. 
𝑆

∗,1
∗,1 . 

1∗,1

The above function is always positive and at the point , it is equal to 

stability, it is enough to show that is a definite negative. 

Disease Free Equilibrium, 𝐸0,1, is globally asymptotically stable whenever 

. 

Consider the Lyapunov function 

. So, for the 

On the other hand, a real solution of the quadratic equation that depends on 𝑆∗,1 exists
only if the coefficient 𝐴 is positive. That is, if 

(𝑜+𝑏)(1+𝛾+𝑐)−(𝑜+𝑏+𝜇)>0, 

(𝑜+𝑏)(1+𝛾+𝑐)>(𝑜+𝑏+𝜇), 

𝜇
𝑜 + 𝑏𝛾 + 𝑐 > . 

This inequality always holds since the value of natural death rate is very small. 

 

Theorem 3. 

Proof 
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It is clear that 

Therefore, 

where

is enough to show that 

𝑆0,1
𝑆 <0. Hence, for the condition 

 is globally asymptotically stable if 

Theorem 4. Endemic Equilibrium, 𝐸∗,1, is globally asymptotically stable.

Proof. For the proof of the above theorem, the following Lyapunov function is 
constructed. 

So, it 

 should hold. 

�̇�̇ =�̇�̇−𝑆

2 −

𝐸0,1

�̇�̇<0, 𝑓1−𝛾−𝑐<0

𝛾+𝑐>𝑓1. □ 

𝑆 𝐶𝐶∗,1𝑊(𝑆,𝐶)=𝑆∗,1𝑔( )+𝐶∗,1𝑔( ), 
𝑆∗,1 

𝑔(𝑥)=𝑥−1−𝑙𝑛𝑥. The function 𝑊 is positive, and 𝑊(𝑆∗,1,𝐶∗,1)=0. 

�̇�̇<0. 

𝑆̇ 𝐶̇
∗,1 +�̇�̇−𝐶𝑆 ∗,1𝐶

=𝜋−𝑓1𝐶𝑆−(𝑜+𝑏)𝑆−𝜇𝑆+𝛾𝐶+𝑐𝐶
𝑆∗,1

− [𝜋−𝑓1𝐶𝑆−(𝑜+𝑏)𝑆−𝜇𝑆+𝛾𝐶+𝑐𝐶]+𝑓𝑆 1𝐶𝑆+(𝑜+𝑏)𝑆

𝐶∗,1
−(𝜇+𝜂+𝛾+𝑐)𝐶− [𝑓1𝐶𝑆+(𝑜+𝑏)𝑆−(𝜇+𝜂+𝛾+𝑐)𝐶]𝐶

𝑆∗,1
𝑆

=𝜋(1− )−𝜇𝑆−(𝜇+𝜂)𝐶<0, 

Thus, 𝐸∗,1 is globally asymptotically stable. □  



55 

Parameter Fitting using Real Clinical Data. In mathematical epidemiology,
deterministic models of illnesses depend considerably on statistics becoming
to confirm that their predictions are in step with determined data. The capability
to are anticipating the spread of illness is extra appropriate as it simplifies the
estimation of model parameters like transmission and healing rates. By
contrasting the version with the data, researchers can research extra
approximate infection trends, remedy outcomes, and discrepancies, and adopt
what-if analyses. If policymakers had extra religion inside the version`s
projections, they may make extra knowledgeable choices. Improving the
destiny version improvement is every other gain of increasing the medical
knowledge base. The least squares approach has been considerably utilized in
a huge kind of fields, from epidemiology to finance, to estimate parameters in
mathematical models. When growing a deterministic model for infectious
diseases, we first begin with differential equations that describe the dynamics
of the disease. These equations can also additionally include vague values for
parameters just like the rate of transmission or the rate of recovery. Model
predictions produced with arbitrary settings for those parameters will now no
longer fit the observed data. Finding those parameters` values that yield
predictions as near the data as viable is the goal. To strike this equilibrium, the
least squares method minimizes the squared differences (additionally
recognized as "residuals") among the observed and predicted values. Once the
parameter values are obtained, the squared deviations between the model's
predictions and the data may be 

effortlessly calculated. Finding parameter values that limit this sum is ideal

because it 
suggests that the model's predictions are near the data. The model's
parameters are taken 
into consideration to be "fit" to the data as soon as this constraint

minimization is 
complete. With those changed parameters, the model ought to seize the
dynamics of the 
infectious disease’s transmission and effect faithfully as located inside the

actual world. 
In epidemiology, becoming parameters to models the use of the ODE system
in (1) 

demonstrates an progressive strategy. Some of the complexity of the

pandemic can be 
better understood by using deterministic models, inclusive of people who use
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The fitted parameters are acquired as follows: 

parameters are derived from the fitted data, at the same time as others are
taken from the mentioned evaluation in the available literature. Fig. 2 shows
the outcomes of an evaluation among actual scientific data and model (1)
simulations, along with residuals in Fig. 3 and the corresponding box plot in
Fig. 4. Fig. 2 indicates that the curve of the simulated data agrees nicely with
the real scientific data, and the scatter in the related residuals, as proven in
Fig. 3. Lends credence to this conclusion. A similar declare is legitimate for the
box plot in Fig. 4. The following preliminary conditions are used in the course
of the simulations: 

𝑓1=1.7576𝑒−04,𝑏=3.4756𝑒−02,𝑜=2.6415𝑒−01, 

𝑐=5.9183𝑒+01,𝑎𝑛𝑑 𝜂=5.6503. 

