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Abstract 

 

Enhancing the Accuracy of Emotional Recognition Based on EEG Signals by Convolution 

Fuzzy Neural Network 

 

Ahmadzadeh Nobari Azar, Nasim 

PhD, Department of Biomedical Engineering  

June, 2024, pages 95 

 

Emotions are a human sensation capable of impacting an individual's quality of life in a 

positive as well as a negative manner. The capacity to identify various categories of emotions can 

enable researchers to assess the present condition of patients or the potential of future illnesses. A 

number of techniques for figuring out emotions from photos, encounter challenges when 

individuals attempt to conceal their emotions by altering their facial expressions. As a result, there 

has been an increase in the use of brain signals to accomplish more accurate emotion identification. 

One of the difficulties scientists encounter when using Electroencephalography (EEG) signals for 

emotion detection is the dependability of the detection techniques. This challenge prompts 

researchers to explore alternative classification methods, as the performance of conventional 

approaches is not dependable. By combining several model features, hybrid deep learning models 

and other approaches demonstrate a superior ability to analyze complex data and improve 

performance. Nevertheless, in order to attain the maximum average accuracy, experts emphasize 

models with less variables. The objective of this research is to enhance the precision of emotion 

recognition through the utilization of EEG signals, aiming to establish a dependable detection 

system. The suggested approach combines a Fuzzy Logic system with a 1-D Convolutional Neural 

Network, forming a hybrid model known as a Convolutional Fuzzy Neural Network (CFNN). This 

approach utilizes a pair of convolutional layers, a pooling layer, and a fuzzy neural network to 

extract features. The DEAP dataset, a multimodal dataset comprised of EEG data from 32 

participants, is used in this study. The suggested CFNN demonstrated dependable performance for 

emotion recognition, with average accuracy ratings for valence (pleasantness) and arousal 

(intensity) of 98.21% and 98.08%, respectively. 
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Özet 

 

Evrişim Bulanık Sinir Ağı ile EEG Sinyallerine Dayalı Duygusal Tanıma Doğruluğunun 

Artırılması 

 

                                                    Ahmadzadeh Nobari Azar, Nasim 

PhD, Biyomeikal Mühendisliği,  

Haziran, 2024, sayfa 95 

 

Duygular, bireyin yaşam kalitesini hem olumlu hem de olumsuz yönde etkileyebilen insani 

bir duygudur. Çeşitli duygu kategorilerini tanımlama kapasitesi, araştırmacıların hastaların mevcut 

durumunu veya gelecekteki hastalıkların potansiyelini değerlendirmesine olanak sağlayabilir. 

Fotoğraflardan duyguları anlamaya yönelik bir dizi teknik, bireyler yüz ifadelerini değiştirerek 

duygularını gizlemeye çalıştıklarında zorluklarla karşılaşmaktadır. Sonuç olarak, daha doğru 

duygu tanımlaması gerçekleştirmek için beyin sinyallerinin kullanımında bir artış olmuştur. 

Duygu tespiti için Elektroensefalografi (EEG) sinyallerini kullanırken bilim adamlarının 

karşılaştığı zorluklardan biri de tespit tekniklerinin güvenilirliğidir. Bu zorluk, geleneksel 

yaklaşımların performansının güvenilir olmaması nedeniyle araştırmacıları alternatif sınıflandırma 

yöntemlerini keşfetmeye sevk etmektedir. Hibrit derin öğrenme modelleri ve diğer yaklaşımlar, 

çeşitli model özelliklerini birleştirerek karmaşık verileri analiz etme ve performansı artırma 

konusunda üstün bir yetenek sergiliyor. Bununla birlikte, maksimum ortalama doğruluğu elde 

etmek için uzmanlar daha az değişkenli modellere ağırlık vermektedir. Bu araştırmanın amacı, 

güvenilir bir algılama sistemi kurmayı amaçlayan EEG sinyallerini kullanarak duygu tanımanın 

hassasiyetini arttırmaktır. Önerilen yaklaşım, Bulanık Mantık sistemini 1 Boyutlu Evrişimli Sinir 

Ağı ile birleştirerek Evrişimli Bulanık Sinir Ağı (CFNN) olarak bilinen hibrit bir model oluşturur. 

Bu yaklaşım, özellikleri çıkarmak için bir çift evrişimli katman, bir havuzlama katmanı ve bulanık 

bir sinir ağı kullanır. Bu çalışmada 32 katılımcının EEG verilerinden oluşan multimodal bir veri 

seti olan DEAP veri seti kullanılmıştır. Önerilen CFNN, sırasıyla %98,21 ve %98,08 değerlik 

(hoşluk) ve uyarılma (yoğunluk) ortalama doğruluk dereceleriyle duygu tanıma için güvenilir bir 

performans sergiledi. 
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CHAPTER I 

Introduction 

 

This chapter introduces a concise overview of emotion and EEG signals, the main 

objectives of the study, the study significance, hypothesis, and the limitations. 

Deep learning-based EEG recording emotion detection 

Affective computing has been a comparatively recent area, seeks to equip computer 

systems having the potential to evaluation, detect, and analyze emotional information provided by 

people. This endeavor aims to enhance the understanding of human emotions, their triggers, and 

the design of responsive systems attuned to people's needs, particularly in the realm of human-

computer interaction (HCI). 

Since emotions are essential to human cognition, that exists to logical decision-making, 

perception, relationships with others, and intelligence- emotions are vital to people's daily lives 

(Alarcão & Fonseca, 2019). It is essential for daily social interaction to be able to recognize, 

understand, and react to other people's feelings. Being able to identify emotions is beneficial for 

establishing and preserving positive social connections as well as for interacting with a variety of 

daily activities and social situations (Izard et al., 2001).   

 To recognize emotions, two main categories of methods are explored: one relies on 

observable behaviors like facial gestures, speech tone, and bodily movements, while the other 

utilizes physiological signals recorded by noninvasive sensors to identify feelings with electrical 

reactions. Emotions are often indicated either in different states, such as the essential feelings 

proposed by Ekman and Friesen, or within a continuous 4-D space of valence, arousal, dominance, 

and liking. The latter is often simplified to a 2-D representation of valence and arousal. 

There is the close connection between emotion generation and brain cortex activity, with 

EEG emerging as a valuable tool for detecting brain activity because of its high sensitivity. 

However, the complexity of EEG data, including channel variety and frequency bands, necessitates 

advanced tools for analysis. Machine learning and deep learning, particularly 1D convolutional 

neural networks (CNN), have demonstrated effectiveness in analyzing EEG signals, although 
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traditional ML approaches pose challenges in terms of manual procedures and data loss during 

preparation. 

Deep learning, with its capacity to autonomously grasp intricate features, is harnessed for 

its success in recognizing various forms of data, including EEG signals. The proposed fused 

Convolution Fuzzy Neural Network (CFNN) model leverages the strengths of both convolutional 

neural networks and fuzzy logic. This model is designed to enhance classifying emotions using 

the DEAP database by combining diverse approaches, ultimately aiming for a deeper and more 

accurate comprehension of the dataset's emotions.  

Emotions 

In many aspects of our daily lives, emotions are crucial, influencing choices, educational 

processes, and how we engage with others. Our choices and behaviors are shaped by the emotional 

cues we encounter during these experiences. Emotion plays a crucial role in human 

communication, offering valuable signals that help clarify the messages we convey. Due to 

technological advancements, everyday routines are increasingly intertwined, involving 

engagements among humans and between humans and machines. Humans excel at deciphering 

emotional cues in human-to-human interactions, enabling them to deliver tailored, socially 

appropriate responses, thereby enhancing the efficiency and smoothness of these interactions (Xu, 

2012).   

The complexities of human emotion make it a complicated phenomenon that eludes clear 

explanations. It is usually associated with different aspects of human experience, such as mental 

states, moods, and emotions, covering both physical and psychological factors, as well as social 

effects (Ekman & Friesen, 1978). The study of emotions has been an ongoing pursuit since ancient 

times and currently extends to numerous fields, including philosophy, psychology, neuroscience, 

social sciences, financial studies, healthcare, historical studies, the arts, and technology for 

computers (Levensor, 1994). James (James, 1884), known as the "Father of Psychology," proposed 

one of the initial explanations of emotion. He argues that emotion is a sensation brought on by 

numerous physical changes and that awareness of these changes in the body produces emotional 

experiences. Every individual emotion is caused by physical Alterations in the body, like facial 

expressions, muscular tension, and visceral activity. Lange (Green, 1912) introduced a similar 
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hypothesis in 1885, leading to the subsequent acknowledgment of their collective work as the 

James-Lange theory, commonly recognized as theory of emotional outer peripheral. The James-

Lange hypothesis establishes a basic connection between physiology and emotion (Press, 1927). 

However, it would rely solely on considering physiological changes in the body's periphery to 

describe how emotions are produced.  

The emotional aspect of humanity is still incredibly intricate, and researchers are always 

attempting to identify whether every individual emotion exists as an individual and 

independent entity or if there are correlations and connections among various emotions. Current 

researchers have suggested numerous categories of essential emotional sets based on their 

investigations (Healey et al., 2000). Ekman's emotional set includes anger, fear, sorrow, happiness, 

hate, and surprise, while James's emotional (James, 1884) set comprises rage, fear, sadness, 

happiness, hate, and surprise (Ekman, Friesen, Sullivan, et al., 1987). Clynes' (Clynes, 1988) 

emotional range includes rage, hatred, melancholy, happiness, love, romantic sentiments, and a 

neutral mood state. Izard's (Izard, 2013) emotional range includes anger, fear, sorrow, pleasure, 

surprise, compassion, disdain, hate, humiliation, and guilt. All of these studies share that the 

fundamental emotional categories encompass the complete range of human emotions. 

Figure 1. 

Illustrates the Valence-Arousal scale introduced by James Russell. 
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Nevertheless, it has been observed that certain emotions, like anger and disgust, might 

occasionally happen together, showing a link between them. As a result, researchers began using 

different dimensions to depict emotions depending on their relationships. Lange's two-dimensional 

mood classification model (Lang et al., 1997), shown in Figure 1.1, is a popular classification 

approach. The degree of arousal in this paradigm is represented on the ordinate, while the degree 

of pleasure is expressed on the abscissa, allowing for a progressive shift from low to high arousal 

and from negative to positive emotions. This two-dimensional framework may be used to classify 

different emotions, which can then be mapped onto the coordinate system in the appropriate ways.  

Emotion models have a vital impact on the investigation of human emotions. In this 

section, two emotion models will be presented.  

 Discrete Emotion Model 

According to the discrete emotion approach, there are a group of basic emotions which can 

be described, and other emotions can be considered as a combination of these basic feelings.   

Plutchik's (Plutchik, 2001) discrete emotion model is considered the most influential among the 

various models in this category. He claimed that emotions in both animals and humans play an 

important evolutionary role, emphasizing the centrality of eight main feelings such as fear, anger, 

and joy, sorrow, acceptance, disgust, expectancy, and surprise. According to his hypothesis, these 

fundamental emotions are evolutionarily primordial and evolved to help animals survive and 

reproduce (Plutchik, 2001). For instance, when faced with a threat, the animal experiences fear (a 

basic emotion) and takes action to escape, resulting in a state of safety that enhances its chances 

of survival. This concept proposes that other emotions are combinations or mixes of the 

fundamental emotions. For example, contempt could be described as a combination of disgust and 

anger. 

3D Emotion Model 

Mehrabian and Russell (Mehrabian, 1996) collaborated in the development of the 3D 

psychological emotion model. Emotions, according to this concept, can be analyzed and 

determined using three distinct dimensions: valence, arousal, and dominance. Emotions are 

assessed on the valence dimension depending on their level of pleasantness, spanning from adverse 

(unpleasant) to favorable (pleasant). For instance, fear and melancholy are unpleasant emotions 
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with low valence levels. On the other hand, positive feelings such as delight and surprise score 

high on the valence scale. The arousal dimension assesses the strength of emotion, ranging from 

low arousal (calm or deactivated) to high arousal (excited or activated). For example, sadness is 

an emotion with low arousal, indicating low levels of activation, whereas fear is an emotion with 

high arousal, indicating a high level of activation. The dominance dimension evaluates the extent 

to which an emotion exerts control or dominance, spanning from diminished dominance (feeling 

submissive or controlled) to heightened dominance (displaying control or dominance). For 

example, fear indicates a low level of power as it makes a person more obedient to their 

circumstances. When someone is angry, they take a dominant attitude, exhibit aggressive 

tendencies, and have a high level of dominance. Compared to the discrete emotion model, the 

dimensional emotion model is preferred in emotional investigations.  

