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Abstract 

 

THE IMPACT OF ENCODING METHODS ON sgRNA PREDICTIONS FOR CRISPR-

CAS12 IN ENHANCINGGENOME EDITING 

 

EYAD AHMAD MUSTAFA AL ZOUBI 

MA/PhD, Department of Biomedical Engineering 

Jane, 2023, (65) pages 

   

 

      CRISPR/Cas systems are incredibly robust and have the capacity to alter whole genomes. One 

of the most important challenges among the possible problems with CRISPR/Cas systems is 

developing sgRNA. Double-stranded DNA was thought to be separate by the Cas enzyme-sgRNA 

combination when it located a target sequence that matched. However, several sgRNAs turned out 

to be either inert or ineffectual. Therefore, before using a set of sgRNAs in genome editing 

research, it is imperative to confirm their effectiveness, which makes improving sgRNA design a 

worthwhile goal. Since most of the tools available are primarily made for the CRISPR/Cas9 

system, this study introduced a number of intelligent machine learning models to predict the 

activity of sgRNA for the CRISPR/Cas12a system. 

For the prediction of CRISPR/Cas12a sgRNA activity, different encoding techniques One-Hot, K-

mers and Integer encoding effects were evaluated based on the performance achieved by four 

different machine-learning models namely, Support Vector Regressor (SVR), Random Forest (RF), 

Decision Tree (DT) and XGBoost. Next, to demonstrate the effect of data scaling after each 

encoding was used to further improve the performance of the models. 

The goal was to combine the unique properties of each model to create an excellent model for 

CRISPR/Cas12a sgRNA activity prediction. When compared to state-of-the-art models, the findings 

showed exceptional performance. This thesis will help with the design and selection of active sgRNA for 

genome editing with the CRISPR/Cas12a system. 

 

Keywords:  CRISPR/Cas12, sgRNA activity; Cas enzyme;  Machine Learning, Encoding. 
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Soyut 

 

GENOM DÜZENLEMESİNİ GELİŞTİRMEDE CRISPR-CAS12 İÇİN KODLAMA 

YÖNTEMLERİNİN sgRNA TAHMİNLERİ ÜZERİNDEKİ ETKİSİ 

 

EYAD AHMAD MUSTAFA AL ZOUBI 

Yüksek Lisans/Doktora, Biyomedikal Mühendisliği Bölümü 

Jane,2023 , (65) sayfa 

 

      CRISPR/Cas sistemleri inanılmaz derecede sağlamdır ve tüm genomu değiştirme kapasitesine 

sahiptir. CRISPR/Cas sistemlerinde yaşanabilecek olası problemler arasında en önemli 

zorluklardan biri sgRNA'nın geliştirilmesidir. Çift sarmallı DNA'nın, eşleşen bir hedef dizi 

bulduğunda Cas enzimi-sgRNA kombinasyonu ile ayrı olduğu düşünülüyordu. Bununla birlikte, 

birçok sgRNA'nın ya inert ya da etkisiz olduğu ortaya çıktı. Bu nedenle, genom düzenleme 

araştırmalarında bir dizi sgRNA'yı kullanmadan önce, bunların etkililiğini doğrulamak 

zorunludur; bu da sgRNA tasarımını iyileştirmeyi değerli bir hedef haline getirir. Mevcut araçların 

çoğu öncelikle CRISPR/Cas9 sistemi için yapıldığından, bu çalışma, CRISPR/Cas12a sistemi için 

sgRNA'nın aktivitesini tahmin etmek amacıyla bir dizi akıllı makine öğrenimi modeli sunmuştur. 

CRISPR/Cas12a sgRNA aktivitesinin tahmini için farklı kodlama teknikleri One-Hot, K-mers ve 

Integer kodlama etkileri, Support Vector Regressor (SVR), Random Forest(RF) olmak üzere dört 

farklı makine öğrenme modelinin elde ettiği performansa dayalı olarak değerlendirildi. ), Karar 

Ağacı(DT) ve XGBoost. Daha sonra, her kodlamadan sonra veri ölçeklemenin etkisini göstermek 

için modellerin performansını daha da artırmak amacıyla kullanıldı. 

Amaç, CRISPR/Cas12a sgRNA aktivite tahmini için mükemmel bir model oluşturmak üzere her 

modelin benzersiz özelliklerini birleştirmekti. Son teknoloji modellerle karşılaştırıldığında 

bulgular olağanüstü performans gösterdi. Bu tez, CRISPR/Cas12a sistemi ile genom düzenleme 

için aktif sgRNA'nın tasarımı ve seçimine yardımcı olacaktır. 

 

Anahtar Kelimeler: CRISPR/Cas12, sgRNA aktivitesi; Cas enzimi; Makine Öğrenimi, Kodlama. 
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CHAPTER I 
 

Introduction 
 

 

Covid-19 is a terrible disease that affects millions of people around the world. The 

complexity and heterogeneity of this disease mean that despite improvements in medical 

research and treatment options, COVID remains a serious health risk. Traditional 

strategies to detect and treat it often fail to address the many genetic changes that 

contribute to the emergence and progression of COVID-19(Cascella et al., 2022). 

On the other hand, recent developments in CRISPR cas9 technologies and   artificial 

intelligence (AI) are opening new horizons for improving the care of Covid-19 patients. 

Artificial intelligence has developed into a powerful tool in the medical profession, especially 

in the medical fiel(Esteva et al., 2019). 

The ability to examine large data sets and extract important insights has transformed disease 

detection and treatment. AI algorithms may analyze various data types, including genetic data, 

medical records, and imaging data, to uncover patterns and correlations that human analysis 

alone may ignore. Using artificial intelligence, researchers can build predictive models to 

assess risk, early diagnose diseases, and predict response to treatment. 

CRISPR (clustered regularly interspaced short palindromic repeats) technology has 

revolutionized genetic engineering. Due to their precision and versatility in modifying DNA 

sequences, targeted therapies now have additional possibilities. Using CRISPR, researchers 

may be able to fix disease-causing mutations or increase the effectiveness of existing 

treatments. CRISPR technology, which allows the editing of genes associated with the onset 

of disease, holds promise for personalized treatment. The combination of artificial intelligence 

and CRISPR technology has a lot to offer in the field of disease detection and treatment. 

Complex genomic data can be examined by AI-based algorithms to detect genetic mutations 

and predict the risk of developing COVID-19. Using CRISPR and this understanding, 

programs can be developed using precise gene editing to remove or correct mutations that cause 

COVID-19. This method may contribute to the creation of more efficient drugs that are 

customized according to the specific genetic profile of each patient, thus increasing treatment 

success rates and reducing adverse effects. While using AI and CRISPR to treat the disease 

offers exciting new prospects, it also raises many challenges. It is crucial to comprehensively 

evaluate the ethical implications of using CRISPR and AI in humans. Important considerations 
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include appropriate and open use of patient data, informed permission, and protection of 

privacy. Furthermore, legislative frameworks must be built to ensure the ethical and moral use 

of CRISPR and AI technologies in clinical practice(Y. Zhang et al., 2021). 

Finally, the combination of AI and CRISPR technology offers an exciting new frontier in 

Covid-19 detection and treatment. AI algorithms combined with genome analysis and 

CRISPR-enabled gene editing have the potential to transform Covid-19 treatment by allowing 

earlier detection, personalized treatment, and improved patient outcomes. However, further 

study, clinical trials, and collaboration across multidisciplinary teams are needed to properly 

explore the revolutionary potential of this strategy. 

 

1.1 Background and context of CRISPR-Cas technology 

AI systems rely on large amounts of diverse, high-quality data to create accurate predictions 

and diagnoses. In the context of disease diagnosis, combining data from multiple sources such 

as genetics, imaging, electronic health records, and clinical trials is crucial. The challenge is to 

collect and evaluate this disparate data to obtain relevant insights that can help accurately 

diagnose diseases and plan treatment. 

Covid-19 is a very diverse disease, with each patient having distinct characteristics and 

responses to treatment. Precision and personalized medicine are made possible by artificial 

intelligence and CRISPR technology, which tailors treatment to patients. However, using 

CRISPR to build algorithms and methodologies that can rapidly evaluate data from individual 

patients, detect genetic changes, predict treatment response and guide focused treatment is a 

challenging task. 

The use of AI and CRISPR technologies to detect and treat Covid-19 raises ethical and legal 

concerns. One major issue is requiring AI algorithms to make open and responsible decisions, 

which is essential given privacy concerns over the use of patient data and the risks associated 

with off-target consequences of CRISPR gene editing. It is crucial to create strong ethical and 

governance frameworks that address these challenges while continuing to encourage 

innovation. 

Although CRISPR and artificial intelligence have shown great promise in research settings, 

translating these technologies into practical clinical applications is difficult. To apply AI 

algorithms to real-time diagnosis of communicable diseases and make treatment decisions 
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requires comprehensive validation, integration with existing healthcare systems, and 

overcoming professional acceptance hurdles. Additionally, for these technologies to be 

successfully integrated into clinical operations, healthcare practitioners must be educated and 

appropriately trained in their use. 