The rest of the parameters are taken to be fixed and given to be 
1 𝜇=

 
, 𝜋=36.855∗𝜇, and 𝛾=0.1. 

75.6∗365

It can be cited that the fitted R-squared value is 0.9987 displaying a greater degree of 

confidence inside the envisioned fitted parameters. With the above parameters, the 
least-squares curve becoming of the model is proven below to have an excessive degree 

of settlement with the actual clinical data. 

𝑆(0)=88780,𝐶(0)= 491. 
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Figure 2
The Comparison of Simulations of Model (1) with the Real Clinical Data 

 

Figure 3: Different Types of Residuals for the Curve Fitting of the Model (1) 
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Figure 4: 

 

It might also additionally similarly be visible that the statistical measures 
(minimum, first, second, and third quartile (Q1, Q2, Q3), arithmetic mean, maximum, 
and standard deviation) computed in Table 3 also are in superb agreement with every 
other. This complements the validation and verification of model (1) due to the fact the 
standard deviation of magnitude 82.1, received under the simulations of model (1), is 

nearly sufficient to the standard deviation based at the real clinical data as proven in an 
ultimate column of Table 3. 

The Comparison of the Box-plots for the Real Clinical Data and the Observed 

(predicted) data from Simulations of the Model (1) 
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Table 3: 

In overall, Chapter III presents the research's framework and constraints,
followed by an exposition of the acquired data. The verification of solution
existence and equilibrium points is elucidated through diverse computational
methods and theorems. 

Descriptive Summary of Statistical Measures for the Model (1) 

Summary Min. Q1 Q2 Q3 Mean Max SD 
Real 2.65*10^(2) 2.87*10^(2) 3.43*10^(2) 4.18*10^(2) 3.74*10^(2) 4.94*10^(2) 8.33*10^(1)
Observed 2.58*10^(2) 2.97*10^(2) 3.57*10^(2) 4.35*10^(2) 3.74*10^(2) 5.15*10^(2) 8.21*10^(1) 



60 

Data Collection 

Data Analysis 

Research Design and Limitations 

CHAPTER IV
Methodology 

In this chapter, the data is obtained from the references. 

In this section of the thesis, analysis of the obtained data is given. 

A mathematical model has been constructed through ODEs to assess the relationship
between susceptible individuals to heart disease and diabetes and the number of heart
disease and diabetes patients. Subsequently, the proof of the existence of solutions and
equilibrium points has been demonstrated and calculated using various computational
techniques and theorems. 

In this section, the evaluation of the number of diagnosed heart disease patients and
diabetes patients are proposed through mathematical modelling. The aim of this section is
to create a mathematical model between susceptible individuals to heart disease and
diabetes and the number of heart disease and diabetes patients. In doing so, the aim is to
assess the relationship between subcategories and find the most effective parameters on
state variables or compartments using sensitivity analysis. For this purpose, first, the design
and limitations of the research are provided. Following that, the obtained data is explained.
Lastly, necessary theorems and proofs are presented in the analysis of the model,
accompanied by numerical simulations. The model is built by using a system of ODEs. 

Mathematical Model and Its Analysis 

While constructing the model, the whole population, denoted by 𝑁(𝑡) at time 𝑡, is divided into 3 
compartments, that is, the model consists of 3 state variables. These are: susceptible individuals to he

disease and diabetes (𝑆(𝑡)), heart disease diagnosed individuals (𝐻(𝑡)) and diabetes diagnosed 

individuals (𝐷(𝑡)), For determining the necessary parameters, the obtained data is analyzed. Hence, 

the model is constructed as follows: 
𝑑𝑆
𝑑𝑡 =𝛬−(𝑏+𝑜)𝑆−𝑓𝐻𝑆−𝑓𝐷𝑆+(𝑐+𝛾)𝐻+(𝑐+𝛾1 2 1 1 2 2)𝐷−𝜇𝑆, 

𝑑𝐻𝑑𝑡 =(𝑏+𝑘𝑜)+1 𝑆 𝑓1𝐻𝑆−(𝑐1+𝛾1+𝜇+𝜂1+𝑎)𝐻+𝑒𝐷, 
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𝑑𝐷
𝑑𝑡

