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Abstract 

“Optimizing Energy In The Digital Age: Transformer For Solar Irradiance 

Forecasting” 

 

Olukayode AKANNI 

M.Sc , Department of Artificial Intelliegnece Engineering 

June 2023, 97 pages 

 

Artificial intelligence and renewable energy are critical for attaining a carbon-neutral 

economy and a sustainable environment. 

With rising energy demand, reliable sun irradiance estimates are required for 

integrating solar photovoltaic (PV) systems into the national power grid.  

This research introduces innovation of teacher forcing concept to Time Series 

Transformer model with attention mechanism for forecasting solar irradiance, similar 

to the GPT's training framework. The NASA Kaggle dataset was utilized, and it 

includes meteorological and solar radiation data from September through December 

of 2016. Temperature, pressure, humidity, radiation, wind direction, sunrise and 

sunset periods, and time-related variables were extracted from the dataset using 

Exploratory Data Analysis. 

Before inputing the solar radiation data into the Transformer model, it was pre-

processed and normalized. Test results show the superiority of the proposed model 

when compared with the other 10 AI models. The Time Series Transformer model is 

effective and has the highest performance attained by having the lowest MSE, RMSE, 

MAE, and R2. When compared to other state-of-the-art MAPE solar forecasting 

findings, the Time Series Transformer model has 97.6% as coefficient of 

determination and the lowest Mean Absolute Percentage Error of 0.68%, making it an 

excellent approach for forecasting solar energy. In the digital era, this model is a 

helpful tool for energy optimization. A Proof-of Concept implementation of this 

project can be found here. 

 

 

Keywords: Solar Irradiance, Transformer Model, Machine learning, Sustainable 

climate, Artificial Intelligence, Renewable energy, NASA  
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ÖZET 

“Dijital Çağda Enerjiyi Optimize Etmek: Güneş Işınım Tahmini İçin 

Transformatör” 

 

Olukayode AKANNI 

Yüksek Lisans , Yapay Zeka Mühendisliği Bölümü 

Haziran 2023, 97 sayfa 

 

Yapay zeka ve yenilenebilir enerji, karbon-nötr bir ekonomi ve sürdürülebilir bir 

çevre elde etmek için kritik öneme sahiptir. Artan enerji talebi ile birlikte, güvenilir 

güneş ışınımı tahminleri, güneş fotovoltaik (PV) sistemlerinin milli enerji şebekesine 

entegrasyonu için gereklidir. Bu araştırma, güneş ışınımını tahmin etmek için Zaman 

Serisi Transformer modeline öğretmen zorlaması kavramının yenilikçi bir şekilde 

uygulanmasını sunmaktadır ve GPT'nin eğitim yapısı ile benzerlik gösterir. NASA 

Kaggle veri seti kullanılarak, Eylül ayından Aralık 2016'ya kadar olan dönemi 

kapsayan meteorolojik ve güneş radyasyonu verileri elde edildi. Sıcaklık, basınç, nem, 

radyasyon, rüzgar yönü, gün doğumu ve gün batımı süreleri ile zamanla ilişkili 

değişkenler, veri keşfi yöntemleri kullanılarak veri setinden çıkarıldı. 

 

Güneş radyasyonu verileri, Zaman Serisi Transformer modeline girmeden önce, 

önceden işlendi ve normalize edildi. Test sonuçları, önerilen modelin diğer 10 yapay 

zeka modelleri ile karşılaştırıldığında üstünlüğünü göstermektedir. Zaman Serisi 

Transformer modeli etkili ve en düşük MSE, RMSE, MAE ve R2 değerlerine sahip 

olarak en yüksek performansı sergilemektedir. Diğer güncel MAPE güneş tahmin 

bulgularıyla karşılaştırıldığında, Zaman Serisi Transformer modeli %97,6 belirleme 

katsayısı ve %0,68'lik en düşük Mutlak Yüzde Hata ile mükemmel bir güneş enerjisi 

tahmini yaklaşımı sunmaktadır. Dijital çağda bu model, enerji optimizasyonu için 

faydalı bir araçtır. Bu projenin bir Konsept Kanıtı uygulaması burada bulunabilir. 

 

Anahtar kelimeler: Transformer Model, Makine öğrenmesi, Regresyon, Yapay Zeka, 

Yenilenebilir enerji, NASA, Regresyon. 
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                                                           CHAPTER I  

Introduction 
 
 
1.0 Background of the Study 

Our population worldwide has been on the rise for the past decades, which 

resulted in an increase in the basic needs of the everyday lives of humans (Kumara 

and Toshniwal, 2021b). Energy tops the lists of resources that must be increased, 

with an estimated increase of electricity demand expected to reach 70% from 2015 

in the next couple of years (Duffy et al., 2015). Solar energy is a popular renewable 

energy source, making it essential to accurately forecast solar energy production 

and adjust energy demands accordingly especially with fossil fuels impacting 

negatively on the environment. The use of solar energy, in particular, has grown 

significantly. However, solar energy is an intermittent source of energy, and its 

availability depends on weather conditions. The world has been relying for the past 

century on fossil fuels for power generation that are not only depletable but also 

suffer from heavy environmental drawbacks (Kumari and Toshniwal, 2021a) .AI 

with IOT are crucial for increasing the use of renewable energy, which is critical 

for reducing greenhouse gas emission that drive climate change, and to monitor 

energy production. 

As a response to that, many countries have been recently investing in renewable 

energy. Solar energy in particular has been deemed the most promising source due 

to the abundancy of solar radiation (Wang et al., 2020). Solar Photovoltaics (PV), 

in particular, have been gaining attention because of their environmental and 

economic benefits. Its working principle is based on converting the sunlight 

irradiance into electricity through the photovoltaic effect (Sampaio and González, 

2017). Although PV energy offers itself as a cheap and eco-friendly alternative to 

traditional thermal sources, the integration of PV into the national grid suffers from 

several drawbacks. PV, like other renewable sources, is intermittent by nature 

(Kumari and Toshniwal, 2021b). In other words, solar energy production depends 

on weather factors that vary with time, resulting in a very chaotic and 

uncontrollable energy output (Brahma and Wadhvani, 2020). When integrated with 

the electricity grid on a large-scale, PV systems may cause reliability issues due to 

underproduction, and excessive costs during overproduction, and may 

consequently degrade the grid (Abdel-Nasser et al., 2020). 



 
 

2 

For a reliable and economic integration of PV, grid operators must continuously 

receive accurate forecasts of solar irradiance in real-time (Kumari and Toshniwal, 

2021a). Forecasting solar irradiance is essential for optimizing solar panel energy 

production and incorporating solar energy into the electrical grid. Energy 

businesses must accurately predict solar irradiance in order to efficiently build and 

run solar power projects. 

Since accurate forecasting methods have been developed for these factors, models 

have been developed to deduce the irradiance from those forecasts (Lai et al., 

2020). 

Numerical weather prediction (NWP) is what most of the models developed for 

solar irradiance forecasting use (Murata et al., 2018). Although they are widely 

accepted as a decent forecasting technique, they are computationally expensive and 

require the processing of large datasets (Hao et al., 2019). Consequently, they fail 

in the case of short-term forecasting needed by energy control centers. Some 

statistical methods that use regression and time-series techniques have also been 

utilized. However, their success has been constrained by the non-stationary and 

non-linear solar irradiation. (Reikard, 2009). 

Artificial neural networks (ANN) have emerged recently in the area of machine 

learning as a successful forecasting model (Kumari and Toshniwal, 2021b; Kumari 

and Toshniwal, 2021a; Brahma and Wadhvani, 2020; Abdel-Nasser et al., 2020; 

Wang et al., 2018; Huang et al.,2021).  

A number of techniques (Curceac et al., 2019) have been utilized for solar 

forecasting and prediction, including statistical models, ML models, and deep 

learning (DL) models. LSTM variations have also lately become the most often 

used option for time series data modelling. (Middya and  Roy, 2022). 

The transformer is the cornerstone of modern AI technology. Transformers are a 

type of deep learning model design, much as CNNs and LSTMs. The benefits of 

this ground-breaking architecture have prompted the use of Transformers as the 

basis for the newest cutting-edge models. The Transformer's capacity to examine 

input simultaneously utilizing many heads of self-attention helps speed up training. 

The self-attention mechanism, which greatly improves prediction accuracy, also 

gives the Transformer a larger capacity for data classification/ regression. As of 

right now, the Transformer has generated noteworthy outcomes in NLP and CV 

fields (Vaswani et al., 2017; Tetko et al., 2020; Acheampong et al., 2021; Li et al., 
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2021). The field of NLP has undergone a revolution because of the usage of 

transformer models., and their potential for time series forecasting is only 

beginning to be explored. At photovoltaic (PV) power plants, the forecast of solar 

irradiance is crucial for planning the power generation scheduling. In order to do 

this, we seek to forecast solar irradiance that take use of machine learning models 

and transformers. This thesis investigates the use of transformer models for solar 

irradiance forecasting, with the aim of optimizing energy in the digital age. 

Significant barriers to the use of deep learning are removed by Pytorch Forecasting. 

Despite the fact that deep learning has won out in the fields of language processing, 

time series forecasting, and image processing. virtually invariably, GPUs are 

required for training neural networks, however they are not always readily 

accessible. Specifications for hardware are usually a significant obstacle too. But 

this problem may be solved by moving processing to the cloud, like Colab, where 

this experiment was carried out. 

 

1.1 Transformer Model 

 

To find context and meaning in sequential data, a neural network known as 

a transformer model records connections. It is driving a wave of machine learning 

advancements known as transformer AI, which is being used to translate text and 

speech almost instantly, make meetings and classrooms accessible to people with 

hearing loss and from different backgrounds, and help researchers understand the 

connections between genes and amino acids in proteins and DNA. They are taking 

the place of convolutional and recurrent neural networks (CNNs and RNNs), which 

were the most used deep learning model types five years ago. A robust neural 

network architecture called Transformers employs positional encoders to tag data 

pieces as they enter and exit the network. The attention units create an algebraic 

map of how each element is related to these tags. The word "self-attention" was 

almost adopted by Google researchers to describe their 2017 model since it is an 

effective tool for learning associations. The Transformer model was subsequently 

published by Google in 2017, Vaswani et al., (2017) . Transformers represent a 

significant departure from RNNs and CNNs, the two most widely used models for 

pattern recognition. Machine learning underwent a paradigm shift when the Google 

team trained their model on eight NVIDIA GPUs in just 3.5 days, spending a 
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fraction of the time and money required to train prior models. Beyond comparable 

work published by a Facebook team using CNNs, it was a pivotal moment. Another 

Google team tried using a transformer to handle text sequences in both the forward 

and backward directions a year later. This effort established 11 new records and 

was incorporated into the Google search algorithm. International researchers were 

adapting BERT for use cases across many languages and industries. 

Transformer models have proven to be valuable in various domains and tasks, 

including: 

(a) Natural Language Processing (NLP): This encompasses a wide range of 

activities such as text categorization, named entity identification, question-

answering, language modelling, summarization, translation, multiple-choice tasks, 

and text generation. 

(b) Computer Vision (CV): Transformer models have also demonstrated 

effectiveness in tasks related to computer vision, including image segmentation, 

object identification, and image categorization. 

(c) Audio Processing: Transformer models can be applied to audio-related tasks 

such as speech recognition software and voice classification. 

(d) Multimodal Applications: Transformers are also suitable for multimodal tasks, 

such as Optical Character Recognition (OCR), document information extraction, 

table question answering, video classification, and visual question answering. 

Transformer models are compatible with popular frameworks like JAX, 

TensorFlow, and PyTorch. This compatibility allows for seamless integration and 

transfer of models between frameworks. It is possible to train a model in one 

framework with just a few lines of code and then load it in another framework for 

inference. Additionally, models can be exported to file formats like ONNX and 

TorchScript, enabling their deployment in real-world applications. 

Similar to how a Transformer is learned for machine translation, the model is 

trained via "teacher-forcing." This indicates that one prepends the final value of the 

past values to the future values as input to the decoder during training, moving them 

one place to the right. The model must forecast the subsequent target at each time 

step. Since there is no concept of decoder_start_token_id (we simply use the most 

recent value of the context as initial input for the decoder), the setup of training is 

similar to that of a GPT model for language. 
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We feed the decoder the final value of the past values at the moment of inference. 

The next step is to sample data from the model to produce a forecast for the 

following time step, which is then given to the decoder to make the subsequent 

prediction (also known as autoregressive generation). 

 

1.2 Driving the Digital and Sustainable Transformation of the Energy System 

in Europe: Challenges and Opportunities 

The European Green Deal and REPowerEU initiatives aim to transform the 

energy system in Europe towards sustainability and digitalization. This 

transformation requires leveraging digital technologies such as IoT devices, 

advanced connectivity, and cloud-edge computing. However, further efforts are 

needed to fully utilize the potential of these technologies while protecting privacy 

and data. Promoting connectivity and data exchange, enhancing cybersecurity and 

governance, and addressing energy consumption are crucial aspects of this 

transformation. Initiatives like the proposed Data Act and Data Governance Act 

play a vital role in ensuring a successful digital and sustainable energy transition in 

Europe EC, COM(2022).  

To ensure the success of the digitalization of the energy system, attention must be 

given to cybersecurity, energy consumption, effective governance, digital rights 

and EU data sovereignty. Robust cybersecurity measures are essential to safeguard 

critical infrastructure and prevent unauthorized access. Addressing energy 

consumption concerns is vital to optimize energy efficiency and reduce wastage. 

Furthermore, designing effective governance frameworks ensures transparency, 

accountability, trust and compliance with data privacy regulations.  

To realize a world where AI respects and preserves rights, the author proposed the 

concept of using AI for Socio-Economic opportunities and enhancing quality of 

life (#AI4SQL) as a volunteer expert involved in the creation of the Nigerian 

National AI Policy document, this Rights preserving AI concept was incorporated 

into the policy between 2022-2023 (NAIP 2022). 