Figure 2.   

The 3D Emotion Model. The 3-letter alphabetical naming system (e.g., NHH) follows these 

guidelines: the initial letter indicates the valence, either positive (P) or negative (N); the 

subsequent two letters signify the arousal and dominance, denoting e either high (H) or low (L). 

(LanZirui, PhD Thesis. P.40) 
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Source: Seacliff Educational Solutions – Powerful Simplicity (2019). 

The dimensional emotion model has been used extensively in several investigations (Lang 

et al., 1997; Koelstra et al., n.d.). It is indeed possible that there are instances where humans 

struggle to adequately express or articulate the emotions they are experiencing, or they might 

express them in a vague manner using adjectives. There may be occasions when we, as humans, 

find it difficult to communicate or define the feelings we are experiencing, and our descriptions 

may be overly vague when utilizing adjectives.  

 Explanation of Brain and EEG Patterns 

Operation and Configuration of the Brain 

The human brain stands as the most intricate organ, acting as the fundamental center for 

all neurological systems. It comprises each hemispheres on the left and right, as well as the front 

the terminus of the third ventricle, which serves as a bridge between the two hemispheres. The 

cerebral cortex constitutes the outermost layer of the brain. The coordination and communication 

between the left and right hemispheres are facilitated by the interconnected large fibers that link 

them together (Frackowiak, 2017). The cerebral hemisphere's surface is not smooth and has a 

number of sulci. The lateral fissure is a large sulcus located on the upper side of each cerebral 

hemisphere. These grooves and furrows separate each hemisphere into four lobes. The frontal lobe, 

the biggest of the four lobes, is situated beyond the central groove and the side cleft and takes up 

about one-third of the cerebral hemisphere. The temporal lobe sits under the lateral fissure. In 

contrast, the parietal lobe is situated in the space between the lateral fissure and the central sulcus. 

Following the parietal and temporal lobes, the occipital lobe is located above the cerebellum 

(Ketter, 2010). Numerous neurons and several nerve centers may be found in every area of the 

brain. As a result, each area has a distinct function for controlling, which helps the cerebral cortex 

to develop a specific functional structure. The following provides concise information on the 

structure and function of each component:  

The frontal lobe, also known as the prefrontal lobe, is of paramount significance to the 

brain as it fulfills a crucial and vital role. The frontal pole, which is between the frontal pole and 

the central sulcus, refers to the front most portion of the frontal lobe. The frontal lobe can be 

divided into three areas: the prefrontal lobe, the frontal motion area, and the primary motor area. 
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Its functions are mostly connected to cognitive activities including thinking, planning, and 

emotions (Ketter, 2010).  

The parietal lobe, located above the lateral cleft and beneath the central sulcus, mainly 

handles the interpretation of sensations like pain, touch, taste, and temperature. It is also thought 

to be involved in managing stress. This region also plays a role in activities including logic and 

mathematics (Ketter, 2010).  

The temporal lobe, which stretches from the bungee (a curving part of the lateral side of 

the brain) to the occipital lobe, is located below the lateral fissure. The superior section of the 

temporal lobe manages the interpretation of auditory data.  Meanwhile, the frontal section of the 

temporal lobe contains a mental cortex linked to human memory and emotions (Ketter, 2010).  

The occipital lobe is located at the back of the cerebral hemisphere, positioned posterior to 

the occipital sulcus. Externally, the occipital lobe seems comparatively diminutive, and its sulcus 

lacks a well-defined boundary. As the main visual cortical center, this lobe is essential for 

analyzing visual data. It also relates to the impression of movement and words (Ketter, 2010).   

The insular lobe is a triangular, island-like structure that is hidden by the frontal, parietal, 

and temporal lobes deep within the outer sulcus. According to present studies, the insular lobe is 

significantly linked to emotional regulation and the proper functioning of human internal organs 

(Ketter, 2010). The Limbic System has a role in memory and the emotion analysis (Ketter, 2010). 

Electroencephalogram (EEG) 

EEG is an abbreviation for the chronological recording of electrical potentials produced 

through the natural and regular firing of neurons in the brain. Brain science, mental study, and 

cognition research indicate that EEG can reveal numerous mental operations and cognition 

behaviors (Ackermann et al., 2016). As a result, EEG is increasingly employed in the area of 

emotion identification. Typically, numerous mental states of individuals, including even subtle 

emotional changes, are directly reflected in EEG data. The application of EEG in this domain is 

primarily distinguished by the two characteristics following two features (Dietrich & Kanso, 

2010).  
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Because of its low amplitude, EEG is considered a weak signal, making it difficult to 

collect. Furthermore, throughout the acquisition process, it is vulnerable to interference by 

physiological electrical signals. Physiological electric signals such as EMG (Electromyography), 

ECG (Electrocardiography), and EOG (Electrooculography) are examples of the typical noise in 

EEG signals (Subha et al., 2010). Consequently, the original EEG signals must go through a 

denoising method that removes such interference. 

Human feelings, thoughts, and even physiological conditions have an impact on EEG 

signals, as EEG is a direct representation of brain activity. Because emotional states are 

relatively independent and brain activity changes in both space and time at every moment, EEG 

signals exhibit strong nonlinear properties (Garrett et al., 2003). 

Identifying emotions through EEG measurements 

           The primary steps of the procedure include evoking emotions, acquiring EEG signals, 

preprocessing the EEG data, extracting and choosing features, decreasing features, and 

performing classification. In EEG recording, the typical approach involves extracting and boosting 

the signal. As EEG signals are very weak, amplification is necessary to enhance their strength. 

Following that, the signal must go through an artifact removal procedure using a preprocessing 

technique. However, the selection of these steps will rely on the particular needs or specifications 

of each study and may change among different researchers. The following approach is usually 

used in EEG-based emotion detection studies.  
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Figure 3. 

 EEG Frequency Bands: Understanding Brain Waves 

 

EEG Pre-processing 

Because of the faintness of EEG signals, the procedure for acquiring them have a 

substantial impact on noise signals. EEG preprocessing includes numerous critical processes, 

including the elimination of line noise, adjusting reference, eliminating poor EEG channels, and 

removing artifacts (Choi & Kim, 2018). The procedure's main goal is to eliminate disturbances 

from the captured EEG data. Eye movements (EOG), muscle activity (EMG), heart signals (ECG), 

frequency disruption, electromagnetic influences, and other irrelevant signals. (Akay & 
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Daubenspeck, 1999). The Figure 1.4 shows the difference between artifact removal before and 

after. Multiple methods have been devised to detect and eliminate artifacts associated with EMG 

and EOG (Wallstrom et al., 2004) (Gratton et al., 1983). As electromagnetic interference and 

frequency interference usually happen at high frequencies, it may be feasible to employ bandpass 

filtering or low-pass filtering to remove the disruptive frequency bands and retain just the EEG 

bands that are significant. 

Figure 4.  

Comparison of EEG Signal Reconstruction After Artifact Removal Using Different Methods 

 
 

 

Source: (Bista & Adhikari, 2017) 

Lately artifact elimination approaches include matching pursuit (MP) and independent 

component analysis (ICA) (Vinther, 2002) (Wcidong Zhou, 2002)(Srivastava et al., 2005). These 

techniques are utilized to detect and distinguish interference signals, allowing for the 

distinguishing artifacts from the EEG signal, particularly those that are challenging to remove 

through filtering. Since it uses mathematical approaches for breaking down the mixed signals into 

essentially separate components, ICA has emerged to be the most widely used technique for EEG 

artifact and noise removal. Hence, ICA is capable of separating the signals into EEG and other 

noise components (Vinther, 2002).  
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Bartels (Bartels et al., 2010)developed a very successful strategy for artifact removal that 

combines blind signal separation, ICA, and SVM approaches (Bartels et al., 2010). In particular, 

the Infomax method of ICA is used for removing EMG artifacts, whereas the Amuse method of 

blind signal separation is frequently used to remove EOG artifacts. To improve signal pre-

processing, Yang et al. (S. Yang & Deravi, 2013) build a model which is hybrid two-stage 

denoising algorithm with wavelet based noise elimination approach. Recent studies have shown 

that artifact removal can be achieved rather successfully by combining ICA with additional signal 

processing technique (Zima et al., 2012) (Subasi & Gursoy, 2010) (Pramudita et al., 2018).Using 

an intricate neural network with time delays, Rao et al. (Rao & Derakhshani, 2005) compared the 

effectiveness of MP and ICA in a different study and found that ICA surpassed MP.  

Zhou (Weidong Zhou & Gotman, 2009) proposed using ICA and the EEG dipole model to 

successfully remove certain eye movement artifacts from EEG data. The elimination of ocular and 

muscular artifacts was proposed by Santillán-Guzmán et al. through the combination of ICA and 

empirical model decomposition (EMD). In addition, for purpose of further exclude the components 

identified by ICA that continue to include physiological data, EMD was also utilized (Santillan-

Guzman et al., 2018). The EEG preprocessing approach is crucial to EEG-based processing 

systems. Its primary objective is to eliminate artifacts while leaving them unaffected by the 

influence of additional physiological signals from humans. Eliminating the noise signals results in 

more successful and accurate EEG-based research, giving clean and pure EEG data for subsequent 

processing processes (M. K. Kim et al., 2013). 

Feature Extraction 

In feature extraction, specific EEG features that are relevant the project’s needs are 

identified and extracted. In EEG-based emotion detection, the process of extracting features is a 

critical stage that involves selecting only reliable characteristics that correspond to the emotions, 

ensuring the accuracy of the classification results. Kim provided a concise description of the topic 

of emotion identification using EEG. The dependable features represent relevant and valuable 

information modified to match the requirements of a certain task (M. K. Kim et al., 2013). Due to 

the low amplitude of EEG signals, the procedure for acquiring them have a substantial impact on 

noise signals. In general, optimum characteristics are critical in obtaining successful and practical 

performance for identifying feelings or emotional conditions since they significantly influence the 
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distinctive features of EEG-based identification systems (Jenke et al., 2014). Typically, traditional 

EEG feature extraction involves techniques that frequently employ time-domain, frequency-

domain, and time-frequency-domain.  

Time domain 

The time domain feature pertains to utilizing the EEG signal for the extraction of time-

related data and numerical information as features to facilitate subsequent approaches (Romand, 

2004). In essence, EEG represents the traditional continuous data that is time-series-based, 

capturing the most intuitive information that mirrors the fluctuations in human states. Time-

domain feature extraction methods mainly include using the initial EEG time series data after 

removing artifacts, without going through any additional transformation processes as found in 

other types of feature extraction approaches. Consequently, investigations focusing on time-

domain-based EEG research constantly serve as basic and highly productive approaches for EEG 

processing methods.  

Frequency domain 

The process of extracting critical frequency features as EEG features involves turning the 

primary EEG signal from its based on time domain to the frequency-based. The frequently 

employed EEG frequency ranges (delta: 1-4 Hz, theta: 4 Hz, alpha: 8 Hz, beta: 13 Hz, and gamma: 

36 Hz) correspond to diverse physiological and psychological functions in humans. The 

distinct EEG frequency bands indicate different roles and operations of the human brain, either 

individually or through their cooperation. These functions include areas for instance emotions, 

recollection, determination, facilitation, and more (Klimesch, 1999). In frequency-based EEG 

research, the initial stage involves converting time-series data into frequency domain, which can 

be achieved using various methods like Fast Fourier Transform (FFT) and Discrete Fourier 

Transform (Wang et al., 2011) (Aljalal et al., 2018). 