Λ 

𝑏 

𝑘1𝑜 

(1 − 𝑘1)𝑜

𝑓𝑖,𝑖=1,2

𝑐𝑖,𝑖=1,2

𝛾𝑖,𝑖=1,2

𝜇 

𝜂1

𝜂2 

=(1−𝑘1)𝑜𝑆+𝑓2𝐷𝑆−(𝑐2+𝛾2+𝜇+𝜂2+𝑒)𝐷+𝑎𝐻

 
Table 5. 
Description of Parameters used in the Mathematical Model 

Parameters 

Variables Descriptions 

𝑆 Susceptible individuals 

𝐻 Heart disease patients 

𝐷 Diabetes patients 

Descriptions 

Recruitment rate 

Rate of smokers who are heart patients 

Rate of obese individuals who are heart patients 

Rate of obese individuals who have diabetes 

Transmission rate of hereditary 

Negative effect of COVID-19 

Survival rate of diseases 

Natural death rate 

Heart-disease-caused death rates 

Diabetes-caused death rates 

. 

In Table 1 and Table 2, descriptions of variables and parameters of the model are explained, 

respectively. 

Table 4. 

Description of Variables used in the Mathematical Model 
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𝑎

𝑒

𝐻 

𝐷

𝐷

𝐻

(𝑆,𝐻,𝐷)

𝐷 ≥ 0

𝜋={(𝑆,𝐻,𝐷) ∈ 𝑅3+: 𝑆+𝐻+𝐷≤𝛬} 

𝑅3+ 𝜋

𝑑𝑁𝑑𝑡 =𝛬−𝜇(𝑆+𝐻+𝐷)−𝜂1𝐻−𝜂2𝐷. 

𝑑𝑁 ≤ 𝛬𝑑𝑡

𝑁(𝑡)𝑒𝑡 ≤ 𝛬𝑒𝑡 + 𝑚,

From the above equality, it is obvious that

Transmission rate from 

Transmission rate from 

to 

to 

. Integrating both sides with respect to 𝑡 

is positive, invariant, and the solutions in stay in with respect to the constructed system. 

Proof. The addition of all of the terms that are on the right side of the system gives 

yields 

For the proof of existence of solutions of the proposed model, the following theorem is stated an

demonstrated. 

Theorem 5. Assume that is the solution of the constructed system above with the initial 

conditions 𝑆≥0,𝐻≥0, and . Then, the following set 

Figure 5: The flow diagram of the model (2) 
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for 

where 

It is obvious that 

 is the solution of 

Endemic equilibrium point, denoted by 

 attracts the region so that 

, consists of 

,𝐶∗,2,𝐷∗,2 

 and . That is, 

For some constant 𝑚. Applying Rota and Birkhoff to the above differential inequality, it is

obtained that as 𝑡 tends to infinity, 0≤𝑁≤𝛬 holds. As a result, the solutions of the system enter

the region 𝜋. Therefore, it is certain that the model is feasible by means of biology and it is

enough to consider the dynamics on the model in 𝜋. □  

Basic Reproduction Numbers and Equilibrium Points. As it is mentioned in Chapter II, 
existence of equilibrium points and their stability improves the strength of mathematical models. For
the constructed model in Chapter IV, 2 equilibrium points: disease-free equilibrium point, denoted by

𝐸0,2 and endemic equilibrium point, denoted by 𝐸∗,2 are evaluated. For the presented model, one han

𝐸0,2 is the point where heart disease and diabetes do not exist in the population. On the other hand, 𝐸∗
is the point where the diseases are maintained with no need of external inputs. The basic reproductio

numbers 𝑅0,2 and 𝑅0,3 are computed. 

At the disease-free equilibrium point,𝐸0,2 is unique and is obtained as 

𝐸0,2=(𝑆0,2,𝐻0,2,𝐷0,2  

𝑆

𝐸

𝐴(𝑆

𝐸 ={(𝑆

𝐸

) +𝐵(𝑆

,𝐻

𝐸

=(𝑆

,𝐷

) +𝐸(𝑆

) ∈ 𝑅

)+𝐹𝑆

𝑆

),

𝐶

:𝐻=𝐷=0}. 

