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Abstract 

 

Bayesian Machine Learning Analysis with Markov Chain Monte Carlo Techniques for 

Assessing Characteristics and Risk Factors of Covid-19 in Erbil City-Iraq 2020-2021 

Hewir Khidir 

Ph.D., Department of Biostatistics 

June, 2023, 128 pages  

 

Study’s Background 

The study aims to showcase machine learning techniques in the application of medical 

datasets for improving identification of correlations and relationships between variables, 

which will lead to more informed decision-making. Unlike other studies, intensive statistical 

modelling is used to understand and find the effective of variables cause to lead death due to 

Covid-19. Due to large dataset, not common approaches derive us to ideal conclusion. 

Furthermore, Bayesian technique is applied to generate predictive posterior distributions of 

the unknown parameters in the model in neural network as well as logistic regression, which 

helps us to avoid overfitting in machine learning applications and have additional 

measurements in assessing fitted model performance. The study primarily focuses on 

analysing the patient profile of those who were hospitalized due to Covid-19 infection. To 

achieve this, two hospitals with a significant number of Covid-19 cases since the beginning 

of the pandemic have been chosen for analysis - one from the public sector and the other from 

the private sector. 

Methods 

The pattern and distribution of the study variables will be defined using descriptive 

statistics. The basic statistical measurements are calculated such as, mean, median and 

standard deviation of quantitative variables, whereas the frequencies and percentages are used 

to decide the trend of categorical variables. The dataset comprises an extensive array of 

variables, a few of which are outlined as age, gender, Smoking, Fever, Cough, Sputum, 

Hypertension, Diabetes, Stroke, Temperature, HR, Respiratory, SpO2, Quadrant, Pulmonary. 
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WBC Count, Neutrophil, Lymphocyte, Platelet, Albumin, Creatinine, CRP, APTHT, 

Fibrinogen, D dimer. 

Results 

According to the results extracted from the statistical analysis, the Bayesian neural 

network demonstrated superior performance in terms of classification measurements such as 

AUC (84.66%), F1 (87.11%), Precision (88.29%), and Recall (85.96%). The Bayesian 

logistic regression also performed well, but with slightly lower scores, achieving AUC 

(83.07%), F1 (85.59%), Precision (84.55%), and Recall (85.59%). In contrast, kNN algorithm 

had the worst performance with very low scores (AUC=52.38%, F1=57.55%, 

Precision=57.01%, Recall=58.10%). Regarding the variables' association with mortality, 

stepwise forward selection helped to identify seven significant variables. Age was found to 

be the most significant variable in predicting the probability of dying, with patients in the age 

group of (18-44) having 12 times higher odds, patients in the age group of (45-64) having 123 

more odds, and patients above 65 years old having 436 times more chance to die compared 

to patients below 18 years old. Severe coughing was also significant with 7.26 odds, and 

patients suffering from diabetes had 2.82 times more chance to die. Moreover, SpO2 

contributed to a decrease of 20% in the relative risk of dying from Covid-19 disease. Gender 

and Smoking did not show a significant association with mortality.  

Finally, the Bayesian approach showed higher sensitivity and specificity than the 

classic neural network. 

Keywords: 

Covid-19, Bayesian Neural Network, Bayesian Logistic Regression Modelling, Markov Chain 

Monte Carlo Odds Ratio, ROC Curve, Classification Measurements, 
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Özet 

Erbil Şehri-Irak'ta Kovid-19'un Özelliklerini ve Risk Faktörlerini Değerlendirmek 

için Markov Zinciri Monte Carlo Teknikleri ile Bayesian Makine Öğrenimi Analizi 

2020-2021 

 

Doktora, Biyoistatistik Anabilim Dalı 

Haziran, 2023, 128 sayfa 

 

Çalışmanın Arka Planı 

Çalışma, değişkenler arasındaki korelasyonların ve ilişkilerin tanımlanmasını iyileştirmek 

için tıbbi veri kümelerinin uygulanmasında makine öğrenimi tekniklerini göstermeyi 

amaçlıyor ve bu da daha bilinçli karar vermeye yol açacak. Diğer çalışmalardan farklı olarak 

Kovid-19 nedeniyle ölüme yol açan değişkenlerin anlaşılması ve etkisinin bulunması için 

yoğun istatistiksel modelleme kullanılıyor. Büyük veri seti nedeniyle ortak yaklaşımlar bizi 

ideal sonuca ulaştırmamaktadır. Ayrıca, sinir ağındaki modeldeki bilinmeyen parametrelerin 

tahmine dayalı sonsal dağılımlarını oluşturmak için Bayesian tekniği uygulanıyor ve lojistik 

regresyon, makine öğrenimi uygulamalarında aşırı uyumdan kaçınmamıza ve uygun model 

performansını değerlendirmede ek ölçümlere sahip olmamıza yardımcı oluyor. Çalışmada 

öncelikle Kovid-19 enfeksiyonu nedeniyle hastaneye kaldırılanların hasta profilinin analiz 

edilmesine odaklanılıyor. Bunu başarmak için, salgının başlangıcından bu yana önemli sayıda 

Kovid-19 vakasının görüldüğü, biri kamu sektöründen, diğeri özel sektörden olmak üzere iki 

hastane analiz için seçildi. 

Yöntemler 

Çalışma değişkenlerinin şekli ve dağılımı tanımlayıcı istatistikler kullanılarak 

tanımlanacaktır. Niceliksel değişkenlerin ortalama, ortanca ve standart sapması gibi temel 

istatistiksel ölçümler hesaplanırken, kategorik değişkenlerin eğilimini belirlemek için frekans 

ve yüzdeler kullanılır. Veri seti, birkaçı yaş, cinsiyet, Sigara içme, Ateş, Öksürük, Balgam, 

Hipertansiyon, Diyabet, İnme, Sıcaklık, HR, Solunum, SpO2, Quadrant, Pulmoner olarak 
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özetlenen çok çeşitli değişkenlerden oluşur. WBC Sayısı, Nötrofil, Lenfosit, Trombosit, 

Albümin, Kreatinin, CRP, APTHT, Fibrinojen, D dimer. 

Sonuçlar 

İstatistiksel analizden elde edilen sonuçlara göre Bayes sinir ağı, AUC (%84,66), F1 

(%87,11), Precision (%88,29) ve Recall (%85,96) gibi sınıflandırma ölçümleri açısından 

üstün performans sergiledi. Bayesian lojistik regresyonu da iyi performans gösterdi ancak 

biraz daha düşük puanlarla AUC (%83,07), F1 (%85,59), Precision (%84,55) ve Recall 

(%85,59) elde etti. Buna karşılık kNN algoritması çok düşük puanlarla en kötü performansı 

gösterdi (AUC=%52,38, F1=%57,55, Precision=%57,01, Recall=%58,10). Değişkenlerin 

mortalite ile ilişkisine ilişkin olarak, adım adım ileri seçim, yedi anlamlı değişkenin 

belirlenmesine yardımcı oldu. Yaşın, ölüm olasılığını tahmin etmede en anlamlı değişken 

olduğu, yaş grubundaki hastaların (18-44) oranlarda 12 kat, (45-64) yaş grubundaki hastalarda 

ise 123 kat daha fazla oran elde edildiği, ve 65 yaş üstü hastaların ölme şansı, 18 yaş altı 

hastalara göre 436 kat daha fazladır. Şiddetli öksürük de 7,26 oranla anlamlıydı ve diyabetli 

hastaların ölme şansı 2,82 kat daha fazlaydı. Üstelik SpO2, Kovid-19 hastalığından göreceli 

ölüm riskinde %20'lik bir azalmaya katkıda bulundu. Cinsiyet ve Sigara kullanımı 

mortaliteyle anlamlı bir ilişki göstermedi. 

Son olarak Bayes yaklaşımı, klasik sinir ağından daha yüksek hassasiyet ve özgüllük gösterdi. 

 

Anahtar Kelimeler: 

Covid-19, Bayesian Sinir Ağı, Bayesian Lojistik Regresyon Modellemesi, Markov Zinciri 

Monte Carlo Odds Oranı, ROC Eğrisi, Sınıflandırma Ölçümleri, 
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CHAPTER I 

INTRODUCTION 

 

In December 2019, a newly emerged infectious disease called Coronavirus disease 

2019 (Covid-19), which was caused by the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), was first identified in Wuhan, China. In Iraq, Covid-19 was first detected in 

Southern Iraq in February 2020 and as a result of the emergence of these incidents, the 

Kurdistan Region enacted stringent security measures. To determine the limit of spreading 

the virus in the region, several indicators were used such as, the closure of schools and 

colleges, closure of borders and airports, cancellation of civic and religious events, and 

obligatory quarantine for people returning from trips abroad and encounters. More than 1.2 

million people have died because of Covid-19, a new coronavirus disease that has affected 

over 45 million individuals globally (Organization, 2020a).   

A broad spectrum of symptoms can be caused by Covid-19, as 14 percent and 5 

percent of the patients whose test results were confirmed had Covid-19 cases that were either 

severe or serious. The emerge damaged the healthcare system because it spread very quickly 

and was the main cause of death, consequently most of the available medical resources were 

secured to contain the virus.  