Studying the use of artificial intelligence (AI) and CRISPR technology in diagnosing and 

treating Covid-19 has limitations. Obtaining diverse, high-quality datasets to train AI 

algorithms is difficult due to data availability and privacy concerns. AI algorithms rely on data 

patterns, which may not fully capture the biological mechanisms of COVID-19. Integrating AI 

and CRISPR into clinical practice requires validation, regulatory approvals, and ethical 

considerations, which may slow its implementation. In addition, the potential off-target effects 

and long-term safety of CRISPR gene editing must be carefully evaluated. Overcoming these 

limitations is essential to responsibly and effectively use AI and CRISPR in COVID-19 patient 

care. To achieve our goal, we must overcome this barrier by gaining better knowledge of their 

mistakes and strategies to eliminate or reduce them in the coming years. 

In this section of the report, we will discuss the most important terms mentioned. This will 

allow the reader to get a better understanding of the entire topic. 

• Artificial Intelligence (AI): Related to the development of computer systems and algorithms 

capable of performing activities that normally require human intelligence. In the context of 

diagnosing and treating Covid-19, artificial intelligence (AI) is being used to evaluate and 

understand vast amounts of data, such as genetic data, medical imaging and clinical records, 

to aid accurate diagnosis, plan treatment and predict outcomes. 

• CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats):  

CRISPR is an innovative gene editing method that allows scientists to precisely change DNA 

sequences. It is based on a mechanism found in bacteria that uses the CRISPR-associated Cas 

protein to target and edit specific regions in DNA. In the case of COVID-19, CRISPR 

technology could be used to target and modify genes associated with the disease, which could 

open up new treatment options by preventing genetic mutations that lead to disease 

development or improving the immune system's ability to identify and destroy disease-causing 

cells. 
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1.1.1 Overview of CRISPR-Cas9  and cas 12 system and its revolutionary impact on 

genome editing. 

 

The CRISPR-Cas framework is made up of the CRISPR-associated Cas protein and its short, 

frequently spaced recombination events. This framework has revolutionized research in the life 

sciences by providing numerous tools for modifying, identifying, capturing, and annotating 

clear data. The design of various natural substances' DNA or RNA. In this method, foreign 

DNA extracts, also known as spacers, are inserted into CRISPR cassettes, converted into 

CRISPR mappings, and processed to produce guide RNA-gRNA. The characteristics of Cas 

proteins shape CRISPR designs. In the hunt for novel transgressive-targeting spacers, CAS 

proteins present a potential enzymatic tool. Some Cas proteins, including all-cases, have been 

used to create novel genome design tools due to the specificity of their programming 

combinations. (Hillary & Ceasar, 2023). 

 

A new class of CRISPR genome editing tools that include primer editors and DNA base editors. 

The two most fundamental methods for repairing these fractures are homology-directed repair 

(HDR) and non-homologous end-joining repair (NHEJ) bypasses the main flaws of CRISPR 

Cas9 systems, such as a limited editing efficiency and a small risk of off-target consequences. 

(Kass & Jasin, 2014) 

 Researchers from the Broad Institute of MIT and Harvard University identified and 

characterized the Cas12a system, which is a type V member of CRISPR nucleases found in 

Prevotella and Francisella 1 bacteria. (Zetsche et al., 2015).  

There are various ways in which CRISPR-Cas12a differs from Cas9. A tracrRNA is not 

necessary for the single crRNA nuclease CRISPR-Cas12a to function. Target DNA is cleaved 

by CRISPR-Cas12a distal to the PAM site, producing cohesive rather than blunt ends and 4- 

or 5-nt overhangs. In contrast to the Cas9 system, which uses PAM "NGG," Cas12a requires 

the PAM sequence "TTN/TTTN/TTTV," where N= A/T/C/G and V=A/C/G. (Fonfara et al., 

2016). Because of its special qualities, CRISPR-Cas12a is a useful addition to the toolkit for 

CRISPR-based genome editing, allowing for a greater variety of targetable genomic regions. 

However, the development and deployment of the CRISPR/Cas system is impeded by sgRNA 

(on-target) activity. (Xu et al., 2015). 
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1.1.2Historical development and key milestones in the field. 

 

The exact altering of DNA groupings inside living cells made conceivable by the 2012 

improvement of CRISPR and Cas9 innovation fundamentally affected science. In 1970, 

genetically engineered mice were used to begin genome editing.(Yoshida et al., 2022). 

The CRISPR Cas9 technology is changing fields like genome editing, which is changing 

science and technology. It builds on groundbreaking discoveries like the structure of double-

stranded DNA, in vitro fertilization, and the cloning of Dolly the sheep. Mainstream 

researchers will watch out for guidelines, moral standards, and potential purposes of genome 

altering in different spaces. (Gostimskaya, 2022). 

The mid-1990s saw the discovery of an unexpectedly unusual sequence in the Escherichia coli 

genome. CRISPR sequences and Cas proteins, which are now thought to be extremely powerful 

adaptive immunity mechanisms, are found in prokaryotes. Modern genetic engineering 

techniques have been made possible by the discovery of Cas CRISPR, a significant 

advancement in fundamental biology.  However, the discovery of CRISPR activities has been 

made feasible by the genomics revolution and bioinformatics technologies. (Ishino et al., 

2018). 

Genetic information is made up of deoxyribonucleic acid (DNA) and genes. Genes encode 

proteins and RNA and provide instructions for living things' growth, operation, and 

reproduction. Because nucleotide sequences can be altered by both internal and external 

stimuli, resulting in mutations that impede cellular activities and cause diseases like cancer, the 

idea of restoring original DNA sequences as a treatment has been floated.(Matsumoto & 

Nomura, 2023). 

 

1.2 Importance and relevance of genome engineering in the context of COVID-19 

 

The biology, variety, and development of the SARS-CoV-2 virus, which has had a significant 

impact on the COVID-19 pandemic, can now be studied because of advances in genomics. As 

a result, a new era of genome monitoring has begun, with the possibility of real-time monitoring 

of genome changes. Modern vaccines are made possible by high-throughput sequencing and 

gene editing technologies, and the availability of genomic and proteomic data makes it easier 

to identify and treat molecular diseases.(Ameen et al., 2021). 
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1.2.1 Overview of the COVID-19 pandemic and the need for advanced genetic tools. 

 

We'll go over the two distinct CRISPR-Cas systems and the functions of each Cas protein, 

including the three Cas proteins now known as Cas12, 13, and 14. In addition, we will discuss 

the benefits and drawbacks of the novel application of Cas protein in several domains, such as 

the detection of coronaviruses that are responsible for severe acute respiratory illnesses. 19 

Next-generation precision editing of the SARS-CoV genome may benefit from the functional 

properties of various Cas proteins.(Hillary & Ceasar, 2023) 

 

1.2.2 Discussion on the potential applications of CRISPR-Cas12  

Cas12a may be helpful in genome editing because of its capacity to promote particular 

integration as a result of staggered incisions. Soybeans are among the plants whose genomes 

have been altered through the use of Cas12a. (Kim et al., 2017). Ag development can be 

accelerated greatly through genome engineering. One of the first institutions to create 

legislation pertaining to genome engineering was the European Union.  (Friedrichs et al., 

2019). Three categories were established for genome editing. Small indels or single nucleotide 

alterations are the result of non-homologous end-joining-induced site-directed nuclease (SDN) 

1 events. SDN2 events alter a few nucleotides by employing a template. For instance, template-

mediated repair was utilized to produce herbicide-resistant mutant strains of rice. Using a repair 

template containing the point mutations of interest, LbCas12a was utilized to produce staggered 

breaks in the Acetolactate synthase (ALS) gene, and the HDR approach was employed to 

precisely insert small nucleotide alterations. (Li et al., 2018). The most stringent evaluations 

are probably going to come from inserting foreign DNA from another species (SDN3), which 

is almost certainly going to be categorized as transgenic in most countries. The United States 

Department of Agriculture (USDA), the Food and Drug Administration (FDA), and the 

Environmental Protection Agency (EPA) are all involved in the regulatory process regarding 

modified plant products in the US. Therefore, it is still challenging to forecast when and how 

much it will cost to introduce genome-edited products to the market. (Schmidt et al., 2020). 
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1.3 Research Problem and Statement 

Artificial intelligence (AI) in COVID-19 detection and treatment using CRISPR is being 

researched to fully realize the potential of these innovative technologies to transform Covid-19 

patient care. AI can evaluate multiple data sets from multiple sources, enabling accurate 

COVID diagnosis and personalized treatment guidance. Given its precise gene-editing 

capabilities, CRISPR holds promise for targeted drugs and overcoming genetic abnormalities 

that underpin Covid-19 development. By combining the analytical skills of artificial 

intelligence with the precision of CRISPR, researchers expect to increase early diagnosis, 

improve treatment outcomes, and develop innovative medicines for different types of Covid 

disease. The goal is to improve the quality of life of Covid-19 patients and save lives by 

enhancing our understanding of the biology of the disease and transforming this understanding 

into effective clinical interventions. 

