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Abstract 

 

Quantifying the Impacts of Land Use Changes on Forest Fragmentation in Nimba 

County, Liberia, Using Remote Sensing and GIS Techniques 

LARMOUTH, Emmanuel J. 

M.Sc., Department of Environmental Science and Engineering, Supervisor’s Name: 

Prof. Dr. GÖZEN ELKIRAN 

February, 2024, 76 Pages 

 

Changes in land use types affect forest resources, especially in today’s 

increasingly industrialized world. Quantifying those changes caused by human activities 

has become paramount, as it necessitates understanding the status of forest resources. 

This study aimed to determine the effects of changing land use on forest fragmentation 

in Sanniquelleh-Mehn District, Nimba County, Liberia, at different epochs (2002, 2012, 

and 2022). Achieving this involved the application of remote sensing (RS) and 

geographic information systems (GIS). Images from the Landsat-5 (Thematic Mapper), 

Landsat-7 (Enhanced Thematic Mapper (ETM+)), and Landsat-9 (Operational Land 

Imager 2 (OLI-2)) were used in this study from the USGS (U.S. Geological Survey) data 

source. A supervised classification map shows that the study area has five main land use 

types. These include waterbodies, bare land, built-up areas, agriculture, and forests. The 

overall classification accuracy was between 91.79% and 95.42%, while the range for 

Kappa statistics was between 0.894 and 0.9302. As of 2002, the district's total area (964 

km2) was made up of 97.85% forest, with the remaining areas being made up of built-up 

areas (0.33%), bare land (1.5%), and agriculture (0.3%). But between 2002 and 2022, 

the area covered by forest decreased from 925.73 km2 (97.85%) to 763.94 km2 

(80.75%) and finally to 681.97 km2 (72.09%), resulting in an overall change in forest 

cover of -26.33% over the 20-year period. The land use change matrix results show that 

a significant amount of forest cover was converted to agricultural land (75.30 km2), 

built-up area (74.49 km2), and bare land (9.12 km2) during the 1st period (2002–2012). 

In the 2nd period (2012–2022), 27.53 km2 of built-up area, 4.61 km2 of bare land, and 

50.65 km2 of agricultural land were converted from forest. The percentage change in 

forest cover from 2002 to 2012 was -17.48%, from 2012 to 2022 was -10.73%, and the 
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overall change from 2002 to 2022 was -26.33%. Generally, the study area continues to 

experience an increasing trend of built-up area, expansion of agriculture, and large-scale 

mining activities, resulting in an unending decline of forest cover, which has a 

tremendous environmental effect. 

Keywords: land use, land use change, forest fragmentation, remote sensing, GIS 
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Özet 

 

Nimba İlçesi'nde Arazi Kullanımı Değişikliklerinin Orman Parçalanması Üzerindeki 

Etkilerinin Uzaktan Algılama ve CBS Teknikleri Kullanılarak Nicelendirilmesi 

LARMOUTH, Emmanuel J. 

Yüksek Lisans, Çevre Bilimi ve Mühendisliği Bölümü, Danışmanın Adı: Prof. Dr. 

GÖZEN ELKIRAN 

Şubat 2024, 76 Sayfa 

 

Arazi kullanım amacındaki değişiklikler, özellikle günümüzün giderek 

endüstrileşen dünyasında ormanlık alanları etkilemektedir. İnsan faaliyetleri tarafından 

neden olan bu değişikliklerin nitelendirilmesi, orman kaynaklarının durumunu 

anlamanın gerekliliğinden dolayı son derece önemli hale gelmiştir. Bu çalışma, farklı 

dönemlerde (2002, 2012 ve 2022) Sanniquelleh-Mehn Bölgesi, Nimba İli, Liberya'da 

arazi kullanımındaki değişikliklerin orman arazilerindeki üzerindeki etkilerini 

belirlemeyi amaçlamıştır. Bu amaçla, uzaktan algılama (RS) ve coğrafi bilgi sistemleri 

(GIS) uygulamalarını kullanılmıştır. Çalışmada, USGS (ABD Jeolojik Araştırma) veri 

kaynağından alınan Landsat-5 (Tematik Haritalayıcı), Landsat-7 (Geliştirilmiş Tematik 

Haritalayıcı (ETM+)) ve Landsat-9 (Operasyonel Kara Görüntüleyici 2 (OLI-2)) 

görüntüleri kullanılmıştır. Denetimli sınıflandırma haritası, çalışma alanının beş ana 

arazi kullanım tipine sahip olduğunu göstermektedir. Bunlar sulu alanlar, çıplak arazi, 

yapılaşmış alanlar, tarım ve ormanları içerir. Genel sınıflandırma doğruluğu %91,79 ile 

%95,42 arasında değişirken, Kappa istatistikleri aralığı 0,894 ile 0,9302 arasında 

değişmiştir. 2002 yılı itibarıyla, bölgenin toplam alanı (964 km²) %97,85 orman ile 

kaplıyken, geri kalan alanlar yapılaşmış alanlar (%0,33), çıplak arazi (%1,5) ve tarım 

(%0,3) oluşturmaktadır. Ancak 2002 ile 2022 yılları arasında, ormanla kaplı alan 925,73 

km² (%97,85)'den 763,94 km² (%80,75)'ye ve son olarak 681,97 km² (%72,09)'ye 

düşmüş, bu da 20 yıllık dönemde orman örtüsünde % -26,33'lük bir genel değişime yol 

açmıştır. Arazi kullanımı değişiklik matrisi sonuçları, önemli bir miktar orman 

örtüsünün ilk dönemde (2002–2012) tarım arazisine (75,30 km²), yapılaşmış alana 

(74,49 km²) ve çıplak araziye (9,12 km²) dönüştürüldüğünü göstermektedir. İkinci 
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 dönemde (2012–2022), 27,53 km² yapılaşmış alan, 4,61 km² çıplak arazi ve 50,65 km² 

tarım arazisi ormandan dönüştürülmüştür. 2002'den 2012'ye orman örtüsündeki yüzde 

değişim -17,48%, 2012'den 2022'ye -10,73% ve 2002'den 2022'ye genel değişim % - 

26,33'tür. Genel olarak, çalışma alanı yapılaşmış alanların artan bir trendini, tarımın 

genişlemesini ve büyük ölçekli madencilik faaliyetlerini deneyimlemeye devam etmekte, 

bu da orman örtüsünün sonu gelmeyen azalmaya ve çevresel etkiye yol açmaktadır. 

Anahtar Kelimeler: arazi kullanımı, arazi kullanım değişikliği, orman parçalanması, 

uzaktan algılama, CBS 
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Chapter One 

Introduction 

 

Forests play a vital role in supporting the livelihoods of billions of people 

globally (Sidiq, 2018). They supply wood fuel, which is utilized for cooking and heating 

purposes, serve as habitats for various species of wildlife, protect biodiversity, and 

maintain the overall functionality of ecosystem services (Ochenje et al., 2016). 

Unfortunately, rapid forest loss has been brought about by the overuse and destruction of 

forest resources to support economic growth and fulfill the necessities of a growing 

population, particularly in the tropics where more than two-thirds of the world's 

biodiversity is located (Asrat & Simane, 2018). 

 
The depletion and deterioration of forests lead to significant declines in 

biodiversity and contribute to the release of approximately 10% to 25% of the world's 

carbon emissions. Indeed, from 2014 to 2018, there was an approximate yearly 

deforestation rate of 26 million hectares (ha), with tropical regions bearing the brunt of 

this trend. Quick action must be taken to stop or reverse the trend of forest resource loss 

at all levels to prevent further distraction and its adverse effects on people's lives and 

economic development (Tesfaye, 2017). 

 
Numerous factors at varying scales contribute to the loss of tropical forests or 

deforestation (Falaki et al., 2013). According to Woods et al. (2017), the primary causes 

of deforestation may be sustaining life and commercial farming, followed by the growth 

of settlements and the construction of infrastructure. Climate change is a substantial 

ecological problem that affects many nations, endangering forest biodiversity, food 

production, water accessibility, and the livelihoods of individuals (Sidiq, 

2018). Furthermore, there is a common belief that developing nations in tropical regions 

like sub-Saharan countries have a more severe impact than developed ones (Chen et al., 

2018).  

Human-caused activities, including mining, agriculture, deforestation, and 

building, significantly change land use patterns, affecting many current environmental 
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issues. Land use change is becoming more widely acknowledged as a driver of 

ecological change. Changes in land use are widespread, increasing, and have the 

potential to harm local, national, and global levels. Using data sensed by remote sensing 

makes it possible to learn and better understand the variability in land use change and its 

effects on forest fragmentation in shorter time, at lower prices, and with reasonable 

precision with GIS participation, which offers a better platform designed for the 

analysis, updating, and retrieval of data has been transformed by the emergence of high- 

definition satellite imagery and the advancements in image processing and GIS 

technology. This transformation has enabled a shift towards more regular and reliable 

monitoring and modeling of land usage patterns and the fragmentation of forests (Rawat 

& Kumar, 2015). 

