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Abstract  

A Predictive Modeling of Dynamic Modulus in Asphalt Mixtures: A Machine 

Learning Approach 

Abdullahi Said Abdullahi, Assoc.Prof.Dr. Shaban Ismael Albrka   

MSc, Department of Civil Engineering, Faculty of Civil and Environmental 

Engineering, Near East University, Nicosia. 

June, 2024,  

Machine learning methods have been progressively utilized in the field of civil 

engineering, namely for forecasting the behavior of asphalt mixes. This study is 

centered around creating prediction models for the Dynamic Modulus (E*) of asphalt 

mixes. The Dynamic Modulus is an essential characteristic that impacts the 

performance of flexible pavements under different loading conditions and 

temperatures. Traditionally, the task of calculating E* using empirical methods has 

been lengthy and occasionally inaccurate; hence, there is a want for more advanced 

techniques. The present study employs data-driven machine learning (ML) methods to 

improve prediction accuracy, specifically by utilizing random forests, k-nearest 

neighbors, and extreme gradient boosting (XGBoost) regression. The primary 

objectives are to understand the essential attributes of E*, assess the predictive 

capacity of the ML models, and compare their performance in terms of precision, 

accuracy, and efficiency. The research also emphasizes certain constraints about the 

effect of external elements, such as differences in materials or climatic conditions, on 

the potential influence on model performance. Research findings suggest that machine 

learning models may significantly improve the accuracy of E* forecasts, therefore 

providing a substantial contribution to the efficiency and longevity of pavement 

construction. The objective of this project is to enhance the field of pavement 

engineering through the application of machine learning techniques. The objective is 

to establish a robust basis for subsequent academic pursuits and real-world 

implementations in the fields of road maintenance and construction. 

Key Words: Machine Learning (ML), Dynamic Modulus (E*), Asphalt Mixtures. 
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CHAPTER I 

Introduction 

1.1 Background 
 

Machine learning (ML) algorithms have been more prominent over the past few 

decades. The primary reason for this is their consistent ability to effectively model 

intricate and non-linear interactions. Currently, several industries, such as science (Au 

et al 2022). and more especially civil engineering (Kim & Jung 2024), are increasingly 

utilizing machine learning (ML) in their approaches to pavement engineering. Data 

analysis has been an integral part of pavement engineering since its beginning. 

Machine learning approaches have been used to discover important features and 

evaluate pavement performance. However, these models have become less successful 

when used as forecasting tools (Lontara 2020). 

Asphalt mixtures are essential for constructing road networks (Zaman 2018). state that 

the preservation of pavements is important. The complex modulus characterizes the 

viscous and elastic characteristics of linear viscoelastic materials, consisting both real 

and imaginary portions ( Kalash and Walczak 2003). discovered that the modulus | E*| 

represents the magnitude of the Dynamic Modulus (E*). Consistency is an essential 

characteristic of asphalt mixing. The parameter in question is responsible for 

determining the performance of flexible pavements under different loading 

circumstances and temperatures, as outlined in the Mechanistic-Empirical Pavement 

Design Guide (Xu et al2022).  

The dynamic modulus is theoretically defined as the highest value of dynamic shear 

stress (τ) when combined with the recoverable shear strain, as described by Kalash and 

Walczak in 2003. Traditionally, the determination of E* values has relied on empirical 

approaches, which are laborious and require significant effort. Therefore, there is a 

demand for sophisticated strategies in developing enhanced E* prediction models. 

Machine learning approaches have increasingly been employed to address common 

civil engineering challenges in data processing and optimization (Xu et al 2022). This 

study presents a methodology that uses data analysis to estimate the performance of 

asphalt mixes. The objective of this research is to thoroughly investigate the Dynamic 

Modulus (E*). As an illustration, it computes and assesses the predictive capabilities 
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of five well-known models, including XGB Regression, Random Forest, and KNN K-

nearest neighbors. 

 

1.2 problem statement of study 
 

Precisely predicting the dynamic modulus (E*) of asphalt mixture is a crucial difficulty 

in pavement engineering, since it directly affects the design performance and longevity 

of flexible pavements. Conventional empirical techniques for determining E are time-

consuming and lack accuracy, resulting in inefficiencies in pavement design and 

maintenance. The introduction of machine learning presents an opportunity to improve 

the accuracy and efficiency of these prediction by employing sophisticated data-driven 

models. This work aims to overcome the drawbacks of traditional methods by creating 

and assessing machine learning models, including random forest, K-Nearest (KNN), 

and XGBoost, to predict the dynamic modulus of asphalt mixes. 

1.3 objectives of the study 

 

The main aims of this study are: 

• To assess and critically analyze how well the 3 models— XGBoost, (KNN) 

and Rforest. 

• The models for the prediction task all work well, such as Random Forest, KNN 

and XGB regression,  

• Comparing their effectiveness, one can determine which of the machine 

learning methods is at most precision, accuracy, and efficiency. 

1.4 scope of study 
 

This study applies the above to predict the Dynamic Modulus (E*) of the asphalt mixes 

the configurator can be used to customize different types of machine learning models. 

This study then compares the effectiveness of a Random forests, (KNN), XGBoost. 
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1.5 Limitation 
 

In the study, a number of limitations are acknowledged. First, in order to ascertain 

whether or not they fully serve all forecasts, intricate sophisticated machine learning 

models may require special attention when used and understood. although the models 

are not entirely controlled in the study, their performance may be impacted by 

extraneous variables such as material variability and ambient circumstances. 
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CHAPTER II 

Essential ideas and background information of machine learning 

2.1 Foundational Ideas in Machine Learning 
 

Artificial intelligence (AI) is a potent modeling tool extensively utilized in several 

scientific disciplines (Krzywanski 2022). Creating mechanisms that allow an 

algorithm to gather and use data is the focus of machine learning (ML). This learning 

technique is based on identifying statistical patterns or other data-related aspects rather 

than requiring consciousness. Because of this, many machine learning algorithms 

deviate greatly from how humans learn items. Machine learning algorithms can 

provide useful insights into the different complexity levels present in different learning 

setups (Oladipupo 2010). 

A fundamental idea in education is the model, which holds the knowledge that has 

been acquired and is employed in forecasting. Models are often created for a specific 

purpose. In a medical setting, machine learning (ML) may be employed to predict the 

likelihood of a specific illness. The most crucial idea is model training, which uses 

information as input to teach the model. Typically, machine learning models are 

employed for predictions after a single training session (Sivaramakrishnan & 

Dhandapani 2019). Conventional machine learning falls into one of two categories 

based on an algorithm's ability to improve its prediction accuracy with training. 

Supervised Learning These methods make use of the target data as well as a particular 

set of pre-labeled input variables (training data). Using input variables, it develops a 

mapping function to connect inputs with the required outputs. Adjust the algorithm's 

parameters and modification strategies are continued until the system shows an 

acceptable level of accuracy with respect to the training data (Fawzy & Jasem2020). 
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2.1.1 Oriented Learning 

 

These algorithms work on a particular set of pre-labeled input variables called a 

training data other than the target data. It develops a mapping system to relate inputs 

with the needed to use the input variables to generate results. The configurations and 

of the algorithm stay the same until the system shows an acceptable degree of truth of 

the training data (Fawzi & Jassem 2020). 

Supervised learning methods require a substantial quantity of labeled training data in 

order to produce models with improved prediction performance (Balanchine 2013). 

The regression algorithm seeks to identify the most optimal function that closely aligns 

with the data points in the training dataset. Regression-based approaches may be 

categorized into three main groups: Polynomial regression, multiple regression, and 

linear regression.  Classification algorithms provide correct class selection for given 

data by assigning each input to the relevant class. The prediction function generates a 

categorical result, which is assigned a value corresponding to one of the specified 

classes (Directions 2023). Regression analysis is employed to address problems 

involving the prediction of continuous variables, whereas support vector machines 

(SVMs) are utilized for algorithmic classification. The Rforest approach is used to 

address regression and classification problems (Directions 2023).  

Supervised learning has been widely used in the engineering sectors, including civil 

engineering. Supervised learning has a variety of uses in civil engineering. For 

example, it is used to examine sensor data from different infrastructures, such 

buildings and bridges, in structural health monitoring. Its main objective is to assess 

the structure's health by identifying deterioration and forecasting structural 

breakdowns. Supervised learning also has the potential to forecast the seismic collapse 

of frame constructions. Early warnings of possible problems are made possible by 

supervised learning algorithms that are taught to recognize patterns in sensor data 

utilizing vibration data, lamb waves, electromechanical impedance, acoustic emission, 

etc. (Amezquita & Sanchezetal2020). learning is employed (Directions,2023). 

Moreover, (Mein 2023). state that supervised learning is used to forecast the 

characteristics material of the buildings, such as the strength of concrete. 