The main mechanism by which the CRISPR/Cas system modifies genomes is sgRNA 

migration. While indel frequencies produced by distinct sgRNAs vary, indel recurrences 

generated subsequent to CRISPR exploration can provide information about sgRNA mobility. 

The fact that different sgRNAs function differently and produce unequal activity is still a major 

issue (Moreno-Mateos et al., 2015). The three forms of current methods are alignment, 

hypothesis, and machine learning approaches; using machine learning is the suggested strategy, 

though (Yan et al., 2018). 

Artificial intelligence methods predict sgRNA cleavage activity by cultivating a model that 

takes into account multiple factors that impact action (Van Der Oost et al., 2014). Furthermore, 

manually created characteristics could produce redundant data and subpar prediction results. 

Consequently, there are definite limitations to AI-based methods, such as the need for low 

speculation and master topic knowledge. Deep learning understanding  (Lecun et al., 2015). 

The primary goal of the study is to predict CRISPR/Cas12a sgRNA activity (Indel frequency) 

using deep learning techniques.     

The objectives of this study are: 

• To evaluate different sequence encoding techniques for the prediction of Indel 

Frequencies 

• To compare different models to performance in predicting the indel frequency 
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• To show the effect of scaling after employing different sequence encoding 

Creating various models with various hyperparameters and evaluating how well they work.  

• To assess how well deep learning models predict sgRNA activity in comparison to alternative 

machine learning algorithms.  

• To comprehend the characteristics that go into predicting sgRNA activity.  

• To forecast sgRNA activity in order to detect COVID-19. 

• To apply transfer learning to small dataset prediction tasks.  

 

1.4  Research Questions / Hypotheses  

The primary goal of the study is to forecast CRISPR/Cas12a sgRNA activity (Indel frequency) 

using machine learning techniques.     

The objectives of this study are: 

• Will different sequence encoding techniques affect the prediction of Indel 

Frequencies 

• What will be the effect of scaling after employing different sequence encoding 

• What will be the performance of different models with various hyperparameters and 

assess how well they work  

 

 

1.5 Thesis Organization 

 

The thesis report is divided into five chapters, each of which completely explains the research 

aims. Chapters 3 and 4 can be read separately or together. The chapters are listed as follows: 

Chapter1: This chapter provides the background information for the study. This chapter also 

covers the problem statement and objectives of the study.  

Chapter 2: A review of anti-CRISP and the Cas12 system's applications. A thorough and 

succinct explanation of the techniques for forecasting sgRNA activity is also included. 
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Chapter 3: This chapter shows PREDICTIVE DATA MODELING OF CRISPR-

CAS12USING VARIOUS ENCODING METHODOLOGIES. 

 

Chapter 4: This chapter detailed CAS12 CRISPR DATA: PREDICTION WITH VARIOUS 

DNA SEQUENCE ENCODINGS AND DATA SCALING. 

 

 

Chapter 5: This chapter contains the thesis work's conclusion as well as suggestions for more 

research. 
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CHAPTER II 
 

Literature Review 
 

 

 2.1  Overview of CRISPR-Cas and its applications. 

 

The CRISPR-Cas9 system enables prokaryotes to naturally protect themselves from viruses by 

detecting and filtering exogenous genomic elements. It is comprised of an aide RNA and the 

Cas9 protein, and it is incorporated into prokaryotes through procured insusceptibility. There 

are two steps to this strategy: creating guide RNA and determining the target gene This system 

has numerous uses in molecular biology, ranging from fundamental research to practical 

applications. Although significant progress has been made, practical implementations continue 

to face difficulties. Improvements are needed to maximize benefits while minimizing risks.(Y. 

Zhang et al., 2021). Originally designed as a bacterial defense mechanism against phages and 

other transportable genetic elements like plasmids and transposons, the CRISPR-Cas 

architecture(Hille et al., 2018). 

Three significant developments are involved in the enhancement of CRISPR-Cas frameworks: 

(i) CRISPR transformation, which entails inserting foreign, attacking genetic segments into a 

CRISPR display as spacer successions. 

 (ii) CrRNA development: The CRISPR exhibit is translated into pre-crRNA, which is then 

modified into mature crRNAs. At that juncture, the mature crRNAs use Cas effector proteins 

to construct crRNA effector buildings. 

(i) (iii) CRISPR impedance - By promoting grouping explicit obliteration, these 

crRNA-Cas structures identify and eliminate foreign genomic segments (Jackson et 

al., 2017). 

 

The study of artificial intelligence (AI) in covid 19 diagnosis and treatment using CRISPR is 

of great importance. It has the potential to revolutionize the care of COVID-19 patients by 

enhancing early detection, improving accuracy in diagnosis, and personalizing treatment 

strategies. AI algorithms can efficiently analyze vast amounts of patient data from diverse 

sources, enabling accurate and timely diagnoses. When combined with CRISPR gene-editing 

technology, AI can identify the specific genetic changes responsible for COVID-19, leading to 

targeted treatments tailored to individual patients. This approach has the potential to overcome 
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the challenges of disease heterogeneity and increase treatment efficacy. Studying artificial 

intelligence in the diagnosis and treatment of COVID-19 using CRISPR technology aims to 

improve patient outcomes, improve the quality of life for COVID-19 patients, and contribute 

to advances in our understanding and management of this complex disease 

CRISPR is a versatile defense mechanism that targets viral DNA in microbes by utilizing 

endonuclease. In 1987, it was first discovered in Escherichia coli. Experts believe that these 

arrangements are necessary for the adaptable, insensible framework that serves as the 

foundation for the educational and demonstration phases of CRISPR. The precise genetic 

modifications that are tailored to particular cell types can be produced by modifying this 

framework.(Pan & Kraschel, 2018). CRISPR and CRISPR-associated proteins guard bacteria's 

and archaea's immune systems against intrusive DNA elements. CRISPR-Cas systems are 

divided into two groups, six types, and 21 subtypes.(Hidalgo-Cantabrana et al., 2019). For use 

in animal and cell models, numerous targeted gene editing methods, such as ZFNs and 

TALENs, have been developed. With CRISPR/Cas, gene editing can be done quickly, easily, 

and effectively. (Mehravar et al., 2019). Numerous species' genomes can be altered easily and 

effectively using this strategy. (Zhan et al., 2019). 

 

2.2 Detailed explanation of the CRISPR-Cas system. 

 

In three phases, the CRISPR-Cas system defends against viruses and foreign genetic material. 

After the Cas proteins are produced, a spacer is transcribed into pre-crRNA. Accordingly, pre-

crRNA is severed by Cas proteins into mature crRNA. In the wake of being integrated into the 

host's CRISPR locus, the protospacers act as stops between rehashes of the crRNA. Thirdly, 

the Cas protein starts genomic breaks after crRNA focusing on. Sequence-specific PAMs near 

specific crRNA sites in the target genome are required for multiple CRISPR systems to 

function.(Bengio et al., 2021).   

The CRISPR-Cas system, an essential tool in genome editing technologies and medicinal 

research, is derived from the adaptive immune systems of bacteria and archaea.(Wright et al., 

2016). 

 

The CRISPR/Cas system uses three steps to get ready for infections and foreign genetic 

material. After the production of Cas proteins, a spacer is translated into pre-cr-RNA. Cas 

proteins then cleave the pre-crRNA to convert it into mature crRNA. Subsequently, the 
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protospacers are incorporated into the host's CRISPR locus to act as gaps between repeats of 

the crRNA. Thirdly, the Cas protein causes genomic breaks after cr RNA targeting. The 

presence of sequence-specific PAMs adjacent to particular crRNA sites in the target genome 

is necessary for a number of CRISPR systems.(Bengio et al., 2021).   

In genome editing, double-stranded DNA at a particular region on the genome is broken using 

CRISPR-Cas9. The simplest approach is type II targeted nuclease, which uses CRISPR RNA 

and trans-activating CRISPR RNA to transfer the Cas9 nuclease to the target site. There is no 

impact from the fictitious merging of crRNA and tracrRNA into a single RNA chain 

sgRNA.(Ishino et al., 2018). 

 

2.3 Discussion on its various applications beyond genome editing. 

 

Recent research has demonstrated that when the ssDNA sequence that is not complementary 

to crRNA is present, extra cleavage phenomena is generated, leading to fast and complete 

cleavage of the ssDNA strand (Bonini et al., 2021; Chen et al., 2018; Gootenberg et al., 2018). 

