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ABSTRACT 

Artificial Intelligence (AI)-driven ensemble and boosting models to predict COVID-

19 mortality in eastern Africa.” 

Abegaz, Kedir Hussein 

PhD, Department of Biostatistics 

00/00/2023, 100 Pages 

COVIID-19 severly affected Eastern Africa as of other parts of the world, which 

significantly disrupted social and economic activities in the region. This objective of this 

study was to predict mortality due to COVID-19 using artificial intelligence-driven 

ensemble and boosting models in Eastern Africa. The study used a two years daily data 

collected consecutively. At the preprocessing stage, the dataset was split into training and 

verification sets . In the modelling, sensitivity analysis, development of  single black box 

AI-driven models, development of ensemble and boosting models, and comparison of 

ensemble models with single models were conducted. In the sensitivity analysis, four 

inputs were selected and used to run the single models, and accordingly, the coefficients of 

determination (DC) for ANFIS, FFNN, SVM, and MLR were, respectively, 0.9273, 

0.8586, 0.8490, and 0.7956. Another four inputs were used to create the boosting method: 

AdaBoost, KNN, ANN-6, and SVM were shown to have determination coefficients of 

0.9422, 0.8618, 0.8629, and 0.7171, respectively. The ANFIS ensemble and AdaBoost 

algorithms proved to be the most effective at enhancing the prediction performance of the 

single AI-driven models with non-linear ensemble techniques. This demonstrates the 

ability of ensemble and boosting models to predict COVID-19 mortality in Eastern Africa.  

Keywords: Ensemble, Boosting, machine learning, covid-19, AdaBoost, ANFIS, FFNN 
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ÖZET 

Doğu Afrika'da COVID-19 ölüm oranını tahmin etmek için Yapay Zeka (AI) 

güdümlü topluluk ve güçlendirme modelleri” 

Abagaz, Kadir Hüseyin 

Doktora, Biyoistatistik Anabilim Dalı 

00/00/2023, 100 Sayfa 

COVİD-19, dünyanın diğer bölgeleri gibi Doğu Afrika'yı da ciddi şekilde etkilemiş, 

bölgedeki sosyal ve ekonomik faaliyetlerde ciddi aksamalara yol açmıştır. Bu çalışmanın 

bu amacı, Doğu Afrika'da yapay zeka odaklı topluluk ve güçlendirme modellerini 

kullanarak COVID-19'a bağlı ölümleri tahmin etmekti. Çalışmada ardı ardına toplanan iki 

yıllık günlük veriler kullanıldı. Ön işleme aşamasında veri seti eğitim ve doğrulama 

setlerine bölündü. Modellemede duyarlılık analizi, tek kara kutulu yapay zeka destekli 

modellerin geliştirilmesi, topluluk ve güçlendirme modellerinin geliştirilmesi ve topluluk 

modellerinin tekli modellerle karşılaştırılması gerçekleştirildi. Duyarlılık analizinde dört 

giriş seçilmiş ve tekli modelleri çalıştırmak için kullanılmış ve buna göre ANFIS, FFNN, 

SVM ve MLR için belirleme katsayıları (DC) sırasıyla 0,9273, 0,8586, 0,8490 ve 0,7956 

olmuştur. Güçlendirme yöntemini oluşturmak için dört girdi daha kullanıldı: AdaBoost, 

KNN, ANN-6 ve SVM'nin sırasıyla 0,9422, 0,8618, 0,8629 ve 0,7171 belirleme 

katsayılarına sahip olduğu gösterildi. ANFIS topluluğu ve AdaBoost algoritmalarının, tek 

yapay zeka destekli modellerin tahmin performansını doğrusal olmayan topluluk 

teknikleriyle geliştirmede en etkili algoritmalar olduğu kanıtlandı. Bu, birleştirme ve 

güçlendirme modellerinin Doğu Afrika'daki COVID-19 ölümlerini tahmin etme yeteneğini 

gösteriyor. 

Anahtar Kelimeler: Ensemble, Boosting, makine öğrenimi, covid-19, AdaBoost, ANFIS, 

FFNN 
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CHAPTER I 

INTRODUCTION 

1.1. Background of the study 

“Artificial Intelligence could be the saviour of the COVID-19 pandemic in the coming 

year; we just need to prove it.”  

(The Lancet Digital Health, 2021) 

          Most pandemics in the 20th and 21st centuries were caused either by the coronavirus 

or the influenza virus. Among these pandemics, the viral disease pandemics that have 

occurred in the last twenty years are MERS, SARS, bird flu, H7N9, Ebola, H1N1, Nipah, 

and Zika (Arora et al., 2020). In December 2019, Wuhan, China, experienced the most 

recent coronavirus outbreak of this decade, called coronavirus disease 2019. This outbreak 

is one of the 21st-century pandemics and highly contagious infections caused by severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV2) (Gao et al., 2021; Ko et al., 2020).  

           The World Health Organization (WHO), on 30 January 2020, declared this outbreak 

a “Public health emergency of international concern” and on 11 February 2020, named this 

outbreak ‘COVID-19’, used as a shorthand for coronavirus disease 2019. Finally, the WHO 

declared this outbreak a “Pandemic” on 11 March 2020 (Arora, Banerjee, & Narasu, 2020). 

The nature of this pandemic was different from earlier pandemic types and had a 

devastating effect on the world economy and led to a nearly complete cessation of social 

and economic activity worldwide (Abegaz & Etikan, 2022; Arora et al., 2020).  

          In terms of mortality, COVID-19 has caused more than 6.5 million deaths (6,559,902 

as of 8 October 2022) globally, with a case fatality rate of 0.52% (WHO, 2020). This 

number proves that the pandemic is much different, in terms of global crises, compared 

with previous flu pandemics, such as the Spanish flu (in 1918), the Asian flu (1957–1958), 

the Hong Kong flu (1968–1970), and the swine flu (2009–2010). The nature of this 

pandemic made COVID-19 the first global public health issue that had a brutal impact on 

the global economy, which triggered a near-to-total shutdown of social and economic 
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activities. Finally, the pandemic has shrunk the global economy by nearly 3 percent, 

according to the prediction of the International Monetary Fund (IMF) (GAVI, 2022). 

          Remarkably, the crisis due to COVID-19 proves that our earth is unprepared for such 

a quickly spreading and rampant virus, resulting in a catastrophic pandemic. In addition to 

this, the big question, then, is, “When will things go back to normal, or whether we should 

prepare for new waves of coronavirus or not?” Though no one has a final answer to this 

question, through data analyses, we can understand how it happened and what the situation 

will look like in the future. The results of these analyses, including those using artificial 

intelligence (AI)-driven models and Boosting algorithms, will be actionable knowledge 

that can help us to manage a similar crisis in the future (Baik, Lee, Hong, & Park, 2022; 

Karaarslan & Aydın, 2021). 

          In this catastrophic era, AI is contributing to the development of many effective 

strategies that can control infection in real-time and easily track the rampant virus (Arora 

et al., 2020). It is also successfully used for the identification of disease, monitoring of 

cases and deaths, and prediction of future outbreaks and risks of mortality by analyzing the 

previous data of patients regarding the cases and deaths. In addition, AI can significantly 

boost the consistency of treatment and decision-making by developing important data-

driven and machine-learning algorithms (Hu, Ge, Li, Jin, & Xiong, 2020; Vaishya, Javaid, 

Khan, & Haleem, 2020).  

          One of the most successfully recognized algorithms in the field of machine learning 

is the Adaptive Boosting (AdaBoost) algorithm, which was developed by Freund (1997). 

The AdaBoost algorithm, which maintains a collection of weights over training data and 

adjusts them after each weak learning cycle adaptively, creates a set of weak learners by 

assuming that a combination of weak learners can be "boosted" into an accurate strong 

learner (Freund & Schapire, 1997).  

          In contrast to conventional back-propagation neural networks or convolutional 

neural networks, recent examples of research have shown that AdaBoost-based machine 

learning could achieve high accuracy in modelling with multi-class imbalanced data (W. 

Sun & Gao, 2019; Taherkhani, Cosma, & McGinnity, 2020). AdaBoost has been used in 
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ensemble learning because of its superior classification and prediction performance, which 

includes image recognition, estimation of fruit biochemical parameters, and complex 

change prediction modelling (Fernandes et al., 2011; Liu, Tian, Li, & Zhang, 2015; J. Sun, 

Fujita, Chen, & Li, 2017; Zhao, Gong, Zhou, Huang, & Liu, 2016). In addition to the 

Boosting algorithm, the prediction capability of different non-linear AI-driven superior 

neural networks models like SOFNN-HPS and GK-ARFNN was found to be high in 

predicting wastewater treatment processes (Zhou, Li, Zhang, Xu, & Su, 2022; Zhou, 

Zhang, Duan, & Zhao, 2020). 

          Furthermore, web applications were developed by Chowdhury D. et al. in 2022. 

The application can detect whether a patient has COVID-19 or not after the image of the 

chest X-ray they uploaded to the web application (Chowdhury et al., 2022). Through AI-

supported imaging technology, unenhanced chest computed tomography (CT) becomes 

applicable to the prediction of COVID-19. According to Schiaffino S. et al., in 2021, 

multilayer perceptron was the best-performing machine learning algorithm in predicting 

pulmonary parenchymal and vascular damage using unenhanced chest CT (Schiaffino et 

al., 2021). 

1.2. Statement of the problem 

          The COVID-19 pandemic has had a significant effect on East Africa, with serious 

economic repercussions and endangering the region's growth and progress toward 

sustainable development. In this region, communicable diseases were the leading causes 

of mortality in the earlier stage of the COVID-19 pandemic, and among these diseases, 

perinatal, maternal, and malnutrition cases were responsible for almost half of the mortality 

in the region. In addition to this, East Africa is facing momentous health-related challenges 

due to preventable infectious diseases.  

          However, it is still facing a challenge due to the pandemic, and mortality remains at 

an alarming rate. This rate is likely to increase in the coming years because of COVID-19 

and its consequences in the region, and Ethiopia is one of the significant contributors to the 

region’s mortality (UN. ECA, 2022). The resulting crisis and the pandemic itself threaten 

to reverse the development of some parts of the region that occurred within the last decade 
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and will hinder progress toward sustainable development growth (SDG) (UN. ECA, 2022; 

Web, 2022). 

          In the region including Ethiopia, many studies produced information on different 

healthcare issues such as antenatal care (ANC) utilization status of mothers (Abegaz & 

Habtewold, 2019), the postnatal care (PNC) visits of mothers (Sahle, 2016), access to 

tetanus toxoid (TT) immunization of mothers (Abegaz & Atomssa, 2017), predicting 

undernutrition status of U5 children (Markos, Doyore, Yifiru, & Haidar, 2014), predicting 

the CD4 count status of patients under ART (Mariam & Mariam, 2015), predicting the 

level of anaemia among women (Dejene, Abuhay, & Bogale, 2022), and predicting U5 

mortality (Bitew, Nyarko, Potter, & Sparks, 2020) by using different machine-learning 

algorithms and AI-driven models. In addition to this, a few studies have applied them to 

the detection and classification of COVID-19 cases from X-ray images (Ayalew, Salau, 

Abeje, & Enyew, 2022; Erdaw & Tachbele, 2021).  

          Even though many studies (Dong et al., 2021; Gao et al., 2020; Guo & He, 2021; 

Kolozsvári et al., 2021; Ullah, Moon, Naeem, & Jabbar, 2022; Yaşar, Çolak, & Yoloğlu, 

2021) have produced information regarding COVID-19 by using the concept of big data, 

machine learning and artificial intelligence, studies related to the prediction of mortality 

using different AI-driven models are rare globally and in the region. According to our 

search of various databases, no study has discussed the use of ensemble modelling and 

boosting algorithms to predict COVID-19 mortality in the region. This study had conducted 

in response to the stated problems. 