One of crucial aspects of building project management is supervised learning. It is 

widely used in many construction-related fields, such as on-site operation monitoring,  
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safety, and bridge inspection (Xu et al 2021). In addition, soil composition data and 

past performance data are analyzed using supervised learning models in geotechnical 

engineering to provide predictions for soil settlement, slope stability, shallow and 

piling foundations, and other geotechnical factors (Bahmanietal 2022). 

 

2.1.2UnmonitoredEducation  

In contrast to supervised learning, there is no definitive or erroneous answer associated 

with each input item. Unsupervised learning is characterized by a higher level of 

unpredictability compared to supervised learning in the context of acquiring 

knowledge. Unsupervised learning seeks to uncover the inherent structure or 

distribution pattern of the data in order to get a more profound understanding of it. As 

the algorithm learns on its own hence strives for the most accurate representation of a 

particular pattern that it detected in the input space. while incorporating it into the 

broader input pattern framework. Consequently, the extracted Qualities of each input 

item are categorized and linked to multiple inputs. These association and It is also with 

this kind of problems on clustering where unsupervised learning applies the solution. 

For example, unsupervised learning can be used to analyses topographical mapping 

and terrain. jobs in civil engineering. To handle elevation data collected by remote 

sensing devices such as light detection and ranging (LiDAR), for example. According 

to Garnierite (et al 2022). this study helps to produce detailed topographic maps, a very 

critical requirement of most civil engineering applications Like site planning and a 

useful tool for leveling applications. 

Unsupervised learning is also designed in the field of computer engineering, with tons 

of applications. For instance, it could be used within systems or hardware for the 

detection of anomalies like: memory failure in the CPU, or it can still be used to 

recognize abnormal activities or security breach in Human computational networks 

and systems (Usama  2019). 

 

2.1.3 Reinforcement-Based Learning 

 

This method uses a strong computer to map actions to certain decisions, producing 

reward or feedback signals as a consequence. Using incentives and penalties based on 
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prior experiences, the system automatically teaches itself to identify significant 

positive behaviors (Fawzy&Jasem,2020). 

 

Learning agents have predetermined goals and are somewhat able to sense the state of 

their surroundings. As a result, people are empowered to act to alter the environment 

and get closer to their designated goals. On the other hand, information is obtained by 

direct interaction with the issue environment in reinforcement learning (Directions, 

2023). 

The field of civil engineering makes extensive use of reinforcement learning. Using 

real-time data from loop detectors, vehicle counts, and traffic cameras, reinforcement 

learning systems can regulate traffic flow and control traffic lights (Tan 2022). That is 

the technique that is also necessitated driverless cars. Thanks to it, they can recognize 

streets, navigate turns, and even make enables them to make informed decisions about 

their path (Directions 2023). Reinforcement learning in the Geotechnical engineering 

can help in optimizing the process of drilling and excavation by the approach consisted 

of using geotechnical equipment data, such as soil samples or geophysical sensors 

(Coelho and Smyrniou 2023). It has also been applied to a vast application range, in 

network In Cellular Data Analytics, Sensor Energy Management, Mobile Application 

Predictions, and Building Energy Optimization is an important issue in which 

reinforcement learning is used in irrigation control. Many advantages, such as 

improved agricultural production and quality, reduced energy expenses, and a reduced 

These applications can produce an impact on the environment (Ding & Du 2022). 

Reinforcement learning is also a technique that is used in virtually every technical 

field, for example, computer engineering so that robots can learn, improve, adapt, and 

repeat tasks using specific Instruments such as robotic arms, grippers, cameras, and 

torque sensors are being used for that purpose now (Kormus). 

 

2.1.4 Teaching under Partial Super 

 

The objective of a learning process is to utilize both labeled and unlabeled data in order 

to achieve certain objectives. Semi-supervised learning is a specific topic within the 
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broader field of machine learning. According to van (Angeleno and Hoops 2020), it is 

positioned in a theoretical middle ground between supervised and unsupervised 

learning. 

Machine learning, often known as ML, commonly differentiates between two essential 

tasks: supervised learning and unsupervised learning. Supervised learning involves the 

provision of a dataset containing input values (x) and their matching output values (y). 

The objective of this job is to develop a classifier or regressor that can predict the 

output value for inputs that have not been previously encountered. In unsupervised 

learning, an output value is not provided. Rather, people try to extract an underlying 

framework from the provided information. The goal of unsupervised aggregation is to 

create a mapping between groups and the inputs (real number vectors, for example) so 

that similar inputs are grouped together. A branch of machine learning called semi-

supervised learning aims to combine these two objectives. By utilizing knowledge that 

is frequently linked to one of these two tasks, semi-supervised learning algorithms seek 

to improve performance in either of them in support of categorization when dealing 

with a classification Inclusion of extra data points with unknown labels may further 

make it difficult. On the other hand, by making use of the knowledge that certain data 

points belong to the same class, clustering algorithms would help improve learning 

(van Angeleno & Hoops 2020). Some of the most common strategies for semi 

supervised learning are expectation maximization (EM) with generative mixture 

models and self-supervised learning Transudative support vector machines and graph-

based algorithms have also been presented by ( Zhan 2009). in order to emphasize a 

category of pavement condition-evaluation variables: apparent surface stress, paved 

layer strength, and pavement roughness. Building the prediction model involves 

combining labeled data from hand surveys with unlabeled data from many, 

accelerometer, surface testers, lasers, and road pictures. The model can also be trained 

further with labeled data to enhance the results, though unlabeled data from the same 

training dataset can also enhance the model (Liu  2021). 

in addition to the recognition related to high-quality water and determination of 

likeliness of contamination Semi-supervised learning can be used for monitoring and 

detection in water treatment supply (Yuan & Jia 2016). 
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2.1.5 learning transfer 

 

This perspective views transfer learning as a methodology for recycling machine-

learning models that were previously educated about newly manufactured models. 

General information can only be shared among models if they are meant to achieve the 

same goal. The machine-learning-based method reduces the amount of resources and 

annotated data required for training a new model (Weiss et al 2016). 

Transfer learning is used that utilizes knowledge from the same but other domain to 

train a make them human-like subjects before they mature in one. Because there are 

very little target training data, transfer learning is such a situation may be necessary 

for any one of a multitude of reasons, not the least of which is that the data are actually 

out, the related costs, or the high cost of inaccessibility. The proliferation of the 

availability of enormous data repositories makes transfer learning solutions attractive 

when the aim is to use pre-existing sets of loosely but significantly related content 

datasets to address a topic of interest. For instance, Transfer learning has proven to be 

quite useful for many machine learning applications, be it in text sentiment 

categorization (Weiss et al 2016). It has also found successful use in the areas of 

contexts from image classification and human behavior to software defects and 

multilingual text.  

Using earlier pretrained models instead of starting completely from scratch is known 

as transfer learning. As an illustration, the pre-trained object identification or video 

analysis models can be fine-tuned further to advance safety monitoring of construction 

sites. This modification entails being aware potential hazards and ensure that safety 

protocols are being observed.  In addition, there is recognition models to verify if 

workers are wearing helmets and safety vests properly informing employees of any 

hazardous circumstances (Lee & Lee 2023). 

Pre-trained models for smart traffic light management, congestion monitoring, and 

traffic flow Prediction can be adapted for the traffic management and optimization 

using transfer learning (Krishnakumar 2018). By reusing models or data from past 

BIM projects, transfer learning can aid in accelerating the speed with which the digital 

representations for future construction or renovation projects (Zabin et al 2022). 

Transfer learning that includes reuse of learned models prior to Design Rule Checking 
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or Fault Analysis, can speed up the development and verification process of integrated 

circuits and hardware components in Computer Engineering ( Pan and colleagues, 

2021). 

 

2.2 Machine Learning's Evolution 

 

2.2.1 The Earlier Times 

 

The foundational research on artificial intelligence was done in 1943 by Warren 

McCulloch and Walter Pitts. They used a variety of theories about computing, logic, 

and brain function to build the prototype for artificial neurons. This is an emulator of 

a neuron, marked "on" and "off," that reacts to input from nearby neurons. McCulloch 

and Pitts showed that networks of these artificial neurons could calculate any 

computable function. They also demonstrated how these structures may be used to 

create logical operations such as AND, OR, and NOT. What's more, they proposed 

that these kinds of networks may be taught. Hebbian learning—a guideline for 

modifying the connections between neurons—was first presented by Donald Hebb in 

1949 and continues to have a significant impact on neural network research. This 

device replicated a network of forty neurons using vacuum tubes and parts taken from 

a B-24 aircraft. Even though his doctoral committee was first skeptical, Minsky 

continued researching universal computing in neural networks. Alan Turing had a 

significant impact in shaping AI starting in 1947. Important ideas including machine 

learning, reinforcement learning, genetic algorithms, and the Turing Test were first 

introduced in Alan Turing's 1950 paper "Computing Machinery and Intelligence". He 

proposed the "Child Programmed," which calls for a change in focus in AI research 

from simulating adult intelligence to simulating a child's learning process (Huang 

2010). 