Moreover, the cleavage is unrelated to the particular sequence of dsDNA. It is technically true 

that self-cleavage activation does not require an extra PAM sequence. The RuvC domain 

becomes accessible following target dsDNA unwinding and cleavage during the typical 

CRISPR-Cas12a action, while the non-target ssDNA cleavage happens on its own. using PCR 

and a fluorescent-quencher ssDNA reporter to examine the Cas12a/crRNA complex and its 

collateral activity, and creating a one-hour Low-cost Multipurpose highly Effector System 

(HOLMES). When used in genotype detection tests on human 293 T cells, Holmes was able to 

differentiate between homozygous and heterozygous genotypic variants (Li, Cheng, et al., 

2018).  A CRISPR-Cas12 assay for SARS-CoV-2 detection was developed, generating target 

amplicons through RT-RPA and identifying them through a gRNA complex connected to the 

collateral cleavage activity of fluorophore-tagged probes, allowing detection via fluorescent 

measurement or visual method (Talwar et al., 2021). Similarly, a CRISPR-Cas12-based lateral 

flow assay for the quick (less than 40 minutes), simple to use, and reliable detection of SARS-

CoV-2 from respiratory swab RNA extracts has been reported. For RNA extracted from 

nasopharyngeal or oropharyngeal swabs in universal transport medium (UTM), this assay 

performs simultaneous reverse transcription and isothermal amplification using loop-mediated 

amplification (RT–LAMP). Cas12 detection of predefined coronavirus sequences is then 

performed, and cleavage of a reporter molecule confirms detection of the virus(Broughton et 

al., 2019). Therefore, this trans-ssDNA-cleavage activity of CRISPR-Cas12a provides a novel 
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approach to enhance transcription and replication responses in vivo, create more rapid, 

sensitive, and targeted tools for the identification of certain nucleic acid sequences.  

 

2.4 Previous studies on CRISPR-Cas in genome engineering  

Describes how a technique in molecular biology called CRISPR-Cas9 editing can change how 

a gene affects an organism's phenotype. Thanks to advances in genome editing and high-quality 

sequencing, the next generation of subatomic scientists focusing on science in today's 

homerooms should be able to comprehend the inherited variation of a diverse range of living 

organisms.(Thurtle-Schmidt & Lo, 2018) 

 

2.5 Review of literature related to COVID-19 and genome editing 

 

The SARS-CoV-2 epidemic has affected public health resources, endangered human health, 

and upended international economics. Genome editing became faster and less expensive with 

the discovery of the CRISPR/Cas system in 2012, a novel technique for changing the genomes 

of plants and animals. More and more, CRISPR/Cas is being used for disease detection and 

treatment because of its speed, cost, and precision. It can be helpful for researching coronavirus 

replication in cell culture and creating treatment approaches.(Hillary & Ceasar, 2023). 

 

2.6 Examination of existing literature on CRISPR-Cas applications in combating 

COVID-19. 

Machine learning-based genetic engineering applications are essential in the fight against 

COVID-19. In a recent experiment, Malone and his colleagues used the application. "The most 

successful therapeutic targets of immunotherapy are those that are visible on the cell surface 

and that T cells are most likely to recognize," with the goal of "assess which antigens possess 

the essential characteristics for HLA binding and modification." They also described the tools 

used to forecast immunogenicity and the way antigens are presented to infected patients, as 

well as the "whole SARS-CoV2 proteome" and specific hotspots inside the host cell. These 

results facilitate the prediction of broadly applicable techniques for pathogen-specific 

vaccination to the People of the World(Habehh & Gohel, 2021). 
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2.7 Deep Learning in Genomics 

 

Artificial Intelligence (AI) is a branch of artificial intelligence that allows computers to reason 

without being specifically changed. Artificial Intelligence (AI) is used for a variety of 

processing tasks, and its main goal is to get the machine ready to solve a problem better by 

using the available data, which may be named in regulated learning and unlabeled in unassisted 

learning. The main goal is to teach computers to learn from their experiences(Das et al., 2015). 

 

Deep learning algorithms often use the one-hot encoding of the DNA center succession to 

identify the properties of the target grouping as a result. Deep learning and machine learning 

algorithms can correctly forecast if gRNA will work against the target, but they can't capitalize 

on the potential that arises from integrating deep learning with physical chemistry and 

sequential characteristics. Proposing effective ways to estimate target performance with global 

information-gathering capacities remains difficult. (Xie et al., 2023). 

 

 

 

2.7.1 Introduction to deep learning techniques and their applications in genomics. 

 

These strict rules ensure that moral research is conducted properly and advances. One of the 

most challenging parts of employing machine learning (ML) in healthcare is interpreting and 

applying clinical data. The intricate architecture of machine learning (ML) techniques, 

especially deep learning-based ones, makes it very difficult to pinpoint and measure the 

original characteristics' contribution to the prediction. The lack of transparency has severely 

hindered the adoption of ML-based methods in the medical services sector; nevertheless, this 

is less of a problem in other ML applications (such as online search). The healthcare sector is 

fully aware of the importance of having direct access to the solution in addition to the solution 

itself.(Habehh & Gohel, 2021).  

The DeepGuide deep learning framework leverages convolutional neural networks (CNNs) to 

enhance the performance of existing sgRNA activity prediction tools. To determine how the 

sgRNA scene is handled about the genome, a convolutional autoencoder was used for solo 

learning during the pre-preparing phase. Subsequently, the CNN was trained with controlled 
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learning using the grouping esteem and correlated chromatin availability data for every single 

sgRNA target site found in the Cas9 datasets. Cross-approving the model expectations allowed 

for the examination of the link between the actual and expected CS values. To verify the 

effectiveness of the recommended guidelines, an independent validation focused on a group of 

genes whose null mutations produce symptoms that are easily screenable. Using the Othdataset, 

DeepGuide accurately predicted 20 nt Cas9 sgRNA and outperformed previous guide 

movement expectation techniques.(Baisya et al., 2022). 

 

For the identifiable evidence and measurement of the fundamental information components 

used in determining, a precise approach is anticipated. To increase adoption rates, machine 

learning techniques can also be created, put into practice, and assessed with the assistance of 

medical experts. Moreover, despite some concerns about the potential for less relational 

commitment between patients and PCPs as a result of the growing use of ML-based procedures, 

these tactics offer a remarkable possibility to further develop joining. Studies show that the 

idea of the doctor-patient connection is quickly disappearing, and about 25% of Americans do 

not have a primary care physician. (Habehh & Gohel, 2021). 

Profound CRISPR and Seq-deepCpf1 25 are two examples of the sgRNA movement forecast 

devices that the DeepGuide convolutional neural network assembled profound learning 

structures. Using a convolutional autoencoder, unsupervised learning was performed in the pre-

training phase to determine how the genome's sgRNA landscape is represented. Next, 

administered learning on the CNN was carried out using the configuration, CS esteem, and 

associated chromatin openness data for every sgRNA target site from the Cas9 datasets. 

Finally, by cross-validating the model predictions, the correlation between the actual and 

expected CS values was discovered. The efficacy of the suggested guidelines was 

independently confirmed by concentrating on a set of genes whose null mutations result in 

symptoms that are easy to screen for. In terms of predicting guide activity on the dataset, 

DeepGuide fared better than earlier approaches, correctly predicting 20 nt Cas9 sgRNA with 

NGG PAM and 25 nt Cas sgRNA with TTTV PAM (Baisya et al., 2022). 

 

Complex off-target prediction models have been studied in the past, however they do not make 

good use of sequence pair information. The problem of really using arrangement pair data 

continue to be problematic. Forecasting is a problem that can be divided into two challenges 

related to deep learning. Make a vector or raster graphic that shows the sequence pair for gRNA 
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and DNA. To advance high-request highlights from vector or grid structure and generate 

expectations for grouping links, apply a deep learning model. (Z. R. Zhang & Jiang, 2022). 

 

2.7.2 Review of studies using deep learning for analyzing genetic data. 

 

Deep learning algorithms often use one-hot encoding of the DNA core sequence to 

automatically identify the properties of the target sequence. Even if deep learning and AI 

algorithms can accurately determine the viability of gRNA against the objective, they do not, 

in any event, take advantage of the potential that arises from coordinating deep learning with 

subsequent qualities and real science. Proposing effective techniques to anticipate goal 

execution with global data collection capabilities is still a work in progress. (Xie et al., 2023). 

 

 

Ongoing advancements in profound learning-based protein structure expectation tactics, which 

make use of the complexity of these macromolecules to stifle, guide, or even modify certain 

illness-causing proteins, give new avenues for profoundly customized programs. Small 

proteins called anti-CRISPR proteins, derived from bacteriophages, provide defense against 

the CRISPR-Cas system's prokaryotic adaptive immunity. Here, using precise building 

expectations and real-world experiments, we demonstrate the various interference strategies 

exhibited by these (anti)CRISPR proteins.(Park et al., 2022). 

 

Sequence programming is necessary for genome editing techniques. Inner fix processes are 

strengthened when site-explicit single-strand breaks or double-strand breaks are produced by 

site-explicit endonucleases at the specified location. fill in the gaps. (Rudin et al., 1989). 

 

 

AI is being used with CRISPR to an ever-greater extent, and new assumption devices are 

always emerging. While the great majority of models support the conclusions of CRISPR-Cas9 

research, there are some notable differences between them. While some models are 

straightforward and applicable to all organic entities and cell types, others are more intricate, 

making use of data such as epigenetic information to predict differences in CRISPR 

reasonability under different circumstances. Reasonable AI reduces the likelihood of human 

tendency by enhancing natural framework recognition with additional data and a wider range 

of environments. (O’brien et al., 2021). 
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Dynamic learning is a semi-supervised approach that labels unlabeled data by using a learning 

formula. A predetermined set of named data is used to set up an operational learning 

framework. The computation for the unlabeled data then predicts the most pertinent names. 