𝛬
)=( ,0,0).𝑜 + 𝑏 + 𝜇

+𝐺=0, 

𝐴=(𝑏+𝑘1𝑜)𝑓22+𝑓1𝑓22(1−𝑘1𝑜−𝑏+𝑜+𝜇), 

𝐵 = 𝑓1𝑓2[𝛬𝑓2 + (𝑐2 + 𝛾2)(𝑘1 − 1)𝑜 + (𝑜 + 𝜇 − 𝑘1𝑜)(𝑐2 + 𝛾2 + 𝜇 + 𝜂2 + 𝑒)]
+ 𝑓2{𝑓2(𝑏 + 𝑘1𝑜)(−𝑎 − 𝑐1 − 𝛾1)

+[(𝑐1+𝛾1+𝜇+𝜂1+𝑎)𝑓2+(𝑐2+𝛾2+𝜇+𝜂2+𝑒)𝑓1](𝑏+𝜇+𝑘1𝑜)−𝑜}(𝜇+𝜂
+𝛾+𝑐)[(𝑜+𝑏)(1−𝛾−𝑐)+𝜇]−𝑓1𝜋, 

∗,2

0,2

0,2

4
∗,2

0,2

∗,2

3
∗,2

0,2

∗,2

∗,2

0,2

2
∗,2

+
3

∗,2

∗,2 ∗,2



64 

𝑆∗,2=𝛬(𝑐2+𝛾2+𝜇+𝜂2+𝑒)((𝑐1+𝛾1+𝜇+𝜂1+𝑎)(𝑐2+𝛾2+𝜇+𝜂2+𝑒)−𝑒𝑎), 

[(𝑏 + 𝑘1𝑜)(𝑐2 + 𝛾2 + 𝜇 + 𝜂2 + 𝑒 − 𝑓2𝑆∗,2) + (1 − 𝑘1)𝑒𝑜]𝑆∗,2
(𝑐1 + 𝛾1 + 𝜇 + 𝜂1 + 𝑎 − 𝑓1𝑆∗,2)(𝑐2 + 𝛾2 + 𝜇 + 𝜂2 + 𝑒 − 𝑓2𝑆∗,2) − 𝑒𝑎

𝐻∗,2= , 

𝐷∗,2
= (1 − 𝑘1)𝑜𝑆∗,2

𝑐2+𝛾2+𝜇+𝜂2+𝑒−𝑓2𝑆∗,2

[(𝑏 + 𝑘1𝑜)(𝑐2 + 𝛾2 + 𝜇 + 𝜂2 + 𝑒 − 𝑓2𝑆∗,2) + (1 − 𝑘1)𝑒𝑜]𝑎𝑆∗,2
+

(𝑐2+𝛾2+𝜇+𝜂2+𝑒−𝑓2𝑆∗,2)[(𝑐1+𝛾1+𝜇+𝜂1+𝑎−𝑓1𝑆∗,2)(𝑐2+𝛾2+𝜇+𝜂2+𝑒−𝑓𝑆

𝐸 = 𝛬𝑓2[−𝑓1(𝑐1 + 𝛾1 + 𝜇 + 𝜂1 + 𝑎)𝑓2 + (𝑐2 + 𝛾2 + 𝜇 + 𝜂2 + 𝑒)𝑓1]

+𝑓2(𝑐1+𝛾1−𝑘1𝑜−𝑏−𝜇)[(𝑐1+𝛾1+𝜇+𝜂1+𝑎)(𝑐2+𝛾2+𝜇+𝜂2+𝑒)−𝑒𝑎]

+ 𝑓2(𝑏 + 𝑘1𝑜)[(𝑐1 + 𝛾1)(𝑐2 + 𝛾2 + 𝜇 + 𝜂2 + 𝑒) + 𝑎(𝑐2 + 𝛾2)]

+ [(𝑐2 + 𝛾2 + 𝜇 + 𝜂2 + 𝑒)(𝑏 + 𝑘1𝑜) + 𝑒𝑜(1 − 𝑘1)][(𝑐2 + 𝛾2 + 𝜇 + 𝜂2 + 𝑒)𝑓1 − 𝑎𝑓2]

+𝑜(1−𝑘1)(𝑐2+𝛾2)[(𝑐1+𝛾1+𝜇+𝜂1+𝑎)𝑓2+(𝑐2+𝛾2+𝜇+𝜂2+𝑒)𝑓1], 

𝐹=[(𝑐1+𝛾1+𝜇+𝜂1+𝑎)𝑓2
+(𝑐2+𝛾2+𝜇+𝜂2+𝑒)𝑓1][(𝑐1+𝛾1+𝜇+𝜂1+𝑎)(𝑐2+𝛾2+𝜇+𝜂2+𝑒)−𝑒𝑎](𝑏
+𝑜+𝜇−𝑐1−𝛾1)

+𝛬{(𝑐2+𝛾2+𝜇+𝜂2+𝑒)[(𝑐1+𝛾1+𝜇+𝜂1+𝑎)𝑓2+(𝑐2+𝛾2+𝜇+𝜂2+𝑒)𝑓1]

+𝑓2[(𝑐1+𝛾1+𝜇+𝜂1+𝑎)(𝑐2+𝛾2+𝜇+𝜂2+𝑒)−𝑒𝑎]}

− (𝑐2 + 𝛾2){𝑜(1 − 𝑘1)[(𝑐1 + 𝛾1 + 𝜇 + 𝜂1 + 𝑎)(𝑐2 + 𝛾2 + 𝜇 + 𝜂2 + 𝑒) − 𝑒𝑎]