 

2.2.2 Deep Learning's Ascent  

The Turing Test the creation of the first computer game of checkers, and the emergence 

of artificial intelligence in the 1950s lay the groundwork for further developments. The 

first industrial robot, Perceptron, Decision Trees, and the Chain Rule Method—all 
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groundbreaking ideas that are now fundamental to machine learning—were unveiled 

in the 1960s. Neural networks and pattern recognition were advanced in the 1970s with 

the introduction of key Methods like KNN, backpropagation, and the Recognition. 

Deeper network designs were made possible in the 1980s with the development of 

Artificial Neural Networks (ANNs), the restricted Boltzmann machine (RBM), 

Explanation-Based Learning, and the Backpropagation Algorithm. behavior-based 

robotics (BBR) first appeared in the 1990s, and Deep Blue showed how artificial 

intelligence (AI) could beat human champions in challenging games. Large-scale 

datasets like ImageNet were created in the 2000s, which fueled the deep learning 

revolution. Other developments like the Deep belief network, Deep Boltzmann 

machine, and Deep Neural Networks (DNNs) also represented a crucial turning point. 

Game-changing models like Alex Net, Generative Adversarial Networks (GANs), U-

Net for medical image segmentation, and the legendary AlphaGo's triumph against 

human Go champions emerged in the 2010s. With the release of Denoising Auto 

Encoders (DAE), Nash learning, breakthroughs in reinforcement learning, and Deep 

inverse approaches in 2020, deep learning continues to develop and shape 's future AI 

(Directions 2023). 

 

2.2.3 Current Developments  

 

The tremendous advancements in digital technology for cyber-physical systems in 

recent years have presented significant challenges for applications in academia, 

industry, and services. As a result of the widespread IoT use there is a lot of data, noisy 

interference, incomplete and inconsistent information, and complicated data with 

several dimensions. Artificial intelligence models based on machine learning (ML) 

have become very effective instruments for process improvement and data analytics in 

a variety of scientific domains. Since 2012, machine learning (ML) technologies have 

developed, demonstrating their usefulness in resolving challenging industrial issues. 

Applications cover a broad spectrum of purposes, including as process optimization, 

job planning, improvement of quality. To identify and resolve inefficiencies in various 

activities, machine learning is a cutting-edge technology that is widely used in general 

science, medical, manufacturing, and service (Wang 2022). 
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2.3 Customary Approaches in Civil Engineering 

 

2.3.1 Appraisal Techniques 

 

In civil engineering, empirical techniques make conclusions and build structures based 

on historical facts, tests, and observations. These techniques, which are frequently 

grounded in real-world application, are especially helpful when working with 

complicated, non-linear, or variable situations or when theoretical knowledge is 

lacking. In civil engineering, some instances of empirical methods include: assessing 

the strength and stability of materials and structures through load testing; evaluating 

the performance of structures through field testing and monitoring; and estimating 

variables such as soil bearing capacity, concrete strength, and structural stability using 

empirical equations and formulas (Jafari & Constantin ides 2022). 

 

 

2.3.2 Methods of Analysis 

 

In civil engineering, analytical approaches include the analysis and design of structures 

using mathematical theories and equations. These techniques essentially rest on 

mathematical, mechanical, and physical concepts. Analytical techniques are used by 

engineers to ascertain how constructions will behave under different loads and 

circumstances. Typical analytical techniques include the following: structural analysis, 

which computes forces, stresses, and deformations in structures using the concepts of 

statics and dynamics. In order to design water and wastewater systems, including 

pipelines, pumps, and channels, hydraulic and fluid dynamics calculations are used. 

Geotechnical analysis is used to analyze soil qualities and forecast slope stability, 

bearing capacity, and settlement (Jafari & Constantin ides, 2022). 

 

 

2.3.3 Algebraic Techniques 

 

In civil engineering, numerical methods refer to the application of numerical 

techniques and computers to solve complicated engineering issues. These techniques 

are especially useful for handling complex geometries or non-linear dynamics. Among 

the numerical techniques are computational fluid dynamics (CFD), which is used to 

model fluid flow in hydraulic structures or environmental assessments, numerical 
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modeling of traffic flow and transportation systems for road network and traffic 

management optimization, and structural design software, which uses numerical 

techniques to ascertain the dimensions and specifications of structural components. 

(Jafari & Constantin ides 2022). 

 

2.4 General Engineering Usefulness 

 

A subfield of artificial intelligence called machine learning is gaining popularity in the 

data analysis and computing industries. It entails creating models and algorithms that 

let programs behave intelligently. This is where exploratory data is entered in detail 

into the machine learning process processing. Designing an intelligent real-time 

system depends largely on machine learning models. engineering applications that can 

process the acquired data and solve practical problems emerging from these data 

(Haveri 2024). 

 

2.4.1 Applications of Machine Learning in Other Engineering Fields 

 

Machine Learning is very critical to computer engineering as it equips autonomous 

robots. This allows them to see and consider the surroundings, which make them act 

upon decisions that are thoroughly thought of. Machine learning techniques also give 

birth to understanding robots. human language and gesture and act in response to it 

(Martinez 2020). planning, machinery and equipment. Mechanical engineering also 

employs machine learning to make accurate predictions in maintenance planning for 

machinery and equipment, with the objective of minimizing Downtime and ensures 

efficiency. Machine learning makes certain to be able to use machine make new, 

smarter mechanical parts and systems designed with the help of learning algorithms 

by considering a wide range of limiting limitations and criteria by performance (Guo 

2021). Machine learning is applied in electrical engineering with the capability to 

predict demands, Optimal distribution network development, and grid fault diagnosis. 

Chemical engineers Utilize machine learning techniques to optimize performance and 

control process chemicals reactivity for bettering product quality and reducing the use 

of energy. Machine learning algorithms identify abnormalities within electrical 

systems, which is very essential in ensuring that the detection of these faults and hence 

the associated hazards with these defects have been detected in a real-time basis 



23 
 

 
 
  
  

(Prajwal 2021). Machine learning is used to predict the properties and interactions of 

chemical compounds, which facilitates drug development techniques (Gao 2022). Data 

from a range of sensors used to monitor and assess air quality, water quality, and other 

environmental parameters may be analyzed using machine learning models in 

environmental engineering. It is also used for life cycle analysis, enhancing treatment 

methods, locating and describing pollution sources, and evaluating the condition of 

wastewater and water systems. It is promising that machine learning models may be 

used to predict natural disasters like hurricanes and earthquakes since doing so would 

significantly enhance preparedness and response to disasters (Zhong 2021). This is 

because material engineers are always developing new materials that call for certain 

characteristics that machine learning (ML) can predict with accuracy. This industry 

benefits from the use of machine learning (ML) in producing very complex content, 

as the graphs that were produced made clear. To make sure that the materials are as 

specified, machine learning may also be helpful in the quality control inspection of 

industrial operations (Stergiou 2023). argue that mining activities, material Machine 

learning is used in a design field, in addition to materials characterization and even job 

prediction. Additionally, in aerospace engineering, the best flight control systems can 

be better made by. machine learning (Caliche 2023). say, "Machine learning models 

can estimate" needs of maintenance through the processing of data from in-service 

sensors installed on board aircraft. 

2..4.2 Machine learning in civil engineering 

 

Through the incorporation of machine intelligence into a wide range of applications 

and procedures, the discipline of civil engineering is undergoing a dramatic 

transformation. learning (ML), to increase accuracy and productivity in different 

fields. ML Algorithms In structural engineering for detecting structural decay and for 

load-bearing prediction capacity for quantitative predictions using sensor data. 

Machine learning models in the field of pavement engineering are used in the 

prediction of pavement deterioration, which will in turn assist in the formulation of 

effective maintenance techniques and lifespans. Further, machine learning (ML) aids 

in predicting material characteristics and helps develop high performance materials by 

analyzing large datasets to enable optimization of compositions to have the desired 
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features. Such developments save costs and time, and at the same time improve the 

degree of reliability and safety in civil engineering Projects.  

2.4.3 Road Surface Predictive Maintenance 

 

Machine learning is applied in predicting the pavement that has become worn down 

and, in the improvement, pertaining to upkeep schedules in the field of predictive 

maintenance. Engineers who are responsible for doing extensive data analysis on 

information acquired from a variety of sources, including the Long-Term Pavement 

Performance (LTPP) database, for example, can predict rutting caused by the repetitive 

traffic environmental factors. Metrics such as RMSE and R-squared is a good indicator 

of strong predictions Gaussian Process Regression has shown time and again with its 

ability to be outstandingly accurate. This approach reduces the cost for maintenance 

and improves roads' safety and performance by thereby making repair operations fast 

and inexpensive.  

