

NEAR EAST UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

ARTIFICIAL INTELLIGENCE ENGINEERING DEPARTMENT

OPTIMIZING ENERGY IN THE DIGITAL AGE:

TRANSFORMER FOR SOLAR IRRADIANCE FORECASTING

 M.Sc. THESIS

 Olukayode AKANNI

 Nicosia

 June 2023

O
lu

k
a
y
o
d

e

A
K

A
N

N
I

 O
P

T
IM

IZ
IN

G
 E

N
E

R
G

Y
 IN

 T
H

E
 D

IG
IT

A
L

 A
G

E

T
R

A
N

S
F

O
R

M
E

R
 F

O
R

 S
O

L
A

R
 IR

R
A

D
IA

N
C

E
 F

O
R

E
C

A
S

T
IN

G

M
A

S
T

E
R

S

T
H

E
S

IS

 2
0

2
3

1

 NEAR EAST UNIVERSITY

 INSTITUTE OF GRADUATE STUDIES

 ARTIFICIAL INTELLIGENCE ENGINEERING DEPARTMENT

 OPTIMIZING ENERGY IN THE DIGITAL AGE

 TRANSFORMER FOR SOLAR IRRADIANCE FORECASTING

 M.Sc. THESIS

 Olukayode AKANNI

 Supervisor

 Prof. Dr. Fadi AL-Turjman

 Nicosia

 June 2023

:Approval

We certify that we have read the thesis submitted by Olukayode AKANNI titled

"Optimizing Energy in The Digital Age: Transformer For Solar lrradiance

Forecasting" and that in our combined opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Master of Science.

Examining Committee Name- Sumame

Head of the Committee: Assoc. Prof. Dr. Sertan Serte

Committee Member: Asst. Prof Dr. Pwadubashiyi Coston

Supervisor: Prof. Dr. Fadi Al-Turjman

Approved by the head of the Department

Signature
-�

•�:�••••
l
••••••

·ff_
4A-�----

ıiıa&ı2023

.. 4ft ..
Prof. Dr. Fadi Al-Turjman

Head of Department

Approved by the Institute of Graduate Studies

Prof. Dr. Kemal Hüsnü Can Başer

Head of the Institute

iv

Acknowledgments

I write to express my profound thanks to Prof. Dr. Fadi AL-TURJMAN, for his

supervision, tolerance, as well as leadership all through my postgraduate programme

at Near East University. In order to project my long-term professional aspirations, his

guidance was crucial in giving a well-rounded experience. He pushed me to follow

through and to have confidence in whatever I did, always asking for updates on

projects for both this work and my Master's studies. Prof. Dr. Fadi AL-Turjman, I

really appreciate everything you have done for me. Finally, I thank my family for

unceasing supports, prayers and love received from them at the time I was unavailable.

I also acknowledge the support of Dr. Auwalu Saleh Mubarak and Mercel with my

heart full of gratitude.

I am forever grateful my loving family; wife-Kemi and children; David, Divine,

Daniel, God’s Delight and God’s Power, who provided Daddy the conducive

environment to work on this study, and whose constant affection, support and prayers

have helped me in pulling through tough circumstances and achieve academic

excellence in spite of it.

I also love to extend my appreciation to my course mates, colleagues and loved ones

inside and outside the university for being there and making the academic journey a

lot easier.

My gratitude goes to the administrative secretary Mrs Sinem AL-Turjman, she helped

me solved the puzzles working out an optimum combination of my coursework and

recording of course work results in the school’s system.

 Finally, I like to thank the Near East University management for giving me

scholarship which made my pursuit of this post graduate study a reality.

Olukayode AKANNI

v

Dedication

The work is totally dedicated to the Almighty God. I thank Jesus, for being the source

of my motivation, guidance, financial, emotional, spiritual support and He also gave

me courage when I wanted to give up. My appreciation goes to my teachers, coaches,

course mates who offered their advice and support to complete this thesis. Finally, my

gratitude goes to myself for having the mental capacity, writing abilities necessary to

finish this work.

vi

Abstract

“Optimizing Energy In The Digital Age: Transformer For Solar Irradiance

Forecasting”

Olukayode AKANNI

M.Sc , Department of Artificial Intelliegnece Engineering

June 2023, 97 pages

Artificial intelligence and renewable energy are critical for attaining a carbon-neutral

economy and a sustainable environment.

With rising energy demand, reliable sun irradiance estimates are required for

integrating solar photovoltaic (PV) systems into the national power grid.

This research introduces innovation of teacher forcing concept to Time Series

Transformer model with attention mechanism for forecasting solar irradiance, similar

to the GPT's training framework. The NASA Kaggle dataset was utilized, and it

includes meteorological and solar radiation data from September through December

of 2016. Temperature, pressure, humidity, radiation, wind direction, sunrise and

sunset periods, and time-related variables were extracted from the dataset using

Exploratory Data Analysis.

Before inputing the solar radiation data into the Transformer model, it was pre-

processed and normalized. Test results show the superiority of the proposed model

when compared with the other 10 AI models. The Time Series Transformer model is

effective and has the highest performance attained by having the lowest MSE, RMSE,

MAE, and R2. When compared to other state-of-the-art MAPE solar forecasting

findings, the Time Series Transformer model has 97.6% as coefficient of

determination and the lowest Mean Absolute Percentage Error of 0.68%, making it an

excellent approach for forecasting solar energy. In the digital era, this model is a

helpful tool for energy optimization. A Proof-of Concept implementation of this

project can be found here.

Keywords: Solar Irradiance, Transformer Model, Machine learning, Sustainable

climate, Artificial Intelligence, Renewable energy, NASA

vii

ÖZET

“Dijital Çağda Enerjiyi Optimize Etmek: Güneş Işınım Tahmini İçin

Transformatör”

Olukayode AKANNI

Yüksek Lisans , Yapay Zeka Mühendisliği Bölümü

Haziran 2023, 97 sayfa

Yapay zeka ve yenilenebilir enerji, karbon-nötr bir ekonomi ve sürdürülebilir bir

çevre elde etmek için kritik öneme sahiptir. Artan enerji talebi ile birlikte, güvenilir

güneş ışınımı tahminleri, güneş fotovoltaik (PV) sistemlerinin milli enerji şebekesine

entegrasyonu için gereklidir. Bu araştırma, güneş ışınımını tahmin etmek için Zaman

Serisi Transformer modeline öğretmen zorlaması kavramının yenilikçi bir şekilde

uygulanmasını sunmaktadır ve GPT'nin eğitim yapısı ile benzerlik gösterir. NASA

Kaggle veri seti kullanılarak, Eylül ayından Aralık 2016'ya kadar olan dönemi

kapsayan meteorolojik ve güneş radyasyonu verileri elde edildi. Sıcaklık, basınç, nem,

radyasyon, rüzgar yönü, gün doğumu ve gün batımı süreleri ile zamanla ilişkili

değişkenler, veri keşfi yöntemleri kullanılarak veri setinden çıkarıldı.

Güneş radyasyonu verileri, Zaman Serisi Transformer modeline girmeden önce,

önceden işlendi ve normalize edildi. Test sonuçları, önerilen modelin diğer 10 yapay

zeka modelleri ile karşılaştırıldığında üstünlüğünü göstermektedir. Zaman Serisi

Transformer modeli etkili ve en düşük MSE, RMSE, MAE ve R2 değerlerine sahip

olarak en yüksek performansı sergilemektedir. Diğer güncel MAPE güneş tahmin

bulgularıyla karşılaştırıldığında, Zaman Serisi Transformer modeli %97,6 belirleme

katsayısı ve %0,68'lik en düşük Mutlak Yüzde Hata ile mükemmel bir güneş enerjisi

tahmini yaklaşımı sunmaktadır. Dijital çağda bu model, enerji optimizasyonu için

faydalı bir araçtır. Bu projenin bir Konsept Kanıtı uygulaması burada bulunabilir.

Anahtar kelimeler: Transformer Model, Makine öğrenmesi, Regresyon, Yapay Zeka,

Yenilenebilir enerji, NASA, Regresyon.

viii

Table of Contents

Approval……………………………………………………………………………..ii

Declaration…………………………………………………………………………..iii

Acknowledgement……………………………………………..………………........iv

Dedication………………………………………………...………………………….v

Abstract……………………………………………………………………………...vi

Özet …………………………………………………………………......……….vii

Table of Contents ………………………………………………………..………..viii

List of Appendices………………………………………………………………….xi

List of Figures ……………………….…………………………………………….xii

List of Tables ………………………………………………...………………….... xiv

List of Abbreviations…………………………...…………………………………. xv

CHAPTER I

Introduction………………………………………………….……………………….1

 1.1 Transformer Model…….…….………………….…… .………….……………3

 1.2 Driving the Digital and Sustainable Transformation of the Energy System in

Europe: Challenges and Opportunities

…………….……….…….…..…………………………………………………..…...5

 1.3 Motivation…………………. ………………….…..…..……………..…...……6

 1.4 Statement of problem……………………. ….…………...……….…………....6

 1.5 Research Questions.……………………….………….…...…....………………7

 1.6 Aims and Objective of the study………………………………...………….......7

 1.7 Significance of the Study and contribution……………………………………..8

 1.8 Limitation……………………………………………………………………….9

 1.9 Organization…………………………………………………………………….9

CHAPTER II

Related Research…………………………………………...……………………….10

 2.0 Related Works…………….……………………….…..…………..…………..10

 2.1 Artificial Neural Network(ANN)……..………………..…………….……..…11

 2.2 Optimization Problem…………………………….…….....…………..………13

 2.3 Transformer…………………………………………….....……..…….………13

 2.4 Time Series Forecasting……………………………….....………..……..……13

ix

 2.5 PyTorch Forecasting for Time Series Forecasting…………..……...…………14

 2.6 Transformer model for Solar irradiance prediction……….....……..……….…15

CHAPTER III

Methodology …………..…………….………….…………..…....….….………….16

3.0 Materials…………………………………….…………..…....….….………….16

3.1 Deep learning/machine learning- Neural Networks…….……………………...16

3.2 Transformer Architecture…….……….…….…..……………..…………….…17

 3.2.1 Encoder/decoder architecture.…………………..…………….…….………18

3.3 Positional encoder………….……………………………...……………….…...18

 3.3.1 Scaled dot-product attention………………….………..…..…...…………..19

 3.3.2 Multi-head attention…….…………………………...……...……….……...20

3.4 Loss Function………….…………………………………..….………………...21

3.5 Solar Irradiance Transformer Model………………………….……...………...21

3.6 Metrics………….……………………………………………………………....22

3.7 Methodology………………..…..………………………………….…………...24

3.7.1 Sourced Dataset………….………………………………….…...…………...26

3.7.2 Data Cleaning (Manual).………………………………………………….......28

3.7.3 Notebook Procedures…….………………………………...….……………...28

3.8 Data Pre-processing and Feature Engineering……………...….……..………...28

3.9 Setup of the experiment…………………………………………………………29

CHAPTER IV

Results and Discussions

4.0 EDA Results and Discussions…………………………………………………..32

4.2 Transformer Results and Discussion…………………………………………...37

4.3 ML and Transformer Discussion ………………………………………...…….43

4.4 Major performance, achievement and result analysis..........................………...44

4.5 Real-time prediction on a recent weather data and business use case…………49

CHAPTER V

Conclusion and recommendation

x

5.0 Conclusion ….……………………………….…………………...…..………...51

5.1 Future Works….……………………………….…………..…………………....51

5.2 Recommendations ….……………………………….…………...……………...52

REFERENCES…………. ……...…………………….……………………………53

APPENDICES…………. ……...…………………….………….…………………58

Appendix A: Source code………………...……...……………………...…………..58

Appendix B: Running a transformer model…....………………………………..….73

Appendix C: Turnitin Similarity Report………..…………….…………………….74

Appendix D: Invitation and publication based on the Thesis.…………….………..75

Appendix E: CV……………………………….…………….…………….…….….78

xi

List of Appendices

Appendix A: source code

Appendix B: Running a transformer model

Appendix C: Similarity Report

Appendix D: Invitation and publication based on the Thesis

Appendix E: CV

xii

List of Figures

Figure 2.1: A simple neural network………………………………………… 12

Figure 3.1: Shows the basic structure of a Neural Network…………………. 16

Figure 3.2: Shows the MSE loss function of ML models used to forecast irradiance

value………………………………………………………………………….. 16

Figure 3.3: Shows the basic structure of a time series transformer….…………17

Figure 3.4 illustrates a sine wave positional encoding scheme……………….. 19

Figure 3.5: Flow diagram of TST Transformer for Solar forecasting process…22

Figure 3.6a: Shows the first 5 rows of the NASA dataset…………………….. 26

Figure 3.6b: Shows the first 5 rows and 9 features of the NASA dataset used to train

the 10 AI Models………………………………………………………………. 26

Figure 3.7a: Shows the first 17 rows of the NASA dataset used for Transformer

model…………………………………………………………………………… 27

Figure 3.7b: Shows the first 19 rows of the 1 hour shifted dataset used for

Transformer model………………………………………………………………27

Figure 4.1: shows the Pairwise correlation matrix of the features used in NASA

dataset……………………………………………………………………………32

Figure 4.2: the graph showing the heat map correlation Matrix of the features used

in NASA dataset………………………………………………………………….33

Figure 4.3: Distribution of Temperature and the number of occurrence in the NASA

dataset …………………………………………………………………………….33

Figure 4.4: Distribution of Pressure and the number of occurrence in the NASA

dataset…………………………………………………………………………… 34

Figure 4.5: Distribution of Humidity and the number of occurrence in the NASA

dataset……………………………………………………………………………..34

Figure 4.6: Graph plot of solar radiation against hours in a day after taking the

hourly mean of the dataset……………………………………………………….. 35

Figure 4.7: Graph Plot solar radiation against temperature……………………… 36

Figure 4.8a: The transformer prediction graph with given dataset for 1093 values at

the end of 100 epochs……………………………………………………………..37

Figure 4.8b: Result output- The normalised solar Radiance against 5* Epochs… 38

Figure 4.9 showing the data values of ground truth(Actual) and the predicted…. 39

Figure 4.10 shows output of the epoch number, time taken, validation loss, and

validation perplexity are printed………………………………………………… 40

xiii

Figure 4.11: Visualization of visible correlations between number of Ephod and

normalised solar irradiance data………………………………………………. 42

Figure 4.12: Visualization of Actual time spent on the first 100 Ephod and

forecasted time for the next 100 Ephod…………………………………………43

Figure 4.13: R^2 value of the Transformer and 10 other Machine learning models

…………………………………………………………………………………...46

Figure 4.14: Bar plot of Mean, MSE, MAE and R^2 of Transformer training

process……………………………………………………………………………47

Figure 4.15 Bar plot of Mean, MSE, MAE and R^2 of Transformer training process

on 1 hour shifted data………………………………………………………….....47

Figure 4.16: The learning curve of Transformer model…………………………48

Figure 4.17 The Excel calculations and experimental models documentation…. 49

xiv

List of Tables

Table 4.1: The metric result from Time series Transformer…………………….37

Table 4.2: Comparison between Models from Experimental Results……….…..45

Table 4.4: Performance Metrics on the testing set for the best models. Transformer

model used normalised dataset…………………………………………….…….46

Table 4.5. Mean absolute percentage error results of other authors for Solar Energy

forecasting……………………………………………………………….……….48

xv

List of Abbreviations

Acronym Meaning

Covet: Convolution Neural Network

ANN: Artificial Neural Network

MSE: Mean squared error

MAE: Mean Absolute error

R-square or R2: Pearson correlation

AI Artificial Intelligence

ML: Machine learning

DL: Deep learning

CPU: Computer Processing Unit

GPU: Graphical Processing Unit

KNN: K-nearest neighbour (KNN),

MLP: MLP multilayer perceptron (MLP)

RFR: Random forest repressor (RFR), and

ARIMA Auto-regressive integrated moving average (ARIMA)

DL Deep learning models

CNN: Convolutional neural networks (CNN)

RNN: Recurrent neural networks (RNN)

SDGs: Sustainable Development Goals (SDGs)

LSTM: Long and short Term Memory

UN: United Nations

NWP: Numerical weather prediction (NWP)

EU: European Union

Iota: Internet of Things

1

 CHAPTER I

Introduction

1.0 Background of the Study

Our population worldwide has been on the rise for the past decades, which

resulted in an increase in the basic needs of the everyday lives of humans (Kumara

and Toshniwal, 2021b). Energy tops the lists of resources that must be increased,

with an estimated increase of electricity demand expected to reach 70% from 2015

in the next couple of years (Duffy et al., 2015). Solar energy is a popular renewable

energy source, making it essential to accurately forecast solar energy production

and adjust energy demands accordingly especially with fossil fuels impacting

negatively on the environment. The use of solar energy, in particular, has grown

significantly. However, solar energy is an intermittent source of energy, and its

availability depends on weather conditions. The world has been relying for the past

century on fossil fuels for power generation that are not only depletable but also

suffer from heavy environmental drawbacks (Kumari and Toshniwal, 2021a) .AI

with IOT are crucial for increasing the use of renewable energy, which is critical

for reducing greenhouse gas emission that drive climate change, and to monitor

energy production.