1.3. Purpose of the study  

          The purpose of this study was to develop and evaluate AI-driven ensemble and 

boosting models specifically designed for predicting COVID-19 mortality in Eastern 

Africa. The study aims to achieve the following specific objectives: 

 Evaluate and select suitable AI-driven models, including ensemble modelling and 

boosting algorithms, for COVID-19 mortality prediction 
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 Assess the performance and predictive accuracy of the developed AI-driven 

ensemble and boosting models 

 Compare the performance of ensemble and boosting models against single and 

weak learner models commonly used in COVID-19 mortality prediction. 

 Conduct a comparative analysis of the AI-driven ensemble and boosting models to 

identify the most effective and reliable model for COVID-19 mortality prediction 

in Eastern Africa. 

1.4. Significance of the study 

          This study bears important significance for several stakeholders and offers the 

scholarly community the following contributions: 

 Addressing a Critical Need: COVID-19 had serious effects on public health, 

economics, and development. The study tackles this critical and pressing need. The 

research's goal is to deliver precise and timely predictions of COVID-19 mortality 

in the area through the development of AI-driven ensemble and boosting models. 

The implementation of targeted interventions, resource allocation, and preventative 

actions to lessen the impact of the pandemic on public health may be made easier 

with the use of these data by healthcare authorities, policymakers, and 

organizations. 

 Filling a Research Gap: There are few pieces of research available on mortality 

prediction using AI-driven models in Eastern Africa, despite the increased interest 

in AI and machine learning for COVID-19 analysis. The paper closes this research 

gap and provides insightful information on the use of AI-driven ensemble and 

boosting models, especially for the region's COVID-19 mortality prediction. The 

results will increase our understanding of this field and lay the groundwork for 

future investigation and development of AI-driven models in epidemiology and 

healthcare research. 

 Enhancing Prediction Accuracy: The project intends to increase the precision of 

COVID-19 mortality estimates in Eastern Africa through the application of 

ensemble modelling and boosting methods. Ensemble models can integrate the 
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advantages of many AI-driven models, producing forecasts that are more solid and 

trustworthy. The research will shed light on the efficiency and superiority of 

boosting algorithms in capturing the intricate patterns and dynamics of COVID-19 

mortality in the area by contrasting their performance against that of single and 

weak learner models. 

 Informing Policy and Decision-Making: Accurate prediction of COVID-19 

mortality can have major effects on public health initiatives, resource allocation, 

and policy development. Policymakers, healthcare workers, and other stakeholders 

involved in controlling the epidemic in Eastern Africa can benefit greatly from the 

study's results. The predictions made by AI-driven models can help with proactive 

planning, risk assessment, and targeted actions to avoid or reduce death rates, which 

will eventually save lives and lessen the pandemic's social and economic effects. 

 Technological Advancement: The study advances AI-driven algorithms and 

models in the fields of epidemiology and healthcare. The work demonstrates the 

ability of AI to deliver accurate and reliable forecasts in complicated and quickly 

moving circumstances like the COVID-19 pandemic by utilizing cutting-edge 

methodologies like ensemble modelling and boosting algorithms. The findings of 

this study may encourage future investigation and use of AI-driven models in 

healthcare systems, enhancing such systems' capacity for illness monitoring, 

management, and response. 

1.5. Limitations of the study 

While conducting, several limitations should be acknowledged: 

 Data Availability and Quality: The study's conclusions mainly rely on data on 

COVID-19 patients, mortality, demographics, comorbidities, and socioeconomic 

variables in Eastern Africa. The validity and generalizability of the findings may 

be harmed by limitations in the data collection, accuracy, completeness, and 

representativeness. 

 Generalizability: Since the study focused on Eastern Africa, the conclusions won't 

be immediately relevant to other continents or nations. The dynamics of COVID-
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19, such as mortality patterns, the incidence of comorbidities, and the state of the 

healthcare system, might fluctuate across different geographical regions, limiting 

the generalizability of the proposed models. 

 Model Performance: Ensemble and boosting models driven by AI are subject to 

several restrictions in terms of their accuracy and predictive performance. Model 

overfitting, selection bias, feature engineering, and model assumptions can all 

affect the model's performance and bring uncertainty into mortality estimates. 

 Data Representation and Bias: The dataset used to train the AI models may have 

inherent biases, such as an under or overrepresentation of particular areas or 

demographic groups. The models' capacity to correctly forecast COVID-19 

mortality for certain subpopulations may be impacted by biases in data collecting, 

testing procedures, and reporting methods. 

 The dynamic nature of COVID-19: The COVID-19 pandemic is a fast-changing 

scenario that is characterized by shifting epidemiological patterns, appearing 

variations, and shifting healthcare approaches. The results of the study could be a 

reflection of the circumstances and trends that prevailed at a particular time, but 

they might not be an accurate representation of prospective changes in death rates 

or disease dynamics over time. 

 Interpretability of AI Models: AI-driven ensemble and boosting models 

frequently have complicated structures and are difficult to understand. It might be 

difficult to offer thorough justifications for mortality forecasts due to our limited 

understanding of the underlying systems and factors affecting the model's 

predictions. 

 External Factors: Although the study focuses on the use of AI-driven models for 

mortality prediction, it does not take into account all of the interventions and 

external factors that may affect COVID-19 mortality. Beyond the purview of this 

study, factors like vaccination drives, public health initiatives, and healthcare 

system capacity may influence death rates. 

          For the study's findings and implications to be correctly interpreted, these limitations 

must be acknowledged. The validity and generalizability of the findings should be 
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discussed in full transparency, and researchers should make every effort to resolve these 

constraints as best they can. 
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CHAPTER II 

REVIEW OF LITERATURE 

          In this chapter, both theoretical and empirical literature related to this study has been 

searched and presented. Even though a lot of research is conducted on COVID-19 datasets 

using different AI-driven models, Machine learning algorithms and data mining and 

knowledge discovery process, very little literature are available on AI-driven ensemble and 

boosting models. Therefore, this Literature review summarizes different works related to 

the COVID-19 pandemic using different machine-learning algorithms and their prediction 

performance.  

2.1. Theoretical Framework 

          In this sub-section, the theoretical framework, the philosophy of the ensemble model 

and common types of ensemble modelling are presented. 

2.1.1. Philosophy of Ensemble model  

          Several theoretical and empirical studies have demonstrated that the performance of 

ensemble and boosting models outperforms the performance of single and weak-

performing models (Abdunabi, T.A., 2016). Ensemble systems work for three general 

reasons: statistical, computational, and representational (Thomas G.D., 2000) as follows:  

 Statistical algorithm: The main purpose of this algorithm is to search the 

hypothesis’s space to find the best hypothesis in the space. 

 Computational algorithm: The justification of computational algorithms in 

applying ensemble systems include imperfect learning algorithms like too de32much 

data, small sample size, and data fusion. Some learning algorithms are only 

guaranteed to converge to local optima, such as the back-propagation method used to 

train neural networks (Kuncheva, 2014). 

 Representational: The representational explanation is based on the fact that, in some 

situations, none of the space’s hypotheses can adequately reflect the genuine 

hypothesis. 
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          Although it is quite likely that the fusion of several models will perform better than 

a single model, the fusion of various models could just increase the system’s complexity 

without improving performance. Therefore, for an ensemble to be successful, each base 

model must be unique. 

2.1.2. Common Types of Ensemble Modelling 

          In this section, three common methods are reviewed, namely, bagging, boosting, and 

random subspace. More details on these methods can be found in the provided references. 

a. Bagging  

          Bagging was introduced by Beriman, and it is sometimes known as “Bootstrap 

AGGregatING” (Leo B., 1996). By training the ensemble models using bootstrap replicates 

(sampling without replacement) of the training dataset, bagging aims to introduce model 

diversity at the data level. The outputs of the models are then averaged or blended using a 

majority vote for classification or, in the case of regression. 

b. Boosting 

          Boosting is defined as the general problem of producing a very accurate prediction 

rule by combining rough and moderately inaccurate rules of thumb (Yoav F. et al., 1997). 

Due to their accuracy, applicability and robustness, boosting algorithms have been ranked 

among the top ensemble models. AdaBoost is one type of boosting algorithm, and it stands 

for “ADAptive BOOSTing”. Resampling and reweighting are two types of implementing 

the AdaBoost algorithm (Yoav F. et al., 1996). 

c. Random Subspace 

          The random space approach fixes the model at the feature (variable) level. Hence, 

models are trained on a randomly selected subset of features to construct the ensemble 

model (Tin K. H., 1998). Therefore, the final prediction from the ensemble model will be 

made by combining the outputs of models using a majority vote for classification purposes 

or averaging for regression. In addition to bagging, the random forest applies the random 

space method (Leo, B., 2001). 
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d. Stacking 

          The aim behind stacking is to integrate many weak learners by training a Meta model 

to provide predictions based on the various predictions that these weak models have 

returned. Stacking differs from bagging and boosting primarily in two ways. First, whereas 

bagging and boosting primarily take homogenous weak learners into account, stacking 

frequently take into account heterogeneous weak learners (various learning methods are 

merged). Second, while bagging and boosting combine weak learners using deterministic 

algorithms, stacking learns to combine the basic models using a Meta-model (Rocca J., 

2019). 

2.2. Related Literature 

          This part of the Literature review summarizes different works related to the COVID-

19 pandemic using different ensemble machine learning algorithms and their prediction 

performance over single and weak performer models. However, a limited number of 

studies are discussed in this section due to the small number of literature available on 

ensemble modelling to predict COVID-19 mortality. 

          Kumar, K., investigated a case study on an ensemble model-based machine learning 

to predict the mortality risk of patients due to COVID-19. Three classifiers-NB, RF and 

SVM-were used in this study’s analysis, and the ensemble techniques bagging and boosting 

were applied to increase the accuracy of the prediction. The findings show that adding the 

boosting method (AdaBoost) to an ensemble of weak classifiers significantly improves 

predictions for extremely heterogeneous datasets. Therefore, the boosting algorithms 

increase the prediction of the weak performer model called the SVM algorithm by 9.86 

percent (Kumar K., 2021). 

          Ko, H. and Chung H. et al. developed an AI model to predict mortality at the early 

stage of hospital admission due to blood test data. They developed a COVID-19 AI model 

called EDRnet (Ensemble learning model based on deep neural network and random forest) 

to predict in-hospital mortality. The developed EDRnet model provided high sensitivity 
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(100 percent) and high specificity (91 percent), and an accuracy of 92 percent (Ko, H., 

Chung, H., 2020). 

          Baik, S. M. and Lee, M. et al. performed a study to analyze the electronic medical 

record (EMR) data and laboratory results of hospitalized COVID-19 patients in Korea 

using DL and ML to develop an optimized ensemble model to predict mortality. Three 

machine learning models (RF, SVM and XGBoost) and one DL model (Multilayer 

perceptron) were developed. Accordingly, they found that the ensemble model was the 

best-performing model with AUC=0.8811 and an accuracy of 0.85, and hence, this result 

demonstrated that the ensemble model had the highest ability of prediction in classifying 

COVID-19 mortality using EMR in Korea (Baik, S. M. and Lee, M. et al., 2022). 

          Ullah F. et al. developed an ensemble model to identify COVID-19 disease based on 

two datasets containing 1,646 and 2,481 CT scan images. In addition to the ensemble 

model, they conducted SVM, Decision tree Gaussian Naïve Bayes, K-nearest neighbour, 

logistic regression and Random forest machine learning models. They applied Gradient-

weighted Class Activation Mapping (Grad-CAM) and t-distributed Stochastic Neighbor 

Embedding (t-SNE) to interpret the overall performance of the proposed models. 

Accordingly, the proposed ensemble approach outperformed other existing models with 

98.5 percent accuracy and 99 percent precision (Ullah, F., 2022). 