Our research aims to contribute to the digital and sustainable transformation of the 

energy system by developing an optimized model for solar irradiance forecasting 

which is aligning with the goals of the European Green Deal and REPowerEU 

initiatives. Our study offers valuable insights and practical solutions for achieving 

a clean and affordable energy future in Europe and the world. 
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1.3 Motivation. 

The rising World population demands increased basic needs, including 

energy. According to United Nations Population projections, Nigeria will be the 

third most populated country by 2100 and would have the same population as the 

United States by 2050.This implies that electricity consumption in Africa will rise, 

both for humans and for energy-hungry robots. This current study is in furtherance 

to the paper on reviewing of AI and Blockchain applications in the energy industry 

(Akanni et al., 2023). We explored which AI model is the most accurate and 

effective at estimating how much sun power per unit area, measured in watts per 

square metre (W/m2) in SI units, will be available to be converted into electricity. 

We observed how the Time series Transformer model is effectively employed in 

NLP and machine translation, therefore we want to apply it for forecasting solar 

irradiance as well which from the best of our knowledge, this is the first time is 

done. Hence by combining AI models and renewable energy, we improve 

sustainability, optimize energy utilization in the digital age by using Transformer 

for solar irradiance forecasting in order to achieve a carbon-neutral economy. 

Hence optimization technique is focusing mainly on increasing a reliable and 

economic integration of PV by grid operators through accurate forecast of solar 

irradiance. 

 

1.4 Statement of problem. 

The problem addressed in this research is the need for accurate estimation 

of energy yield in photovoltaic (PV) systems to determine their viability as an 

alternative to traditional energy sources. Existing mathematical models for energy 

yield estimation are complex and require parameters that are difficult to obtain. 

Instead, the output of a PV system is influenced by meteorological data such as 

ambient temperature and solar irradiation, which can be challenging and expensive 

to measure. This necessitates the development of alternative prediction methods to 

accurately forecast solar irradiance. Forecasting solar power is a challenging task 

due to the variability of solar irradiation influenced by location, weather, and other 

meteorological factors. Accurate predictions of solar irradiance are crucial for the 

successful integration of solar energy with conventional generating sources. 

Energy forecasting, including solar power forecasting, is essential for effective grid 
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management and power trading. Various statistical methods and theoretical models 

have been used for solar power forecasting, but the transformer model with the 

teacher forcing concept offers a unique approach that captures the context and 

relationships in solar and meteorological data. By optimizing the hyper-parameters 

of the Time series transformer, the model aims to achieve high forecasting 

accuracy, low MAPE and high R2 values for accurate solar power predictions. 

 

1.5 Research Questions 

● What are the main AI Models used in Solar forecasting? Which one is 

effective and superior? 

● Do Time Series Transformer model for solar irradiance forecasting work? 

● How can it compare with state of art paper using MAPE? 

● What are some proposed recommendations to optimizing energy in the 

digital age? 

 

1.6 Aims and Objective of the study 

This research aims to address the challenge of accurately forecasting solar 

irradiance by introducing the teacher forcing concept to a time series Transformer 

model with an attention mechanism. The goal is to optimize energy generation by 

improving the accuracy of solar irradiance forecasts and comparing the 

performance with other machine learning models. 

The objectives are: 

• To develop a precise solar forecasting model that outperforms existing 

machine learning models. 

• Compare our best model with other state-of-the-art MAPE forecasting 

results 

The following Sustainable Development Goals (SDGs) are addressed in this work. 

The SDGs were established by the UN General Assembly to encourage 

cooperation among all nations and stakeholders. 

• Goal 7.1: Assure that all people have access to modern, affordable energy 

services by the year 2030. 
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• Goal 7.2: Increase the proportion of renewable energy in the world's energy 

mix significantly by the year 2030. 

• Goal 13: Climatic actions to limit and adapt to climate change. 

 

1.7 Significance of the Study and contribution 

 

The significance of this research study lies in addressing the limitations of 

traditional statistical techniques, neural network approaches, and theoretical 

models in forecasting solar irradiation. By leveraging the potential of deep neural 

networks, specifically the Time series Transformer model, this study aims to 

provide a practical and accurate solution for energy forecasting and optimization. 

 

The implementation of the Time series Transformer model allows for forecasting 

of solar photovoltaic power by identifying connections and relationships within the 

data. The study utilizes performance evaluation metrics such as MSE, MAE, 

MAPE and R2 to assess the effectiveness and quality of the model. 

 

Precise forecasts of solar irradiance are crucial for the effective integration of solar 

energy into the power grid. By utilizing the NASA Dataset and proposing the Time 

series Transformer technique, this research contributes to 

• We developed a general Time series Transformer-based model for accurate 

solar irradiance forecasting models.  

• We showed that our approach which is a unique combination of the Time 

series Transformer model with the teacher forcing idea and data pre-

processing, providing an efficient and accurate solar predictor. 

• The accuracy, performance and reliability of the model were investigated 

on the basis of standard performance evaluation metrics 

• This study fills a gap in the literature by conducting a comprehensive 

evaluation of solar irradiance forecast models using the Time series 

Transformer and the teacher forcing idea.  

• We showed that our time series Transformer-based model achieves state-

of-the-art forecasting results. 
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According to our findings, Time Series Transformer model in test results shows 

effectiveness and superiority in explaining observed data, high forecasting 

accuracy with low mean absolute percentage error and high R2. 

Overall, this research study provides valuable insights and practical solutions for 

forecasting solar irradiance, addressing the limitations of existing approaches, and 

advancing the field of energy optimization. 

 

1.8 Limitation  

After a thorough investigation of the response times of the current models, 

Transformer models require more resources to implement than more traditional ML 

model techniques. Especially for time series forecasting. No high-level API is 

available that interfaces with well-known frameworks like Google's Tensorflow or 

Facebook's PyTorch. For traditional ML, there is the Scikit-learn ecosystem, which 

provides a uniform user interface for professionals. 

 

1.9 Organization 

This thesis is made up of five chapters, as well as a conclusion, appendixes, 

and references. 

Chapter 1: An outline of the study and its setting, research techniques, the research's 

objectives are given. 

Chapter 2: The problem is addressed theoretically, and the chapter also offers 

review of related academic writing on the thesis's core subject. References to 

relevant sources are compared. 

Chapter 3: This chapter provides an overview of the suggested solution and the 

Transformer Architecture, as well as a description of the study's methodology and 

a brief discussion of research methods. 

Chapter 4: The training plan and performance are covered in this chapter. 

Chapter 5: The model's effectiveness is assessed, and the outcome analysis is 

presented. 

Conclusion and Recommendation of the report. 
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CHAPTER II 

Related Research 

 

2.0 Related Works 

Solar irradiance predictions have been the subject of extensive investigation. 

Statistical, physical, and hybrid models are examples of traditional solar irradiance 

forecasting models. Short-term forecasting has traditionally relied on statistical 

models like Autoregressive Integrated Moving Average (ARIMA). However, there 

are limitations in the ability of these models to capture nonlinear relationships and are 

sensitive to outliers. Physical models, which use physical principles to model the 

behaviour of the atmosphere, have been shown to be accurate for long-term 

forecasting. However, physical models are complex and require extensive data inputs. 

Hybrid models, which combine statistical and physical models, have shown promising 

results. 

Solar irradiance forecasting has recently used machine learning techniques. 

Short-term forecasting has been successfully accomplished using Support Vector 

Regression (SVR), Random Forest (RF), and Artificial Neural Networks (ANN). 

However, these models are limited by their inability to capture temporal 

dependencies.   

Transformer models, introduced in NLP, have shown promising results in time 

series forecasting, such as teaching robots to translate words into French. They have 

been effectively applied to various time series forecasting applications, such as stock 

prices, electricity consumption, and wind generation. However, their application to 

solar irradiance forecasting has not been extensively studied. Many changes to Wen 

et al's Transformer model (Wen et al., 2022) have been successfully used to time 

series forecasting applications (Zhou et al., 2021; Li et al., 2019). Transformer models 

have demonstrated outstanding performance in capturing temporal dependencies. 

This work uses a Multi-head Attention layer to understand temporal context 

information, in contrast to other studies (Brahma and Wadhvani, 2020; Alzahrani et 

al., 2017; Alharbi et al., 2021). Premalatha et al.'s study (Premalatha et al., 2016) 

shows a traditional ANN model with fully linked layers, which, in contrast to the 

attention matrix method, is unable to contextualize information in lengthy time series. 

The possibility of splitting the learning process into sunny and overcast days is shown 
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by several studies (Zafare et al., 2021; Zafare et al., 2021; Wang et al., 2012). 

Furthermore, (Husein et al., 2019; Mendonça et al., 2020) explore the relationships 

between weather variables and solar irradiance and underline the advantages of 

employing meteorological data as input. 

Since solar irradiance directly affects the amount of electricity generated by 

solar panels (Sharma et al., 2010), it is essential for a PV power plant to predict the 

level of solar irradiance ahead of time in order to optimize operational costs through 

generation scheduling (Liang et al., 2007). 

Solar Forecasting is a technique for foreseeing the solar irradiation 

components for a certain PV installation. The three basic approaches are statistical 

time series, physical approaches, and ensemble approach. We focus on the statistical 

time series approach. 

Using a statistical time series approach, while retaining long-term dependencies, 

statistical time series methods have limits in their capacity to precisely connect time 

series input and output for both long-term and short-term periods. Time series 

Transformer address these limitations in machine learning and deep learning 

techniques by handling long term dependencies well. 

Due to significant computing requirements, using complicated physics-based 

models is often seen as costly (Prema et al., 2015). As a result, the goal of this research 

is to develop models that take meteorological information into account and are 

capable of accurately forecasting solar irradiance using low-cost machine learning 

approaches. 

2.1 Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANNs) are composed of multiple layers, each 

containing a specific number of neurons. Figure 2.1 illustrates a simple neural 

network, where each color represents a layer and each circle represents a neuron. The 

first layer of an ANN is the input layer, which receives a vector of input features. An 

important advantage of neural networks is that input data does not require 

preprocessing before being fed into the network. The data then propagates through 

hidden layers, ultimately reaching the final output layer. The number of neurons in 
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the output layer depends on the problem at hand. ANNs can be utilized for both 

classification and regression tasks, based on the chosen loss function. 

The propagation of data through a neural network is determined by the network 

parameters, namely the weights (W = {w1, w2, ..., wi, ..., wm−1}) and biases (B = {b1, 

b2, ..., bi, ... , bm−1}), where m represents the number of layers in the network. Each 

weight (wi) is a matrix with dimensions l × k, and each bias (bi) is a vector with 

dimension l, where k is the number of neurons in the previous layer (i-1) and l is the 

number of neurons in layer i. 

The value of each neuron in layer i is calculated as a linear combination of the neurons 

from the previous layer, followed by a non-linear activation function. Common 

activation functions include the hyperbolic tangent, rectifier (ReLU), and sigmoid 

functions. The weights and biases are the parameters optimized during the training 

process. Equation 2.1 depicts this relationship, 

ai = f (wi−1 ai−1 + bi−1)       (2.1) 

 where ai represents the activation vector representing the neuron values in layer i, f 

is the activation function, and wi−1 and bi−1 are the corresponding weights and biases, 

respectively. 

 

Figure 2.1: A simple neural network. 

A crucial characteristic of neural networks is their ability to approximate functions. 

The Universal Approximation Theorem states that any function f can be approximated 

by a neural network with a sufficient number of neurons and layers. (Milind et al., 

2020) 
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2.2 Optimization Problem 

The problem of solar irradiance forecasting can be formulated as an 

unconstrained optimization problem. The objective function in Equation 2.2 is the 

mean squared error (MSE), where the goal is to minimize the average squared 

difference between the actual and forecasted values of irradiance. The predicted value 

is a continuous output from the neural network's output layer. Since the layers of a 

neural network are interconnected through Equation 2.1, the error propagates 

backward through the layers. Consequently, the parameters of the ANN, specifically 

the weights and biases, are adjusted using a backward-propagation mechanism known 

as backpropagation. [55] 

       (2.2) 

In the equation, ˆy and y represent the forecasted and actual values of solar irradiance 

in W/m2, respectively. n is the number of samples, and W and B represent the sets of 

weights and biases, respectively. 

2.3 Transformer 

The Transformer architecture addressed the issue of preserving long-term 

dependencies by leveraging (a). self-attention mechanisms to retain word-to-word 

relation and (b). positional encodings to represent each word’s position. This 

enables parallel computation over the entire text without disrupting the order. The 

Transformer has an encoder for input text and a decoder for generating text. (Vaswani 

et al., 2017) 

2.4 Time Series Forecasting  

Recent years have seen a breakthrough in time series forecasting research 

using various deep learning algorithm modifications. Numerous practical fields, 

including weather, economics, agriculture, transportation, and even exact scientific 

reasons, have embraced applications. 

All of the natural language processing models were replaced with a transformer. 

Given the similarity between completing of text andty6 forecasting of time series data, 
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strategy based on attention was also used in Time Series. (Wu et al., 2021) applied a 

Transformer-based approach to forecast influenza cases, demonstrating its superiority 

compared to other sequential models. (Grigsby et al., 2021) developed Transformer-

based models for time series forecasting, considering distinct spatial relationships 

between variables and achieving improved forecasting results. In their study, Haoyi 

(Zhou et al., 2021) developed a transformer model called Informer specifically 

designed for predicting long sequence time-series data. This model was applied to 

tasks such as electricity consumption planning, which requires a high prediction 

capacity. The term "prediction capacity" refers to the model's ability to accurately 

capture long-range dependencies between the output and input variables efficiently. 