This method is especially intriguing in the scientific domain because collecting precise data 

can occasionally be expensive and time-consuming. While there is an abundance of highly 

modified unlabeled data and manual tagging is impractical, dynamic learning can be used to 

modify genomes. (Sherkatghanad et al., 2023). 

Exploratory proficiency results generally don't match expectations very well, and the relapse 

models used to evaluate CRISPR productivity aren't very precise. The goal is to predict 

efficacy. due to the possibility that models with a regrettable awareness of assumptions could 

arise from the complex process of representing organic structures. Creating an incredibly 

persistent volume of sgRNA is predicted to require more data than just a throughput 

categorization. Small sample sizes and even fragmented imputation sets imply that fixed 

predictions would yield less significant findings than high/low classifications. Therefore, even 

if it is only a temporary solution until relapse calculations can demonstrate sgRNA efficiency, 

the limit of order calculations to distinguish between destinations that are more and less 

dynamic is helpful in practical applications. (O’Brien et al., 2021). 

The benefits of CNN and LSTM are their ability to learn rational facts despite the tendencies 

of neighboring examples. We shall start with the optimal configuration of physicochemical 

features and work our way up to the brain network that drives the critical succession. We fully 

utilized the multimodal information from both branches by employing a direct element 

combination technique. Regression predictions that are executed on target allow for the binary 

classification of active and inactive gRNAs based on these predictions. CRISPR may also be 

used efficiently with a range of CRISPR systems and animals through transfer learning. (Xie 

et al., 2023). 

The neighborhood-establishing data branch uses the equal design of a bidirectional long 

momentary memory organization and a convolutional brain organization to separate 

sophisticated grouping highlights from the basic succession DNA. The exactness of 

expectancies can be greatly increased by selecting a determination of physicochemical 

elements with RNA optional construction strengthened to add additional data to the neural 

network. Given the combination of multi-layered sequencing properties and visual and auditory 

highlights, more precise data can be recovered. The CRISPR-Cas9 framework can be impoved 

using a technique called transfer learning. CRISPR outperforms other developments in creature 
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models and diverse CRISPR frameworks. Consequently, it offers a simple framework for 

highly accurate and broadly applicable targeting efficiency prediction. 

A third-generation gene editing technique that is widely used in biological applications is the 

CRISPR/Cas9 system. One difficult problem facing CRISPR/Cas9 technology in real-world 

applications is (off-target) consequences. Although many prediction models have been 

developed to predict off-target behaviors, the existing methods do not make proper use of 

sequence pair data. There is still room for more accuracy. The CRISPR-IP model learns 

sequence pair features via CNN, BiLSTM, and the attention layer. Performance evaluations on 

two datasets show that our encoding method can represent sequence pair information 

accurately and that the CRISPR-IP model performs better than other models. These techniques 

can recognize sequence pair traits automatically and predict results based on those attributes. 

(Z. R. Zhang & Jiang, 2022) . 

 

2.8.2 Review of studies exploring indel frequencies in various contexts. 

 

 

Many design methods have been developed, but the ability to reliably forecast between 

different species and Cas enzyme types is lacking. The use of the CRISPR framework is 

largely dependent on the viability of sgRNA. Most prediction algorithms are trained using 

data from a small number of species, most commonly E. Coli or human and mouse cell lines. 

This poses a crucial challenge. Furthermore, Cas9 variants have been used in the majority of 

screens that have linked sgRNA groups to activity thus far. Homing activity for other species 

cannot be predicted based on the strong association between the sgRNA features and the target 

species' homing activity; instead, the changeability between species may be caused by 

variations in the genomic scene. (Moreb & Lynch, 2021) 
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CHAPTER III 
 

Methodology 
 

 

PREDICTIVE DATA MODELING OF CRISPR-CAS12USING VARIOUS 

ENCODING METHODOLOGIES 

 

3.1 INTRODUCTION 

 

This work is carefully planned to analyze and comprehend how three different DNA sequence 

encoding methods—K-mers, One-hot, and Integer Encoding—affect the prediction abilities of 

four different machine learning models: Support Vector Regression(SVR), Decision Tree, 

Random Forest, and XGBoost. Estimating the frequency of insertions and deletions (indels), 

which are essential elements of genome engineering regulated by the CRISPR-Cas12 (Cpf1) 

system, is the main focus. Because indels are essential to genome editing and provide 

information about the function and regulation of genes, it is critical to accurately predict indels 

for genetic research and therapeutic interventions. The goal of this thorough analysis is to 

provide insight into the best methods for encoding genomic sequences and the best machine 

learning models to use in order to forecast CRISPR-Cas12 induced indel frequencies. The 

results are anticipated to have wider ramifications in the fields of genetics, bioinformatics, and 

medicinal development in addition to offering useful suggestions for practitioners and 

researchers in the field of genome editing. 

 

Support Vector Regressor 

Support Vector Regressor (SVR) is regarded as one of the most popular and efficient 

classifiers. The principal mechanism behind the classification approach of SVRR revolves 

around the construction of hyperplane or set of hyperplanes in high dimension space. SVR can 

be classified into linear and non-linear. Linear SVR algorithms is develop using a technique 

known as kernel trick which is a function that transform high dimensional space from low 

dimensional space inputs [32]. Given a set of training data {(𝑥𝑖, 𝑑𝑖)}𝑖
𝑁(𝑑𝑖 is the actual value, 

𝑥𝑖 represents the input vector and 𝑁 is the data number), given that the SVM function is:  

𝑦 = 𝑓(𝑥) = 𝑤𝜙(𝑥𝑖) + 𝑏   (1) 

When input vector , 𝑥, which are input feature spaces, is non-linearly mapped to 𝜙(𝑋).  
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Then, the SVR equation is given as 

 

𝑓(𝑥, 𝛼𝑗,𝛼𝑖∗) = ∑ (𝑁
𝑖 𝛼𝑖 − 𝛼𝑖∗)𝐾(𝑥, 𝑥𝑖) + 𝑏  (2) 

𝑘(𝑥𝑖, 𝑥𝑗) is the bias term, and is the kernel function in the feature space following non-linear 

mapping. The most widely used kernel function is the Gaussian Radial Basis Function (RBF), 

which is easier to use and performs better than both linear and polynomial kernels when 

mapping non-linear training data into infinite-dimensional space. It is expressed as follows: 

𝑘(𝑥1, 𝑥2) = 𝑒𝑥𝑝(−𝛾‖𝑥1 − 𝑥2‖2)   (3) 

where 𝛾 is the kernel parameter. 

 

Decision Trees 

Decision Trees (DT) break down complex solutions into smaller, more manageable options in 

order to organize them in a structure like a tree. Decision trees employ splits to choose attributes 

that reduce entropy in order to provide accurate class assignments. The model's visual depiction 

and feature importance insights make it easier to understand. Pruning techniques lessen 

overfitting while ensembles like Random Forests and Boosting increase prediction 

accuracy.(Mienye et al., 2019).  

 

𝑓(𝑥) = {
𝑐1 𝑖𝑓 𝑥𝑖 ≤ 𝑇𝑖

𝑐2 𝑖𝑓 𝑥𝑖 > 𝑇𝑖
 

F(x) is the prediction made by the decision tree. 

Xi is the ith feature. 

Ti is the threshold for the i-th feature. 

c1 and c2 are the predicted classes or values for the corresponding branches. 

 

 

Random Forest 

The approach of group learning Random Forests is an effective tool. By using many decision 

trees and a random selection of attributes and data points, random forest (RF) minimizes 

overfitting and enhances generalization. The decision tree's collective intelligence is taken into 

account during prediction through voting or averages. This approach, which is well known for 
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its flexibility and interpretability and performs well with complex or noisy data, highlights the 

significance of the attributes.(Pavlov, 2019).  

 

𝑓(𝑥) =
1

𝑁
+ ∑ 𝑓𝑖(𝑥)

𝑁

𝑖=1

 

 

𝑓(𝑥) is the prediction made by the random forest. 

N is the number of trees in the forest. 

fi(x) is the prediction made by the i-th decision tree. 

 

XGBoost 

XGBoost is an optimized gradient-boosting algorithm that focuses on reducing errors 

iteratively. It builds decision trees sequentially, with each tree correcting the errors of the 

previous ones. 

 

The study will employ the Spearman Correlation coefficient as the primary metric for 

evaluating the models' performance. This non-parametric measure will assess the rank-order 

relationship between the predicted and actual indel frequencies, providing insights into the 

models' ability to capture the underlying trends in the data, rather than just the absolute values. 

 

3.2 THE DATASET DESCRIPTION 

 

The primary dataset used in this study was provided by (Kim et al., 2017). Kim and associates 

searched for sgRNA characteristics associated with CRISPR-Cas12a activity.  
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Figure 4.1 data set description. 
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Figure 5.1 visualization of nucleotide frequency. 