          Ayalew et al. developed the hybrid model of detection and classification for quick 

diagnostics of COVID-19 disease using X-ray images collected from the university of 

Gondar database. In this study, one hybrid model called DCCNet and two single models, a 

convolutional neural network (CNN) and histogram of oriented gradients (HOG), were 

proposed for quick diagnosis of COVID-19 disease using X-ray images of patients. The 

experiment was conducted in a framework known as Keras (Transflow as the backend) 

using Python. According to the result,   the hybrid model achieved 99.67 percent accuracy 

in detecting and classifying the disease, and this implies that the hybrid model (DCCNet) 

single models by 6.7 percent (Ayalew, A. et al., 2022). 

          Lou et al. developed an ensemble model using the computational method to predict 

mortality due to COVID-19 from 4,711 reported cases confirmed as SARS-CoV-2 
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infected. Their computational model (AURROC) was developed, combining machine 

learning and genetic algorithms using 10 features. According to their finding, the ensemble 

model performed better than others, with a ROC value of 0.7802. This shows the robustness 

of the ensemble model developed by combining machine learning and genetic algorithms 

(Lou L. et al., 2023). 

          Cui, S. et al. collected data from 79 countries to develop a model that predicts the 

development trend of mortality due to COVID-19 in these countries. Therefore, they 

developed three single models; Multiple linear regression (MLR), support vector machine 

(SVM), and extreme learning machine (ELM), and a two-layer nested, heterogeneous 

ensemble model combining three single models was developed.  According to the results 

of the study, the proposed ensemble model shows better prediction ability than state-of-

the-art machine learning methods (MLR, SVM, and ELM) (Cui, S. et al., 2021). 
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CHAPTER III 

METHODOLOGY 

3.1. Study Area 

          The study area of this research was Eastern Africa, which is a part of sub-Saharan 

Africa comprising two traditionally recognized regions: East Africa (Kenya, Tanzania, and 

Uganda); and the Horn of Africa (Somalia. Djibouti, Eritrea, and Ethiopia). This region is 

the most populous sub-region of Africa, representing nearly 5.6% of the world’s 

population. It stretches from Mozambique in the south to Eritrea in the north. There are 

eighteen countries and two independencies in the region, but nearly a quarter of the region’s 

people are living in one country, Ethiopia (USAID, 2022; World Atlas, 2022). Ethiopia is 

the second and first most populous country in Africa and Eastern Africa, respectively 

(Statista, 2022). Currently, the main focus under the health infrastructure development of 

the region includes the standardization and expansion of hospitals among states prioritizing 

the prevention and containment of COVID-19 (ITA, 2023). 

3.2. Data Source and Attribute Selection 

          This study used COVID-19-related data collected daily over 24 months, from April 

2020 to April 2022, in the region. The data were from the “Our World in Data (OWID)” 

team and the COVID-19 data warehouse at John Hopkins University (JHU), collected by 

the Center for Systems Science and Engineering (CSSE), which is open to users. Data were 

retrieved from: https://github.com/owid/COVID-19-data/tree/master/public/data (accessed 

on 25 June 2022). The OWID, in its statement under the license section, explains that “All 

visualizations, data, and code produced by ‘Our World in Data’ is completely open access 

under the Creative Commons BY license. You have the permission to use, distribute, and 

reproduce these in any medium, provided the source and authors are credited” (Hasell et 

al., 2020; Mathieu et al., 2021). 

 



 

15 
 

3.3. Data Preprocessing and Analyses 

          In the ‘Our World in Data (OWID) COVID-19 database, many variables were 

available, but ten variables (for ensemble modelling) and seven variables (for boosting 

algorithms) were selected because of the availability and completeness of their data and 

their theoretical relationship with mortality due to COVID-19. For ensemble modelling, 

the datasets were retrieved for each country in the East Africa region independently and 

calculated the average values each day to represent the region with a single variable for 

mortality due to COVID-19 and other input variables. However, to boost the algorithm, 

Ethiopia’s COVID-19-related datasets were directly retrieved from the source for pre-

processing purposes. It is known that the daily collected data is non-linear by its nature. 

Hence, the first step before modelling was to check normality and normalize each non-

normal variable in the datasets. 

          The second activity was to select the dominant input variables through a non-linear 

sensitivity analysis called the coefficient of determination (DC). This analysis was 

conducted using an artificial neural network (ANN), applying a bivariate analysis (one 

target and one input variable) to predict the estimated values and calculate the coefficient 

of determination to verify the correlation of each input variable with the target variable. 

The datasets from these countries were classified into two separate datasets: the training 

dataset (70 percent of the data) and the testing dataset (30 percent of the data) for the 

development of AI-driven ensemble models and boosting algorithms.  

          For all the developed AI-driven ensemble models and boosting algorithms, the target 

variable was the daily number of new deaths due to COVID-19 in the region, and the input 

variables were the new daily number of cases in the region, the positive rate, the number 

of people vaccinated, hospital beds/1000 patients, and so on. In Table 1, the list of all the 

variables used in this study and their explanations are presented. 

          In the data processing step, the data normalization was calculated using Microsoft 

Excel and MATLAB (Version 20) was applied to conduct the sensitivity analysis, the 

single black-box AI-driven models, and AI-driven ensemble models. However, for 
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Boosting algorithms, Orange data mining (Version 3.33) was applied to model all weak 

performer models and the boosting algorithm. 

Table 1:  

The target variable and input variables for this study. 

Variables The Description of Variables 

New deaths New deaths attributed to COVID-19  

New cases New confirmed cases of COVID-19. 

Positive rate The share of COVID-19 tests that are positive 

People vaccinated Total number of people who received at least one 

vaccine dose 

Stringency index A composite metric based on 9 reaction indicators, such 

as school closures, workplace closures, and travel 

prohibitions, rescaled to a score between 0 and 100 (100 

is the strict response) 

GDP per capita/USD Gross domestic product at purchasing power parity 

Number of smokers Share of male and female smokers 

Prevalence of DM Prevalence of people with diabetes aged 20 to 79 

Hospitals beds/1000 Hospital beds per 1000 people 

Population density Number of people divided by land area, measured in 

square kilometres 

3.4. Proposed Methodology 

          In this section, the proposed methodology for both ensemble modelling and boosting 

algorithms is described clearly and presented as follows. 

3.4.1. Proposed method for ensemble modelling 

           In ensemble modelling, the study modelled three AI-driven models, including an 

adaptive neuro-fuzzy inference system (ANFIS), feedforward neural network (FFNN), 

support vector machine (SVM), and one conventional data-driven model, multiple linear 
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regression (MLR), to predict mortality due to COVID-19 in East Africa. In addition, the 

dataset was classified into a training dataset and a test dataset after normalizing inputs.  

          Figure 1 shows the architecture of the overall ensemble modelling of the study. This 

architecture comprises three stages, which were conducted to carry out the given study. 

Firstly, the sensitivity analysis was conducted to rank and select the most influential input 

variables for the modelling. In the second stage, four AI-driven black-box models (ANFIS, 

SVM, FFNN, and MLR) were applied independently to predict COVID-19 mortality. 

Thirdly, as a final stage, four ensemble approaches, namely the ANFIS ensemble 

(ANFISE), neural network ensemble (NNE), weighted average ensemble (WAE), and 

simple average ensemble (SAE), were constructed. In the ensemble model stage, the 

estimated output of every single model was used as an input for the AI-driven ensemble 

modelling. Then, the predicted mortality based on the ensemble model was compared with 

the predicted results from each of the black-box models in the second stage.  

Figure 1:  

Schematic diagram of the AI-driven models’ development  
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The detailed description of all single AI-driven models and the ensemble models are 

presented in the following sub-sections. 

a. The Feedforward Neural Network (FFNN) 

          The artificial neural network (ANN) is one of the most significant AI-driven models 

because it can build links between the target and input variables by training the neural 

network without having comprehensive information on the entire data set (Tanty & 

Desmukh, 2015). This model is a self-learning simulation function that demonstrates the 

capacity to model and forecast complicated processes.  

           This capability makes ANN a more practical and efficient model in different 

domains of science, such as biomedical technology, engineering, agriculture, and business 

(Nourani, Gökçekuş, & Umar, 2020).  

          Because of its simplicity and favoured ability to react to various challenges without 

considering the past information regarding the process, this study used the feedforward 

neural network (FFNN), employing propagation algorithms.  

           FFNN is formed of linked pieces called ‘nodes’ that have unit properties of 

information, such as learning, non-linearity, noise tolerance, generalization capability, and 

so on, and it has three layers (see Figure 2), including the input, the hidden, and the output 

layers. As a result, the input variables provided to the input layers ‘neurons’ are transmitted 

forwards, and the activation function, a non-linear function, is employed to construct the 

output vector. 
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Figure 2:  

The structure of the FFNN. 

 

          A multi-layer perceptron (MLP) model with a single hidden layer was computed in 

this FFNN model. The formal definition of this model is as follows: the function ‘f’ on the 

fixed-size input ‘x’, such as f(x) ≈ y for training pairs of (x, y). Alternatively, recurrent 

neural networks learn sequential data, computing the output ‘Ø’ on the variable-length 

input Xk= {x1….xk} ≈ yk for training pairs of (Xn, Yn) for all 1 ≤ k ≤ n. 

          In the definition of FFNN with the ‘m’ layer (or ‘m-2′ hidden layers) prototype, the 

output perceptron has an activation function Øo, and the hidden layer perceptron has 

activation functions Ø. Every perceptron in layer li is connected to every perceptron in 

layer li-1. The layers are fully connected, and there is no connection between the perceptrons 

in the same layer. According to Brilliant (Brilliant.org, 2022), it is computed using the 

following three steps: 

First, initialize the input layer l0 and set the values of the outputs 0

iØ for nodes in the input 

layer l0 concerning their associated inputs in the vector 1{ ... } nx x x , i.e., 0 i iØ x  

Second, compute the sum of the products and each output of the hidden layer in the order 

from l1 to lm−1 for ‘k’, progressing from 1 to m-1 
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


  

    

 Compute Ø

m m

1 1gØ (h )Ø  , where the MLP uses the denotations below. 

The k

ijw is the weight for perceptron j in the layer lk for the incoming node i, k

ib is the bias 

for the perceptron i in layer lk, 
k

ih is a product of some plus bias for perception i in layer 

lk, 
k

iØ  is the output for node i in layer lk, rk is several nodes in layer lk, 
k

iw is the weight 

vector for perceptron i in layer lk, and 
kØ  is the output vector for layer lk. 

b. The Adaptive Neuro-Fuzzy Inference System (ANFIS) 

          The ANFIS is developed by combining the ability to learn the neural network and 

its advantage of a rule-based fuzzy inference system, which enables it to integrate a past 

observation into the process of classification (J.-S. Jang, 1993; J.-S. R. Jang, Sun, & 

Mizutani, 1997). This combination makes ANFIS a good model for overcoming the 

limitations of individual modelling. Jang JS, in 1997, described the ‘defuzzifier’, 

‘fuzzifier’, and ‘fuzzy’ databases as the three parts of a fuzzy system (J.-S. R. Jang et al., 

1997). Even though they are different from each other, the well-known and commonly used 

fuzzy inference systems are Mamdani’s system (Mamdani & Assilian, 1975), Tsukamoto’s 

system (Tsukamoto, 1979), and Sugeno’s system (Takagi & Sugeno, 1985). 