 
Statement of the Problem 

"Land use change" describes how human activities like urbanization and 

agriculture alter the earth's surface. Land use change worldwide is primarily caused by 

how past and present people have used and managed their land. Changes in land use 

cause large-scale environmental changes. These changes can affect the earth's 

biogeochemical cycles, the distribution and abundance of biological resources, the 

global climate system, the stratosphere's ozone layer, and the quality of the planet's 

water. Accordingly, changes worldwide are increasingly attributed to land use and land 

management (Mitsuda and Ito, 2011). 

Similarly, land use changes have significantly impacted the forest resources in 

the study area. Forests have been fragmented due to human activities like iron ore 

mining by the most prominent company, ArcelorMittal Mining Company in Liberia, tree 

logging for income generation, the conversion of forests into agricultural areas, 

suburbanization and encroaching by the towns, and road connectivity. In addition to 

these significant factors, making charcoal and firewood, among others, is the primary 

cause of forest fragmentation and loss of species diversity in the study area. As a result, 

forest fragmentation is occurring at an alarming rate, and this will have a significant 

impact on the environment at large. The most extensive forests, including the national 

forest in the area, are being split up into several smaller patches of forest habitat. 
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Consequently, an evaluation of the effect of a shift in land use on forest 

fragmentation in the subject location is required. Utilizing multispectral and 

multitemporal satellite images for precise quantification requires sophisticated 

equipment such as geographic information systems (GIS) and remote sensing. The 

utilization of these instruments will furnish precise historical and contemporary data 

pertaining to the magnitude of habitat loss and forest fragmentation. Considering this, 

the objective of this research is to quantify the effects of land use changes on forest 

fragmentation in Nimba County, Liberia, by employing remote sensing and GIS tools. 

 
Objective of the Study  

General Objective 

The research measures the changes in land use and their effects on forest 

fragmentation in the Sanniquelleh-Mehn District throughout several time periods from 

2002 to 2022. The assessment aims to provide fundamental baseline information needed 

to have a better understanding of the present state of the forest resources in the region. 

 

Specific Objectives 

• Quantifying land use changes in the Sanniquelleh-Mehn District by remote 

sensing and GIS methods. 

• Identify the spatial patterns of forest fragmentation relative to the pattern of land 

use distribution across selected segments. 

• Identify possible land-use changes and their effect on forest fragmentation using 

20- year (2002–2022) satellite images and construct the area’s updated land-use 

characterization. 

 
Research Questions 

• What is the status of the changes in land use in the study area? 

• How are forests fragmented due to land use change in the study area? 

• How have forest fragments' spatial and temporal patterns changed over the last 

20 years? 
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Significance of the Study 

The current rate of industrialization the world over is alarming. This has 

necessitated the need for proper planning and environmental management. Therefore, it 

is essential to carefully choose, organize, and execute land use plans to address the 

growing demand for human necessities and well-being. These can only be achieved with 

accurate land use and land cover change data. The data collected from this research will 

have a substantial impact on decision-making regarding environmental management and 

the future planning of forest resources in the study region. It will also be vital to 

sustainably use the forests sometime in the future to analyze the social driving forces of 

land transformations. 

 
Limitations 

By offering a more thorough understanding of the geographic location, 

combining GIS with remote sensing data can increase the accuracy of spatial analysis. A 

more comprehensive picture of an area is possible when both technologies are used 

together, compared to when used separately. However, the temporal and spatial 

resolutions of remote sensing data are constrained. Because not all remote sensing data 

is publicly available, and high-quality data can be costly, it is also prone to error, and 

atmospheric conditions may impact certain data types. Therefore, cloud-free data was 

carefully evaluated for accuracy before utilizing remote sensing data in a GIS. Another 

major challenge could be using the two tools ideally because it is difficult to combine 

GIS and data from remote sensing, as it requires technical know-how. 

 

Definition of Terms 

Land Use: The term "land use" pertains to how individuals utilize land, encompassing 

commercial, industrial, mining, residential, and recreational undertakings within a 

particular area. 

Land Use Change: The term "land use change" refers to the transition between different 

types of land use, which are typically categorized as crop land, forest, grazing land, and 

human settlement. Land use changes happen often and on a variety of scales. They can 
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have distinct and combined effects on the quality of the air and water, the functioning of 

watersheds, the production of waste, the quantity and caliber of wildlife habitat, the 

climate, and the health of people. 

Forest: A place having a high tree density is called a forest. Numerous living things, 

including plants, animals, and microorganisms, call forests home. 

 
Forest Fragmentation: Large, continuous forests are broken into smaller, isolated 

forest patches by roads, farms, utility corridors, or other human developments. This 

process is known as forest fragmentation. It is a subtle but significant factor contributing 

to ecological disruption and biodiversity loss. 

 
Remote Sensing: The technique of detecting and tracking an area's physical properties 

from a distance by calculating the radiation it emits and reflects is known as remote 

 sensing (typically from satellite or aircraft). With remote sensing technology, 

researchers can obtain substantial amounts of data from aerial photographs and satellite 

images, making it a perfect tool for tracking changes in land cover and use. This method 

can collect data on changes in land cover, including deforestation, land development, 

and urbanization. 

 
GIS: The Geographic Information System, or GIS for short, is a potent tool that lets us 

organize, handle, examine, and display geographical and spatial data. It allows us to 

recognize trends, relationships, and patterns among various geographic components. 

 
Scope of the Study 

The study was carried out in Sanniquelleh-Mehn District, Nimba County, in 

Northern Liberia, using satellite images for 2002, 2012, and 2022 to determine the 

changes in the forest concerning land use. Transects were pursued using google earth to 

check the terrestrial situation surrounding the forest fragmentation. 

Organization of this Study 

Chapter 1 introduces the research theme, background, and importance/significance of 

using remote sensing and GIS techniques to detect changes in land uses and their effect 

on forest fragmentation. The main objectives and sub-objectives that facilitate the tasks 
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of achieving the higher goal are also described in this chapter. 

 

Chapter 2 primarily reviews existing information relevant to land use change and its 

effect on forest fragmentation in similar areas worldwide, particularly in Liberia and 

West Africa, while focusing on applying RS and GIS techniques to the process. 

 

Chapter 3 describes the socio-demographic state of the study area. Spatial details 

ranging from location to the sizes of essential features and the study area's biological, 

topographical, soil, and climatic attributes were elucidated in the same chapter. It shall 

describe the major methodologies followed for a detailed discussion of the collection, 

processing, and achievement of different data sources, such as land use change 

detection. The general principles and techniques are discussed in this chapter. 

 

Chapter 4 The findings show the works shown on the map, followed by the socio- 

economic survey conducted at the study location. The findings in this part are presented 

and explained using a variety of maps, tables, and graphs. It also tried to display the 

analyzed data of the research to provide interpretable information and results and merge 

the significant contents and concepts from the previous chapters, leading to a discussion 

in which the research questions and objectives may be answered. This explains trends in 

the study's findings. The chapter ends with a summary of the findings obtained from the 

analysis and contrasts them with previous research (discussion). 

 
Chapter 5 contains a summary, conclusion, and possible recommendations with 

indications for future research prospects and implementation for decision-makers. 
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Chapter Two 

Literature Review 

 

What is Land Use? 

 

Land is an important natural resource, which has been the basis of human 

activity since the dawn of time. Thus, humans have modified terrestrial and aquatic 

systems on land for centuries to satisfy their basic needs. Global land use, atmospheric 

gas concentrations, and the soil's capacity to hold carbon in the future have all changed 

(Chaudhary et al., 2008). The characteristics of the biosphere include the local climate, 

soil types, topography, sedimentary layers with groundwater reserves, surface-level 

hydrology, plant and animal populations, human settlement patterns, and the physical 

impacts of human activities. The impacts may include terracing, water retention, 

changes in land shape, climate, water systems, plant life, animals, and land 

enhancements such as terraces and drainage systems (Pawar et al., 2020). 

 
Land refers to the Earth's surface that is not submerged in water, along with its 

biological and physical features that affect its use. Land use pertains to how and why 

people use land and its resources. These uses include agriculture, urban development, 

conservation in protected areas, and forestry for wood production. The Food and 

Agriculture Organization (FAO) has created categories for various land use types to aid 

in worldwide comprehension and control. The FAO categorizes land use into specific 

classifications, including agricultural land, forest areas, and built-up areas, to enhance 

planning and conservation activities (Keenan et al., 2015). These categories aid in 

understanding the main purposes of land and in making well-informed choices about 

land management and sustainability. 

 

Forest (Lands): A land area over 0.5 hectares with naturally growing trees that 

can grow up to 5 meters tall and a canopy cover of over 10 percent. Excluded are lands 

primarily used for agricultural or urban development. 

 

Other Wooded Land: Other Wooded Land: Land bigger than 0.5 hectares with 
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a canopy cover of 5–10 percent, trees that can naturally reach these thresholds, or a 

combined cover of more than 10% shrubs, bushes, and trees. Land designated for urban 

or agricultural use is not included. 

  

Other Land: Area that is not classified as a forest or woodland area is known as 

other land. It comprises land used for agriculture, pastures and meadows, developed 

areas (including infrastructure and settlements), arid land, land covered in permanent 

ice, and other land having trees but not within a forest. 