Variables such as band power, power spectrum, and power density spectrum are often used 

in frequency domain. Many EEG research use features determined by frequency, particularly in 

the area of emotion identification. Zouridakis suggested a method in which the raw EEG data 

undergoes bandpass filtering subsequently divided to five frequency bands. In order to recognize 

emotions, the matching band power for each of  five bands is computed and utilized as a feature 
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(Zouridakis et al., 2010). Aftanas proposed a technique wherein the raw EEG signal is transformed 

to theta, alpha, and beta bands using FFT. Subsequently, the Power Spectral Density (PSD) of 

every electrode is determined and utilized as an emotion detection feature (Aftanas & 

Golocheikine, 2002). Many researchers focus on investigating in each of the five distinctive 

frequency bands observed in the EEG data and human emotions. Li et al. (Mu Li & Member, 2009) 

specifically conducted on the connection of the EEG gamma band and two distinct feelings, 

namely happiness and sadness. Jauovec et al. (Jaušovec et al., 2001) suggested a concept of 

Emotional intelligence in humans in relation to the theta and alpha EEG frequency bands. 

However, in contrast, Zhang et al. conducted a study comparing the representation using identical 

frequency-based features and classification techniques to assess the levels of the five frequency 

bands individually. 

Time-Frequency Domain 

When dealing with non-stationary signals, time-frequency methods can provide useful data 

examining the dynamic variations (Jenke et al., 2014). Since the nature of EEG data is unstable, 

concentrating just on time- or frequency-domain characteristic features is insufficient. As a result, 

numerous EEG time-frequency domain investigations have emerged in recent years to identify 

features that can comprehensively represent properties from both time-based and frequency-based. 

Furthermore, the primary focus of the time-frequency domain is on recording dynamic changes in 

time-series data, which correlates to a key aspect of emotion studies. Since the physiological 

interpretation of human emotion is time-dependent, once a certain emotion is experienced, it 

typically continues for a certain period of time before gradually returning to a state of calm 

(Ekman, Friesen, O’Sullivan, et al., 1987).  

Channel Selection 

Essentially, EEG signals encompass a distribution across the head. Various locations of 

these EEG signals correspond to distinct brain functional zones, meaning that not all EEG signal 

channels contribute equally to the formation of emotions (Alotaiby et al., 2015). In the brain, 

specific regions are correlated with emotions, causing channels from different regions to be 

unrelated to classifying of emotion. Channel selection, like feature selection, can be categorized 
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into two ways: filter and wrapper techniques. Furthermore, in specific tasks, the filter and wrapper 

approaches can be combined to enhance the selection process (Gnana, 2016).   

Karim et al. (Ansari-Asl et al., 2007) suggested synchronizing with probability as a 

technique for selecting channel method to identify relevant channels and accomplish feature 

reduction. Zheng et al. (W. L. Zheng & Lu, 2015) applied a deep belief network and the four 

selected channels to classify emotions, and they demonstrated that the performance of the chosen 

data was much better than that of the whole data when using the identical experimental setup. 

Zhang et al. (Jianhai Zhang et al., 2016) introduced a channel selection technique due to the relief 

algorithm to identify the most relevant channels for identifying four emotional states (joy, fear, 

sorrow, and relaxation). They chose 19 channels from the 32 that were accessible in order to 

recognize emotions accurately. Another crucial component of channel selection involves taking 

into consideration what corresponds to with electrodes on both sides of the brain. These 

symmetrical electrodes signify many functional space of the brain, each in responsible for 

controlling various representations of human behavior. According to Rizon et al. (Transactions et 

al., 2016), one way to select a channel is to utilize the ratio asymmetry of symmetrical electrodes. 

The difference in the ratio between symmetrical channels on every brain side was utilized as an 

indication to depict the functional area of the brain and to identify channels related to recognizing 

emotions. Out of the 63 channels available, they selected 28 pairs for five emotions (disgust, 

happy, surprise, sad, and fear). The findings showed significant efficiency improvements when 

using these pairs of channels. 

Classification  

EEG classification refers to the process of using existing EEG features to make 

observations and infer the specific emotional state that an individual is experiencing. Typically, 

features are input into classifiers to train the rules for identifying the corresponding emotions with 

a high level of accuracy using different algorithms. Emotion recognition through EEG includes 

two main tasks. How to identify the EEG patterns corresponding to different emotional states using 

EEG features? How to categorize untrained feature samples based on their associated EEG 

patterns? The recognition of emotion state could be categorized into two main methods: 

unsupervised learning and supervised learning algorithms (M. K. Kim et al., 2013).  
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Unsupervised Learning 

Unsupervised learning includes training on data without identifying category information 

with the goal of bringing similar characteristic samples closer while simultaneously moving away 

from different characteristic patterns. As a result, this approach achieves classification by grouping 

similar samples together and separating different samples from one another. In the domain of EEG-

based emotion research, unsupervised learning is frequently employed (Gath & Geva, 1989). 

Because there are no predetermined rules for identifying emotions through experimentation, this 

is mostly because human emotions are complicated and autonomous. Obtaining reliable EEG data 

labeled with emotions in particular is made more difficult by the lack of standards for classifying 

emotional states based on physiological data (Mahajan & Morshed, 2015). Nevertheless, 

unsupervised learning presents a potential solution that allows the system to self-learn and 

recognize various categories without explicit labeling.  

Supervised Learning 

Supervised learning requires labeled sample categories and includes continually adjusting 

the model's parameters depending on the provided category information. Subsequently, the test 

samples are classified using the trained model. In contrast to unsupervised learning, supervised 

learning focuses largely on the labels applied to each category, which enable the model to generate 

accurate predictions. In general, there are two labeling approaches that are typically employed on 

emotion detecting based on EEG. First, using the arousal-valence two-dimensional model—which 

is widely used in the field of psychology—the emotions can be classified and identified (Ekman, 

Friesen, O’Sullivan, et al., 1987). These two elements separately determine diverse emotional 

states depending on varied combinations of arousal and valence levels (Koelstra et al., n.d.) 

(Sourina & Liu, 2011) (J. Liu et al., 2016). An alternative method of identifying emotions is to 

determine each participant's individual emotional state at the time of the experiment's application 

of stimuli, and utilize that state as the label. Some auxiliary measures, such as facial expressions, 

physical movements, heart rhythm, heartbeat, and the emotional qualities of the stimuli utilized in 

the experiment, can be used to reliably categorize emotions for participants.  
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Deep learning Methods 

In order to obtain data at different levels of abstraction, deep learning is a subfield of 

machine learning that uses mathematical and algorithmic frameworks with many processing 

layers. These processing layers often include pooling, activation functions for non-linearity, and 

linear transformations. Each layer extracts progressively more abstract features from the data. In 

general, the entire model is called a neural network (NN). A basic NN, without intermediary layers, 

was suggested by Rosenblatt (1957). Subsequently, in the 1970s and 1980s, Hinton's research team 

suggested deeper, more intricate networks like the one with multiple layers (MLP), as well as more 

sophisticated network topologies (Rumelhart & Hinton, 2019). Bengio (Bengio, 2009) is one of 

the researchers who made noteworthy achievements in promoting deep networks and helped to 

develop the field (Goodfellow et al., 2020). Lecun et al. (2015) give a concise overview and 

position on the topic of deep learning, emphasizing two of its most remarkable features: the depth 

learning network structure's suppleness in constructing and the gradient descent time's simplicity. 

As an example, convolutional neural networks (CNN) were suggested towards the end of 

the 1980s to achieve transformation consistency in pictures. To represent time series data and 

record long-term dependency between time intervals, recurrent neural networks (RNN) were 

suggested and applied in speech detection (Graves et al., 2014) as well as in natural language 

processing (Devlin et al., 2019). However, the latest research suggests that time-based 

convolutional networks (Shikano & Lang, 1989) could achieve similar or even superior 

performance (Bai et al., 2018). 

A popular classification method that mimics the structure of the valid neural network in 

the human brain through mathematics is called an artificial neural network, or ANN. The 

multilayer perceptron is a popular NN model that utilizes sample categorization data provides a 

guide to iteratively adjust parameter weights from the middle layer to the output layer up to until 

specific criteria are met. Once trained, this perceptron is used to classify samples (Ruck et al., 

1990). Estepp et al. (Estepp et al., 2011) utilized ANN for classifying unstable cognition levels 

and achieved remarkable results. Zheng et al. (W. Zheng et al., 2015) introduced the deep belief 

network (DBN) as a method to extract EEG features for emotion detection. Ren and Wu.  (2014) 

suggested using the convolutional deep belief network (CDBN) as a method for extracting feature, 

as they assume it possessed strong capabilities in feature learning and understanding. Due to 
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advancements in deep neural network modules, notable accomplishments have been achieved in 

various domains, including image processing (Lecun et al., 2015) and sequential data processing 

(Hochreiter & Schmidhuber, 1997). Numerous studies show that deep learning algorithms have 

made great progress in EEG-based recognition research and are competitive with other approaches.  

Three categories exist under the idea of applying deep learning techniques: sequence-based 

analysis, image-focused analysis, and image-and sequence-based processing. Yanagimoto & 

Sugimoto (2016) suggested using a supervised pre-trained Convolutional Neural Network (CNN) 

for emotion detection utilizing EEG frequency domain features, and they obtained outstanding 

results. Tripathi (2012) suggested investigating the most successful configurations of a basic  DNN 

and a CNN for emotion detection. Song et al. (Song et al., 2020) introduced the dynamic graph 

CNN to reach emotion detection. This approach involved constructing a dynamic graph model to 

represent the EEG with multiple channels characteristics and record emotional state using a neural 

network. The outcomes demonstrated a substantial improvement when applied to two publicly 

available datasets for EEG based emotion detection. Moon et al. (Moon, Seong-Eun, Jang 

Soobeom, 2018) suggested that CNN possesses the ability to incorporate spatial information 

through filters in two dimensions applied in the convolutional layers. Consequently, they utilized 

EEG characteristics of connection as input for a CNN and successfully achieved emotion 

classifying outcomes. Mei et al. (Satuluri et al., 2022) recommended using CNN to extract features 

from the correlation matrices of multi-channel EEG electrodes that successfully 

recognized emotions. Alhagry et al. (Alhagry et al., 2017) put forth a proposal for sequential 

processing in emotion recognition, wherein they employed Long Short-Term Memory (LSTM) as 

the method for processing time series data. The EEG data was divided into sequences, which were 

subsequently fed into LSTM. Their approach yielded substantial improvements compared to state-

of-the-art methods. Nakisa et al. (Nakisa et al., 2018) introduced a similar method for EEG emotion 

detection utilizing LSTM. Within their approach, the input to LSTM was the differential entropy 

of EEG recordings. They conducted a comparison with using alternative hyperparameter methods 

for optimizing and attained superior results, outperforming the alternatives.  

CNN have completely transformed the environment of image processing and artificial 

intelligence form the time of introduction (Lecun et al., 2015). At first, they employed for handling 

images and videos within the domain of computer vision. However, through subsequent research, 
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they are utilized in various fields, such as natural language and electrical brain waves. These types 

of networks are particularly effective at collecting locally correlated spatial features in the 

information.  

Convolutional layers, which make use of the convolution process, are the main component 

of CNNs. In order to extract feature maps, the following procedure involves a number of filters or 

kernels across the information that was provided. A hyperparameter called the stride determines 

the size of the output feature map. The first step in the feature extraction process of a CNN is to 

extract basic feature from the input data, which might include elements like edges or lines in an 

image. Following that, more advanced features are obtained as we delve deeper into the network, 

including faces, things, patterns and colors, and surfaces. The feature maps are employed to reduce 

the resolution by using pooling layers and algorithms like maximum or average pooling. 

Backpropagation is typically used to compute the loss and gradients in order to modify the weights 

for the filters and kernels. Additionally, a supervised technique is employed to train these 

networks.  