+𝑎[(𝑐2+𝛾2+𝜇+𝜂2+𝑒)(𝑏+𝑘1𝑜)+𝑒𝑜(1−𝑘1)]}, 

𝐺=−𝛬(𝑐2+𝛾2+𝜇+𝜂2+𝑒)[(𝑐1+𝛾1+𝜇+𝜂1+𝑎)(𝑐2+𝛾2+𝜇+𝜂2+𝑒)−𝑒𝑎] 

. 
) − 𝑒𝑎]2∗,2

and so 
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Theorem 6.
and 

Proof. 

since 

Hence, 

Similarly, if 

Here, the constructed function 

show that , 

 is globally asymptotically stable if  and 

Disease Free Equilibrium, 𝐸0,2, is globally asymptotically stable whenever 

2. 

Consider the below Lyapunov function 

�̇�̇=𝑆

𝑓2<𝑐2+𝛾

𝐸

𝑐2 𝛾2𝑆𝑓2−− <0, 
𝑆

𝑐2 𝛾2
𝑆𝑓2< + <𝑐2+𝛾2. 

𝑆

𝑓1<𝑐1+𝛾1 𝑓2<𝑐2+𝛾2

𝑓1<𝑐1+𝛾1

𝑆 𝑆𝑇(𝑆,𝐻,𝐷)=𝑆( −1− 𝑙𝑛( ))+𝐻+𝐷. 
𝑆0,2 𝑆0,2

𝑇 is always positive and equal to zero at 𝐸0,2. So, it will be enough to 

�̇�̇<0

𝑆̇ 𝑆̇ 𝑆0,2
( − ) +�̇�̇+�̇�̇
𝑆0,2 𝑆0,2 𝑆

𝑆0,2 𝑐1𝐻𝑆0,2 𝑐2𝐷𝑆0,2 𝛾1𝐻𝑆0,2
= 𝛬 − 𝛬 + 𝑏𝑆 +𝑜𝑆 + 𝑓 𝐻𝑆 + 𝑓 𝐷𝑆 − − −𝑆 0,2 0,2 1 0,2 2 0,2 𝑆 𝑆 𝑆
𝛾2 𝐷 𝑆0, 2

− + 𝜇𝑆 − 𝜇(𝑆 + 𝐻 + 𝐷) − 𝜂 𝐻 − 𝜂 𝐷𝑆 0,2 1 2

𝑆0,2 𝑐1 𝛾1 𝑐2 𝛾2
= 𝛬(1 − )+ (𝑓 − − )𝐻𝑆 + (𝑓 − − )𝐷𝑆 − 𝜇(𝑆 + 𝐻 + 𝐷)− 𝜂 𝐻𝑆 1 𝑆 𝑆 0,2 2 𝑆 𝑆 0,2 1

−𝜂2𝐷, 

𝑆𝛬=𝑆0(𝑜+𝑏+𝜇). It is obvious that 2−0<0. For the rest, if 𝑆

𝑐1 𝛾1
𝑆𝑓1−− <0, 

𝑆
𝑐1
𝑆

𝛾1
𝑆𝑓1< + <𝑐1+𝛾1. 

0,2

0,2 . □  
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Proof.

Theorem 7. 

So, 

If 

 is negative only if 

The constructed function 

��̇<̇0 is true. 

 is positive for each value and equal to  at 

Endemic Equilibrium Point, 𝐸∗,2, is globally asymptotically stable 

𝐻−∗,2<0. 
𝐻

 Consider the below Lyapunov function 

. It is enough to show that 

∗,2 ∗,2  

According to the statistics proposed, there are more diabetic patients than heart patients in the 
world. Hence, for the stability of the endemic equilibrium point, this situation should be reversed and 
𝐷∗,2 𝐻