           The ANFIS architecture contains five layers: Layer 1 is the input layer, Layer 2 is 

the input membership function (MFs), Layer 3 is the association rules, Layer 4 is the output 

membership function, and Layer 5 is the model output (see Figure 3). After the construction 

of the fuzzy system, it specifies the relationship between the fuzzy variables using the 

‘if-then’ fuzzy rules. The first order of Sugeno’s system has the following rules, 
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considering that the fuzzy inference system contains a single output (f) and two inputs (x 

and y): 

     1 1 1 1 1 1Rule 1 :  if  x  is A and y  is B ,  then f p x  q y  r      

     2 2 2 2 2 2Rule 2 :  if  x  is A and y  is B ,  then f p x  q y  r      

          Where ‘A’ and ‘B’ are membership functions, and ‘p’, ‘q’, and ‘r’ are parameters for 

the outlet functions. Considering the stated parameters, the structure of the ANFIS with 

five layers is presented in Figure 3 and explained as follows: 

Figure 3:  

The structure of the ANFIS 

 

Layer 1: every i’s node is an adaptive node that has the following node function on this 

layer: 

   1 1

i Ai i BiQ  x  for i  1,  2 or Q  x  for i  3, 4       

           Where Qi
1 is for input ‘x’ or ‘y’, that is the membership grade. Here, the Gaussian 

membership function was selected because it has the lowest error of prediction. 
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Layer 2: In this layer, the ‘T-Norm’ operator connects every rule using the ‘AND’ operator 

between the inputs and is presented as: 

   2

i i Ai BiQ  w x . y  for i  1,2      

Layer 3: In this layer, the output is the ‘Normalized firing strength’, and the labelled norm 

for every neuron is as follows: 

3 i
i

1 2

w
Q w

w w
 


 i = 1,2 

Layer 4: In this layer, every i’s node is an adaptive node and executes the consequence of 

the rules by considering p1, q1, and r1 as irregular parameters, as follows: 

 4        i i i i iQ w p x q y r wf     

Layer 5: In this layer, the overall output is calculated by summing all the incoming signals 

as follows: 

 5

i i i iQ w p x  q y  r   =
i i

i i

i

w f
w f

w






…… (1) 

c. The Support Vector Machine (SVM) 

          According to A. M. Kalteh, the support vector machine (SVM), may be utilized for 

both prediction and classification purposes (Kalteh, 2013; Schiaffino et al., 2021). The type 

of regression in the SVM model is known as support vector regression. It is used to define 

regression using SVM and structural risk reduction. Figure 4 depicts the framework of the 

SVM regression technique that can simulate non-linear situations in the real world. The 

estimation obtained using this regression is important for estimating a function of the given 

dataset: 

 
n

i i i
x d  
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          where xi is the input vectors, di is the actual values, and n is the total number of the 

dataset. Hence, SVM has the following regression function: 

y f (x) (xi) b    

           where ‘φ’ is a non-linear mapping function, and ‘ω ‘and ‘b’ are parameters of the 

function of the regression that can be determined by assigning positive values for the slack 

parameters of ξ and ξ* and the minimization of the objective function, considering ‘c’ as 

the regularized constant and 
2||||

2

1
w  as the weight vector norm, as shown below.  

The Minimization: 

 
n

2

i i
i

1
|| w || c *

2

 
  

 
   

This is subject to 

*

i i i i

*

i i i i

*

w (x ) b d

d w (x ) b ,i 1,2,...n

       


       


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Figure 4: 

The structure of SVM 

 

          The optimization problem stated above could be improved to obtain a dual quadratic 

problem of the optimization, defining the lag-range multipliers αi and αi*. In addition, the 

vector ‘w’ can be computed by identifying the optimization solution problem as follows: 

n

i i

i

w* ( *) (xi)     

Hence, the SVM regression function is changed to: 

n
* *

i i i i i j

i 1

f (x, , ) ( )k(x , x ) b


       

Where b is the bias term and k (xi, xj) is the kernel function that can be expressed as: 

2

1 2 1 2k(x , x ) exp( || x x || )   , where   is the parameter of the kernel function. 
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d. The Multiple Linear Regression (MLR) 

          Multiple linear regression is commonly used as a statistical modelling technique to 

observe the linear relationships between numerically measured variables. It is a form of 

linear regression used to examine the linear relationship between a single target variable 

and several input variables. In this technique, the target variable (Y) is supposed to be 

affected by the input variables (Xi), and the estimated model can be expressed as: 

0 1 1 2 2 n ny x x ... x       

          Where ‘y’ is the target variable,
0  is the regression constant,  i  are coefficients of 

the input variables, and ix are input variables. 

3.4.2. Ensemble Modelling 

          In the AI industry, ensemble modelling is computed by combining the estimated 

predictions of multiple single AI-driven models. This combination can advance the final 

model’s performance, and it can provide better predictions than the individually 

constructed models (Sharghi, Nourani, & Behfar, 2018).  

Figure 5:  

Diagram of the ensemble process 
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          This study used two linear ensemble techniques to increase the performance of AI-

driven single models: the weighted average ensemble (WAE) and simple average ensemble 

(SAE), and another two non-linear ensemble techniques: ANFIS ensemble (ANFISE) and 

neural network ensemble (NNE), were applied (see Figure 5).  

          These ensemble techniques have been applied in various studies for purposes such 

as the clustering and classifications of medical data, web ranking, economic forecasting, 

etc. (Abba et al., 2020; Ajami, Duan, Gao, & Sorooshian, 2006; Edeh et al., 2022; 

Kazienko, Lughofer, & Trawiński, 2013; Y. Wang et al., 2021; Wu et al., 2021). 

Considering this situation, this study also applied the ensemble technique to predict 

COVID-19 mortality in East Africa. 

a. The Linear Ensemble Approaches 

          In this approach, the simple average (SA) and weighted average (WA) ensemble 

techniques were applied. In the simple average technique, the arithmetic average of the 

output, the estimated COVID-19 mortality of every single AI-driven model is taken as the 

final predicted mortality in the region. Meanwhile, in the weighted average technique, the 

prediction is computed by assigning weights to each output relative to its importance. 

The formula for the simple average: 
N

i

i 1

1
COVID 19 COVID 19

N 

   , where COVID-19 

is the output of the SA ensemble model, and COVID-19i is the output of ith single AI-driven 

model. The formula for weighted average: 
N

i i

i 1

COVID 19 w COVID 19


   , where wi is 

a weight for the output of ith method and is computed using the performance measure called 

the determination coefficient (DC) and can be calculated with i
i n

i

i 1

DC
w

DC





, where DCi is 

the coefficient of determination for the ith model. 

b. The Non-Linear Ensemble Approaches 
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          In this approach, the non-linear averaging was computed by training the single AI-

driven non-linear models (FFNN and ANFIS) using the COVID-19 mortality values 

predicted by the single AI-driven models, and the neural network ensemble (NNE) and 

ANFIS ensemble (ANFISE) were applied. In NNE, the non-linear averaging was 

performed by training different FFNNs by feeding the output of an AI-driven single model 

as an input. Then, the maximum epoch number and neurons of the hidden layer were 

determined by trial and error. Meanwhile, in ANFISE, the predicted COVID-19 mortality 

based on the AI-driven single model is fed to ANFIS for training using a different number 

of epochs and membership functions (MFs). 

c. Normalization and Evaluation of Models 

          Both the target and input variables should be standardized before training the model 

at an early stage to reduce dimensions and guarantee that all the variables receive equal 

attention (Nourani, Elkiran, & Abba, 2018). The following normalization formula was 

performed on the dataset to establish the standardized values within the range of 0–1: 

i min
n

max min

(COVID 19) (COVID 19)
COVID 19

(COVID 19) (COVID 19)

  
 

  
, i= 1…n 

COVID-19n, COVID-19i, COVID-19min, and COVID-19max represent the normalized, 

actual, minimum, and maximum COVID-19 mortality values, respectively. Even though 

the best model for the validation and training steps is determined by trial and error 

(Dawson, Abrahart, & See, 2007), the root mean square error (RMSE) and determination 

coefficients (DC) were used to measure the performance and efficiency of the developed 

models. The DC values range from −1 to 1, and a model value approaching 1 yields better 

results. In addition, the model with the lowest RMSE is considered to be the best model. 

The formula of RMSE is presented as follows: 

 
n

2

obsi prei

i 1

1
R (COVID 19) COVIDMSE (

n
19)



   and 
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2N

obsi prei

i 1

2N

obsi obs

i 1

(COVID 19) (COVID 19)

(COVID 19) (COVID 19)







 
   

 

 
   

 




 

            where COVID-19obsi, COVID-19prei, ( 19)obsCOVID


 , and N are the observed 

COVID-19 mortality value, predicted COVID-19 mortality value, average of the observed 

COVID-19 mortality values, and number of observations, respectively. 

3.4.3. The proposed method for boosting algorithms 

          The overall proposed methodology of boosting algorithm is presented in Figure 6 as 

a model development workflow of Orange (Data mining). It includes the pre-processing 

of datasets, normalizing of variables, sensitivity analysis, dividing data into training and 

testing datasets, model development, and prediction process on both training and testing 

datasets.  

          Once the data pre-processing was completed, three weak learner AI-driven models: 

k-nearest neighbours (KNN), the artificial neural network (ANN-6), and support vector 

machine (SVM), and one boosting ensemble model (Adaptive Boosting) were developed 

to predict mortality due to COVID-19 in Ethiopia’s dataset.  

            Finally, the prediction performance of three AI-driven models was compared with 

the boosting model based on their result of the coefficient of determination (DC) and the 

root mean square error (RMSE). 

           The AI-driven models used in the boosting algorithm to predict COVID-19 

mortality were the k-nearest neighbours (KNN), the artificial neural network (ANN-6), and 

the support vector machine (SVM). The boosting model used was the adaptive boosting 

(AdaBoost) AI-driven model. While developing these models, parameters selected, for 

each model, after trial and error are presented in Table 2 below. 
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Figure 6:  

Orange (Data mining) workflow of the proposed methodology 

 

Table 2:  

Model parameters used to build AI-driven model criteria 

Models Model parameters 

AdaBoost Base estimator: tree, Number of estimators: 4, Algorithm: Samme.r, and 

Loss (regression): Square 

KNN Number of neighbours: 2, Metric: Manhattan, and Weight: Uniform 

SVM SVM type: SVM, C=1.0, ε=0.10000000000000003, Kernel: RBF, exp(-

auto|x-y|²), Numerical tolerance: 0.001, and Iteration limit: 300 

ANN-6 Hidden layers: 200, Activation: tanh, Solver: L-BFGS-B, Alpha: 1, Max 

iterations: 500, and Replicable training: True 

          Figure 7 shows the flowchart for the model development process. This flowchart 

demonstrates the construction of models. The dataset was first preprocessed in the model 
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development process, after which individual models (KNN, SVM, and ANN-6) were 

developed separately and evaluated against the boosting algorithm (AdaBoost). 

Figure 7:  

Flowchart of model developments. 

 

a. Adaptive Boosting Regression (AdaBoost Regression) 

          AdaBoost-based regression is a type of boosting AI-driven model that can apply a 

powerful machine learning algorithm for the regressing of target and feature variables 

(Freund, Schapire, & Abe, 1999; Rojas, 2009; Schapire, 2013). The purpose of applying a 

boosting regression was to obtain the best prediction from the ensemble of multiple weak 

predictors. The schematic presentation of the AdaBoost Model is presented in Figure 8. 
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          As we can observe from Figure 8, the model processes the input COVID-19 dataset 

and denote this dataset as Dx. Initially, each dataset of Dx was assigned an equal weight, 

and this weight determined the chance of being sampled. Due to this weight, the model 

selected the training dataset (Dx1) from dataset Dx with replacement sampling, and hence, 

to train the regressor f1(x), the training dataset was used. As we can see from the schematic 

presentation, the prediction weight assessment was applied to assess the trained regressor 

1 [f1(x)] and calculate the weight ‘w1’ for the regressor.  

          This assessment is to adjust the weight for the main dataset Dx. In the weighting 

process, the larger the prediction error, the larger the weight for that specific trained dataset. 

Finally, the model parameter used in this study to build the AdaBoost model after a lot of 

trial and error was (Base estimator: tree, Number of estimators: 4, Algorithm: Samme.r, 

and Loss (regression): Square).  