Typical CNN structure involve sequences of stacked convolutional layers, which are 

subsequently followed by layers for normalization and pooling. However, if implemented in a 

deeper network, numerous blocks would need to be stacked.  

The CNN comprises multi phases neural network that consisting of filtering and 

classification steps. The filtering phase is employed to extract features from input signals, while 

the classification process categorizes these extracted features. The network variables for both 

phases are acquired through simultaneous training. The filtering phase comprises three 

fundamental elements: convolutional layer, a pooling layer, and an activation layer, whereas the 

classification phase typically comprises of the fully connected layer. The four layers structure can 

be elucidated as follows:  

Convolutional layer: The convolutional layer applies convolution operations to 

localized area of the input signal using convolutional kernels to produce related features. The key 

characteristic of the convolutional layer is weight sharing, where a consistent convolutional kernel 

moves across the input with a defined stride. The relevant coefficient of the convolution kernel 

with the neuron within the rolling area of the convolution process are multiplied to calculate the 



19 
 

 
 

initial logits value. Once the convolution kernel is shifted incrementally, and the preceding 

operation is reiterated until the kernel has covered all sections of the input signal. 

Activation layer: Each convolution output's logits value is transformed non-linearly by the 

activation function. The role of the activation function is to turn the initial linear and inseparable 

multidimensional feature into a different space where its linear separability is improved. The 

sigmoid function, hyperbolic tangent function Tanh, and modified linear unit rectified linear unit 

(RELU) are among the regularly employed activation functions in neural networks.  

Pooling layer: With the main objective of lowering the neural network parameters, the 

pooling layer is used to reduce the size. Max and average pooling are two types of pooling 

functions. Mean pooling calculates the output value by taking the average of neurons within the 

receptive field, whereas maximum pooling determines the output value by selecting the highest 

value within the receptive field. 

Fully connected layer: The fully connected layer is responsible for categorizing the 

features that have been extracted during the filtering phases. In particular, the last pooling layer's 

output is initially transformed into a one-dimensional feature vector, which then serves as the input 

for the fully connected layer. The fully connected layer is constructed through complete 

connections between the input and output.         

CNN 

Even though the initial CNN was suggested about three decades ago, current CNN designs 

continue to have elements in common with the original, including the utilization of convolutional 

and pooling layers. Additionally, the widely used training approach known as back propagation 

has remained common since the 1990s. Firstly, the widespread use and variety of deep CNNs can 

be attributed to the subsequent benefits: 

CNN combines the processes of feature extraction and classification attributes into a 

unified learning framework, enabling direct extraction of features from the unprocessed input data 

through the training stage. Due to the sparse connections and weight sharing among CNN neurons, 

CNNs demonstrate superior computational efficiency when handling huge inputs compared to 

conventional fully connected multi-layer perceptron networks. CNNs exhibit resilience against 
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minor alternations in input data, resizes, distortions, and skewing. Moreover, varying input 

dimensions can be supported by CNNs. The input, output, and scalar weights of each neuron in a 

typical MLP are composed. In contrast, in a CNN, owing to the two-dimensional nature of images, 

every neuron comprises two-dimensional weight planes referred to as kernels, along with inputs 

and outputs called feature maps. 

1D convolutional neural networks 

The standard deep CNNs are constructed specifically to process 2D data, including photos 

and movies. On the other hand, recently, one-dimensional Convolutional Neural Networks (1D 

CNNs) have been constructed as an improved form of 2D CNNs. A 1D CNN has substantially less 

computational complexity than a 2D CNN. As 1D CNN is utilized in the compact configuration 

with a smaller number of hidden CNN layers and fewer parameters. So, shallow architectural 

networks are certainly simpler to train and execute. However, training a compact 1D CNN with 

only a few hidden layers is both possible and rather quick when using any CPU implementation. 

Because of their low processing demands, compact 1D CNNs are well-suited for real-time and 

cost-effective applications, especially on mobile or portable devices. 1D forward propagation (1D-

FP) is stated as follows in each CNN-layer (Equation (1)): 

   𝑥𝑘
𝑙 =  𝑏𝑘

𝑙 +  ∑ 𝑐𝑜𝑛𝑣1𝐷(𝑤𝑖𝑘
𝑙−1 , 𝑠𝑖

𝑙−1)
𝑁𝑙−1
𝑖=1                                                                              (1) 

Where 𝑥𝑘
𝑙  is represents the input, 𝑏𝑘

𝑙  represents the bias of the 𝑘𝑡ℎ neuron at layer l, 𝑠𝑖
𝑙−1 is 

the output of the 𝑖𝑡ℎ neuron at layer l-1, 𝑤𝑖𝑘
𝑙−1 represents the kernel from the 𝑖𝑡ℎneurons at layer l-

1 to the  𝑘𝑡ℎ neurons at layer l. 𝑐𝑜𝑛𝑣1𝐷(. , . ),‘in-valid’1D convolution is performed without zero-

padding. As a result, the size of the output array,𝑦𝑘
𝑙  is more than the size of the input array,𝑥𝑘

𝑙 . If 

the input 𝑥𝑘
𝑙  is passed via the activation function, f, the intermediary output, 𝑦𝑘

𝑙  can be represented 

as follows (Equation(2): 

   𝑦𝑘
𝑙 = 𝑓(𝑥𝑘

𝑙 )𝑎𝑛𝑑 𝑠𝑘
𝑙 =  𝑦𝑘

𝑙  ↓ 𝑠𝑠                                                                                      (2) 

𝑠𝑘
𝑙  represents the output of the 𝑘𝑡ℎneuron in layer, l and ↓ 𝑠𝑠 denote the down-sampling 

process using a scalar factor, and 𝑠𝑠. A concise summary of the back-propagation (BP) method is 

as follows. The process of error BP initiates from the output MLP layer. Consider the input layer 
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as l=1 and l=L as the output layer, 𝑁𝐿 as the amount of classes in the dataset, and its target and 

output vectors, given an input vector p, 𝑡𝑝and [𝑦1
𝐿 , … , 𝑦𝑁𝐿

𝐿 ]ˊ. As a result, in the input p's output 

layer, the mean-squared error (MSE), Ep, is stated as follows (Equation (3)): 

𝐸𝑝 = 𝑀𝑆𝐸 (𝑡𝑝 , [𝑦1
𝐿 , … , 𝑦𝑁𝐿

𝐿 ]ˊ) = ∑ (𝑦𝑖
𝐿 − 𝑡𝑖

𝑝)
𝑁𝐿
𝑖=1

2
                                                            (3) 

To determine  𝐸𝑝's derivative by each network parameter, the delta error, ∆𝑘
𝑙 =  

𝜕𝐸

𝜕𝑥𝑘
𝑙  needs 

to be calculated. To be more precise, when updating the bias of that particular neuron and adjusting 

the weights of the neurons in the preceding layer, you can apply the chain-rule of derivatives in 

the following manner (Equation (4)): 

 
𝜕𝐸

𝜕𝑤𝑖𝑘
𝑙−1 =  ∆𝑘

𝑙  𝑦𝑖
𝑙−1 𝑎𝑛𝑑 

𝜕𝐸

𝜕𝑏𝑘
𝑙 =  ∆𝑘

𝑙                                                                                         (4) 

Consequently, the normal (scalar) BP can be easily carried out as it is applied from the first 

MLP layer to the last CNN layer (Equation (5)). 

  
𝜕𝐸

𝜕𝑠𝑘
𝑙 =  ∆𝑠𝑘

𝑙 =  ∑
𝜕𝐸

𝜕𝑥𝑖
𝑙+1

𝑁𝑙+1
𝑖=1  

𝜕𝑥𝑖
𝑙+1

𝜕𝑠𝑘
𝑙 = ∑ ∆𝑘

𝑙+1 𝑤𝑘𝑖
𝑙𝑁𝑙+1

𝑖=1                                                            (5) 

After the initial back-propagation is carried out from the subsequent layer, l+1, to the 

present layer, l, the BP can subsequently be applied to the CNN layer's input delta, ∆𝑘
𝑙 . Consider 

the up-sampled map at zeroth order as: 𝑢𝑠𝑘
𝑙 = 𝑢𝑝 (𝑠𝑘

𝑙 ), In that case, the error delta can be 

represented as follows (Equation (6)): 

∆𝑘
𝑙 =  

𝜕𝐸

𝜕𝑦𝑘
𝑙  

𝜕𝑦𝑘
𝑙

𝜕𝑥𝑘
𝑙 =

𝜕𝐸

𝜕𝑢𝑠𝑘
𝑙  

𝜕𝑢𝑠𝑘
𝑙

𝜕𝑦𝑘
𝑙  𝑓 𝑥𝑘

𝑙́ =  𝑢𝑝 (∆𝑠𝑘
𝑙 )𝛽𝑓 ́ (𝑥𝑘

𝑙 )                                                        (6) 

Whereas 𝛽 = (𝑠𝑠)−1. The delta error's BP is subsequently calculated (∆𝑠𝑘
𝑙  ←  ∆𝑖

𝑙+1) can 

be stated as (Equation (7)): 

∆𝑠𝑘
𝑙 =  ∑ 𝑐𝑜𝑛𝑣1𝐷𝑧(∆𝑖

𝑙+1, 𝑟𝑒𝑣 (𝑤𝑘𝑖
𝑙 ))

𝑁𝑙+1
𝑖=1                                                                             (7) 
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As 𝑟𝑒𝑣(. ) is utilized for reversing the array, and  𝑐𝑜𝑛𝑣1𝐷𝑧(. , . ) is employed to produce 

full one-dimensional convolution with zero padding. Following is an example of how to express 

the weight and bias sensitivities (Equation (8)): 

              
𝜕𝐸

𝜕𝑤𝑖𝑘
𝑙 =  𝑐𝑜𝑛𝑣1𝐷 (𝑠𝑘

𝑙  , ∆𝑖
𝑙+1)𝑎𝑛𝑑 

𝜕𝐸

𝜕𝑏𝑘
𝑙 =  ∑ ∆𝑖

𝑙  (𝑛)𝑛                                                               (8) 

The learning factor may be used to update biases and weights by computing the weight and 

bias sensitivities, 휀 as (Equation (9)):  

    

Fuzzy 

Lotfi A. Zadeh introduced the notion of soft computing in 1981. He described soft 

computing as a multidisciplinary system that combines various domains, including fuzzy logic, 

neural networks, evolutionary computation, machine learning, and probabilistic reasoning. Soft 

computing emerges from the techniques designed for modeling and offers solutions real-world 

challenges that could be exceedingly complex for conventional methods to precisely represent.    

Soft Computing encompasses multiple computational techniques. It is a cooperation where 

each participant provides a unique approach to solving issues related to their specific fields. From 

this point of view, the main approaches within soft computing complement each other rather than 

compete (Zadeh, 1994). Additionally, soft computing can be seen as a key element of the 

developing area of conceptual intelligence. The two significant techniques include fuzzy logic and 

neural networks.  

Fuzzy logic, initially introduced by Zadeh in 1965, provides a generic approach to dealing 

with ambiguity and expressing the subjective understanding that is prevalent in the natural world. 

It employs logical operators to gather the information to approximate causes. Fuzzy logic encodes 

a form of information within digital computers using fuzzy sets, whereas a fuzzy inference system 

(FIS) is a computational framework founded on the principles of fuzzy sets, fuzzy if-then, and 

fuzzy reasoning. Fuzzy implication and the rule of interference composition are two principals that 
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connect to a set of fundamental linguistic concepts that form the base of FIS.  It has been effectively 

used in several real-world contexts, including engineering, economics, and more. Fuzzy logic 

provides a few benefits over other approaches: 

1. By using fuzzy functions for membership, fuzzy logic-based reasoning can be used to 

represent complicated and nonlinear systems. 

2. Fuzzy systems are comprehensible and assessable, and they can be constructed based on 

expertise or prior findings from experiments.      

3. Fuzzy systems can deal with data that is not certain because of its uncertain nature. 

Fuzzy Neural Networks 

Customized systems designed for individual datasets have become critical for efficiently 

integrating and managing massive volumes of data. Simultaneously, intelligent systems with high 

levels of efficiency in dealing with data-related issues include models of artificial neural networks. 