Some of the common symptoms identified initially were dyspnea, breathing rates 

below 30 breaths per minute, blood oxygen saturation levels under 93%, partial pressure of 

arterial oxygen to fraction of inspired oxygen ratio of less than 300 mmHg, and/or lung 

infiltrates of over 50%. These indicators typically appeared within 24 to 48 hours (Guo et al., 

2020). Patients infected with severe respiratory issues required mechanical assistance for 

breathing and needed to be transferred to the critical care unit due to conditions such as shock, 

disseminated coagulopathy, or multiple organ failures. 

Numerous risk factors were considered to be effective including age, gender, 

ethnicity, as well as nutrition, lifestyle, and laboratory indicators. It was generally agreed that 

the risk factors could help identify individuals who were more likely to contract the virus 

severely and face a higher risk of mortality. However, it was crucial to acknowledge that 

certain studies examine general risk factors associated with disease progression, whereas 
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others focus on specific risk factors contributing to the advancement of Covid-19 into a 

critical stage (N. Chen et al., 2020).  

In the realm of artificial neural networks (ANNs), a sophisticated connection system 

is established, which emulates human learning patterns to predict and comprehend future data. 

The groundwork for ANNs was laid in 1943 by Warren McCullock and Walter Pits, who 

introduced their initial model (Guan et al., 2020). Since then, ANNs have found success in 

various domains, surpassing human capabilities in prediction tasks such as decision support 

for cancer, streamflow forecasting, and weather prediction. 

The fundamental building blocks of an ANN are neurons, interconnected in a manner 

that allows signals to flow between them and to other neurons. The collaboration of numerous 

neurons in an ANN facilitates its predictive capabilities, wherein layers play a crucial role. A 

layer comprises one or more neurons or groups of neurons, and ANNs can have an infinite 

number of such layers. To enhance prediction accuracy, ANNs often incorporate multiple 

hidden layers between their input and output layers (Liu et al., 2020). These hidden layers 

effectively transform incoming data into a format suitable for processing by the output layer. 

At the core of the ANN, the input layer receives data in the form of real numbers. 

During the training process, the connection weights between neurons are iteratively adjusted 

to optimize performance and achieve the best possible outcomes. 

After receiving feedback from the interconnected neurons in the underlying layers, an 

eager nerve cell employs an activation function to generate an output value for that specific 

layer. The true potential of an Artificial Neural Network (ANN) lies in its ability to accelerate 

the neuron firing process, enhancing its performance significantly (Huang et al., 2020). The 

selection of activation functions is often based on the problem at hand or determined through 

rigorous testing to identify the most suitable one. 

Training various neural network models demands distinct approaches. Consequently, 

it is imperative to examine the key characteristics and patterns of major diseases' propagation 

to guide effective public health interventions and forecast the spread of potential new 

epidemics. In such scenarios, systems of ordinary differential equations prove invaluable, 

enabling the tracking of different population segments during the course of an infectious 

disease outbreak (G. Chen et al., 2020; N. Chen et al., 2020; Liu et al., 2020). 
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In the case of new infectious diseases like Covid-19, many of their crucial 

characteristics remain unknown and necessitate thorough investigation before accurate 

projections can be made. Having the lack of sufficient reliable data at the initial stages of an 

epidemic, it becomes challenging to identify these traits at the outset. Consequently, to obtain 

quick estimates during the first wave of the Covid-19 outbreak, model-based inference was 

employed, as extracting key epidemiological parameters directly from primary clinical 

monitoring data posed difficulties. One widely used approach involved SEIR (Susceptible-

Exposed-Infectious-Recovered) models, which enabled predictions of the number of reported 

cases outside of Wuhan and the time it would take for the epidemic to double in size (J. T. 

Wu et al., 2020). These methods were also utilized to assess Covid-19's potential impact on 

children in various scenarios. The primary objective of such studies, along with others, was 

to identify critical epidemiological factors, including age-specific death rates, the impact of 

disease control measures on transmission, and the presence of unreported cases (Liu et al., 

2020). 

The application of models of the SIR type is an essential consideration to make. In 

order to forecast how an epidemic will develop in response to changes in population 

behaviour or climatic conditions, these models make assumptions about significant 

epidemiological traits and use trustworthy methods for quantifying uncertainty. In the fields 

of medical decision modelling and health policy, the process of estimating hidden model 

parameters by looking at model outputs is also known by the term "model calibration" 

(inverse inference) (Kompa et al., 2021). The conventional understanding of model 

calibration is that determining the optimal values for the parameters is an optimization 

problem (e.g., by performing non-linear least squares minimization or relying on maximum 

likelihood estimation). On the other hand, optimum and maximum likelihood approaches 

have a tendency to concentrate on point estimates for each parameter, but they lack the 

appropriate instruments to ensure that these point estimates are accurate. This is a significant 

challenge since reliable measures of uncertainty are necessary before making predictions 

about the future. 

Therefore, accurate predictions had became point of concern in order to contain the 

disease and find proper medicine for patients. Bayesian statistical methods plays crucial roles 

and alongside of classical approach for model fitting, and several studies with machine 
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learning algorithms have been studied to investigate Covid-19 risk factors as well as the trend 

of uprising the spread by (Abdulkareem et al., 2022; Dinar et al., 2022; Hameed Abdulkareem 

et al., 2022; Obaid et al., 2020; Saeed et al., 2022). This is because rather than providing a 

single-point estimate for the unknown parameters, Bayesian methods also offer the whole 

posterior distributions for the unknown parameters and Markov chain Monte Carlo sampling 

is one of the prevalent approaches to calibrating Bayesian models. For instance, gaussian 

process regression can be applied to estimate parameters for predicting temperature of doped 

Fe-based superconductors based on structural and topological parameters as studied by 

(Zhang & Xu, 2020, 2021b) and also the approach was compared with artificial neural 

network as studied by (Zhang & Xu, 2021a, 2021c). Moreover, Bayesian calibration is a more 

accurate method, and due to the complexity of the likelihood function, it is difficult to 

calculate the model’s parameters straightforwardly (Khudhur & Kadir, 2022; Liu et al., 2021). 

Accurate Bayesian computation (ABC) can be applied to estimate the posterior distribution 

of unknown parameters when the likelihood function is hard to calculate or not known. ABC 

approaches are known for being inaccurate at dealing with large amounts of data and 

complicated models. This means that they can only be used for very simple models with a 

limited number of parameters. 

Because of an outbreak of the novel coronavirus, the World Health Organization 

declared a global pandemic on March 11, 2020. The term was then abbreviated as Covid-19, 

or coronavirus disease 2019, and was used to refer to the ailment in subsequent years 

(Organization, 2020b). The first situation report on the sickness from the World Health 

Organization (WHO) was published in. Four countries, including China (278 instances), 

Thailand (2), Japan (1), and the Republic of Korea (1) (Organization, 2020a), have reported 

a total of 282 confirmed cases of the 2019-nCoV as of January 20th, 2020. (Organization, 

2020a). They also were contributing their thoughts on crucial Covid-19-related issues. The 

number of cases, the number of fatalities, surveillance, strategic response goals, preparedness 

and reaction, as well as suggestions and guidance for the general public, were some of these 

subjects. Weekly operational and epidemiological update reports had been sent after August 

16th, 2020, and all of these reports were made available on their official online platform. 

The number of Covid-19 cases was still increasing at its highest rate since the 

beginning of the pandemic, with more than 5.7 million new cases reported per week, 
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according to the most recent WHO weekly epidemiological update report, which was released 

on May 2, 2021, 10 am CET (Organization, 2021). This came after weekly reports of reported 

cases increased for nine weeks before. Over 93,000 more fatalities had been freshly recorded 

than the week before, making it the eighth week in a row. It was estimated that 3,186,817 of 

the 151,812, 556 reported cases of Covid-19 have led to fatalities. As of the date shown above, 

there have been 151,812, 556 documented cases of Covid-19. 

According to the WHO's Covid-19 Dynamic Infographic Dashboard Iraq 2020-2021 

scenario as of May 16th, 2021, there were 1,139,373 confirmed cases of the illness in Iraq as 

of that date. Sadly, 15,954 of these individuals have died from the condition, but luckily, 

1,045,240 of them had also been cured. Iraq is a nation that is generally afflicted by the 

sickness on a global scale. This means that there were only 78,179 active instances, which 

was the conclusion that might be reached. It is crucial to note that the PCR test was 

administered to 9,872,873 distinct individuals. According to the WHO's Covid-19 Dynamic 

Infographic Dashboard Iraq 2020–2021 situation for May 16, 2021, there were 50,925 

confirmed cases, of which 44,811 cases had been cured, and 1,142 dead cases had been 

recorded, leaving only 4,972 active Covid-19 sufferers (Organization, 2020b). This is due to 

the fact that this work is intended to be implemented on a sample drawn in this city. 