As a response to that, many countries have been recently investing in renewable

energy. Solar energy in particular has been deemed the most promising source due

to the abundancy of solar radiation (Wang et al., 2020). Solar Photovoltaics (PV),

in particular, have been gaining attention because of their environmental and

economic benefits. Its working principle is based on converting the sunlight

irradiance into electricity through the photovoltaic effect (Sampaio and González,

2017). Although PV energy offers itself as a cheap and eco-friendly alternative to

traditional thermal sources, the integration of PV into the national grid suffers from

several drawbacks. PV, like other renewable sources, is intermittent by nature

(Kumari and Toshniwal, 2021b). In other words, solar energy production depends

on weather factors that vary with time, resulting in a very chaotic and

uncontrollable energy output (Brahma and Wadhvani, 2020). When integrated with

the electricity grid on a large-scale, PV systems may cause reliability issues due to

underproduction, and excessive costs during overproduction, and may

consequently degrade the grid (Abdel-Nasser et al., 2020).

2

For a reliable and economic integration of PV, grid operators must continuously

receive accurate forecasts of solar irradiance in real-time (Kumari and Toshniwal,

2021a). Forecasting solar irradiance is essential for optimizing solar panel energy

production and incorporating solar energy into the electrical grid. Energy

businesses must accurately predict solar irradiance in order to efficiently build and

run solar power projects.

Since accurate forecasting methods have been developed for these factors, models

have been developed to deduce the irradiance from those forecasts (Lai et al.,

2020).

Numerical weather prediction (NWP) is what most of the models developed for

solar irradiance forecasting use (Murata et al., 2018). Although they are widely

accepted as a decent forecasting technique, they are computationally expensive and

require the processing of large datasets (Hao et al., 2019). Consequently, they fail

in the case of short-term forecasting needed by energy control centers. Some

statistical methods that use regression and time-series techniques have also been

utilized. However, their success has been constrained by the non-stationary and

non-linear solar irradiation. (Reikard, 2009).

Artificial neural networks (ANN) have emerged recently in the area of machine

learning as a successful forecasting model (Kumari and Toshniwal, 2021b; Kumari

and Toshniwal, 2021a; Brahma and Wadhvani, 2020; Abdel-Nasser et al., 2020;

Wang et al., 2018; Huang et al.,2021).

A number of techniques (Curceac et al., 2019) have been utilized for solar

forecasting and prediction, including statistical models, ML models, and deep

learning (DL) models. LSTM variations have also lately become the most often

used option for time series data modelling. (Middya and Roy, 2022).

The transformer is the cornerstone of modern AI technology. Transformers are a

type of deep learning model design, much as CNNs and LSTMs. The benefits of

this ground-breaking architecture have prompted the use of Transformers as the

basis for the newest cutting-edge models. The Transformer's capacity to examine

input simultaneously utilizing many heads of self-attention helps speed up training.

The self-attention mechanism, which greatly improves prediction accuracy, also

gives the Transformer a larger capacity for data classification/ regression. As of

right now, the Transformer has generated noteworthy outcomes in NLP and CV

fields (Vaswani et al., 2017; Tetko et al., 2020; Acheampong et al., 2021; Li et al.,

3

2021). The field of NLP has undergone a revolution because of the usage of

transformer models., and their potential for time series forecasting is only

beginning to be explored. At photovoltaic (PV) power plants, the forecast of solar

irradiance is crucial for planning the power generation scheduling. In order to do

this, we seek to forecast solar irradiance that take use of machine learning models

and transformers. This thesis investigates the use of transformer models for solar

irradiance forecasting, with the aim of optimizing energy in the digital age.

Significant barriers to the use of deep learning are removed by Pytorch Forecasting.

Despite the fact that deep learning has won out in the fields of language processing,

time series forecasting, and image processing. virtually invariably, GPUs are

required for training neural networks, however they are not always readily

accessible. Specifications for hardware are usually a significant obstacle too. But

this problem may be solved by moving processing to the cloud, like Colab, where

this experiment was carried out.

1.1 Transformer Model

To find context and meaning in sequential data, a neural network known as

a transformer model records connections. It is driving a wave of machine learning

advancements known as transformer AI, which is being used to translate text and

speech almost instantly, make meetings and classrooms accessible to people with

hearing loss and from different backgrounds, and help researchers understand the

connections between genes and amino acids in proteins and DNA. They are taking

the place of convolutional and recurrent neural networks (CNNs and RNNs), which

were the most used deep learning model types five years ago. A robust neural

network architecture called Transformers employs positional encoders to tag data

pieces as they enter and exit the network. The attention units create an algebraic

map of how each element is related to these tags. The word "self-attention" was

almost adopted by Google researchers to describe their 2017 model since it is an

effective tool for learning associations. The Transformer model was subsequently

published by Google in 2017, Vaswani et al., (2017) . Transformers represent a

significant departure from RNNs and CNNs, the two most widely used models for

pattern recognition. Machine learning underwent a paradigm shift when the Google

team trained their model on eight NVIDIA GPUs in just 3.5 days, spending a

4

fraction of the time and money required to train prior models. Beyond comparable

work published by a Facebook team using CNNs, it was a pivotal moment. Another

Google team tried using a transformer to handle text sequences in both the forward

and backward directions a year later. This effort established 11 new records and

was incorporated into the Google search algorithm. International researchers were

adapting BERT for use cases across many languages and industries.

Transformer models have proven to be valuable in various domains and tasks,

including:

(a) Natural Language Processing (NLP): This encompasses a wide range of

activities such as text categorization, named entity identification, question-

answering, language modelling, summarization, translation, multiple-choice tasks,

and text generation.

(b) Computer Vision (CV): Transformer models have also demonstrated

effectiveness in tasks related to computer vision, including image segmentation,

object identification, and image categorization.

(c) Audio Processing: Transformer models can be applied to audio-related tasks

such as speech recognition software and voice classification.

(d) Multimodal Applications: Transformers are also suitable for multimodal tasks,

such as Optical Character Recognition (OCR), document information extraction,

table question answering, video classification, and visual question answering.

Transformer models are compatible with popular frameworks like JAX,

TensorFlow, and PyTorch. This compatibility allows for seamless integration and

transfer of models between frameworks. It is possible to train a model in one

framework with just a few lines of code and then load it in another framework for

inference. Additionally, models can be exported to file formats like ONNX and

TorchScript, enabling their deployment in real-world applications.

Similar to how a Transformer is learned for machine translation, the model is

trained via "teacher-forcing." This indicates that one prepends the final value of the

past values to the future values as input to the decoder during training, moving them

one place to the right. The model must forecast the subsequent target at each time

step. Since there is no concept of decoder_start_token_id (we simply use the most

recent value of the context as initial input for the decoder), the setup of training is

similar to that of a GPT model for language.

5

We feed the decoder the final value of the past values at the moment of inference.

The next step is to sample data from the model to produce a forecast for the

following time step, which is then given to the decoder to make the subsequent

prediction (also known as autoregressive generation).

1.2 Driving the Digital and Sustainable Transformation of the Energy System

in Europe: Challenges and Opportunities

The European Green Deal and REPowerEU initiatives aim to transform the

energy system in Europe towards sustainability and digitalization. This

transformation requires leveraging digital technologies such as IoT devices,

advanced connectivity, and cloud-edge computing. However, further efforts are

needed to fully utilize the potential of these technologies while protecting privacy

and data. Promoting connectivity and data exchange, enhancing cybersecurity and

governance, and addressing energy consumption are crucial aspects of this

transformation. Initiatives like the proposed Data Act and Data Governance Act

play a vital role in ensuring a successful digital and sustainable energy transition in

Europe EC, COM(2022).

To ensure the success of the digitalization of the energy system, attention must be

given to cybersecurity, energy consumption, effective governance, digital rights

and EU data sovereignty. Robust cybersecurity measures are essential to safeguard

critical infrastructure and prevent unauthorized access. Addressing energy

consumption concerns is vital to optimize energy efficiency and reduce wastage.

Furthermore, designing effective governance frameworks ensures transparency,

accountability, trust and compliance with data privacy regulations.

To realize a world where AI respects and preserves rights, the author proposed the

concept of using AI for Socio-Economic opportunities and enhancing quality of

life (#AI4SQL) as a volunteer expert involved in the creation of the Nigerian

National AI Policy document, this Rights preserving AI concept was incorporated

into the policy between 2022-2023 (NAIP 2022).

Our research aims to contribute to the digital and sustainable transformation of the

energy system by developing an optimized model for solar irradiance forecasting

which is aligning with the goals of the European Green Deal and REPowerEU

initiatives. Our study offers valuable insights and practical solutions for achieving

a clean and affordable energy future in Europe and the world.

6

1.3 Motivation.

The rising World population demands increased basic needs, including

energy. According to United Nations Population projections, Nigeria will be the

third most populated country by 2100 and would have the same population as the

United States by 2050.This implies that electricity consumption in Africa will rise,

both for humans and for energy-hungry robots. This current study is in furtherance

to the paper on reviewing of AI and Blockchain applications in the energy industry

(Akanni et al., 2023). We explored which AI model is the most accurate and

effective at estimating how much sun power per unit area, measured in watts per

square metre (W/m2) in SI units, will be available to be converted into electricity.

We observed how the Time series Transformer model is effectively employed in

NLP and machine translation, therefore we want to apply it for forecasting solar

irradiance as well which from the best of our knowledge, this is the first time is

done. Hence by combining AI models and renewable energy, we improve

sustainability, optimize energy utilization in the digital age by using Transformer

for solar irradiance forecasting in order to achieve a carbon-neutral economy.

Hence optimization technique is focusing mainly on increasing a reliable and

economic integration of PV by grid operators through accurate forecast of solar

irradiance.

1.4 Statement of problem.

The problem addressed in this research is the need for accurate estimation

of energy yield in photovoltaic (PV) systems to determine their viability as an

alternative to traditional energy sources. Existing mathematical models for energy

yield estimation are complex and require parameters that are difficult to obtain.

Instead, the output of a PV system is influenced by meteorological data such as

ambient temperature and solar irradiation, which can be challenging and expensive

to measure. This necessitates the development of alternative prediction methods to

accurately forecast solar irradiance. Forecasting solar power is a challenging task

due to the variability of solar irradiation influenced by location, weather, and other

meteorological factors. Accurate predictions of solar irradiance are crucial for the

successful integration of solar energy with conventional generating sources.

Energy forecasting, including solar power forecasting, is essential for effective grid

7

management and power trading. Various statistical methods and theoretical models

have been used for solar power forecasting, but the transformer model with the

teacher forcing concept offers a unique approach that captures the context and

relationships in solar and meteorological data. By optimizing the hyper-parameters

of the Time series transformer, the model aims to achieve high forecasting

accuracy, low MAPE and high R2 values for accurate solar power predictions.

1.5 Research Questions

● What are the main AI Models used in Solar forecasting? Which one is

effective and superior?

● Do Time Series Transformer model for solar irradiance forecasting work?

● How can it compare with state of art paper using MAPE?

● What are some proposed recommendations to optimizing energy in the

digital age?

1.6 Aims and Objective of the study

This research aims to address the challenge of accurately forecasting solar

irradiance by introducing the teacher forcing concept to a time series Transformer

model with an attention mechanism. The goal is to optimize energy generation by

improving the accuracy of solar irradiance forecasts and comparing the

performance with other machine learning models.

The objectives are:

• To develop a precise solar forecasting model that outperforms existing

machine learning models.

• Compare our best model with other state-of-the-art MAPE forecasting

results

The following Sustainable Development Goals (SDGs) are addressed in this work.

The SDGs were established by the UN General Assembly to encourage

cooperation among all nations and stakeholders.

• Goal 7.1: Assure that all people have access to modern, affordable energy

services by the year 2030.

8

• Goal 7.2: Increase the proportion of renewable energy in the world's energy

mix significantly by the year 2030.

• Goal 13: Climatic actions to limit and adapt to climate change.

1.7 Significance of the Study and contribution

The significance of this research study lies in addressing the limitations of

traditional statistical techniques, neural network approaches, and theoretical

models in forecasting solar irradiation. By leveraging the potential of deep neural

networks, specifically the Time series Transformer model, this study aims to

provide a practical and accurate solution for energy forecasting and optimization.

The implementation of the Time series Transformer model allows for forecasting

of solar photovoltaic power by identifying connections and relationships within the

data. The study utilizes performance evaluation metrics such as MSE, MAE,

MAPE and R2 to assess the effectiveness and quality of the model.

Precise forecasts of solar irradiance are crucial for the effective integration of solar

energy into the power grid. By utilizing the NASA Dataset and proposing the Time

series Transformer technique, this research contributes to

• We developed a general Time series Transformer-based model for accurate

solar irradiance forecasting models.

• We showed that our approach which is a unique combination of the Time

series Transformer model with the teacher forcing idea and data pre-

processing, providing an efficient and accurate solar predictor.

• The accuracy, performance and reliability of the model were investigated

on the basis of standard performance evaluation metrics

• This study fills a gap in the literature by conducting a comprehensive

evaluation of solar irradiance forecast models using the Time series

Transformer and the teacher forcing idea.

• We showed that our time series Transformer-based model achieves state-

of-the-art forecasting results.

9

According to our findings, Time Series Transformer model in test results shows

effectiveness and superiority in explaining observed data, high forecasting

accuracy with low mean absolute percentage error and high R2.

Overall, this research study provides valuable insights and practical solutions for

forecasting solar irradiance, addressing the limitations of existing approaches, and

advancing the field of energy optimization.

1.8 Limitation

After a thorough investigation of the response times of the current models,

Transformer models require more resources to implement than more traditional ML

model techniques. Especially for time series forecasting. No high-level API is

available that interfaces with well-known frameworks like Google's Tensorflow or

Facebook's PyTorch. For traditional ML, there is the Scikit-learn ecosystem, which

provides a uniform user interface for professionals.

1.9 Organization

This thesis is made up of five chapters, as well as a conclusion, appendixes,

and references.

Chapter 1: An outline of the study and its setting, research techniques, the research's

objectives are given.

Chapter 2: The problem is addressed theoretically, and the chapter also offers

review of related academic writing on the thesis's core subject. References to

relevant sources are compared.

Chapter 3: This chapter provides an overview of the suggested solution and the

Transformer Architecture, as well as a description of the study's methodology and

a brief discussion of research methods.

Chapter 4: The training plan and performance are covered in this chapter.

Chapter 5: The model's effectiveness is assessed, and the outcome analysis is

presented.

Conclusion and Recommendation of the report.

10

CHAPTER II

Related Research

2.0 Related Works

Solar irradiance predictions have been the subject of extensive investigation.

Statistical, physical, and hybrid models are examples of traditional solar irradiance

forecasting models. Short-term forecasting has traditionally relied on statistical

models like Autoregressive Integrated Moving Average (ARIMA). However, there

are limitations in the ability of these models to capture nonlinear relationships and are

sensitive to outliers. Physical models, which use physical principles to model the

behaviour of the atmosphere, have been shown to be accurate for long-term

forecasting. However, physical models are complex and require extensive data inputs.

Hybrid models, which combine statistical and physical models, have shown promising

results.

Solar irradiance forecasting has recently used machine learning techniques.

Short-term forecasting has been successfully accomplished using Support Vector

Regression (SVR), Random Forest (RF), and Artificial Neural Networks (ANN).

However, these models are limited by their inability to capture temporal

dependencies.

Transformer models, introduced in NLP, have shown promising results in time

series forecasting, such as teaching robots to translate words into French. They have

been effectively applied to various time series forecasting applications, such as stock

prices, electricity consumption, and wind generation. However, their application to

solar irradiance forecasting has not been extensively studied. Many changes to Wen

et al's Transformer model (Wen et al., 2022) have been successfully used to time

series forecasting applications (Zhou et al., 2021; Li et al., 2019). Transformer models

have demonstrated outstanding performance in capturing temporal dependencies.

This work uses a Multi-head Attention layer to understand temporal context

information, in contrast to other studies (Brahma and Wadhvani, 2020; Alzahrani et

al., 2017; Alharbi et al., 2021). Premalatha et al.'s study (Premalatha et al., 2016)

shows a traditional ANN model with fully linked layers, which, in contrast to the

attention matrix method, is unable to contextualize information in lengthy time series.

The possibility of splitting the learning process into sunny and overcast days is shown

11

by several studies (Zafare et al., 2021; Zafare et al., 2021; Wang et al., 2012).

Furthermore, (Husein et al., 2019; Mendonça et al., 2020) explore the relationships

between weather variables and solar irradiance and underline the advantages of

employing meteorological data as input.

Since solar irradiance directly affects the amount of electricity generated by

solar panels (Sharma et al., 2010), it is essential for a PV power plant to predict the

level of solar irradiance ahead of time in order to optimize operational costs through

generation scheduling (Liang et al., 2007).

Solar Forecasting is a technique for foreseeing the solar irradiation

components for a certain PV installation. The three basic approaches are statistical

time series, physical approaches, and ensemble approach. We focus on the statistical

time series approach.

Using a statistical time series approach, while retaining long-term dependencies,

statistical time series methods have limits in their capacity to precisely connect time

series input and output for both long-term and short-term periods. Time series

Transformer address these limitations in machine learning and deep learning

techniques by handling long term dependencies well.

Due to significant computing requirements, using complicated physics-based

models is often seen as costly (Prema et al., 2015). As a result, the goal of this research

is to develop models that take meteorological information into account and are

capable of accurately forecasting solar irradiance using low-cost machine learning

approaches.