A study in 2023 developed rut prediction models using the LTPP data using a variety 

of machine learning techniques the following techniques were utilized Ground 

Penetrating Radar (GPRs), Support Vector Machines, and Regression Trees, GPRs 

being the greater accuracy for predicting rut depth. The best model had an R2 value of 

0.70 and an RMSE of 1.96. More importantly, transportation authorities can now 

properly schedule maintenance works, hence ensuring that resources are allocated in 

an optimized manner. This is only possible with the use of this excellent degree of 

Accuracy. 

The application of such algorithms in machine learning predictive maintenance has the 

potential of delivering a Proactive approach to pavement management. To strictly 

enhance the life and utmost it is recommended to plan proactively for maintenance of 

pavements to prevent infliction. This can happen through the correct predication of 

time and place of pavement wear. This reduces costs simultaneously with its advantage 

of lower road closures and Increasing user comfort and safety. 

 

2.4.4 Pavement condition monitoring 

 

This way, AI and machine learning technology have greatly improved the assessment. 

and surveillance of pavement problems. These technologies make exact, effective, Full 
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road inspection is very important in any maintenance and repair requirements 

concerning the road surface. Traditional pavement monitoring has been undertaken by 

laborious, time-consuming methods that are prone to human error—primarily visual 

inspection. Modern automated systems have embraced these techniques various 

monitoring, and continuous machine learning sensor devices of the roads. The systems 

collect real-time information on pavement failure through the application Data from 

intelligent sensors deployed in vehicles, drones, and stationary platforms. It is 

primarily for this reason that convolutional neural networks (CNNs) can be applied to 

interpret this data such that, by Identify and classify many kinds of roadbed damage, 

including cracks, potholes, Rutting. Analytical techniques for high-resolution 

pavement photographs and video image processing based on artificial intelligence 

have become some of the recent applications. This, in a way, will allow the use of 

timely and effective inspections by correctly identifying surface abnormalities. Also, 

the GPS data help in identifying This thus pinpoints the major source of failure to the 

reported issues hence allowing focused maintenance efforts Operations (MDPI). 

latest cutting-edge approach utilizes data collected from single-lane inspection of the 

applying multiple linear regression (MLR) models and artificial neural network (ANN) 

models to Able to predict pavement conditions over multi-lanes, this enormously 

decreases the time and financial resources needed for a detailed road inspection. By 

carrying out a criteria-based analysis, including traffic direction, location and lane 

features these models can be able to predict correctly condition of the whole road. It 

makes the maintenance process more efficient. (MDPI). Furthermore, the prediction 

capabilities of machine learning models are enhanced by including Different data 

sources including traffic patterns, environmental conditions, and historical 

maintenance records. The ability of models to predict enables proactive planning of 

maintenance on the rate of pavement deterioration under different traffic loading and 

weather conditions. It makes the pavement more durable and sustainable, and it also 

helps ensure that optimum allocation of the maintenance budgets is achieved. and 

Resources. 

2.5.1 Pavement Material Characterization  

 

Machine learning applied to pavement material analysis makes our understanding 

performance in different conditions and thus allow to develop more efficient 
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approaches to road construction and maintenance. Using modern methods that include 

machine learning methods and multi-scale numerical simulations, the scientists can 

enhance their Ability to predict accurately the behavior of materials. Performing 

numerical simulations at various scales is important in properly characterizing 

pavement materials. The simulations encompass a wide range of sizes, from miniscule 

and nanoscale features to large-scale structural responses. Macroscopically, In the 

process of front-end design, simulations may be utilized to do an analysis of the 

structural and dynamic response of a whole pavement system to traffic loading. It is 

possible to examine the mechanical characteristics of asphalt mixes at the meso level 

through the use of simulations. In this regard, an inquiry is carried out into the action 

of stones and asphalt binding agents at small and tiny levels. 

The applications of the growing techniques in machine learning, e.g artificial neural 

networks (ANNs) to predict complex relationships among a host of material properties 

and performance results. These models can effectively handle vast datasets derived 

from field observations and laboratory tests to make precise predictions on parameters 

such as fatigue life, strength, durability and many more. For example, the Artificial 

Neural Networks (ANNs) can also be trained with past performance data to predict 

how pavement materials will function in the future, considering different traffic and 

environmental conditions. By enhancing material composition and construction 

techniques, it is feasible to design pavements that have increased durability and 

reduced construction costs. This can be achieved by using the Predictive Performance 

of MDPI. Further improvement of prediction accuracy in these models can be achieved 

by using data from another sources, such as the historical maintenance record, traffic 

patterns, and environmental factors. This will ensure that repairs are carried out in 

proactive method rather than the reactive method. That approach makes certain an 

optimal utilization of budgets and maintenance resources but at the same time extend 

the life of the pavement. 

 

2.5.2 Traffic Pattern Analysis  

 

Machine learning for transport involves running many applications like data analytics, 

road problem detection, congestion forecasting, and predictive maintenance. However, 
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them Importance of emergency (Silva ML) is further enhanced in this domain as it 

facilitates effective-routing of traffic during (et al 2020). 

The traffic pattern study is significant for the development of robust and sustainable 

pavement systems. Surely, engineers accomplish the task of saving the performance 

of pavements and their life span through proper design optimization. based on a 

rigorous understanding of traffic patterns and loads. To be able to predict pavement 

behavior under diverse traffic conditions, and also to analyze complex data, machine 

Learning has made tremendous strides in this field. There are several of the growing 

requirements of the methodologies proposed for the technologies in traffic prediction 

in the form of predicting congestion scenarios. In this respect, various machine 

learning models have been employed so far, including Neural Networks (NNs), 

Support Vector Machines (SVMs), and regression analysis, in order to Predict traffic 

congestion, as they can handle large data sets very well in effective learning extract 

patterns out of data. For example, Yusheng et al. developed a new deep-learning 

framework to predict the traffic flow in varied urban road networks basing on recent 

developments in However, this technique is aware of the way traffic flow moves and 

shifts in time and space. They used a stacked autoencoder (SAE) model and analyzed 

its performance relative to other common models, such as neural networks or support 

vector machines. They measured each model's performance using three criteria: MAE, 

RMSE, and MRE. On short-term predictions (15 minutes), they have reported a good 

performance within their new model with an RMSE value equal to 50, however, it 

doesn’t perform well in the long term where this error increases towards a score of 138 

(Yasir et al 2022). used weather information like rain, humidity, and temperature to 

help predict traffic jams. They started with a complex model that looked at 54 different 

factors. Then they simplified their model by removing less important factors, ending 

up with 10 key variables. Six of these variables were specific days of the week, and 

four were related to the weather. This approach was pretty accurate to 75.5% of the 

cases. However, they missed to include an important Detail: Also, the time of the day 

plays an important role when it comes to traffic, which is very different (Yasir et al., 

2022). The one that Akbar et al. used was a mashup of complex event processing and 

machine learning. approaches to predict when and where congestion will be 2. A 

formula called Yasir et al. presented Adaptive Moving Window Regression in 2022. 
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Pavement design traditionally considered as conventional load analysis along with 

average daily traffic loads and sometimes underperforms. However, with the 

advancement of machine learning and now it is possible for conducting a much 

comprehensive analysis. Models that simulate the the interactive investigation of 

dynamic responses of pavements in actual traffic scenarios between a car, its types and 

the road. Employing these models permits for enhancement accuracy of pavement 

performance prediction by considering factors like axle design vehicle speed, and 

surface roughness. By incorporating these comprehensive evaluations into pavement 

design, better able to predict and address problems such as fatigue cracking and rutting 

(MDPI). These approaches enable appropriate planning of maintenance and 

rehabilitation programs through the evaluation of effect of different traffic patterns on 

pavement deterioration. Machine-learning methods can Predict pavement life under 

different traffic loads by using weigh-in-motion (WIM). data. This feature assists 

transportation authorities in ensuring the most effective scheduling jobs and extending 

the life of their road infrastructure (MDPI, RUcore). 

Further, it is such machine-learning models that provide valuable information on the 

key elements that pavement performance and that enable transportation agencies to, 

therefore, more effectively allocate them resources and prioritize maintenance jobs. 

Random survival forest models are used to obtain a deeper understanding of how the 

pavement will last based on traffic load. This adds to minimizes unforeseen pavement 

problems and hence allows for planning of repair activities. Adopting such a proactive 

strategy in pavement management does not only Improves pavement durability and 

safety while reducing maintenance Costs (MDPI, RU). 