However, due to the difficulties in understanding their outputs as a result of their complicated 

internal workings, their black-box structure restricts their widespread adoption. Fuzzy systems rely 

on training data resources to detect pertinent features, enabling the development of expert systems, 

particularly rule-based ones.  

Fuzzy neural networks (FNNs), which merge the benefits of artificial neural network 

approaches with fuzzy systems, are neural networks that contain fuzzy neurons (Chin-Teng Lin et 

al., 1996). The harmonic combination of various methodologies enables the models to solve 

problems of diverse complexities and extract information for better decision-making. Fuzzy 

neurons are created by utilizing data through a fuzzification process. Fuzzy neurons with logical 

capabilities can carry out operations within hidden layers, while the model's output is handled by 

the artificial neural network. Fuzzy neural network have the capacity to generate fuzzy rules, which 

can aid in the development of expert systems (Pedrycz & Gomide, 2007). Hence, a fuzzy neural 

network comprises fuzzy neurons as its fundamental building blocks.  

Developing a neuro-fuzzy network model includes combining fuzzy rule structures with 

artificial neural network training definitions (such as recursive or incremental approaches). They 
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have a close connection to the environment they investigate, adjusting to its time-varying 

nature and processing non-stationary flow data. These models differ significantly from traditional 

neural network models in that they may merge the advantages of fuzzy inference systems with the 

training capability of ANN. Hence, the process of extracting knowledge may be valuable for other 

applications, meanwhile the model itself possesses enhamced and effective problem-solving 

capabilities. The input and output layers are the primary architectural components of fuzzy neural 

networks. The structure of hidden layers in these models is dependent on the level of capability in 

fuzzy inference systems or collections generated by neural networks. 

 The structure of FNNs can differ based on the model's complexity or the specific tasks they 

are designed to handle. These networks consist of distinct layers, each tasked with specific 

functions like fuzzification, combining rules, and trimming. The interaction among these layers 

adheres to the structure commonly seen in neural networks, and the training models are also 

influenced by ANN. The depiction of the structure in fuzzy neural networks stimulates the 

development of novel models in the literature. The most prevalent arrangement for a Feed-Forward 

Neural Network (FNN) architecture is for each layer of the model to have neurons with different 

levels of fuzziness. This setup facilitates the unidirectional transmission of signals throughout the 

entire network. Typically, neurons within a layer communicate only with neurons in the preceding 

and subsequent layers. Every layer could possess a distinct quantity and number of these fuzzy 

neurons, depending on the model. No matter how many layers a model has, the fuzzification and 

defuzzification process is usually performed by one of them. 

The concept of architecture in FNN promotes the advancement of novel models in the field 

of study. The most typical architectural arrangement for FNN is called feed-forward, where every 

layer of the model consists of fuzzy neurons, enabling a single-direction signal to progress through 

the entire network. Usually, just the neurons in the front and backward layers are able to 

communicate with those in a layer. The behavior and function of the fuzzy neurons, and the number 

of them in each layer, can differ from one model to another. Additionally, the total amount of 

layers varies. There are three layers in the majority of FNN models. Additionally, there exists a 

diverse array of models featuring four and five layers. The features such as layer aggregation or 

layer pruning of fuzzy neurons are generally tied to a number more than the three standard layers. 

Researchers can design models that suit their requirements due to the flexibility. The researcher 
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first decides how many layers he wants to use, which type of neurons he is going to use and which 

conditioning method seems to work the best. The last layer, for generating the final outputs, is 

placed as the very last layer in the model. Although anytime confuse up layers with the number of 

layers a model comprises, fuzzification and defuzzification get usually dealt by using a layer even 

if the model comprises multiple layers. This indicates that the provided data will be useful for the 

model to process and produce accurate results. 

Statement of the Problem 

To enable computers to comprehend and identify emotions, it’s essential to gain the origins 

of physiology and emotions in human body. Emotions are often represented by spoken language, 

for example, by using familiar words, or through non-verbal means, including variations in vocal 

intonation, expressions on the face, and physiological changes within human nervous system. 

Since expressions in the face and vocal tones can be manipulated or may not always reflect 

accurate an emotion, they are unreliable predicators of one's emotional state. The physiological 

signals are accurate to a greater extent since users cannot manipulate or influence them. 

The measurement of brain electrical activity using EEG is now widely recognized as 

standard technique. The electrodes are affixed to the participant's scalp in the non-invasive method 

of data collection. Since EEG signals are naturally low in intensity and responsive to interference 

from various internal and external sources, potential noise originating from the body of an 

individual or electrodes. The artifacts pertain to the noises or unwanted disturbances. During EEG 

recording, electrodes can inadvertently capture undesirable electrical signals like the 

electromyogram (EMG) from neck muscles and eye blinks.  

The proposed Fuzzy-CNN model can deal with unwanted noise in the dataset.   

Purpose of the study   

The aim of this study was to determine: 

1. We proposed a CFNN-based model for recognizing emotions from the EEG signals. The 

proposed model combines the advantages of both CNN and fuzzy logic in extracting 

beneficial features from dataset.   
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2. The two model versions are compared with different window sizes, one with a CNN and 

fuzzy layer and other without fuzzy logic, which confirms the superior performance of our 

approach. 

3. The efficiency of the model was evaluated by applying the DEAP dataset, based on 

accuracy and loss metrics.   

Significance of the Study 

In this study, the EEG signals for the first time employ as an input to the proposed model. 

The model presents an approach that uses layers of fuzzification and defuzzification transform 

flattened features into fuzzy numbers, which are subsequently converted to crisp value. This 

innovative approach not only boosts classification accuracy through the use of fuzzy neural 

networks but also acknowledges the potential richness of information within fuzzy sets, leading to 

enhanced accuracy. The model's proficiency in handling noise disruption further underscores its 

improved capabilities in the realms of detection and classification. Also, the research underscores 

the importance of employing Fast Fourier Transform (FFT) in order to extract features, elucidating 

how it enriches the classification model by extracting pertinent frequency-domain information 

from input signals, thereby augmenting its discriminative power. 

Limitations 

Studies on emotional recognition face a variety of difficulties, which are related to data 

collection methods, instruments, objectives, etc. The utilization of other datasets to validate the 

suggested methodologies is impeded by these variances, which result in diverse and unique 

datasets. The suggested model has not been applied to various datasets with varying. Features, and 

further research is needed to generalize the outcomes in real-time applications. 

Overview of the thesis 

The study aims to pioneer a novel approach by using signals as inputs for CFNN, enhancing 

emotion classification accuracy through the application of fuzzy neural networks, proficiently 

managing noise disruption, exploring the richness of information in fuzzy sets, and highlighting 
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the impact of Fast Fourier Transform (FFT) in improving the discriminative power of the 

classification model. A summary of the chapter’s contents is provided below:  

 Chapter I: It gives a summary of advancements in enhancing the precision of 

emotion recognition using CFNN models applied to EEG signals. The statement 

outlines the research problem, the study's objective, the significance of the research, 

and provides a general overview.  

 Chapter II: Discuss the relevant studies on emotion detection based on EEG signals 

in machine learning and deep learning. The theatrical framework and literature 

review is conducted.  

 Chapter III: Include the research methodology, provide details about the dataset, 

outline the pre-processing steps, the feature extraction process, the classification 

approach, and the theoretical explanation of the employed model. 

 Chapter IV: Presents an in-depth exploration of the design and implementation of 

the proposed modeling approaches. 

 Chapter V: Presents a comprehensive conclusion, offers recommendations based 

on the findings, and puts forth proposals for future research endeavors, extending 

the discussion into potential areas for further investigation and exploration. 

 Chapter VI: Examine and analyze the outcomes in comparison to earlier research 

findings. Engage in a discussion regarding the results concerning their alignment 

or divergence with prior studies. 
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CHAPTER II 

Literature Review 

 

This chapter presents the theoretical frame and related works in the emotion recognition 

by EEG signal.  

Related Research 

Owing to massive proportional advancement in the range of machine learning algorithms, 

Thejaswini et al. (2019) proposed an approach for detection of emotions. It was proposed and 

resulted in this paper that a dimensional model could be implemented on the DEAP and SEED-IV 

datasets in providing improved prediction results. DWT was employed at the suggested technique 

to extract statistical information of the signals, frequency content and entropy respectively. 

Furthermore, they addressed method for classification of signals using the Support Vector Machine 

(SVM). They managed to achieve an accuracy of 79% for DEAP dataset and 76% for SEED-IV 

dataset as a result of the modifications made. 

 Mohammadi et al. (2017) presented how DWT is used to extract features from the EEG 

data. For the real-time emotion recognition, they proposed the Arousal-Valence Dimension model 

and used DEAP dataset. SVM and KNN, two different classifiers in this research but SVM and 

KNN both have acceptable level of accuracy. Especially, gamma, which has a high rate frequency 

and degree of accuracy in the classification results compared to other frequency components. 

In the work described by Sarma & Barma (2021), they combined multivariate analysis with 

the aid of random matrix theory to find EEG regions with high emotional content. The most 

valuable advantage of this approach is that, when a certain segment is decided to be included, 

incorrect channels do not have to be erased, rather they are excluded, or the proper channels are 

selected. As a next step, PSD and CWT features extracted from the selected segments were further 

used to train and classify the data sets using KNN, SVM, and RF techniques on both DEAP and 

SEED databases. 

Practical objectives of preprocessing algorithms used in traditional methods for EEG 

emotion extraction are often aimed at identifying unique EEG characteristics from various 



29 
 

 
 

domains. Liu & Fu (Y. Liu & Fu, 2021), also conducted a study to diagnose a range of emotions 

using a technique called feature fusion which is the use of information from multiple sources 

simultaneously. To recognize emotions, they used the Support Vector Machine (SVM), and this 

study examined the properties of the EEG data in the temporal and frequency dimensions. They 

preferred the wavelet processing since it facilitated handling of the high dimensional EEG 

compound feature. To analyze the performance of this suggested model, DEAP dataset was used. 

It was done by following the work of Mi Li et al. (2018) that splitted the DEAP dataset 

into four different frequency ranges and to measure the effect of different frequency and the 

number of channels on accuracy. The entropy and energy for each band were then calculated and 

used as feature inputs for the K-nearest neighbours (KNN) classifier. The analysis also revealed 

the general trend sounded the gamma frequency band signal has the highest categorization 

accuracy, regardless of involving valence or arousal component. In addition, the study revealed 

that the gamma band play a role different from the low band in the context of recognizing the 

emotional conditions and rejected the hypothesis of the significance of the delta band for the 

recognition of the mentioned aspects with regard to valence and arousal. Furthermore, they 

mentioned how the inclusion of more channels of EEG might boost the accuracy with regard to 

feelings state classification. It should be noted that through the constant development of the 

approaches combined with the ideas of deep learning, the DL modules could substitute any or all 

of the components in the system stated above. There are many types of networks that have been 

developed which include the Convolutional neural Networks (CNN) as discussed in (Gliner et al., 

2021) and Long Short-Term Memory Networks (LSTM) developed by Hochreiter & Schmidhuber 

in 1997. There is existing research done in the field of emotion recognition using deep learning by 

Xiao and colleagues(Xiao et al., 2022) which proposed a CNN-based system for the same. To 

further analyze the characteristics of DE, EEG data were transformed in to the 4D format before 

obtaining its DE features. The next process involves using the CNN to extract spectral as well as 

spatial features throughout each temporal frame. Last, LSTM was applied for extracting basic 

features from the multiple segments, providing different weights for various Brain area and 

Frequency bands for unveiling the emotions of the segments. The proposed classification method 

was able to yield high classification accuracy. The study included using the data found in the 

DEAP and SEED databases. 
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To demonstrate the performance of the feature extraction methodologies mentioned above, 

and as per Cimtay & Ekmekcioglu (Cimtay & Ekmekcioglu, 2020), the researchers plan to employ 

CNN for accomplishing end-to-end emotion categorization. To also increase the accuracy in 

classification they had to enhance the model being used in this study by including more layers. 