Figure 8:  

Schematic diagram of AdaBoost regression 
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          As we can see from the schematic presentation, the prediction weight assessment 

was applied to assess the trained regressor 1 [f1(x)] and calculate the weight ‘w1’ for the 

regressor. This assessment is to adjust the weight for the main dataset Dx. In the weighting 

process, the larger the prediction error, the larger the weight for that specific trained dataset. 

Finally, the model parameter used in this study to build the AdaBoost model after a lot of 

trial and error was (Base estimator: tree, Number of estimators: 4, Algorithm: Samme.r, 

and Loss (regression): Square). (See Table 2) 

          Min H and Luo X. (2016) have summarized the overall procedure of AdaBoost in 

eight steps, and it is presented as follows (Min & Luo, 2016): 

Step 1: The dataset Dx with training samples can be represented as: M

j j j 1
{(x ,y )}


 

Step 2: Assign a distribution with equal weight; it is stated as

ij

1
{p |i 1,2,...K; j 1,2,...M}

L
    for each training sample starts from i=1 and 

starts the loop 

Step 3: In the ith iteration, the sample training data (M) M

j j j 1
{(x ,y )}


 will be replaced 

with ij
p  and use the sampled data to train a regressor 

i i
g (x; )  

Step 4: Calculate the prediction loss j j, i j i
L L[y g (x ; )]  for each member of Dx, 

where j
L [0,1] . Also, calculate the weighted average of the loss L . 

j, i j i

j j

L[y g (x ; )]
L ,D sup{L }, j 1,2,...

D


    

M

ij j
j 1

L p L


  

Step 5: The weight of the regressor 
i i

g (x; ) will be calculated, and it can be 

presented by the following formula: 



 

33 
 

i

L
w

1 L



 

Step 6: If ‘i’, in step 5, equals the maximum number of iterations K, it will stop the 

loop and move to step 8. 

Step 7: Updating the distribution weight of the dataset Dx by making i=i+1 in 

equation Lj at Step 4 and move to the loop:  

1 L

ij i

ij

i

p w
p

Z



  

Where Zi is a selected normalized factor, and hence, Pij will be a random 

distribution. 

Step 8: The obtained K regressors will be incorporated into a single regressor 

respective to their weight K

i i 1
{w }


 , and it will have a formula: 

K

weight i i i
i 1

g(x; ) w g (x, ) 


  

b. K-nearest neighbours regression (KNN regression) 

          KNN regression is one of the best-known and simplest non-parametric regression 

types and it does not explicitly assume the parametric form of the target variable (Gareth, 

Daniela, Trevor, & Robert, 2013). Given a prediction point of X0 and the value for K, the 

KNN regression will first identify the K training observations, which are closest to X0, 

represented by N0. The KNN then estimates the target variable Y using the average of all 

the training responses in N0. The small number of K provides the most flexible fit that has 

a low bias but high variance, and hence, the optimum value for K will depend on the bias-

variance tradeoff. 

It can be presented the prediction formula of KNN as follows: 
i 0

i
x N

1
Y y

K 

   



 

34 
 

          In this modelling, the model parameters for the KNN were decided after a lot of trial 

and error in the model development process, and hence, the parameters that make KNN 

predict better than other parameters were (Number of neighbours: 2, Metric: Manhattan, 

and Weight: Uniform) (See Table 2). 

c. The artificial neural network (ANN-6) 

          Because it can establish a connection between feature variables and the target 

variable by training neural networks without detailed knowledge of the dataset, the 'ANN-

6' is a class of AI-driven models and is regarded as the most important model (Tanty & 

Desmukh, 2015). In a variety of scientific fields, including biomedicine, technology, 

agriculture, and business, ANN is more effective and useful (Nourani et al., 2020).  

          This is because of its self-learning simulation function, which shows how ANNs can 

predict and model complex processes like the daily number of COVID-19 mortality. The 

ANN-6 with a forward propagation algorithm was chosen to predict COVID-19 mortality. 

The model parameters of the ANN-6 were Hidden layers: 200, Activation: tanh, Solver: L-

BFGS-B, Alpha: 1, Max iterations: 500, and replicable training: True) (See Table 2). 

          The ANN-6 with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization 

algorithm and with three layers (input layer, hidden layer and output layer) was selected 

after repeated trial and error, assuming different parameters with optimum prediction 

capability. In addition to the trial and error, the BFGS has a proven performance even for 

non-smooth optimization (BogoToBogo., 2023), like the daily mortality of COVID-19.  

d. The support vector machine (SVM) 

          SVM was applied to predict using the regression known as support vector regression 

with final parameters of the SVM model after a trial and error was conducted (SVM type: 

SVM, C=1.0, ε=0.10000000000000003, Kernel: RBF, exp (-auto|x-y|²), Numerical 

tolerance: 0.001, and Iteration limit: 300) (See Table 2). 
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d. Data normalization and model performance evaluation  

          Before modelling the boosting model, the standardization of the target variable and 

input variables was conducted to normalize the data into the standardized value. This 

standardization assures reducing dimensions among variables and having equal attention 

in the modelling process (Nourani et al., 2018).  

          The coefficients of determination (DC) and root mean square error (RMSE) were 

computed in the performance evaluation of models. Based on the determined values of 

RMSE and DC, the top-performing model was chosen. Therefore, a model with a DC value 

close to 1 and the lowest RMSE was deemed to be the best-performing AI-driven model.  
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CHAPTER IV 

FINDINGS AND EXPERIMENTS 

This study conducted ensemble modelling and boosting algorithms to predict 

COVID-19 in eastern Africa. Therefore, the result of this study is presented in different 

sub-sections as follows: For ensemble modelling, three AI-driven and one classical model 

were developed, namely ANFIS, SVM, FFNN, and MLR, respectively. In addition, for 

boosting the algorithm, Three AI-driven models (KNN, ANN-6, and SVM) and one 

boosting model (AdaBoost) were modelled.  

All of these models were trained on 70 percent of the eastern Africa COVID-19 

dataset and tested on 30 percent of this dataset. As a result, this section included reports on 

feature statistics, sensitivity analysis, development of AI-driven black box and weak-

performing models, and comparison of these models with the ensemble model and boosting 

algorithms.  

4.1. Feature statistics description 

In this part of the result, the feature statistics of both ensemble modelling and 

boosting algorithms are presented subsequently. 

4.1.1. Feature Statistics for ensemble modelling 

A time series graph was used to present the data on the average daily mortality due 

to COVID-19 in East Africa, and it depicts in Figure 9. In this graph, the three largest 

numbers of mortality cases observed per single day were 979, 966, and 737 on 5 July 2021, 

7 March 2022, and 1 October 2021, respectively. However, more than 200 deaths per day 

were registered successively from July to August 2021, and we can conclude that this 

period was the peak time of mortality due to COVID-19 in the region. 
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Figure 9:  

Time series plot for the average daily mortality due to COVID-19 in the region. 

 

The descriptive statistics in Table 3 present the average, maximum, and minimum 

values for the target and all input variables of the training (70 percent of the dataset) and 

verification datasets (30 percent of the dataset) from 01 April 2020 to 01 April 2022. The 

average mortality due to COVID-19 was (61.03 ± 69.1) for the training dataset, and it was 

(46.16 ± 83.59) for the verification dataset. The average number of new daily cases was 

(2783.5 ± 2423) for the training and (5724.66 ± 6522.36) for the verification data, while 

the rates of confirmed positive cases per day were 0.041 ± 0.022 and 0.05 ± 0.052 for the 

training and verification datasets, respectively.  

The daily vaccine coverage and hospital beds per 1000 people, which are also 

presented in the table, showed that the average daily vaccine coverage was (26234.2 ± 

47498.4) and (220514 ± 332466) for the testing and verification data, respectively. The 

hospital beds/1000 people were (28.25 ± 3.50) and (20.4 ± 0.5623) for the training and 

verification datasets, respectively. 
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Table 3:  

Descriptive statistics of the ensemble modelling on the COVID-19 dataset. 

Variables Training Data (n = 584) Verification Data (n = 146) 

Min Mean ± SD Max Min Mean + SD Max 

New deaths 0 61.03 ± 69.1 979 1 46.16 ± 83.59 966 

New cases 11 2783.5 ± 2423 27596 95 5724.66 ± 

6522.3 

34125 

positive rate  0.004 0.041 ± 0.022 0.102 0.0 0.05 ± 0.052 0.065 

Newly 

vaccinated 

0 26234.2 ± 

47498.4 

276532 2915 220514 ± 

332466 

187771

3 

Number of 

CVDs 

4655.5 4822.25 ± 17.263 5231.50 4252 4656 ± 0.5268 4986 

Stringency 

index 

40.14 51.71 ± 8.80 76.50 29 40.80 ± 2.192 44 

GDP per 

capita/USD 

76254.

4 

76321.52 ± 2.35 76985.2 77956 76254 ± 2.589 78962 

Number of 

smokers 

354.2 365.5 ± 56.32 420.5 332.1 354.2 ± 9.536 386.5 

Prevalence 

of DM 

6.61 6.71 ± 0.23 6.98 6.51 6.61 ± 0.2652 7.02 

Hospitals 

beds/1000 

20.04 28.25 ± 3.50 35.23 18.1 20.4 ± 0.5623 22.6 

Population 

density 

2697.2

6 

2725.25 ± 5.62 2756.85 2568.2 2697.25 ± 

0.2562 

2893.2 

4.1.2. Feature statistics for boosting algorithms 

The minimum, mean, maximum and standard deviation (SD) values of the target 

and feature variables are presented in Table 4 below for both training and testing datasets. 

In Ethiopia, the average number (mean ± SD) of daily mortality due to COVID-19 between 

01 April 2020 and 01 April 2022 was (9.13±8.21) for the training dataset and (13.27±12.78) 

for the testing dataset. The average number of daily cases was (604.08±539.79) for the 
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training dataset and (756.02±1063.06) for the testing dataset. In addition to daily deaths 

and daily cases, the average bed capacity per/1000, the daily mask use (measured from 1), 

and the pneumonia status were (0.17±0.02), (0.42±0.16) and (0.96±0.09), respectively, for 

the testing dataset. 

Table 4:  

Descriptive statistics of the boosting model on the COVID-19 dataset 

Variables Training Dataset  Testing Dataset  

Mean±SD Min Max Mean±SD Min Max 

New deaths 9.129±8.209 0 47 13.2667±12.777 0 49 

New cases 604.08±539.8 0 2372 756.019±1063.1 7 5185 

Bed capacity 0.1647±0.024 0.1245 0.186 0.1729±0.0213 0.135 0.1741 

Mask use 0.4279±0.163 0.0000 0.669 0.4163±0.1641 0.000 0.8679 

Pneumonia_st 0.9615±0.096 0.8213 1.093 0.9629±0.096 0.813 1.1294 

The radar chart describes the daily number of new deaths in Figure 10. In this chart, 

the recorded four largest numbers of daily mortality due to COVID-19 in Ethiopia were 

49, 48, 47 and 47 deaths on 28 September 2021, 01 October 2021, 09 September 2021, and 

20 April 2021, respectively. In addition to the largest number of daily deaths, 38 and more 

daily deaths were registered in the country from 13 September 2021 to 14 October 2021. 

Therefore, we can summarize that the peak time of COVID-19 mortality in Ethiopia was 

from 13 September 2021 to 14 October 2021. 
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Figure 10:  

Radar chart for daily COVID-19 mortality 

 

4.2. Sensitivity Analysis 

In this section, the sensitivity analysis of both ensemble modelling and boosting 

algorithms are presented subsequently. 