Three additional subcategories are used to classify other land further: 

(a) Other Land with Tree Cover:  

Land larger than 0.5 hectares with a canopy cover of above 10% or trees capable 

of reaching a height of 5 meters when completely mature. The land use standard 

distinguishes between a forest and other forms of land that include tree cover. The term 

includes groups of trees and single trees located in agricultural areas, parks, gardens, and 

near buildings, as long as they fulfill certain requirements for size, height, and canopy 

coverage. This group includes tree stands that are part of agricultural systems, such as 

fruit tree plantations and agroforestry settings, where crops are grown under the shade of 

trees (Ravindranath et al., 2014). 

 
Land over 0.05 hectares with trees over 5 meters tall and a canopy cover 

surpassing 5%, or trees capable of naturally meeting these criteria, or with over 10% of 

its area covered by both trees and shrubs. The property consists of areas mostly 

designated for urban or agricultural use, with trees or bushes. It includes a piece of land 

with trees or bushes that is not primarily utilized for farming or urban development. The 

size is less than 0.5 hectares, or the breadth is less than 20 meters but more than 3 

meters. Instances of this kind of terrain include windbreaks, shelterbelts, and corridors of 

trees and plants (Nowak & Greenfield, 2012). 

(b) Other Land with No TOF:  

This category includes land that does not fall under the designation of Other 

Land with TOF. This may include land with an area smaller than 

0.05 hectares, a canopy covers of less than 5% for trees, or less than 10% for a 

combination of trees, bushes, and shrubs, or dimensions less than 3 meters in width or 
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25 meters in length for linear structures. Carreiras et al. (2006) list many types of 

landscapes, such as deserts, peat bogs, inland water bodies, dry terrain, stone outcrops, 

snow tops, glaciers, treeless meadows, and treeless annual crops. 

  
Land use change 

It describes how human activities like urbanization, agriculture, and other 

practices alter the earth's surface. Land use change worldwide is primarily caused by 

how past and present people have used and managed their land (Mitsuda & Ito, 2011). 

Changes in land use cause large-scale environmental changes. These changes can affect 

the earth's biogeochemical cycles, the distribution and abundance of biological 

resources, the global climate system, the stratosphere's ozone layer, and the quality of 

the planet's water. Accordingly, land use and management are becoming the leading 

causes of global environmental changes (Barnes et al., 2019). 

 
Land use change has occurred since time immemorial, paralleling the rise and 

fall of human civilizations and changes in global population. Two significant trends in 

land use change have been observed over the centuries: (i) a dramatic increase in land 

area dedicated to human uses and (ii) intensification of both land use and control for 

increased production of goods and services. Land use change may have first occurred to 

increase the availability of land for wild games by clearing the area through burning; the 

birth of agriculture hastened the land use change, and industrialization is currently 

changing the land through urbanization (Lambin & Meyfroidt, 2011). Forests and 

grasslands, in particular, have undergone significant changes due to changes in land use 

worldwide. Since the last ice age, humans have cleared or dominated approximately 

75% of the world's natural forested areas. The worldwide rate of forest loss is currently 

0.6% per year, as reported by Hansen et al. (2010). Forest degradation due to resource 

extraction and conversion of forest areas to cropland, settlements (urban), and other land 

use types has resulted in forest fragmentation, decreased productivity, and increased 

forest isolation. 

 
According to research, naturally occurring old-growth forests may become so 

severely fragmented due to the lack of management that they cannot maintain viable 
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flora and fauna or their ecological integrity (Smith et al., 2016). The world's tropical 

regions have seen the fastest rate of change for grasslands and forests. Global land use 

has changed dramatically over the last few decades due to the enormous rise in human 

population and food consumption. The world's population has doubled since 1960. 

Ninety-five percent of people on the planet reside in developing nations. This has 

numerous ramifications, but the primary one is that increased agricultural output is 

required to meet fuel, fodder, and food demand. Growing will satisfy this requirement 

(Lambin and Meyfroidt, 2011). 

 
Global environmental change is a broad problem caused by various social factors 

defining "land use." Modification and conversion are the two categories of land use 

changes that can be evaluated using land use. A modification alters a cover form's state 

(such as switching from unmanaged to regulated water). The process of changing from 

one type of cover to another, such as from a forest to grassland, is called conversion 

(Promila et al., 2023). Batar et al. (2017) state that soil is a crucial natural resource on 

Earth and serves as the primary location for development operations. Therefore, 

understanding land use is essential to carrying out efficient planning tasks. (David 

Mayunga, 2018) states that land is a vital natural resource, and knowledge of the spatial 

distribution of land use is essential to comprehending landscape dynamics. Changes in 

land use and nature and human adaptations have already brought on deforestation, 

habitat loss, global warming, and increased natural disasters. 

 
Verheye (2009) asserted that land use and cover are not interchangeable terms. 

We must, therefore, look at their characteristics to determine how they vary. A "land use 

transition" is a significant alteration to the earth's surface by humans. The term "land 

cover" describes a piece of land's natural and artificial covering, including trees, water, 

bare earth, or man-made buildings. 

 
Land use encompasses the purpose for which the land is used and how its 

biophysical characteristics are managed (Christensen & Jokar Arsanjani, 2020). It also 

includes the objective that guides this management. Land use is the principal use of land 

types like grassland for agricultural production, residential areas, and livestock grazing, 

and land cover is anything visible, like grass or a building (Briassoulis, 2009). 
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According to Olorunfemi et al. (2018) land use transformation is pivotal in 

global environmental alteration because of its intricate connections with climate, 

ecosystems, biodiversity, and human activities. Additionally, it holds a critical position 

in resource management and land planning. 

 
The advent of remote sensing and GIS technologies in land analysis during the 

late 1980s has significantly propelled global monitoring of regional land-use dynamics 

changes. This progress is evident in various regions, such as the tropical rainforests in 

the Brazilian Amazon Basin, Africa, and South America, as demonstrated by Yengoh et 

al. (2016). The International Geosphere-Biosphere Program (IGBP) and the International 

Human Dimensions Program (IHDP) jointly developed a strategy in 1995 called "Land 

Use Change," which highlighted land use change as a significant global issue. It 

highlighted the need to improve our capacity to forecast alterations in land use at various 

geographical levels, as stressed by Verburg et al. (2013). Land use change is recognized 

as a key factor in global environmental transformation because of its complex 

relationship with ecosystems, biodiversity, climate, and human activities. Furthermore, it 

plays a crucial role in resource management and land-use planning. 

 
Factors Contributing to Changes in Land Use 

Changes in land usage are so widespread that they significantly impact essential 

facets of the functioning of the Earth System when taken on a global scale. They are the 

leading cause of soil degradation, directly impacting biotic diversity globally, altering 

ecosystem services, and altering local and regional climate change and global warming. 

They also impact biological systems' ability to meet human needs. 

These alterations also determine how vulnerable individuals and locations are to social, 

cultural, or environmental upheavals (Pielke Sr, R.A., 2005). 

 

Land use changes are essential to identify environmental change. Land changes 

have complex political, economic, social, demographic, cultural, technical, and 

biophysical influences. One must consider local or direct causes and regional or global 

decisions to understand these influences. Land cover changes are more often brought 
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about by human activity than natural processes, according to Frimpong and Molkenthin 

(2021). It may be necessary to alter land use and cover due to human activity's direct and 

indirect effects to safeguard vital resources. McKee et al. (2017) speculate that this 

phenomenon might be attributed to the prevalence of fires initiated around the same 

period as the commencement of agriculture. This resulted in extensive clearing, 

including deforestation and surface management, which continues today. McKee et al. 

(2017) state that the primary causes include limits on globalization, a thriving informal 

sector, low economic growth and poverty, population migration and demographic shifts, 

continuous conflict and war, debt, and reliance on development assistance. 

  
Forest Fragmentation 

The leading factor responsible for the worldwide reduction and depletion of 

species diversity has been forest fragmentation, driven by human actions such as 

logging, the transformation of forests into agricultural zones, and urban sprawl. Forest 

fragmentation occurs when a substantial forested region is divided into several smaller 

patches of forested habitats, as highlighted in the study by Bogaert et al. (2011). This 

process gives rise to what is termed a "binary landscape," signifying that the landscape is 

perceived as comprising isolated forest fragments scattered across a non-forested matrix 

that separates them (Bogaert et al., 2011). 

 

Forest fragmentation may result from human activities or natural occurrences. 

However, human action is more responsible for causing it than natural phenomena. 

Lindenmayer & Fischer (2013), state that land cover transition may happen via 

conversion (e.g., from forest to grassland) or modification (e.g., from dense forest to 

open forest) of land cover categories. Lindenmayer & Fischer (2013) demonstrated that 

landscapes respond differently to natural disturbances compared to man-made 

disturbances, with natural disturbances increasing the complexity of the landscape. 