2.1 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANNs) are composed of multiple layers, each

containing a specific number of neurons. Figure 2.1 illustrates a simple neural

network, where each color represents a layer and each circle represents a neuron. The

first layer of an ANN is the input layer, which receives a vector of input features. An

important advantage of neural networks is that input data does not require

preprocessing before being fed into the network. The data then propagates through

hidden layers, ultimately reaching the final output layer. The number of neurons in

12

the output layer depends on the problem at hand. ANNs can be utilized for both

classification and regression tasks, based on the chosen loss function.

The propagation of data through a neural network is determined by the network

parameters, namely the weights (W = {w1, w2, ..., wi, ..., wm−1}) and biases (B = {b1,

b2, ..., bi, ... , bm−1}), where m represents the number of layers in the network. Each

weight (wi) is a matrix with dimensions l × k, and each bias (bi) is a vector with

dimension l, where k is the number of neurons in the previous layer (i-1) and l is the

number of neurons in layer i.

The value of each neuron in layer i is calculated as a linear combination of the neurons

from the previous layer, followed by a non-linear activation function. Common

activation functions include the hyperbolic tangent, rectifier (ReLU), and sigmoid

functions. The weights and biases are the parameters optimized during the training

process. Equation 2.1 depicts this relationship,

ai = f (wi−1 ai−1 + bi−1) (2.1)

 where ai represents the activation vector representing the neuron values in layer i, f

is the activation function, and wi−1 and bi−1 are the corresponding weights and biases,

respectively.

Figure 2.1: A simple neural network.

A crucial characteristic of neural networks is their ability to approximate functions.

The Universal Approximation Theorem states that any function f can be approximated

by a neural network with a sufficient number of neurons and layers. (Milind et al.,

2020)

13

2.2 Optimization Problem

The problem of solar irradiance forecasting can be formulated as an

unconstrained optimization problem. The objective function in Equation 2.2 is the

mean squared error (MSE), where the goal is to minimize the average squared

difference between the actual and forecasted values of irradiance. The predicted value

is a continuous output from the neural network's output layer. Since the layers of a

neural network are interconnected through Equation 2.1, the error propagates

backward through the layers. Consequently, the parameters of the ANN, specifically

the weights and biases, are adjusted using a backward-propagation mechanism known

as backpropagation. [55]

 (2.2)

In the equation, ˆy and y represent the forecasted and actual values of solar irradiance

in W/m2, respectively. n is the number of samples, and W and B represent the sets of

weights and biases, respectively.

2.3 Transformer

The Transformer architecture addressed the issue of preserving long-term

dependencies by leveraging (a). self-attention mechanisms to retain word-to-word

relation and (b). positional encodings to represent each word’s position. This

enables parallel computation over the entire text without disrupting the order. The

Transformer has an encoder for input text and a decoder for generating text. (Vaswani

et al., 2017)

2.4 Time Series Forecasting

Recent years have seen a breakthrough in time series forecasting research

using various deep learning algorithm modifications. Numerous practical fields,

including weather, economics, agriculture, transportation, and even exact scientific

reasons, have embraced applications.

All of the natural language processing models were replaced with a transformer.

Given the similarity between completing of text andty6 forecasting of time series data,

14

strategy based on attention was also used in Time Series. (Wu et al., 2021) applied a

Transformer-based approach to forecast influenza cases, demonstrating its superiority

compared to other sequential models. (Grigsby et al., 2021) developed Transformer-

based models for time series forecasting, considering distinct spatial relationships

between variables and achieving improved forecasting results. In their study, Haoyi

(Zhou et al., 2021) developed a transformer model called Informer specifically

designed for predicting long sequence time-series data. This model was applied to

tasks such as electricity consumption planning, which requires a high prediction

capacity. The term "prediction capacity" refers to the model's ability to accurately

capture long-range dependencies between the output and input variables efficiently.

2.5 PyTorch Forecasting for Time Series Forecasting

Though deep learning has surpassed conventional approaches in time series

forecasting tasks, deep learning architectures have not yet become the norm for time

series forecasting tasks, despite dominating computer vision and language processing

workloads. The lack of a high-level API that would operate with well-known

frameworks like PyTorch or Tensorflow has been a key barrier, in addition to the

hardware requirements, making it rather challenging to leverage neural networks over

the conventional approaches (easy to use in the scikit learn ecosystem). By giving

PyTorch a high level API that can easily use the panda’s data frame, PyTorch

Forecasting finds a solution to the issue. The package's foundations in PyTorch

Lightning and PyTorch APIs make learning it simpler. Modern time series are made

easier with Pytorch Forecasting. using neural networks for predicting in both

academic and real-world scenarios. The package has some intriguing clauses, such as:

a class for time series datasets that abstracts away the processing of variable

transformations, missing values, random subsampling, different history lengths, etc.

Therefore, in order to train your model in PyTorch, no specialized expertise of

dataset creation is needed. Basic training of time series models is provided through a

base model class, along with logging in Tensor board and general visualizations like

actual vs. predicted values and dependency charts. There are numerous neural network

topologies for time series forecasting that have been improved for real-world

application and come with built-in interpretation capabilities, time series metrics with

multiple horizons for scalability, the networks are made to function with PyTorch

15

Lightning, which out-of-the-box supports training on CPUs as well as single and

multiple (distributed) GPUs. (Kasper, 2022)

2.6 Transformer model for Solar irradiance prediction

To utilize a transformer model for predicting solar irradiance based on a

dataset of solar radiation and weather, the following steps need to be undertaken:

Data pre-processing: The dataset should be cleaned and, if necessary, normalized or

standardized as part of the pre-processing stage. Additionally, the data might need to

be transformed into a format compatible with the transformer model. This involves

tasks such as including the timestamp, standardizing the solar radiation dataset, and

normalizing the solar irradiance data.

Dataset separation: Split the dataset into training and test sets. The training set is

used to train the transformer model, while the test set is used to evaluate its

performance.

Define the transformer-based model: Specify the characteristics of the transformer

model, such as the number of layers, attention heads, and hidden layer dimensions.

Additionally, define the input and output layers of the model.

Model training: Train the transformer model using the training set. Specify the

optimizer, loss function, and any other relevant training hyper parameters.

Model evaluation: Assess the performance of the trained model using the test set.

Calculate performance metrics like mean squared error (MSE) or mean absolute error

(MAE) to measure the accuracy of the model.

Prediction application: Once the model has been trained and evaluated, it can be

applied to make predictions on new data. However, this fresh data needs to undergo

the same pre-processing steps as the training data before the model can generate

accurate predictions (Vaswani et al., 2017)

The Time Series Transformer model is a probabilistic vanilla encoder-

decoder Transformer for time series forecasting. It adds a distribution head on top

of the former, which can be used for time-series forecasting. Note that this is a so-

called probabilistic forecasting model, not a point forecasting model. This means

that the model learns a distribution, from which one can sample. The model doesn’t

directly output values. (Niels and Kashif, 2022)

16

CHAPTER III

3.0 Methodology/Materials

3.1 From Machine learning - Neural Networks to Deep Learning-
Transformers

Artificial Neural Networks are brain-inspired systems which are intended to

replicate the way we humans learn.

Neural networks consist of input and output layers, as well as (in most cases) a hidden

layer consisting of units that transform the input into something that the output layer

can use.

Figure 3.1: Shows the basic structure of a Neural Network

Figure 3.2: Shows the MSE loss function of ML models used to forecast irradiance

value

17

3.2 Transformer Architecture

In deep learning, a transformer is a model. It stands out for adopting self-

attention and differently valuing the importance of each component of the input data

(which includes the recursive output). Natural language processing is where it is most

frequently employed.

Transformer models are a sort of neural network that examine connections in

sequential data in order to understand context and meaning.

Figure 3.3: Shows the basic structure of a time series transformer

18

3.2.1 Encoder/decoder architecture

The encoder component of the model consists of several parts, including

positional encoding, an input layer, and N identical encoder layers. The input layer

converts the input time series data into a vector using a fully connected network,

which is necessary for the multi-head attention mechanism to operate. Each encoder

layer also includes a fully connected feed-forward neural network after the multi-head

attention layer. The output of each encoder layer is passed as input to the next layer,

and all layer outputs have the same dimensions. The decoder component, on the other

hand, consists of an input layer, N identical decoder layers, and an output layer. Each

decoder layer includes two multi-head attention layers and a feed-forward neural

network. The initial attention layer of each decoder layer receives input from the

output of the preceding layer, while the second attention layer uses the output from

the encoder stack as its input.

In the encoder component of the model, the input variables such as solar radiation,

date, and time are transformed into a vector representation. The encoder stack aims to

capture the relationships between these elements, enabling their conversion from

historical input data to the latent space, which serves as the input for the subsequent

part of the model.

By combining the date, time of year, historical data, and the vector representation

from the encoder, the decoder stack acts as a time machine, forecasting solar

irradiance.

3.3 Positional encoder

Transformers employ positional encoders to identify data elements entering

and leaving the network. Attention units then follow these tags and create an algebraic

map showing how one element connects to the others.

A vector form known as a positional encoding contains information about the relative

positions of letters within a target sequence. It's characterized as a function of kind

𝑓: ℝ → ℝ; 𝑑 𝜖 ℤ, 𝑑 > 0 , where d is an even positive number.

(𝑓(𝑡)2𝑘, 𝑓(𝑡)2𝑘+1) = (sin(𝜃) , cos(𝜃)) ∀𝜅 ∈ {0,1, … . … ,
𝑑

2
− 1}

 (1)

𝑤ℎ𝑒𝑟𝑒 𝜃 =
𝑡

𝑟𝑘
 , 𝑟 = 𝑁

2
𝑑 .

19

Figure 3.4 illustrates a sine wave positional encoding scheme with parameters

N=10000 and d=100. Image source:

https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)

The dimension the vector encoding a time series data, is denoted by the free parameter

N, which should be much larger than the maximum k.

The most important fact is that every encoded location may be utilized by the

transformer to compute the linear sum of its neighbours, which can then be used to

provide attention weights for the attention mechanism.

Positional encoding can be simply put together and expressed as

𝑃𝐸(𝑥,2𝑘) = sin (
𝑥

𝑁2𝑘/𝑑
)

𝑃𝐸(𝑥,2𝑘+1) = cos (
𝑥

𝑁2𝑘/𝑑
)

Hence, 𝑃𝐸(𝑥,2𝑘) = sin(𝜆𝑧 . 𝑡)

𝑃𝐸(𝑥,2𝑘+1) = cos(𝜆𝑧. 𝑡) (2)

Where 𝜆𝑡 =
1

𝑁2𝑘/𝑑

3.3.1 Scaled dot-product attention

Scaled dot-product attention is a component of the transformer model that involves

learning three weight matrices: query weights, key weights, and value weights. These

matrices are used to create query vectors, key vectors, and value vectors for each token

by multiplying them with the input time series data. The resulting values are then

normalized using softmax and divided by the square root of the dimension of the key

vectors to obtain attention weights. The output of the attention mechanism is a

20

weighted sum of the input values, where the weight is determined by combining the

query input and the corresponding key input.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (3)

3.3.2 Multi-head attention

The multi-head attention technique is employed to project the query, key, and

value vectors into multiple linear spaces. This technique performs self-attention in

parallel multiple times, with each head utilizing unique learned matrices for query,

key, and value to capture complex relationships. The outputs of these heads are

concatenated together. To enhance the model's accuracy, multiple attention matrices

are combined into a single output as described in equation (4). The position-wise fully

connected feed-forward network block, represented by equation (5), operates on the

concatenated outputs.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑜

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉) (4)

with use made of the projection matrices

𝑊𝑖
𝑗

∈ ℝ𝑑×𝑑𝑗; 𝑗 ∈ {𝑄, 𝐾, 𝑉}

And the weight matrix

𝑊𝑜 ∈ ℝℎ𝑑𝑣×𝑑

This time, the input value to the attention block is represented by the matrix V, the

input key is represented by the matrix K, and the input query is represented by the

matrix Q.

The value dk represents the size of the key input. The matrices 𝑊𝑖,
𝑄

 , 𝑊𝑖,
𝐾 ,

𝑊𝑖,
𝑉 , 𝑊𝑖,

𝑉 , 𝑎𝑛𝑑 𝑊𝑖,
𝑄

indicate the model parameters that have been learnt for the projection of the features.

𝐹𝐹𝑁(𝑥) = 𝐺𝑒𝐿𝑈 (𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (5)

21

While the GeLU (Gaussian Error Linear Unit) in the aforementioned equation denotes

nonlinearity in the model, the matrix W and b represents weights and biases.

3.4 Loss Function:

A loss function may be used to determine the degree to which an algorithm

accurately reflects a dataset. Pseudo-Huber, Huber Loss, Mean Squared Logarithmic

Error Loss, L1 Loss, L2 Loss, Mean Absolute Error Loss, and the complete positional

encoding function are some of the numerous types of Regression loss functions. L1

and L2 are two common loss functions used in deep learning and machine learning to

lower error. The Least Absolute Deviations (LAD) or cost is defined as the Mean of

these Absolute Errors (MAE).

The cost is measured by the Mean of these Square Errors (MSE), and L2 is referred

to as Least Square Errors (LS). The disadvantage of the L2 norm is that in case of

outliers, these points will be mostly accountable for the primary component of the

loss.

 (6)

 (7)

3.5 Solar Irradiance Transformer Model

The Transformer model has gained widespread use in neural networks for

tasks like natural language translation and has recently been applied to time series

data, such as solar irradiance. Its attention mechanism plays a crucial role in

connecting relevant features within sequential input. The model is composed of two

fundamental building blocks: positionally fully connected feed-forward network

blocks and self-attention blocks.

22

The self-attention blocks consist of four layers: a normalization layer, a multi-head

attention layer, a dropout layer, and a residual connection. Similarly, the positionally

fully connected feed-forward network blocks include a normalization layer, a residual

connection, a dropout layer, and two fully connected (dense) layers. These building

blocks are stacked together to create the encoder and decoder, which are the core

components of the model.

The self-attention block establishes connections between the query output and

the key-value output, allowing the combination of query, key, and value inputs into a

unified output.

Figure 3.5: Flow diagram of TST Transformer for Solar forecasting process

3.6 Metrics

Different metrics are used to assess the precision of predicted solar irradiance,

which include mean squared error, mean absolute error, and R squared. The mean

absolute error specifically measures the accuracy of solar irradiance in W/m^2. When

computing these metrics, previous time steps are not taken into account. However,

during training, all time steps are utilized to calculate gradients and provide crucial

data to the model.

The performance of the implemented model on the test dataset was evaluated using

commonly used metrics in time-series models, namely the MAE loss function, RMSE,

23

MSE, and R-squared. These metrics provide valuable insights into the model's ability

to generate accurate predictions on unseen data.

The MAE loss function measures the average absolute difference between the

predicted values (ŷi) and the actual values (yi), as represented by equation (8).

 (8)

A lower MAE signifies a more accurate model, indicating a smaller average error

between the predicted and actual values. MAE calculates the average absolute

difference between the predicted values and the actual values. It measures the average

magnitude of the errors without considering their direction. RMSE is similar to MAE,

but it takes the square root of the average of the squared differences between the

predicted values and the actual values. It penalizes larger errors more heavily than

MAE and provides a measure of the standard deviation of the residuals.

Formulas (9) and (10) introduce two coefficients used to assess the accuracy of

prediction models

 (9)

N represents the total number of observed samples, yi is the actual value, and ŷi is the

Predicted value. The goal of these metrics is to minimize the sum of squared errors

(MSE), which quantifies the deviation between the actual and predicted values, as

shown in equation (5)

. (10)

The RMSE is the square root of MSE and provides a measure of error in the same

units as the baseline values from the dataset. RMSE yields lower absolute values and

is computationally efficient compared to MSE.

In addition to MAE, RMSE, and MSE, R-squared (R^2) is another commonly used

metric in time-series models. It measures how well the model fits the data by

24

indicating the proportion of variance in the dependent variable that can be explained

by the independent variables. R-squared is calculated using the formula:

R^(2) = 1 - (SS_res / SS_tot) (11)

where SS_res represents the sum of squares of residuals and SS_tot represents the

total sum of squares. Where SS_res is the sum of squares/N ie MSE and SS_tot is

Sum of Squared Error from mean/N. A higher R-squared value (closer to 1) indicates

a better fit of the model to the data, while a lower value suggests that the model

explains less of the variance in the data.

Including R-squared in the evaluation of time-series models provides an additional

measure to assess the goodness-of-fit and predictive capability of the model. R-

squared measures the proportion of the variance in the dependent variable that can be

explained by the model. It ranges from 0 to 1, where 1 indicates a perfect fit and 0

indicates no relationship. It complements the MAE, RMSE, and MSE by providing

an evaluation of the proportion of variability in the data that can be attributed to the

model's predictions. Hence forecast accuracy of models were compare with MAE,

RMSE, and MSE first then reliability metric R2.

 The above performance metrics were used first to derive the best model for solar

irradiance

forecasting then the MAPE of best model which is transformer in this study was

compared with different other models authors used for solar energy forecasting.

 Mean Absolute Percentage Error (MAPE) measures the average percentage

difference between

 the predicted values and the actual values. It is useful when you want to understand

the relative magnitude of the errors compared to the actual values.