4.2.1. Sensitivity analysis for ensemble modelling 

The careful selection of the most relevant factors to consider as input variables and 

the correct adjustment of connecting parameters (such as the hidden neurons, number of 

iterations, and transfer functions) for any AI-driven modelling are crucial steps required to 

obtain the optimum prediction level. The number of new cases, rate of positive cases, newly 

vaccinated individuals, number of cardiovascular diseases (CVD), stringency index, GDP 

per capita in USD, number of smokers, the prevalence of diabetes mellitus (DM), Hospital 
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beds/1000, and population density were selected from the dataset for the sensitivity 

analysis based on their relationship with mortality and their completeness of data. 

Previously, linear sensitivity analytical approaches have been used to select dominant input 

variables. However, due to the complex non-linear nature of the COVID-19 data, it was 

conducted a sensitivity analysis with a non-linear nature. Hence, the non-linear FFNN was 

conducted to select the dominant input variables for the modelling of different AI-driven 

single and ensemble models to predict COVID-19 in eastern Africa. 

The sensitivity analysis in this study to conduct the ensemble modelling is 

presented in Table 5. Accordingly, the four best dominant input variables, with the four top 

highest Coefficient of determination values, selected were the positive rate (first-rank), 

hospital beds/1000 (second-rank), new cases (third-rank), and the number of vaccinated 

individuals (fourth-rank) based on their chronological order. However, the inputs with the 

lowest coefficient of determination (less than 0.5) were removed in the modelling process. 

Table 5:  

Sensitivity analysis used to rank the inputs for ensemble modelling. 

Inputs DC Rank 

Positive rate 0.9178 1st 

Hospital beds/1000 0.8962 2nd 

New cases 0.8617 3rd 

People vaccinated 0.8113 4th 

Number of smokers 0.2505 5th 

GDP per capita/USD 0.2220 6th 

Number of CVDs 0.2013 7th 

Population density 0.1902 8th 

Prevalence of DM 0.0663 9th 

Stringency Index 0.0524 10th 
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4.2.2. Sensitivity analysis for boosting algorithm 

To obtain the optimum level of prediction of AI-driven models, the most important 

step is to carefully select the most relevant feature variables and adjust model parameters 

for every model. In the sensitivity analysis for boosting models, seven variables were 

included. These were ‘mask_use’, ‘all_bed_capacity’, ‘new_cases’, ‘pneumonia_st’, 

‘icu_bed_capacity’, ‘hosp_admission’, and ‘daily_infection’. Since the daily recorded data 

related to COVID-19 had a non-parametric nature, the neural network sensitivity analysis 

(the FFNN) was conducted to choose the dominant feature variables and is presented in 

Table 6.  

As we can observe from Table 6, four variables scored a coefficient of 

determination value greater than 0.5, and accordingly, ‘mask_use’, ‘all_bed_capacity’, 

‘new_cases’, and ‘pneumonia_st’ were ranked from first to fourth, respectively and were 

used to build all models in boosting models. However, those feature variables with a 

coefficient of determination value less than 0.5 were excluded from the boosting model 

building. 

Table 6:  

a Sensitivity analysis used to rank the inputs for boosting the model. 

Features included A longer description of feature variables DC Rank 

mask_use Percent of the population reporting always 

wearing a mask 

0.867 1st 

all_bed_capacity Total number of beds that exists at the location 0.815 2nd 

new_cases Daily number of new cases 0.796 3rd 

pneumonia_st The ratio of pneumonia deaths to the average 

annual deaths 

0.768 4th 

icu_bed_capacity Total number of ICU beds that exists at the 

location 

0.421 5th 

hosp_admission Daily COVID-19 hospital admission 0.401 6th 

daily_infection The number of daily infections 0.253 7th 
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4.3. AI-driven single models 

In this study, seven single AI-driven and weak-performing black-box models were 

developed to predict mortality due to COVID-19 in Eastern Africa for ensemble and 

boosting models. For ensemble modelling, four of them (ANFIS, SVM, FFNN, and MLR) 

were used, and for boosting model, three of them (KNN, ANN-6 and SVM) were used to 

predict mortality. Therefore, in this section, the result of single models for ensemble and 

boosting processes are presented as follows: 

 4.3.1. AI-driven single models for ensemble modelling 

The ANFIS, SVM, FFNN, and MLR were trained and tested for each combination 

of input variables in the ensemble modelling process. Hence, results from each model are 

presented in Table 7. 

Table 7:  

Single black-box models to predict COVID-19 in ensemble modelling. 

Model Combination of 

Inputs 

Structure Training Verification 

DC RMSE DC RMSE 

FFNN Cases, Pos_rate, 

vaccine, Hosp_bed 

Gaussian 0.8792 0.00148 0.859 0.001412 

ANFIS Cases, Pos_rate, 

vaccine, Hosp_bed 

4-6-1 0.9146 0.00018 0.927 0.000125 

SVM Cases, Pos_rate, 

vaccine, Hosp_bed 

RBF 0.8650 0.00021 0.849 0.000146 

MLR Cases, Pos_rate, 

vaccine, Hosp_bed 

4-1 0.8021 0.00012 0.796 0.000192 

The FFNN was the first type of AI-driven model used in this study for ensemble 

modelling to predict mortality due to COVID-19. The Levenberg–Marquardt technique 

was used to train this model, which had four inputs and one hidden layer, to estimate 

COVID-19 mortality in East Africa. Identifying the optimal structure (number of hidden 
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neurons) of the model was a key step in obtaining the best results in the FFNN modelling. 

The possession of too many neurons may result in overfitting, or too few neurons may 

result from incorrect information.  

, a trial-and-error technique was used to determine the appropriate structure of the 

FFNN model until the best-fit combination and performance were observed. This technique 

allowed us to analyze the accuracy of the numerous models trained with the variable’s 

hidden number. As a result, the best model structure (x-y-z) with the greatest prediction 

outcomes was discovered to be six hidden neurons with four inputs and one hidden layer, 

which was noted as (4-6-1). 

The second type of AI-driven model used was the ANFIS, which assumes a fuzzy 

notion to manage the unpredictable circumstances of complicated data of a non-linear 

nature. In the modelling process, Sugeno’s fuzzy inference system with hybrid algorithms 

was used to calibrate the parameters of the membership functions (MFs). The Gaussian, 

triangular, and trapezoidal MFs were investigated using a trial-and-error approach to 

produce the best estimation result in predicting mortality due to COVID-19. As a result, 

the ANFIS model with “Gaussian membership functions” trained over 41 epochs offered 

better prediction results than the other MFs. 

SVM was the third type of AI-driven model used in the modelling. The kernel of 

the radial basis function (RBF) was used to generate the SVM model for the combination 

of all the input variables. RBF was chosen because it has fewer turning parameters and 

performs better than sigmoidal and polynomial models (W.c. Wang et al., 2013).  

Finally, the traditional MLR technique was employed to predict COVID-19 

mortality and to compare the predicted result with those of the other three types of AI-

driven models. The linear connection (a-b) between the one target variable and the four 

input variables was determined using this model and noted as (4-1). 

The results of the single black-box models in Table 7 show that the ANFIS was the 

best-performing AI-driven model in predicting mortality due to COVID-19, with the 

highest DC (0.9273) and lowest RMSE (0.000125) at the verification stage. The second, 
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third, and fourth best models, based on their performance, were FFNN, SVM and MLR, 

respectively. The daily COVID-19 data are non-linear and dynamic by its nature. Hence, 

the non-linear AI-driven model, ANFIS, was found to be the best model for predicting the 

data. However, according to the calculated DCs, the MLR was the least-performing model 

in predicting COVID-19 mortality.  

These results showed that the best models for predicting data of a non-linear and 

dynamic nature are the non-linear AI-driven models, such as ANFIS and FFNN, while the 

linear regression estimation approach was a poorly performing model in predicting the 

mortality due to COVID-19 in eastern Africa. According to the findings of the single black-

box models, provided in Table 7, utilizing the best-predicting model in this study (ANFIS) 

might improve the performance of the prediction using FFNN, SVM, and MLR by 7 

percent, 8 percent, and 13 percent, respectively.  

4.3.1. AI-driven single models for boosting model 

In the modelling process boosting algorithms, the data were trained and tested by 

using three AI-driven models (KNN, SVM and ANN-6) and one boosting model 

(AdaBoost). Hence, the prediction performance of each model is presented in Table 8.  

Table 8:  

Single black-box models to predict COVID-19 in boosting model. 

Model Feature 

combinations 

Model 

parameters 

Training dataset Test dataset 

RMSE DC RMSE DC 

AdaBoost ** Samme.r 1.9358 0.9449 2.0549 0.9422 

KNN ** Uniform 3.0834 0.8601 3.1858 0.8618 

SVM ** RBF 4.3482 0.7218 4.5461 0.7171 

ANN-6 ** L-BFGS-B 1.9358 0.8553 3.1749 0.8629 

** mask use, all_bed, number of cases, pneumonia_st 
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The model that we applied in this study to boost the prediction performance of 

COVID-19 in Ethiopia was the AdaBoost model. In this model, a variant called 

“AdaBoost.samme.r” was applied. This variant works with classifiers that can show output 

prediction probabilities. Values of DC and RMSE obtained were 0.9422 and 2.0549, 

respectively. This implies that the AdaBoost model was the best performer in predicting 

COVID-19 mortality in Ethiopia. 

The second AI-driven model used to predict COVID-19 mortality was the KNN. In 

this model, both assumptions of weight (uniform and distance) were tried in the modelling 

process. However, the KNN with ‘distance’ weight was going to be overfitted, and the 

KNN with ‘uniform’ weight was best fitted in the prediction process. Therefore, the values 

of DC and RMSE for the KNN model were 0.8618 and 3.1858, respectively. Accordingly, 

the KNN was the third best performer model to predict COVID-19 in Ethiopia, next to the 

AdaBoost and the ANN-6 models. 

The third AI-driven model used to predict COVID-19 was SVM. To build the SVM 

model using the selected dominant feature, the kernel of the radial basis function (RBF) 

was applied. This function was selected due to its better performance than that of the other 

types of functions under the SVM in predicting COVID-19 in eastern Africa (Abegaz & 

Etikan, 2022). As presented in Table 8, the performance of SVM in predicting COVID-19 

was reported in the form of DC and RMSE, whereby the value of the former was 0.7171, 

and that of the latter was 4.5461 in the test dataset. This result implies that the prediction 

performance of SVM was less than that of the other prediction models. 

The fourth AI-driven model used was the ANN-6. The Broyden-Fletcher-Goldfarb-

Shanno (BFGS) optimization algorithm was selected due to its proven performance even 

for non-smooth optimization (Mathieu et al., 2021). This implies that the ANN-6 was a 

good predictor for non-linear data such as the COVID-19 daily mortality. The value of DC 

was 0.8620, and that of the RMSE was 3.1749 in the test dataset, implying that the ANN-

6 was the second-best performer algorithm to predict COVID-19 deaths in Ethiopia, next 

to the boosting algorithm and the first AI-driven algorithm among three single models. 
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4.4. The correlation analysis  

The relationship between the actual and the predicted values of daily mortality due 

to COVID-19 using four AI-driven models (ANFIS, FFNN, SVM, and MLR) was 

correlated with ensemble model value in eastern Africa. In addition, three single models 

(KNN, ANN-6 and SVM) modelled in the boosting process were correlated with the 

boosting algorithm model in Ethiopia. Therefore, in this section, the result of correlation 

analysis for both ensemble modelling and boosting model are presented below: 

4.4.1. Correlation analysis for ensemble modelling 

The correlation between the estimated values obtained from several AI-driven 

models and the observed value using a scatter plot diagram is presented in Figure 11. In 

this diagram, the estimated performances of the ANFIS, FFNN, SVM, and MLR models 

are compared in terms of their predictions of COVID-19 in East Africa. As a result, the 

ANFIS model indicated fewer spread points in the linking and produced better-estimated 

values than the other models. This might be attributed to ANFIS’s capacity to anticipate 

non-linear data, such as COVID-19 data, as it has a greater coefficient of determination 

than the other AI-driven and MLR models.  