The KRI authority quickly put in place preventive measures to stop the virus from 

spreading in the KRI as a whole. By the middle of March, all of the borders between the 

Kurdish region and the rest of Iraq and its neighbours (Iran on February 21, Syria on March 

1, and Turkey on February 29, 2020) had been closed. On March 13, a total closure went into 

effect, making it hard to move between and within governorates and making it illegal to travel 

by land or (Thye et al., 2022; Ward et al., 2021). It's important to remember that these 

measures worked very well because, as of the end of May 2020, there had only been 606 

confirmed cases and six deaths in the area. 

Iraq had a high score on indicators of global, political, social, environmental, and 

security fragility. OECD (2020) reported on fragility show that Iraq was not ready for a 

number of big problems before the Covid-19 crisis (Bank, 2020). In fact, many experts 

pointed out before the epidemic that Iraq had all the signs of a weak dictatorship that was 

falling apart, not just a weak dictatorship. In 2019, Tony Cordesman "Iraq is on the verge of 

disaster," said a report from the World Bank that came out at the end of September. Even 
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though the Iraq War started almost 20 years ago, the country is still insecure because of 

growing political unrest and division, diplomatic threats, growing civil unrest, and a growing 

gap between the government and the people (Verity et al., 2020; K. Wang et al., 2020). The 

effects of Covid-19 on public health and the economy had been especially hard on the 

displaced, women, and girls in Iraq. The government of KRI had taken a number of 

preventative and corrective steps to deal with the epidemic and its effects on other people. 

However, since early June, the number of confirmed Covid-19 cases has seen a staggering 

increase, leading to a sharp rise in the country's poverty rate. The situation has been 

exacerbated by a surge in job losses and increased spending, pushing the poverty rate to its 

peak. 

Covid-19 infected people might not have any symptoms, had mild to moderate upper 

respiratory symptoms, or have severe pneumonia (N. Chen et al., 2020; Notari & Torrieri, 

2022; Pijls et al., 2021). Consequently, individuals with severe infections face the risk of 

developing acute hypoxemic respiratory failure, a condition where their blood oxygen levels 

drop dangerously low, necessitating respiratory assistance. Such critical cases often require 

mechanical ventilation, but even with this intervention, there remains a high probability of 

severe illness or mortality. Depending on resource availability and the distribution of medical 

services, the death rate has been estimated to range from 1% to 10% based on patients' overall 

condition (Ranney et al., 2020). 

This global health crisis has affected almost every nation, including Iraqi Kurdistan, 

where Covid-19 cases continue to rise. The impact of the disease is also evident in Europe 

and neighboring Iran, adding to the challenges faced by countries in close proximity. 

Recently, there has been a significant surge in interest surrounding the application of 

non-parametric techniques to address real-world problems. Numerous studies have been 

conducted on neural network processes (NN) due to their enhanced flexibility compared to 

parametric models. These methods incorporate Bayesian learning, which can result in 

complex posteriors that are challenging to interpret. 

The application of a multilayer perceptron neural network (NN) model proves 

beneficial in accurately estimating the occurrence rate of heart disease. This model operates 

on the principles of a mathematical representation of neuron behavior in the human brain. By 

simulating the brain's decision-making process based on historical data, the NN learns from 
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a set of training examples, effectively creating a miniature replica of the brain's decision-

making mechanism. 

One of the most compelling aspects of NN is its ability to learn from examples (Radev 

et al., 2021; Ranney et al., 2020; Stouten et al., 2022; Ward et al., 2021). As a result, when 

utilizing an NN, there is no need to explicitly define how outputs are derived from specific 

inputs, as the network autonomously discerns the connections between inputs and outputs 

through its learning mechanism. This adaptability significantly impacts how the network is 

structured and the significance attributed to each connection. With sufficient training, the NN 

becomes adept at determining the output for any given set of input values and parameters. 

 

Background Of the Study 

The onset of the Covid-19 outbreak, a viral disease caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), was initially detected in Wuhan, China 

in December of 2019. This novel infectious disease rapidly emerged as a significant global 

health concern. As of January 20, 2020, there were 282 confirmed cases of Covid-19 in China, 

Thailand, Japan, and the Republic of Korea. The virus was initially found in February 2020 

in southern Iraq. After nine weeks of increases, Covid-19 cases were still at their highest rate 

since the pandemic began, with over 5.7 million new cases recorded each week. For the 

seventh week running, the number of reported deaths had exceeded 93,000. As per J. Wu et 

al. (2020), there have been 1,139,373 confirmed cases, 15,954 fatalities, and thankfully 

1,045,240 recoveries. Iraq receives adverse ratings across various measures of political, 

social, environmental, and security instability worldwide. By mid-March, the Kurdish borders 

with Iran, Syria, and Turkey were all closed, along with the borders with the rest of Iraq. 

Additionally, on March 13, all forms of transportation, including those between and within 

governorates, as well as land and sea routes, were completely halted.  

Neural network (NN) procedures are non-parametric ways of addressing problems 

that have broad practical applications. NN is a mathematical model that simulates, 

computationally, the activity of human brain neurons. The NN is made up of a number of 

processing parts linked together by weighted connections. Referencing to Ashish et al. (2004), 

the training method changes the weights of the connections in a way that reduces error. This 

means that the NN may understand the existing relationship between input and output with 
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the help of a learning algorithm, eliminating the requirement for explicit programming. The 

study's overarching goal is to demonstrate how machine learning techniques may be applied 

to medical datasets to enable more nuanced analysis and informed decision-making. Since 

these patients were hospitalised after contracting Covid-19, their profiles are our primary 

focus. Age, sex, marital status, monthly income, residency type, country, number of hospital 

stays, status (cured/died), lab tests (including blood test, chest test, urine test, and etc.), and 

medications are only few of the many characteristics that wind up in the dataset. To conduct 

this research, we will utilise both classical mathematical methods and data mining techniques. 

Descriptive statistics will be used to characterize the structure and distribution of the study's 

variables.  

Ramasamy et al. (2020) highlighted that as the number of dimensions in the input data 

increases, a larger amount of training data is required to achieve accurate classification. The 

Multilayer Perceptron, a fully connected, multi-layered, feed-forward supervised learning 

network, employs symmetric hyperbolic tangent activation functions. Back-propagation was 

employed to train the network and minimize quadratic error during the learning process. 

 

Purpose of Study 

Ultimately, the study's purpose is to demonstrate how machine learning techniques 

may be used to medical datasets in order to better detect correlations and interactions between 

different levels of variables. In addition, classic neural network may lead to overfitting when 

large number of inputs are entered in the model. In this study, we developed Bayesian neural 

network by involving Gibbs sampler while choosing prior values as well as hyperparameters 

which provided more accurate and fast convergence in the later stages of the HMC algorithm. 

Moreover, the contribution of the significant variables has not been pointed out in the current 

existed literature, thus all effective factors are stated in this study. The accuracy and 

effectiveness of multi-level analyses of variables defined by one of the measures utilized will 

be evaluated finally in order to determine factors that contribute to Covid-19. 

 

Hypotheses. To address the risk factors, the fowling hypotheses were driven: 

H01: Patient’s biographic has no effect on patient mortality by Covid-19 infections 
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H02: Pathological Test lab has no effect on patient’s mortality by Covid-19. 

H03: Bayesian ANN has similar accuracy compared to ANN  

H04: Logistic Regression with MCMC estimation (Bayesian Logistics regression) has the 

same accuracy in prediction 

H05: Bayesian Neural Network has not out performed compared to other machine learning 

methods. 

 

Research Questions 

1. How to figure out the health factors that lead to the release of Covid-19 with a 

cured/dead result? 

2. What will be the level of risk that Covid-19 poses to men and women? 

3. Is machine learning algorithms and traditional statistical analysis methods suitable to 

predict the risk and pattern of Covid-19 mortality?  

Significance of Study 

The insights obtained from this research will play a crucial role in shaping health 

policies and legislation concerning women's healthcare within the country. Given the ongoing 

prevalence of the disease worldwide and the lack of a definitive cure, federal health agencies 

and governments will utilize these outcomes to develop effective strategies to improve 

women's health in healthcare institutions. Constructing a robust model based on the gathered 

information holds the potential to reduce the risk of mortality. Clinicians would gain valuable 

insights into the numerous risk factors contributing to maternal mortality, empowering them 

to make more informed decisions in their medical practices. Emphasizing evidence-based 

decision-making is a pivotal aspect of the medical field. 

Beyond clinicians, this research holds significance for non-clinicians, including 

mental health professionals and psychologists. A better understanding of how behavioral and 

socioeconomic factors influence maternal health will enable them to address and solve these 

challenges more effectively. Ultimately, the research contributes to a holistic approach to 

enhance maternal healthcare and underscores the importance of data-driven decisions in the 

medical realm. 
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In addition, this research will provide valuable insights for non-governmental 

organizations (NGOs) and other activist groups dedicated to reproductive health. By gaining 

a deeper understanding of the disease and its impact on patients and healthcare providers, 

these organizations can develop innovative approaches to enhance patient education and 

healthcare monitoring. Furthermore, academics and researchers will benefit from the study's 

findings, as it offers a novel perspective for future research planning. The data generated can 

serve as a solid foundation for further investigations and advancements in the field. Moreover, 

individuals afflicted with Covid-19 will directly benefit from the study's outcomes, as it 

heightens awareness regarding the significance of comprehensive medical and emotional care 

for those affected by the disease. The results will foster a greater understanding of the 

importance of holistic support and reinforce the urgency to aid those battling Covid-19 with 

both medical expertise and empathetic care. 