2.5 PyTorch Forecasting for Time Series Forecasting 

Though deep learning has surpassed conventional approaches in time series 

forecasting tasks, deep learning architectures have not yet become the norm for time 

series forecasting tasks, despite dominating computer vision and language processing 

workloads. The lack of a high-level API that would operate with well-known 

frameworks like PyTorch or Tensorflow has been a key barrier, in addition to the 

hardware requirements, making it rather challenging to leverage neural networks over 

the conventional approaches (easy to use in the scikit learn ecosystem). By giving 

PyTorch a high level API that can easily use the panda’s data frame, PyTorch 

Forecasting finds a solution to the issue. The package's foundations in PyTorch 

Lightning and PyTorch APIs make learning it simpler. Modern time series are made 

easier with Pytorch Forecasting. using neural networks for predicting in both 

academic and real-world scenarios. The package has some intriguing clauses, such as: 

a class for time series datasets that abstracts away the processing of variable 

transformations, missing values, random subsampling, different history lengths, etc. 

Therefore, in order to train your model in PyTorch, no specialized expertise of 

dataset creation is needed. Basic training of time series models is provided through a 

base model class, along with logging in Tensor board and general visualizations like 

actual vs. predicted values and dependency charts. There are numerous neural network 

topologies for time series forecasting that have been improved for real-world 

application and come with built-in interpretation capabilities, time series metrics with 

multiple horizons for scalability, the networks are made to function with PyTorch 



 
 

15 

Lightning, which out-of-the-box supports training on CPUs as well as single and 

multiple (distributed) GPUs. (Kasper, 2022)  

2.6 Transformer model for Solar irradiance prediction 

To utilize a transformer model for predicting solar irradiance based on a 

dataset of solar radiation and weather, the following steps need to be undertaken: 

Data pre-processing: The dataset should be cleaned and, if necessary, normalized or 

standardized as part of the pre-processing stage. Additionally, the data might need to 

be transformed into a format compatible with the transformer model. This involves 

tasks such as including the timestamp, standardizing the solar radiation dataset, and 

normalizing the solar irradiance data. 

Dataset separation: Split the dataset into training and test sets. The training set is 

used to train the transformer model, while the test set is used to evaluate its 

performance. 

Define the transformer-based model: Specify the characteristics of the transformer 

model, such as the number of layers, attention heads, and hidden layer dimensions. 

Additionally, define the input and output layers of the model. 

Model training: Train the transformer model using the training set. Specify the 

optimizer, loss function, and any other relevant training hyper parameters. 

Model evaluation: Assess the performance of the trained model using the test set. 

Calculate performance metrics like mean squared error (MSE) or mean absolute error 

(MAE) to measure the accuracy of the model. 

Prediction application: Once the model has been trained and evaluated, it can be 

applied to make predictions on new data. However, this fresh data needs to undergo 

the same pre-processing steps as the training data before the model can generate 

accurate predictions (Vaswani et al., 2017) 

 

The Time Series Transformer model is a probabilistic vanilla encoder-

decoder Transformer for time series forecasting. It adds a distribution head on top 

of the former, which can be used for time-series forecasting. Note that this is a so-

called probabilistic forecasting model, not a point forecasting model. This means 

that the model learns a distribution, from which one can sample. The model doesn’t 

directly output values. (Niels and Kashif, 2022)
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CHAPTER III 

 

3.0 Methodology/Materials 

3.1 From Machine learning - Neural Networks to Deep Learning- 
Transformers  

Artificial Neural Networks are brain-inspired systems which are intended to 

replicate the way we humans learn. 

Neural networks consist of input and output layers, as well as (in most cases) a hidden 

layer consisting of units that transform the input into something that the output layer 

can use. 

 

Figure 3.1: Shows the basic structure of a Neural Network 

 

 

 

Figure 3.2: Shows the MSE loss function of ML models used to forecast irradiance 

value 
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3.2 Transformer Architecture 

 

In deep learning, a transformer is a model. It stands out for adopting self-

attention and differently valuing the importance of each component of the input data 

(which includes the recursive output). Natural language processing is where it is most 

frequently employed. 

Transformer models are a sort of neural network that examine connections in 

sequential data in order to understand context and meaning. 

  

Figure 3.3: Shows the basic structure of a time series transformer 
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3.2.1 Encoder/decoder architecture 

 

The encoder component of the model consists of several parts, including 

positional encoding, an input layer, and N identical encoder layers. The input layer 

converts the input time series data into a vector using a fully connected network, 

which is necessary for the multi-head attention mechanism to operate. Each encoder 

layer also includes a fully connected feed-forward neural network after the multi-head 

attention layer. The output of each encoder layer is passed as input to the next layer, 

and all layer outputs have the same dimensions. The decoder component, on the other 

hand, consists of an input layer, N identical decoder layers, and an output layer. Each 

decoder layer includes two multi-head attention layers and a feed-forward neural 

network. The initial attention layer of each decoder layer receives input from the 

output of the preceding layer, while the second attention layer uses the output from 

the encoder stack as its input. 

In the encoder component of the model, the input variables such as solar radiation, 

date, and time are transformed into a vector representation. The encoder stack aims to 

capture the relationships between these elements, enabling their conversion from 

historical input data to the latent space, which serves as the input for the subsequent 

part of the model. 

 

By combining the date, time of year, historical data, and the vector representation 

from the encoder, the decoder stack acts as a time machine, forecasting solar 

irradiance. 

3.3 Positional encoder 

Transformers employ positional encoders to identify data elements entering 

and leaving the network. Attention units then follow these tags and create an algebraic 

map showing how one element connects to the others.  

A vector form known as a positional encoding contains information about the relative 

positions of letters within a target sequence. It's characterized as a function of kind  

𝑓: ℝ →   ℝ; 𝑑 𝜖 ℤ, 𝑑 > 0 , where d is an even positive number.  

(𝑓(𝑡)2𝑘, 𝑓(𝑡)2𝑘+1) = (sin(𝜃) , cos(𝜃))        ∀𝜅  ∈ {0,1, … . … ,
𝑑

2
− 1}   

 (1) 

𝑤ℎ𝑒𝑟𝑒 𝜃 =  
𝑡 

𝑟𝑘
 , 𝑟 = 𝑁

2
𝑑 . 
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Figure 3.4 illustrates a sine wave positional encoding scheme with parameters 

N=10000 and d=100. Image source: 

https://en.wikipedia.org/wiki/Transformer_(machine_learning_model) 

 

The dimension the vector encoding a time series data, is denoted by the free parameter 

N, which should be much larger than the maximum k. 

The most important fact is that every encoded location may be utilized by the 

transformer to compute the linear sum of its neighbours, which can then be used to 

provide attention weights for the attention mechanism. 

 

Positional encoding can be simply put together and expressed as  

𝑃𝐸(𝑥,2𝑘) = sin (
𝑥

𝑁2𝑘/𝑑
) 

𝑃𝐸(𝑥,2𝑘+1) = cos (
𝑥

𝑁2𝑘/𝑑
) 

Hence,                                                            𝑃𝐸(𝑥,2𝑘) = sin(𝜆𝑧 . 𝑡) 

𝑃𝐸(𝑥,2𝑘+1) = cos(𝜆𝑧. 𝑡)       (2) 

Where  𝜆𝑡 =
1

𝑁2𝑘/𝑑
 

 

3.3.1 Scaled dot-product attention 

Scaled dot-product attention is a component of the transformer model that involves 

learning three weight matrices: query weights, key weights, and value weights. These 

matrices are used to create query vectors, key vectors, and value vectors for each token 

by multiplying them with the input time series data. The resulting values are then 

normalized using softmax and divided by the square root of the dimension of the key 

vectors to obtain attention weights. The output of the attention mechanism is a 
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weighted sum of the input values, where the weight is determined by combining the 

query input and the corresponding key input. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                   (3) 

 

3.3.2 Multi-head attention 

The multi-head attention technique is employed to project the query, key, and 

value vectors into multiple linear spaces. This technique performs self-attention in 

parallel multiple times, with each head utilizing unique learned matrices for query, 

key, and value to capture complex relationships. The outputs of these heads are 

concatenated together. To enhance the model's accuracy, multiple attention matrices 

are combined into a single output as described in equation (4). The position-wise fully 

connected feed-forward network block, represented by equation (5), operates on the 

concatenated outputs. 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑜                  

 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉)                    (4) 

 

with use made of the projection matrices 

𝑊𝑖
𝑗

∈ ℝ𝑑×𝑑𝑗; 𝑗 ∈ {𝑄, 𝐾, 𝑉} 

And the weight matrix 

𝑊𝑜 ∈ ℝℎ𝑑𝑣×𝑑 

This time, the input value to the attention block is represented by the matrix V, the 

input key is represented by the matrix K, and the input query is represented by the 

matrix Q.  

The value dk represents the size of the key input. The matrices  𝑊𝑖,
𝑄

 , 𝑊𝑖,
𝐾 , 

𝑊𝑖,
𝑉 , 𝑊𝑖,

𝑉 , 𝑎𝑛𝑑 𝑊𝑖,
𝑄

 

indicate the model parameters that have been learnt for the projection of the features. 

 

𝐹𝐹𝑁(𝑥) = 𝐺𝑒𝐿𝑈 (𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2                (5)  
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While the GeLU (Gaussian Error Linear Unit) in the aforementioned equation denotes 

nonlinearity in the model, the matrix W and b represents weights and biases.  

 

3.4 Loss Function: 

A loss function may be used to determine the degree to which an algorithm 

accurately reflects a dataset. Pseudo-Huber, Huber Loss, Mean Squared Logarithmic 

Error Loss, L1 Loss, L2 Loss, Mean Absolute Error Loss, and the complete positional 

encoding function are some of the numerous types of Regression loss functions.   L1 

and L2 are two common loss functions used in deep learning and machine learning to 

lower error. The Least Absolute Deviations (LAD) or cost is defined as the Mean of 

these Absolute Errors (MAE). 

 

The cost is measured by the Mean of these Square Errors (MSE), and L2 is referred 

to as Least Square Errors (LS). The disadvantage of the L2 norm is that in case of 

outliers, these points will be mostly accountable for the primary component of the 

loss.   

 (6) 

   

 (7) 

 

3.5 Solar Irradiance Transformer Model 

The Transformer model has gained widespread use in neural networks for 

tasks like natural language translation and has recently been applied to time series 

data, such as solar irradiance. Its attention mechanism plays a crucial role in 

connecting relevant features within sequential input. The model is composed of two 

fundamental building blocks: positionally fully connected feed-forward network 

blocks and self-attention blocks. 
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The self-attention blocks consist of four layers: a normalization layer, a multi-head 

attention layer, a dropout layer, and a residual connection. Similarly, the positionally 

fully connected feed-forward network blocks include a normalization layer, a residual 

connection, a dropout layer, and two fully connected (dense) layers. These building 

blocks are stacked together to create the encoder and decoder, which are the core 

components of the model. 

 

The self-attention block establishes connections between the query output and 

the key-value output, allowing the combination of query, key, and value inputs into a 

unified output.  

Figure 3.5: Flow diagram of TST Transformer for Solar forecasting process 

 

3.6 Metrics 

Different metrics are used to assess the precision of predicted solar irradiance, 

which include mean squared error, mean absolute error, and R squared. The mean 

absolute error specifically measures the accuracy of solar irradiance in W/m^2. When 

computing these metrics, previous time steps are not taken into account. However, 

during training, all time steps are utilized to calculate gradients and provide crucial 

data to the model. 

The performance of the implemented model on the test dataset was evaluated using 

commonly used metrics in time-series models, namely the MAE loss function, RMSE, 
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MSE, and R-squared. These metrics provide valuable insights into the model's ability 

to generate accurate predictions on unseen data. 

The MAE loss function measures the average absolute difference between the 

predicted values (ŷi) and the actual values (yi), as represented by equation (8). 

       (8) 

A lower MAE signifies a more accurate model, indicating a smaller average error 

between the predicted and actual values. MAE calculates the average absolute 

difference between the predicted values and the actual values. It measures the average 

magnitude of the errors without considering their direction. RMSE is similar to MAE, 

but it takes the square root of the average of the squared differences between the 

predicted values and the actual values. It penalizes larger errors more heavily than 

MAE and provides a measure of the standard deviation of the residuals. 

Formulas (9) and (10) introduce two coefficients used to assess the accuracy of 

prediction models 

      (9) 

 

N represents the total number of observed samples, yi is the actual value, and ŷi is the  

Predicted value. The goal of these metrics is to minimize the sum of squared errors  

(MSE), which quantifies the deviation between the actual and predicted values, as  

shown in equation (5) 

.      (10) 

The RMSE is the square root of MSE and provides a measure of error in the same 

units as the baseline values from the dataset. RMSE yields lower absolute values and 

is computationally efficient compared to MSE. 

In addition to MAE, RMSE, and MSE, R-squared (R^2) is another commonly used 

metric in time-series models. It measures how well the model fits the data by 
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indicating the proportion of variance in the dependent variable that can be explained 

by the independent variables. R-squared is calculated using the formula: 

 

R^(2 ) = 1 - (SS_res / SS_tot)         (11) 

where SS_res represents the sum of squares of residuals and SS_tot represents the 

total sum of squares. Where SS_res is the sum of squares/N ie MSE and SS_tot is 

Sum of Squared Error from mean/N. A higher R-squared value (closer to 1) indicates 

a better fit of the model to the data, while a lower value suggests that the model 

explains less of the variance in the data. 

Including R-squared in the evaluation of time-series models provides an additional 

measure to assess the goodness-of-fit and predictive capability of the model. R-

squared measures the proportion of the variance in the dependent variable that can be 

explained by the model. It ranges from 0 to 1, where 1 indicates a perfect fit and 0 

indicates no relationship. It complements the MAE, RMSE, and MSE by providing 

an evaluation of the proportion of variability in the data that can be attributed to the 

model's predictions. Hence forecast accuracy of models were compare with MAE, 

RMSE, and MSE first then reliability metric R2. 

 The above performance metrics were used first to derive the best model for solar 

irradiance  

forecasting then the MAPE of best model which is transformer in this study was 

compared with different other models authors used for solar energy forecasting. 