<∗,2. □  
𝐷 𝐻

�̇�̇

𝑋

𝐷 𝐻
( − )<0.𝐷 𝐻

𝑆 𝑆𝑋(𝑆,𝐻,𝐷)=𝑆∗,2( −1−𝑙𝑛( ))+𝐻𝑆∗,2 𝑆∗,2
𝐷 𝐷

+𝐷∗,2( −1− 𝑙𝑛( )). 
𝐷∗,2 𝐷∗,2

0 𝐸

𝐻 𝐻
( −1−𝑙𝑛( ))𝐻∗,2 𝐻∗,2

𝑆 𝐻 𝐷�̇�̇∗,2∗,2=�̇�̇∗,2−�̇�̇+�̇�̇−�̇�̇+�̇�̇−�̇�̇
𝑆 𝐻+𝑓𝐻𝑆 𝐷

𝛬𝑆∗,2 𝐻𝑆∗,2
𝑆

=𝛬−𝜇𝑆− +(𝑏+𝑜)𝑆 +𝑓𝐷𝑆 −(𝑐+𝛾)𝑆 
𝐷𝑆∗,2 

∗,2 1 ∗,2 2 ∗,2 1 1

𝑏𝑆 𝑘1𝑜𝑆
−(𝑐2+𝛾2) +𝜇𝑆 −(𝜇+𝜂)𝐻− 𝐻 − 𝐻 −𝑓𝐻 𝑆𝑆 ∗,2 1 𝐻 ∗,2 𝐻 ∗,2 1 ∗,2

𝑒𝐷 𝑜𝑆 𝑘1𝑜𝑆
+(𝑐1+𝛾1)𝐻∗,2+(𝜇+𝜂1)𝐻∗,2+𝑎𝐻∗,2− 𝐻 −(𝜇+𝜂)𝐷− 𝐷 + 𝐷𝐻 ∗,2 2 𝐷 ∗,2 𝐷 ∗,2

𝑎𝐻
− 𝑓2𝑆𝐷∗,2 + (𝑐2 + 𝛾2)𝐷∗,2 + (𝜇 + 𝜂2)𝐷∗,2 − 𝐷 + 𝑒𝐷𝐷 ∗,2 ∗,2

𝑆∗,2 𝑆 𝐻∗,2 𝑆 𝐷∗,2 𝐻∗,2 𝐷∗,2
=𝛬(1− )+𝑏𝑆𝑆 ∗,2(2−)+𝑜𝑆𝑆∗,2(2−)+𝑘𝑜(−−)∗,2𝐻𝑆12∗,2𝐷𝐻𝐷

𝐻 𝑆 𝐷 𝑆
+𝑓1𝑆∗,2𝐻∗,2(1− − )+𝑓𝑆 𝐷 (1− − )𝐻 ∗,2 𝑆∗,2 ′ ∗,2∗,2 𝐷∗,2 𝑆∗,2

𝐷∗,2 𝐻∗,2 𝐷∗,2 𝐻∗,2
𝐻

+(𝑒𝐷+𝑎𝐻)( − )<(𝑒𝐷+𝑎𝐻)( − ). 
𝐷 𝐻 𝐷

𝐷
𝐷

∗,2

∗,2

∗,2
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As a summary, in Chapter IV, a mathematical model based on ODEs has been
developed to examine the correlation between individuals susceptible to heart
disease and diabetes and the prevalence of heart disease and diabetes
patients. The verification of solution existence and equilibrium points has been
established and computed employing a range of computational techniques
and theorems. 
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Sensitivity Analysis of the First Model.

CHAPTER V 

Sensitivity Analysis and Numerical Simulations 

 
This section carries out a sensitivity analysis to the first model's parameters. 

Sensitivity analysis is a technique that can be used to determine how a mathematical 

model's parameters affect its compartments. This analysis aims to show how minor
parameter changes might impact the emergence or extinction of a disease. A sensitivity
analyses of the parameters for each of the two models are provided in this section.
MatLab has completed all of the computations. 

Figure 6: Sensitivity Analysis of Parameter 𝑏 in Compartment 𝐶
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Figure 8: Sensitivity Analysis of Parameter 𝑐

Figure 7: Sensitivity Analysis of Parameter 𝑜

 in Compartment 

 in Compartment 

𝐶 When It is Increased 

𝐶

As the b and o values are raised, respectively, Figures 6 and 7 depict the
anticipated pattern for cancer patients. The C compartment will rise in both
scenarios as a result of parameter increases. Therefore, it makes sense that as
obesity (o) and smoking (b) rise, so will the number of cancer patients. 
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Figure 9: Sensitivity Analysis of Parameter 𝑐 in Compartment 𝐶 When It is Decreased 

Sensitivity Analysis of the Second Model.
This section carries out a sensitivity analysis to the second model's parameters. 

Figures 8 and 9 show the effects of increasing and decreasing parameter c, 

respectively. The two figures highlight the negative effect of the COVID-19 pandemic
on cancer diagnosis. 

Figure 10: Sensitivity Analysis of Parameter 𝑏 in Compartment 𝐻
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Figure 12: Sensitivity Analysis of Parameter 𝑓1

Figure 11: Sensitivity Analysis of Parameter 𝑜 in Compartment 

 in Compartment 

𝐻

𝐻

The effects of parameters b and o on compartment H are shown, respectively,
in Figs. 10 and 11. Compartment H will rise in response to increases in
smoking and obesity, as the figures show. 
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Figure 14: Sensitivity Analysis of Parameter 𝑐

Figure 13: Sensitivity Analysis of Parameter 𝑐

1 in Compartment 

1 in Compartment 𝐻 When It is Increased 

𝐻 When It is Decreased 
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If diabetes rates rise, Fig. 15 shows the pattern of heart-diseased individuals. 