The required preprocessing steps also involved the employment of a median filter to refine 

internally wrong detections within an emotionally predicted time slot to enhance the classification 

performance. In this connection, in the three datasets that Whitten and his team worked on, they 

achieved accuracy levels of 72. With the complexity of the DEAP dataset, the accuracy is 81 

percent while with the complexity of the using dataset the accuracy is 81 percent as well. Were 

78% for the LEXIS dataset, 79% for the LEXUS dataset, and 8% for the LUMED dataset, and 

86.19% on the SEED dataset, while the suggested approach gained a mean accuracy of 56%. 

In addition, the researchers adopted three different methods of data collection and 

integration, which include (Zali-Vargahan et al., 2023) . They also stated that the proposed FaDFR 

method establishing minimized profound time-frequency attributes from EEG recordings based on 

the Inception-V3 CNN for high attributes learning and support vector machine (SVM) for pattern 

categorization offered the best solutions. For the DEAP database, accuracy rates of 88% were 

attained. For the ORL dataset, the results were 6% and 94.60.83%, and for the SEED dataset, 58%. 

The study of Gao et al. (2020) discussed the creation of a technique for nonlinear 

estimations and for feature extraction from the frequency bands for recognizing the emotions 

embedded in the EEG information. This was made possible by a convolutional network that 

entailed an integration of multiple channels of information. The model adopted a 1D convolutional 

layer that measured spatial dependencies of the electrodes and weighted linear combinations from 

contextual information including the features of DEAP and SEED datasets. It was designed to 

filter out a large amount of artifacts from real-world EEG data while modeling time dependence 

and electrical interactions among sensors.  

A different method for emotion detection was presented in a recent work described in (Xing 

et al., 2019), which used multichannel EEG data as a basis. To make the accuracy of emotion 

categorization, the method combined a linear EEG model with a model of emotion timing. This 

improvement made it easier to understand EEG data accurately in relation to other cases. 
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Techniques such as signal structuring, Hanning window, and power spectral density utilized to 

gain attributes from the dataset. Using the DEAP dataset, classification accuracy rates were 

81.10% for valence and 74.38% for arousal. 

A hybrid model that merges CNN-LSTM was designed to provide a deep learning 

framework designed especially for feeling detection in an individual study (Tao et al., 2020). The 

DEAP and DREAMER datasets were utilized in the implementation of this model. The goal was 

to examine into spatial information by utilizing CNN and channel-wise attention procedures. 

Moreover, the ACRNN (Attention-based Convolutional Recurrent Neural Network) method 

integrated an increased form of self-attention with RNNF (Recurrent Neural Network Fusion) to 

assess the temporal properties present in EEG data. 

Different frequencies were extracted from the EEG data in the study by Iyer et al. (2023) 

using differential entropy (DE). Following feature processing, these features were fed into the 

CNN-LSTM models. By fusing sub-blocks from the CNN and LSTM algorithms, the fused model 

was developed.  They achieved accuracy rates of 65% on the DEAP database and 97.16% on the 

SEED database. 

An innovative technique for classifying multi-spectral topographical pictures created from 

EEG data was introduced by the study conducted by Ozdemir et al. (2021). For feature extraction, 

LSTM was used to collect temporal properties within the time span. These multi-spectral 

topography pictures were created using the electrode locations and EEG signal frequency bands 

from the DEAP database. The spatial, temporal, and spectral EEG data were successfully 

maintained in these pictures, making them useful for study. The results of this investigation 

showed impressive accuracy rates of 86.13% for valence and 90.62% for arousal classifications. 

In order to provide a straightforward way of automatically identifying emotions using 

temporal features, a parallel CNN-LSTM architecture was developed (Ramzan & Dawn, 2021). 

To accomplish the recognition of both positive and negative emotions, this recently proposed 

model was applied to the DEAP and SEED datasets.  

The autoencoder is a popular nonlinear approach for dimensionality reduction. Unlike 

CNNs, which have localized structures, and LSTM networks, which lack important memory 
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retention capacities, attention mechanisms allow for the modeling of relationships across distant 

points in a sequence. Two fundamental components make up a recently created deep learning 

architecture (Arjun et al., 2022) intended for applications that are independent of the subject. 

Firstly, it was suggested to use LSTM in conjunction through a channel-attention autoencoder to 

generate subject-independent implicit variables subspaces for specific subjects. Secondly, a CNN 

integrated with an attention mechanism designed to do subject-independent emotion identification, 

getting from the previous phase. This approach has been assessed on the DEAP, SEED, and CHB-

MIT database. 

In different study (Algarni et al., 2022), an approach was used to enhance accuracy and 

performance in recognizing emotions, especially by applying a stacked Bidirectional Long Short-

Term Memory (Bi-LSTM) model on the DEAP dataset. In order to reduce the learning and 

generalization phases of the model and limit the possibility of overfitting, feature extraction 

method were employed. By extracting statistical, wavelet-based, and Hurst exponent-based 

information, the model's effectiveness was improved. The BGWO (Binary Grey Wolf 

Optimization) approach was used to address the dataset's complexity and high dimensionality, 

leading to a decrease in identifying time and an enhancement in framework efficacy. 

A combined recurrent neural network with highly linked layers was suggested by the 

researchers in the study that was presented (Garg et al., 2019). The model utilized advanced 

techniques for deep learning involving dropouts, LSTM cells, and the Rectified Linear Unit 

(ReLU) activation function to impede potential data overfitting. Furthermore, problems with 

vanishing gradients and short-term memory were effectively solved by the implementation of the 

model. On the DEAP dataset, the model involved a wavelet transform for feature extraction as 

well as statistical measurements, and a merged LSTM for classification was used. 

The difficulty of combining models within the framework of deep learning has been 

investigated by the researchers (Yin et al., 2021). Graph convolutional neural networks (GCNNs) 

have been employed in a model that fuses to extract features from the graph-based domain. The 

extraction of temporal characteristics was made easier by the use of LSTM cells, which were also 

used to recognize how the correlations between pairs of EEG channels changed over time. Then, 

using the extracted features as a basis emotion, a dense layer was used to conduct emotion 
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classification. The results demonstrated the suggested approach's higher classification 

performance on the DEAP dataset when compared to other approaches. To give weight to 

emotional states that appear at certain moments, an attention weight mechanism was designed. 

This technique assisted in determining the most significant input component, increasing its 

relevance during network training as its importance arose. 

In order to evaluate the DEAP dataset, Y. Kim & Choi, (2020), presented a hierarchical 

strategy combining CNN and LSTM models with an attention mechanism.  The methodology 

involved a direct end-to-end classification of emotions without the need for signal feature 

extraction. According to the evaluation of this method, there was less information loss than is 

generally seen throughout the feature extraction procedure. 

The strategy described in (H. Yang et al., 2019) offers a significant reduction in this impact 

given that the dynamic nature of EEG data impacts decision-making. This approach relies on 

weighted voting to arrive at the final decision. Yang presented a multi-column CNN structure for 

EEG-based emotion recognition. Each model component is designed as a CNN-based emotion 

detection module with fully linked layers, convolutional operations, and pooling. The DEAP 

dataset is utilized as the model's input dataset. 

A novel method for classifying emotional characteristics using EEG recordings was 

presented in (Mu Li & Member, 2009). This study's main goal was to produce automated fuzzy 

classification rules based on EEG data. The suggested method employed Fuzzy C-Means (FCM) 

clustering to generate a collection of guidelines derived from the EEG recordings. Significant 

improvements in computing efficiency were made by utilizing the suggested fuzzy emotion 

classifier and the related extraction method. This is due to its rule-building and data-driven learning 

methodology. The three-dimensional human emotion models show that the FCFCM technique is 

applicable across all of their dimensions. The results showed that the technique performed more 

accurately than that of Support Vector Machines (SVM) and fuzzy classification applying 

predetermined parameters, reaching accuracy rates of 55.77%, 49.62%, and 54%, respectively. 

Using a variety of methods and techniques, the proposed framework is designed to provide 

a more comprehensive and accurate comprehension of the emotions. The suggested approach uses 
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signals as the first inputs for a convolutional neural network (CFNN). It consists of a layer that 

converts flattened features from the convolutional layer into fuzzy quantities, or fuzzification, and 

a subsequent layer that defuzzifies fuzzy sets into crisp values. Fuzzy neural networks, which can 

generate both exact and fuzzy values, are used in the proposed method to improve classification 

accuracy. It implies that fuzzy sets might have more information, which would increase accuracy. 

Furthermore, the approach excels at controlling data disturbance caused by noise. 
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CHAPTER III 

Methodology 

 

This chapter includes details on dataset, modelling methods, analysis approaches.  

Method 

The algorithm for emotion recognition from EEG signals is provided in Figure 1. After 

collecting the dataset, the raw data was preprocessed. Following it, the important features were 

extracted from the data. And the future extracted vectors are input to the proposed model for 

classification and detection of emotion. 

Figure 5.  

The flowchart of emotion recognition through EEG signal. 

 

Dataset 

 

In our research, we examined a highly advanced DEAP dataset (Koelstra et al., n.d.) which 

is widely recognized as a benchmark and used dataset for evaluating feeling detection. The DEAP 

database allows us to evaluate the accuracy of the gained attributes and the effectiveness of the 

algorithm we have proposed.  

The database includes 32 participants, evenly split between males and females, who viewed 

40 different videos designed to elicit various emotional responses. EEG data was collected from 

the subjects using the Biosemi ActiveTwo device while they watched the clips. After each video, 
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the participants used a survey according the Likert scale that ranged from 1 (which is low) to 9 

(higher) to report their levels of arousal, valence, dominance, liking, and familiarity. To ensure the 

precision and dependability of the outcomes, the research was verified by one dataset, primarily 

because there were sufficient findings available for every participants in the feeling recognition 

methodology.  

The DEAP database has been pre-processed and is readily available to researchers for their 

utilization. This dataset employs clip videos as stimuli to induce emotional responses. The signals 

were originally recorded at 512 Hz and then resampled to 128 Hz. In this study, the methodology 

used comprises a 2D emotional model that encompasses valence and arousal. Valence qualifies 

the positivity or negativity of an emotion, while arousal signifies the intensity of associated 

emotions, including the level of excitement or indifference. Figure 3.2 depicts the general 

representation of the DEAP dataset.  

Figure 6.  

Descriptive overview of the DEAP dataset. 
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Proposed Method 

The proposed approach involved a sequence of steps, starting with noise and artifact 

reduction in the pre-processing stage, following by feature extraction to acquire relevant training 

data, and enhancement of the CFNN for emotion classification. Figure 3.3 provides a concise 

overview of the proposed model.  

Figure 7.  

Descriptive overview of the DEAP dataset. 

 

  

Pre-processing and Feature Extraction 

Despite the fact that the DEAP database was made available in a pre-processed form of its 

original EEG recordings, it still contains unwanted artifacts and various noises that have the 

potential to interfere with the analysis. In this research, the experiments involved the use of EEG 

signals from 32 individuals who watched 40 videos within the DEAP dataset, collected through 

32 channels. These EEG recordings were initially down-sampled to 128 Hz to capture precise 

information within the frequency range of 0-48 HZ (Koelstra et al., n.d.). The down-sampled EEG 
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data was cleansed, and additional component in the signal, like slow wave patterns, were extracted 

from the analysis through the application of a bandpass filter. 

Among the fundamental but complex aspects of human feeling detection, which varies with 

changing emotional states, is the identification of suitable features and characteristics (Wagh & 

Vasanth, 2019). The effectiveness of the detection of feelings is significantly impacted according 

to how well-made the attributes, understanding the significance of extracting attributes that exhibit 

a strong correlation with emotions and provide a precise and reliable representation as a central 

element of emotion recognition (Jianhua Zhang et al., 2020). Feature extraction is a method that 

may reduce the number of dimensions in the attribute area by either pinpointing the best attributes 

for categorization identification from a large dataset of attributes information or by creating a set 

of few but highly accurate attributes possessing a remarkable low likelihood of categorization 

error. Every attributes obtained from a signal offers distinct insights into the data and characterizes 

the behavior of signals. Extracting features method aims to present an algorithm with less attributes 

while maintaining higher accuracy (H. Liu et al., 2021).  