The finding from the diagram supports those of the other analyses and modellings, 

which showed that the non-linear predicting approaches performed better than the linear 

predicting approaches. Moreover, the ANFIS was the highest-performing model in 

predicting COVID-19 in eastern Africa. 

According to a correlation analysis result, we understood that the scatter plot 

diagram proved that the non-linear predicting approaches performed better than the linear 

approaches. More specifically, among all the models, the ANFIS model was the best-

performing predicting approach for the daily COVID-19 data. This finding is similar to the 

finding of a study conducted on daily suspended sediment load data using the AI-driven 

ensemble model (Nourani, Gokcekus, & Gelete, 2021). 
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Figure 11:  

Correlation between actual and predicted COVID-19 mortality during ensemble 

model  

  

  

 

4.4.2. Correlation analysis for boosting model 

The relationship between the actual and the predicted values of daily mortality due 

to COVID-19 using four AI-driven models (AdaBoost, KNN, SVM and ANN-6) was 

calculated and presented in Figure 12. In this visual presentation, the rank of AI-driven 

models in predicting COVID-19 mortality was presented in bivariate correlation values. 

Hence, the correlation values were 0.9706, 0.9289, 0.9283, and 0.8468 for AdaBoost, 

ANN-6, KNN, and SVM, respectively. This implies that AdaBoost, ANN-6, KNN, and 
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points in the correlation with mortality due to COVID-19 in Ethiopia and thereby produce 

a better-estimated value of the mortality. 

Figure 12:  

Correlation between actual and predicted COVID-19 mortality during boosting 

model  
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The scatter plot in Figure 11 and the results of the AI-driven models' analysis in 

Table 7 helped us understand that the boosting algorithm outperformed others in terms of 

predicting COVID-19 mortality in Ethiopia. According to this finding, the AdaBoost 

algorithm was the most effective AI-driven model for predicting COVID-19 data that was 

gathered daily.  
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A bivariate correlation analysis using the Spearman correlation coefficient was conducted, 

and the result is presented in Figure 13. In this analysis, the observed value of daily 

mortality was correlated with each observed feature variable, and each predicted value 

from the AI-driven models (AdaBoost, KNN, ANN-6 and SVM).  

The predicted values with AdaBoost, ANN-6, KNN and SVM algorithms were the 

first, second, third and fourth highly correlated ones with values of 0.971, 0.931, 0.929, 

and 0.867, respectively. In addition to this, mask use, all bed capacity, and daily new cases 

were the first three highly correlated feature variables with values of 0.873, 0.796, and 

0.765, respectively. However, the pneumonia case was the lowest correlated feature 

variable. Hence, we understood from this result that the Spearman correlation value was 

improved among AI-driven models. 

Figure 13:  

Correlation statistics among the input variables and the predicted mortality 
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4.6. Taylor’s diagram for model comparison 

To summarize the performance of multiple models in a single diagram, Taylor’s 

diagram was constructed for both ensemble and boosting models separately. 

4.6.1. Taylor’s Diagram for ensemble modelling 

According to Taylor K.E., we can summarize multiple models’ performances in a 

single diagram that can help us to easily visualize and understand which model performs 

better (Taylor, 2001). Therefore, four ensemble approaches were assessed using a two-

dimensional Taylor diagram, as presented in Figure 14, which coordinates the correlation 

coefficients (r) and the standard deviations (SD) for both the observed and predicted values 

of the ensemble models (ANFISE, NNE, WAE, and SAE).  

Figure 14:  

Performance of ensemble models using a normalized Taylor diagram. 
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The advantage of using the Taylor diagram is that it combines the predicted 

performances of different models in a single visual display that quantifies the level of 

resemblance between the observed and the predicted values. It is observed from Figure 14 

that the ANFISE was the best approach in predicting COVID-19 in the eastern Africa 

region, with (r = 0.9852 and SD = 0.0523), and the SAE was the poorest-performing 

ensemble approach, with (r = 0.9073 and SD = 0.0821). 

In addition to the statistical evidence, the Taylor diagram showed that the ‘r’ Vs 

‘SD’ coordinate of the ANFIS ensemble approach was closer to the observed value than 

the rest of the ensemble approaches, and we can see that the coordinate for the SAE was 

far from the observed value compared to the other ensemble approaches. This closeness 

showed that the predicted values obtained from the ANFISE were more closely related to 

the observed value. Hence, this proves that this ensemble model has the best prediction 

capability among the other models. 

4.6.2. Taylor’s diagram for boosting model 

We visualized the performance of various AI-driven models in a single diagram, as 

shown in Figure 15, which is a two-dimensional diagram that coordinates the standard 

deviation (SD) and correlation coefficient (r) of each AI-driven model's predicted value 

(using AdaBoost, KNN, ANN-6, and SVM) and the observed values of COVID-19 

mortality in Ethiopia. The significance of using this diagram is that it quantifies the degree 

of similarity between the predicted values and the observed values of mortality while 

simultaneously displaying the predicted performance of various models in a single visual 

display.  

Figure 15 makes it clear that "AdaBoost" was the AI-driven model that performed 

the best in predicting COVID-19 mortality in Ethiopia, with (r=0.9706 and SD of 0.0907), 

and that the SVM was the model that performed the worst, with (r=0.8468 and SD=0.0934). 
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Figure 15:  

Taylor diagram showing the prediction performance of models 

 

 

 

 

 

 

 

 

AdaBoost

KNN
ANN-6

SVM

Actual

0.
0

1.00

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

 (
N

o
rm

al
iz

ed
)

Standard Deviation (Normalized)

Taylor's Diagram



 

54 
 

CHAPTER V 

DISCUSSION 

             In this chapter, the research paper tried to briefly discuss and present the summary 

findings, implications of the study, limitations and future directions of the study, and 

contribution of the study to the field. 

5.1. Summary of Findings 

The purpose of this work was to construct and assess ensemble and boosting models 

powered by artificial intelligence (AI), such as AdaBoost, KNN, ANFIS, SVM, FFNN, 

ANN-6, and MLR, for predicting COVID-19 mortality in Eastern Africa. The results shed 

important light on how AI approaches may improve the precision of death predictions and 

guide regional public health policies. These models successfully illustrated the importance 

of multiple variables, including Bed capacity, mask use, number of cases, pneumonia 

status, positive rate, and vaccination status, in predicting COVID-19 mortality by capturing 

the intricate interactions between them.  

The ensemble learning approaches showed improved performance, leading to 

increased accuracy and resilience by pooling the predictions from many models. Overall, 

by showcasing the potential of AI approaches to deliver precise and trustworthy forecasts 

for COVID-19 mortality, this research advances the fields of public health and data mining 

and knowledge discovery.  

5.2. Interpretation of results 

Several important determinants of COVID-19 mortality in Eastern Africa were 

found after data analysis. The key drivers of death rates were found to be positive rates, 

hospital beds/1000, new cases and the number of vaccinated individuals, mask use and 

pneumonia status of patients. The AI-driven models accurately reflected these correlations 

and offered information on the relative weights of various predictors. The impact of the 

pandemic on the region's most vulnerable groups can be lessened with the use of targeted 

actions and resource allocation plans informed by this knowledge. The models also 
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demonstrated the promise of AI methods for dealing with dynamic and complicated 

information.  

5.3. Ensemble Models  

The AI-driven ensemble model was developed using the estimated outputs from 

three single AI-driven models (ANFIS, FFNN, and SVM) and one classical regression 

model (MLR) as the input variables for the ensemble modelling. This model was developed 

to boost the efficiency of the single models in terms of prediction capability. Four ensemble 

approaches (SAE, WAE, ANFISE, and NNE), as novel ensemble processes, were 

developed to predict COVID-19 in East Africa, and the results are presented in Table 9. 

Accordingly, the (a-b) structure for the SAE was applied to display the numbers of outputs 

and inputs used for the prediction. The structure (a, b, c, d) was the structure for the WAE 

that denoted the weights of the FFNN, ANFIS, SVM, and MLR single models, 

respectively. 

Table 9:  

An ensemble approach used to model COVID-19 mortality in eastern Africa. 

Ensemble 

Method 

Selected Structure Calibration Verification 

DC RMSE DC RMSE 

SAE 3-1 0.9446 0.000821 0.9073 0.000245 

WAE 0.243, 0.269, 0.249, 0.22 0.9250 0.000123 0.9190 0.000156 

ANFIS_E Gaussian 3 0.9292 0.001658 0.9886 0.000012 

NNE 3-6-2 0.9286 0.000120 0.9356 0.000132 

The ANFISE was best-performing among all the ensemble model development 

combinations. This is due to its resilience in integrating both the fuzzy concept and the 

artificial neural network capability, which provided the present ANFIS framework. The 

NNE, WAE, and SAE were the second, third, and fourth-best predictors of COVID-19. 

The weighted ensemble technique outperformed the simple average ensemble approach. 

This is because the WAE assigns weights to parameters depending on their relevance. 
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The Levenberg–Marquardt method was used to train the NNE model, as it applied 

to the FFNN, and the tangent sigmoid activation function was utilized for the hidden and 

output layers. The study conducted by Sahoo et al. (Sahoo, Ray, & Wade, 2005) indicated 

that the FFNN approach has the fastest convergence ability; hence, it was used more often 

in this study than the other ANN training techniques. We used a trial-and-error method to 

determine the correct number of hidden layers and the optimal epoch number. In ANFISE, 

Sugeno’s fuzzy inference system, using a hybrid training approach, was used to calibrate 

the membership function parameters comparable to those of the ANFIS single black-box 

model. As a result, the ANFISE greatly improved the accuracy of the single models. 

5.4. Comparison of models 

5.4.1. Comparison of ensemble modelling with a single AI-driven model  

The comparison of the prediction performances of the ensemble models and single 

AI-driven models at the verification and training phases is presented in Table 10. In this 

table, the NNE boosted the predicting performance of the single models FFNN, ANFIS, 

SVM, and MLR by 5.6, 2.1, 7.1, and 13.4 percent, respectively. In addition to this, the 

ANFISE boosted the performance of FFNN, ANFIS, SVM, and MLR by 13, 6.1, 13.9, and 

19.3 percent, respectively. These numbers show that the capacity for the prediction of 

COVID-19 was increased in the case of the ensemble models rather than the single models, 

and these findings were compared to the findings of studies conducted in different fields 

using AI ensemble models (Kazienko et al., 2013; Y. Wang et al., 2021; Yaşar et al., 2021).  

Hence, these findings showed that ensemble models could be applied to the 

prediction of COVID-19 in the eastern Africa region more effectively than single AI-driven 

models. In addition to this, the findings prove that the non-linear ensemble models are more 

capable than the linear ensemble models. This might be due to the incapability of linear 

ensemble approaches to undergo another black-box learning process, unlike the non-linear 

approaches. 
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Table 10:  

Comparison of prediction levels of single AI models and ensemble models. 

Ensemble 

Models 

Single 

Models 

Ensemble vs Single 

Models 

The Difference in Percent (%) 

Verification Training 

NNE FFNN NNE vs FFNN 5.6% 4.9% 

ANFIS NNE vs. ANFIS 2.1% 1.4% 

SVM NNE vs. SVM 7.1% 6.4% 

MLR NNE vs. MLR 13.4% 12.7% 

ANFIS_E FFNN ANFIS_E vs. FFNN 13% 5% 

ANFIS ANFIS_E vs. ANFIS 6.1% 1.4% 

SVM ANFIS_E vs. SVM 13.9% 6.4% 

MLR ANFIS_E vs MLR 19.3% 12.7% 

5.4.2. Comparison of AdaBoost with a single AI-driven model  

Table 11 compares the boosting model with AI-driven models in terms of 

prediction performance across training and test datasets. In a training dataset, the AdaBoost 

model improved the prediction accuracy of KNN, SVM, and ANN-6 models by 8.48 

percent, 22.31 percent, and 8.96 percent, respectively.  