 

Limitation 

Several limitations should be considered in this study. Firstly, there was a considerable 

amount of missing data in the laboratory and radiological records, which impeded their 

inclusion in the analysis. Secondly, the identified predictive factors may have been 

confounded by unmeasured variables, such as occupation, length of hospital stay, and 

pregnancy status. It is possible that medical staff and pregnant women had different disease 

severity profiles. Furthermore, no information was available regarding to if the patients wore 

mask face as precautionary measurements, this might have had great impact on the results. 

Additionally, the absence of reported medications may have impacted the disease status of 

the infected cases and could potentially lead to different conclusions. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

This chapter presents literature review of Bayesian statistical inference on artificial 

neural network analysis as well as Logistic regression analysis with Markov Chain Monte 

Carlo Techniques for Assessing Characteristics and Risk Factors of Covid-19. Chandra and 

He (2021) studied a piece of academic writing known as a literature review has the purpose 

of demonstrating the author's familiarity with and command of the collected corpus of 

scholarly work that is pertinent to a certain subject area. A critical examination of the works 

that were researched is included in a literature review, which is why it is not referred to as a 

literature report but rather as a literature review. A literature report does not contain this 

component. Therefore, this literature review will highlight how machine learning approaches 

can be applied to medical datasets to better distinguish correlations and relationships between 

various levels of variables in order to make more educated decisions. Finally, as per the 

research conducted by Ghoshal and Tucker (2020) precision and efficacy of multi-level 

analyses of variables as described by one of the measures used would be assessed in order to 

identify factors that lead to Covid-19.  

 

The Significance of the Occurrence and Incidence of Covid-19 

The study conducted by Morin et al. (2021), stated that despite the fact that a number 

of researches have been conducted on the topic of Covid-19's long-term effects, each of these 

studies has severe limitations. For example, a French telephone research with 478 patients 

and a response rate of 57% found that four months after patients were hospitalised for Covid-

19, more over half of the patients had at least one symptom of long-COVID. 13 percent of 

participants in an app-based cohort study of 4,182 instances of Covid-19 self-reported long-

COVID characteristics, and there was some suggestion that a greater frequency in long-

COVID features was seen in women and older people. 

According to Halpin et al. (2021), a significant proportion of hospitalized Covid-19 

patients (63%) reported experiencing weariness or muscular weakness, while 26% reported 

difficulties with sleep, 23% reported feelings of concern or depression, and 23% observed a 

decrease in the frequency of myalgia and headache. However, it is important to note that these 
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studies lacked a control group, limiting their generalizability. Furthermore, their focus was 

primarily on hospitalized patients or individuals who voluntarily participated in telephone 

surveys or utilized specific applications. 

On a different note, Ghoshal and Tucker (2020) conducted a study investigating the 

use of drop-weights based Bayesian Convolutional Neural Networks (BCNN) to estimate 

uncertainty in Deep Learning solutions. The aim was to enhance the diagnostic performance 

of human-machine teams using a publicly available Covid-19 chest X-ray dataset. The 

findings demonstrated a strong correlation between uncertainty in predictions and prediction 

accuracy. The authors believe that the availability of uncertainty-aware deep learning 

solutions could facilitate broader adoption of Artificial Intelligence (AI) in clinical settings. 

 Taquet, Dercon, et al. (2021) highlighted numerous studies which have drawn 

comparisons between the long-term effects of Covid-19 and influenza, as highlighted in the 

literature. In a retrospective cohort analysis spanning six months and involving 236,000 

Covid-19 patients, based on electronic health records (EHRs), higher occurrences of anxiety, 

mood disorders, sleeplessness, and dementia were observed following Covid-19 compared to 

influenza. Another study utilizing EHR data from American veterans (88 percent of whom 

were male) revealed that Covid-19 was associated with a higher prevalence of complications 

across various body systems when compared to influenza. 

However, there is currently a lack of systematic estimates regarding the incidence and 

co-occurrence of long-Covid features, their correlation with age, sex, illness severity, and the 

relative risk compared to influenza within a large population. Recognizing this knowledge 

gap, the authors sought to address these issues utilizing EHRs. They conducted an analysis of 

the co-occurrence network, employing score-matched propensity of patients, Kaplan-Meier 

analysis, and Cox proportional hazard models. These methods were employed to gain insights 

into the aforementioned aspects and provide estimates that are currently lacking in the 

literature. 

 

The Level of Risk Factors of Covid-19 

In a retrospective cohort analysis conducted by Taquet, Geddes, et al. (2021), 

connected electronic health records (EHRs) of 81 million individuals were utilized, including 

273,618 Covid-19 survivors. The study aimed to determine the incidence and co-occurrence 
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of nine primary long-Covid features. These features encompassed various symptoms such as 

trouble breathing or shortness of breath, exhaustion or malaise, chest or throat discomfort, 

headache, stomach symptoms, myalgia, other pain, cognitive impairments, anxiety or 

depression, and other forms of pain. The calculations were performed within a three to six-

month period following the diagnosis of Covid-19. Furthermore, the study examined the 

network of co-occurrence among these features. A comparison was made with a group of 

patients whose propensity scores were matched based on their influenza diagnosis during the 

same time period. Kaplan-Meier analysis and Cox proportional hazard models were employed 

in this comparative analysis. 

It is worth noting that the study by Jalali et al. (2020) supports the aforementioned 

comparison, utilizing similar methods such as Kaplan-Meier analysis and the Cox 

proportional hazard model. This investigation was conducted over a specific time period, with 

the prevalence of atopic dermatitis being explored as a control group for reference. 

 Taquet, Geddes, et al. (2021) highlighted that among Covid-19 survivors (mean [SD] 

age: 46.3 [19.8], 55.6% female), 57.00% had one or more long-COVID feature recorded 

during the whole 6-month period (i.e., including the acute phase), and 36.55% between 3 and 

6 months. The acute phase of Covid-19 is characterised by a sudden onset of flu-like 

symptoms that can last for days or weeks. The survivors of Covid-19 had an average age of 

46.3 years old with a standard deviation of 19.8 years. The percentage of people who 

experienced each symptom was as follows: abnormal breathing (18.71 percent in the 1- to 

180-day period and 7.94 percent in the 90- to 180-day period), fatigue/malaise (12.82 percent 

and 5.87 percent, respectively), chest/throat pain (12.60 percent and 5.71 percent), headache 

(8.67 percent and 4.63 percent, respectively), other pain (11.60 percent and 7.19 percent), 

abdominal symptoms (15.58 percent and 8.29 percent), myalgia (3.24 percent (22.82 percent 

; 15.49 percent ). According to Taquet, Dercon, et al. (2021) following Covid-19, each of the 

nine features was reported more frequently than following influenza (with a total excess 

incidence of 16.60 percent and hazard ratios ranging from 1.44 to 2.04, all of which were 

significant at the 0.001 level), they co-occurred more frequently, and they constituted a more 

interconnected network.  
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According to Wang et al. (2021), notable variations in incidence and co-occurrence 

were observed based on factors such as age, gender, and disease severity. In addition to the 

inherent limitations associated with the use of electronic health record (EHR) data, there are 

several additional limitations to consider in this study: 

1- Generalizability: The findings may not apply to individuals who had Covid-19 but 

were not formally diagnosed, or to those who did not seek or receive medical attention 

for long-Covid symptoms. The study's scope is limited to patients who were identified 

through medical channels. 

2- Persistence of Clinical Features: The study does not provide information regarding the 

duration or persistence of the observed clinical features. It focuses on the incidence 

and co-occurrence within a specific timeframe, without tracking the long-term 

trajectory of symptoms. 

3- Cohort Discrepancies: Differences observed between cohorts could be influenced by 

variations in medical attention-seeking behaviour. One cohort may have sought or 

received more medical attention, potentially impacting the observed outcomes. 

 

Covid-19's Impact on Bodily Organs 

When individuals contract SARS-CoV-2 and become clinically ill, the respiratory 

system is often the primary organ affected. However, the virus has the potential to impact any 

organ in the body. Critical illness can result in damage to multiple organs. The virus attaches 

to angiotensin converting enzyme 2 (ACE2) receptors that are present in various tissues 

including vascular endothelial cells, lungs, heart, brain, kidneys, intestines, liver, pharynx, 

and others (Jain, 2020). This attachment can lead to direct injury to these organs, while 

systemic complications caused by the virus can also contribute to organ dysfunction. It's 

important to assess for damage to multiple organs when treating patients, as disturbances in 

coagulation and vascular endothelium can cause injury to multiple organs, even if they don't 

result in symptoms during the early stages. Among non-surviving patients, cardiac and renal 

dysfunction are frequently observed. Additionally, it is worth noting that organ injuries may 

not manifest immediately and could become apparent after the acute infection has resolved. 