 

2.5.3 Improving Traffic Safety 

 

To improve traffic safety, it's important to predict the road hazards using an intensive 

research. Machine learning (ML) methods have played a widespread role in other 

disciplines of safety prevention and risk identification. This include operations such as 

mitigating fraudulent traffic, preventing the unauthorized channeling of data in 

Internet of Things networks to ensure information security, and enhancing 

transportation safety. More importantly, ML is much more flexible than classical 

statistical methods and does not require strict prior assumptions on the bivariate 
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relationship between independent and dependent variables. ML approaches have 

shown good accuracy in road safety modeling, especially with the appearance of high 

dimensional big datasets that serve as a basis for a description of this research area in 

the field of traffic safety. Through the algorithms, risk prediction models were 

implemented such as neural networks, support vector machines (SVMs), and random 

forests (RFs). However, the challenge of interpretability is unveiled due to the absence 

of an explanation of the inner causal relationship in the black box, which is revealed 

in complex machine learning models. Consequently, this hampers their usefulness in 

evaluations. Explaining tree models such as LightGBM, AdaBoost, and eXtreme 

Gradient Boosting (XGBoost) have been explored in certain studies using Shapley 

Additive explanation (SHAP) technology. All can be used to look into multiple factors 

and identifications of contributors concerning traffic safety (Qi et al 2022). 

 

2.5.4 Detection of Structural Damage  

 

All engineering structures tend to decompose and decay internally over a period of 

time. The detection of damage is an essential part of the work principles, since it 

provides opportunity to assess damages as soon as possible. This, in turn, increases 

security and provides control over the modern with high performance and reliability. 

The goal of machine learning in (SHM) is to produce models or representations that 

create a relationship between patterns generated from sensor data and targets for 

damage assessment at diverse levels. While common machine learning models are 

effective, they cannot efficiently interpret huge volumes of unorganized sensor 

information. Therefore, the process often requires detailed engineering and expert 

knowledge to pull out elements from raw data that hint at damage. Retrieved features 

are finally fed into a fitting machine-learning model (Yuan 2020). One approach is to 

teach a neural network how to distinguish between the frequency responses of an intact 

structure and those of structures with varied levels of damage. Afterward of training 

the neural network, it has been able to identify every precise damage and its position 

and intensity of it. (Fang 2005) On the basis of the deep learning approach in the 

Structural Health Monitoring (SHM) applications – an assessment of the algorithm 

implementation has pointed a great potential to develop the end-to-end systems 

reviewing the algorithms without a need for great prices in preliminary signal 
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processing. These deep learning models can be tailored to various SHM tasks: damage 

detection, concentrated-damage, and range of the injury. As a result, many neural 

network architectures have been investigated for SHM such as Millpond RNN and 

CNN. As in the case of most other networks, the hyperparameters used by this network 

are usually determined through techniques that include grid search and random choice. 

The use of MLPs can be exemplified by one application, the identification of defective 

rotation machinery components in SHM. A One-Dimensional Conventional Neural 

Network (1DCNN) is a deep learning architecture specifically tailored for the 

processing of time series data. In its perspective, the convolution processes are applied 

on sequences of data points with a view of extracting informative characteristics. This 

makes it a perfect tool where one is required to analyze sequentially organized data in 

SHM. Recurrent Neural Networks (RNN) are designed to find patterns in time and 

thus an effective tool of analysis when one is analyzing sensor measurements. 

However, standard RNNs had a problem of performing on long sequential data with 

challenges such as gradient explosion or vanishing. In solving these challenges, 

researchers came up with custom RNN structures like LSTM and GRU. The LSTM 

and GRU models have great capacities in handling long-range associations among 

variates within sequential sensor data, hence are very applicable for the case of 

Structural Health Monitoring (SHM) (Dang 2021). 

2.5.5 Prediction of Structural Failure  

 

Machine learning (ML) helps in structural failure prediction, data is used to make sense 

of it and understand the patterns used in the prediction of problems with structures, 

predict the best time for any maintenance work, additionally to detect its risk 

assessment (Zaprorid 2023). However, the inputs for predicting the response of 

structures are conditions at which loads occur and parameters associated with structure 

composition include characteristics of loadings, geometry as boundary-conditioned 

factors material’s properties. The results are the field variables that we want to identify, 

which include displacements, stresses, and strains. In the research by the extreme 

learning machine was used for modeling both the load-carrying capability and the 

failure manner of a beam-column joint connection are taken into consideration. Li et 

al. applied NN and various conventional ML approaches to predict the consequences 

of gas blows (Li et al 2023). 



31 
 

 
 
  
  

CHAPTER III 

Methodology 

3.1 OVERVIEW 

This chapter describes the methodologies employed in this thesis, including machine 

learning models, feature selection, and their significance.  

3.2 Data Collection     

Data collection starts with sourcing information available on the NCHRP Report-547 

database, which carries some essential parameters needed for modeling. The data 

collected thus forms the basis for analysis and is used in modeling the parameter 

dynamic modulus (E*) The data is processed in one of the coding environments 

familiar to the modern computer world, Visual Studio Code, and analyzed. This is 

implemented by putting in the three models, including XGBoost, RForest, (KNN), and 

ANN The powers in which these models are built come in with the typologies in hand 

and are either way pronounced from them to derive new solid, reliable predictions 

about the outcome. For the purpose of carrying out a job that involves the assessment 

of models, the data will be separated once more into training data and testing data. The 

models will be trained on the data from the training set, and then they will be evaluated 

on the other testing set. the results are then analyzed and tallied to collect accuracy and 

other performance metrics. The analysis finally concludes with the critical insights and 

conclusions based on the data from the modeled methods. dynamic modulus (E*) 

specifically measures the viscoelastic properties of asphalt mixture which in turn 

affects the overall performance of asphalt pavements. This dataset refers to asphalt 

mixture properties in asphalt pavements. These parameters are essentially required to 

understand the mechanical behavior of mixtures, where the visco-elastic properties are 

among those that will influence the performance of pavements the most. 
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3.3 Input Parameters 

r34, r38, r4, r200: Sieving data that indicates the gradation of the aggregate in the 

asphalt mix. A (aging): Represents the aging condition of the asphalt mixture AC: 

Asphalt content, indicating how much bitumen is present in the mix. Va: Air voids, 

showing the void space in the compacted mixture. Vbeff: Effective bitumen content, 

representing the bitumen that effectively coats the aggregates. T: Temperature at 

which the properties are measured. fc: Loading frequency, relevant for dynamic 

testing. A and VTS: Parameters related to the bitumen's properties, such as aging and 

viscosity changes with temperature. db: Bulk density of the mix, which can affect 

performance. |G|*: Complex shear modulus, a measure of the mixture's resistance to 

shear deformation. (E*): dynamic modulus of asphalt mixture.  

Each parameter in the dataset plays a crucial role in determining the performance 

characteristics of asphalt mixtures used in asphalt pavements. By understanding and 

accurately measuring these parameters, engineers can design asphalt mixes that 

balance durability, flexibility, and resistance to various forms of distress, ensuring 

long-lasting and reliable pavement structures. The combination of these parameters 

helps in modeling the dynamic modulus (|E*|), which is essential for predicting how 

the material will perform under different traffic and environmental conditions.  

3.4 Machine Learning Model  
 

a machine learning model is built through an orderly process that starts with the 

collection of relevant data, then cleaning, and transformation for analysis. Then one 

can go ahead to select a proper algorithm based on the task at hand i.e., classification 

versus regression or clustering. A model is trained with some fraction of data so that 

it comes to learn about the patterns and relationships. Then, it is tested and validated 

over another subset of data to verify how efficiently the model is working. Now, a 

well-scoring model can be put into real-world practice where it applies its learned 

patterns to new data which never saw before and makes predictions or decisions about 

it. Almost always for the accuracy of model over time continuous monitoring as well 

as updating is needed since with constant flow of data in most real-world applications 

many things change out there. 
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3.4.1 XGBoost  
 

The software includes an integrated functionality that accelerates the training process 

while working with a substantial dataset. The classification and regression type 

modeling challenges are resolved using a concatenated gradient-boosting framework 

technique. In the XGBoost algorithm, a less powerful base learner (decision tree) is 

incorporated with additional learners and is sufficiently effective in rectifying the 

errors generated by previous models during prediction. XGBoost enhances accuracy 

by employing a differentiable loss function known as mean squared error and an 

optimization technique called gradient descent. The approach involves the utilization 

of the first and second-order terms from the Taylor's series expansions. In order to 

manage the intricacy of the expanded word, a regularization term is incorporated. The 

regularization term controls the occurrence of over-fitting and helps to balance the 

final learning weight w. XGBoost use fitting approaches to discover and predict the 

underlying pattern in order to reduce overfitting. It achieves this by using sampling 

methods for both rows and columns. The technique effectively combines parallel 

processing (node division) and distributed computing (multi-threading) to demonstrate 

the practicality of the fastest model (Prakash 2023). 