 Mean Absolute Percentage Error (MAPE) measures the average percentage 

difference between 

 the predicted values and the actual values. It is useful when you want to understand 

the relative magnitude of the errors compared to the actual values.  

3.7  Methodology 

The following procedural processes are part of the methodology used in this 

study. 

The Kaggle NASA Solar Radiation prediction dataset, available in CSV format, 

consists of columns containing solar radiation and weather data such as temperature, 

humidity, pressure, wind speed, and wind direction. 

The solar dataset underwent preprocessing to extract nine relevant features that will 

be utilized in our model for predicting solar irradiance. These features include 

temperature, pressure, humidity, wind direction in degrees, sunrise time, sunset time, 
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and time-related data such as the length of daylight. Additionally, we extracted 

information such as hours and minutes for dawn and sunset timings, the hour of the 

day, the length of the day, and the week of the year from the available time data. 

We then trained ten different machine learning model algorithms using the 

dataset. Specifically, for the Time Series Transformer model, we separately prepared 

and normalized the data as part of the required data preprocessing techniques before 

inputting it into the Transformer model. 

Even before we down select to a specific Machine learning model, we 

prepared a prediction algorithm that takes in our data and makes a prediction. We used 

scikit-learn, to easily swap out different models and maintain the same higher-level 

structure to the program. We desire an algorithm that will predict values radiation for 

a given set of inputs. 

In this investigation, we will try several ML models and compare their 

performance to evaluate the best algorithm to predict solar radiation. The specific 

Machine learning models used to exploit the NASA Dataset are Linear regression, 

Random Forest Regression, Neural Network Regression, Support Vector Regression, 

Gradient Boosting Regressor, K-Nearest Neighbors Regressor, Decision Tree 

Regressor, Ridge Regression, Lasso Regression, ElasticNet Regression. 

To train the ML prediction algorithm, we implement a split train/test 

methodology to prevent bias in the learning. The dataset is split into a randomly 

sampled pool of data points. 80% of those points are used for training, the remaining 

20% is used for validation of the training data. So the test data is not necessarily 

continuous time, but rather a random selection of points from the set. 

For EDA purposes, we use the entire dataset (including training and test 

points) to visualize algorithm performance over time. This is inherently biased, since 

some of the points we will see will have been points that the algorithm has already 

trained on and potentially optimized to. However, we validate the algorithm accuracy 

against the subset of testing points (which the were not used for training), so we can 

still be confident in evaluating the performance using the accuracy metric and by 

keeping this potential bias in mind. 

The results of the 10 machine learning model were recorded in the experiment excel 

sheet.  
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3.7.1 Sourced Datasets: CSV format (Kaggle NASA’s Solar Radiation prediction 

dataset). The NASA datasets comprise solar and meteorological data collected over a 

four-month period (September through December 2016) as part of the NASA Space 

Apps Challenge hackathon for the NASA weather station. It may be freely found here 

[25]. NASA dataset is a single file that contains 32,686 rows and 11 columns of which 

4 are in Decimal form ,4 are in Date Time format and 4 are Integer. 

 

Figure 3.6a: Shows the first 5 rows of the NASA dataset  

 

 

Figure 3.6b: Shows the first 5 rows and 9 features of the NASA dataset used 

to train the 10 AI Models  
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Figure 3.7a: Shows the first 17 rows of the NASA dataset used for Transformer model 

 

 

Figure 3.7b: Shows the first 19 rows of the 1 hour shifted dataset used for Transformer 

model 
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3.7.2 Data Cleaning (Manual): Extracted Date-Time column and the Radiation 

column, then normalised the radiation and code was used to carry out exponential 

smoothing of the data for Transformer model training after the training was done and 

results obtained the dataset was shifted for 1 hour and the transformer model was 

trained with it the result for the Validation loss of both the dataset and shifted dataset 

was plotted to see percentage change from sample to sample of the transformer model. 

 

3.7.3  Notebook Procedures: The process described in preceding sections on using 

Transformer model to predict Solar radiation was carried out. 

 

3.8  Data Pre-processing and Feature Engineering 

 

The solar data was pre-processed to extract 9 features which will be used in 

our model to predict solar irradiance. Some features that will be used include 

temperature, pressure, humidity, wind direction in degrees, sunrise time, sunset time 

along with the time data while the length of day sunlight was extracted. In addition to 

the hours and minutes for dawn and sunset timings, we also retrieved the hour, day's 

length, and week of the year from the time shown in the data. As soon as the 

information was imported, we initially performed feature engineering, which involved 

converting time and date parameters into a more usable format and adding a few 

columns that would be beneficial for modelling, visualizing, and analyzing the data. 

We construct a matrix that determines the correlation between every pair of potential 

extracted feature in order to better comprehend the patterns and relationships in the 

data. To finally prepare the data to be used for model training, we cleaned it, checked 

for null value in the dataset, ingest data for exploratory data analysis and 10 machine 

learning model Algorithm was trained with the dataset. For Time series transformer, 

we prepare it separately and normalised it as part of the data pre-possessing techniques 

required, before data input into the Transformer model 

For data visualization, plotting libraries are loaded. The influence of each 

measurement on the others is then determined using Pearson correlations and the 

visualization of each measurement. To remove pointless information and pinpoint the 

set's most important traits, a Pearson correlation matrix is first created. 
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3.9  Setup of the experiment 

Our Time Series Transformer model processes a set of historical data into a 

set of forecasts for the future. Our analysis of real-world data demonstrates that our 

model exceeds cutting-edge techniques in terms of accuracy and effectiveness. 

With the help of Pytorch, the Tensorflow, Keras API, and Pytorch-ignite (0.4.10), the 

Time series Transformer model was developed. For the GPU cloud environment, the 

author chose Colab. Additionally, used in the model development process are crucial 

Python modules including Numpy (1.18.5), Scikit-Learn (0.22.2), matplotlib, and 

Pandas (1.0.5). 

To train the model, we have already pre-processed the dataset by normalizing 

the solar radiation column of the NASA dataset. We first define the transformer 

model, specifying layers’ number, attention heads; number, hidden layers’ size. Then 

compile the model, specifying the optimizer and loss function that will be used during 

training. 

Next, the model is trained using the fit method, which takes the training data 

as input. The model is then evaluated on the test set using evaluate method. Finally, 

the model is used to make predictions on the test set using the predict method to 

predict the future solar radiation. 

We define a Transformer-based time series model, that is developed to handle 

sequential data such as time series. The model, named TransAm, consists of several 

components: 

1. Positional Encoding: This component is used to add position information to 

the input data, which is essential for the Transformer model to understand the order 

of the time steps. 

2. nn.TransformerEncoderLayer: This component is a single layer of the 

transformer encoder, which applies self-attention to the input data and performs multi-

head attention to the input data. 

3. nn.TransformerEncoder: This component is a stack of transformer encoder 

layers that applies multi-head self-attention to the input data 
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4. nn.Linear: This component is a linear layer that is used as a decoder that takes 

the output from the TransformerEncoder and produces the final output. 

The set up imports the necessary libraries: torch, torch.nn, numpy, pandas, 

time, math, pyplot, and some classes and functions from ignite.metrics module. Seeds 

are set for reproducibility of the results. Definitions of input_window, 

output_window, and batch_size are provided. These variables determine the size of 

the input window, output window, and batch size, respectively. The device is set to 

"cuda" if available, otherwise "cpu". 

The Positional encoding class is defined, which adds positional encodings to the input 

data. It initializes a positional encoding matrix pe with dimensions (max_len, 

d_model), where max_len is the maximum length of the sequence and d_model is the 

feature size. The positional encodings are based on sine and cosine functions of 

different frequencies. The forward method adds the positional encodings to the input 

tensor. 

The TransAm class is defined, representing the Transformer-based model for 

solar irradiance prediction. It inherits from nn.Module. The model consists of a 

positional encoding layer, a transformer encoder layer, and a linear decoder layer. The 

encoder layer is applied num_layers times. The forward method performs the forward 

pass of the model, applying the positional encoding, transformer encoding, and linear 

decoding to the input sequence. The init_weights method initializes the weights of the 

linear decoder layer. 

The _generate_square_subsequent_mask method generates a mask matrix for 

the transformer encoder layer. It creates a square mask where each element below the 

main diagonal is set to -inf and each element on or above the diagonal is set to 0. 

In summary, the code sets up the necessary modules and classes for the Transformer-

based model for solar irradiance prediction. It defines the positional encoding layer, 

the Transformer encoder layer, and the linear decoder layer. The model takes an input 

sequence, applies positional encoding, transformer encoding, and linear decoding to 

generate the predicted output sequence. 

the create_inout_sequences function generates input-output sequences for training the 

time series transformer model. The get_data function generates the solar irradiance 

data and splits it into training and testing sets. These functions are used to prepare the 

data for training and evaluating the model. We train a time series transformer model 
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using the specified training and testing data. It tracks the training and testing losses 

during the training process and plots the loss curve at the end. We train the time series 

transformer model for the specified number of epochs (100 epochs), evaluates its 

performance on the validation data, and saves the best model based on the validation 

loss. Additionally, the code generates plots and predicts future values at regular 

intervals during training. We evaluate the trained transformer model on the test data, 

calculates the loss, generates a plot comparing the predicted and true values, and saves 

the predicted and true values as CSV files. 
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CHAPTER IV 

Results and Discussions 

 

4.0 EDA Results and Discussions 

 

 

Figure 4.1: shows the Pairwise correlation matrix of the features used in NASA 

dataset 

 

Correlation matrix shows that temperature is the highest positive value of  0.73 

is relevant and Humidity and wind direction are lowest which mean when there high 

humidity and wind direction it suggests presence of cloud cover so when the sky is 

not ckear, there will be low solar radiation but as temperature increases the solar 

radiation increases.  

The provided charts clearly indicate a strong correlation between temperature 

and solar irradiance. While the relationships between pressure and solar irradiance are 

not as clear, there appears to be a negative correlation between humidity and solar 

irradiance; temperature and pressure. 
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Figure 4.2: the graph showing the heat map correlation Matrix of the features used in 

NASA dataset 

 

 

Figure 4.3: Distribution of Temperature and the number of occurrence in the NASA 

dataset 
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Figure 4.4: Distribution of Pressure and the number of occurrence in the NASA 

dataset 

 

 

 

Figure 4.5: Distribution of Humidity and the number of occurrence in the NASA 

dataset 

 



 
 

35 

 

Figure 4.6: Graph plot of solar radiation against hours in a day after taking the hourly 

mean of the dataset.  

 

The figure 4.6 shows that sun rises at 6am and sun sets at 5pm while the highest 

radiation is at 12 noon. As expected, both the sun's irradiance and temperature reach 

their highest point at noon. 
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Figure 4.7: Graph Plot solar radiation against temperature 
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4.2 Transformer Results and Discussion 

This is shared in the google link drive and the attached excel sheet. 

METRICS Transformer  

MEAN - 0.03651 
 

  

MSE 0.003756 

MAE 0.045543 

R2 0.976298 

Table 4.1: The metric result from Time series Transformer 

 

Figure 4.8a: The transformer prediction graph with given dataset for 1093 values at 

the end of 100 epochs. 

In the figure 4.8a, visualization of the predicted values (test_result) in red, true values 

(truth) in blue, and the difference between predicted and true values in green. i.e. the 

prediction is color red, the actual ground truth for the first 500 data is plotted in color 

blue while the transformer is used to plot the difference between predicted and ground 

truth using test results, in green colour for 1093 values at the end of 100 epochs. 
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Results are exported to CSV and metrics are calculated with excel sheet to get Mean 

as -0.03651, MSE as 0.003756, MAE as 0.045543, R2 as 0.976298. 

 

 

Figure 4.8b: Result output- The normalised solar Radiance against 5* Epochs. The 

output of a single step prediction model that has been trained for 100 epochs on the 

NASA Kaggle dataset. 

 

In figure 4.8b, the result output of a single step prediction model that has been trained 

for 100 epochs on the NASA dataset, input is blue and prediction is red. The 

predict_future function takes the trained eval_model, data_source, and steps as inputs. 

It predicts future values by iterating steps times and appending the model's predictions 

to the data tensor. The resulting data tensor is plotted, with the original data in blue 

and the predicted future values in red 
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Figure 4.9 showing the data values of ground truth(Actual) and the predicted. Which 

was plotted in Figure 4.8a but values are exported as Csv then processed for each 

experiment in order to obtain optimized hyper parameter for TST Transformer. 

 

After this, we essentially train the time series transformer model for the specified 

number of epochs (100 epoch), evaluates its performance on the validation data, and 

saves the best model based on the validation loss. Additionally, it generates plots and 

predicts future values at regular intervals during training. 
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Figure 4.10 shows output of the epoch number, time taken, validation loss, and 

validation perplexity are printed.  

 

This is what was happening in the TST transformer prediction process when 

using the training and testing data. The predict_future function takes the trained 

eval_model, data_source, and steps as inputs. It predicts future values by iterating 

steps times and appending the model's predictions to the data tensor. The resulting 

data tensor is plotted, with the original data in blue and the predicted future values in 

red. The plot is saved as an image in Figure 4.8b 

 

The evaluate function evaluates the trained eval_model on the given 

data_source. It calculates the loss between the model's predictions and the target 

values, accumulates the loss in total_loss, and returns the average loss per data point. 
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The code initializes the training and validation data using the get_data function and 

creates an instance of the TransAm transformer model. The loss criterion is defined 

as the Mean Squared Error (MSELoss) using nn.MSELoss(). The learning rate (lr) 

and optimizer (Adam) are defined. A learning rate scheduler is created using 

torch.optim.lr_scheduler.StepLR, which applies a step decay to the learning rate. 