Different organs may be affected at distinct time points, and there is a possibility of long-term 

chronic injury. As a result, the process of rehabilitation can be prolonged and demanding. 
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Covid-19 can trigger an excessive release of cytokines, leading to systemic 

inflammation, multi-organ injury, and potentially fatal outcomes (Merad & Martin, 2020). 

This immune response is referred to as cytokine storm or hypercytokinemia. Endothelial cells 

in various organs can be infected by SARS-CoV-2, resulting in vasoconstriction, 

inflammation, hypercoagulability, and edema, which in turn can cause organ ischemia 

(Carsana et al., 2020). According to F. Wang et al. (2020), the inflammatory response may 

persist even as the viral load decreases. Importantly, individuals with pre-existing immune-

mediated inflammatory diseases who receive ant-cytokine biologics and other 

immunomodulatory treatments are not at an elevated risk for Covid-19. For a visual 

representation, please refer to Figure 1, which illustrates the affected parts of the human body 

in relation to Covid-19. 

 

 

 

 

 

 

 

 

 

 

 

Source:  

https://www.science.org/content/article/how-does-coronavirus-kill-clinicians-trace-

ferocious-rampage-through-body-brain-toes 

 

 

Figure 1: Human’s Body with description of Covid19 Impact 

Human’s Body with description of Covid19 Impact 

https://www.science.org/content/article/how-does-coronavirus-kill-clinicians-trace-ferocious-rampage-through-body-brain-toes
https://www.science.org/content/article/how-does-coronavirus-kill-clinicians-trace-ferocious-rampage-through-body-brain-toes
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Effect on coagulation 

Covid-19 is associated with a range of blood clotting disorders, including deep vein 

thrombosis, pulmonary embolism, and disseminated intravascular coagulation (Bikdeli et al., 

2020; Creel-Bulos et al., 2020). The risk of clotting is amplified by factors such as 

inflammation, hypercoagulability, endothelial dysfunction, blood vessel constriction, 

hypoxia, and immobility. To mitigate these risks, guidelines recommend thromboprophylaxis 

using medications like low-molecular-weight or regular heparin, fondaparinux, or direct oral 

anticoagulants such as apixaban or rivaroxaban. It's worth noting that heparins can also 

regulate the cytokine interleukin-6 and reduce immune activation. Following hospital 

discharge, extended prophylaxis may be beneficial (Wichmann & Sperhake, 2020). 

According to Zhang et al. (2020), fever and inflammation in Covid-19 contribute to 

hypercoagulability and impaired fibrinolysis. Elevated levels of interleukin-6 (IL-6) are 

associated with both hypercoagulability and disease severity. Thrombosis is linked to 

increased antiphospholipid antibodies. Furthermore, Covid-19 stimulates the liver to produce 

procoagulant substances and moderately prolongs prothrombin time and activated partial 

thromboplastin time. It also leads to moderate thrombocytopenia, elevated C-reactive protein, 

lymphocytopenia, increased D-dimer levels, elevated fibrin degradation products (FDPs), and 

disseminated intravascular coagulation (DIC). D-dimer levels and DIC serve as prognostic 

indicators in Covid-19. 

 

Effects on Pulmonary  

Autopsy studies have revealed that patients in the acute phase of Covid-19 display 

characteristic diffuse alveolar damage, characterized by the absence of organization and 

fibrosis. This damage is attributed to the disruption of endothelial and alveolar cells, leading 

to the leakage of fluid and cells, as well as the formation of hyaline membranes (Barton et al., 

2020). 

 

Cardiac Effects 

Cardiac complications associated with Covid-19 can manifest independently of 

pulmonary and other issues (Akhmerov, 2020; Madjid et al., 2020). Individuals with 

preexisting coronary artery disease (CAD), latent CAD, or no CAD are at risk of experiencing 
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ischemic cardiac injury due to plaque rupture, thrombosis, or insufficient oxygen supply. 

Antiplatelet and anticoagulation therapies may be beneficial for managing acute coronary 

syndrome resulting from plaque rupture, while fibrinolytic therapy and percutaneous coronary 

intervention may be considered. It has been reported that the incidence of acute myocardial 

infarction has decreased during the Covid-19 period. In some patients, the virus can invade 

myocytes, while systemic inflammation such as cytokine storm can lead to myocarditis. These 

conditions can contribute to heart failure and arrhythmias, even after the acute phase of the 

infection has subsided and in the absence of lung damage. 

 

Effect On Brain 

Covid-19 has been found to depress brain stem reflexes, including the one responsible 

for detecting oxygen deprivation. Neurological symptoms can manifest as the primary 

symptoms or alongside respiratory or other manifestations, and they are more prevalent in 

severe cases of the disease. These symptoms, which include dizziness, headache, altered 

consciousness (such as confusion and delirium), and difficulty awakening, may be attributed 

to abnormal levels of oxygen and carbon dioxide. Delirium, a common neurological 

symptom, can lead to long-term cognitive impairment and memory deficits. The scarcity of 

commonly used sedatives has resulted in the use of benzodiazepines for sedation, which may 

worsen delirium. While hypoxic changes are observed in the brains of deceased patients, 

encephalitis or other viral-induced alterations are rare (Solomon et al., 2020). 

 

Effect On Eyes 

Referencing to Colavita et al. (2020), cells present on the ocular surface, including 

those in the cornea, inside the eyelids, and in the white of the eye, possess ACE2 receptors 

and TMPRSS2 proteases, which are necessary for the infection of SARS-CoV-2. Ocular 

abnormalities, such as conjunctivitis, are experienced by approximately one-third of 

hospitalized patients, with a higher incidence observed in those with more severe illness. 

Ocular involvement can manifest early in the disease progression, and cells on the ocular 

surface serve as potential entry points and reservoirs for the virus. It is important to note that 

the virus can be shed in ocular secretions, contributing to transmission, and it can remain 

infectious in the eye for up to three weeks. 
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Effect On Skin 

Skin manifestations in Covid-19 share similarities with other viral infections and 

chronic inflammatory conditions such as eczema, acne, rosacea, and psoriasis. Vascular 

complications associated with these skin manifestations can have various causes, including 

neurogenic, microthrombotic, or immune complex-mediated mechanisms. The majority of 

patients with skin symptoms present with a patchy erythematous rash, while others may 

experience hives or widespread urticaria. In some cases, individuals may develop vesicles or 

blisters resembling those seen in chickenpox or rashes similar to measles. These skin lesions 

are primarily observed on the trunk, and itching is usually mild or absent. Skin eruptions can 

occur at the onset of symptoms or during hospitalization and typically resolve within a few 

days. It's important to note that the presence of skin manifestations does not indicate a more 

severe form of Covid-19. 

 

Psychological Effects 

The financial challenges and social isolation brought about by Covid-19 can 

contribute to a range of psychological issues that may persist even months after the initial 

outbreak. "Deaths of despair," including substance abuse and suicide, have seen an increase 

during the pandemic, particularly among individuals with dementia, mental illness, and 

autism. To address these concerns, it is important for individuals to engage in communication, 

either in-person or online, with friends and support professionals. Following discharge from 

the intensive care unit (ICU), approximately one-third of patients may experience 

dysexecutive syndrome, which can lead to symptoms such as inattention, disorientation, or 

difficulties with organized movements in response to commands. Furthermore, some 

individuals who have recovered from Covid-19 may develop mental health issues such as 

anxiety, depression, and post-traumatic stress disorder (PTSD). There is also a possibility of 

long-term effects, including an increased risk of developing Alzheimer's or Parkinson's 

disease (Dong et al., 2022). 

 

Machine Learning Algorithms, and Traditional Statistical Analysis Methods 

According to Jalali et al. (2020)’s study, due to the complexity of this treatment, there 

is a significant risk of death associated with it. The Norwood surgical technique offers the 
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potential to restore functional systemic circulation in new born children who have congenital 

heart abnormalities involving a single ventricle. This study aims to fulfil the requirement for 

an accurate prediction of patient-specific risks related to one-year postoperative mortality, 

heart transplantation, and extended hospital stays. The study of Bucholz et al. (2018) aimed 

to assist medical professionals and the families of patients in making preoperative decisions. 

Either patient-specific risk variables are not taken into account in the risk prediction 

algorithms that are now available or the algorithms' only purpose is to estimate in-hospital 

death rates. The best solution is not either of these two options. They utilised data from the 

Pediatric Heart Network Single Ventricle Reconstruction project in conjunction with machine 

learning algorithms in order to assess and analyse each individual patient's risk of death as 

well as the length of time they will need to be hospitalised. After using a Markov Chain Monte 

Carlo simulation to complete some of the data that was missing, we included the results of 

that simulation together with the chosen variables into several machine learning models. 

Following that step, conclusions were drawn using the models. The deep neural network 

model used in this study demonstrated exceptional accuracy in predicting an individual's 

likelihood of death or requiring a heart transplant, achieving an accuracy rate of 89.4 percent 

and an impressive area under the receiver operating characteristic curve (AUROC) of 

0.95±0.02. Additionally, for predicting longer hospital stays, the model showed a high 

accuracy rate of 85.3 percent and an AUROC of 0.94±0.04. These reliable prediction models 

and calculators can greatly assist in informed decision-making in both clinical and 

organizational settings. 