 
Among the natural causes are landslides, flooding, pests, newly emerging plant 

diseases, and burning, which occurs most frequently in most areas. Changes in land 

cover result from humans using nature more often to meet their diverse needs for 

survival and development. Land cover change can be broadly attributed to four factors: 
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technological capability, socioeconomic organization, degree of development, and 

culture. Moreover, most studies on land-cover change recognize that the growing human 

population has a detrimental effect on the demand for land resources (Briassoulis, 2009). 

 
Utilization of Remote Sensing for Monitoring Changes in Land Usage 

The study objective also affects the applicability of the various sensor 

instruments, as does their capacity and wealth of information. Satellite images created 

by different sensor instrument models frequently differ significantly in spectral and 

spatial characteristics. More profound knowledge of land resources is made possible by 

continuously improving image radiometric and spectral properties, as demonstrated by 

  

Landsat instruments. Since 1972, Landsat satellites have consistently provided 

high- resolution multispectral imagery coverage worldwide. Because of their 

dependability and long-established track record, they are extensively used for 

documenting changes in land cover and usage throughout time (Ramankutty et al., 

2006). The US government's introduction of Landsat 7 in 1999 represents another 

technological leap. 

 
Remote Sensing Fundamentals 

Spectral resolution refers to the system's capacity to identify the size and number 

of wavelengths, intervals, or spectrum divisions. The resolution of an extensive range of 

wavelengths with comparable sizes and the identification of radiation from different 

parts of the spectrum are typically made possible by acceptable spectral resolution. 

Similar to grayscale images, color composites have low reflectivity in dark areas and 

high reflectivity in bright areas. But comprehension gets trickier when we blend 

different data bands to create fake composites (Arowolo et al., 2018) Nonetheless, this 

can be fixed by using statistical data and local knowledge. 

When categorizing a single satellite image, the specific spectral radiance is not 

important, and most image-processing studies are carried out using raw DN values. 

However, this method has limits since the spectral characteristics of a habitat cannot be 

accurately represented in digital values. These values are particular to each image 
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because they depend on elements such as the position of the sun and the weather at the 

time of the satellite's observation, both of which affect the viewing geometry. 

Converting DN values into a spectral signature with measurable units is more useful due 

to its ability to facilitate picture comparison (Biedemariam et al., 2022). 

Image calibration is necessary when comparing scenes captured over many years 

or when the research region exceeds the boundaries of a single scene. The positioning of 

the satellite images is suitable for variations in the phase angle, sun angle, earth-sun 

scale, atmospheric attenuation, and atmospheric path radiance. A linear transformation is 

carried out utilizing radiometric control sets that reflect characteristics that do not 

change over time in order to calculate gains and offsets. Various criteria may be used to 

define changes in land cover. There is no universal approach that is effective for all 

types of landscapes and land cover characteristics due to the unique benefits and 

limitations of each.  

Two main methods exist for classifying remotely sensed pictures for various 

purposes. The algorithm is used for supervised classification to distinguish various land 

cover types based on the reflection of distinct pixels. The algorithm utilizes data 

gathered from fieldwork and environmental expertise to categorize pixels into 

comparable groups using predefined sample signatures (Hasan et al., 2020). 

 
Changes on the Earth's Surface 

The Earth's surface undergoes constant and diverse transformations. Firstly, 

improvements can occur over several time frames. This encompasses a variety of 

geological phenomena, such as continental drift, as well as catastrophic catastrophes like 

floods. These occurrences result in a combination of periodic and ongoing 

modifications. Furthermore, changes can occur at many geographical scales, ranging 

from regional activities such as road building to global phenomena such as ocean water 

temperature fluctuations. It is challenging to evaluate the complexity and magnitude of 

changes due to their vast spatiotemporal range because they are interdependent and 

related on several scales (spatial and temporal). Furthermore, recognizing shifts is 

difficult (Khan et al., 2014). 

 
Context of the Change Detection Procedure 
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Change detection is the process of recognizing changes in the condition of an 

item or phenomenon by monitoring it continuously (Goswami et al., 2022). Change 

detection has its roots in the history of remote sensing, starting with Gaspard Felix 

Tournachon, also known as Nadar, who captured the first aerial image in 1859. 

Subsequently, the evolution of change detection technology, particularly during World 

Wars I and II, was closely linked to military advancements and the strategic advantages 

offered by the temporal data provided by remote sensing. As time progressed, change 

detection transitioned into civilian applications, with most events in the 20th century 

relying on traditional analog methods and human interpretation (Théau, 2011). 

 
The digital change detection era began in July 1972 with the launch of Landsat- 

1, also known as the Earth Resources Engineering Satellite. Scientists have effectively 

detected variations over a wide area and acquired reliable data over time by consistently 

gathering digital information from the earth's surface in many spectral bands. The 

persistent work put into this project, together with the implementation of manyadditional 

strategies, led to advancements in change detection techniques, as stated by Coppin et al. 

(2004).  

Swift and accurate identification of Earth's surface features is crucial for 

comprehending the relationships and interplay between human activities and natural 

phenomena. It enables better management and utilization of resources. 

In order to precisely assess the temporal consequences of the phenomenon, the change 

detection process typically requires the utilization of information from many periods. 

Data collected from space, like Thematic Mapper (TM), radar, and Advanced Very High 

Resolution, is often used because it has benefits like being able to collect data 

repeatedly, giving a complete picture, and being in a digital format that computers can 

quickly process (Hussain et al., 2013). 

 
Considerations Before Implementing Change Detection 

To accurately monitor natural resources to identify changes, it is crucial to 

consider four key elements. These tasks involve determining the occurrence of a change, 

quantifying its magnitude, measuring its extent, and evaluating its spatial distribution. 

For a successful change detection study utilizing remotely sensed data, it is important to 
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carefully assess the remote sensor device, the surrounding conditions, and image 

processing methods (Reba & Seto, 2020). The ability to identify changes in remote 

sensing largely depends on the collected data's temporal, geographical, spectral, and 

radiometric resolutions. Essential environmental elements encompass soil moisture 

levels, air temperatures, and phenological characteristics (Chen et al., 2014). The most 

critical preprocessing factors for identifying changes are multitemporal picture 

registration and radiometric and atmospheric adjustments. The significance of accurately 

registering the spatial information of multi-temporal imagery is evident since any 

inaccuracies in registration would predominantly result in erroneous identification 

consequences (Chen, 2005). 

 
To do a multitemporal quantitative picture analysis, it is necessary to convert the 

digital values into surface radiance or reflectance. Various devices are available for 

atmospheric and radiometric normalization or correction, such as the second solar 

spectrum satellite signal (6S) simulation, dark object removal, and proportional 

calibration. Nevertheless, topographic adjustment may be necessary in a research region 

characterized by hills or harsh terrain (Droll et al., 2005). Successful change detection 

analysis requires meeting the following prerequisites: (1) Recording multiple images 

accurately at various time points; (2) Precisely capturing images at different intervals; 

(3) Maintaining consistent phenological conditions in images taken at different times; 

(4) Acquiring spatial and spectral images that are identical whenever feasible; and (5) 

Conducting radiometric and atmospheric calibration or normalization between images 

taken at different times (Lu et al., 2004). 

 
Different remote sensing data formats are available for use in change detection 

applications. The commonly utilized data sources in the past encompassed radar, aerial 

photographs, TM, SPOT, AVHRR, and Landsat Multi-Spectral Scanners (MSS). 

Nevertheless, contemporary sensors are more important, especially when choosing 

distant sensing data for innovative detection applications. Two examples of these 

sensors are the Moderate Resolution Imaging Spectroradiometer (MODIS) and the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (Panuju 

et al., 2020). 
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For consistency in data collection, it is advisable to employ identical sensors, 

radiometric parameters, and spatial resolution data for photos captured on or around the 

same day each year to reduce the impact of external factors like sun angle, seasonal 

changes, and phenological fluctuations. Before selecting the optimal change detection 

method, it is essential to determine the trajectory of the change. Post- classification 

comparison thoroughly assesses improvement directions, whereas image differentiation 

provides information on changes or lack thereof. To achieve a research objective, it is 

crucial to carefully evaluate the appropriate change detection approach for detecting 

remotely sensed data and study regions to produce a superior quality alteration 

identification product (Lu et al., 2004). 

 
Change Detection Techniques 

Typically, change is identified by comparing two maps or an outdated remote 

sensing image with an updated map. Studying remotely sensed data may be 

advantageous for mapping and analyzing change detection. Natural resource 

management and land cover maps need to be updated. Numerous techniques for change 

detection have been created and applied in various contexts. Some shift identification 

techniques and their uses are as follows (Mushore et al., 2017) 

 
Image Differencing 

Probably the most popular algorithm for change detection is image differencing. 

One picture date can be subtracted from a second date accurately recorded to the first. 

Giardino (2011) states that image differentiation typically outperforms other techniques 

for detecting transformation. 

 
This simple method is commonly used to remove captured images taken at 

various times, band by band and pixel by pixel. Pixel values of 0 result from no changes 

over time; instead, changes should result in either positive or negative values. However, 

accurate radiometric corrections and precise image registration for multidate images are 

rare. Additionally, images reveal consistent brightness differences that are not the result 

of changes in land cover. Identifying changes in brightness values (BV) between two 

dates may be difficult even after radiometric normalization and correction due to 
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variables like sensor variances and meteorological conditions at different periods. 