 

The variables best_val_loss and best_model are initialized to track the best 

validation loss and the corresponding best model. The main training loop starts, 

iterating over the specified number of epochs. The training data is passed to the train 

function to train the model for one epoch. If the current epoch is a multiple of 10, the 

validation loss is computed by calling plot_and_loss to generate a plot of predicted 

vs. true values and predict_future to predict future values. If the current epoch is not 

a multiple of 10, the validation loss is computed using the evaluate function. The 

epoch number, time taken, validation loss, and validation perplexity are printed. If the 

current validation loss is better than the previous best validation loss, the current 

model is saved as the best model. The learning rate scheduler is updated in figure 4.10 

Here the set was The get_data function is defined to generate the solar irradiance data 

for training and testing the model. It creates a time array time ranging from 0 to 400 

with a step of 0.1.The amplitude array is computed by adding the sine waves with 

different frequencies and amplitudes. Gaussian noise is also added to the data. The 

MinMaxScaler from sklearn.preprocessing is used to scale the amplitude values 

between -1 and 1. This is why the Figure 4.11 is a sinusoidal wave. 

The code essentially trains the time series transformer model for the specified 

number of epochs, evaluates its performance on the validation data, and saves the best 

model based on the validation loss. Additionally, it generates plots and predicts future 

values at regular intervals during training. At 100 Ephoc the figure 4.8a is generated 

and at that instance, Figure 4.8b represents the graph single step prediction which uses 

length of output_window which is 5 and not one prediction. In order to adopt to one 

prediction, median or mean of the range of the values of output-window can be used. 
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Figure 4.11: Visualization of visible correlations between number of Ephoc and 

normalised solar irradiance data. 

Hence in other for us to use Probabilistic Time Series Forecasting with 

Transformers, the mean/ median prediction values are referenced against actual values 

since it is Probabilistic Time Series Forecasting Transformers and are not used for one 

prediction. 

Since in Figure 4.11, The values moves between -1 and 1, a complete cycle  is 2𝜋 = 

1 Ephoc 

TimeSin = 
Sin 2𝜋  𝑇𝑖𝑚𝑒

𝐸𝑝ℎ𝑜𝑐 
 

TimeCos = 
Cos 2𝜋  𝑇𝑖𝑚𝑒

𝐸𝑝ℎ𝑜𝑐 
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Figure 4.12: Visualization of Actual time spent on the first 100 Ephoc and forecasted 

time for the next 100 Ephoc  

 

4.3 ML and Transformer Discussion  

The model is trained to make predictions of solar irradiance at future time steps 

using input data consisting of solar radiation measurements over time. The 

architecture of the model is defined within the TransAm class constructor, where the 

layers and their respective numbers are set up. The forward method is then utilized to 

pass the data through the model in a forward direction. This involves processing the 

input data through the positional encoder, transformer encoder, and decoder layers to 

generate the final output. 
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Several hyper parameters are employed in the training process, such as an input 

window size of 100, an output window size of 5, and a batch size of 10. The 

transformer model performs well when trained on the raw dataset, yielding 

satisfactory results with a small mean value of -0.03651, a mean squared error (MSE) 

of 0.003756, a mean absolute error (MAE) of 0.045543, and an R-squared (R^2) value 

of 0.976298. 

4.4 Major performance, achievement and result analysis 

 

Utilizing the technique of "teacher forcing" is an essential aspect of the 

experimental setup in the transformer architecture, as it plays a critical role in training 

the model weights. The concept involves feeding the ground-truth sequence values 

back into the time series transformer at each step, forcing the model to align closely 

with the actual sequence. Analogous to a student taking a multi-part exam, where each 

answer depends on the previous one, "teacher forcing" provides immediate feedback 

and correct answers to guide the model's learning. 

The model utilizes a training technique known as "teacher-forcing," which is 

commonly used in training Transformers for machine translation tasks. In this 

approach, during training, the future values are shifted one position to the right and 

fed as input to the decoder, with the last value of the past values appended. At each 

time step, the model is tasked with predicting the subsequent target value. The training 

setup resembles that of a GPT (Generative Pre-trained Transformer) model for 

language, although there is no concept of a decoder_start_token_id. Instead, the last 

value of the context is used as the initial input for the decoder. 

During inference, the decoder is provided with the final value of the past 

values as input. Subsequently, the model can sample from its learned distribution to 

generate a prediction for the next time step. This prediction is then fed back into the 

decoder to generate the subsequent prediction (Kashif, 2022). 

Training with teacher forcing offers several advantages. It enables faster convergence 

of the model by preventing error accumulation during the initial stages when 

predictions may be inaccurate. Without teacher forcing, incorrect predictions would 

update the model's hidden states, leading to error accumulation and hindered learning. 

Additionally, teacher forcing helps stabilize the training process by preventing error 
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propagation caused by incorrect previous outputs in the generated sequence. 

Moreover, in certain sequence-to-sequence tasks, using teacher forcing can yield 

better performance compared to training without it. 

 

In this study, various experimental parameters were optimized for the time 

series transformer model, including the number of layers, neurons, learning rate, batch 

size, and epochs during training. The main focus was to assess the performance of the 

time series transformer model, so the parameters were fine-tuned to optimize its 

effectiveness. Other 10 machine learning models, such as those from the Sklearn 

library, were also considered, and their parameters were adjusted based on their 

specific characteristics from the library. The optimized parameter values obtained 

through experimentation are summarized in Table 4.2. 

 

Method Hyper 

Parameters 

Values 

TST 

Transformer 

Number of 

epochs  

100 

 
Feature size 500 

 
Learning rate 0.0001 

 
Batch size 32 

 
Optimizer Adam 

 
Input window 100 

 
Output window 5 

 
Number of 

layers 

2 

10 other ML 

models 

Sklearn library 

parameter 

 

 

Table 4.2  Comparison between Models from Experimental Results 

 

To put things into perspective. We summarize the performance metrics obtained for the 

best models in Table 4.4 where we conclude that the transformer is the best model we got. 
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Figure 4.13: R^2 value of the Transformer and 10 other Machine learning models 

 

 

METRICS MSE RMSE MAE R^2 

Linear regression. 38372.19 195.89 148.53 0.61 

Random Forest Regression 6486.25 80.54 30.87 0.93 

Neural Network Regression 40131.84 200.33 152.87 0.60 

Support Vector Regression  144548.79 380.20 207.91 -0.42 

Gradient Boosting Regressor 11964.49 109.38 59.97 0.88 

 K-Nearest Neighbors Regressor 8140.82 90.23 38.21 0.92 

Decision Tree Regressor 10536.45 102.65 37.21 0.89 

Ridge Regression 39957.61 199.89 152.93 0.60 

Lasso Regression: 37810.72 194.45 148.97 0.61 

ElasticNet Regression: 40756.89 201.88 152.66 0.59 

* Transformer  0.00375 0.06 0.045543 0.976 

 

Table 4.4: Performance Metrics on the testing set for the best models. Transformer model used 

normalised dataset. 
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Figure 4.14:  Bar plot of Mean, MSE, MAE and R^2 of Transformer training process. 

 

 

Figure 4.15 Bar plot of Mean, MSE, MAE and R^2 of Transformer training process on 1 hour 

shifted data. 
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Paper Location MAPE (%) 

[28] Abha (Saudi Arabia) 11.8 

[29] Sirt (Turkey) 6.78 

[30] Mugla (Turkey) 6.73 

[31] Cyprus and USA 4.7 

[32] Mumbai (India) 4.24 

[33] Chennai Metropolitan Area (India) 3.45 

This study USA 0.68 

 

Table 4.5. Mean absolute percentage error results of other authors for Solar Energy forecasting. 

 

 

Figure 4.16:  The learning curve of Transformer model 
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Figure 4.17 The Excel calculations and experimental models documentation. 

The TST Transformer gave output result data i.e. 1093 Actual Values and 1093 

predicted values after it has been trained with NASA Kaggle Dataset on several 

experiments which investigating for optimized hyper parameter values on the TST 

Transformer model. 

 

4.5 Real-time prediction on a recent weather data and business use case  

Technology advances in recent years have completely changed how renewable 

energy is produced and used. Researchers and companies now have access to 

extremely exact wind and solar power data because to the power of AI, computer 

power, and more accurate weather forecasts. Initiatives aiming at improving the 

effectiveness of renewable energy systems have increased sharply as a result. For 
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instance, Google signs 140MW energy contract with Engie in Germany. Google has 

used machine learning to enhance predictions of wind output and has intentionally 

planned computing jobs to coincide with times when solar and wind power are most 

abundant, optimizing the use of renewable resources. The performance of solar panels 

and the influence of clouds have been predicted using a unique technique, which is 

important because solar energy systems also depend on weather conditions. (Engie, 

2020) 
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CHAPTER V 

 
 
 
5.0 Conclusion 

Transformers allow us to train very large models since they are highly 

parallelizable, exceedingly compute-optimal, and efficient. This is one of the main 

differences between transformers and other designs. Transformers were used to solve 

this time series issue, and the results were favourable in terms of MSE, MAE, and R2. 

Recent research has focused on solar irradiance prediction because of the demand for 

and interest in green and renewable energy. Accurate solar irradiance forecasting that 

takes into consideration both potential and forecasting challenges is necessary to fully 

grasp the solar energy viewpoint of a site. Solar irradiance data may be efficiently and 

precisely predicted using Transformer models. The time series Transformer models 

were employed in this study to predict the solar irradiance data, and they provided an 

effective and accurate forecast of solar irradiance when compared to other machine 

models on the NASA Dataset. MSE, MAE, and coefficients of 

determination(R2) were used to verify the model's forecasting accuracy, goodness of 

fit in order to validate and stabilize the simulation findings. TST performed best in all 

performance metrics. The outcomes showed that the suggested approach was capable 

of making precise predictions of solar irradiance. MSE is 0.003756, MAE is 0.045543 

,97.6% is the value of the R2 coefficient of determination. MAPE is 0.68% which is 

lower than that of the state of the art. 

 

5.1 Future Works 

This thesis explores the application of transformer for solar irradiance 

forecasting in the energy sector. Transformer has demonstrated good results in time 

series forecasting, and by applying them to predict solar irradiance, they can assist to 

optimize energy in the digital world. 

In this study, we present the transformer model, a solar irradiance forecasting model 

based on encoder-decoder technology. In further research, Feature selection will be 

used in the transformer net architecture to enhance the standard Transformer encoder 

for encoder-decoder-based long-term prediction 
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5.2 Recommendations 

Studies also show that the energy needed to train AI models on increasing a 

reliable and economic integration of PV by grid operators and to optimize energy 

consumption management are minimal to energy saved for their use, which is 

important in terms of the sustainability of AI technologies in the energy system. The 

use of intelligent optimization and AI technology in the energy system is therefore 

quite sensible. The optimistic hopes people have, however, are overstated (looking at 

the big picture of AI solving every problem) since there are still obstacles that AI 

cannot overcome, such as the creation of an acceptable regulatory framework or the 

involvement of citizens in the energy system design and more especially citizen’s 

participation in the design of AI system itself. The fact is that a lot of pilot initiatives 

fail because of the regulatory environment. In order for AI to genuinely contribute to 

improving the world, certain conditions must be created concurrently with the 

advancement of the technology i.e. AI designs must be engineered to be rights 

respecting, inclusive, safe and trusted tool for all. Sustainability, empowerment, 

security and freedom should be at the centre of the digital transformation (including 

AI). 

This research highlights the incorporation of date-time data alongside normalized 

solar radiation time series. While NLP and Vision fields have benefited from pre-

trained transformer models, the time series domain remains relatively unexplored in 

this regard. The study suggests that Transformer-based models hold great promise for 

advancing time series analysis, and researchers are encouraged to explore this area 

further. 
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Appendix A: source codes 

 

from google.colab import drive 

drive.mount('/content/drive') 

 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.preprocessing import StandardScaler, MinMaxScaler, 

Normalizer 

from sklearn.model_selection import train_test_split 

from collections import Counter 

from scipy import stats 

import tensorflow as tf 

import sklearn.preprocessing 

from sklearn.metrics import r2_score 

from keras.layers import Dense,Dropout,SimpleRNN,LSTM 

from keras.models import Sequential 

import pytz # timezones 

 

from sklearn.linear_model import LinearRegression # Linear regression 

from sklearn.ensemble import RandomForestRegressor # random forest 

regression 

from sklearn.neural_network import MLPRegressor # neural network 

regression 

from sklearn.svm import SVR # support vector regression 

 

 

 

!pip install net 

 

data = pd.read_csv("/content/drive/MyDrive/NEU/Transformer/Solar-

Irradiance-Forecasting-using-ANNs-from-Scratch-main/Solar-

Irradiance-Forecasting-using-ANNs-from-Scratch-

main/SolarPrediction.csv") 

 

data.head()  

 

 

data.info() 

 

data.describe() 

 

 

data.head() 

 

Feature Engineering 
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First step upon importing the dataset was to convert time and date 

parameters into a more useful format and add some coloumns that 

may be useful for visualisation, modelling and analysis. 