3.7 Methodology

The following procedural processes are part of the methodology used in this

study.

The Kaggle NASA Solar Radiation prediction dataset, available in CSV format,

consists of columns containing solar radiation and weather data such as temperature,

humidity, pressure, wind speed, and wind direction.

The solar dataset underwent preprocessing to extract nine relevant features that will

be utilized in our model for predicting solar irradiance. These features include

temperature, pressure, humidity, wind direction in degrees, sunrise time, sunset time,

25

and time-related data such as the length of daylight. Additionally, we extracted

information such as hours and minutes for dawn and sunset timings, the hour of the

day, the length of the day, and the week of the year from the available time data.

We then trained ten different machine learning model algorithms using the

dataset. Specifically, for the Time Series Transformer model, we separately prepared

and normalized the data as part of the required data preprocessing techniques before

inputting it into the Transformer model.

Even before we down select to a specific Machine learning model, we

prepared a prediction algorithm that takes in our data and makes a prediction. We used

scikit-learn, to easily swap out different models and maintain the same higher-level

structure to the program. We desire an algorithm that will predict values radiation for

a given set of inputs.

In this investigation, we will try several ML models and compare their

performance to evaluate the best algorithm to predict solar radiation. The specific

Machine learning models used to exploit the NASA Dataset are Linear regression,

Random Forest Regression, Neural Network Regression, Support Vector Regression,

Gradient Boosting Regressor, K-Nearest Neighbors Regressor, Decision Tree

Regressor, Ridge Regression, Lasso Regression, ElasticNet Regression.

To train the ML prediction algorithm, we implement a split train/test

methodology to prevent bias in the learning. The dataset is split into a randomly

sampled pool of data points. 80% of those points are used for training, the remaining

20% is used for validation of the training data. So the test data is not necessarily

continuous time, but rather a random selection of points from the set.

For EDA purposes, we use the entire dataset (including training and test

points) to visualize algorithm performance over time. This is inherently biased, since

some of the points we will see will have been points that the algorithm has already

trained on and potentially optimized to. However, we validate the algorithm accuracy

against the subset of testing points (which the were not used for training), so we can

still be confident in evaluating the performance using the accuracy metric and by

keeping this potential bias in mind.

The results of the 10 machine learning model were recorded in the experiment excel

sheet.

26

3.7.1 Sourced Datasets: CSV format (Kaggle NASA’s Solar Radiation prediction

dataset). The NASA datasets comprise solar and meteorological data collected over a

four-month period (September through December 2016) as part of the NASA Space

Apps Challenge hackathon for the NASA weather station. It may be freely found here

[25]. NASA dataset is a single file that contains 32,686 rows and 11 columns of which

4 are in Decimal form ,4 are in Date Time format and 4 are Integer.

Figure 3.6a: Shows the first 5 rows of the NASA dataset

Figure 3.6b: Shows the first 5 rows and 9 features of the NASA dataset used

to train the 10 AI Models

27

Figure 3.7a: Shows the first 17 rows of the NASA dataset used for Transformer model

Figure 3.7b: Shows the first 19 rows of the 1 hour shifted dataset used for Transformer

model

28

3.7.2 Data Cleaning (Manual): Extracted Date-Time column and the Radiation

column, then normalised the radiation and code was used to carry out exponential

smoothing of the data for Transformer model training after the training was done and

results obtained the dataset was shifted for 1 hour and the transformer model was

trained with it the result for the Validation loss of both the dataset and shifted dataset

was plotted to see percentage change from sample to sample of the transformer model.

3.7.3 Notebook Procedures: The process described in preceding sections on using

Transformer model to predict Solar radiation was carried out.

3.8 Data Pre-processing and Feature Engineering

The solar data was pre-processed to extract 9 features which will be used in

our model to predict solar irradiance. Some features that will be used include

temperature, pressure, humidity, wind direction in degrees, sunrise time, sunset time

along with the time data while the length of day sunlight was extracted. In addition to

the hours and minutes for dawn and sunset timings, we also retrieved the hour, day's

length, and week of the year from the time shown in the data. As soon as the

information was imported, we initially performed feature engineering, which involved

converting time and date parameters into a more usable format and adding a few

columns that would be beneficial for modelling, visualizing, and analyzing the data.

We construct a matrix that determines the correlation between every pair of potential

extracted feature in order to better comprehend the patterns and relationships in the

data. To finally prepare the data to be used for model training, we cleaned it, checked

for null value in the dataset, ingest data for exploratory data analysis and 10 machine

learning model Algorithm was trained with the dataset. For Time series transformer,

we prepare it separately and normalised it as part of the data pre-possessing techniques

required, before data input into the Transformer model

For data visualization, plotting libraries are loaded. The influence of each

measurement on the others is then determined using Pearson correlations and the

visualization of each measurement. To remove pointless information and pinpoint the

set's most important traits, a Pearson correlation matrix is first created.

29

3.9 Setup of the experiment

Our Time Series Transformer model processes a set of historical data into a

set of forecasts for the future. Our analysis of real-world data demonstrates that our

model exceeds cutting-edge techniques in terms of accuracy and effectiveness.

With the help of Pytorch, the Tensorflow, Keras API, and Pytorch-ignite (0.4.10), the

Time series Transformer model was developed. For the GPU cloud environment, the

author chose Colab. Additionally, used in the model development process are crucial

Python modules including Numpy (1.18.5), Scikit-Learn (0.22.2), matplotlib, and

Pandas (1.0.5).

To train the model, we have already pre-processed the dataset by normalizing

the solar radiation column of the NASA dataset. We first define the transformer

model, specifying layers’ number, attention heads; number, hidden layers’ size. Then

compile the model, specifying the optimizer and loss function that will be used during

training.

Next, the model is trained using the fit method, which takes the training data

as input. The model is then evaluated on the test set using evaluate method. Finally,

the model is used to make predictions on the test set using the predict method to

predict the future solar radiation.

We define a Transformer-based time series model, that is developed to handle

sequential data such as time series. The model, named TransAm, consists of several

components:

1. Positional Encoding: This component is used to add position information to

the input data, which is essential for the Transformer model to understand the order

of the time steps.

2. nn.TransformerEncoderLayer: This component is a single layer of the

transformer encoder, which applies self-attention to the input data and performs multi-

head attention to the input data.

3. nn.TransformerEncoder: This component is a stack of transformer encoder

layers that applies multi-head self-attention to the input data

30

4. nn.Linear: This component is a linear layer that is used as a decoder that takes

the output from the TransformerEncoder and produces the final output.

The set up imports the necessary libraries: torch, torch.nn, numpy, pandas,

time, math, pyplot, and some classes and functions from ignite.metrics module. Seeds

are set for reproducibility of the results. Definitions of input_window,

output_window, and batch_size are provided. These variables determine the size of

the input window, output window, and batch size, respectively. The device is set to

"cuda" if available, otherwise "cpu".

The Positional encoding class is defined, which adds positional encodings to the input

data. It initializes a positional encoding matrix pe with dimensions (max_len,

d_model), where max_len is the maximum length of the sequence and d_model is the

feature size. The positional encodings are based on sine and cosine functions of

different frequencies. The forward method adds the positional encodings to the input

tensor.

The TransAm class is defined, representing the Transformer-based model for

solar irradiance prediction. It inherits from nn.Module. The model consists of a

positional encoding layer, a transformer encoder layer, and a linear decoder layer. The

encoder layer is applied num_layers times. The forward method performs the forward

pass of the model, applying the positional encoding, transformer encoding, and linear

decoding to the input sequence. The init_weights method initializes the weights of the

linear decoder layer.

The _generate_square_subsequent_mask method generates a mask matrix for

the transformer encoder layer. It creates a square mask where each element below the

main diagonal is set to -inf and each element on or above the diagonal is set to 0.

In summary, the code sets up the necessary modules and classes for the Transformer-

based model for solar irradiance prediction. It defines the positional encoding layer,

the Transformer encoder layer, and the linear decoder layer. The model takes an input

sequence, applies positional encoding, transformer encoding, and linear decoding to

generate the predicted output sequence.

the create_inout_sequences function generates input-output sequences for training the

time series transformer model. The get_data function generates the solar irradiance

data and splits it into training and testing sets. These functions are used to prepare the

data for training and evaluating the model. We train a time series transformer model

31

using the specified training and testing data. It tracks the training and testing losses

during the training process and plots the loss curve at the end. We train the time series

transformer model for the specified number of epochs (100 epochs), evaluates its

performance on the validation data, and saves the best model based on the validation

loss. Additionally, the code generates plots and predicts future values at regular

intervals during training. We evaluate the trained transformer model on the test data,

calculates the loss, generates a plot comparing the predicted and true values, and saves

the predicted and true values as CSV files.

32

CHAPTER IV

Results and Discussions

4.0 EDA Results and Discussions

Figure 4.1: shows the Pairwise correlation matrix of the features used in NASA

dataset

Correlation matrix shows that temperature is the highest positive value of 0.73

is relevant and Humidity and wind direction are lowest which mean when there high

humidity and wind direction it suggests presence of cloud cover so when the sky is

not ckear, there will be low solar radiation but as temperature increases the solar

radiation increases.

The provided charts clearly indicate a strong correlation between temperature

and solar irradiance. While the relationships between pressure and solar irradiance are

not as clear, there appears to be a negative correlation between humidity and solar

irradiance; temperature and pressure.

33

Figure 4.2: the graph showing the heat map correlation Matrix of the features used in

NASA dataset

Figure 4.3: Distribution of Temperature and the number of occurrence in the NASA

dataset

34

Figure 4.4: Distribution of Pressure and the number of occurrence in the NASA

dataset

Figure 4.5: Distribution of Humidity and the number of occurrence in the NASA

dataset

35

Figure 4.6: Graph plot of solar radiation against hours in a day after taking the hourly

mean of the dataset.

The figure 4.6 shows that sun rises at 6am and sun sets at 5pm while the highest

radiation is at 12 noon. As expected, both the sun's irradiance and temperature reach

their highest point at noon.

36

Figure 4.7: Graph Plot solar radiation against temperature

37

4.2 Transformer Results and Discussion

This is shared in the google link drive and the attached excel sheet.

METRICS Transformer

MEAN - 0.03651

MSE 0.003756

MAE 0.045543

R2 0.976298

Table 4.1: The metric result from Time series Transformer

Figure 4.8a: The transformer prediction graph with given dataset for 1093 values at

the end of 100 epochs.

In the figure 4.8a, visualization of the predicted values (test_result) in red, true values

(truth) in blue, and the difference between predicted and true values in green. i.e. the

prediction is color red, the actual ground truth for the first 500 data is plotted in color

blue while the transformer is used to plot the difference between predicted and ground

truth using test results, in green colour for 1093 values at the end of 100 epochs.

38

Results are exported to CSV and metrics are calculated with excel sheet to get Mean

as -0.03651, MSE as 0.003756, MAE as 0.045543, R2 as 0.976298.

Figure 4.8b: Result output- The normalised solar Radiance against 5* Epochs. The

output of a single step prediction model that has been trained for 100 epochs on the

NASA Kaggle dataset.

In figure 4.8b, the result output of a single step prediction model that has been trained

for 100 epochs on the NASA dataset, input is blue and prediction is red. The

predict_future function takes the trained eval_model, data_source, and steps as inputs.

It predicts future values by iterating steps times and appending the model's predictions

to the data tensor. The resulting data tensor is plotted, with the original data in blue

and the predicted future values in red

39

Figure 4.9 showing the data values of ground truth(Actual) and the predicted. Which

was plotted in Figure 4.8a but values are exported as Csv then processed for each

experiment in order to obtain optimized hyper parameter for TST Transformer.

After this, we essentially train the time series transformer model for the specified

number of epochs (100 epoch), evaluates its performance on the validation data, and

saves the best model based on the validation loss. Additionally, it generates plots and

predicts future values at regular intervals during training.

40

Figure 4.10 shows output of the epoch number, time taken, validation loss, and

validation perplexity are printed.

This is what was happening in the TST transformer prediction process when

using the training and testing data. The predict_future function takes the trained

eval_model, data_source, and steps as inputs. It predicts future values by iterating

steps times and appending the model's predictions to the data tensor. The resulting

data tensor is plotted, with the original data in blue and the predicted future values in

red. The plot is saved as an image in Figure 4.8b

The evaluate function evaluates the trained eval_model on the given

data_source. It calculates the loss between the model's predictions and the target

values, accumulates the loss in total_loss, and returns the average loss per data point.

41

The code initializes the training and validation data using the get_data function and

creates an instance of the TransAm transformer model. The loss criterion is defined

as the Mean Squared Error (MSELoss) using nn.MSELoss(). The learning rate (lr)

and optimizer (Adam) are defined. A learning rate scheduler is created using

torch.optim.lr_scheduler.StepLR, which applies a step decay to the learning rate.

The variables best_val_loss and best_model are initialized to track the best

validation loss and the corresponding best model. The main training loop starts,

iterating over the specified number of epochs. The training data is passed to the train

function to train the model for one epoch. If the current epoch is a multiple of 10, the

validation loss is computed by calling plot_and_loss to generate a plot of predicted

vs. true values and predict_future to predict future values. If the current epoch is not

a multiple of 10, the validation loss is computed using the evaluate function. The

epoch number, time taken, validation loss, and validation perplexity are printed. If the

current validation loss is better than the previous best validation loss, the current

model is saved as the best model. The learning rate scheduler is updated in figure 4.10

Here the set was The get_data function is defined to generate the solar irradiance data

for training and testing the model. It creates a time array time ranging from 0 to 400

with a step of 0.1.The amplitude array is computed by adding the sine waves with

different frequencies and amplitudes. Gaussian noise is also added to the data. The

MinMaxScaler from sklearn.preprocessing is used to scale the amplitude values

between -1 and 1. This is why the Figure 4.11 is a sinusoidal wave.

The code essentially trains the time series transformer model for the specified

number of epochs, evaluates its performance on the validation data, and saves the best

model based on the validation loss. Additionally, it generates plots and predicts future

values at regular intervals during training. At 100 Ephoc the figure 4.8a is generated

and at that instance, Figure 4.8b represents the graph single step prediction which uses

length of output_window which is 5 and not one prediction. In order to adopt to one

prediction, median or mean of the range of the values of output-window can be used.

42

Figure 4.11: Visualization of visible correlations between number of Ephoc and

normalised solar irradiance data.

Hence in other for us to use Probabilistic Time Series Forecasting with

Transformers, the mean/ median prediction values are referenced against actual values

since it is Probabilistic Time Series Forecasting Transformers and are not used for one

prediction.

Since in Figure 4.11, The values moves between -1 and 1, a complete cycle is 2𝜋 =

1 Ephoc

TimeSin =
Sin 2𝜋 𝑇𝑖𝑚𝑒

𝐸𝑝ℎ𝑜𝑐

TimeCos =
Cos 2𝜋 𝑇𝑖𝑚𝑒

𝐸𝑝ℎ𝑜𝑐

43

Figure 4.12: Visualization of Actual time spent on the first 100 Ephoc and forecasted

time for the next 100 Ephoc

4.3 ML and Transformer Discussion

The model is trained to make predictions of solar irradiance at future time steps

using input data consisting of solar radiation measurements over time. The

architecture of the model is defined within the TransAm class constructor, where the

layers and their respective numbers are set up. The forward method is then utilized to

pass the data through the model in a forward direction. This involves processing the

input data through the positional encoder, transformer encoder, and decoder layers to

generate the final output.

44

Several hyper parameters are employed in the training process, such as an input

window size of 100, an output window size of 5, and a batch size of 10. The

transformer model performs well when trained on the raw dataset, yielding

satisfactory results with a small mean value of -0.03651, a mean squared error (MSE)

of 0.003756, a mean absolute error (MAE) of 0.045543, and an R-squared (R^2) value

of 0.976298.

4.4 Major performance, achievement and result analysis

Utilizing the technique of "teacher forcing" is an essential aspect of the

experimental setup in the transformer architecture, as it plays a critical role in training

the model weights. The concept involves feeding the ground-truth sequence values

back into the time series transformer at each step, forcing the model to align closely

with the actual sequence. Analogous to a student taking a multi-part exam, where each

answer depends on the previous one, "teacher forcing" provides immediate feedback

and correct answers to guide the model's learning.

The model utilizes a training technique known as "teacher-forcing," which is

commonly used in training Transformers for machine translation tasks. In this

approach, during training, the future values are shifted one position to the right and

fed as input to the decoder, with the last value of the past values appended. At each

time step, the model is tasked with predicting the subsequent target value. The training

setup resembles that of a GPT (Generative Pre-trained Transformer) model for

language, although there is no concept of a decoder_start_token_id. Instead, the last

value of the context is used as the initial input for the decoder.

During inference, the decoder is provided with the final value of the past

values as input. Subsequently, the model can sample from its learned distribution to

generate a prediction for the next time step. This prediction is then fed back into the

decoder to generate the subsequent prediction (Kashif, 2022).

Training with teacher forcing offers several advantages. It enables faster convergence

of the model by preventing error accumulation during the initial stages when

predictions may be inaccurate. Without teacher forcing, incorrect predictions would

update the model's hidden states, leading to error accumulation and hindered learning.

Additionally, teacher forcing helps stabilize the training process by preventing error

45

propagation caused by incorrect previous outputs in the generated sequence.