3.4.2 Random forest  

Forest is a highly favored approach in the field of ensemble machine learning and data 

science. The RF algorithm effectively addresses classification and regression problems 

due to its fundamental structure and minimal computational demands. This 

combination of such weaker models as decision trees creates a robust, complete model. 

In Random Forest technique, there are decision trees that are being trained through a 

random subset of characteristics and data points. It is applicable to complicated 

datasets involving both categorical and continuous variables centred around specific 

tasks. As an ensembling tree model it uses the bagging principle in parallel and 

boosting principle in consecutive mode to train the basic learner. Random Forest 

reduces overfitting, problem of decision trees. Balancing of bias and volatility is 

through averaging of several tree projections to give results that are more reliable and 

better. Random Forest is one of the most powerful machine learning tools because this 

algorithm behaves proper under different conditions and it randomly chooses data, 
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along with attributes. Therefore, this makes the model apparent all across data specific 

disciplines (Prakash 2023). 

3.4.3 K-Nearest Neighbors (KNN) 

The KNN algorithm is a simple and efficient technique. the algorithm functions by 

determining the 'k' nearest data points to a given query point, utilizing a designated 

distance measure, such as Euclidean distance. The method assigns the most frequent 

class among these neighbors to the query location for categorization.  

KNN is a non-parametric method that uses instances to learn. The straightforwardness 

of this design facilitates its implementation and comprehension. Nevertheless, the K-

nearest neighbors (KNN) algorithm may be demanding in terms of CPU resources and 

is also susceptible to the size of features and irrelevant data. Therefore, it is crucial to 

do meticulous feature scaling and selection. Although KNN has several disadvantages, 

it continues to be widely used because of its versatility and efficiency in many real-

world applications, including recommendation systems, pattern recognition, and 

anomaly detection. 

3.5 Evaluation of model performance 

There is four primary metrics. RMSE is a precise accuracy metric obtained by taking 

the square root of the average of the squared discrepancies between projected values 

and actual values. A lower root means square error (RMSE) value suggests a greater 

degree of precision in a model. The Mean Absolute Error (MAE) measures the 

difference between the predicted values produced by a model and the actual values, 

providing a clear indication of how much the predictions differ from the real data. R-

squared (R2) is a statistical measure that quantifies the proportion of variance in the 

dependent variable that can be predicted by the independent variables. It ranges from 

0 (no explanatory power) to 1 (perfect fit), and represents the quality of the model's 

fit. Finally, the Mean Bias Error (MABE) is a statistic used to measure the average 

bias in a model's predictions. Although it is not commonly used as the only indicator 

of model error, as it may not accurately represent large individual prediction mistakes, 

Mean Bias Error (MBE) is important for identifying and measuring the average bias 

in the model's outputs. A positive bias in a variable, such as wind speed, suggests that 
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the data from datasets is being overestimated, whereas a negative bias indicates that 

the data is being underestimated. Similarly, in the case of directional variables such as 

wind direction, a positive bias signifies a deviation in the clockwise direction, whereas 

a negative bias indicates a divergence in the counterclockwise direction. Assessing the 

performance of MBE in conjunction with other measures, such as correlation 

coefficients, enhances our overall comprehension of model effectiveness. Smaller 

error values and larger correlation coefficients, especially for variables that have a 

certain direction, suggest a better level of accuracy in the model. 

RMSE = √∑  N
i=1 (YPred ,i−YObs,i)

2

N
                                                                          Eq 1 

MAE =
1

N
∑  N

i=1 |YObs,i − YPred ,i|g                                                                     Eq 2 

MBE=n1∑i=1n(Pi−Oi)                                                                     Eq 3 

R2 =
SSR

SST
                                                                                                             Eq 4 

Where SSR=∑(YPred ,i − Y̅)
2

,  SST = ∑(YObs,i − Y̅)
2

 ,  Y̅ is the mean of y value; N = 

number of observed value, YPredi predicted value YObi =observed value. 
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CHAPTER IV 

Results and discussions 

This part summarizes the findings to ascertain the efficacy and comprehensibility of 

three sophisticated machine learning models: (KNN), XGBOOST, Rforest in 

predicting the characteristics of dynamic modulus of asphalt mixture (E*). The model 

outcomes are situated on characteristics of Asphalt mixture (E*). The results are 

elaborated in detail through graphs and tables that lead to the perceptiveness of the 

predicted accuracy. The user's text is a single period. This provides a comprehensive 

analysis of how these models may be utilized to forecast the behavior of asphalt mixes. 

4.1 A performance comparison of three models 

Table 1 

Comparative analysis of estimation performance for 3 models: evaluation of test 

and train data on asphalt mixes the user's text is "(E*)". 
 

Header titles for each column: The table is partitioned into two primary portions, one 

dedicated to training data and the other to testing data. Every segment is accompanied 

by the following metrics: 

R² is a statistical measure that quantifies the proportion of the variation in the 

dependent variable that can be accurately predicted by the independent variables. 

RMSE:  A lower RMSE value suggests a greater degree of precision in a model. The 

MAE measures the difference between the predicted values produced by a model and 

the actual values, providing a clear indication of how much the predictions differ from 

the real data. MABE is important for identifying and measuring the average bias in the 

model's outputs. A positive bias in a variable, such as wind speed, suggests that the 

data from datasets is being overestimated, whereas a negative bias indicates that the 

data is being underestimated. 

KNN (K-Nearest Neighbors) 

Rforest (Random Forest) 

XGPR (XGBoost for Regression). 

 

The table in the image displays performance metrics for different machine learning 

models, both on training and testing datasets. (The table 1 as shown below). 



38 
 

 
 
  
  

 

4.1.1 K-Nearest Neighbors (KNN) 

 

Comparing Measured and Predicted Values of E*(psi) with KNN algorithm on 

both the training (a) and testing (b) datasets. 
 

The graph has shown below in figure 2 is scatter plot that compares the predicted 

values against the measured (actual) values of a certain property, denoted as E* in psi 

(pounds per square inch). The data seems to have been generated from a model, 

specifically a KNN (A- Train) Axes: X-axis (Predicted psi): this represents the 

predicted Values produced by the KNN model. (Y-axis (Measured E* psi): this 

represents the actual measured values of E*, which might a material’s strength or 

another physical property in psi units.  Data points represent individual observations 

on the graph, where the projected value (obtained from the KNN model) is plotted 

against the actual observed value. The proximity of the dots to the diagonal line 

indicates the degree of accuracy in the model's predictions compared to the actual 

measurements. Diagonal Line: symbolizes the optimal situation in which the projected 

values precisely correspond to the measured values. The points on this line represent 

the model's perfect predictions, while the scatter of points around the line indicates the 

Models Train Test 

   R2 RMSE MAE MAPE   R2 RMSE MAE MAPE 

KNN 0.857 587472.33 3.48E+05 3.08E-01 0.794  
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model's accuracy. The R square value of 0.857, displayed in the upper right of the 

graph, is the coefficient of determination. It measures how well the predicted values 

from the KNN model explain the variability in the measured data. (Figure 2 is shown 

below). 

Figure 2 

A: train 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

The data visualization that is displayed below in figure 3 is a scatter plot that represents 

a comparison between the anticipated values and the measured (actual) values of a 

certain property. This property is represented as E* in psi, which stands for pounds per 

square inch. The information appears to have been derived from a model, more 

precisely a KNN (B test in this case). The axes: The X-axis, also known as the 

Predicted psi, is a representation of the predicted values that are generated by the KNN 

model. (Y-axis (Measured E* psi): this shows the actual measured values of E*, which 

may be the strength of a material or another physical property measured in psi units in 

the physical property unit system. Data points are individual observations that are 

displayed on the graph. The projected value, which is produced from the KNN model, 

is compared against the actual value that was seen. The degree to which the model's 

predictions are accurate in comparison to the actual data is shown by the closeness of 

the dots to the diagonal line. The ideal scenario is represented by the diagonal line, 

which is the point at which the predicted values exactly match to the values that have 

R² = 0.857

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 2000000 4000000 6000000 8000000 10000000

M
e

as
u

re
d

 E
* 

( 
p

si
 )

Predicted ( psi 



40 
 

 
 
  
  

been measured. This line contains points that reflect the model's flawless predictions, 

and the dispersion of points that surround the line is an indication of how accurate the 

model is. The value of 0.7943 for the R square statistic, which can be seen in the upper 

right corner of the graph, represents the coefficient of determination. It determines the 

degree to which the projected values derived from the KNN model adequately explain 

the variability in the data that was observed. (The illustration of Figure 3 may be seen 

below). 