 

 

3.3 THE ENCODING TECHNIQUES 

 

 3.3.1 K-mers Encoding 

Encoding Technique: K-mer encoding using CountVectorizer. K-mers are length-k 

subsequences that are taken out of DNA sequences. These k-mer sequences are transformed 

into feature vectors by the CountVectorizer, which counts the instances of each k-mer. 

 

3.3.2 One-hot Encoding 

Encoding technique: One-hot encoding using an established code dictionary is the encoding 

technique used. Each nucleotide is represented as a binary vector of length four, where each 

place signifies one of the nucleotides (A, T, G, and C). Every nucleotide is mapped to a 

matching binary vector by the coding dictionary. Then, a concatenation of these binary vectors 

represents the full sequence of DNA. 

 

3.3.3 Integer Encoding 

Encoding Technique: Integer encoding based on a predefined code dictionary. A specified code 

dictionary is used to represent each nucleotide (A, T, G, and C) by an integer number. This 

represents the whole sequence of DNA as a series of these integer numbers. 
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3.4 RESULTS AND DISCUSSION 

Using the CRISPR-CAS12, I trained various regression models (Random Forest, Decision 

Tree, XGBoost, and SVR) on the encoded data, and then I used the Spearman correlation on 

training and test sets to assess each model's performance. Below we will see each one of the 

methods used above (k-mers encoding, one-hot encoding, and integer encoding) to train 

performance of the models: 

1) K-mers encoding: 

 

Table 3.1 : K-mers encoding. 

 
 

 

 

 

 

In this K-mers encoding technique we see that the training set of decision tree comes on top 

with a 0.999 spearmen correlation which shows how well the decision tree model can identify 
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Random Forest Decision Tree XGBoost SVR

K-mers encoding chart

Training set Test set

 Random Forest Decision Tree XGBoost SVR 

Training set 0.967 0.999 0.989 0.492 

Test set 0.316 0.177 0.265 0.352 



 38 

patterns in the training set of data but the test set is 0.177 spearman correlation which implies 

that when the model is used with fresh, untested data, its performance drastically drops. 

 

2) One-hot encoding : 

 

 

Table 3.2 : One-hot encoding. 

 

 

 

 

In this One-hot encoding technique we found out that the decision tree training set has the 

highest correlation of 1.000 spearman correlation which implies that the training set's data order 

is perfectly captured by the model but the test set has a spearman correlation of 0.314 which 

means it’s not as strong as the perfect correlation of the training set  
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 Random Forest Decision Tree XGBoost SVR 

Training set 0.971 1.000 0.999 0.671 

Test set 0.471 0.314 0.385 0.539 
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3) Integer encoding: 

 

 

Table 3.3 : Integer encoding. 

 

 

 

 

The decision tree training set in this Integer encoding technique has the highest correlation of 

1.000 spearman correlation which means the same as the one hot encoding technique which it 

say that the training set data order is perfectly captured by the model (decision tree) while the 

test set has a spearman correlation of 0.118 which implies that it’s not as strong as the perfect 

correlation in the training set same like the one-hot encoding technique 
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 Random Forest Decision Tree XGBoost SVR 

Training set 0.970 1.000 0.999 0.479 

Test set 0.465 0.118 0.340 0.392 
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3.5 CONCLUSION 

 

Model performance on training sets seems to be usually good, but depending on the encoding 

method, the models' performance differs on test sets. Based on the test sets for the majority of 

models, one-hot encoding appears to provide better Spearman correlations, indicating that it 

could be a more successful encoding method for this particular dataset. 
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CHAPTER IV 
 

Methodology 

 

CAS12 CRISPR DATA: PREDICTION WITH VARIOUS DNA SEQUENCE 

ENCODINGS AND DATA SCALING 

 

4.1 INTRODUCTION. 

This work is meticulously planned to dissect and understand the impact of three distinct 

DNA sequence encoding techniques—K-mers, One-hot, and Integer Encoding—on the 

predictive capabilities of four sophisticated machine learning models: Support Vector 

Regression (SVR), Decision Tree, Random Forest, and XGBoost. The primary aim is to 

estimate the frequency of insertions and deletions (indels), crucial elements of genome 

engineering regulated by the CRISPR-Cas12 (Cpf1) system. Indels are central to 

genome editing, providing insights into gene function and regulation; thus, their precise 

prediction is crucial for advancing genetic research and therapeutic interventions. 

After the encoding process, Data Scaling will be applied to standardize the range of the 

feature data. This step is crucial as it ensures that the numerical values of the features 

have been normalized, allowing the machine learning models to converge more quickly 

during training and reducing the chance of bias towards certain features due to their 

scale. Various scaling techniques, such as Min-Max scaling, Standard scaling, or Robust 

scaling, might be employed depending on the distribution and nature of the encoded 

data. The selection of an appropriate scaling method will be based on preliminary 

analysis and the specific characteristics of each encoding technique. 

 

Support Vector Regressor 

Support Vector Regressor (SVR) is regarded as one of the most popular and efficient 

classifiers. The principal mechanism behind the classification approach of SVRR revolves 

around the construction of hyperplane or set of hyperplanes in high dimension space. SVR can 

be classified into linear and non-linear. Linear SVR algorithms is develop using a technique 

known as kernel trick which is a function that transform high dimensional space from low 

dimensional space inputs [32]. Given a set of training data {(𝑥𝑖, 𝑑𝑖)}𝑖
𝑁(𝑑𝑖 is the actual value, 

𝑥𝑖 represents the input vector and 𝑁 is the data number), given that the SVM function is:  
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𝑦 = 𝑓(𝑥) = 𝑤𝜙(𝑥𝑖) + 𝑏   (1) 

When input vector , 𝑥, which are input feature spaces, is non-linearly mapped to 𝜙(𝑋).  

 

 

Then, the SVR equation is given as 

 

𝑓(𝑥, 𝛼𝑗,𝛼𝑖∗) = ∑ (𝑁
𝑖 𝛼𝑖 − 𝛼𝑖∗)𝐾(𝑥, 𝑥𝑖) + 𝑏  (2) 

𝑘(𝑥𝑖, 𝑥𝑗) is the bias term, and is the kernel function in the feature space following non-linear 

mapping. The most widely used kernel function is the Gaussian Radial Basis Function (RBF), 

which is easier to use and performs better than both linear and polynomial kernels when 

mapping non-linear training data into infinite-dimensional space. It is expressed as follows: 

𝑘(𝑥1, 𝑥2) = 𝑒𝑥𝑝(−𝛾‖𝑥1 − 𝑥2‖2)   (3) 

where 𝛾 is the kernel parameter. 

 

Decision Trees 

Decision Trees (DT) break down complex solutions into smaller, more manageable options in 

order to organize them in a structure like a tree. Decision trees employ splits to choose attributes 

that reduce entropy in order to provide accurate class assignments. The model's visual depiction 

and feature importance insights make it easier to understand. Pruning techniques lessen 

overfitting while ensembles like Random Forests and Boosting increase prediction 

accuracy.(Mienye et al., 2019).  

 

𝑓(𝑥) = {
𝑐1 𝑖𝑓 𝑥𝑖 ≤ 𝑇𝑖

𝑐2 𝑖𝑓 𝑥𝑖 > 𝑇𝑖
 

F(x) is the prediction made by the decision tree. 

Xi is the ith feature. 

Ti is the threshold for the i-th feature. 

c1 and c2 are the predicted classes or values for the corresponding branches. 

 

 

Random Forest 

The approach of group learning Random Forests is an effective tool. By using many decision 

trees and a random selection of attributes and data points, random forest (RF) minimizes 

overfitting and enhances generalization. The decision tree's collective intelligence is taken into 
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account during prediction through voting or averages. This approach, which is well known for 

its flexibility and interpretability and performs well with complex or noisy data, highlights the 

significance of the attributes.(Pavlov, 2019).  

 

𝑓(𝑥) =
1

𝑁
+ ∑ 𝑓𝑖(𝑥)

𝑁

𝑖=1

 

 

𝑓(𝑥) is the prediction made by the random forest. 

N is the number of trees in the forest. 

fi(x) is the prediction made by the i-th decision tree. 

 

XGBoost 

XGBoost is an optimized gradient-boosting algorithm that focuses on reducing errors 

iteratively. It builds decision trees sequentially, with each tree correcting the errors of the 

previous ones. 

 

The study will employ the Spearman Correlation coefficient as the primary metric for 

evaluating the models' performance. This non-parametric measure will assess the rank-order 

relationship between the predicted and actual indel frequencies, providing insights into the 

models' ability to capture the underlying trends in the data, rather than just the absolute values. 

 

4.2 THE DATASET DESCRIPTION 

The primary dataset used in this study was provided by (Kim et al., 2017). Kim and associates 

searched for sgRNA characteristics associated with CRISPR-Cas12a activity.  