The subsequent task for this approach is determining the threshold values that 

distinguish between changes and no changes in the generated pictures.  

The standard deviation is commonly employed as a criterion for selecting reference 

values for thresholds. To mitigate the impact of scene and size on the distinction of 

outcomes, several techniques, such as standardization, histogram matching, and 

normalizing, are employed on multidate photos. The picture differentiation approach 

may be utilized for structured data, such as vegetation with multidate indices or primary 

components, while its primary application is for single bands (Abd El-Ghany et al., 

2020). 

 
Image Rationing 

This method's simplicity and challenges are comparable to those of the picture 

differencing method. But its use is less common. It is a ratio of images that were taken, 

band by band and pixel by pixel, at different points in time. Pixel values larger or less 

than one is used to indicate changes. A single name would be assigned to unaltered 

pixels. Choosing threshold values between change and no change is the task of this 

technique in practice, and it is motivated by the same factors as image differentiation. 

This approach is also prone to picture defects and jumbled pixels. Gad and Kusky (2006) 

introduced a methodology to address the effects of misregistration on change detection 

methods. The model was evaluated using multi-temporal Thematic Mapper (TM) 

pictures of rapidly urbanizing landscapes using the image differentiation approach. 

 
According to Zareie et al. (2016), the misregistration compensation approach 

enhances land use, safeguards characteristics at or near a pixel scale, and reduces noise 

from mis- registered multi-temporal data. Because of the non-normal distribution of 

outcomes, this method is frequently criticized for limiting the validity of threshold 

selection by using the standard deviation of resulting pixels. Zareie et al. (2016) 

described how band rationing of MSS bands 5 and 7 detected ecological changes. 

 
Image Regression 

The pixel values in the same region at two distinct times are assumed to have a 
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linear relationship by this method. It indicates that many pixels did not change over the 

two years. In each spectral band, a regression function that best captures the relationship 

between the pixel values at two dates is determined. The areas of transition are 

understood to be the regression residuals. This method has the advantage of lessening 

the impact of radiometric heterogeneity between multidate images (i.e., environment, 

sunlight angle, and sensor calibration). The challenging parts are selecting an 

appropriate regression function and establishing cutoff points between areas with and 

without changes (Yang et al., 2003). 

 
Change Vector Analysis 

The approach relies on a spatial depiction of the change in spectral space. A 

pixel's location in n-dimensional spectral space is anticipated to shift as it moves 

between two dates. A vector determined by the magnitude and direction of two variables 

is used to depict this change. This method is applied when comparing multidimensional 

images. For every related band, differential images are created using change vector 

analysis. After that, the difference's photos are squared and applied. The magnitude of 

the vector to be changed can be found by taking the square root of the squared number. 

The difference between the positions of dates 1 and 2 is the picture magnitude, measured 

in the same unit as the input units (Baisantry et al., 2012). 

 

The extent of the change indicates its magnitude, while the direction reveals the 

essence of the transition. One benefit of the method is that it can process multiple 

spectral bands simultaneously. It includes details on how to modify it as well. The most 

complex parts are figuring out magnitude thresholds, telling the difference between a 

change and nothing at all, and interpreting vector trajectory in light of the type of 

change. This strategy is frequently applied to transformed data using Tasseled-Cap 

techniques (Nordberg and Evertson, 2005). 

 
Post-Classification 

This approach is usually known as "delta classification." It is easy to understand 

and widely used. Two photos shot at different times are first given separate categories 
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before being compared. Ideally, every label ought to belong to a distinct theme class. A 

shift matrix representing the number of pixels in each class can be used to visualize the 

changes between the two dates. You can use this formula to determine the modifications 

made in a particular class. The primary benefit of this technique is that multidate 

photographs are relatively unaffected by geometric and radiometric variations. On the 

other hand, the overall accuracy of the final result is determined by combining the 

accuracies of the two distinct classifications. For example, if each independent 

classification has an accuracy of 80 percent, the final accuracy would be 64 percent 

(Serra et al., 2003). 

 
Vegetation Index Differencing 

Researchers that study plants use vegetation indices, which are based on the ratio 

of near-infrared to red reflectance, to make the difference between the strong reflectance 

of plants in the near-infrared range and the absorption band (red component) of 

chlorophyll in the spectrum stand out more. Three often-used vegetation indicators are 

the Transformed Vegetative Index, the Vegetation Index for Standardized Difference, 

and the Vegetation Ratio Index. The normalized difference vegetation index is 

calculated by using reflection data from the red and near-infrared spectral bands. It 

pertains to the proportion of artificially produced photographic radiation. The most 

significant factor influencing near-infrared reflectivity in Landsat TM channel 4 is the 

quantity of plant structures that are readily available and contain chlorophyll (Fan et al., 

2015). 

 

A significant correlation was discovered between crown closure, leaf area index, 

several plant characteristics, and the normalized difference in brightness values derived 

from the visible and near-infrared red bands. 

The Normalized Difference Vegetation Index (NDVI) is found by comparing how much 

the visible (20%) and near-infrared (60%) parts of the electromagnetic spectrum are 

reflected. These parts can be seen in Landsat channels 2 and 4 (Jiang et al., 2006; Wu et 

al., 2017). 
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Linear Transformations 

This approach combines several techniques that have the same theoretical basis. 

The most prevalent method is the tasseled-cap transformation combined with principal 

component analysis (PCA). By generating fewer new components, linear 

transformations are frequently used to decrease the dimensionality of spectral data. The 

majority of the variance in the results can be explained by the first components, which 

are uncorrelated. When assembling multidate images into a single dataset, linear 

transformations are employed for change detection (Shi & Xu, 2019). 

 

PCA mapping involves mapping areas of transformation in the final components 

(i.e., information specific to each of the various dates) and regions of unchanged areas in 

the first component (i.e., details common to multidate images). A variance/covariance 

matrix is typically used to compute PCA. Nonetheless, a hierarchical matrix—a 

correlation matrix, to be exact—is also employed. Interpreting the results of the scene- 

specific PCA can be challenging. The challenging steps are determining changes from 

the essential components and choosing boundaries between changed and unchanged 

areas. It is imperative to possess a firm grasp of the analysis field (Masini & Lasaponara, 

2006).  

There is another linear transformation: The Tasseled Cap. Nevertheless, unlike 

PCA, it is not dependent on the scene. Predefined vegetation spectral properties are used 

to determine the new component directions. Four new components are being measured 

and designed to increase visibility, greenness, wetness, and greed. It is frequently 

challenging to interpret the results, and changing the labeling is challenging. Unlike 

PCA, shift detection in multidate imagery requires precise atmospheric calibration of the 

Tasseled-Cap transition (Lein, 2011). 

 
Direct Multidate Classification 

Another name for this technique is "composite analysis." Examples of combined 

analyses are "Classification of spectral-temporal changes" and "Spectral-temporal 

analysis." "The investigation of shifts in spectral patterns" or "Multidate clustering." 

Before classification, multidate images are merged into a single dataset. Compared to 
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non-changeable areas, change areas are more likely to have distinct classes and separate 

statistics (Xu et al., 2018). The system has only one classification process, which can be 

used unattended or tracked. Conversely, this process typically yields many 

corresponding groups, spectral variations within each image, and transient variations 

across images. Substantial results information in the field of study is necessary for the 

often difficult-to-interpret findings. To reduce the complexity of the data or the coupling 

of spectral and temporal changes, one can employ combined techniques such as 

component analysis or Bayesian classifiers (Volpi et al., 2013). 

 
Multitemporal Spectral Mixture Analysis 

The idea behind spectral mixture analysis is that you can figure out a pixel's 

reflectance value by adding up the values of its parts (called endmembers) and giving 

each one a weight based on how much of it there is. In this instance, linear mixing of 

such elements is assumed. This technique can be used for change detection and 

extracting sub-pixel information by conducting independent analysis. One benefit of this 

approach is that it produces consistent and dependable outcomes. The challenge with 

this strategy is finding the right end members (Hemissi et al., 2013) 

 
Combined Approaches 

The most popular techniques for identifying transformation are those previously 

mentioned. Although they can be used independently, they are typically used in tandem 

with or in addition to other image-processing methods to achieve more consistent 

results. You have several different options. Examples include combining vegetation 

indices with image differentiation, post-classification, image enhancement, direct multi- 

date classification, primary component analysis, multi-temporal spectral analysis and 

image differentiation, shift vector analysis, and principal component analysis (Kesikoğlu 

et al., 2013). 
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Chapter Three 

Methodology 

Description of the Study Area 

The research was conducted in Sanniquelleh-Mehn District, Nimba County, in 

Northern Liberia, where the distraction of forests is high due to extensive mining and 

other human activities. The study area is selected owing to its fragility and susceptibility 

to forest fragmentation and biodiversity loss. It occupies an area of 946 km² and is 

divided into three major communities: Goah, Sehyi, and Yermein. It lies around 500 m 

above sea level altitude and is located at 7.44001º latitude and -8.6827º longitude. 