Figure 3 

B: test 

  
 

 

 

 

 

 

 

4.1.2 Random forest  

 

Comparison of predicted and measured E*(ψ) values using random forest 

Algorithm for training (a) and testing (b) datasets. 
 

The visualization that is displayed below in figure 4 is a scatter plot that represents a 

comparison between the anticipated values and the measured (actual) values of a 

certain property. This property is represented as E* in psi, which stands for pounds per 

square inch. A model, more precisely a Random forest algorithm (also known as 

Random forest A- Train), appears to have been responsible for the generation of the 

data. One of the axes is the X-axis, which stands for the expected psi. This axis reflects 

the values that are predicted by the Rforest model. (Y-axis (Measured E* psi): this 

shows the actual measured values of E*, which may be the strength of a material or 

another physical property measured in psi units in the physical property unit system. 

On the graph, the data points represent unique observations, and the projected value, 
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which was produced from the Random forest model, is shown against the actual value 

that was seen. The degree to which the model's predictions are accurate in comparison 

to the actual data is shown by the closeness of the dots to the diagonal line. Diagonal 

Line: symbolizes the optimal situation in which the projected values precisely 

correspond to the measured values. The points on this line represent the model's perfect 

predictions, while the scatter of points around the line indicates the model's accuracy. 

The R square value of 0.994, displayed in the upper right of the graph, is the coefficient 

of determination. It measures how well the predicted values from the Rforest model 

explain the variability in the measured data. (figure 4 is shown below) 

Figure 4 
 

(A) train 

 

 

 

 

 

 

 

The graph has shown below in figure 5 is scatter plot that compares the predicted 

values against the measured (actual) values of a certain property, denoted as E* in psi 

(pounds per square inch). The data seems to have been generated from a model, 

specifically a Random forest) algorithm (referred to as Random forest B- test) Axes: 

X-axis (Predicted psi): this represents the predicted Values produced by the Rforest 

model. (Y-axis (Measured E* psi): this represents the actual measured values of E*, 

which might a material’s strength or another physical property in psi units. Data points 

represent individual observations on the graph, where the projected value (obtained 

from the Random forest model) is plotted against the actual observed value. The 

proximity of the dots to the diagonal line indicates the degree of accuracy in the 
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model's predictions compared to the actual measurements. Diagonal Line: symbolizes 

the optimal situation in which the projected values precisely correspond to the 

measured values. The points on this line represent the model's perfect predictions, 

while the scatter of points around the line indicates the model's accuracy. The R square 

value of 0.954, displayed in the upper right of the graph, is the coefficient of 

determination. It measures how well the predicted values from the Rforest model 

explain the variability in the measured data. (Figure 5 is shown below) 

Figure 5 

B: test 

 

 

 

 

 

 

 

 

4.1.3XGB 

 

Comparing Measured vs. Predicted E* (psi) for the XGB regression for (a) train 

and (b) test datasets. 
 

The graph has shown below in figure 6 is scatter plot that compares the predicted 

values against the measured (actual) values of a certain property, denoted as E* in psi 

(pounds per square inch). The data seems to have been generated from a model, 

specifically a XGB) algorithm (referred to as XGB A- Train) Axes: X-axis (Predicted 

psi): this represents the predicted Values produced by the XGB model. (Y-axis 

(Measured E* psi): this represents the actual measured values of E*, which might a 

material’s strength or another physical property in psi units. Data points represent 
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individual observations on the graph, where the projected value (obtained from the 

XGB model) is plotted against the actual observed value. The proximity of the dots to 

the diagonal line indicates the degree of accuracy in the model's predictions compared 

to the actual measurements.  Diagonal Line: symbolizes the optimal situation in which 

the projected values precisely correspond to the measured values. The points on this 

line represent the model's perfect predictions, while the scatter of points around the 

line indicates the model's accuracy. The R square value of 0.999, displayed in the upper 

right of the graph, is the coefficient of determination. It measures how well the 

predicted values from the XGB model explain the variability in the measured data. 

(Figure 6 is shown below). 

Figure 6 
A test  

 

 

 

 

 
 

 

The graph has shown below in figure 7 is scatter plot that compares the predicted 

values against the measured (actual) values of a certain property, denoted as E* in psi 

(pounds per square inch). The data seems to have been generated from a model, 

specifically a XGB) algorithm (referred to as XGB B-test) Axes: X-axis (Predicted 

psi): this represents the predicted Values produced by the XGB model. (Y-axis 

(Measured E* psi): this represents the actual measured values of E*, which might a 

material’s strength or another physical property in psi units. Data points represent 

individual observations on the graph, where the projected value (obtained from the 

XGB model) is plotted against the actual observed value. The proximity of the dots to 

the diagonal line indicates the degree of accuracy in the model's predictions compared 

to the actual measurements.  Diagonal Line: symbolizes the optimal situation in which 

the projected values precisely correspond to the measured values. The points on this 
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line represent the model's perfect predictions, while the scatter of points around the 

line indicates the model's accuracy. The R square value of 0.979, displayed in the upper 

right of the graph, is the coefficient of determination. It measures how well the 

predicted values from the XGB model explain the variability in the measured data 

(Figure 7 is shown below). 

Figure 7 

(b) test 
 

 

 

 

 

 

In order to comprehensively provide the discussion of the results in the table, it is 

crucial to provide a concise explanation of each statistic and to provide an overall 

assessment of the characteristics of the models under consideration. There are three 

models in this case: K Nearest Neighbors, Random Forest, and Extreme Gradient 

Boosting. The Coefficient of Determination, Root Mean Square Error, Mean Absolute 

Error, and Mean Absolute Percentage Error would be used to grade these models. Each 

of these measures indicates the predicted accuracy of each model on both the training 

and testing datasets. The table focuses on determining the dynamic modulus of asphalt 

mixes, denoted as E*. This parameter is crucial in defining the material qualities and 

performance of asphalt under various situations.  

The R Square value is the Coefficient of Determination; thus, this indicates how 

well-predictive the model is for the actual data. An R Square value of 1 would mean 

perfect prediction by the model, while on the other hand, an R Square of 0 would say 

that the model did no better than if it had used a mean of the target variable. In table 
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The R square values for the KNN, Reforest, and XGP are 0.857, 0.994, and 0.998 on 

the training dataset, respectively. This shows that XGP has precisely captured the 

variance of the training data, closely followed by RForest, while KNN is way off. 

However, when testing these same using test data, the R square values become 0.794 

for KNN, 0.954 for RForest, and 0.98 for XGP. This clearly shows that XGP displays 

superior performance on unseen data, thus excellent generalization, while RForest has 

good generalization but not ideally. Much drop in R square value was observed for 

KNN, suggesting possible overfitting and poorer generalization compared to the other 

models. 

The RMSE metric measures the average size of prediction errors, providing insight 

into a model's accuracy. Thus, lower values of RMSE mean that the model is better. 

Again, the table has KNN with quite a high RMSE on training data at 587472.33 and 

improves in test data to 704000. This rise is vast, meaning KNN has problems 

generalizing since its predictive error is significant in unseen data. In contrast, RForest 

presents a considerably smaller RMSE of 123,000 for the training data and 332,000 

for test data for better accuracy and generalization. XGP did even better with the 

RMSE values since with the lowest value, it gives 65500 on training data and 220000 

on the test data, showing a much better accuracy and more robust generalization. 

Another measure of prediction error is the MAE, which averages the absolute 

differences between predicted and actual values. The MAE for KNN is already very 

high, about 348000 on the training set, and then further rises to 431000 for the test set 

alone, resoundingly establishing it as a poor generalizer. RForest has a MAE of 74500 

on the training data and 203000 on the test data. Again, XGP shows the best 

performance with respect to MAE, getting values of 45000 for training and 137000 for 

test, that are very close to each other and hence correspond to quite accurate predictions 

and good generalization. 

MAPE is valuable because it can be used to compare models at different sizes, as it 

measures the percentage difference between predictions. A lower Mean Absolute 

Percentage Error (MAPE) indicates a superior model performance. The table above 

indicates that the Mean Absolute Percentage Error (MAPE) is high for K-Nearest 

Neighbors (KNN) on both the training data (0.308) and the test data (0.379), 

suggesting that the predictions made by KNN are erroneous. Regarding this matter, 

the RForest model exhibited superior performance, achieving a Mean Absolute 
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Percentage Error (MAPE) of 0.092 on the training data and 0.257 on the test data. In 

addition, the XGP model demonstrates superior accuracy compared to both models, 

with MAPE values of 0.128 on the training data and 0.233 on the test data, expressed 

as percentages. KNN is a simple, instance-based learning algorithm that classifies new 

cases based on their similarity to stored instances. From the performance metrics of 

KNN, one can infer that although it fits the training data rather delicate, it does not 

generalize for the test part, as can be seen from the enormous drops in R square and 

rises in RMSE, MAE, and MAPE. Indicating overfitting means that the model captures 

noise in the training data rather than underlying patterns, hence poor performance in 

new data. While KNN is simple and easy to use, its effectiveness decreases with 

broader and more diversified datasets. It may be computationally expensive and 

memory-intensive because all its training instances are stored and distances are 

computed for each prediction. 