A widely employed signal processing method for transforming time based  signals into 

frequency based signals is Fourier analysis (Murugappan, 2013). In this study, Fourier 

transformations are utilized to decompose the EEG signal into its constituent frequency 

components (Nandini et al., 2023). The Fast Fourier Transform (FFT) method, which computes 

the Discrete Fourier Transform (DFT) of a sequence, is a commonly employed technique for 

calculating the Fourier Transform. It produces identical results to directly assessing the DFT 

description, but it is considerably more rapid. The equation for the DFT is provided in Equation 

(10).  

                𝑋𝑘 =  ∑ 𝑥𝑖(𝑛)𝑒
−𝑗2𝜋𝑖𝑘

𝑁𝑁−1
𝑖=0           𝑓𝑜𝑟 𝑘 = 0,1,2 … 𝑁 − 1                                                        

(10) 

𝑋𝑘 represent the discrete Fourier coefficient, N stands for the size of the available data, and 

𝑥𝑖(𝑛) is the temporal domain of the incoming data (Singh & Singh, 2014). By transforming the 

signal function into the frequency range using Equation (FFT), one can establish the fraction of a 

signal's frequency elements that could be insufficiently determinable in the time domain. (Akter et 

al., 2022).  
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In this research, the FFT is employed to process data from the original EEG database, 

taking into account the window size. For each of the patients, all raw values from the 40 electrodes 

in the DEAP dataset are uploaded at first. Afterward, the chosen 14 electrodes of EEG recordings 

are collectively shown. Ultimately, the visual depiction of every 14 EEG recordings channel is 

exhibited throughout the subsequent stage. In the fourth phase, employing five distinct power 

bands, the FFT procedure showed how the signal from every single channel was transformed into 

a frequency domain. As demonstrated by Table 1, an overall of 14 channels have been chosen for 

this study. The final phase reveals the unified frequency domain of these 14 channels. Following 

the gaining attributes procedure, the extracted attributes were input into the proposed model for 

the purpose of classification. 

Table 1.  

Parameterized FFT explanation 

 

The Proposed Convolutional Fuzzy Neural Network Model 

Convolutional Neural Network 

CNN plays a major role in the deep learning field, serving as a highly potent technique for 

image analysis. Its strength lies in extracting features within its convolutional layers and 

subsequently categorizing these attributes in the fully-connected layer. The utilization of one-

dimensional CNN (1D-CNN) has become notably valuable in feature extraction based on time 

series information and establishing resilient estimates (Zamani & Wulansari, 2021). This has 

propelled 1D-CNN as a favored method for scrutinizing sequential data, notably EEG signals. 
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Before implementing the fuzzification process, we utilized 1D-CNN to gain the attributes from 

EEG recording and forecast features.  

 

Fuzzy Neural Network 

The Fuzzy Neural Network, combining the advantageous aspects of both fuzzy logic and 

neural networks, stands as a fundamental technique for intelligent information processing (Gai & 

Hu, 2018). Therefore, the technique of fuzzy neural networks holds substantial potential for both 

autonomous analyzing information via self-learning and effective illustration for architectural 

details. A system employing a numerous inputs fuzzy neural network assesses each input 

component based on its membership in various fuzzy sets. Consequently, an input to the system 

generates a fuzzy output rather than a crisp value. Subsequently, the system can execute fuzzy 

inference by applying pre-established fuzzy rules.  

The design of the FNN incorporates fuzzy rules formulated in the "If-then" structure, as 

depicted in Equation (11): 

               𝑃𝑗 = 𝐼𝐹 𝑢1 𝑖𝑠 𝑃1𝑗 … ∧ 𝑢𝑛 𝑖𝑠 𝑃𝑛𝑗  , 𝑇𝐻𝐸𝑁 𝑦𝑗 =  𝑤𝑗                                                                 

(11) 

In this context, 𝑃𝑗 signifies a fuzzy rule, 𝑃𝑖𝑗  signifies fuzzy sets, and 𝑤𝑗 refers to a zero-

order Takagi-Sugeno-Kang weight. The description of the fuzzy set 𝑃𝑖𝑗 , incorporating a Gaussian 

membership function, is represented in Equation (12):  

               𝑃𝑖𝑗 = 𝑒𝑥𝑝 {
−(𝑢1− 𝑚𝑖𝑗)

2𝜎𝑖𝑗
2 }                                                                                                 

(12) 

Where the function exp (.) denotes the exponential function, while 𝑚𝑖𝑗 and 𝜎𝑖𝑗  represent 

the mean and standard deviation of the fuzzy set 𝑃𝑖𝑗, respectively. 

The CFNN model represent a neural network framework that fuses elements of fuzzy logic 

with the principle of CNN. It has been specifically designed for processing data that includes 

uncertain or fuzzy values. The structure we suggested integrates the CNN's extracted features with 
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the fuzzy processing capabilities of the FNN. This approach combines the advantages of both 

network design.  

The approach of adding a fuzzy layer is described as fuzzification which converts the input 

matrix into the fuzzy layer. This transformation allows for the extraction of high-dimensional 

features through a convolutional representation of the outcome. Subsequent to passing through the 

fuzzification process, the converted features become crisp values. The CNN model is enhanced 

with an extra defuzzy layer and the process commonly referred to as defuzzification. The fully 

connected layer received information from the defuzzy layer and performed the classification. The 

estimation of the fuzzy set is conducted following the provided Equations (). Assuming X is the 

input matrix. The equations (13-14) illustrate the probabilities of the each element present in the 

domain of fuzzy numbers.  

               �̂�= Fuzzification (𝑋𝑖,𝑗 | 𝑐𝑥𝑖,𝑗)                                                                                         (13) 

 

               𝑥𝑖,𝑗 = 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥𝑖,𝑗 |𝑀𝐹𝑖,𝑗) = 𝑚𝑎𝑥 𝑀𝐹𝑖,𝑗 𝛿(𝑥 − 𝑥𝑖,𝑗)                                            (14) 

 

In this context, 'i' and 'j' correspond to the indices of the elements within the input matrix 

X, while 'cx' stands for the central value of the input fuzzy membership function. The expression 

𝛿(𝑥 − 𝑥𝑖,𝑗) denotes the Kronecker delta function. The defuzzification process determines the crisp 

value 𝜈𝑖 in accordance with Equations (15-16). The fully connected layer is used as last classifier 

by receiving the crisp result value from the defuzzification process.  

              𝜈𝑖 = 𝑑𝑒𝑓𝑢𝑧𝑧𝑦 (𝑥𝑖) =  
∑ 𝐶𝑦  𝑥𝑖

∑ 𝑥𝑖
                                                                                          (15) 

              𝑦𝑖 =  𝑊𝑓𝑐 𝜈𝑖                                                                                                                     (16) 

𝐶𝑦  signify the main component of the defuzzification membership function, while the 

weight allocated to the fully connected layer is designed as 𝑊𝑓𝑐 . The  layer called pooling comes 

after the feature extraction procedure. It represent statistical data from adjacent to results in a brief 

way. This stage improves the representation, ensuring it remains consistent even with input shifts, 

and it can potentially reduce the input dimensions for the subsequent fuzzy convolutional layer.  

 𝑦𝑖𝑗 =  𝜎 (𝑥𝑖𝑗)                                                                                                                    (17) 
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While 𝜎 (. ) denotes the activation function of the convolution layer (Equation (17)). 

Calculating the output probability for classification uses the softmax function. The softmax 

equations are presented as follows in Equation (18): 

𝑦𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑑𝑖) = 𝑓(𝑑𝑖)                                                                                              (18) 

The loss function layer assesses the cost or penalty associated with what is expected and 

the actual data labels. Many loss function are available, each suitable for a certain need. The 

backpropagation technique is employed when a loss function detects a substantial divergence and 

produces an error. CNN efficiently lowers dimensionality without losing details, while at the same 

time, fuzzy logic improves data consolidation by eliminating noise. The integration helps identify 

key data features and controls the large variance of the data. The convolutional layers are created 

to acquire and extract significant features from the input training data. The result of the 

convolutional layers is combined with fully connected layers, which extract the feature data. 

Contrary to fuzzy neural networks, which have feature maps that contain fuzziness or uncertainty, 

conventional neural networks' feature maps are made of crisp values for each pixel.  

The method we employed involved merging a fuzzy neural network with a convolutional 

neural network. Figure 3 illustrates the architecture of the convolutional fuzzy neural network. The 

model comprises a total of 9 layers, which encompass 2 Conv 1D layers, 1 max pooling layer, 1 

flatten layer, a fuzzy layer, a batch normalization layer, a dense layer, a defuzzy layer, and dense 

layers concluding with a softmax output layer.  
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Figure 8.  

Architecture of CFNN model 

 

Figure 3.4 illustrates the overall configuration of the proposed CFNN model, while Table 

2 provides an extensive breakdown of the parameters and layers within this model. 
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 Table 2.  

Comprehensive details regarding the layers of the suggested model 

 

 The feature extraction part consists of both conventional and max pooling layers. 

Additionally, a FNN is employed for classification, functioning similarly to a fully connected 

layer. The FNN provides the feature information from each fuzzy map. Fuzzy maps are maps that 

have a fuzzy set membership function. To merge the feature data, a fuzzy neural network with 

partially connected layers was utilized.  
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Figure 9. 

The configuration of the suggested Convolutional Fuzzy Neural Network. 

 

In the suggested method, following the extraction of features, the signals are fed into the 

model, passing through a CONV1D. CNNs are tasked with extracting essential features from the 

data in order to provide precise predictions. The framework employs two CNN layers. After 

applying the CNN kernel, the outcomes are forwarded to a max-pooling layer, which selects 

relevant features and speeds up calculations. This approach provides savings in time required for 

computation as well. The final result is flattened and subsequently transmitted to the fuzzification 

layer. Figure 3.5 is depicted the structure of the proposed model. 

The Fuzzy layer takes the input and carries out operations based on the fuzzy rule applied 

to the flattened outputs. The fuzzy rule neurons absorb the fuzzification neurons. Within this layer, 

the weight of each rule is evaluated, resulting in an output derived from the input signal. The output 

from this layer is transmitted to the normalized layer. The final layer, known as the defuzzification 

layer, produces the crisp output from the CNN combined with the fuzzy layer. The result is hen 

sent to the softmax layer to be classified as valence and arousal in the following phase. The 

flowchart for training the CFNN model is shown in Figure 3.6 Training dataset X and associated 
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labels Y are the input's components. Furthermore, it includes parameters such as batch size (B), 

dropout rate, the number of training epochs (N), and the quantity of convolutional layers (L). 

Figure 10. 

The configuration of the suggested Convolutional Fuzzy Neural Network. 
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CHAPTER IV 

Findings and Discussion 

This chapter provides an overview of the outcomes achieved through the application of the 

proposed model. 

Measurement of the model 

 The proposed approach was executed on a personal computer equipped with an Intel (R) 

Core (TM) i5-5200U CPU running at 2.20GHz, 64GB of RAM, and an NVIDIA GeForce 840M 

graphics card. The model was deployed in Google Colaboratory, a hosted Jupyter Notebook 

service. The Python version utilized was 3.10.12, and the TensorFlow version employed was 

2.12.0.   

The categorization process involves two main stages: training and testing, during which 

the classification takes place. The training and testing sizes were set at 75% for training and 25% 

for testing to ensure accuracy. The training data has dimensions of 32×32×40×8064, while the 

training labels are of size 32×32×4. Similarly, the test data is sized at 32×8×40×8064, and the test 

labels have dimensions of 32×8×4. 

The model's real performance, however, might be confusing because accuracy is shown 

without precision. Equation (19) represents the measurement of accuracy. 