Sanniquelleh-Mehn has a tropical climate with an average annual temperature of 25 °C 

and an average yearly rainfall of 13 millimeters. The rainfall is spread out between May 

and October. The cold climate makes the area a desirable destination for some tourists in 

the country. Not only for its vast natural forest but also for its ragged topography and 

high mountains, it is considered the best tourist destination in the country. 

 
Its natural forest is massive, and it is home to the most protected national forest 

in the country. In addition, it is home to 40% of the remaining upper Guinean rainforest. 

Tree logging is playing a major role in the country’s economy. In addition to wood 

products, the forest provides food and other raw materials for domestic and industrial 

use. However, a large quantity of the original forest in the study area has been degraded 

due to the high involvement of iron ore mining, tree logging, and other uncontrollable 

human interferences. However, it is still home to some primary and secondary forests, 

mainly in its northern part. The soils of the district mainly include latosols, lithosols, and 

regosols. Most land use in Sanniquelleh-Mehn is linked to agriculture; cassava, rice, and 

maize are cultivated primarily in the area. Consequently, the land use in Sanniquelleh- 

Mehn has witnessed dramatic changes, with forests decreasing at a higher rate while 

construction land expands gradually. In summary, this study in Sanniquelleh-Mehn is 

significant for sustainable forest management practices. 
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Figure 1. 

Map of Liberia, Nimba County, and the Study Area 

 

 
Data Acquisition 

The research used images from Landsat-5 Thematic Mapper, Landsat-7 

Enhanced Thematic Mapper (ETM+), and Landsat-9 Operational Land Imager 2 (OLI- 

2). The USGS provided satellite pictures for the years 2002, 2012, and 2022. Satellite 

images for January were collected from the WRS2 with a path/row of 199/55, as this 

month is free from cloud and haze effects. The Landsat-5 TM and Landsat-7 ETM+ 
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satellites are equipped with seven spectral bands, each with a spatial resolution of 30 

meters. The Landsat-9 OLI-2 contains nine spectral bands and a spatial resolution of 30 

meters. The scene measures about 170 km north-south and 183 km east-west. 

 
Remotely Sensed Imagery and Pre-Processing 

The Landsat-7 ETM+ and Landsat-9 OLI-2 images are geo-referenced 

(Universal Transverse Mercator-UTM, WGS84) by the General Directorate of Mapping 

using the nearest neighbor resemblance process. Radiometric corrections such as haze 

and noise reduction were executed for better outputs. 

 
Land Use Classification Scheme 

A categorization method was developed to define the land use groupings 

precisely and prepare the land use map using satellite images. Using ground control 

points and satellite imagery from 2002, 2012, and 2022, we identified the primary 

categories of land use: vegetation, built-up areas, degraded land (bare land), water 

bodies, and agriculture. A temporal analysis methodology was employed to comprehend 

better the alterations that transpired inside the designated time intervals. In addition, the 

changes in land use throughout the given years were determined by analyzing Landsat 

photos using a mix of remote sensing methodologies and GIS techniques. 

 
Post Processing 

Image Classification and Accuracy Assessment 

After developing a classification system, the most often employed approach for 

picture classification, maximum likelihood classification, was utilized. An extensive 

evaluation utilizing observational satellite image analysis using Google Earth images 

was carried out before selecting training samples. For each class, a minimum of 30 

training samples were collected. Supervised classification techniques classify each pixel 

into a cluster by comparing its spectral signature to computer-generated cluster 

signatures. The computer evaluates the natural variation and establishes cluster 

identification for Landsat-7 ETM+ picture categorization without needing a prior 
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understanding of the elements in the scene. 

Supervised classifications require a high level of knowledge about the scene region to 

enable the machine to identify specific content categories, commonly called training 

classes. Regions containing relevant content within a scene are visually marked and 

saved for utilization in the supervised classification procedure. The supervised 

classification approach groups two photographs of different dates individually. The 

ERDAS Imagine 2014 software was employed to construct a supervised classification 

system with a maximum likelihood algorithm. Ground control point (GCP) data from 

each land use was obtained for the accuracy assessment. The supervised classification 

method was used in this study. 

 
Field Survey and Accuracy Assessment 

A field survey was undertaken for authentication and precision ground 

verification. Accomplishing this task was made possible with the assistance of GPS, 

which covers all the central land uses available. The Kappa statistic was used to 

determine accuracy. The Kappa statistic is a tool for comparing observed accuracy to 

predicted accuracy (random chance). The accuracy was determined by analyzing the 

diagonal components of the error matrix and considering the change agreement, which 

considers the off-diagonal parts of the error matrices. This refers to the degree of 

agreement achieved by eliminating the agreement that would be anticipated to happen 

by random chance. The error matrices were utilized to compute the aggregate precision, 

consumer and producer accuracies, and the Kappa statistic. 
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Chapter Four 

Findings and Discussion 

Patterns of Land Use in the Study Area 

Land use maps were created for 2002, 2012, and 2022 using data collected from 

Landsat 5 (TM), Landsat 7 (ETM+), and Landsat 9 (OLI2) satellites. The research 

region was analyzed using supervised classification, which found five distinct land use 

categories. The land use categories resulting from iron ore and other mining operations 

encompass built-up areas, barren land, vegetation, water bodies, and agricultural areas. 

 
 Accuracy Assessment 

Tables 1–3 display the error matrix, together with the kappa coefficient, 

producer's accuracy, and user's accuracy. The number was calculated by dividing the 

accurately classified data from the error matrix by the overall accuracy. In 2002, the 

classification accuracy reached 91.79%, and the Kappa statistics obtained a value of 

0.8940. The classification accuracy and Kappa numbers 2012 were 94.52% and 0.9302, 

respectively. In 2022, the total classification accuracy reached 95.42%, with Kappa 

statistics measuring 0.9416. 
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Figure 2. 

Land Use Map of Sanniquelleh-Mehn District, 2002 

 

Table 1. 

Accuracy Assessment Using Error Matrix and Kappa Statistics for the Year 2002 
 

 
Class name 

Reference 

totals 

Classified 

totals 

Number 

correct 

Producers 

accuracy 

Users’ 

accuracy 

Water 63 34 34 53.97 100 

Agriculture 65 64 64 98.46 100 

Built-up 62 62 61 98.39 98.39 

Forest 134 133 133 99.25 100 

Bare land 66 97 66 100 68.04 

Total 390 390 358   
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Table 1 (Continued). 

Overall Classification Accuracy = 91.79% 

Overall Kappa Statistics = 0.8940 

Figure 3. 

Land Use Map of Sanniquelleh-Mehn District, 2012 

 

Table 2. 

Accuracy Assessment Using Error Matrix and Kappa Statistics for the Year 2012 
 

 
Class name 

Reference 

totals 

Classified 

totals 

Number 

correct 

Producers 

accuracy 

Users’ 

accuracy 

Water 87 57 57 65.52 100 

Agriculture 82 82 82 100 100 

Built-up 105 105 105 100 100 

Forest 127 156 127 100 81.41 

Bare land 146 147 146 100 99.32 
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Table 2 
(Continued). 

     

Total 547 547 517   

Overall Classification Accuracy = 94.52% 

Overall Kappa Statistics = 0.9302 

Figure 4. 

Land Use Map of Sanniquelleh-Mehn District, 2022 

 

Table 3. 

Accuracy Assessment Using Error Matrix and Kappa Statistics for the Year 2022 
 

 
Class name 

Reference 

totals 

Classified 

totals 

Number 

correct 

Producers 

accuracy 

Users’ 

accuracy 

Water 63 43 43 68 100 

Agriculture 75 75 75 100 100 

Built-up 123 123 123 100 100 
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Table 3 
(Continued) 

 

Forest 111 111 111 100 100 

Bare land 65 85 65 100 76 

Total 437 437 417   

Overall Classification Accuracy = 95.42% 

Overall Kappa Statistics = 0.941 

Figure 5. 

A Summary Land Use Map of Sanniquelleh-Mehn District from 2002-2022 

 

 

 

Land Use Change Analysis 

The Sanniquelleh-Mehn district underwent analysis to determine the amount 
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of land each land use class covers and the rate at which land use changes. The data 

in Table 4 shows that in 2002 forests were the most prevalent land use category, 

covering 97.85% of the district's total area (964 km2). Agriculture (0.3%), built-up 

areas (0.33%), and bare ground (1.5%) came after this. Forest coverage saw a 

decrease from 925.73 km2 (97.85%) in 2002 to 763.94 km2 (80.75%) in 2012 and 

further dropped to 681.97 km2 (72.09%) in 2022 (Table 4). In contrast, agricultural 

and built-up areas saw a significant increase, resulting in the depletion of forest 

resources. The area dedicated to agriculture expanded from 2.87 km2 (0.30%) in 

2002 to 82.63 km2 (8.7%) in 2012 and further rose to 127.56 km2 (13.48%) in 2022 

(Table 4).  

In the same vein, the size of developed areas grew from 3.16 km2 (0.33%) in 

2002 to 86.88 km2 (9.17%) and 119.75 km2 (12.66%) in 2012 and 2022, respectively 

(Table 4). 