Moreover, in certain sequence-to-sequence tasks, using teacher forcing can yield

better performance compared to training without it.

In this study, various experimental parameters were optimized for the time

series transformer model, including the number of layers, neurons, learning rate, batch

size, and epochs during training. The main focus was to assess the performance of the

time series transformer model, so the parameters were fine-tuned to optimize its

effectiveness. Other 10 machine learning models, such as those from the Sklearn

library, were also considered, and their parameters were adjusted based on their

specific characteristics from the library. The optimized parameter values obtained

through experimentation are summarized in Table 4.2.

Method Hyper

Parameters

Values

TST

Transformer

Number of

epochs

100

Feature size 500

Learning rate 0.0001

Batch size 32

Optimizer Adam

Input window 100

Output window 5

Number of

layers

2

10 other ML

models

Sklearn library

parameter

Table 4.2 Comparison between Models from Experimental Results

To put things into perspective. We summarize the performance metrics obtained for the

best models in Table 4.4 where we conclude that the transformer is the best model we got.

46

Figure 4.13: R^2 value of the Transformer and 10 other Machine learning models

METRICS MSE RMSE MAE R^2

Linear regression. 38372.19 195.89 148.53 0.61

Random Forest Regression 6486.25 80.54 30.87 0.93

Neural Network Regression 40131.84 200.33 152.87 0.60

Support Vector Regression 144548.79 380.20 207.91 -0.42

Gradient Boosting Regressor 11964.49 109.38 59.97 0.88

 K-Nearest Neighbors Regressor 8140.82 90.23 38.21 0.92

Decision Tree Regressor 10536.45 102.65 37.21 0.89

Ridge Regression 39957.61 199.89 152.93 0.60

Lasso Regression: 37810.72 194.45 148.97 0.61

ElasticNet Regression: 40756.89 201.88 152.66 0.59

* Transformer 0.00375 0.06 0.045543 0.976

Table 4.4: Performance Metrics on the testing set for the best models. Transformer model used

normalised dataset.

0,61

0,93

0,6

-0,42

0,88

0,92

0,89

0,6

0,61

0,59

0,98

-0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 1,2

Linear regression

Random Forest Regression

 Neural Network Regression

 Support Vector Regression

Gradient Boosting Regressor

 K-Nearest Neighbors Regressor

Decision Tree Regressor

 Ridge Regression

Lasso Regression:

ElasticNet Regression:

Transformer

R^2 values

Ta
n

sf
o

rm
e

r
an

d
 1

0
 M

L
M

o
d

e
ls

R^2

47

Figure 4.14: Bar plot of Mean, MSE, MAE and R^2 of Transformer training process.

Figure 4.15 Bar plot of Mean, MSE, MAE and R^2 of Transformer training process on 1 hour

shifted data.

-0,036510809 0,003755569
0,045542573

0,976298084

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

Mean MSE MAE R^2

Sc
o

re

Performenace Metrics of Transformer Model

Performance metrics of Transformer model

-0,036510809 0,006638595
0,063838734

0,965224218

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

Mean MSE MAE R^2

Sc
o

re

Metrics

Performance Metrics of the Transformer model on 1
hour shifted data

48

Paper Location MAPE (%)

[28] Abha (Saudi Arabia) 11.8

[29] Sirt (Turkey) 6.78

[30] Mugla (Turkey) 6.73

[31] Cyprus and USA 4.7

[32] Mumbai (India) 4.24

[33] Chennai Metropolitan Area (India) 3.45

This study USA 0.68

Table 4.5. Mean absolute percentage error results of other authors for Solar Energy forecasting.

Figure 4.16: The learning curve of Transformer model

0

0,5

1

1,5

2

2,5

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Lo
ss

Ephoc

Learning curve

 valid loss valid loss_shifted

49

Figure 4.17 The Excel calculations and experimental models documentation.

The TST Transformer gave output result data i.e. 1093 Actual Values and 1093

predicted values after it has been trained with NASA Kaggle Dataset on several

experiments which investigating for optimized hyper parameter values on the TST

Transformer model.

4.5 Real-time prediction on a recent weather data and business use case

Technology advances in recent years have completely changed how renewable

energy is produced and used. Researchers and companies now have access to

extremely exact wind and solar power data because to the power of AI, computer

power, and more accurate weather forecasts. Initiatives aiming at improving the

effectiveness of renewable energy systems have increased sharply as a result. For

50

instance, Google signs 140MW energy contract with Engie in Germany. Google has

used machine learning to enhance predictions of wind output and has intentionally

planned computing jobs to coincide with times when solar and wind power are most

abundant, optimizing the use of renewable resources. The performance of solar panels

and the influence of clouds have been predicted using a unique technique, which is

important because solar energy systems also depend on weather conditions. (Engie,

2020)

51

CHAPTER V

5.0 Conclusion

Transformers allow us to train very large models since they are highly

parallelizable, exceedingly compute-optimal, and efficient. This is one of the main

differences between transformers and other designs. Transformers were used to solve

this time series issue, and the results were favourable in terms of MSE, MAE, and R2.

Recent research has focused on solar irradiance prediction because of the demand for

and interest in green and renewable energy. Accurate solar irradiance forecasting that

takes into consideration both potential and forecasting challenges is necessary to fully

grasp the solar energy viewpoint of a site. Solar irradiance data may be efficiently and

precisely predicted using Transformer models. The time series Transformer models

were employed in this study to predict the solar irradiance data, and they provided an

effective and accurate forecast of solar irradiance when compared to other machine

models on the NASA Dataset. MSE, MAE, and coefficients of

determination(R2) were used to verify the model's forecasting accuracy, goodness of

fit in order to validate and stabilize the simulation findings. TST performed best in all

performance metrics. The outcomes showed that the suggested approach was capable

of making precise predictions of solar irradiance. MSE is 0.003756, MAE is 0.045543

,97.6% is the value of the R2 coefficient of determination. MAPE is 0.68% which is

lower than that of the state of the art.

5.1 Future Works

This thesis explores the application of transformer for solar irradiance

forecasting in the energy sector. Transformer has demonstrated good results in time

series forecasting, and by applying them to predict solar irradiance, they can assist to

optimize energy in the digital world.

In this study, we present the transformer model, a solar irradiance forecasting model

based on encoder-decoder technology. In further research, Feature selection will be

used in the transformer net architecture to enhance the standard Transformer encoder

for encoder-decoder-based long-term prediction

52

5.2 Recommendations

Studies also show that the energy needed to train AI models on increasing a

reliable and economic integration of PV by grid operators and to optimize energy

consumption management are minimal to energy saved for their use, which is

important in terms of the sustainability of AI technologies in the energy system. The

use of intelligent optimization and AI technology in the energy system is therefore

quite sensible. The optimistic hopes people have, however, are overstated (looking at

the big picture of AI solving every problem) since there are still obstacles that AI

cannot overcome, such as the creation of an acceptable regulatory framework or the

involvement of citizens in the energy system design and more especially citizen’s

participation in the design of AI system itself. The fact is that a lot of pilot initiatives

fail because of the regulatory environment. In order for AI to genuinely contribute to

improving the world, certain conditions must be created concurrently with the

advancement of the technology i.e. AI designs must be engineered to be rights

respecting, inclusive, safe and trusted tool for all. Sustainability, empowerment,

security and freedom should be at the centre of the digital transformation (including

AI).

This research highlights the incorporation of date-time data alongside normalized

solar radiation time series. While NLP and Vision fields have benefited from pre-

trained transformer models, the time series domain remains relatively unexplored in

this regard. The study suggests that Transformer-based models hold great promise for

advancing time series analysis, and researchers are encouraged to explore this area

further.

53

REFERENCES

Abdel-Nasser, M., Mahmoud, K., & Lehtonen, M. (2020). Reliable solar

irradiance forecasting approach based on choquet integral and deep

LSTMs. IEEE Transactions on Industrial Informatics, 17(3), 1873-

1881. Article (accessed on 12 Jan. 2023).

Acheampong FA, Nunoo-Mensah H, Chen W (2021) Transformer models

for text-based emotion detection: a review of BERT-based

approaches. Artif Intell Rev 54(8):5789–5829. Article Google

Scholar (accessed on 12 Jan. 2023).

Akanni.O. et al, Reviewing applications of AI and Blockchain in energy

industry, 2023, in print

Alharbi, F.R.; Csala, D. Wind Speed and Solar Irradiance Prediction

Using a Bidirectional Long Short-Term Memory Model Based on

Neural Networks. Energies 2021, 14, 6501. Article (accessed on 12

June 2023).

Alzahrani, A.; Shamsi, P.; Dagli, C.; Ferdowsi, M. Solar irradiance

forecasting using deep neural networks. Procedia Comput.

Sci. 2017, 114, 304–313.Article (accessed on 12 June 2023).

Brahma, B., & Wadhvani, R. (2020). Solar irradiance forecasting based on

deep learning methodologies and multi-site

data. Symmetry, 12(11), 1830 . Google Scholar.Article Available

online (accessed on 12 Jan. 2023).

Curceac, S., Ternynck, C., Ouarda, T. B., Chebana, F., & Niang, S. D.

(2019). Short-term air temperature forecasting using nonparametric

functional data analysis and SARMA models. Environmental

Modelling & Software, 111, 394-408.Article (accessed on 12 Jan.

2023).

Duffy, A., & Rogers, M., & Ayompe, L. (2015) Renewable energy and

energy efficiency: assessment of projects and policies. John Wiley

& Sons ,.Article (accessed on 12 Jan. 2023).

European Commission, "Digitalising the energy system - EU action plan"

Article (accessed on 12 June 2023).

Grigsby, J., Wang, Z., Nguyen, N., & Qi, Y. (2021). Long-range

transformers for dynamic spatiotemporal forecasting. arXiv

preprint arXiv:2109.12218. Article. Google Scholar (accessed on

12 Jan. 2023).

Hao, Y., & Tian, C. (2019). A novel two-stage forecasting model based on

error factor and ensemble method for multi-step wind power

forecasting. Applied energy, 238, 368-383Article (accessed on 12

Jan. 2023).

Huang, X., Li, Q., Tai, Y., Chen, Z., Zhang, J., Shi, J., ... & Liu, W.

(2021). Hybrid deep neural model for hourly solar irradiance

forecasting. Renewable Energy, 171, 1041-1060.Article (accessed

on 12 Jan. 2023).

Husein, M.; Chung, I.Y. Day–ahead solar irradiance forecasting for

microgrids using a long short–term memory recurrent neural

network: A deep learning approach. Energies 2019, 12, 1856.

https://doi.org/10.1109/TII.2020.2996235
https://doi.org/10.1007%2Fs10462-021-09958-2
http://scholar.google.com/scholar_lookup?&title=Transformer%20models%20for%20text-based%20emotion%20detection%3A%20a%20review%20of%20BERT-based%20approaches&journal=Artif%20Intell%20Rev&doi=10.1007%2Fs10462-021-09958-2&volume=54&issue=8&pages=5789-5829&publication_year=2021&author=Acheampong%2CFA&author=Nunoo-Mensah%2CH&author=Chen%2CW
http://scholar.google.com/scholar_lookup?&title=Transformer%20models%20for%20text-based%20emotion%20detection%3A%20a%20review%20of%20BERT-based%20approaches&journal=Artif%20Intell%20Rev&doi=10.1007%2Fs10462-021-09958-2&volume=54&issue=8&pages=5789-5829&publication_year=2021&author=Acheampong%2CFA&author=Nunoo-Mensah%2CH&author=Chen%2CW
https://www.mdpi.com/1996-1073/14/20/6501
https://www.sciencedirect.com/science/article/pii/S1877050917318392?ref=cra_js_challenge&fr=RR-
https://scholar.google.com/scholar_lookup?title=Solar+irradiance+forecasting+based+on+deep+learning+methodologies+and+multi%E2%80%93site+data&author=Brahma,+B.&author=Wadhvani,+R.&publication_year=2020&journal=Symmetry&volume=12&pages=1830&doi=10.3390/sym12111830
https://doi.org/10.3390/sym12111830
https://www.mdpi.com/2073-8994/12/11/1830
https://www.mdpi.com/2073-8994/12/11/1830
https://doi.org/10.1016/j.envsoft.2018.09.017
https://books.google.com/books/about/Renewable_Energy_and_Energy_Efficiency.html?id=dZk3BwAAQBAJ
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52022DC0552
https://arxiv.org/abs/2109.12218
https://scholar.google.com/scholar_lookup?arxiv_id=2109.12218
https://doi.org/10.1016/j.apenergy.2019.01.063
https://doi.org/10.1016/j.renene.2021.02.161

54

Available online: https://www.mdpi.com/1996-1073/12/10/1856

Article (accessed on 12 June 2023).

Jlidi, M., Hamidi, F., Barambones, O., Abbassi, R., Jerbi, H., Aoun, M., &

Karami-Mollaee, A. (2023). An Artificial Neural Network for

Solar Energy Prediction and Control Using Jaya-

SMC. Electronics, 12(3), 592. MDPI AG.

http://dx.doi.org/10.3390/electronics12030592 (accessed on 12

June 2023).

Kashif Rasul , huggingface Time series Transformers documentation,(

2022, December) Time series Transformers deocumentation

Article (accessed on 12 June 2023).

Kumari, P., & Toshniwal, D. (2021). Deep learning models for solar

irradiance forecasting A comprehensive review. Journal of Cleaner

Production, 318, 128566 Article

Kumari, P., & Toshniwal, D. (2021). Long short term memory–

convolutional neural network based deep hybrid approach for solar

irradiance forecasting, , Applied Energy, 295, 117061 Article

(accessed on 12 Jan. 2023

Lai, J. P., Chang, Y. M., Chen, C. H., & Pai, P. F. (2020). A survey of

machine learning models in renewable energy predictions. Applied

Sciences, 10(17), 5975.Article (accessed on 12 Jan. 2023).

Li, R., Xiao, W., Wang, L., Jang, H., & Carenini, G. (2021, November).

T3-vis: visual analytic for training and fine-tuning transformers in

NLP. In Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing: System

Demonstrations (pp. 220-230). Article Publication (accessed on 12

Jan. 2023).

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y. and Yan, X.

(2019), Enhancing the Locality and Breaking the Memory

Bottleneck of Transformer on Time Series Forecasting, In NeurIPS
2019. Article (accessed on 12 June 2023).

Liang, R.H. and Liao, J.H. (2007) A Fuzzy-Optimization Approach for

Generation Scheduling with Wind and Solar Energy Systems.

IEEE Transactions on Power Systems, 22, 1665-1674. Article

(accessed on 12 June 2023).

Mendonça de Paiva, G.; Pires Pimentel, S.; Pinheiro Alvarenga, B.;

Gonçalves Marra, E.; Mussetta, M.; Leva, S. Multiple site intraday

solar irradiance forecasting by machine learning algorithms:

MGGP and MLP neural networks. Energies 2020, 13,

3005. .Article (accessed on 12 June 2023).

Middya, A. I., & Roy, S. (2022). Pollutant specific optimal deep learning

and statistical model building for air quality forecasting

Environmental Pollution, 301, 118972. Article Publication

(accessed on 12 Jan. 2023).

Milind Sahay,"Neural Networks and the Universal Approximation

Theorem",Jun 6, 2020 , https://towardsdatascience.com/neural-
networks-and-the-universal-approximation-theorem-
8a389a33d30a (accessed on 12 June 2023

Murata, A., Ohtake, H., & Oozeki, T. (2018). Modeling of uncertainty of

solar irradiance forecasts on numerical weather predictions with

https://www.mdpi.com/1996-1073/12/10/1856
https://doi.org/10.3390/en12101856
http://dx.doi.org/10.3390/electronics12030592
https://huggingface.co/docs/transformers/model_doc/time_series_transformer
file:///C:/Users/CPG%204/Desktop/.%20https:/doi.org/10.1016/j.jclepro.2021.128566
http://dx.doi.org/10.1016/j.apenergy.2021.117061
https://doi.org/10.3390/app10175975
https://doi.org/10.18653/v1/2021.emnlp-dmo.26
https://aclanthology.org/2021.emnlp-demo.26/
https://doi.org/10.48550/arXiv.1907.00235
http://dx.doi.org/10.1109/TPWRS.2007.907527
https://doi.org/10.3390/en13113005
https://doi.org/10.1016/j.envpol.2022.118972
https://www.sciencedirect.com/science/article/pii/S0269749122001865?casa_token=LBS1R54j00wAAAAA:_mE0s7nty3BxL1EefXYUtyl26wMPI9GWV-tQKkNkcVsycfH3jdXEKT8ghWKpj6C9OHFTapgR5W4
https://towardsdatascience.com/neural-networks-and-the-universal-approximation-theorem-8a389a33d30a
https://towardsdatascience.com/neural-networks-and-the-universal-approximation-theorem-8a389a33d30a
https://towardsdatascience.com/neural-networks-and-the-universal-approximation-theorem-8a389a33d30a

55

the estimation of multiple confidence intervals. Renewable

energy, 117, 193-201.Article (accessed on 12 Jan. 2023)

NASA Dataset, https://www.kaggle.com/datasets/dronio/SolarEnergy

(accessed on 12 Jan. 2023).