Additionally, it improved the accuracy of prediction for KNN, SVM, and ANN-6 

models in a test dataset by 7.94 percent, 22.51 percent, and 8.02 percent, respectively. The 

results indicated that ensemble boosting models could be used to predict COVID-19 

mortality in Ethiopia more effectively than the tested individual AI-driven weak-

performing models.  
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Table 11:  

Comparison of boosting model with weak AI-driven models 

Boosted Model vs Single Model Difference in percentage 

Training dataset Test dataset 

AdaBoost vs KNN 8.48% 7.94% 

AdaBoost vs SVM 22.31% 22.51% 

AdaBoost vs ANN-6 8.96% 8.02% 

kNN vs. SVM 13.83% 14.57% 

kNN vs. ANN-6 0.48% 0.08% 

ANN-6 vs SVM 13.35% 14.49% 

5.5. Implication of the study 

The results of this study have important ramifications for Eastern African public 

health practice and policy. The AI-driven models created in this study can help with 

resource allocation and planning by identifying those who are more likely to die from 

COVID-19. Because of this, healthcare professionals may prioritise patient care and spend 

resources appropriately. In order to lessen the impact of the disease, policymakers can use 

these models to guide targeted initiatives like vaccination drives and preventative 

measures. However, it is critical to recognize the study's constraints, notably its 

dependence on reliable and accessible data.  

In order to increase the usefulness and generalizability of these models, future 

research should concentrate on verifying and improving them using bigger and more varied 

datasets. Overall, the identified predictors of death, such as age, comorbidities, and the 

state of the healthcare system, highlight the need for specialized assistance, improved 

healthcare systems, and sufficient funding to handle the COVID-19 pandemic in Eastern 

Africa.  
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5.6. Future directions of the study 

Despite the encouraging findings, there are several limitations to this study that 

need to be noted. First, the quantity and calibre of data were crucial to the precision of our 

prediction models. The effectiveness of the models may have been impacted by issues 

including constrained testing capacity, differences in reporting standards, and data gaps. 

Therefore, to increase the precision and dependability of the predictions, future research 

should concentrate on developing data-gathering methods and tackling data quality 

challenges.  

Furthermore, because this study's models were created specifically for Eastern 

Africa, they might not be readily transferable to other locations with varied demographic, 

epidemiological, and healthcare features. In order to increase the generalizability of these 

models, more research is required to test and improve them using a variety of datasets from 

various geographical regions.  

5.7. Contribution to the filed 

This work contributes to the field of COVID-19-specific AI-driven death prediction 

in Eastern Africa. This study advances knowledge of AI applications in public health and 

epidemiology by proving the efficacy of ensemble and boosting models. The findings give 

an understanding of the variables affecting COVID-19 mortality and a foundation for 

creating forecasting models that might help with decision-making in environments with 

constrained resources.  

The use of AI methods in mortality prediction has the potential to improve public 

health initiatives, resource allocation, and epidemic response planning. Additionally, by 

offering light on the particular difficulties and factors in the area, this study adds to the 

body of knowledge on COVID-19 in Eastern Africa.  

In summary, the study's promise for forecasting COVID-19 mortality in Eastern 

Africa is demonstrated by the ensemble and boosting models that are AI-driven. The 

findings highlight the significance of age, comorbidities, and healthcare systems as major 

factors in death rates. However, it is imperative to address the research's shortcomings, 
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such as the requirement for validation in a variety of demographics and data quality 

difficulties. Overall, applying AI approaches to mortality prediction can significantly 

improve public health responses, resource allocation, and decision-making processes to 

successfully address the COVID-19 epidemic in Eastern Africa and beyond.  
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CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

             In this work, the ability of AI-driven ensemble and boosting models to predict 

mortality due to COVID-19 in East Africa was investigated. Before predicting COVID-19 

mortality using models, the data were normalized, and a sensitivity analysis was performed 

to identify the best dominant input variables.  

             Among four single AI-driven models used in the ensemble, ANFIS outperformed 

the other models due to its ability to analyze non-linear, dynamic, and complicated 

processes using the fuzzy concept and neural network idea. Four ensemble techniques were 

modelled to improve the performance of the single AI-driven models by aggregating the 

results from each AI-driven model and using the aggregated result as an input for the 

ensemble modelling.  

             Because of their capacity to handle unpredictable, non-stationarity, and 

complicated data, the non-linear ensemble techniques (ANFISE and NNE) outperformed 

the linear ensemble approaches (SAE and WAE). ANFISE was the best-performing 

ensemble technique, improving the prediction performance of the single AI-driven models 

by 13, 6.1, 13.9, and 19.3 percent, respectively. 

             Finally, three single AI-driven models and one boosting model were developed to 

predict mortality, and the prediction performance of these three models was compared with 

that of the boosting model. At the verification stage using the testing dataset, AdaBoost 

boosted the prediction of the performance of three models, KNN, SVM, and ANN-6 

models, in a testing dataset by 7.94, 22.51, and 8.02 percent, respectively. 

             Overall, the outcome of this study demonstrated the potential capacity of ensemble 

and boosting models to predict mortality due to COVID-19. The result obtained from the 

ANFIS ensemble model and the Boosting algorithms demonstrated that aggregating the 

outputs of separate AI-driven models leads to a better prediction than employing them 

individually.  
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             The study’s weakness was that it only used black-box models to calculate COVID-

19 mortality. As a result, the use of physically based models in the assembly process should 

be investigated in future research. Furthermore, this study used only two years of daily 

recorded COVID-19 mortality and other feature variables to develop the single models and 

the boosting model. Therefore, it is important to test these AI-driven boosting models for 

further data with a large number of observations in future studies. 
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 Statistical software: STATA, SPSS, and R 
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List of Technical proposals I developed from 2020-2023 

1. An assessment on post project effectiveness of Productive Safety Net Program (PSNP) 

participants' linkage with financial service providers and sustainability of Private Service 

Providers (PSPs), WBG 

2. Baseline Data Collection of the Impact Evaluation of the UPSNJP Bikat Program, WBG 

3. Baseline survey for rural agricultural value-chain improvement project through linking 

smallholder farmers with rural transformation center (RTC), east Gojam zone, Amhara 

regional state, Ethiopia, KOIKA 

4. Baseline Survey on Gender in Emergencies (GiE) in South Sudan program Wau County, 

Western Bahr El Ghazel State Unity State, CARE South Sudan 

5. Collect Quantitative Data from Randomly Selected 500 Households from 5 Woredas 

(districts) and 20 kebeles in the Awash basin, Ethiopia” IWMI 

6. Conducting Advanced COVID-19 Vaccine Data Analytics, JSI 

7. Conducting Gender Analysis in PReSERVE Project Woredas of Amhara Region, RTI 

8. Conducting School Visits and Baseline Household Survey in Rural Amhara and Oromia 

Regions of Ethiopia, IFPRI 

9. Data Collection in Sudan on Migrants along the Northern Corridor under the EU-IoM Joint 

Initiative Programme In the HoA Region, IOM 

10. Designing nutrition-sensitive Cash Plus package for smallholder farmers (including PSNP 

clients) to improve nutritive home consumption and supply HGSF programme, FAO 

11. EatSafe Ethiopia Baseline Assessment in Hawassa technical proposal, GAIN 
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12. End-line survey to assess the impact and cost effectiveness of different content delivery 

approaches on technology adoption, IFPRI 

13. Food and Agricultural System Mapping and Analysis (FASMA) for Lot 1- Dire Dawa and 

Bahir Dar, RTI 

14. Geared for Success Baseline Assessment, Oxfam Canada and WCC 

15. Gender Assessment on a project “Horticulture for Growth (H4G): an initiative of the 

agricultural commercialization clusters (ACCs), TechnoServe 

16. Gender Audit in GWPTC Students, Trainers and Administrative Staff, EASTRIP WBG 

17. Identifying and assessing the socio-economic characteristics of migrant, refugee, and 

undocumented populations in the Republic of Djibouti, WBG 

18. Implementation of a mini Household survey using LQAS (HPF3), Grown Agents 

19. Listing and Baseline Survey for Land Rental Market Impact Evaluation Study, WBG 

20. Midline review of the NCA South Sudan Country Strategy 2020-2024 , Norwegian 

Church 

21. Monitoring Coverage for Mass Drug Administration in South Sudan, CBM 

22. Primary data collection for the tobacco control data initiative in regional states of Ethiopia, 

Development gateway 

23. Primary quantitative data collection in Amhara region, PreSERVE, RTI 

24. Providing Survey Management Services in Support of a National Population-Based HIV 

Impact Assessment-Ethiopia, ICAP Columbia University 

25. Research firm to implement a Baseline Survey for the USAID Healthy Behaviors Activity 

in Ethiopia, FHI 360-2022 

26. Survey & Investigation of identified villages in Ethiopia for development of Solar Mini-

grid projects and preparation of Bankable DPRs for these sites, TERI, ISA 

27. Terminal Evaluation for the Youth Action for Reduced Violence and Enhanced Social 

Cohesion in Wau, South Sudan, IoM and UNESCO south Sudan 

28. The causes, trends, effects, and impacts of migration in Addis Ababa city administration, 

Addis Ababa city administration 

29. An endline survey for Digital agricultural services (DAAS) for IFPRI project: 2023 

30. Evaluation of Electronic Medical Records (EMR) System Usage and User satisfaction at 

Selected Health Facilities in Four Regions of Ethiopia, ICAP 

 

List of projects I managed (from 2020 to date) 

 

1. Baseline Data Collection of the Impact Evaluation of the UPSNJP Bikat Program, WBG 

2. Conducting Baseline and Follow-up Surveys for the PWs, PDS, and Livelihood Impact 

evaluation, WBG 

3. Designing nutrition-sensitive Cash Plus package for smallholder farmers (including PSNP 

clients) to improve nutritive home consumption and supply HGSF programme, FAO 

4. DRDIP-I End of project evaluation and Baseline survey for DRDIP-II, MoA 

5. Smallholder Farmer Endline Survey Data Collection for Soufflet-IFC Malt Barley Value 

Chain Advisory Project in Ethiopia, IFC-2023 

6. Conduct Health Facility Baseline Survey on Prevention and Management of Health 

Complication of Female Genital Mutilation (FGM), UN Children Fund 
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7. Baseline Survey for the National Campaign for Promoting Knowledge, Attitude, and 

Behavioural Change in Population and Reproductive Health in Ethiopia (SHaPE Phase 2) 

for Target Groups in Two Cities and Five Regions, KOICA 

8. Gender Audit for Women’s Empowerment Through Gender Transformative Opportunities 

(WE-GO) Project, CARE  

9. Estimating the Economic Costs of Intimate Partners’ Violence (IPV) against women in 

Ethiopia, UN Women 

10. Validating the Global Framework to Measure and Evaluate Changes in Social Norms in 

FGM Programming, UNICEF 

11. Developing a Civil Registration Vital Statistic in South Sudan, UNDP 

12. Food and Agricultural System Mapping and Analysis (FASMA) for Lot 1- Dire Dawa and 

Bahir Dar, RTI 

13. Baseline Survey of Impact of Vegetable Seed and Complementary Training Provided to 

Households Affected by Drought in Ethiopia, WorldVeg and CRS 

14. Consultancy services to conduct baseline survey, skill gap assessment and organization of 

workshops, MoLS-Ethiopia 

15. Conducting a baseline study of civic engagement activities in Ethiopia, Creative 

associates-USAID 

16. Impact and process evaluation of the Global Alliance for Improved Nutrition (GAIN) 

Better Dairy for All program in Ethiopia, RTI and GAIN 

17. Strengthening federal and regional levels monitoring, evaluation and learning (MEL) 

system for the prevention of harmful practices and violence against children (VAC) in 

Ethiopia, UNICEF and UNFPA 

 