The comprehensive (20-year) change detection investigation results indicate that 

the waterbody had a 0.03% rise, whereas the built-up area saw a 12.32% growth. 

Similarly, the area of undeveloped land had a 0.23% rise, while agricultural land saw a 

significant increase of 13.18%. The expansion of these land uses came at the detriment 

of forest resources, which experienced a decrease of 25.77%. Table 4 includes a 

comprehensive review of the changes detected in each 10-year interval from 2002 to 

2022. 

 

Table 4. 

The Extent of Land Use Change Extracted from Landsat Images 2002-2022 
 

Year 
 

2002 2012 2022 % change in land use 

 Area  Area  Area  
2002- 2012- 2002- 

Land use (km2) % (km2) % (km2) % 2012 2022 2022 

Water 0.10 0.01 0.32 0.03 0.49 0.04 0.02 0.01 0.03 

Built-up 3.16 0.33 86.88 9.17 119.75 12.66 8.84 3.49 12.32 

Bare land 14.19 1.50 12.37 1.31 16.38 1.73 -0.19 0.42 0.23 
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Table 4 

(Continu

ed). 

Agriculture 2.87 0.30 82.63 8.73 127.56 13.48 8.43 4.75 13.18 

Forest 925.73 97.85 763.94 80.75 681.97 72.09 -17.10 -8.66 -25.77 

Total 946         
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Figure 6. 

Land Use Change Comparisons from 2002 to 2022 

 

 

Land Use Change Matrix 

Tables 5 and 6 present the land use change matrix findings for the first 

period (2002– 2012) and the second (2012–2022). During the first phase (2002–

2012), a substantial portion of forested land, measuring 75.30 km2, was transformed 

into agricultural land, built-up areas, and bare land, measuring 74.49 km2 and 9.12 

km2, respectively. 

Conversely, during the second phase (2012–2022), 32.87 km2 were 

transformed into built-up areas, 4 km2 became bare ground, and 44 km2 were 

changed from forest to agricultural land. 
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Table 5. 

Land Use Change Matrix Between 2002 and 2012 
 

Land use Water Built-up Bare land Agriculture Forest G. Total (2012)  

Water 0.01 0.01 0.01 0.01 0.04 0.08  

Built-up  2.30 0.02 0.10 0.44 2.86  

Bare land  8.10 2.84 0.53 2.46 13.94  

Agriculture  0.49 0.18 0.45 1.67 2.79  

Forest 0.29 74.49 9.12 75.30 766.98 926.17  

G.Total (2002) 0.30 85.39 12.19 76.38 771.59 945.85  

 

 

Table 6. 

Land Use Change Matrix Between 2012 and 2022 
 

Land use Water Built-up Bare land Agriculture Forest G.Total (2022) 

Water 0.04 0.01 0.19 0.01 0.17 0.42 

Built-up 0.00 33.97 2.51 12.48 67.41 116.37 

Forest 0.25 27.53 4.61 50.65 604.74 687.78 

Agriculture  14.49 0.32 12.74 97.75 125.30 

Bare land 0.00 9.40 4.55 0.51 1.50 15.96 

G.Total (2012) 0.30 85.40 12.19 76.39 771.56 945.83 
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Chapter Five 

Discussion 

Pattern of Land Use in the Study Area 

Intricate interactions between people and their natural surroundings 

influence land-use change patterns. Landsat 5 (TM), Landsat 7 (ETM+), and 

Landsat 9 (OLI-2) satellite data were used to analyze land use patterns in the 

specified area from 2002 to 2022. The images underwent pre-processing to provide 

high-quality outcomes. The next step was to carry out a supervised classification 

and, after that, assess its accuracy. In 2002, the overall classification accuracy was 

91.79%, with Kappa statistics of 0.8940. An accuracy rate of 94.52% and a Kappa 

value of 0.9302 were achieved in 2012. The overall classification accuracy for 2022 

was 95.42%, with a Kappa score of 0.9416. 

The findings indicate that the research region may be classified into five 

main land use categories: agricultural, forest/vegetation, built-up areas, bare ground, 

and water bodies (Figures 2-4). Ismail & Jusoff (2008) categorized the kappa 

statistic's classification result as terrible, exemplary, or outstanding based on its 

value. 

Specifically, a value less than 0.4 was considered wrong, between 0.4 and 

0.7 was considered good, and greater than 0.75 was considered excellent. It 

indicates that the supplied values were precise, and the categorization fell within a 

satisfactory range. The kappa coefficients for each land use category consistently 

fell within the good range after the assessment, indicating a high degree of 

agreement between the ground reference data and the classification map. The main 

land uses in the study area are listed below. 

Forest/Vegetation 

In 2002, the study area was predominantly covered by vegetation, 

constituting approximately 925.73 km² (97.85%) of the total area (Table 4). 

Vegetation, the area's most extensive land use type, experienced a significant 
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reduction in the following years, with a decrease of 17.10% in the first period and 

8.66% in the second. The data shows a shift from forest to many different land uses, 

including agricultural, urban, and barren terrain. The adjustments are shown in the 

conversion matrix found in Tables 5 and 6.  

There has been a significant decline, especially from 2002 to 2012, with a 

fall rate of 17.10% in quantity. The increase in population and extension of built-up 

areas in Sanniquelleh-Mehn may be related to the phenomenon of agricultural 

expansion, which is caused by a significant migration of people from other regions 

of the nation. The reduction in forest cover in the area may be mainly ascribed to the 

establishment of ArcelorMittal, the largest and most historic iron ore mining firm in 

the territory, which was introduced in 2005. Over the past 18 years, this enterprise 

has engaged in iron ore mining activities inside the study region, destroying several 

hectares of forest land and causing significant habitat degradation. However, the 

historical connection between forest resources and economic growth is undeniable 

and uncontrollable in the study area due to its strategic location. It is located at the 

main intersection of Liberia and the Republic of Guinea, making the area a hotspot 

for forest destruction due to the expansion of agriculture and urbanization. 

Agriculture 

Nimba County, where the study area is situated, has historically been an 

agricultural surplus county. Although it may not be as vibrant today as it once was 

due to urbanization, the economic crisis, and climatic barriers, agriculture remains 

an integral part of Sanniquelleh-Mehn. This category of land includes mainly 

farmlands. The classified map confirmed a significant expansion of agricultural land 

from forest land. Agriculture, as predicted, covered a large portion of the land in 

Sanniquelleh- Mehn's in 2022, accounting for 127.56 km2 (13.48%). This 

continuously increased from 2.87 km2 in 2002 to 82.63 km2 in 2012 and 127.56 

km2 in 2022. Throughout the study period, a 13.18% increase was observed (from 

2002–2022). 
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Built-Up Area 

Although the bulk of the transition occurred between 2002 and 2012, the 

proportion of built-up area rose more than quadrupled as much (from 3.16% to 

12.66%) between 2002 and 2022 (Table 4). The rapid increase in demand for plots 

of land for settlements, which was directly related to the town's continuous growth 

in population due to the influx of people, maybe the reason for the constant shift of 

forest land into the built-up territory. Consequently, this study's built-up area or 

settlement had a net positive increment. 

The results of this research align with those from earlier studies conducted in 

Liberia, such as those by Osuman (2019) and Olatunji & Charles (2020). Research 

was conducted to evaluate the effects of changes in land use on plant resources in 

the peri- urban region of Monrovia and adjacent areas of Liberia. Over a 34-year 

period (1986– 2020), the total vegetation loss was 32.88%, with an annual rate of 

0.96%. Many of these studies found that settlement areas had expanded during their 

research. As a result, population growth may be the reason for extending settlement 

areas to other territories.  

Bare Land 

At a mine site, the areas designated for waste rock disposal and open pits are 

the ones that cause the most physical disturbances. Mining buildings that take up a 

tiny amount of the area disturbed after the mine closes, like shops, offices, and 

mills, are typically salvaged or demolished. Waste rock disposal areas and open pits 

are the primary visual and aesthetic effects of mining in the study area. The areas 

designated for disposing of waste rock produced by underground mining are usually 

relatively small, ranging from a few to tens of acres. Usually, these areas are found 

close to the openings in the underground workings. Open pit mining has more 

severe visual and physical effects than underground mining because it disturbs 

larger areas. As seen in Figure 7, the iron ore mining activities are jeopardizing the 

future of the forest resources in the area. The images below are very few and show 

how mining affects the forest. 
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Figure7. 

  Evidence from Google Earth Images (A and B) Showing Bare Land Due to 

Iron Ore Mining in Sanniquelleh-Mehn District, Location: (Lat: 7.452978°, Long: - 

8.672270°) and (Lat: 7.537445°, Long: -8.494817°) for Images A and B, 

respectively. 



55 

 

 

Waterbody 

The waterbodies received the least investigation, representing a smaller 

proportion in the study region. The proportion of land area occupied by water has 

increased from 0.01% in 2002 to 0.04% in 2022 (Table 4), mainly due to mining 

operations that generate extensive and exposed excavations, subsequently transforming 

A 

B 
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into bodies of water. The development of tiny hydroelectric dams was also attributed to 

another factor. Contrary to urban or farming regions, the expansion of the waterbody 

was negligible. 