As per the study by Dogan et al. (2021), infections with Covid-19 have prompted 

efforts all across the world to control and manage the virus, and maybe stop its transmission 

altogether. ML is a powerful tool that may be used in research on the Covid-19 virus as well 

as in the fight against it. This is a subject that is currently being researched. It is vital to keep 

up with the number of surveys that are emerging in the literature in order to stay up with the 

number of papers that are being published on Covid-19-related ML applications. In this study, 

we discuss recent discoveries that are associated with Covid-19 ML approaches.  

We are focusing on the ability of machine learning to utilise clinical and laboratory 

data that is available to the public in order to make a diagnosis of Covid-19 and to make 

predictions about the risk of death and the severity of the disease. Sarker (2021) stated that 
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analysing training data sets and different types of algorithms to better understand algorithms 

and feature selection supervised learning makes up the vast bulk of the machine learning 

strategies that are used in these two application cases. Due to the fact that the bulk of the 

relevant research consists of experiments, there has not been any application of previously 

developed models to the actual world as of yet. The ML models have diagnostic and 

prognostic properties that are consistent with the existing medical literature. 

According to Ghoshal and Tucker (2020), machine learning (ML) is an area of 

artificial intelligence that aims to build self-sufficient systems capable of gaining knowledge 

from previous experiences. Ever since it was first introduced, the field of study known as 

machine learning has garnered a lot of interest due to its potential to solve a broad variety of 

issues that are encountered in the real world. Unsupervised learning, supervised learning, and 

reinforcement learning are the three main types of machine learning methodologies. In the 

process of supervised learning, an algorithm is given the opportunity to learn from a data set 

that has already been labelled. As per the study conducted by  Fong et al. (2020), classification 

and regression are the two supervised learning approaches that are utilised the most often. On 

the other hand, unsupervised algorithms make an effort to learn from data that is not labelled. 

Data that has not been categorised is sent to the algorithms, and from this data, traits and 

patterns are extracted. Large-scale data sets with a high number of dimensions may be used 

for unsupervised machine learning techniques such as clustering and dimensionality 

reduction. According to the study by Cortés-Martínez et al. (2022) the algorithms used in 

reinforcement learning are designed to make mistakes and then to learn from those failures. 

As a result of this, a system of incentives and punishments is used while the individual is 

being trained. 

 

MCMC in Neural Network Modelling 

According to Jalali et al. (2020), MCMC techniques are commonly employed to tackle 

integration and optimization problems in high-dimensional spaces. These problems are 

crucial in various fields such as machine learning, physics, statistics, econometrics, and 

decision analysis. A recent survey has recognized the Metropolis algorithm as one of the top 

ten algorithms that have significantly influenced the advancement and practical application 

of science and engineering in the 20th century. This algorithm belongs to a broad category of 
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sampling algorithms known as Markov chain Monte Carlo (MCMC). Over the past two 

decades, these algorithms have played a substantial role in statistics, econometrics, physics, 

and computer science (Chai et al., 2022). The authors emphasize that MCMC simulation 

remains the only known general approach capable of providing a solution within a reasonable 

time for various high-dimensional problems, including the computation of the volume of a 

convex body in multiple dimensions. The proof of a model 𝑝(𝐻|𝑦) for ANNs (and other 

complex models) is theoretically intractable, necessitating multiple methodologies to 

calculate these possibilities for competing models. To approximate the data, one method uses 

Markov chain Monte Carlo (MCMC) calculations from the posterior weight distribution 

𝑝 (𝑤|𝑦, 𝐻). 

 

Monte Carlo Simulation for Epidemics 

As a direct result of an improved comprehension of the detriment epidemics pose to 

public health and the economy on a global scale, there has been an appreciable rise in the 

frequency of MC in epidemic modelling estimates. This rise in MC frequency has been 

accompanied by an increase in the overall number of MC estimates. It gives decision-makers 

access to more complex probability statistics in the form of risk factors, which they may use 

to evaluate the options and the risk that is associated with them. For many decades, one of the 

most pressing problems in this area has been the statistical modelling of epidemic behaviours 

using MC. One of the pioneering groups in this area is Biazzo et al. (2022) who have been 

working on the development of a mathematical theory of epidemics from the year 1957. Using 

MC simulation techniques, Andersson and Britton analysed the behaviour of stochastic 

epidemic models and found the statistical features of these models for the next century. The 

purpose of this research was to gather information that may be used to stop future outbreaks.  

 Niraula et al. (2022), used a model that was quite close to the MC model in order to 

conduct their analysis of the level of population instability. Because of this, the researchers 

were forced to draw the conclusion that variations in the number of infected patients led to 

differences in the need of receiving emergency care. This is because of the idea that 

epidemiological indices, such the number of calls to emergency services, hospital admissions, 

and utilizations of intensive care units (ICUs), are vulnerable to change. A stochastic model 

of EMS occurrences and changes in demographic data is created with the use of empirical 
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data from the Emergency Medical Services (EMS) facility in Poland's Lower Silesia Region. 

Because of the unpredictability of changes (in population numbers as people move out and 

an increase in the number of infected cases), the less-structured model cannot be examined 

using deterministic analytic methods.  

 Biazzo et al. (2022) states that the objective of this data synthesis is to ensure that only 

the most relevant information pertaining to the start and end of the Covid-19 epidemic is 

included. Within the context of this demonstration, MC will replicate the daily budget that 

must be allocated in order to prevent the further spread of a disease. This is what is in store 

for the future. The decision to use a composite model was made after considering the 

following factors: 1) the manner in which a person becomes infected is dependent on the 

intensity of travel (within a community, between cities, or internationally); 2) the prevalence 

of preventative measures; 3) the trail tracking of the suspected and quashed cases; and 4) the 

intensity of travel. The decision to use a composite model was made after considering the 

following factors: 1) the manner in which a person becomes infected is dependent on the 

intensity of travel (within a community). In theory, if the MC has access to more relevant 

data, it will perform better and offer more accurate solutions. This is because it will be able 

to better understand the context of the problem. 

 

Neural Networks for Forecasting 

As per the study by Khan et al. (2022), Deep learning neural networks need a number 

of processing layers in order to represent data at a high degree of abstraction. The term "deep 

learning" refers to the framework that is used by these networks in order to learn. Deep belief 

networks, long short-term memory networks, recurrent neural networks, and convolutional 

neural networks are only a few examples of the types of complicated machine learning models 

that fall under the umbrella term "deep learning" (LSTMs). In recent years, the study by 

Biazzo et al. (2022) has approved that the advances in computer power and the availability of 

enormous datasets, deep learning models have demonstrated outstanding performance in a 

variety of domains, including sentiment analysis, image analysis, and natural language 

processing. These achievements have been made possible by the advent of deep learning. 

According to the study by Niraula et al. (2022), the Bayesian neural networks have a 

lot of promise for use in forecasting because of the promising accuracy of prediction that 
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comes along with uncertainty quantification. Bayesian neural networks provide a lot of 

potential for application in forecasting. Both recursive Bayesian recurrent neural networks 

and evolutionary Markov chain Monte Carlo (MCMC) are types of Bayesian neural networks. 

Both of these types of networks are recurrent neural networks.  

 

Covid-19 Model Complexities  

According to the study by Niraula et al. (2022), the Covid-19 pandemic may be 

understood, at its most fundamental level, as an open complex system that has a significant 

amount of system complexity. They interact and relate to their environments and contexts in 

complex ways; they infect individuals and communities in unique ways; and they have 

significant emergent consequences and impacts on society in nearly every region of the globe. 

The above analysis has been approved in the study conducted by Khan et al. (2022) in which 

it has been stated that the virus, the disease, and their respective developments and 

transmissions each have a hidden nature as well as a high degree of uncertainty, self-

organization, dynamics, and evolution. Despite this, the constrained and sparse data that are 

publicly available from Covid-19 do not clearly reveal the complexity and underlying 

epidemiological features, transmission mechanism, and cause-and-effect linkages indicated 

above. It is challenging to construct models that are accurate, durable, benchmarkable, and 

generally favourable when dealing with a limited amount of data. Levashenko et al. (2021), 

states that reaching aggressive modelling objectives with a small amount of data that is of 

poor quality from Covid-19.  
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CHAPTER III 

 

Methodology and Statistical Learning of Bayesian Inference  

Substantial theoretical background will be studied along with intensive methodology 

of the machine learning approaches in this chapter. Primarily, a Bayesian approach to solve 

regression problems will be presented, followed by an argument on parameter estimation in 

numerous nonlinear models. Furthermore, classical methods to determine joint confidence 

regions will be explored. Also, the chapter will cover a examination of Markov Chain Monte 

Carlo (MCMC) techniques and their implementation considerations., It describes the relevant 

concepts of artificial neural networks in a frequentist setting network as well as Bayesian 

neural networks and their way of implementing. We discuss appropriate regularization 

techniques, network architectures, and activation function ns. Finally, brief introduction of 

the applied models will be introduced. 