 

4.3 RESULTS AND DISCUSSION 

I trained many regression models (Random Forest, Decision Tree, XGBoost, and SVR) using 

encoded DNA sequences using the CRISPR-CAS12 technology. Data scaling was used 

together with the encoding techniques, which included integer, one-hot, and k-mers. Through 

the use of Spearman correlation on training and test sets, performance evaluation provided 

useful information into each model's predictive capacity. The investigation explores how 

encoding schemes, data scaling, and regression models affect CRISPR-CAS12 applications, 

ranging from numeric representation in integer encoding to nuanced correlations in one-hot 
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encoding and unique k-mer characteristics. . Below we will see each one of the methods used 

above (integer encoding, one-hot encoding and k-mers encoding) to train performance of the 

models: 

 

1) Integer Encoding with Data Scaling 

 

  

Models Random 

Forest 

Decision Tree XGBoost SVR 

Training set 0.972 1.000  0.999 0.473 

Test set 0.495 0.169 0.347 0.363 

 

 

 

2) One-Hot Encoding with Data Scaling 

 

Models Random Forest Decision Tree XGBoost SVR 

Training set 0.971 1.00  0.999 0.680 

Test set 0.471 0.531 0.685 0.556 
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3) Integer Encoding with Data Scaling 

 

Models Random Forest Decision Tree XGBoost SVR 

Training set 0.967 0.999  0.985 0.520 

Test set 0.321 0.138 0.231 0.333 
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4.4 CONCLUSION 

On the training set, Decision Tree consistently displays perfect correlation, which could be a 

sign of overfitting. Maintaining nucleotide relationships appears to be important since one-hot 

encoding appears to perform better than integer encoding. In general, RandomForest and 

XGBoost exhibit strong performance in various encoding methods. The efficacy of SVR varies 

depending on the encoding method selected. Performance on the test set is typically worse than 

on the training set, suggesting that certain models may be overfitting. 
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CHAPTER VI 

 
 

Conclusion and Recommendations 
 

 

Genomic research, agricultural practices, and medical fields have all made use of CRISPR, an 

enzyme and guide RNA system that recognizes and cuts a target DNA sequence. Selecting the 

right guide RNAs (gRNAs) is made easier by computational methods. Guide RNAs are 

necessary to initiate the CRISPR editing step. Various strategies have been used to develop 

CRISPR sgRNA design and evaluation tools, especially for the CRISPR/Cas9 system. 

Gene editing is approached differently in CRISPR Cas12 systems. In contrast, Cas12 generates 

sharp-ended breaks upon detecting G-rich PAM. Cas12 needs a tight PAM sequence and 

employs sgRNA. The particular requirements of gene editing determine which Cas12 to use. 

Every system has benefits and is necessary for the advancement of CRISPR technology. 

In conclusion, As seen in this first case, the performance of the various machine learning 

models on the training sets consistently yields positive outcomes. Nonetheless, the coding 

method selection had a major impact on how well the models performed on the test sets. 

Crucially, hot encoding was discovered to be a successful tactic on the test sets, exhibiting 

enhanced Spearman correlations and indicating that it functions effectively on this particular 

CRISPR dataset. 

In the second case, the decision tree model's training dataset with the data measure regularly 

displayed perfect correlation, which increased the risk of overfitting. Nucleotide link 

preservation is crucial, as evidenced by hot encoding's superior performance over integer 

encoding. XGBoost and RandomForest frequently offer good performance across a range of 

encryption algorithms when it comes to managing nucleotide data. However, the efficiency 

with which support vector regression (SVR) may be carried out depends on the coding 

technique selected. 

In the latter study, A consistent pattern of lower performance in the test set relative to the 

training set raised the possibility that some models were overfitting. This latter case is 

employed in several research projects, ranging from direct nucleotide frequency displays to the 

development and assessment of intricate machine learning models. A variety of feature 

representations, including hot encryption, k-mer counting, and integer encryption, are 

thoroughly examined. Low-dimensional datasets are also easier to visualize because to 

dimensionality reduction techniques, and the models were assessed using the Spearman 

correlation grading scale. Based on the results shown, it appears that the Random Forest model 
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is the most stable and dependable for this particular task and dataset. 

Recommendations 

There are still a few intriguing avenues to explore, even though the deep learning models 

created in this thesis have demonstrated their value in developing sgRNA for CRISPRcas12 

and have enhanced the performance of sgRNA activity prediction. Experimenting with 

different deep learning-based architectures and employing better methods for optimum 

hyperparameter selection are two ways to potentially increase performance. Finding a way to 

increase the amount of features that can be utilized to build the model is the second challenge. 

This thesis only employed sgRNA sequence data; however, to improve model performance, 

epigenetic characteristics can be added. Moreover, integrating activity prediction and sgRNA 

off-target prediction into a single model would provide thorough information for choosing 

appropriate sgRNAs for CRISPR/Cas12 gene editing. 



 49 

References 
 

 

Ameen, Z. S. id, Ozsoz, M., Mubarak, A. S., Turjman, F. Al, & Serte, S. (2021). C-SVR 

Crispr: Prediction of CRISPR/Cas12 guideRNA activity using deep learning models. 

Alexandria Engineering Journal, 60(4), 3501–3508. 

https://doi.org/10.1016/j.aej.2021.02.007 

Baisya, D., Ramesh, A., Schwartz, C., Lonardi, S., & Wheeldon, I. (2022). Genome-wide 

functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a 

guides in Yarrowia lipolytica. Nature Communications, 13(1). 

https://doi.org/10.1038/s41467-022-28540-0 

Bengio, Y., Lecun, Y., & Hinton, G. (2021). Deep learning for AI. Communications of the 

ACM, 64(7), 58–65. https://doi.org/10.1145/3448250 

Bonini, A., Poma, N., Vivaldi, F., Kirchhain, A., Salvo, P., Bottai, D., Tavanti, A., & Di, F. 

(2021). Advances in biosensing : The CRISPR / Cas system as a new powerful tool for 

the detection of nucleic acids. Journal of Pharmaceutical and Biomedical Analysis, 192, 

113645. https://doi.org/10.1016/j.jpba.2020.113645 

Broughton, J. P., Deng, X., Yu, G., Fasching, C. L., Servellita, V., Singh, J., Miao, X., 

Streithorst, J. A., Granados, A., Sotomayor-gonzalez, A., Zorn, K., Gopez, A., Hsu, E., 

Gu, W., Miller, S., Pan, C., Guevara, H., Wadford, D. A., Chen, J. S., & Chiu, C. Y. 

(2019). CRISPR – Cas12-based detection of SARS-CoV-2. Nature Biotechnology, 38, 

870–874. https://doi.org/https://doi.org/10.1038/ s41587-020-0513-4. 

Cascella, M., Rajnik, M., & Aleem, A. (2022). Features, Evaluation, and Treatment of 

Coronavirus (COVID-19). National Library of Medicine, 2019(November), 30. 

https://www.ncbi.nlm.nih.gov/books/NBK554776/ 

Chen, J. S., Chen, J. S., Ma, E., Harrington, L. B., Costa, M. Da, Tian, X., & Palefsky, J. M. 

(2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase 

activity. 6245(February), 1–8. 

Das, S., Dey, A., Pal, A., & Roy, N. (2015). Applications of Artificial Intelligence in 

Machine Learning: Review and Prospect. International Journal of Computer 

Applications, 115(9), 31–41. https://doi.org/10.5120/20182-2402 

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., 

Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. 

Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z 

Fonfara, I., Richter, H., BratoviÄ, M., Le Rhun, A., & Charpentier, E. (2016). The CRISPR-

associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 

532(7600), 517–521. https://doi.org/10.1038/nature17945 

Friedrichs, S., Takasu, Y., Kearns, P., Dagallier, B., Oshima, R., Schofield, J., & Moreddu, C. 

(2019). An overview of regulatory approaches to genome editing in agriculture. 

Biotechnology Research and Innovation, 3(2), 208–220. 

https://doi.org/10.1016/j.biori.2019.07.001 

Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., Joung, J., Collins, J. J., & Zhang, F. 

(2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a 

and Csm6. Science, 360(6387), 439–444. https://doi.org/10.1126/science.aaq0179 

Gostimskaya, I. (2022). CRISPR–Cas9: A History of Its Discovery and Ethical 

Considerations of Its Use in Genome Editing. Biochemistry (Moscow), 87(8), 777–788. 

https://doi.org/10.1134/S0006297922080090 

Habehh, H., & Gohel, S. (2021). Machine Learning in Healthcare. Current Genomics, 22(4), 

291–300. https://doi.org/10.2174/1389202922666210705124359 

Hidalgo-Cantabrana, C., Goh, Y. J., & Barrangou, R. (2019). Characterization and 



 50 

Repurposing of Type I and Type II CRISPR–Cas Systems in Bacteria. Journal of 

Molecular Biology, 431(1), 21–33. https://doi.org/10.1016/j.jmb.2018.09.013 

Hillary, V. E., & Ceasar, S. A. (2023). A Review on the Mechanism and Applications of 

CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering. 

Molecular Biotechnology, 65(3), 311–325. https://doi.org/10.1007/s12033-022-00567-0 

Hille, F., Richter, H., Wong, S. P., Bratovič, M., Ressel, S., & Charpentier, E. (2018). The 

Biology of CRISPR-Cas: Backward and Forward. Cell, 172(6), 1239–1259. 

https://doi.org/10.1016/j.cell.2017.11.032 

Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of CRISPR-Cas from Encounter with 

a Mysterious. Journal of Bacteriology, 200(7), e00580-17. 