Land Use Change Matrix 

It is essential to determine the kind and number of changes and the particular 

type of land use impacted for change detection (Agidew & Singh, 2017). According to 

Wondie et al. (2011), overlay analysis compares images from the study years’ pixel-by- 

pixel. The segment (land use change matrix) illustrates both the change in direction and 

the consistent land use form. Urbanization is an inevitable process necessary for the 

progress and development of civilization. Over the years, Yekepa, a town in the 

Sanniquelleh-Mehn district, has experienced a significant increase in the number of 

residents from both Liberia and Guinea. The rise in population and the corresponding 

need for food production mainly account for this. Consequently, the expansion of 

agricultural areas and urbanization have had a significant and lasting effect on forest 

resources. In addition to these critical changes, it emphasizes the advantages of adopting 

land-use strategic planning.  

The results revealed a diverse range of alterations in land utilization throughout 

the past two decades (2002– 2022). The data indicates a growing inclination towards 

converting land plots for residential and farming use. In contrast, a considerable portion 

of forest land remains undeveloped, mostly due to iron ore mining operations. 

Furthermore, the importance of the waterbody increases due to its potential for 

hydropower generation or irrigation. In contrast, a substantial portion of forested areas 

have been depleted, resulting in fragmentation. Hence, the consequences of such a 

transformation might exemplify the need for land-use planning in dynamic contexts such 

as this, where rural agricultural land is gradually integrated into urban areas. The 

findings align with other studies, indicating that urban areas had the highest annual 

growth rate of 6.43%, while water bodies demonstrated the lowest yearly growth rate of 

0.54% (Getu and Bhat, 2021). In research carried out in Harbin, Heilongjiang province, 

China, Wang et al. (2022) found that the overall changes in forest land were negative 
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(indicating loss) between 1990 and 2015. However, built-up areas and agricultural lands 

saw positive net changes over the same period. 
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Chapter Six 

Conclusion and Recommendation 

Conclusion 

  The utilization of remote sensing and GIS techniques to measure the effects of 

land-use alterations on the fragmentation of forests over time has proven to be highly 

useful in the current study. Over the past two decades, there has been an increase in all 

land uses except for forest cover. The categories encompass agricultural areas, built-up 

areas, bare ground, and water bodies. The studied region exhibits a persistent upward 

trajectory of urban sprawl, leading to the continuous development of built-up areas, the 

conversion of agricultural land to accommodate the rising population, and the presence 

of bare ground resulting from extensive mining operations. The forest resources have 

significantly declined over the past two decades (2002–2022), primarily due to 

agricultural activities, urban development, and bare land. This decline is evident in a loss 

of 25.77%, with forest coverage decreasing from 97.85% in 2002 to 72.09% in 2022. 

These three prominent lands use predominantly drove this transformation or conversion. 

Recommendation 

Based on the overall analysis of the study, it is expected that future land use 

changes in the study area will continue at a concerning pace. Hence, further research is 

required to grasp the forest dynamics of the region comprehensively. Although image 

preprocessing was employed in this investigation, the quality of satellite pictures in 

relation to cloud impacts remains unknown, potentially compromising the precision of 

the findings. Furthermore, forthcoming investigations should primarily concentrate on 

identifying the factors contributing to land use changes in the study region. Conducting 

socio-ecological surveys and utilizing different remote sensing (RS) images from 

various years can help achieve this. Additionally, it is recommended that the precision of 

RS image categorization algorithms be enhanced. 
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Appendices  

Appendix A 

 

Classification Accuracy Assessment Report 

Classification Accuracy Assessment Report For 2002 

----------------------------------------- 

   Reference Data 

   -------------- 

     Water 

  Built-

up 

  

Bareland Agricultur 

34 0 0 0 

0 64 0 0 

0 0 61 1 

0 0 0 133 

0 0 0 0 

0 0 0 0 

0 0 0 0 

29 1 1 0 

63 65 62 134 

   Reference Data 

   -------------- 

                                 Vegetation 

0 0 0 0.00% 

0 0 0 0.00% 

0 0 0 0 

0 0 0 0 

0 0 0 66 

0 0 0 66 

    

    

 ----- End of Error Matrix ----- 
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Reference 

 

 

Classified 

 

 

Number 

 

 

Producers 

    Totals     Totals Correct  Accuracy 

63 34 34 53.97% 

65 64 64 98.46% 

62 62 61 98.39% 

134 133 133 99.25% 

66 97 66 100.00% 

390 390 358  

    
Overall Classification Accuracy =     91.79% 

    

 ----- End of Accuracy Totals ----- 

KAPPA (K^) STATISTICS   
Overall Kappa Statistics = 0.8940  

    
Conditional Kappa for each Category.  
------------------------------------   

    
          Kappa   

1    
1    

0.9808    
1    

0.6153    

    

 ----- End of Kappa Statistics ----- 
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Classification Accuracy Assessment Report For 2012 

    Reference Data 

    -------------- 

Classified Data Unclassifi                            Water 

--------------- ---------- ---------- ---------- ---------- 

          Water 0 0 0 57 

    Agriculture 0 0 0 0 

       Built-up 0 0 0 0 

         Forest 0 0 0 29 

                0 0 0 0 

       Bareland 0 0 0 1 

Column Total 0 0 0 87 

     

    Reference Data 

    -------------- 

Classified Data Agricultur   Built-up     Forest            

--------------- ---------- ---------- ---------- ---------- 

          Water 0 0 0 0 

    Agriculture 82 0 0 0 

       Built-up 0 105 0 0 

         Forest 0 0 127 0 

                0 0 0 0 

       Bareland 0 0 0 0 

Column Total 82 105 127 0 

     

    Reference Data 

    -------------- 

Classified Data   Bareland  Row Total  
          Water 0 57   
    Agriculture 0 82   
       Built-up 0 105   
         Forest 0 156   
                0 0   
       Bareland 146 147   
Column Total 146 547   

   

----- End 

of Error 

Matrix --

---  
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ACCURACY 

TOTALS      
----------------      

      
   Class  Reference Classified Number Producers Users 

   Name     Totals     Totals Correct  Accuracy Accuracy 

     ---------- ---------- ---------- ------- --------- ----- 

  Water 87 57 57 65.52 100.00% 

  Agriculture 82 82 82 100.00% 100.00% 

  Built-up 105 105 105 100.00% 100.00% 

  Forest 127 156 127 100.00% 81.41% 

  Bareland 146 147 146 100.00% 99.32% 

         Totals 547 547 517   

      
Overall Classification Accuracy = 94.52%    

      

  ----- End of Accuracy Totals ----- 

      
KAPPA (K^) STATISTICS     
---------------------      

      
Overall Kappa Statistics = 0.9302    

      
Conditional Kappa for each Category.    
------------------------------------     

      
    Class Name           Kappa    
         Water 1     
   Agriculture 1     
      Built-up 1     
        Forest 0.7579     
               0     
      Bareland 0.9907     

      

  ----- End of Kappa Statistics ----- 
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Classification Accuracy Assessment Report For 2022 

ERROR MATRIX      

    Reference Data 

    -------------- 

Classified Data Unclassifi                                   
          Water 0 0 0 0  
    Agriculture 0 0 0 0  
       Built-up 0 0 0 0  
       Bareland 0 0 0 0  
     Vegetation 0 0 0 0  
Column Total 0 0 0 0  

      

    Reference Data 

    -------------- 

Classified Data      Water Agricultur                        
          Water 43 0 0 0  
    Agriculture 0 75 0 0  
       Built-up 0 0 0 0  
       Bareland 0 0 0 0  
     Vegetation 20 0 0 0  
Column Total 63 75 0 0  

      

    Reference Data 

    -------------- 

Classified Data   Built-up              Bareland Vegetation 

          Water 0 0 0 0  
    Agriculture 0 0 0 0  
       Built-up 123 0 0 0  
                0 0 0 0  
       Bareland 0 0 111 0  
     Vegetation 0 0 0 65  
Column Total 123 0 111 65  

      

      

  ----- End of Error Matrix -----  
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ACCURACY 

TOTALS       
----------------       

       

          Class 

 

Reference Classified Number Producers Users  
           Name     Totals     Totals Correct  Accuracy Accuracy  
          Water 63 43 43 68.25% 100.00%  
    Agriculture 75 75 75 100.00% 100.00%  
       Built-up 123 123 123 100.00% 100.00%  
       Bareland 111 111 111 100.00% 100.00%  
     Vegetation 65 85 65 100.00% 76.47%  
         Totals 437 437 417    

       
Overall Classification Accuracy =     95.42%    

       

  ----- End of Accuracy Totals -----  
KAPPA (K^) STATISTICS      
--------------------

-       

       
Overall Kappa Statistics = 0.9416     

       
Conditional Kappa for each Category.     
------------------------------------      

       
    Class Name           Kappa     
         Water 1      
   Agriculture 1      
      Built-up 1      
      Bareland 1      
    Vegetation 0.7236      

       

  ----- End of Kappa Statistics -----  
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Appendix C 

Turnitin Similarity Report 

 

 

 