 

Methodology 

This chapter presents the patient's profile and methodology, including medical history, 

laboratory results, the person's demographics and etc. No personal information about the 

patients is explored such as, names, phone numbers, or addresses. Therefore, there is no need 

for a consent form or ethical paper to be signed by the patients because the dataset is 

completely anonymous. The process of discovering patterns, correlations, changes, 

deviations, and statistically significant structures and events in large datasets is considered. 

Distributions that characterize an observable property (descriptive statistics) are generated by 

classical statistical methods and used to assess the validity of a sample drawn from a larger 

population. To optimize Neural Network calculations, we present a novel metric that 

incorporates MCMC approaches and then evaluates the results against the standard approach. 

 

Research Method 

Site of study 

We have used secondary data of a cross-sectional study type since the information 

was already collected by the hospitals itself. The data includes patients from 2020 to 2021. 
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SPSS Version 25 software, Python as well R code-based programming language and writing 

materials.  

 

Study design 

This is a quantitative cross-sectional descriptive analysis using a summary of patient 

files in the presentation. The quantitative approach is chosen because it is possible to interpret 

the information obtained for the statistical significance of associations between risk factors of 

Covid-19 and independent variables.   

Study population 

The target population comprised patients of Covid-19 take from the hospital in the 

recorded of 2020 to 2021. The study population comprised the Bayesian ANN analysis with 

MCMC approaches of Assessing Characteristics and Risk Factors of Covid-19 cases. 

 

Data Capture and Analysis Strategies 

Data Cleaning 

In our data, there are so many missing participants; this missing information is the 

main key factor that can be used in the analysis. Also, we exclude the most extreme and 

unpredictable values from the data. We have also checked the consistency of the data. The 

data from patients’ files are captured in a Microsoft Excel spreadsheet which is 𝑛 = 537. 

 

Data Analysis 

After cleaning and managing the data set, we have imported our data sheet on R 

software. All the data was carried out on R-Software for the analysis approach. We have 

calculated the frequencies and percentages of all variables. In bivariate analysis, we calculate 

the association of dependent variable Covid-19 with demographic, socioeconomic, and 

institutional variables using the chi-square and Cramer's v test. As we already defined that 

our dependent variable Covid-19 risk factors are in binary form, so that is the way we have 

to apply the logistic regression model, which helps us to describe the risk factors of patent’s 

characteristics influence the status of infected individuals in terms of duration of staying in 

hospitals, level of severity and our main point of discharged alive or dead among patients 

from two hospitals in private as well as public. Due to the association effects of these different 
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risk factors, statistical approaches that analyse their multilevel and multi-layer relationships 

are needed to examine their effects. MCMC approach is appropriate to estimate the 

parameters. Our new proposed term is to involve MCMC techniques for optimization in 

Neural Network calculation and then compare it to default methods. 

 

Variables Description 

Table 1 shows the variable name, nature and coding briefly of the categorical 

variables only. 

 

Table 1: Variable Descriptions of the Dataset 

Variable Descriptions of the Dataset 

Variable Category Code 

Status Died 

Recovered 

1 

0 

Gender Male  

Female 

0 

1 

Age Less than 18 years  

18 – 35 years  

35 – 65 years  

Greater than 65 

1 

2 

3 

4 

Smoking No 

Yes 

0 

1 

Fever No 

Yes 

0 

1 

Cough No 

Yes 

0 

1 

Sputum No 

Yes 

0 

1 

Hypertension No 

Yes 

0 

1 

1 
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Table 1 (Continued.) 

Diabetes No 

Yes 

0 

1 

Stroke No 

Yes 

0 

1 

 

Statistical Methods and Techniques 

In our study, we have applied descriptive statistics in which we calculate Mean, 

Median, SD, Quartiles. We have applied parametric and non-parametric comparison tests 

based on meeting normality assumption, Pearson Chi-Square, Cramer’s V Sig, Odds Ratio, 

95% CI (Low/high) for independence as well as comparison, and Logistic Regression (MLE) 

and Bayesian Logistic Regression. Our new proposed term is to involve MCMC techniques 

for optimization in Neural Network calculation and then compare it to default methods. 

Additionally, other machine learning approaches such as Random Forest, KNN, Naïve 

Bayesian and Support Vector Machine.  

 

Validity 

Validity refers to the capacity of a study to generate precise and meaningful outcomes 

that effectively capture the intended measurements. In this particular investigation, rigorous 

scientific research methods were employed to develop the data collection instrument and 

select the samples. The use of meticulously evaluated tools and techniques ensured that 

information bias was minimized, and the study's validity was upheld. 

 

Generalizability 

The results of the study are generalized to all the risk factors regarding the covid-19 

cases. Beyond this inference could not be assumed.  

 

Odds Ratio: 

Odds ratio is the most commonly used in case-control studies; however, we can also 

be used in the cross-sectional study (Hasan et al, 2016). An odds ratio (OR) check the 

relationship between a disclosure and an outcome. The odds ratio instead of the odds that 
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results will occur given a related revelation, compared to the odds of the outcome occurring 

in the absence of that exposure. For a probability of success π, the odds are defined to be:  

𝑜𝑑𝑑 =  𝑝 / 1 − 𝑝  

Confusion matrix. 

The evaluation of a classification model's performance involves the use of a confusion 

matrix, which is a tabular representation. It effectively depicts the model's predictions by 

comparing them to the actual labels (James et al., 2013). This matrix, often organized as a 

2x2 table (as shown in Table 2), presents the true class labels in the rows and the predicted 

class labels in the columns. As outlined by Raschka and Mirjalili (2019), the confusion matrix 

allows for the identification of four possible outcomes: 

 

Table 2: Confusion Matrix Exploration 

Confusion Matrix Exploration 

 

True Class 

Positive Negative 

Predicted Class 
Positive TP FP 

Negative FN TN 

• True positives (TP): The count of correctly predicted positive instances 

• False positives (FP): The count that are incorrectly predicted as positive. (Also known 

as the Type 1 error). 

• True negatives (TN): The number of instances that are correctly predicted as negative. 

• False negatives (FN): The number of instances that are incorrectly predicted as 

negative. (Also known as the Type 2 error). 

The confusion matrix can be used to calculate various evaluation metrics for a 

classification model, such as accuracy, precision, recall, and F1 score. 

 

Accuracy  

The accuracy metric indicates the proportion of correct predictions made by a model 

on the entire test dataset. It is commonly used as a primary evaluation metric for model 

performance. However, when dealing with imbalanced datasets, accuracy may not be a 

reliable metric to assess model performance. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      3.1 

 

Precision 

Precision is a metric that quantifies the ratio of correctly predicted positive cases to 

the total predicted positive cases. It offers an assessment of the model's reliability. Precision 

is especially valuable when the cost of false positives outweighs that of false negatives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝑇𝑁
       3.2 

 

Recall (Sensitivity) 

Recall is a metric that signifies the ratio of correctly identified actual positive cases to 

the total number of positive cases. It is a valuable measure when the cost of false negatives 

surpasses that of false positives. In these scenarios, recall provides an understanding of the 

model's capability to capture all positive cases without overlooking any. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       3.3 

When the recall is high, the model can correctly identify most of the positive cases 

(TP+FN), resulting in a higher number of false positives (FP) and a lower overall accuracy. 

Conversely, a low recall indicates a higher number of false negatives (FN), implying that the 

model has missed identifying several positive cases. In such cases, the identified positive 

cases are likely to be true positives, thereby increasing the certainty of the model's predictions. 

 

F1-Score 

When precision is increased in a model, it usually leads to a decrease in recall, and 

vice versa. To provide a comprehensive evaluation of both metrics, the F1-score is employed, 

calculated as the harmonic mean of precision and recall. The F1-score achieves its highest 

value when precision is equal to recall. Therefore, the F1-score serves as a valuable metric 

for assessing the overall performance of a model, especially when precision and recall hold 

equal importance. 



47 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
1

1

𝑅𝑒𝑐𝑎𝑙𝑙
+

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

       3.4 

Although the F1-score is a useful metric for combining precision and recall, its 

interpretability is limited. It is unclear whether the classifier is maximizing precision or recall 

when the F1-score is high. Therefore, it is often used in conjunction with other evaluation 

metrics to obtain a more inclusive thoughtful of the model's performance. 

 

Receiver Operating Characteristic Curve 

The Receiver Operating Characteristic (ROC) curve is a graphical representation that 

showcases the performance of a binary classification model. It illustrates the true positive rate 

(TPR) plotted against the false positive rate (FPR) at various threshold values. TPR, also 

known as sensitivity or recall, represents the proportion of true positive predictions, while 

FPR is the ratio of false positive predictions to the total number of actual negative cases. The 

ROC curve aids in determining the optimal balance between TPR and FPR for a specific 

classification problem. 

The area under the ROC curve (AUC) is a widely used metric for evaluating the 

overall performance of a binary classification model. A higher AUC indicates a better ability 

of the model to distinguish between positive and negative cases (Davis & Goadrich, 2006). 