Jackson, S. A., McKenzie, R. E., Fagerlund, R. D., Kieper, S. N., Fineran, P. C., & Brouns, S. 

J. J. (2017). CRISPR-Cas: Adapting to change. Science, 356(6333). 

https://doi.org/10.1126/science.aal5056 

Kass, E. M., & Jasin, M. (2014). Break Repair Pathways. 584(17), 3703–3708. 

https://doi.org/10.1016/j.febslet.2010.07.057.Collaboration 

Kim, H. K., Song, M., Lee, J., Menon, A. V., Jung, S., Kang, Y. M., Choi, J. W., Woo, E., 

Koh, H. C., Nam, J. W., & Kim, H. (2017). In vivo high-throughput profiling of 

CRISPR-Cpf1 activity. Nature Methods, 14(2), 153–159. 

https://doi.org/10.1038/nmeth.4104 

Kim, H., Kim, S. T., Ryu, J., Kang, B. C., Kim, J. S., & Kim, S. G. (2017). CRISPR/Cpf1-

mediated DNA-free plant genome editing. Nature Communications, 8, 1–7. 

https://doi.org/10.1038/ncomms14406 

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 

https://doi.org/10.1038/nature14539 

Li, S., Cheng, Q., Wang, J., Zhao, G., & Wang, J. (2018). CRISPR-Cas12a-assisted nucleic 

acid detection. Cell Discovery, 18–21. https://doi.org/10.1038/s41421-018-0028-z 

Li, S., Li, J., Zhang, J., Du, W., Fu, J., Sutar, S., Zhao, Y., & Xia, L. (2018). Synthesis-

dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene 

replacement in rice. Journal of Experimental Botany, 69(20), 4715–4721. 

https://doi.org/10.1093/jxb/ery245 

Matsumoto, D., & Nomura, W. (2023). The history of genome editing: advances from the 

interface of chemistry & biology. Chemical Communications, 59(50), 7676–7684. 

https://doi.org/10.1039/d3cc00559c 

Mehravar, M., Shirazi, A., Nazari, M., & Banan, M. (2019). Mosaicism in CRISPR/Cas9-

mediated genome editing. Developmental Biology, 445(2), 156–162. 

https://doi.org/10.1016/j.ydbio.2018.10.008 

Mienye, I. D., Sun, Y., & Wang, Z. (2019). Prediction performance of improved decision 

tree-based algorithms: a review. Procedia Manufacturing, 35, 698–703. 

https://doi.org/10.1016/j.promfg.2019.06.011 

Moreb, E. A., & Lynch, M. D. (2021). Genome dependent Cas9/gRNA search time underlies 

sequence dependent gRNA activity. Nature Communications, 12(1). 

https://doi.org/10.1038/s41467-021-25339-3 

Moreno-Mateos, M. A., Vejnar, C. E., Beaudoin, J. D., Fernandez, J. P., Mis, E. K., Khokha, 

M. K., & Giraldez, A. J. (2015). CRISPRscan: Designing highly efficient sgRNAs for 

CRISPR-Cas9 targeting in vivo. Nature Methods, 12(10), 982–988. 

https://doi.org/10.1038/nmeth.3543 

O’brien, A. R., Burgio, G., & Bauer, D. C. (2021). Domain-specific introduction to machine 

learning terminology, pitfalls and opportunities in CRISPR-based gene editing. Briefings 

in Bioinformatics, 22(1), 308–314. https://doi.org/10.1093/bib/bbz145 

Pan, A., & Kraschel, K. L. (2018). CRISPR diagnostics: Underappreciated uses in 



 51 

perinatology. Seminars in Perinatology, 42(8), 525–530. 

https://doi.org/10.1053/j.semperi.2018.09.016 

Park, H. M., Park, Y., Vankerschaver, J., Van Messem, A., De Neve, W., & Shim, H. (2022). 

Rethinking Protein Drug Design with Highly Accurate Structure Prediction of Anti-

CRISPR Proteins. Pharmaceuticals, 15(3), 1–14. https://doi.org/10.3390/ph15030310 

Pavlov, Y. L. (2019). Random forests. Random Forests, 1–122. 

https://doi.org/10.1201/9780429469275-8 

Rudin, N., Sugarman, E., & Haber, J. E. (1989). Genetic and physical analysis of double-

strand break repair and recombination in Saccharomyces cerevisiae. Genetics, 122(3), 

519–534. https://doi.org/10.1093/genetics/122.3.519 

Schmidt, S. M., Belisle, M., & Frommer, W. B. (2020). The evolving landscape around 

genome editing in agriculture. EMBO Reports, 21(6), 19–22. 

https://doi.org/10.15252/embr.202050680 

Sherkatghanad, Z., Abdar, M., Charlier, J., & Makarenkov, V. (2023). Using traditional 

machine learning and deep learning methods for on- and off-target prediction in 

CRISPR/Cas9: a review. Briefings in Bioinformatics, 24(3), 1–25. 

https://doi.org/10.1093/bib/bbad131 

Talwar, C. S., Park, K., Ahn, W., Kim, Y., Kwon, O. S., Yong, D., Kang, T., & Woo, E. 

(2021). Detection of Infectious Viruses Using CRISPR-Cas12-Based Assay. Biosensors, 

11. https://doi.org/10.3390/bios11090301 

Thurtle-Schmidt, D. M., & Lo, T. W. (2018). Molecular biology at the cutting edge: A review 

on CRISPR/CAS9 gene editing for undergraduates. Biochemistry and Molecular 

Biology Education, 46(2), 195–205. https://doi.org/10.1002/bmb.21108 

Van Der Oost, J., Westra, E. R., Jackson, R. N., & Wiedenheft, B. (2014). Unravelling the 

structural and mechanistic basis of CRISPR-Cas systems. Nature Reviews Microbiology, 

12(7), 479–492. https://doi.org/10.1038/nrmicro3279 

Wright, A. V., Nuñez, J. K., & Doudna, J. A. (2016). Biology and Applications of CRISPR 

Systems: Harnessing Nature’s Toolbox for Genome Engineering. Cell, 164(1–2), 29–44. 

https://doi.org/10.1016/j.cell.2015.12.035 

Xie, J., Liu, M., & Zhou, L. (2023). CRISPR-OTE: Prediction of CRISPR On-Target 

Efficiency Based on Multi-Dimensional Feature Fusion. Irbm, 44(1), 100732. 

https://doi.org/10.1016/j.irbm.2022.07.003 

Xu, H., Xiao, T., Chen, C. H., Li, W., Meyer, C. A., Wu, Q., Wu, D., Cong, L., Zhang, F., 

Liu, J. S., Brown, M., & Liu, X. S. (2015). Sequence determinants of improved CRISPR 

sgRNA design. Genome Research, 25(8), 1147–1157. 

https://doi.org/10.1101/gr.191452.115 

Yan, J., Chuai, G., Zhou, C., Zhu, C., Yang, J., Zhang, C., Gu, F., Xu, H., Wei, J., & Liu, Q. 

(2018). Benchmarking CRISPR on-target sgRNA design. Briefings in Bioinformatics, 

19(4), 721–724. https://doi.org/10.1093/bib/bbx001 

Yoshida, M., Saito, T., Takayanagi, Y., Totsuka, Y., & Onaka, T. (2022). Necessity of 

integrated genomic analysis to establish a designed knock-in mouse from CRISPR-

Cas9-induced mutants. Scientific Reports, 12(1), 1–15. https://doi.org/10.1038/s41598-

022-24810-5 

Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., 

Essletzbichler, P., Volz, S. E., Joung, J., Van Der Oost, J., Regev, A., Koonin, E. V., & 

Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-

Cas System. Cell, 163(3), 759–771. https://doi.org/10.1016/j.cell.2015.09.038 

Zhan, T., Rindtorff, N., Betge, J., Ebert, M. P., & Boutros, M. (2019). CRISPR/Cas9 for 

cancer research and therapy. Seminars in Cancer Biology, 55(March 2018), 106–119. 

https://doi.org/10.1016/j.semcancer.2018.04.001 



 52 

Zhang, Y., Chen, M., Liu, C., Chen, J., Luo, X., Xue, Y., Liang, Q., Zhou, L., Tao, Y., Li, 

M., Wang, D., Zhou, J., & Wang, J. (2021). Sensitive and rapid on-site detection of 

SARS-CoV-2 using a gold nanoparticle-based high-throughput platform coupled with 

CRISPR/Cas12-assisted RT-LAMP. Sensors and Actuators, B: Chemical, 345. 

https://doi.org/10.1016/j.snb.2021.130411 

Zhang, Z. R., & Jiang, Z. R. (2022). Effective use of sequence information to predict 

CRISPR-Cas9 off-target. Computational and Structural Biotechnology Journal, 20, 

650–661. https://doi.org/10.1016/j.csbj.2022.01.006 



 53 

 

Appendix X 
 

Turnitin Similarity Report 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