NASA Prediction of Worldwide Energy Resource (POWER),Higher

Resolution Daily Time Series, Renewable Energy Community

Prediction dataset from https://power.larc.nasa.gov/data-access-
viewer/ (accessed on 12 June 2023).

Niels Rogge and Kashif Rasul , Probabilistic Time Series Forecasting with

Transformers, (2022, December) Transformer documentation, ,

Article (accessed on 12 June 2023).

Nigeria National AI policy: call for contributions call for contributions

Article

Pospíchal J, Kubovčík M, Dirgová Luptáková I. Solar Irradiance

Forecasting with Transformer Model. Applied Sciences. 2022;

12(17):8852. Article (accessed on 12 June 2023)

Prema V, & Rao, U. (2015). Development of statistical time series models

for solar power prediction. Renewable Energy. 83.

10.1016/j.renene.2015.03.038 Article (accessed on 12 June 2023).

Premalatha, N.; Valan Arasu, A. Prediction of solar radiation for solar

systems by using ANN models with different back propagation

algorithms. J. Appl. Res. Technol. 2016, 14, 206–214. Article

(accessed on 12 June 2023).

Pytorch forecasting documentation Article, How to make a Transformer

for time series forecasting with PyTorch. Article (accessed on 12

Jan. 2023).

Rehman, S.; Mohandes, M. Artificial neural network estimation of global

solar radiation using air temperature and relative humidity. Energy

Policy 2008, 36, 571–576. Available online: Article [CrossRef

(accessed on 12 June 2023).

Reikard, G. (2009). Predicting solar radiation at high resolutions: A

comparison of time series forecasts. Solar energy, 83(3), 342-

349.Article (accessed on 12 Jan. 2023).

Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar

energy: Conceptual framework. Renewable and Sustainable

Energy Reviews, 74, 590-601. Article, Google Scholar (accessed

on 12 Jan. 2023).

Sharma, N., Gummeson, J., Irwin, D.E., & Shenoy, P.J. (2010). Cloudy

Computing: Leveraging Weather Forecasts in Energy Harvesting

Sensor Systems. 2010 7th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and

Networks (SECON), 1-9. Article (accessed on 12 June 2023).

Sharma, N., Sharma, P., Irwin, D., & Shenoy, P. (2011, October).

Predicting solar generation from weather forecasts using machine

learning. 2011 IEEE international conference on smart grid

communications (SmartGridComm) (pp. 528-533). IEEE. Article

(accessed on 12 Jan. 2023).

Sözen, A.; Arcaklıoğlu, E.; Özalp, M.; Çağlar, N. Forecasting based on

neural network approach of solar potential in Turkey. Renew.

https://doi.org/10.1016/j.renene.2017.10.043
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://huggingface.co/blog/time-series-transformers.
https://oecd.ai/en/dashboards/policy-initiatives/http:%2F%2Faipo.oecd.org%2F2021-data-policyInitiatives-27396
https://doi.org/10.3390/app12178852
https://www.researchgate.net/publication/275719077_Development_of_statistical_time_series_models_for_solar_power_prediction
https://www.elsevier.es/en-revista-journal-applied-research-technology-jart-81-pdf-S1665642316300438
https://towardsdatascience.com/how-to-make-a-pytorch-transformer-for-time-series-forecasting-69e073d4061e
https://www.sciencedirect.com/science/article/abs/pii/S0301421507004284?via%3Dihub
https://doi.org/10.1016/j.enpol.2007.09.033
https://doi.org/10.1016/J.SOLENER.2008.08.007
https://doi.org/10.1016/j.egypro.2018.07.077
https://www.sciencedirect.com/science/article/pii/S1364032117303076?casa_token=J_5Y5K5fp-sAAAAA:J15t7CQjNknXHWFMicgCtDV0KrqCxmKbd_Y4MA8iGI3bkzGZ13PaUFCGAUJZRH48RQT-7iUCeq4
https://www.semanticscholar.org/paper/Cloudy-Computing%3A-Leveraging-Weather-Forecasts-in-Sharma-Gummeson/2e0b1facffd6e9a0b1bc6b87d1dab0874846fee0
https://doi.org/10.1109/SmartGridComm.2011.6102379

56

Energy 2005, 30, 1075–1090. Article [CrossRef] (accessed on 12

June 2023).

Sözen, A.; Arcaklioǧlu, E.; Özalp, M.; Kanit, E.G. Use of artificial neural

networks for mapping of solar potential in Turkey. Appl.

Energy 2004, 77, 273–286. Available online: Article. [CrossRef]

(accessed on 12 June 2023)

Tetko IV, Karpov P, Van Deursen R et al (2020) State-of-the-art

augmented NLP Transformer Models for Direct and Single-step

Retrosynthesis. Nature Commun 11(1):1–11. Article Google

Scholar (accessed on 12 Jan. 2023).

Theocharides, S.; Makrides, G.; Livera, A.; Theristis, M.; Kaimakis, P.;

Georghiou, G.E. Day-ahead photovoltaic power production

forecasting methodology based on machine learning and statistical

post-processing. Appl. . Energy 2020, 268, 115023.

Article (accessed on 12 June 2023).

Using AI and Weather Forecast To Optimize Renewable Energy Output

Article (accessed on 12 Jan. 2023).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.

N., ... & Polosukhin, I. (2017). Attention is all you need. Advances

in neural information processing systems, 30. Article .Google

Scholar (accessed on 12 Jan. 2023).

Wang ,F., Xuan, Z., Zhen ,Z., Li, Y., Li ,K., Zhao ,L., Shafie-khah M., &

Catala˜o ,J. P.,(2020). A minutely solar irradiance forecasting

method based on real-time sky image-irradiance mapping model,

Energy Conversion and Management, 220, 113075,. Article

(accessed on 12 Jan. 2023).

Wang, F., Yu, Y., Zhang, Z., Li, J., Zhen, Z., & Li, K. (2018). Wavelet

decomposition and convolutional LSTM networks based improved

deep learning model for solar irradiance forecasting. applied

sciences, 8(8), 1286. Article (accessed on 12 Jan. 2023).

Wang, F.; Mi, Z.; Su, S.; Zhao, H. Short-term solar irradiance forecasting

model based on artificial neural network using statistical feature

parameters. Energies 2012, 5, 1355–1370. Article (accessed on 12

June 2023).

Wang, F.; Yu, Y.; Zhang, Z.; Li, J.; Zhen, Z.; Li, K. Wavelet

decomposition and convolutional LSTM networks based improved

deep learning model for solar irradiance forecasting. Appl.

Sci. 2018, 8, 1286 Available online: https://www.mdpi.com/2076-

3417/8/8/1286. Article (accessed on 12 June 2023).

Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J. and Sun, L.

(2022), Transformers in Time Series: A Survey, arXiv preprint,

arXiv:2202.07125. (accessed on 12 June 2023).

Wu, N., Green, B., Ben, X., & O'Banion, S. (2020). Deep transformer

models for time series forecasting: The influenza prevalence

case. arXiv preprint arXiv:2001.08317. Article Google Scholar

(accessed on 12 Jan. 2023).

Zafar, R.; Vu, B.H.; Husein, M.; Chung, I.Y. Day–Ahead Solar Irradiance

Forecasting Using Hybrid Recurrent Neural Network with Weather

Classification for Power System Scheduling. Appl. Sci. 2021, 11,

https://www.sciencedirect.com/science/article/abs/pii/S0960148104003702?via%3Dihub
https://doi.org/10.1016/j.renene.2004.09.020
https://www.sciencedirect.com/science/article/abs/pii/S0306261903001375?via%3Dihub
https://doi.org/10.1016/S0306-2619(03)00137-5
https://doi.org/10.1038%2Fs41467-020-19266-y
http://scholar.google.com/scholar_lookup?&title=State-of-the-art%20augmented%20NLP%20Transformer%20Models%20for%20Direct%20and%20Single-step%20Retrosynthesis&journal=Nature%20Commun&doi=10.1038%2Fs41467-020-19266-y&volume=11&issue=1&pages=1-11&publication_year=2020&author=Tetko%2CIV&author=Karpov%2CP&author=Deursen%2CR
http://scholar.google.com/scholar_lookup?&title=State-of-the-art%20augmented%20NLP%20Transformer%20Models%20for%20Direct%20and%20Single-step%20Retrosynthesis&journal=Nature%20Commun&doi=10.1038%2Fs41467-020-19266-y&volume=11&issue=1&pages=1-11&publication_year=2020&author=Tetko%2CIV&author=Karpov%2CP&author=Deursen%2CR
https://www.sciencedirect.com/science/article/pii/S0306261920305353
https://innovation.engie.com/en/news/news/new-energies/AI-weather-forecast-optimize-renewable-energy/18235
https://proceedings.neurips.cc/paper/7181-attention-is-all
http://scholar.google.com/scholar_lookup?&title=Attention%20is%20all%20you%20need&journal=Adv%20Neural%20Inform%20Process%20Syst&volume=30&pages=1-11&publication_year=2017&author=Vaswani%2CA&author=Shazeer%2CN&author=Parmar%2CN
http://scholar.google.com/scholar_lookup?&title=Attention%20is%20all%20you%20need&journal=Adv%20Neural%20Inform%20Process%20Syst&volume=30&pages=1-11&publication_year=2017&author=Vaswani%2CA&author=Shazeer%2CN&author=Parmar%2CN
http://dx.doi.org/10.1109/ITMS52826.2021.9615335
https://www.mdpi.com/2076-3417/8/8/1286
https://doi.org/10.3390/en5051355
https://www.mdpi.com/2076-3417/8/8/1286
https://www.mdpi.com/2076-3417/8/8/1286
https://doi.org/10.3390/app8081286
http://arxiv.org/abs/2001.08317
https://scholar.google.com/scholar_lookup?title=Deep%20transformer%20models%20for%20time%20series%20forecasting%3A%20The%20influenza%20prevalence%20case&publication_year=2020&author=N.%20Wu&author=B.%20Green&author=X.%20Ben&author=S.%20O%E2%80%99Banion

57

6738 Available online: https://www.mdpi.com/2076-

3417/11/15/6738 . Article (accessed on 12 June 2023).

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W.

(2021). Informer: Beyond Efficient Transformer for Long

Sequence Time-Series Forecasting. Proceedings of the AAAI

Conference on Artificial Intelligence, 35(12), 11106-11115.

https://doi.org/10.1609/aaai.v35i12.17325 (accessed on 12 June

2023).

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W.

(2021, May). Informer: Beyond efficient transformer for long

sequence time-series forecasting. In Proceedings of the AAAI

conference on artificial intelligence (Vol. 35, No. 12, pp. 11106-

11115).Google Scholar (accessed on 12 Jan. 2023).

https://www.mdpi.com/2076-3417/11/15/6738
https://www.mdpi.com/2076-3417/11/15/6738
https://doi.org/10.3390/app11156738
https://doi.org/10.1609/aaai.v35i12.17325

58

Appendix A: source codes

from google.colab import drive

drive.mount('/content/drive')

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler, MinMaxScaler,

Normalizer

from sklearn.model_selection import train_test_split

from collections import Counter

from scipy import stats

import tensorflow as tf

import sklearn.preprocessing

from sklearn.metrics import r2_score

from keras.layers import Dense,Dropout,SimpleRNN,LSTM

from keras.models import Sequential

import pytz # timezones

from sklearn.linear_model import LinearRegression # Linear regression

from sklearn.ensemble import RandomForestRegressor # random forest

regression

from sklearn.neural_network import MLPRegressor # neural network

regression

from sklearn.svm import SVR # support vector regression

!pip install net

data = pd.read_csv("/content/drive/MyDrive/NEU/Transformer/Solar-

Irradiance-Forecasting-using-ANNs-from-Scratch-main/Solar-

Irradiance-Forecasting-using-ANNs-from-Scratch-

main/SolarPrediction.csv")

data.head()

data.info()

data.describe()

data.head()

Feature Engineering

59

First step upon importing the dataset was to convert time and date

parameters into a more useful format and add some coloumns that

may be useful for visualisation, modelling and analysis.

def ingest_data(SolarPrediction):

 '''Read data from a CSV file and construct a pandas DataFrame

 Inputs:

 filename as string

 Outputs:

 df as DataFrame

 '''

 # read csv file

 data = pd.read_csv(SolarPrediction)

 data['Hour'] = pd.to_datetime(data['Time']).dt.hour

 # 'Data' column is unused. All elements contain the same value.

 # 'Time' is redundant and superseded by UNIXTime.

 data.drop(['Data','Time'],axis=1,inplace=True)

 # interpret columns as appropriate data types to ensure compatibility

 data['UNIXTime'] = pd.to_datetime(data['UNIXTime'],unit='s')

 data['Radiation'] = data['Radiation'].astype(float)

 data['Temperature'] = data['Temperature'].astype(float) # or int

 data['Pressure'] = data['Pressure'].astype(float)

 data['Humidity'] = data['Humidity'].astype(int) # or int

 data['WindDirection(Degrees)'] =

data['WindDirection(Degrees)'].astype(float)

 data['Speed'] = data['Speed'].astype(float)

 data['TimeSunRise'] =

pd.to_datetime(data['TimeSunRise'],format='%H:%M:%S')

 data['TimeSunSet'] =

pd.to_datetime(data['TimeSunSet'],format='%H:%M:%S')

 data.rename(columns={'WindDirection(Degrees)': 'WindDirection',

'Speed': 'WindSpeed'}, inplace=True)

 # compute length of each day

 data['DayLength'] = (data['TimeSunSet']-

data['TimeSunRise'])/np.timedelta64(1, 's')

 # we don't need sunrise or sunset times anymore, so drop them

 data.drop(['TimeSunRise','TimeSunSet'],axis=1,inplace=True)

 # index by UNIX time

 data.sort_values('UNIXTime', inplace=True) # sort by UNIXTime

 data.set_index('UNIXTime',inplace=True) # index by UNIXTime

 # Localize the index (using tz_localize) to UTC (to make the

Timestamps timezone-aware) and then convert to Eastern (using

tz_convert)

 hawaii=pytz.timezone('Pacific/Honolulu')

 data.index=data.index.tz_localize(pytz.utc).tz_convert(hawaii)

60

 # assign unit labels to data keys

 units={'Radiation':'W/m^2','Temperature':'F','Pressure':'in

Hg','Humidity':'\%','DayLength':'sec'}

 return data, units

from datetime import datetime

from pytz import timezone

import pytz

hawaii= timezone('Pacific/Honolulu')

data.index = pd.to_datetime(data['UNIXTime'], unit='s')

data.index = data.index.tz_localize(pytz.utc).tz_convert(hawaii)

data['MonthOfYear'] = data.index.strftime('%m').astype(int)

data['DayOfYear'] = data.index.strftime('%j').astype(int)

data['WeekOfYear'] = data.index.strftime('%U').astype(int)

data['TimeOfDay(h)'] = data.index.hour

data['TimeOfDay(m)'] = data.index.hour*60 + data.index.minute

data['TimeOfDay(s)'] = data.index.hour*60*60 + data.index.minute*60 +

data.index.second

data['TimeSunRise'] = pd.to_datetime(data['TimeSunRise'],

format='%H:%M:%S')

data['TimeSunSet'] = pd.to_datetime(data['TimeSunSet'],

format='%H:%M:%S')

data['DayLength(s)'] = data['TimeSunSet'].dt.hour*60*60 \

 + data['TimeSunSet'].dt.minute*60 \

 + data['TimeSunSet'].dt.second \

 - data['TimeSunRise'].dt.hour*60*60 \

 - data['TimeSunRise'].dt.minute*60 \

 - data['TimeSunRise'].dt.second

data.drop(['Data','Time','TimeSunRise','TimeSunSet'], inplace=True,

axis=1)

data.head()

Feature Visualisation

Next, in order to get a better understanding of the data, hourly and

monthly means of several variables were visualised using bar plots.

data, units =

ingest_data('/content/drive/MyDrive/NEU/Transformer/Solar-

Irradiance-Forecasting-using-ANNs-from-Scratch-main/Solar-

Irradiance-Forecasting-using-ANNs-from-Scratch-

main/SolarPrediction.csv')

print(data.head())

sns.set(style="white")

make IPython render plots inline

%matplotlib inline

61

Plotting libraries are imported to visualize data. Then each measurement is

visualized and Pearson correlations are calculated to determine

which parameters have the most impact on one another.