   Accuracy= 
𝑇𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)+𝑇𝑁(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

𝑇𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)+𝐹𝑃(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)+𝑇𝑁(𝑇𝑟𝑢𝑒 𝑁𝑒𝑎𝑡𝑖𝑣𝑒𝑠)+𝐹𝑁(𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
   (19) 

      FP stands for the count of incorrectly classifying low states, FN represents the count of 

incorrectly classifying high states, and TP signifies the count of accurately determining arousal 

and preference for low-state samples using the classification method. 

Precision and recall serve as valuable metrics for evaluating prediction accuracy in 

situations where there is a significant class unbalance. Recall assesses the overall count of relevant 

outcomes, whereas in information retrieval, precision signifies the relevance and significance of 

the results (Equation (20)).  
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Precision=
𝑇𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

𝑇𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)+(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)ʹ 
                                                                   (20) 

Recall is also described by Equation (21): 

Recall=
𝑇𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

𝑇𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)+(𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)ʹ
                                                                       (21) 

The F-score, a metric that combines both recall and classification accuracy, is calculated 

as per Equation (22): 

F1 Score= 
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                                                          (22) 

Equation (13) is the formula used to determine the cross-entropy loss for the 

classification of multiple classes: 

 𝑙𝑜𝑠𝑠 =  − ∑ 𝑦𝑖 . log 𝑦�́�
𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒
𝑖=1                                                                                     (23) 

𝑦�́� is a single numeric value, 𝑦𝑖  represents the intended target value, and the output size 

corresponds to the overall number of values in the model's output.  

Results 

Besides the enhanced FCNN approach proposed, we conducted training for SVM, KNN, 

1D-CNN, and Bi-LSTM for binary emotion classification (arousal and valence) to offer a 

comparable analysis. Using 75% of the obtained feature data as training data and setting reserve 

25% for testing, all algorithms were trained. The proposed algorithm was configured with a 

learning rate of 0.01, a batch size of 256, and utilized the Adam optimizer. Following 100 epochs, 

the training process eventually came to an end. 

Several training and testing ratios were employed, including 90-10%, 80-20%, and 75-

25%. The FFT window width varied from 4 to 128 and was doubled in each trial. To ensure reliable 

findings, a 5-fold cross-validation analysis was conducted on the suggested model in addition to 

the hold-out tests.  
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During training using various training and testing ratios, the most elevated accuracy, F1-

score, and precision emerged from the 5-fold cross-validation experiments (K=5), where all data 

were segregated into distinct training and testing folds. The top recall and second-best scores in 

other metrics were attained with a 75:25 training and testing ratio. None of the other hold-out ratios 

surpassed the scores achieved in the K=5 setting. To expedite analyses and reduce training time 

based on these findings, the subsequent experiments were conducted using a 75:25 hold-out ratio. 

Table 3 outlines the outcomes from both the hold-out and K=5 experiments. 

Table 3.  

Evaluation of efficiency of the suggested CFNN with different train/test splits. 

 

Training the suggested model with various window sizes (4, 8, 16, 32, 64, 128) resulted in 

varying detection rates. The fluctuations posed challenges in determining the most effective and 

informative window size; nevertheless, it's important to highlight that window sizes of 4 and 8 

might not be optimal for emotion classification. Table 4 showcases the outcomes yielded by the 

suggested algorithm utilizing diverse window lengths. 
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Table 4. 

The suggested CFNN's effectiveness with various window sizes. 

 

With a window width of 32 and a training and testing proportion of 75:25, the suggested 

CFNN model produced F1 scores of 98.39 for valence and 97.93 for arousal after the hold-out and 

window length trials. With merging approaches, this model demonstrated improved classification 

performance, averaging 98% accuracy. Fuzzy logic's capacity to replicate human thought 

processes may be responsible for the enhanced efficiency. By periodically adjusting the weights, 

it mitigated overfitting and produced optimal results. Table 5 displays the accuracy, precision, 

recall, and F1-score outcomes for valence and arousal obtained by the proposed model using the 

DEAP database. 

Table 5. 

Effects (in 75–25%) of the suggested CFNN approach on the DEAP database. 

 

Among the comparative methods examined, it was evident that SVM and KNN did not 

accurately classify emotions utilizing the gained attributes. SVM yielded 55% and 54% accuracy 

for valence and arousal, whereas KNN achieved 61.00% and 60.00%, respectively. Although the 

Bidirectional-LSTM improved recognition rates with 72.01% for valence and 70.42% for arousal, 
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it did not surpass the performance of 1D-CNN. From these methods, 1D-CNN delivered notable 

outcomes (88.87% for valence and 83.35% for arousal). Nonetheless, the proposed method 

obtained optimal results, reaching 98.21% and 98.08%, respectively. Table 6 illustrates the results 

garnered from the comparative study with state-of-the-art methods, while Figure 4.1 provides a 

visual representation of these outcomes. 

Table 6. 

Results of comparing the suggested CFNN method with state-of-the-art techniques 

 

Figure 11.  

Graphical visualization of comparison results. 
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Figures 4.2 and 4.3 depict the improvement in loss and accuracy when combining CNN 

and fuzzy logic. Since the CFNN model demonstrated improved handling of noisy data, it resulted 

in a decrease in disruptions caused by noise during the classification process. 

Figure 12.   

Model test and train graph: (a) Accuracy graph of model in valence; (b) Loss graph of model in 

valence 

 

 

(a) (b) 
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Figure 13.  

Model test and train graph: (a) Accuracy graph of model in arousal; (b) Loss graph of model in 

arousal 

 

 

 

(a) (b) 

Although the suggested model attained outstanding accuracy, it's possible that extending 

the training dataset could impact the model's efficiency. Understanding the model's performance 

over various training sizes is crucial. Table 7 illustrates an instance of experimenting with diverse 

partitioning schemes for training and testing, stating the durations for both training and testing in 

each split. In addition, the suggested model was tested for 5-fold cross-validation. Wall time 

represents the elapsed time between the initiation and completion of a particular process, as 

indicated by a wall clock or a handheld stopwatch. The time spent executing user code is referred 

to as "user-CPU time," whereas the time spent executing kernel code is referred to as "system-

CPU time." Among the options for splitting the training and testing data, the 75-25 division yielded 

the highest test accuracy, reaching 97.24%.  
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Table 7.  

Performance report for varying train/test splits. 
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CHAPTER V 

Discussion 

This chapter extensively discusses the study findings, comparing them with existing 

literature. We thoroughly explore how deep learning modeling approaches, along with pre-

processing and relevant methodologies, impact the detection abilities of the models. 

Discussion 

In a recent study by Al-Nafjan et al., they employed Power Spectral Density (PSD) as the 

feature extraction technique and utilized Deep Neural Networks (DNN) for classification purposes. 

Their results demonstrated an accuracy of 82% for both valence and arousal categories, 

showcasing the potential of this method in emotional classification (Al-Nafjan et al., 2017).  

Alhagry et al.  used LSTM to extract features from the signals. Their findings revealed 

impressive accuracy levels, recording 85.45% for valence and 85.65% for arousal. This approach 

highlights the efficacy of LSTM in understanding emotional nuances captured in the signals 

(Alhagry et al., 2017). 

Xing and colleagues in their research, referenced as Xing et al., utilized a combination of 

SAE and LSTM-RNN to address the issue of linear EEG signals. Through their approach, they 

achieved accuracies of 81.10% for valence and 74.38% for arousal. This technique proved 

effective in mitigating the challenges associated with these EEG signals, showing promising 

results in both valence and arousal recognition (Xing et al., 2019). 

Iyer and colleagues, in their study, introduced a hybrid model integrating CNN and LSTM. 

Their model utilized DE (Differential Evolution) for feature extraction, resulting in an achieved 

accuracy of 65%. This approach, combining convolutional CNN with long short-term memory 

LSTM, and employing DE for feature extraction, demonstrated a noteworthy 65% accuracy (Iyer 

et al., 2022).  

Sharma and colleagues conducted an investigation into emotion classification, specifically 

focusing on valence and arousal. Their methodology involved utilizing PSD for feature extraction. 

Through the implementation of CNN and LSTM models, their results revealed significant accuracy 
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percentages. For valence, the CNN model achieved an 85.23% accuracy, while the LSTM model 

surpassed this with an 87.68% accuracy. Similarly, for arousal, the CNN and LSTM models 

achieved 86.50% and 87.98% accuracy, respectively (Sharma & Meena, 2023).  

In a highly impactful study, Singh and colleagues, referenced as Singh et al. [49], crafted 

a classification model employing a combination of CNN 1D and Bi-LSTM. Their model yielded 

remarkable results, achieving an accuracy of 92.29% in one class and 90.33% in another (Singh & 

Singh, 2014).  

Yang et al.'s exploration introduced a multi-column structure within their CNN-based 

model, showcasing a method designed for heightened accuracy in assessing emotional states. Their 

achieved accuracies, notably high in both valence and arousal, highlight the effectiveness of their 

approach. This emphasizes the potential of their multi-column structure as a pivotal enhancement 

in CNN-based models, illustrating its capacity to discern and differentiate nuances in emotional 

data for both valence and arousal classifications (H. Yang et al., 2019). 

The intricacy of signals and the diverse array of pre-processing techniques and classifiers 

yield inconsistent outcomes in emotion recognition. Our study took a unique approach: 

transforming the features extracted from the flattened layer into fuzzy values using adjustable 

parameters and employing defuzzification. This method enriched the representational quality of 

the features, enhancing the model's recognition capacity significantly. Notably, our proposed 

technique outperformed recent studies by 6%-17%. Table 8 delineates a comparative analysis 

between our method and recent studies utilizing the same dataset, highlighting the superior 

performance of our approach. 
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Table 8. 

Comparison between our classification result and the findings of prior research. 
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Figure 14.  

Comparisons between our results with the results of previous models 
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CHAPTER VI 

Conclusion and Recommendations 

 

This chapter emphasizes the conclusions drawn from the study and further explores 

recommendations for future work. 

Conclusion 

Emotion embodies a comprehensive reflection of human feelings, thoughts, and behaviors, 

playing a crucial role in facilitating human communication between individuals. Emotion 

evaluation utilizes automatically differentiate various emotional states by utilizing signals, both 

physical and non-physical, obtained from humans. The goal is to facilitate efficient relationship 

and connection between humans and machines. Identifying and understanding emotions is crucial 

in human social interactions, mental health, education, and medical contexts. Understanding 

emotional states like happiness, sadness, fear, and love is fundamental to human existence, integral 

to our experiences and perceptions, and essential to our very conception of humanity. Remarkably, 

these very emotions, often considered intrinsic to human experience, can be accurately identified 

through brain signals obtained from EEG recordings. 

False positives and the potential for image manipulation in image processing may 

compromise the result's accuracy. However, EEG brain wave signals, being inherently resistant to 

tampering, are immune to such alterations. This characteristic makes the process of recognizing 

and investigating emotions easier through the recording of brain signals. This study was employed 

to improve the precision of emotional identification derived from EEG signals by employing a 

combination of deep learning and fuzzy logic. The EEG signals underwent pre-processing to 

remove noise, feature extraction in the frequency domain through FFT, and classification 

conducted via an enhanced CFNN model.  

A comparative analysis was conducted, employing four advanced, trained methods, 

indicating that the suggested approach surpassed other methods across all metrics. Furthermore, 

the model proposed in this study was compared with the latest research, demonstrating superior 

outcomes for the identical dataset. The proposed method achieved an impressive accuracy of 
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98.21% for valence and 98.08% for arousal. This exceptional performance highlights the 

significant impact of converting the extracted features into fuzzy representations after the 

convolutional layers, ultimately offering more detailed and insightful features during the 

recognition phase. The process of transforming these features into fuzzy representations following 

the convolutional layers significantly amplifies the quality of information available for accurate 

recognition and analysis of emotions.  

Recommendation for future work 

For future work, different deep learning models can be utilized to extract features and 

dynamically model data in multiclass, thereby enhancing overall performance. Moreover, 

leveraging a variety of features could lead to the adoption of more advanced fusion methods in 

future applications.  
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