 

def ingest_data(SolarPrediction): 

    '''Read data from a CSV file and construct a pandas DataFrame 

    Inputs: 

        filename as string 

    Outputs: 

        df as DataFrame 

    ''' 

    # read csv file 

    data = pd.read_csv(SolarPrediction) 

    data['Hour'] = pd.to_datetime(data['Time']).dt.hour 

    # 'Data' column is unused. All elements contain the same value. 

    # 'Time' is redundant and superseded by UNIXTime. 

    data.drop(['Data','Time'],axis=1,inplace=True) 

 

    # interpret columns as appropriate data types to ensure compatibility 

    data['UNIXTime']      = pd.to_datetime(data['UNIXTime'],unit='s') 

    data['Radiation']     = data['Radiation'].astype(float) 

    data['Temperature']   = data['Temperature'].astype(float) # or int 

    data['Pressure']      = data['Pressure'].astype(float) 

    data['Humidity']      = data['Humidity'].astype(int) # or int 

    data['WindDirection(Degrees)'] = 

data['WindDirection(Degrees)'].astype(float) 

    data['Speed']         = data['Speed'].astype(float) 

    data['TimeSunRise']   = 

pd.to_datetime(data['TimeSunRise'],format='%H:%M:%S') 

    data['TimeSunSet']    = 

pd.to_datetime(data['TimeSunSet'],format='%H:%M:%S') 

    data.rename(columns={'WindDirection(Degrees)': 'WindDirection', 

'Speed': 'WindSpeed'}, inplace=True) 

 

    # compute length of each day 

    data['DayLength'] = (data['TimeSunSet']-

data['TimeSunRise'])/np.timedelta64(1, 's') 

 

    # we don't need sunrise or sunset times anymore, so drop them 

    data.drop(['TimeSunRise','TimeSunSet'],axis=1,inplace=True) 

 

    # index by UNIX time 

    data.sort_values('UNIXTime', inplace=True) # sort by UNIXTime 

    data.set_index('UNIXTime',inplace=True) # index by UNIXTime 

 

    # Localize the index (using tz_localize) to UTC (to make the 

Timestamps timezone-aware) and then convert to Eastern (using 

tz_convert) 

    hawaii=pytz.timezone('Pacific/Honolulu') 

    data.index=data.index.tz_localize(pytz.utc).tz_convert(hawaii) 
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    # assign unit labels to data keys 

    units={'Radiation':'W/m^2','Temperature':'F','Pressure':'in 

Hg','Humidity':'\%','DayLength':'sec'} 

    return data, units 

 

from datetime import datetime 

from pytz import timezone 

import pytz 

hawaii= timezone('Pacific/Honolulu') 

data.index =  pd.to_datetime(data['UNIXTime'], unit='s') 

data.index = data.index.tz_localize(pytz.utc).tz_convert(hawaii) 

data['MonthOfYear'] = data.index.strftime('%m').astype(int) 

data['DayOfYear'] = data.index.strftime('%j').astype(int) 

data['WeekOfYear'] = data.index.strftime('%U').astype(int) 

data['TimeOfDay(h)'] = data.index.hour 

data['TimeOfDay(m)'] = data.index.hour*60 + data.index.minute 

data['TimeOfDay(s)'] = data.index.hour*60*60 + data.index.minute*60 + 

data.index.second 

data['TimeSunRise'] = pd.to_datetime(data['TimeSunRise'], 

format='%H:%M:%S') 

data['TimeSunSet'] = pd.to_datetime(data['TimeSunSet'], 

format='%H:%M:%S') 

data['DayLength(s)'] = data['TimeSunSet'].dt.hour*60*60 \ 

                           + data['TimeSunSet'].dt.minute*60 \ 

                           + data['TimeSunSet'].dt.second \ 

                           - data['TimeSunRise'].dt.hour*60*60 \ 

                           - data['TimeSunRise'].dt.minute*60 \ 

                           - data['TimeSunRise'].dt.second  

data.drop(['Data','Time','TimeSunRise','TimeSunSet'], inplace=True, 

axis=1) 

data.head() 

 

 

Feature Visualisation 

Next, in order to get a better understanding of the data, hourly and 

monthly means of several variables were visualised using bar plots. 

 

 

data, units = 

ingest_data('/content/drive/MyDrive/NEU/Transformer/Solar-

Irradiance-Forecasting-using-ANNs-from-Scratch-main/Solar-

Irradiance-Forecasting-using-ANNs-from-Scratch-

main/SolarPrediction.csv') 

print(data.head()) 

 

sns.set(style="white") 

 

# make IPython render plots inline 

%matplotlib inline  
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Plotting libraries are imported to visualize data. Then each measurement is 

visualized and Pearson correlations are calculated to determine 

which parameters have the most impact on one another. 

First, a basic correlation matrix is generated to weed out irrelevant data 

and identify the most significant features in the set. 

 

def corrPairs(data): 

    '''Pairwise correlation matrix''' 

    corr = data.corr() # Compute the correlation matrix 

    mask = np.zeros_like(corr, dtype=np.bool) # make mask 

    mask[np.triu_indices_from(mask)] = True # mask upper triangle 

    sns.heatmap(corr, mask=mask, cmap='coolwarm', center=0, 

square=True, linewidths=.5, annot=True, cbar=False) 

 

data['WeekOfYear'] = data.index.week # add week to view correlation 

plt.figure(figsize=(6,6)) 

corrPairs(data) 

 

 

sns.heatmap(data.corr(),cmap="crest") 

plt.show() 

 

def corrfunc(x, y, **kws): 

    '''add pearson r correlation to plots''' 

    r, _ = stats.pearsonr(x, y) 

    ax = plt.gca() 

    ax.annotate("r = {:.2f}".format(r),xy=(.1, .9), xycoords=ax.transAxes, 

color='white') 

    return 

 

def corrMap(data,features): 

    '''plot bivariate correlations''' 

    g = sns.PairGrid(data, vars=features) 

    g.map_upper(plt.scatter, s=10) 

    g.map_diag(sns.distplot, kde=False) 

    g.map_lower(sns.kdeplot, cmap="coolwarm", shade=True, 

n_levels=30) 

    g.map_lower(corrfunc) 

    g.map_lower(corrfunc) 

 

 

feats = { 'Temperature':'red', 'Humidity':'green', 'Pressure': 'blue' } 

for i in feats: 

    count = Counter(data[i]) 

    plt.bar(count.keys(), count.values(), color=feats[i]) 

    plt.title('Distribution') 

    plt.ylabel('Occurrence') 
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    plt.xlabel(i) 

    plt.show() 

 

#Plot solar radiation against temperature 

plt.figure(figsize=(24,8)) 

sns.barplot(x=data['Temperature'].round(decimals=0),y=data['Radiation']) 

plt.xlabel('Temperature (C)') 

plt.ylabel('Solar Radiation (kW/h)') 

plt.title('Solar-Irradiance versus Temperature') 

plt.show() 

 

#Take hourly mean of the dataset. Plot solar radiation against hours in a 

day.  

rad_vs_hour= data.loc[:, ['Radiation', 'Hour']].groupby('Hour').mean() 

rad_vs_hour.plot(kind='bar') 

plt.xlabel('Time of the day (hour)') 

plt.ylabel('Radiation(W/m2)') 

plt.title('Total Radiation per hour of the day') 

plt.show() 

 

feature_list=['Radiation','Temperature','Humidity','Pressure'] 

# bivariate density matrix 

corrMap(data,feature_list) 

plt.show() 

 

def color_y_axis(ax, color): 

    '''Color y axis on two-axis plots''' 

    for t in ax.get_yticklabels(): 

        t.set_color(color) 

    ax.yaxis.label.set_color(color) 

    return None 

 

def plotVs(data,timescale,feature1,feature2,ax1,units): 

    '''Plot feature vs radiation''' 

    ax2=ax1.twinx() 

    data_grouped= data.groupby(timescale) 

 

    data_feature1 = data_grouped[feature1].mean() 

    data_feature1_errorpos =  data_feature1+data_grouped[feature1].std()/2 

    data_feature1_errorneg =  data_feature1-data_grouped[feature1].std()/2 

    ax1.plot(data_feature1) 

    ax1.fill_between(data_feature1.index, data_feature1_errorpos.values, 

data_feature1_errorneg.values, alpha=0.3, antialiased=True) 

    ax1.set_ylabel(feature1+' '+units[feature1]) 

    color_y_axis(ax1, 'b') 

 

    if feature2 == 'Radiation': 

        rad = data_grouped['Radiation'].mean() 

        ax2.plot(rad,'r') 
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        ax2.fill_between(data_feature1.index, 0, rad, alpha=0.3, 

antialiased=True, color='red') 

        ax2.set_ylabel('Radiation'+' '+units['Radiation']) 

        color_y_axis(ax2, 'r') 

    else: 

        data_feature2 = data_grouped[feature2].mean() 

        data_feature2_errorpos =  

data_feature2+data_grouped[feature2].std()/2 

        data_feature2_errorneg =  data_feature2-

data_grouped[feature2].std()/2 

        ax1.plot(data_feature2) 

        ax1.fill_between(data_feature2.index, data_feature2_errorpos.values, 

data_feature2_errorneg.values, alpha=0.3, antialiased=True) 

        ax1.set_ylabel(feature2+' '+units[feature2]) 

        color_y_axis(ax1, 'g') 

    return ax1, ax2 

 

def HourlyWeeklyVs(df,feature1,feature2,units): 

    '''Plot a feature vs radiation for time of day and week of year''' 

    plt.figure(figsize=(18, 6)) 

    ax=plt.subplot(121) # hourly 

    ax1,ax2 = plotVs(data,data.index.hour,feature1,feature2,ax,units) 

    lines1, labels1 = ax1.get_legend_handles_labels() 

    lines2, labels2 = ax2.get_legend_handles_labels() 

    ax2.legend(lines1 + lines2, labels1 + labels2) 

    plt.xlabel('Hour of Day (Local Time)') 

    plt.title('Mean Hourly {0} vs. Mean Hourly 

{1}'.format(feature1,feature2)) 

 

    ax=plt.subplot(122) # weekly 

    ax1, ax2 = plotVs(data,pd.Grouper(freq='W'),feature1,feature2,ax,units) 

    lines1, labels1 = ax1.get_legend_handles_labels() 

    lines2, labels2 = ax2.get_legend_handles_labels() 

    ax2.legend(lines1 + lines2, labels1 + labels2) 

    plt.xlabel('Week of Year') 

    plt.title('Mean Weekly {0} vs. Mean Weekly 

{1}'.format(feature1,feature2)) 

    return 

 

for feature in feature_list[1:]: # radiation vs feature 

    HourlyWeeklyVs(data,feature,feature_list[0],units) 

plt.show() 

 

data.drop(['WindDirection','WindSpeed'], axis=1, inplace=True) # drop 

irrelevant features 

 

**3. Training & Testing** 
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We desire an algorithm that will predict values (radiation for a given set of 

inputs) There are many models to choose from, and more than one 

may be appropriate. 

 

In this analysis, we will try several models and compare their performance 

to evaluate the best algorithm to predict solar radiation. 

 

Linear Regression 

Random Forest Regression 

Neural Network Regression 

Support Vector Regression 

 

# IMPORT ML CLASSIFIERS 

from sklearn.linear_model import LinearRegression # Linear regression 

from sklearn.ensemble import RandomForestRegressor # random forest 

regression 

from sklearn.neural_network import MLPRegressor # neural network 

regression 

from sklearn.svm import SVR # support vector regression 

 

 

**3.1. Preparing the algorithm** 

Even before we downselect to a specific model, we can prepare a 

prediction algorithm that takes in our data and makes a prediction. 

Using scikit-learn, it is easy to swap out different models and 

maintain the same higher-level structure to the program. 

 

To train the algorithm, we implement a split train/test methodology to 

prevent bias in the learning. The dataset is split into a randomly 

sampled pool of datapoints. 80% of those points are used for 

training, the remaining 20% is used for validation of the training 

data. So the test data is not necessarily continuous time, but rather 

a random selection of points from the set. 

 

For demonstration purposes, we use the entire dataset (including training 

and test points) to visualize algorithm performance over time. This 

is inherently biased, since some of the points we will see will have 

been points that the algorithm has already trained on and 

potentially optimized to. However, we validate the algorithm 

accuracy against the subset of testing points (which the were not 

used for training), so we can still be confident in evaluating the 

performance using the accuracy metric and by keeping this 

potential bias in mind. 

 

 

 

x = data.drop('Radiation',axis=1).to_numpy() 

y = data['Radiation'].to_numpy() 
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X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, 

random_state=1) 

 

X_train = StandardScaler().fit_transform(X_train) 

X_test = StandardScaler().fit_transform(X_test) 

y_train = np.asarray(y_train) 

y_test = np.asarray(y_test) 

 

from sklearn import preprocessing # ML tools 

from sklearn.model_selection import train_test_split # split data 

 

from bokeh.plotting import figure, show, output_notebook 

 

def plot_test(clf,X_test,y_test): 

    y_predicted = clf.predict(X_test) 

 

    p = figure(tools='pan,box_zoom,reset',x_range=[0, 100], title='Model 

validation',y_axis_label='radiation') 

    p.grid.minor_grid_line_color = '#eeeeee' 

 

    p.line(range(len(y_test)),y_test,legend='actual',line_color='blue') 

    

p.line(range(len(y_test)),y_predicted,legend='prediction',line_color

='red') 

    output_notebook() 

    show(p) 

    return 

 

def plot_real(clf,x,y_actual,index): 

    ''' Plot predictions for actual measurements. 

    inputs: 

        clf         as classifier   the trained algorithm 

        x           as array        timeseries of measurement inputs 

        y_actual    as array        corresponding timeseries of actual results 

    ''' 

    y_predicted = clf.predict(x) 

 

    p = figure(toolbar_location='right', title='Predicted vs 

Actual',y_axis_label='radiation',x_axis_type="datetime") 

    p.grid.minor_grid_line_color = '#eeeeee' 

    p.line(index,y_actual,legend='actual',line_color='blue') 

    p.line(index,y_predicted,legend='prediction',line_color='red') 

    output_notebook() 

    show(p) 

    return 

 

def train_model(X,y,clf,debug=False): 

    ''' Train algorithm. 

    inputs: 

        X       as array        features 



 
 

66 

        y       as array        label(s) 

        clf     as scikit-learn classifier (untrained) 

    returns: 

        clf     as trained classifier 

        accuracy  as float 

    ''' 

    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2) 

    model = clf.fit(X_train,y_train)  

    accuracy = clf.score(X_test,y_test) 

    return clf, model, accuracy, X_test, y_test 

 

def go(x,y,algorithm,debug=True): 

    ''' Easy model train and test. ''' 

    clf, model, accuracy, X_test, 

y_test=train_model(x,y,algorithm,debug=True) 

    print('Accuracy: %s percent'%str(accuracy*100)) 