First, a basic correlation matrix is generated to weed out irrelevant data

and identify the most significant features in the set.

def corrPairs(data):

 '''Pairwise correlation matrix'''

 corr = data.corr() # Compute the correlation matrix

 mask = np.zeros_like(corr, dtype=np.bool) # make mask

 mask[np.triu_indices_from(mask)] = True # mask upper triangle

 sns.heatmap(corr, mask=mask, cmap='coolwarm', center=0,

square=True, linewidths=.5, annot=True, cbar=False)

data['WeekOfYear'] = data.index.week # add week to view correlation

plt.figure(figsize=(6,6))

corrPairs(data)

sns.heatmap(data.corr(),cmap="crest")

plt.show()

def corrfunc(x, y, **kws):

 '''add pearson r correlation to plots'''

 r, _ = stats.pearsonr(x, y)

 ax = plt.gca()

 ax.annotate("r = {:.2f}".format(r),xy=(.1, .9), xycoords=ax.transAxes,

color='white')

 return

def corrMap(data,features):

 '''plot bivariate correlations'''

 g = sns.PairGrid(data, vars=features)

 g.map_upper(plt.scatter, s=10)

 g.map_diag(sns.distplot, kde=False)

 g.map_lower(sns.kdeplot, cmap="coolwarm", shade=True,

n_levels=30)

 g.map_lower(corrfunc)

 g.map_lower(corrfunc)

feats = { 'Temperature':'red', 'Humidity':'green', 'Pressure': 'blue' }

for i in feats:

 count = Counter(data[i])

 plt.bar(count.keys(), count.values(), color=feats[i])

 plt.title('Distribution')

 plt.ylabel('Occurrence')

62

 plt.xlabel(i)

 plt.show()

#Plot solar radiation against temperature

plt.figure(figsize=(24,8))

sns.barplot(x=data['Temperature'].round(decimals=0),y=data['Radiation'])

plt.xlabel('Temperature (C)')

plt.ylabel('Solar Radiation (kW/h)')

plt.title('Solar-Irradiance versus Temperature')

plt.show()

#Take hourly mean of the dataset. Plot solar radiation against hours in a

day.

rad_vs_hour= data.loc[:, ['Radiation', 'Hour']].groupby('Hour').mean()

rad_vs_hour.plot(kind='bar')

plt.xlabel('Time of the day (hour)')

plt.ylabel('Radiation(W/m2)')

plt.title('Total Radiation per hour of the day')

plt.show()

feature_list=['Radiation','Temperature','Humidity','Pressure']

bivariate density matrix

corrMap(data,feature_list)

plt.show()

def color_y_axis(ax, color):

 '''Color y axis on two-axis plots'''

 for t in ax.get_yticklabels():

 t.set_color(color)

 ax.yaxis.label.set_color(color)

 return None

def plotVs(data,timescale,feature1,feature2,ax1,units):

 '''Plot feature vs radiation'''

 ax2=ax1.twinx()

 data_grouped= data.groupby(timescale)

 data_feature1 = data_grouped[feature1].mean()

 data_feature1_errorpos = data_feature1+data_grouped[feature1].std()/2

 data_feature1_errorneg = data_feature1-data_grouped[feature1].std()/2

 ax1.plot(data_feature1)

 ax1.fill_between(data_feature1.index, data_feature1_errorpos.values,

data_feature1_errorneg.values, alpha=0.3, antialiased=True)

 ax1.set_ylabel(feature1+' '+units[feature1])

 color_y_axis(ax1, 'b')

 if feature2 == 'Radiation':

 rad = data_grouped['Radiation'].mean()

 ax2.plot(rad,'r')

63

 ax2.fill_between(data_feature1.index, 0, rad, alpha=0.3,

antialiased=True, color='red')

 ax2.set_ylabel('Radiation'+' '+units['Radiation'])

 color_y_axis(ax2, 'r')

 else:

 data_feature2 = data_grouped[feature2].mean()

 data_feature2_errorpos =

data_feature2+data_grouped[feature2].std()/2

 data_feature2_errorneg = data_feature2-

data_grouped[feature2].std()/2

 ax1.plot(data_feature2)

 ax1.fill_between(data_feature2.index, data_feature2_errorpos.values,

data_feature2_errorneg.values, alpha=0.3, antialiased=True)

 ax1.set_ylabel(feature2+' '+units[feature2])

 color_y_axis(ax1, 'g')

 return ax1, ax2

def HourlyWeeklyVs(df,feature1,feature2,units):

 '''Plot a feature vs radiation for time of day and week of year'''

 plt.figure(figsize=(18, 6))

 ax=plt.subplot(121) # hourly

 ax1,ax2 = plotVs(data,data.index.hour,feature1,feature2,ax,units)

 lines1, labels1 = ax1.get_legend_handles_labels()

 lines2, labels2 = ax2.get_legend_handles_labels()

 ax2.legend(lines1 + lines2, labels1 + labels2)

 plt.xlabel('Hour of Day (Local Time)')

 plt.title('Mean Hourly {0} vs. Mean Hourly

{1}'.format(feature1,feature2))

 ax=plt.subplot(122) # weekly

 ax1, ax2 = plotVs(data,pd.Grouper(freq='W'),feature1,feature2,ax,units)

 lines1, labels1 = ax1.get_legend_handles_labels()

 lines2, labels2 = ax2.get_legend_handles_labels()

 ax2.legend(lines1 + lines2, labels1 + labels2)

 plt.xlabel('Week of Year')

 plt.title('Mean Weekly {0} vs. Mean Weekly

{1}'.format(feature1,feature2))

 return

for feature in feature_list[1:]: # radiation vs feature

 HourlyWeeklyVs(data,feature,feature_list[0],units)

plt.show()

data.drop(['WindDirection','WindSpeed'], axis=1, inplace=True) # drop

irrelevant features

3. Training & Testing

64

We desire an algorithm that will predict values (radiation for a given set of

inputs) There are many models to choose from, and more than one

may be appropriate.

In this analysis, we will try several models and compare their performance

to evaluate the best algorithm to predict solar radiation.

Linear Regression

Random Forest Regression

Neural Network Regression

Support Vector Regression

IMPORT ML CLASSIFIERS

from sklearn.linear_model import LinearRegression # Linear regression

from sklearn.ensemble import RandomForestRegressor # random forest

regression

from sklearn.neural_network import MLPRegressor # neural network

regression

from sklearn.svm import SVR # support vector regression

3.1. Preparing the algorithm

Even before we downselect to a specific model, we can prepare a

prediction algorithm that takes in our data and makes a prediction.

Using scikit-learn, it is easy to swap out different models and

maintain the same higher-level structure to the program.

To train the algorithm, we implement a split train/test methodology to

prevent bias in the learning. The dataset is split into a randomly

sampled pool of datapoints. 80% of those points are used for

training, the remaining 20% is used for validation of the training

data. So the test data is not necessarily continuous time, but rather

a random selection of points from the set.

For demonstration purposes, we use the entire dataset (including training

and test points) to visualize algorithm performance over time. This

is inherently biased, since some of the points we will see will have

been points that the algorithm has already trained on and

potentially optimized to. However, we validate the algorithm

accuracy against the subset of testing points (which the were not

used for training), so we can still be confident in evaluating the

performance using the accuracy metric and by keeping this

potential bias in mind.

x = data.drop('Radiation',axis=1).to_numpy()

y = data['Radiation'].to_numpy()

65

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2,

random_state=1)

X_train = StandardScaler().fit_transform(X_train)

X_test = StandardScaler().fit_transform(X_test)

y_train = np.asarray(y_train)

y_test = np.asarray(y_test)

from sklearn import preprocessing # ML tools

from sklearn.model_selection import train_test_split # split data

from bokeh.plotting import figure, show, output_notebook

def plot_test(clf,X_test,y_test):

 y_predicted = clf.predict(X_test)

 p = figure(tools='pan,box_zoom,reset',x_range=[0, 100], title='Model

validation',y_axis_label='radiation')

 p.grid.minor_grid_line_color = '#eeeeee'

 p.line(range(len(y_test)),y_test,legend='actual',line_color='blue')

p.line(range(len(y_test)),y_predicted,legend='prediction',line_color

='red')

 output_notebook()

 show(p)

 return

def plot_real(clf,x,y_actual,index):

 ''' Plot predictions for actual measurements.

 inputs:

 clf as classifier the trained algorithm

 x as array timeseries of measurement inputs

 y_actual as array corresponding timeseries of actual results

 '''

 y_predicted = clf.predict(x)

 p = figure(toolbar_location='right', title='Predicted vs

Actual',y_axis_label='radiation',x_axis_type="datetime")

 p.grid.minor_grid_line_color = '#eeeeee'

 p.line(index,y_actual,legend='actual',line_color='blue')

 p.line(index,y_predicted,legend='prediction',line_color='red')

 output_notebook()

 show(p)

 return

def train_model(X,y,clf,debug=False):

 ''' Train algorithm.

 inputs:

 X as array features

66

 y as array label(s)

 clf as scikit-learn classifier (untrained)

 returns:

 clf as trained classifier

 accuracy as float

 '''

 X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)

 model = clf.fit(X_train,y_train)

 accuracy = clf.score(X_test,y_test)

 return clf, model, accuracy, X_test, y_test

def go(x,y,algorithm,debug=True):

 ''' Easy model train and test. '''

 clf, model, accuracy, X_test,

y_test=train_model(x,y,algorithm,debug=True)

 print('Accuracy: %s percent'%str(accuracy*100))

 if debug:

 plot_test(clf,X_test,y_test)

 plot_real(clf,x,y,data.index.values)

 return

from sklearn import preprocessing # ML tools

from sklearn.model_selection import train_test_split # split data

from sklearn.metrics import accuracy_score, f1_score, precision_score,

recall_score, mean_squared_error, mean_absolute_error, r2_score

from sklearn.linear_model import LinearRegression

from bokeh.plotting import figure, show, output_notebook

def plot_test(clf,X_test,y_test):

 y_predicted = clf.predict(X_test)

 p = figure(tools='pan,box_zoom,reset',x_range=[0, 100], title='Model

validation',y_axis_label='radiation')

 p.grid.minor_grid_line_color = '#eeeeee'

 p.line(range(len(y_test)),y_test,legend='actual',line_color='blue')

p.line(range(len(y_test)),y_predicted,legend='prediction',line_color

='red')

 output_notebook()

 show(p)

 return

def plot_real(clf,x,y_actual,index):

 ''' Plot predictions for actual measurements.

 inputs:

 clf as regressor the trained algorithm

 x as array timeseries of measurement inputs

67

 y_actual as array corresponding timeseries of actual results

 '''

 y_predicted = clf.predict(x)

 p = figure(toolbar_location='right', title='Predicted vs

Actual',y_axis_label='radiation',x_axis_type="datetime")

 p.grid.minor_grid_line_color = '#eeeeee'

 p.line(index,y_actual,legend='actual',line_color='blue')

 p.line(index,y_predicted,legend='prediction',line_color='red')

 output_notebook()

 show(p)

 return

def train_model(X,y,clf,debug=False):

 ''' Train algorithm.

 inputs:

 X as array features

 y as array label(s)

 clf as scikit-learn regressor (untrained)

 returns:

 clf as trained regressor

 metrics as dict regression metrics (MSE, RMSE, MAE, R^2)

 X_test as array test features

 y_test as array test labels

 '''

 X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)

 model = clf.fit(X_train,y_train)

 y_pred = clf.predict(X_test)

 mse = mean_squared_error(y_test, y_pred)

 rmse = mean_squared_error(y_test, y_pred, squared=False)

 mae = mean_absolute_error(y_test, y_pred)

 r2 = r2_score(y_test, y_pred)

 metrics = {'MSE':mse, 'RMSE':rmse, 'MAE':mae, 'R^2':r2}

 accuracy = None

 if debug:

 accuracy = r2

 plot_test(clf,X_test,y_test)

 return clf, metrics, X_test, y_test

def go(x,y,algorithm,debug=True):

 ''' Easy model train and test. '''

 clf, metrics, X_test, y_test=train_model(x,y,algorithm,debug=True)

 print('Metrics: ', metrics)

 if debug:

 plot_real(clf,x,y,data.index.values)

68

 return clf, metrics, X_test, y_test

3.2. Linear Regression

Let's implement the first ML algorithm: Linear regression.

Linear regression is probably the simplest fit, but weather characteristics

are probably quite nonlinear. Regardless, let's see how it performs -

- it might be good enough

go(x,y,LinearRegression())

3.3. Random Forest Regression

Another algorithm to try is random forest regression. This works in a

fundamentally different way to linear regression, so maybe we'll

have more success. Most importantly, this algorithm can handle

nonlinear inputs.

go(x,y,RandomForestRegressor())

3.4. Neural Network Regression

Neural Networks are very tunable to suit a wide variety of problems. In

this case, a neural network will be used to optimize squared error.

Since this is just an exploration, we use default parameters

knowing that performance may be much different if these values

are tuned to suit our problem

go(x,y,MLPRegressor())

Wow, worse than linear regression! Although better results are probably

possible with this algorithm, we already have random forest

regression performing north of 90% accuracy. Tuning the neural

network is not really worth the trouble at this point.

3.5. Support Vector Regression

This is another algorithm that comes packaged with scikit-learn. Let's

implement it without digging into the theory, just to see how it

performs out of the box.

go(x,y,SVR())

3.6 Gradient Boosting Regressor:

from sklearn.ensemble import GradientBoostingRegressor

go(x, y, GradientBoostingRegressor())

3.7 K-Nearest Neighbors Regressor:

69

from sklearn.neighbors import KNeighborsRegressor

go(x, y, KNeighborsRegressor())

3.8 Decision Tree Regressor:

from sklearn.tree import DecisionTreeRegressor

go(x, y, DecisionTreeRegressor())

3.9 Ridge Regression:

from sklearn.linear_model import Ridge

go(x, y, Ridge())

3.10 Lasso Regression:

from sklearn.linear_model import Lasso

go(x, y, Lasso())

3.11 ElasticNet Regression:

from sklearn.linear_model import ElasticNet

go(x, y, ElasticNet())

To adjust the hyper parameters of each model as needed to achieve

optimal performance and also, to make sure to use the evaluation

metrics provided in the code to assess the performance of each

model let us use Artificial Neural Network as an example

def train_model(x, y, clf, debug=False):

 ''' Train a model, output accuracy '''

 X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3,

random_state=42)

 clf.fit(X_train, y_train)

 model = clf

 y_pred = clf.predict(X_test)

 mse = mean_squared_error(y_test, y_pred)

 rmse = np.sqrt(mse)

 mae = mean_absolute_error(y_test, y_pred)

 r2 = r2_score(y_test, y_pred)

 if debug:

 print(f"MSE: {mse:.4f}\nRMSE: {rmse:.4f}\nMAE: {mae:.4f}\nR2

Score: {r2:.4f}")

 return clf, model, mse, rmse, mae, r2, X_test, y_test, y_pred

70

def go(x, y, algorithm, debug=True, **kwargs):

 ''' Easy model train and test. '''

 clf = algorithm(**kwargs)

 clf, model, mse, rmse, mae, r2, X_test, y_test, y_pred = train_model(x,

y, clf, debug=True)

 return clf, model, mse, rmse, mae, r2, X_test, y_test, y_pred

go(x, y, MLPRegressor, activation='identity', learning_rate_init=0.001)

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error, mean_absolute_error,

r2_score

def train_model(X, y, clf, debug=False):

 ''' Train algorithm.

 inputs:

 X as array features

 y as array label(s)

 clf as scikit-learn regressor (untrained)

 returns:

 clf as trained regressor

 accuracy as float

 '''

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

 model = clf.fit(X_train, y_train)

 y_predicted = clf.predict(X_test)

 mse = mean_squared_error(y_test, y_predicted)

 rmse = mean_squared_error(y_test, y_predicted, squared=False)

 mae = mean_absolute_error(y_test, y_predicted)

 r2 = r2_score(y_test, y_predicted)

 print("MSE: ", mse)

 print("RMSE: ", rmse)

 print("MAE: ", mae)

 print("R2: ", r2)

 if debug:

 plot_test(clf, X_test, y_test)

 plot_real(clf, X, y, data.index.values)

 return clf, model, mse, rmse, mae, r2, X_test, y_test

def go(x, y, algorithm, debug=True, **kwargs):

 ''' Easy model train and test. '''

71

 clf = algorithm(**kwargs)

 clf, model, mse, rmse, mae, r2, X_test, y_test = train_model(x, y, clf,

debug=True)

 if debug:

 print('MSE: %s'%str(mse))

 print('RMSE: %s'%str(rmse))

 print('MAE: %s'%str(mae))

 print('R2: %s'%str(r2))

 return clf, model, mse, rmse, mae, r2, X_test, y_test

go(x, y, RandomForestRegressor, n_estimators=100, max_depth=5)

To recap, recall the accuracy of each algorithm attempted so far:

Linear Regression: ~60%

Random Forest Regression: >90%

Neural Network Regression: ~50%

Support Vector Regression: <50%

Thus we select Random Forest Regression as our algorithm for turning

4. Tuning the Algorithm

Now let's consider how we can improve the accuracy of our model.

Here's what the scikit-learn documentation say:

In random forests (see RandomForestClassifier and

RandomForestRegressor classes), each tree in the ensemble is built

from a sample drawn with replacement (i.e., a bootstrap sample)

from the training set. In addition, when splitting a node during the

construction of the tree, the split that is chosen is no longer the best

split among all features. Instead, the split that is picked is the best

split among a random subset of the features. As a result of this

randomness, the bias of the forest usually slightly increases (with

respect to the bias of a single non-random tree) but, due to

averaging, its variance also decreases, usually more than

compensating for the increase in bias, hence yielding an overall

better model.

On a high level, regression derived from decision trees often results in low

bias, high variance models, and is prone to overfitting. While the

random forest method (which is built upon many decision trees) is

more robust against bias and variance, overfitting is still a potential

pitfall.

For random forests, there are three main tuning parameters:

72

Number of trees. (n_estimators) More is better, with diminishing returns.

Obviously more trees means longer compute times. A critical

number of trees must be found where significant accuracy and

compute times are optimized.

Number of features to consider at each split. (max_features) If some trees

consider a different subset of features than others, the correlation

between those two groups is minimal. This is desirable because it

teases out the influence of each individual feature.