Random Forest is a combination learning method that constructs many decision trees 

during the learning stage and takes output as the average prediction value over all those 

trees. The performance metrics for RForest suggest that the fitting was excellent for 

the training data and quite good in generalization for the test data. Almost close to 1, 

the R square value of its RMSE, MAE, and MAPE values are all significantly less 

compared to KNN towards the training and test datasets. It shows that RForest captures 

complex patterns in the data well without overfitting the data or giving more trust in 

prediction tasks. It allows for big data, and high-dimensional data to be handled and is 

robust to overfitting—making RForest one of the most versatile and widely used 

models in many domains. 

Extreme Gradient Boosting combines the strengths of Gradient Boosting and Gaussian 

process regression into a robust and scalable framework for predictive modeling. The 

performance metrics of the XGP model are better than the models with maximal R-

squares and minimal RMSE, MAE, and MAPE. That is, it seems that XGP manages 

to capture the complex patterns in the data with excellent reliability and, at the same 

time, generalizes quite well to new data, making that model the one with the best 

performance in this comparison. Thus, XGP works, reducing boosting procedure 

errors, and yet integrates in a probabilistic way the predictions from Gaussian 

processes, providing accuracy with quantification of uncertainty. 
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In general, the analysis of Knn, RForest, and XGP models shows the strengths and 

weaknesses of the subsequent models. KNN, being simple and interpretable, thrives 

on good generalization and can be computationally quite expensive. RForest is a 

balanced technique that is both highly accurate and robust, fitting most problems. Still, 

XGP shows superiority in performance and generalization, so it fits the problems 

where tasks demand high accuracy and high reliability. All in all, the choice of model 

depends on the specific application, type of data, and available computing resources. 

XGP is preferred for high precision purposes, whereas RForest is our preference for 

those applications that require good generalization capacity. On more straightforward 

problems, we can use KNN or take it into account as a baseline model, given its 

simplicity in building and interpretation. 

Practically, the modeling application to estimate the dynamic modulus of asphalt 

mixtures (E∗) has very significant weight. An accurate estimate of E∗ sheds light on 

material properties and their performance under various conditions, which often 

directly impacts pavement design, maintenance, and longevity. The superior 

performance of XGP in this context suggests that the model can provide trustworthy 

predictions of E, which can significantly assist in better decision-making for 

infrastructure projects. The next best alternative is RForest, which is again robust if 

computational efficiency and interpretability become essential considerations. The 

next one is the KNN model, with overall lower accuracy values, and that would also 

be helpful when limited computational resources should be considered. 

Hence, all of the above lead to the conclusion that the comprehensive analysis of the 

KNN, RForest, and XGP models considered in evaluation metrics such as R Square, 

RMSE, MAE, and MAPE gives extensive information on their predictability power 

and practical prospects. XGP comes out as the most efficient one with good accuracy 

and high robusticity and generalization ability that makes it a fit for tasks experiencing 

refined and accurate or confident predictions. RForest also performs well and finds a 

strong balance between accuracy and interpretability. While KNN is simple and 

interpretable, it lacks generalization and can be computationally expensive. It depends 

on the model choice for a particular application, the nature of the data, and 

computational resources; XGP has put ahead not for high-precision tasks over RForest 

and generalizability, while KNN is simple and easy to handle. 
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                                                 CHAPTER V 
 

Conclusion and recommendation 

5.1 conclusion 
 

In conclusion, three machine learning models are analyzed: K-Nearest Neighbors, 

Random Forest, and Extreme Gradient Boosting. Each of these approaches has specific 

strengths and weaknesses. Although KNN is very simple and easy to interpret, it 

suffers from a high computational cost. It does not generalize very well, which makes 

this algorithm less effective in conditions of more extensive and more diversified 

datasets. On the other hand, random forest is one of the robust and balanced techniques. 

It performs well for big data for cases with many dimensions; it is resistant to 

overfitting, which gives good generalization for test data in complex patterns. This 

makes it versatile for many applications. It turns out that XGBoost is incomparable to 

the rest of the models in terms of accuracy and reliability. Only then does it combine 

gradient boosting and Gaussian process regression to achieve very high-performance 

metrics, such as R-squared, RMSE, MAE, and MAPE. It is especially good at 

capturing complex patterns in data and offers excellent generalization to new data, so 

it would be very appropriate for tasks that require high precision and reliability. 

The excellent performance of XGBoost in practical applications, especially in 

estimating asphalt mixtures' dynamic modulus (E*), is critical. E* prediction is 

paramount to understanding material properties and, hence, their performances under 

a wide range of conditions, impacting directly on pavement design, maintenance, and 

endurance. Whereas Random Forest is also robust and preferred when computational 

efficiency and interpretability are essential, KNN may be more suitable for more 

straightforward problems or when computational resources are low owing to its lower 

accuracy. Therefore, the choice of a model depends on the specific application, type 

of data, and computing resources available. The preference is based on tasks requiring 

high precision with XGBoost, good generalization with Random Forest, and 

sometimes KNN classifications owing to their simplicity during the build and 

interpretation. Based on the evaluation of the machine learning models—K-Nearest 

Neighbors, Random Forest, and Extreme Gradient Boosting—or E* dynamic modulus 

prediction of asphalt mixtures, a few recommendations come up for future research 

studies and practical applications. 
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5.2 Recommendation 
 

It is recommended to prioritize the use of XGBoost for high-precision tasks due to its 

superior performance in terms of accuracy and reliability. Compared to the other two 

models, this has returned the highest R-squared values and the lowest errors, hence 

very effective in complex patterns and generalizing well to new data. This makes 

XGBoost especially useful for projects involving critical infrastructure where exact 

predictions of material behavior under varying conditions are necessary. Researchers 

and practitioners should integrate this XGBoost into their predictive modeling 

workflow to improve the reliability and accuracy of results. While high in precision, 

XGBoost could not beat Random Forest with regard to robust performance, especially 

when handling high-dimensional data and reducing overfitting. This makes it balanced 

for applications where both accuracy and interpretability are important because of its 

ability to fit training data well and generalize to test data. In these cases, practitioners 

are encouraged to use random forests in scenarios where computational efficiency and 

model interpretability are essential. Such a model can turn out to be excellent in 

applications where a good tradeoff between accuracy and the capability to explain 

model decisions is required—for instance, in preliminary feasibility studies or in an 

environment where stakeholder understanding of the project is very crucial. Although 

less accurate than the other two models, the K-Nearest Neighbors algorithm has some 

advantages due to its simplicity and ease of implementation. It can be used as a 

baseline model to which more sophisticated algorithms should be compared, for 

example, KNN. This will make it quite effective in smaller datasets or when the 

interpretability of the model is essential. It would often be a good solution for simple 

problems or at least be used as a baseline model in the development process. KNN will 

lead researchers to consider it in cases where computational resources are limited, and 

a fast, interpretable solution is required. Evaluation and continuous optimization of 

machine learning models are crucial to improving their performance over time. 

This can, to a considerable extent, be improved by regularly updating the training data 

and tuning the hyperparameters, together with the addition of new features. A powerful 

framework of validation should be implemented to test model performance on unseen 

data to prevent overfitting and ensure that the models generalize well. Researchers 

should consider the iterative process of monitoring and adjusting models using 
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individual performance metrics to guarantee their relevance and accuracy in the long 

run. One such application where real-time monitoring can drive home the benefits of 

an integrated machine learning model with sensor networks is SHM. In this approach, 

continuous data will be collected and updated for modeling calibration to predict the 

structural performance/possible failures more accurately and timely. Optimization 

algorithms should be applied at least in designing efficient sensor networks and 

developing effective damage detection methods. A practitioner will want to consider 

integrating real-time data collection with predictive modeling to advance their systems' 

accuracy and responsiveness. Lastly, the interpretability and usability of machine 

learning models are critical factors for their practical applications. While model 

accuracy comes first, it alone is not good enough when it is at least equally important 

to ensure that models have clear and understandable insights that drive predictions. 

Feature importance analysis, partial dependence plots, decision trees, and many other 

tools and techniques may help improve complex models such as Random Forest and 

XGBoost regarding their interpretability. Developing models that are user-friendly and 

accessible to non-experts is very critical to ensure their adoption and effective use in 

different fields. Research should aim at developing such models; however, besides 

being well-performing, they should also be meaningful and relevant—able to provide 

actionable insights and be as easy as possible to use by practitioners. 
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