 

    if debug: 

        plot_test(clf,X_test,y_test) 

        plot_real(clf,x,y,data.index.values) 

    return 

 

from sklearn import preprocessing # ML tools 

from sklearn.model_selection import train_test_split # split data 

from sklearn.metrics import accuracy_score, f1_score, precision_score, 

recall_score, mean_squared_error, mean_absolute_error, r2_score 

from sklearn.linear_model import LinearRegression 

 

from bokeh.plotting import figure, show, output_notebook 

 

def plot_test(clf,X_test,y_test): 

    y_predicted = clf.predict(X_test) 

 

    p = figure(tools='pan,box_zoom,reset',x_range=[0, 100], title='Model 

validation',y_axis_label='radiation') 

    p.grid.minor_grid_line_color = '#eeeeee' 

 

    p.line(range(len(y_test)),y_test,legend='actual',line_color='blue') 

    

p.line(range(len(y_test)),y_predicted,legend='prediction',line_color

='red') 

    output_notebook() 

    show(p) 

    return 

 

def plot_real(clf,x,y_actual,index): 

    ''' Plot predictions for actual measurements. 

    inputs: 

        clf         as regressor   the trained algorithm 

        x           as array        timeseries of measurement inputs 
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        y_actual    as array        corresponding timeseries of actual results 

    ''' 

    y_predicted = clf.predict(x) 

 

    p = figure(toolbar_location='right', title='Predicted vs 

Actual',y_axis_label='radiation',x_axis_type="datetime") 

    p.grid.minor_grid_line_color = '#eeeeee' 

    p.line(index,y_actual,legend='actual',line_color='blue') 

    p.line(index,y_predicted,legend='prediction',line_color='red') 

    output_notebook() 

    show(p) 

    return 

 

def train_model(X,y,clf,debug=False): 

    ''' Train algorithm. 

    inputs: 

        X       as array        features 

        y       as array        label(s) 

        clf     as scikit-learn regressor (untrained) 

    returns: 

        clf     as trained regressor 

        metrics as dict         regression metrics (MSE, RMSE, MAE, R^2) 

        X_test  as array        test features 

        y_test  as array        test labels 

    ''' 

    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2) 

    model = clf.fit(X_train,y_train)  

    y_pred = clf.predict(X_test) 

     

    mse = mean_squared_error(y_test, y_pred) 

    rmse = mean_squared_error(y_test, y_pred, squared=False) 

    mae = mean_absolute_error(y_test, y_pred) 

    r2 = r2_score(y_test, y_pred) 

     

    metrics = {'MSE':mse, 'RMSE':rmse, 'MAE':mae, 'R^2':r2} 

     

    accuracy = None 

    if debug: 

        accuracy = r2 

        plot_test(clf,X_test,y_test) 

         

    return clf, metrics, X_test, y_test 

 

def go(x,y,algorithm,debug=True): 

    ''' Easy model train and test. ''' 

    clf, metrics, X_test, y_test=train_model(x,y,algorithm,debug=True) 

    print('Metrics: ', metrics) 

 

    if debug: 

        plot_real(clf,x,y,data.index.values) 
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    return clf, metrics, X_test, y_test 

 

 

**3.2. Linear Regression** 

 

Let's implement the first ML algorithm: Linear regression. 

 

Linear regression is probably the simplest fit, but weather characteristics 

are probably quite nonlinear. Regardless, let's see how it performs -

- it might be good enough 

 

go(x,y,LinearRegression()) 

 

**3.3. Random Forest Regression** 

 

Another algorithm to try is random forest regression. This works in a 

fundamentally different way to linear regression, so maybe we'll 

have more success. Most importantly, this algorithm can handle 

nonlinear inputs. 

 

go(x,y,RandomForestRegressor()) 

 

**3.4. Neural Network Regression** 

Neural Networks are very tunable to suit a wide variety of problems. In 

this case, a neural network will be used to optimize squared error. 

Since this is just an exploration, we use default parameters 

knowing that performance may be much different if these values 

are tuned to suit our problem 

 

go(x,y,MLPRegressor()) 

 

Wow, worse than linear regression! Although better results are probably 

possible with this algorithm, we already have random forest 

regression performing north of 90% accuracy. Tuning the neural 

network is not really worth the trouble at this point. 

 

**3.5. Support Vector Regression** 

This is another algorithm that comes packaged with scikit-learn. Let's 

implement it without digging into the theory, just to see how it 

performs out of the box. 

 

go(x,y,SVR()) 

 

**3.6 Gradient Boosting Regressor:** 

 

from sklearn.ensemble import GradientBoostingRegressor 

go(x, y, GradientBoostingRegressor()) 

 

**3.7 K-Nearest Neighbors Regressor:** 
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from sklearn.neighbors import KNeighborsRegressor 

go(x, y, KNeighborsRegressor()) 

 

 

**3.8 Decision Tree Regressor:** 

 

from sklearn.tree import DecisionTreeRegressor 

go(x, y, DecisionTreeRegressor()) 

 

 

**3.9 Ridge Regression:** 

 

from sklearn.linear_model import Ridge 

go(x, y, Ridge()) 

 

 

**3.10 Lasso Regression:** 

 

from sklearn.linear_model import Lasso 

go(x, y, Lasso()) 

 

 

**3.11  ElasticNet Regression:** 

 

from sklearn.linear_model import ElasticNet 

go(x, y, ElasticNet()) 

 

 

To adjust the hyper parameters of each model as needed to achieve 

optimal performance and also, to make sure to use the evaluation 

metrics provided in the  code to assess the performance of each 

model let us use Artificial Neural Network as an example 

 

def train_model(x, y, clf, debug=False): 

    ''' Train a model, output accuracy ''' 

    X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, 

random_state=42) 

    clf.fit(X_train, y_train) 

    model = clf 

    y_pred = clf.predict(X_test) 

    mse = mean_squared_error(y_test, y_pred) 

    rmse = np.sqrt(mse) 

    mae = mean_absolute_error(y_test, y_pred) 

    r2 = r2_score(y_test, y_pred) 

    if debug: 

        print(f"MSE: {mse:.4f}\nRMSE: {rmse:.4f}\nMAE: {mae:.4f}\nR2 

Score: {r2:.4f}") 

    return clf, model, mse, rmse, mae, r2, X_test, y_test, y_pred 
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def go(x, y, algorithm, debug=True, **kwargs): 

    ''' Easy model train and test. ''' 

    clf = algorithm(**kwargs) 

    clf, model, mse, rmse, mae, r2, X_test, y_test, y_pred = train_model(x, 

y, clf, debug=True) 

    return clf, model, mse, rmse, mae, r2, X_test, y_test, y_pred 

 

 

 

go(x, y, MLPRegressor, activation='identity', learning_rate_init=0.001) 

 

 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error, mean_absolute_error, 

r2_score 

 

def train_model(X, y, clf, debug=False): 

    ''' Train algorithm. 

    inputs: 

        X       as array        features 

        y       as array        label(s) 

        clf     as scikit-learn regressor (untrained) 

    returns: 

        clf     as trained regressor 

        accuracy  as float 

    ''' 

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) 

    model = clf.fit(X_train, y_train)  

    y_predicted = clf.predict(X_test) 

 

    mse = mean_squared_error(y_test, y_predicted) 

    rmse = mean_squared_error(y_test, y_predicted, squared=False) 

    mae = mean_absolute_error(y_test, y_predicted) 

    r2 = r2_score(y_test, y_predicted) 

 

    print("MSE: ", mse) 

    print("RMSE: ", rmse) 

    print("MAE: ", mae) 

    print("R2: ", r2) 

 

    if debug: 

        plot_test(clf, X_test, y_test) 

        plot_real(clf, X, y, data.index.values) 

     

    return clf, model, mse, rmse, mae, r2, X_test, y_test 

 

def go(x, y, algorithm, debug=True, **kwargs): 

    ''' Easy model train and test. ''' 
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    clf = algorithm(**kwargs) 

    clf, model, mse, rmse, mae, r2, X_test, y_test = train_model(x, y, clf, 

debug=True) 

 

    if debug: 

        print('MSE: %s'%str(mse)) 

        print('RMSE: %s'%str(rmse)) 

        print('MAE: %s'%str(mae)) 

        print('R2: %s'%str(r2)) 

     

    return clf, model, mse, rmse, mae, r2, X_test, y_test 

 

 

 

go(x, y, RandomForestRegressor, n_estimators=100, max_depth=5) 

 

 

 

To recap, recall the accuracy of each algorithm attempted so far: 

 

Linear Regression: ~60% 

Random Forest Regression: >90% 

Neural Network Regression: ~50% 

Support Vector Regression: <50% 

Thus we select Random Forest Regression as our algorithm for turning 

 

**4. Tuning the Algorithm** 

Now let's consider how we can improve the accuracy of our model.  

 

Here's what the scikit-learn documentation say: 

 

In random forests (see RandomForestClassifier and 

RandomForestRegressor classes), each tree in the ensemble is built 

from a sample drawn with replacement (i.e., a bootstrap sample) 

from the training set. In addition, when splitting a node during the 

construction of the tree, the split that is chosen is no longer the best 

split among all features. Instead, the split that is picked is the best 

split among a random subset of the features. As a result of this 

randomness, the bias of the forest usually slightly increases (with 

respect to the bias of a single non-random tree) but, due to 

averaging, its variance also decreases, usually more than 

compensating for the increase in bias, hence yielding an overall 

better model. 

On a high level, regression derived from decision trees often results in low 

bias, high variance models, and is prone to overfitting. While the 

random forest method (which is built upon many decision trees) is 

more robust against bias and variance, overfitting is still a potential 

pitfall. 

 

For random forests, there are three main tuning parameters: 
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Number of trees. (n_estimators) More is better, with diminishing returns. 

Obviously more trees means longer compute times. A critical 

number of trees must be found where significant accuracy and 

compute times are optimized. 

Number of features to consider at each split. (max_features) If some trees 

consider a different subset of features than others, the correlation 

between those two groups is minimal. This is desirable because it 

teases out the influence of each individual feature. 

Depth of trees. (max_depth) Having trees go too deep can lead to 

overfitting. There is a critical depth where the trees split enough to 

result in useful fit without being too influenced by single values. 

Depth may instead be constrained by min_samples_split, 

min_samples_leaf, min_weight_fraction_leaf, or max_leaf_nodes 

rather than specifying tree depth outright. 

 

# DEFAULT VALUES 

      RandomForestRegressor(n_estimators=10,  

                            criterion='mse',  

                            max_depth=None,  

                            min_samples_split=2,  

                            min_samples_leaf=1,  

                            min_weight_fraction_leaf=0.0,  

                            max_features='auto',  

                            max_leaf_nodes=None,  

                            min_impurity_decrease=0.0,  

                            min_impurity_split=None,  

                            bootstrap=True,  

                            oob_score=False,  

                            n_jobs=1,  

                            random_state=None,  

                            verbose=0,  

                            warm_start=False) 

Start by seeing if performance improves by simply increasing the number 

of trees. 

 

# default algorithm for reference 

print('Default random forest regressor:') 

go(x,y,RandomForestRegressor,debug=False) 

 

# tuning round 1 

print('Tuned regressor:') 

go(x,y,RandomForestRegressor(n_estimators=100, n_jobs=-

1),debug=False) 
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Appendix B: Running Transformer codes 

 

Solar Irradiance Transformer code and further description can be downloaded at: 

https://github.com/kayodeakanni/ 

and 

https://drive.google.com/drive/folders/1JhlOjD5bh7S61NB7afAXsWzwsfvGwhYf  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/kayodeakanni/
https://drive.google.com/drive/folders/1JhlOjD5bh7S61NB7afAXsWzwsfvGwhYf
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Appendix C: Similarity Report
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Appendix D: Publications based on the Thesis and invitations  

 

Publications 

1- Application of Transformers in Information Security: Current Trends and Prospects 
https://ieeexplore.ieee.org/document/10102203  
2- BERT-IDS: An Intrusion Detection System Based On Bidirectional Encoder Representations from 
Transformers. In print 
3- Reviewing Applications Of Artificial Intelligence And Blockchain In Energy Industry. In print 
4 -Transformer model for Solar Irradiance Forecasting: Optimizing energy case. In print 
 

 

 Invitations  

 

 

https://ieeexplore.ieee.org/document/10102203
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Appendix E: CV 

Personal 
information  

 

Olukayode Akanni (ASME, COREN, NSE, IASSC 

certified Black Belt Six Sigma, Black in AI, Black in 
Robotics, OpenMined, WAIE, Intel Edge AI, MD4SG, 

Meetups NeurIPS) IT/Program Manager, AI/Software Engineer 

 
Contact Address: Apt. 3, Kavaz E building, Piabella (Kayaz Harbour Sitesi),Mersin 10, Grine ,kyrenia, 
Cyprus. 
Telephone Number: +234-8035341567, +90 5488504054 
E-mail: kayodeakanni@gmail.com 
 Europas CV link: https://resume.io/r/GNjVxuXSl 
LinkedIn  https://ng.linkedin.com/in/kayode-akanni-cssbb-mba-ai-66789626 
Personal website  https://about.me/kayodeakanni 
Github Portfolio https://github.com/kayodeakanni 
Google Scholars   
https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oqUUyT
89KzpeO1tbzJhpEuQ7egg0A 
NetRights Coalition https://cpj.org/wp-content/uploads/2020/09/PIN-Memo-on-draft-
DPB.docx.pdf 
Action Coalition on Civic Engagement in AI Design: https://ecnl.org/focus-
areas/technology-and-artificial-intelligence  

Educational 
Qualification 

(June  2023) Masters of Science, Artificial Intelligence Engineering, AI Engineering Dept., 
Research Center for AI and IoT, AI and Robotics Institute, Near East University, Mersin 10, Turkey. 
(2013) Technology Entrepreneurship, Finance, Venture lab, Management Science and 
Engineering Stanford University, United States of America 
 (2012- 2012) MSC, Operation Research, Business Administration Department, UNILAG, 
Lagos(uncompleted)  
(2007-2010) NOUN, Master in Business Administration-MBA (Information Technology) 
 (1995-2001) University of Ibadan, Ibadan, B.Sc. Hons Mechanical Engineering, Second 
Class Lower Division  
(1988- 1994) Abadina College, University of Ibadan, Ibadan. (S. S. C.E) May/June1994.-6 
Distinctions and 3 Credits. 
(1984-1987) Polytechnic Staff School, The Polytechnic, Sango, Ibadan  
(1982-1983)Trinity Nursery and Primary School, Ojoo, Ibadan, First School Leaving Cert. 