Depth of trees. (max_depth) Having trees go too deep can lead to

overfitting. There is a critical depth where the trees split enough to

result in useful fit without being too influenced by single values.

Depth may instead be constrained by min_samples_split,

min_samples_leaf, min_weight_fraction_leaf, or max_leaf_nodes

rather than specifying tree depth outright.

DEFAULT VALUES

 RandomForestRegressor(n_estimators=10,

 criterion='mse',

 max_depth=None,

 min_samples_split=2,

 min_samples_leaf=1,

 min_weight_fraction_leaf=0.0,

 max_features='auto',

 max_leaf_nodes=None,

 min_impurity_decrease=0.0,

 min_impurity_split=None,

 bootstrap=True,

 oob_score=False,

 n_jobs=1,

 random_state=None,

 verbose=0,

 warm_start=False)

Start by seeing if performance improves by simply increasing the number

of trees.

default algorithm for reference

print('Default random forest regressor:')

go(x,y,RandomForestRegressor,debug=False)

tuning round 1

print('Tuned regressor:')

go(x,y,RandomForestRegressor(n_estimators=100, n_jobs=-

1),debug=False)

73

Appendix B: Running Transformer codes

Solar Irradiance Transformer code and further description can be downloaded at:

https://github.com/kayodeakanni/

and

https://drive.google.com/drive/folders/1JhlOjD5bh7S61NB7afAXsWzwsfvGwhYf

https://github.com/kayodeakanni/
https://drive.google.com/drive/folders/1JhlOjD5bh7S61NB7afAXsWzwsfvGwhYf

74

Appendix C: Similarity Report

75

Appendix D: Publications based on the Thesis and invitations

Publications

1- Application of Transformers in Information Security: Current Trends and Prospects
https://ieeexplore.ieee.org/document/10102203
2- BERT-IDS: An Intrusion Detection System Based On Bidirectional Encoder Representations from
Transformers. In print
3- Reviewing Applications Of Artificial Intelligence And Blockchain In Energy Industry. In print
4 -Transformer model for Solar Irradiance Forecasting: Optimizing energy case. In print

 Invitations

https://ieeexplore.ieee.org/document/10102203

76

77

78

Appendix E: CV

Personal
information

Olukayode Akanni (ASME, COREN, NSE, IASSC

certified Black Belt Six Sigma, Black in AI, Black in
Robotics, OpenMined, WAIE, Intel Edge AI, MD4SG,

Meetups NeurIPS) IT/Program Manager, AI/Software Engineer

Contact Address: Apt. 3, Kavaz E building, Piabella (Kayaz Harbour Sitesi),Mersin 10, Grine ,kyrenia,
Cyprus.
Telephone Number: +234-8035341567, +90 5488504054
E-mail: kayodeakanni@gmail.com
 Europas CV link: https://resume.io/r/GNjVxuXSl
LinkedIn https://ng.linkedin.com/in/kayode-akanni-cssbb-mba-ai-66789626
Personal website https://about.me/kayodeakanni
Github Portfolio https://github.com/kayodeakanni
Google Scholars
https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oqUUyT
89KzpeO1tbzJhpEuQ7egg0A
NetRights Coalition https://cpj.org/wp-content/uploads/2020/09/PIN-Memo-on-draft-
DPB.docx.pdf
Action Coalition on Civic Engagement in AI Design: https://ecnl.org/focus-
areas/technology-and-artificial-intelligence

Educational
Qualification

(June 2023) Masters of Science, Artificial Intelligence Engineering, AI Engineering Dept.,
Research Center for AI and IoT, AI and Robotics Institute, Near East University, Mersin 10, Turkey.
(2013) Technology Entrepreneurship, Finance, Venture lab, Management Science and
Engineering Stanford University, United States of America
 (2012- 2012) MSC, Operation Research, Business Administration Department, UNILAG,
Lagos(uncompleted)
(2007-2010) NOUN, Master in Business Administration-MBA (Information Technology)
 (1995-2001) University of Ibadan, Ibadan, B.Sc. Hons Mechanical Engineering, Second
Class Lower Division
(1988- 1994) Abadina College, University of Ibadan, Ibadan. (S. S. C.E) May/June1994.-6
Distinctions and 3 Credits.
(1984-1987) Polytechnic Staff School, The Polytechnic, Sango, Ibadan
(1982-1983)Trinity Nursery and Primary School, Ojoo, Ibadan, First School Leaving Cert.

Summary

• I am a professional working on digital inclusion/ digital rights of citizen and also
love applying / building AI apps. My latest AI web app is AFri News Multilingual
Embedding. This app leverages multilingual semantic model from COhere.ai to
revolutionize media and news industry for multilingual market like Africa by Enabling
any person to track news in real time without translating or understanding other
regional languages. Right now, I am working in a team on AIOT Health Mobile App,
which processes the AI algorithms locally on a hardware device to mobile platform.
I have worked on virtual salon solution, a face swap AI web app for Nail and hair
salon at Velena.com, AI and cybersecurity applications, AI and energy applications,
AI and attendance system IOT applications. Drones, Raspberry Pi, Arduino and
Rights Respecting AI framework

Objective To obtain a good position that provides opportunity for rewarding career and using
Engineering, business, AI and robotics- as a key tool for sustainable development. I
have proven ability to take ownership and deliver excellent results with attention to
details.

Previous
work
Experience

2022-2023: Software Engineer, Research Centre for AI and IoT, AI and Robotics Institute, Near

East University, Mersin 10, Turkey
● Built in a team, a full stack e-commerce application using
PHP/JavaScript/HTML/Bootstrap https://velenasalon.com
● Participated in IOT Projects of the institute.

mailto:kayodeakanni@gmail.com
file:///C:/Users/CPG%204/Desktop/:%20https:/resume.io/r/GNjVxuXSl
https://ng.linkedin.com/in/kayode-akanni-cssbb-mba-ai-66789626
https://about.me/kayodeakanni
https://github.com/kayodeakanni
https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oqUUyT89KzpeO1tbzJhpEuQ7egg0A
https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oqUUyT89KzpeO1tbzJhpEuQ7egg0A
https://cpj.org/wp-content/uploads/2020/09/PIN-Memo-on-draft-DPB.docx.pdf
https://cpj.org/wp-content/uploads/2020/09/PIN-Memo-on-draft-DPB.docx.pdf
https://ecnl.org/focus-areas/technology-and-artificial-intelligence
https://ecnl.org/focus-areas/technology-and-artificial-intelligence
https://velenasalon.com/

79

● Participated in a team in the design and development of an Artificial Intelligence
enabled mobile and web health app.

2022: ECNL's Action Coalition Partner, European Center for Not-For-Profit Law
Stichting, Netherlands | Knowledge House (KnowledgeHouseAfrica-KHA), Girne
KKTC, Mersin,10, Turkey.
●Ensure the growth and improvements in the works of DesignIT International
rebranded as Knowledge House with presence in Europe as a parent social enterprise
for her activities in Europe and Africa.
● Execute our Action Coalition on Civic Engagement in AI Design. This is an
initiative launched under the auspices of the “Tech for Democracy Initiative”
spearheaded by the Ministry for Foreign Affairs and Ministry for Development
Cooperation of Denmark. and we have been working on developing a Guide for
meaningful Engagement and participation of CSOs/affected communities in the
development of human rights impact assessment (HRIAs) of AI-driven systems and
have created a draft framework for meaningful trustworthy engagement with domain
experts and stakeholders across law enforcement, government, NGOs and the private
sectors, while using Privacy- preserving AI exposure in Openmined to also develop
socio-technical approaches and frameworks to enable privacy, security and trust in the
data sharing and AI applications.
● Consider issues of privacy, security and trust as they relate to data sharing and
curation of sensitive data sets.

2012- 2021: DesignIT International aka KnowledgeHouseAfrica, #27, Josade
way, Agunfoye-Adamo Rd, Adamo. Ikorodu. Lagos, Nigeria.

- Leading the growth and impact of a nonprofit social enterprise organization
dedicated to apply ICT, builds an ICT-enabled support systems and things, digital
inclusion, advocates digital rights and AI – related legislation in order to improve
livelihoods for underserved, unconnected and the unborn using Free and Open
Source Technologies as a key tool.

- Serves as Black in robotics Teaching assistance in Robotic Education outreaches
including from Imagination to Reality: Computer-Aided Design using Auto desk
Tinkercad, in partnership with Robomechanics lab at Carnegie Mellon University,
CMU, USA.

- Conduct research in development and application of privacy and security related
research including data anonymization and synthetic data generation, differential
privacy, federated learning, and other related technologies through Openmined,
Black in AI, Black in Robotics, OpenMined, WAIE, Intel Edge AI, MD4SG,
Meetups NeurIPS

- Robotics Educator/Engineer using CAD program, design and using 3D printing
bring our own creation to life: Describe the product development process, express
product design ideas using 2D sketches, model a component with complex shapes,
model an assembly of components with kinematic linkages, render and animate
the appearance and functionality of a product, receive a 3D print of a product
designed ourselves.

1997- 2001; Research (Design) Assistant, Mechanical Engineering Dept.,
University of Ibadan, Ibadan.

- From Imagination to Reality: Computer-Aided Design. Developed engineering
drawings of all machines in a plant-consultancy work with Oyo State Government & Raw
Materials Development Research council (RMDRC);Planned, managed major engineering
operations & supervised its production; Design, development, Installation &
commissioning of 20 Tons capacity Oragno-mineral Fertilizer Plant, Ibadan; Developed
an Environmental Information System for scheduling & forecasting of “waste to
wealth” project.

80

Skills ICT Skills: AutoCAD, 3D CAD, Graphic Designs, MS & Primavera Project Planner.
Digital Skills Desktop & Web Applications & technologies, Digital marketing, ICT4D

Consultant, Programming (Python, Scratch, Arduino, JavaScript, CSS, HTML, MySQL,
PhP, C++, Open source projects like Open CV, OpenVINO, ONNX, Tensor flow,
Pytorch, FastAI. Experience in using S/w Development tools), AI/ML/DS Soft Skills:
- Team leadership; Good oral and written communication; Excellent analytical skills; good
organizational and interpersonal skills; Project management; contract management,
designing and meeting budget and KPIs, CAPEX and, OPEX; Monitoring, evaluation &
Impact assessment. Author, Speaker, Youth Coach.

Professional
Membership

Member of Institution of Mechanical Engineers in view (ImechE #8001124) and COREN
(R30,180), IASSC Black Belt (#GR7640001970A), IRCA QMS
Auditor(#SGSD/SSCE/QMSLAC/511493/P/26828), AI Saturdays Lagos (DL #
C05/2/6272020/006)
Member of Nigerian Society of Engineers (NSE-#21579), Nigeria and Member of American

Society of Mechanical Engineers (ASME- #9355165). AI membership:
DataScienceNigeria, AISaturdays Lagos (, Tensorflow Lagos and GDG Lagos, and GDG
Ikorodu, Black in AI, OpenMined, Data Native unlimited, Codeclub of Raspberry pi
foundation. Internet Governance Forum (IGF)

Publications 1- Development and construction of cashew juice extractor machine (a Project work
submitted in partial fulfillment of OND in Mechanical Engineering.
2- Design of 10kN capacity Screw jack (a Design project term paper).
3- Computer graphical representation of Organo-Mineral Fertilizer Pilot Plant Process Flow
chart. (a project work submitted in partial fulfillment of B Sc. Hons in Mechanical
Engineering).
4- West Africa Telecommunications and Nigeria (a report given to YIELD after WAfritel
2002),
5- E-readiness of Banks and Financial institutions in West Africa (a report given to YIELD
after Finance IT Africa)
6- Internet and You (Presented at the National Youth Service Corps Camp, NCCF, Lagos
State ,2002)
7- NYSC Service Year CD Rom: Nigeria Christian Corpers' Fellowship, Lagos State
(2002 and 2003)
8- NGO and e-commerce: (Presented at the Development Information Network meeting,
Lagos State (2003)
9- The Nigerian Youths Designing Open Source for Livelihood Opportunities: (Presented at
the First African Conference on Digital Commons, South Africa, 2004)
10- What young people are doing @ WSIS. (Presented at the Information Communication and
Technologies Youth Empowerment Conference 2004.)
11- Publication of United Nations Economic Commission for Africa on "African youth
Speaks”. (2004)
12-Global Process, Local Reality: Nigerian youth Lead Action in the Information
Society.WSIS Policy II, Tunisia 2005

https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oq
UUyT89KzpeO1tbzJhpEuQ7egg0A
13- Solving poverty through Digital Economy. AI6Lagos Data science & Machine learning
Project. https://GitHub.com/deep-forthinkn ,
https://twitter.com/AISaturdayLagos/status/1208388686204809216?s=09(2019)
14- American Sign Language Translator, an Intel Edge AI Udacity's Winning AI for social
good Project (2020) https://GitHub.com/ASL
15- Facial Expression Recognition, AI6 Lagos Deep learning project (2020),
https://GitHub.com/AI6DLProject
16- OpenMined's privacy preserving ML with python tutorial pidgin translation.
https://github.com/OpenMined/PySyft
17- AIOT Health App
18- Application of Transformers in Information Security: Current Trends and Prospects
https://ieeexplore.ieee.org/document/10102203
19- BERT-IDS: An Intrusion Detection System Based On Bidirectional Encoder
Representations from Transformers
20- Attendance System via Internet of Things, Blockchain and Artificial Intelligence
Technology: A Systematic Literature Review

https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oqUUyT89KzpeO1tbzJhpEuQ7egg0A
https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oqUUyT89KzpeO1tbzJhpEuQ7egg0A
https://github.com/deep-forthinkn
https://twitter.com/AISaturdayLagos/status/1208388686204809216?s=09(2019)
https://github.com/ASL
https://github.com/AI6DLProject
https://github.com/OpenMined/PySyft
https://ieeexplore.ieee.org/document/10102203

81

https://www.researchgate.net/publication/369242900_Attendance_System_via_Internet_of_
Things_Blockchain_and_Artificial_Intelligence_Technology_Literature_Review
21- Reviewing Applications Of Artificial Intelligence And Blockchain In Energy Industry
22 - 0ptimizing energy in the digital age: solar irradiance forecasting using transformer model

Community
Activities

Taking IT Global (TIG)- An international organization-TIG brings together young people
in more than 190 countries within international
networks to collaborate on concrete projects addressing global problems and creating positive
change www.takingitglobal.org
Free Software and Open Source Foundation for Africa (www.fossfa.net)–An African
based organisation made up of Open
Source Users & Developers throughout Africa, devoted to the development & promotion of
Free and Open Source Software in Africa
World Summit On Information Society Youth Africa (www.wsisyouth.org) –The
concerted effort of the African youth
involvement in the WSIS Process, which is the initiative of the United Nations and the
International Telecommunication Union (ITU)
African Youth and the Information Society Initiative (UNECA)- Organized by the United
Nations Economic Commission for
Africa. A platform for African youth to share experiences and knowledge with stakeholders in
order to help develop innovative approaches to their needs and to implement the UN World
Summit on the Information Society action plan at country & regional level.

Hobbies Thinking, planning, reading, writing, creative reasoning, leadership, decision making and
problem solving.

Languages English, Yoruba and French language

Awards • Intel Edge AI Udacity's Winning AI for social good Project (2020)
https://GitHub.com/ASL

• Listed by Software Freedom Foundation (now Digital Freedom Foundation)
as 2006 Best global Software Freedom Day (SFD) team (2006)

• Third position in Technical project presentation for Abadina College’s first
time at Junior Engineer and Technical Students (JETS) competition at state
level. (1994)

Professional
Competence
Certifications

 Udacity nanodegree on Intel Edge AI for IOT Developer & AWS ML (in view), IOT and
ARDUINO. Certified Lean Six Sigma Black belt (CSSBB),Project Management-PMP in
view, Auditor (QMS, EHS),COREN, NSE, ASME-USA, ImechE(in view)-UK.

References ❖ Prof. O. Bamiro, former Vice Chancellor, University of Ibadan, Ibadan, Nigeria.
Tel: +2348023151513; oabamiro@yahoo.com

❖ Prof Fadi AL-Turjman, Asst Dean, Director of Research center for AI and
Robotics Institue,Near East University, Tel: +905428520985
fadi.alturjman@neu.edu.tr

❖ Asst. Prof. Dr. Auwalu Saleh Mubarak, Lecturer, Research center for AI and

Robotics Institue,, Near East University, Tel: +905338717889
auwalusaleh.mubarak@neu.edu.tr

❖ Dr. Seun Kolade, Faculty Head of Doctoral Training Programme, De Montfort
University, Leicester, UK. Tel: +447897265890 seunkolade2014@gmail.com

❖ Mr. Moses Duphey, World Bank ,P.O Box C847, Accra, Ghana,
Tel:+233244649748; mosesduphey@yahoo.co.uk

https://www.researchgate.net/publication/369242900_Attendance_System_via_Internet_of_Things_Blockchain_and_Artificial_Intelligence_Technology_Literature_Review
https://www.researchgate.net/publication/369242900_Attendance_System_via_Internet_of_Things_Blockchain_and_Artificial_Intelligence_Technology_Literature_Review
mailto:oabamiro@yahoo.com
mailto:seunkolade2014@gmail.com
tel:+233244649748
mailto:mosesduphey@yahoo.co.uk