This is how heart-diseases are affected by diabetes. 

Figure 16: Sensitivity Analysis of Parameter 𝑜 in Compartment 𝐷 

As the percentage of inherited/family history, 𝑓1, rises, compartment H is
predicted to experience the events shown in Fig. 12. The compartment capacity is 

𝑐1. The 
negative effect of the COVID-19 pandemic on heart disease diagnosis is highlighted by 

both figures. 

displayed in Figs. 13 and 14 for both increases and decreases in parameter 

𝐻Figure 15: Sensitivity Analysis of Parameter 𝑒 in Compartment 
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Figure 18: Sensitivity Analysis of Parameter 𝑐

Figure 17: Sensitivity Analysis of Parameter 𝑓2

2 in Compartment 

 in Compartment 

𝐷 When It is Increased 

𝐷

Figure 16 displays how the obesity parameter, o, affects compartment D, and

Figure 17 illustrates how the hereditary/family history parameter, 𝑓2, affects

the same 
compartment. 
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Figure 19: Sensitivity Analysis of Parameter 𝑐

Figure 20: Sensitivity Analysis of Parameter  in Compartment 

2 in Compartment 

𝐷 When It is Decreased 

𝐷 When It is Decreased 

𝑎

The pattern of diabetic patients in the event of a rise in patients with heart-

diseases is shown in Fig. 20. This is how diabetes is affected by heart diseases. 

The purpose of revealing Figs. 18 and 19 is to demonstrate the importance of

the COVID-19 parameter, 𝑐2, on compartment D. The two figures highlight

the negative 
effect of the COVID-19 pandemic on diabetes diagnoses. 
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CHAPTER VI 

Findings and Discussion 

The main aim of this study was to illustrate the potential impact of COVID-19
on chronic illnesses like cancer, heart disease, and diabetes in the future. Two
mathematical models were proposed in this regard and proved with the
necessary theorems. The first model includes cancer-diagnosed and
susceptible individuals, whereas the second model includes heart disease,
diabetic, and susceptible individuals. The unconnected link between heart
disease, diabetes and cancer is the cause for two different models. 

Points and their existence proofs are identified in the analysis of the first model, 

which includes the disease-free equilibrium 𝐸0,1and the endemic equilibrium 𝐸∗,1. 
Furthermore, under specific circumstances, the globally asymptotically stability quality 
of both points is proven. This suggests that there could be an endemic situation at point 

𝐸∗,1 and a population free of cancer disease at point 𝐸0,1. 

Similar to the first model, the second model's analysis showed that there are two 

equilibrium points for it: the disease-free equilibrium point 𝐸0,2, and the endemic 

equilibrium point,𝐸∗,2. Given the required conditions, both points are globally 
asymptotically stable, indicating that the diseases could occur in either setting. 

A sensitivity analysis was conducted on the parameters of both models in 
Section 5. The purpose of this analysis was to define how the parameters affected 
compartments C, H, and D. Figures 6 and 7 illustrate the impact of rising smoking and 
obesity rates, respectively. There will be a rise in the cancer compartment with increases 
in both parameters. Nevertheless, smoking has a greater impact in compartment C than 

obesity, even with a slight difference. Similar findings were also revealed and 
highlighted similar in papers Arnold et al. (2016) and Jacob et al. (2018). Since the 

model did not produce a significant result in this case, the figure shows 𝑓1, which 
illustrates the effect of hereditary transmission, is not provided. The population under
study in this work could be the cause of this result. The effect was not visible because
compartment C contains many cancer patients (rather than just one type of disease).
There are a lot of research in the literature that outline the connection between a 
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hereditary/family history of cancer and certain cancer types. (Henrikson, et al., 2015;
Murff, et al., 2004) 

The expected result of increasing the effect of parameter c is displayed in Figure 
8. As predicted, there will be a significant drop in cancer diagnoses as people's fear of 
visiting a doctor rises. Figure 9 presents the situation of the cancer compartment a with 
decreased c value. In this case, an increase is assumed again. But compared to the 

increase in Figure 8, this increase is substantially smaller. Figures 8 and 9 serve as 
global alerts regarding the COVID-19 pandemic. A greater knowledge of the issue and 

encouragement to schedule regular doctor's appointments are two ways to address it. 

The effects on heart disease patients are shown in Figure 10 and Figure 11. 

The findings indicate that the H compartment will rise in response to increases in both 
parameters. The negative effects of smoking and obesity on heart diseases are also 
(2006). 
As suggested in Fig. 12, hereditary is a significant in heart diseases. Impact of family 
history/hereditary on heart diseases are analyzed in papers Moonesinghe et al. (2005) 
and McCusker et al. (2006). 

highlighted in papers Buttar et al. (2005) and Akbartabartoori et al. 

That being said, COVID19, 𝑐1, is the most important statistic for heart disease. 