Summary  
 
 
 
 
 
 
 
 

• I am a professional working on digital inclusion/ digital rights of citizen and also 
love applying / building AI apps. My latest AI web app is AFri News Multilingual 
Embedding. This app leverages multilingual semantic model from COhere.ai to 
revolutionize media and news industry for multilingual market like Africa by Enabling 
any person to track news in real time without translating or understanding other 
regional languages. Right now, I am working in a team on AIOT Health Mobile App, 
which processes the AI algorithms locally on a hardware device to mobile platform. 
I have worked on virtual salon solution, a face swap AI web app for Nail and hair 
salon at Velena.com, AI and cybersecurity applications, AI and energy applications, 
AI and attendance system IOT applications. Drones, Raspberry Pi, Arduino and  
Rights Respecting AI framework 

Objective To obtain a good position that provides opportunity for rewarding career and using 
Engineering, business, AI and robotics- as a key tool for sustainable development. I  
have proven ability to take ownership and deliver excellent results with attention to 
details. 

Previous 
work 
Experience 

2022-2023: Software Engineer, Research Centre for AI and IoT, AI and Robotics Institute, Near 

East University, Mersin 10, Turkey  
● Built in a team, a full  stack e-commerce application using 
PHP/JavaScript/HTML/Bootstrap https://velenasalon.com 
● Participated in IOT Projects of the institute. 

mailto:kayodeakanni@gmail.com
file:///C:/Users/CPG%204/Desktop/:%20https:/resume.io/r/GNjVxuXSl
https://ng.linkedin.com/in/kayode-akanni-cssbb-mba-ai-66789626
https://about.me/kayodeakanni
https://github.com/kayodeakanni
https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oqUUyT89KzpeO1tbzJhpEuQ7egg0A
https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oqUUyT89KzpeO1tbzJhpEuQ7egg0A
https://cpj.org/wp-content/uploads/2020/09/PIN-Memo-on-draft-DPB.docx.pdf
https://cpj.org/wp-content/uploads/2020/09/PIN-Memo-on-draft-DPB.docx.pdf
https://ecnl.org/focus-areas/technology-and-artificial-intelligence
https://ecnl.org/focus-areas/technology-and-artificial-intelligence
https://velenasalon.com/
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● Participated in a team in the design and development of an Artificial Intelligence 
enabled mobile and web health app. 
 

2022: ECNL's Action Coalition Partner, European Center for Not-For-Profit Law 
Stichting, Netherlands | Knowledge House (KnowledgeHouseAfrica-KHA),  Girne 
KKTC, Mersin,10, Turkey. 
●Ensure the growth and improvements in the works of DesignIT International 
rebranded as Knowledge House with presence in Europe as a parent social enterprise 
for her activities in Europe and Africa. 
● Execute our Action Coalition on Civic Engagement in AI Design. This is an 
initiative launched under the auspices of the “Tech for Democracy Initiative” 
spearheaded by the Ministry for Foreign Affairs and Ministry for Development 
Cooperation of Denmark.  and we have been working on developing a Guide for 
meaningful Engagement and participation of CSOs/affected communities in the 
development of human rights impact assessment (HRIAs) of AI-driven systems and 
have created a draft framework for meaningful trustworthy engagement with domain 
experts and stakeholders across law enforcement, government, NGOs and the private 
sectors, while using Privacy- preserving AI exposure in Openmined to also develop 
socio-technical approaches and frameworks to enable privacy, security and trust in the 
data sharing and AI applications. 
● Consider issues of privacy, security and trust as they relate to data sharing and 
curation of sensitive data sets. 
 
2012- 2021: DesignIT International aka KnowledgeHouseAfrica, #27, Josade 
way, Agunfoye-Adamo Rd, Adamo. Ikorodu. Lagos, Nigeria. 

- Leading the growth and impact of a nonprofit social enterprise organization 
dedicated to apply ICT, builds an ICT-enabled support systems and things, digital 
inclusion, advocates digital rights and AI – related legislation in order to improve 
livelihoods for underserved, unconnected and the unborn using Free and Open 
Source Technologies as a key tool. 

- Serves as Black in robotics Teaching assistance in Robotic Education outreaches 
including from Imagination to Reality: Computer-Aided Design using Auto desk 
Tinkercad, in partnership with Robomechanics lab at Carnegie Mellon University, 
CMU, USA. 

- Conduct research in development and application of privacy and security related 
research including data anonymization and synthetic data generation, differential 
privacy, federated learning, and other related technologies through Openmined, 
Black in AI, Black in Robotics, OpenMined, WAIE, Intel Edge AI, MD4SG, 
Meetups NeurIPS 

- Robotics Educator/Engineer using CAD program, design and using 3D printing 
bring our own creation to life: Describe the product development process, express 
product design ideas using 2D sketches, model a component with complex shapes, 
model an assembly of components with kinematic linkages, render and animate 
the appearance and functionality of a product, receive a 3D print of a product 
designed ourselves. 

 
1997- 2001; Research (Design) Assistant, Mechanical Engineering Dept., 
University of Ibadan, Ibadan. 

- From Imagination to Reality: Computer-Aided Design. Developed engineering 
drawings of all machines in a plant-consultancy work with Oyo State Government & Raw 
Materials Development Research council (RMDRC);Planned, managed major engineering 
operations & supervised its production; Design, development, Installation & 
commissioning of 20 Tons capacity Oragno-mineral Fertilizer Plant, Ibadan; Developed 
an Environmental Information System for scheduling & forecasting of “waste to 
wealth” project. 
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Skills ICT Skills: AutoCAD, 3D CAD, Graphic Designs, MS & Primavera Project Planner. 
Digital Skills Desktop & Web Applications & technologies, Digital marketing, ICT4D 

Consultant, Programming (Python, Scratch, Arduino, JavaScript, CSS, HTML, MySQL, 
PhP, C++, Open source projects like Open CV, OpenVINO, ONNX, Tensor flow, 
Pytorch, FastAI. Experience in using S/w Development tools), AI/ML/DS    Soft Skills: 
- Team leadership; Good oral and written communication; Excellent analytical skills; good 
organizational and interpersonal skills; Project management; contract management, 
designing and meeting budget and   KPIs, CAPEX and, OPEX; Monitoring, evaluation & 
Impact assessment. Author, Speaker, Youth Coach.  

Professional 
Membership 

Member of Institution of Mechanical Engineers in view (ImechE #8001124) and COREN 
(R30,180), IASSC Black Belt (#GR7640001970A), IRCA QMS 
Auditor(#SGSD/SSCE/QMSLAC/511493/P/26828), AI Saturdays Lagos (DL # 
C05/2/6272020/006) 
Member of Nigerian Society of Engineers (NSE-#21579), Nigeria and Member of American 

Society of Mechanical Engineers (ASME- #9355165). AI membership: 
DataScienceNigeria, AISaturdays Lagos (, Tensorflow Lagos and GDG Lagos, and GDG 
Ikorodu, Black in AI, OpenMined, Data Native unlimited, Codeclub of Raspberry pi 
foundation. Internet Governance Forum ( IGF) 

Publications  1- Development and construction of cashew juice extractor machine (a Project work 
submitted in partial fulfillment of OND in Mechanical Engineering.  
2- Design of 10kN capacity Screw jack (a Design project term paper).  
3- Computer graphical representation of Organo-Mineral Fertilizer Pilot Plant Process Flow 
chart. (a project work submitted in partial fulfillment of B Sc. Hons in Mechanical 
Engineering). 
4- West Africa Telecommunications and Nigeria (a report given to YIELD after WAfritel 
2002), 
5- E-readiness of Banks and Financial institutions in West Africa (a report given to YIELD 
after Finance IT Africa) 
6- Internet and You (Presented at the National Youth Service Corps Camp, NCCF, Lagos 
State ,2002) 
7- NYSC Service Year CD Rom: Nigeria Christian Corpers' Fellowship, Lagos State  
(2002 and 2003) 
8- NGO and e-commerce: (Presented at the Development Information Network meeting, 
Lagos State (2003) 
9- The Nigerian Youths Designing Open Source for Livelihood Opportunities: (Presented at 
the First African Conference on Digital Commons, South Africa, 2004) 
10- What young people are doing @ WSIS. (Presented at the Information Communication and 
Technologies Youth Empowerment Conference 2004.) 
11- Publication of United Nations Economic Commission for Africa on "African youth 
Speaks”. (2004) 
12-Global Process, Local Reality: Nigerian youth Lead Action in the Information 
Society.WSIS Policy II, Tunisia 2005 

https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oq
UUyT89KzpeO1tbzJhpEuQ7egg0A 
13- Solving poverty through Digital Economy. AI6Lagos Data science & Machine learning 
Project. https://GitHub.com/deep-forthinkn  ,  
https://twitter.com/AISaturdayLagos/status/1208388686204809216?s=09(2019) 
14- American Sign Language Translator, an Intel Edge AI Udacity's Winning AI for social 
good Project (2020) https://GitHub.com/ASL 
15- Facial Expression Recognition, AI6 Lagos Deep learning project (2020), 
https://GitHub.com/AI6DLProject  
16- OpenMined's privacy preserving ML with python tutorial pidgin translation. 
https://github.com/OpenMined/PySyft   
17- AIOT Health App 
18- Application of Transformers in Information Security: Current Trends and Prospects 
https://ieeexplore.ieee.org/document/10102203  
19- BERT-IDS: An Intrusion Detection System Based On Bidirectional Encoder 
Representations from Transformers 
20- Attendance System via Internet of Things, Blockchain and Artificial Intelligence 
Technology: A Systematic Literature Review 

https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oqUUyT89KzpeO1tbzJhpEuQ7egg0A
https://scholar.google.com/citations?user=MnNSeJIAAAAJ&hl=en&citsig=AMD79oqUUyT89KzpeO1tbzJhpEuQ7egg0A
https://github.com/deep-forthinkn
https://twitter.com/AISaturdayLagos/status/1208388686204809216?s=09(2019)
https://github.com/ASL
https://github.com/AI6DLProject
https://github.com/OpenMined/PySyft
https://ieeexplore.ieee.org/document/10102203
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https://www.researchgate.net/publication/369242900_Attendance_System_via_Internet_of_
Things_Blockchain_and_Artificial_Intelligence_Technology_Literature_Review  
21- Reviewing Applications Of Artificial Intelligence And Blockchain In Energy Industry 
22 - 0ptimizing energy in the digital age: solar irradiance forecasting using transformer model 

Community 
Activities 

Taking IT Global (TIG)- An international organization-TIG brings together young people 
in more than 190 countries within international 
networks to collaborate on concrete projects addressing global problems and creating positive 
change www.takingitglobal.org 
Free Software and Open Source Foundation for Africa (www.fossfa.net)–An African 
based organisation made up of Open 
Source Users & Developers throughout Africa, devoted to the development & promotion of 
Free and Open Source Software in Africa 
World Summit On Information Society Youth Africa (www.wsisyouth.org) –The 
concerted effort of the African youth 
involvement in the WSIS Process, which is the initiative of the United Nations and the 
International Telecommunication Union (ITU) 
African Youth and the Information Society Initiative (UNECA)- Organized by the United 
Nations Economic Commission for 
Africa. A platform for African youth to share experiences and knowledge with stakeholders in 
order to help develop innovative approaches to their needs and to implement the UN World 
Summit on the Information Society action plan at country & regional level. 

Hobbies Thinking, planning, reading, writing, creative reasoning, leadership, decision making and 
problem solving. 

Languages English, Yoruba and French language 

Awards • Intel Edge AI Udacity's Winning AI for social good Project (2020) 
https://GitHub.com/ASL 

• Listed by Software Freedom Foundation (now Digital Freedom Foundation) 
as 2006 Best global Software Freedom Day (SFD) team (2006) 

• Third position in Technical project presentation for Abadina College’s first 
time at Junior Engineer and Technical Students (JETS) competition at state 
level. (1994) 

Professional 
Competence 
Certifications 

 Udacity nanodegree on Intel Edge AI for IOT Developer & AWS ML (in view), IOT and 
ARDUINO. Certified Lean Six Sigma Black belt (CSSBB),Project Management-PMP in 
view, Auditor (QMS, EHS),COREN, NSE, ASME-USA, ImechE(in view)-UK. 

References ❖ Prof. O. Bamiro, former Vice Chancellor, University of Ibadan, Ibadan, Nigeria. 
Tel: +2348023151513; oabamiro@yahoo.com 

❖ Prof Fadi AL-Turjman, Asst Dean, Director of Research center for AI and 
Robotics Institue,Near East University, Tel: +905428520985 
fadi.alturjman@neu.edu.tr 

❖ Asst. Prof. Dr. Auwalu Saleh Mubarak, Lecturer, Research center for AI and 

Robotics Institue,, Near East University, Tel: +905338717889 
auwalusaleh.mubarak@neu.edu.tr 

❖ Dr. Seun Kolade, Faculty Head of Doctoral Training Programme, De Montfort 
University, Leicester, UK. Tel: +447897265890 seunkolade2014@gmail.com 

❖ Mr. Moses Duphey, World Bank ,P.O Box C847, Accra, Ghana, 
Tel:+233244649748; mosesduphey@yahoo.co.uk 
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