It is clear that 𝑐1 is an extremely important parameter for predicting future patterns in 
heart disease. A fall in compartment H is caused by both rises and falls in this parameter, 
highlighting the significance of knowledge regarding medical visits and COVID-19. 
Bugalia et al. discussed the spread of COVID-19 and the significance of lockdown and 
preventive measures. Conversely, Okyere et al. emphasized (2022) discussing the 
complications of COVID-19 disease on diabetes-diagnosed individuals. This study 
primarily focuses on how the COVID-19 lockdown affects people with cancer, heart-

related diseases, and diabetes-diagnosed individuals in order to predict future outcomes 
for these conditions. 
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Figure16 and Figure 17 show the diabetes patient pattern at higher obesity and
hereditary rates, respectively. Ahmad et al. examined (2023) the effects of
smoking and obesity. Additionally, in this work, the authors stressed the
significance of smoking and obesity in individuals with diabetes. The pattern of
the D compartment rises when the 

parameters are increased, but the effect of heredity, 𝑓2, is greater. Additionally,

the 
impact of COVID-19 in the D compartment is significant. Undiagnosed
patients in 
Figure 18 result in a fall in compartment D due to an increase in parameter 

𝑐2.Nonetheless, for compartment 𝐷, even with a slight fall in parameter 𝑐2,
diagnosis 
for those with diabetes will be higher (Figure 19). Figure 15 and Figure 20
serve as a warning, emphasizing the link between diabetes and heart
diseases. 
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CHAPTER VII
Conclusion and Recommendations 

Obesity is an effective parameter for the diseases under study, and a rise in it will have
a negative effect on patients, according to the model's figures. Patients with cancer
and heart problems suffer greatly when they smoke. For people with heart disease
and diabetes, heredity is an important factor to consider. So, those who have a family
history of these conditions need to make sure they attend their doctor's appointments.
Furthermore, there exists a strong correlation between individuals with heart disease
and diabetes. People with diabetes diagnoses should be more cautious and aware of
heart diseases, as seen in Figure 15 and Figure 20. 
Nonetheless, as a consequence of the COVID-19 pandemic, both models showed that 
the most dangerous parameter for the diseases is c, (the COVID-19 negative effect). 
Eventually, the research results demonstrated that a significant reduction in deaths depending 
on cancer, heart disease, and diabetes could occur from increased awareness of COVID-19 and 
its consequences. This in conjunction with regular medical visits may result in an earlier 

diagnosis and course of treatment for these illnesses. 

The purpose of this study is to highlight how COVID-19 affects other critical illnesses. 
The main purpose is to show that more epidemics and even pandemics may occur in future in 

the case of insufficient control strategies. According to the study, one of the causes of this is 
avoiding routine checkups and doctor appointments due to the contagious nature of COVID-

19. Being one of the strong models that addresses the COVID-19 pandemic's effects from a 
variety of serious perspectives, this study that is being presented has a significant role on the 

field of health sciences. 

Healthcare institutions and policymakers should use the sensitivity analysis results to 
create control plans that will improve public health. Taking action against obesity is crucial 

because it is associated with a variety of health issues. Public awareness programs stressing the 
negative effects of obesity on one's health has to start right away. Furthermore, because 

smoking worsens cardiovascular disease and cancer patients' health, funding smoking cessation 
programs is essential. These campaigns could range from public awareness campaigns to 

providing free or inexpensive help for quitting smoking and access to local resources. Those 
with a family history of diabetes or cardiovascular disease may find genetic counselling to be 

of great assistance. During these meetings, people can find out more about the risks they face 
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and get advice on how to lessen those risks. Timely health checks are especially
important because of the established association between diabetes and
cardiovascular disease. Combining these checks with a comprehensive healthcare
strategy that involves multidisciplinary teams can significantly enhance patient
results. Some of the illnesses whose rates and outcomes have been greatly
impacted by the COVID-19 epidemic and its aftermath are diabetes, heart disease,
and cancer. Efforts to inform the public about the long-term consequences of the
virus's spread are, therefore, crucial. Ensuring universal vaccinations and utilizing
preventative measures can help decrease the spread of the virus and the
associated health risks. However, in order to fully comprehend the extent of the
virus's possible health impacts, further thorough research is desperately needed.
The more precise development of public health treatments in the future depends
on this knowledge. A comprehensive patient education framework that covers
disease risks, symptom awareness, and the advantages of early diagnosis can help
people become more ready for disease prevention and treatment. Mathematical
modelling using fractional derivatives, which is anticipated to increase degrees of
freedom in the choice of order of derivative, may also be a better way to
characterize disease transmission that depends on memory attributes. (Zarin et
al.,2023 ; Jamil et al., 2023) To effectively address the health risks and challenges
that have been identified, it is necessary to foster collaborations among health
organizations, government agencies, NGOs, and other relevant parties. 
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