To plot the ROC curve, the following formulas need to be calculated: 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) 𝑇ℎ𝑖𝑠 𝑖𝑠 𝑠ℎ𝑜𝑤𝑛 𝑏𝑦 𝑋 𝑎𝑥𝑖𝑠. 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)) 𝑇ℎ𝑖𝑠 𝑖𝑠 𝑠ℎ𝑜𝑤𝑛 𝑏𝑦 𝑌 𝑎𝑥𝑖𝑠. 

 

The Bayesian Logistic Regression Model 

Introduction 

A widely used approach to constructing prediction models for binary outcomes, 

particularly in medical research where the focus is on determining whether a patient has a 

disease or not, is through the use of logistic regression analysis. 

In recent years, the Bayesian inference framework has gained popularity as a more 

appealing method for estimating parameters in logistic regression. This approach offers easier 
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interpretability of parameter estimation and yields more dependable results for smaller 

samples. However, obtaining posterior distributions for the logistic regression parameters 

requires approximation methods as we cannot specify marginal posterior densities 

analytically. Therefore, we may utilize either Markov chain Monte Carlo (MCMC) 

approaches or Laplace’s method introduced by Tierney and Kadane (1986) for Bayesian 

posterior inference. In this research paper, we use Hybrid Monte Carlo approach with 

selecting proposal distribution using Gibbs sampler technique and compare with MLE 

estimator for predicting in-hospital death in patients with Covid19 disease.  

Bayesian logistic regression offers several advantages, one of which is the ability to 

incorporate prior information during the modeling process. This integration of prior 

knowledge can enhance the accuracy of predictions and provide more informative inferences. 

Another benefit is that Bayesian methods enable the quantification of uncertainty in 

coefficient estimates, which can aid in decision making and model selection. 

However, it's important to note that Bayesian logistic regression can be 

computationally demanding and may require a higher level of expertise compared to classical 

logistic regression. Despite these challenges, the benefits gained from incorporating prior 

information and quantifying uncertainty make Bayesian logistic regression a valuable 

approach in many research and decision-making contexts. 

To conduct the Bayesian analysis, it is essential to establish a joint prior distribution 

over the parameter space. In this study, we choose to utilize an independent normal prior 

distribution with a mean of zero and low precision for the parameters. This choice is made to 

address concerns related to subjective beliefs influencing predictions of in-hospital death. 

Previous studies by Wilhelmsen et al. (2009) and Ziemba (2005) have also employed 

normally distributed priors for the model parameters, providing further support for this 

approach. By adopting this independent normal prior distribution, we aim to ensure 

transparency and mitigate potential criticism regarding the specification of subjective beliefs 

in the prediction process of in-hospital death. 

 

Bayesian Inference Techniques 

Bayesian inference offers a valuable approach for merging expert knowledge, also 

known as prior beliefs, with data to generate posterior beliefs. Consequently, in the event of 
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new data being gathered, the Bayesian framework can be utilized to revise current knowledge 

by incorporating the fresh data. This updating process can be repeated as additional data is 

accumulated in the future. The fundamental principle behind all Bayesian inference is Bayes' 

theorem, which has been extensively explored in literature by scholars such as (Bernardo & 

Smith, 2009; Greenberg, 2012; Ntzoufras, 2009; Press & Press, 1989). 

In order to comprehend the utilization of the Bayesian approach in parameter 

estimation, let theta denote the vector containing 𝑘 unknown parameters and let 𝑋 represent 

the vector containing 𝑛 observations. 

 

𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑘)       3.5 

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)       3.6 

 

Based on Bayes' theorem, the posterior probability distribution 𝑃(𝛽/𝑋) can be expressed. 

𝑃(𝛽/𝑋) =
𝑝(𝛽)∗𝑝(𝑋/𝛽)

∫ 𝑝(𝛽)∗𝑝(𝑋/𝛽) 𝑑𝑋
       3.7 

The expression is comprised of the following components 𝑝(𝛽) represents the prior 

distribution of the parameter, 𝑝(𝑋/𝛽) represents the likelihood of the data given the 

parameters, 𝑋 denotes the normalization factor, and 𝑃(𝛽/𝑋) represents the posterior 

distribution. As the denominator term in equation (3.7) remains constant, it can be dropped, 

resulting in a simplified equation: 

𝑃(𝛽/𝑋) ∝  𝑝(𝛽) ∗ 𝑝(𝑋/𝛽)      3.8 

 

When dealing with regression problems, the data is known but the parameters are 

unknown. As a result, the probability of the data given the parameters, 𝑝(𝑋/𝛽), can be 

expressed as a function of the parameters known as the likelihood function, denoted by 

𝑙(𝛽/𝑋). Consequently, equation 3.8 can be written in terms of the likelihood function. 

 

𝑃(𝛽/𝑋) ∝  𝑝(𝛽) ∗ 𝑙(𝛽/𝑋)      3.9 

The aforementioned equation illustrates the attractiveness of Bayes' theorem from an 

statistical perspective, as it facilitates the integration of prior knowledge with the information 
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garnered from acquired data. With successive experimentation, this method permits the 

continual revision of parameter information. 

Despite the many benefits of the Bayesian approach for estimating parameters in non-

linear models, its application to medical problems often necessitates numerical solutions. 

When dealing with complex likelihood functions in engineering applications, analytical 

expressions are not always feasible due to the complexity of the integration. In these 

situations, Markov Chain Monte Carlo (MCMC) methods are advantageous from a Bayesian 

perspective as they provide a numerical approach for integrating high dimensional, complex 

functions. 

 

Effect of Prior Distributions 

The prior distribution plays a fundamental role in Bayesian inference, as it shapes the 

posterior inference. When selecting a prior distribution, it is common practice to refer to the 

existing literature, where the use of a normal distribution prior is often favored. The 

specification of the prior mean and variance holds particular significance: the former 

represents a prior point estimate of the parameter of interest, while the latter quantifies the 

level of uncertainty surrounding this estimate. A low variance prior indicates a strong prior 

belief, whereas a high variance prior indicates greater uncertainty. 

In situations where prior knowledge is lacking, non-informative or vague priors are 

employed to prevent undue influence on the posterior distribution. These priors are typically 

improper, meaning they have non-integrable, infinite integrals. However, improper priors can 

be employed as long as they yield proper posteriors, ensuring valid inference (Ntzoufras, 

2009). 

 

Logistic Regression Model: Review 

Assuming that we have the Binary logistic regression model, which can be expressed 

as: 

𝑝 = 𝑃(𝑦 = 1/𝑋)  =  
1

1+𝑒−𝑋𝛽
       3.10 

In the context of the statistical model being discussed, the response variable is 

represented by the vector 𝑦. The values of the predictor variables for subject 𝑖, denoted as 𝑋𝑖 
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where 𝑖 takes values from 1 𝑡𝑜 𝑞, are included in the model, along with an intercept term. The 

design matrix 𝑋 is a matrix of size 𝑛 by (𝑞 + 1), which includes the values of all predictor 

variables for each of the 𝑛 observations. The regression coefficients, denoted by the vector 𝛽, 

have a length of 𝑞 + 1 and include the intercept term 𝑏0 along with the coefficients for the 𝑞 

predictor variables, denoted as 𝑏1, 𝑏2, . . . , 𝑏𝑞. 

Errors need to be independent but not normally distributed. Particularly in 

epidemiologic research, logistic regression is an effective tool because it enables the 

simultaneous analysis of several explanatory variables while minimizing the impact of 

confounding variables. Nevertheless, researchers must focus on model construction, avoiding 

just feeding algorithms with raw data and moving on to outcomes according to (Bocco et al., 

2006). Some challenging judgments regarding model development will entirely depend on 

the abilities and expertise of researchers in the subject. 

 

Likelihood and log Likelihood Function 

𝑓(𝑦/𝑋, 𝛽) = ∏ 𝑝𝑦𝑖𝑛
𝑖=1 (1 − 𝑝)1−𝑦𝑖      3.11 

𝑙𝑜𝑔𝑓(𝑦/𝑋, 𝛽) = ∑ −𝑦𝑖(𝑝) +𝑛
𝑖=1 (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝)   3.12 

By replacing 𝑝 with [
1

1+𝑒−𝑋𝛽
] and doing some calculations, the above formal becomes 

𝑙𝑜𝑔𝑓(𝑦/𝑋, 𝛽) = 𝛽𝑋(𝑦 − 1𝑛) − 1𝑛[lo g(1 + 1 + 𝑒−𝑋𝛽)]   3.13 

 

Prior Distribution Proposal Selections 

The process of selecting a model for our data involves specifying a prior distribution 

for the unknown coefficient in the applied model. We begin by assigning a non-informative 

flat prior with a huge variance to all the parameters, with assuming a mean of zero. However, 

we also incorporate a prior distribution with mean zero and a small variance of 1 for all the 

unknown parameters, which influences the posterior distribution. In Bayesian analysis, 

precision is often used instead of variance, where a large variance is considered non-

informative and a small variance is not perfectly flat. We choose a large variance of 10000 

(10^4) for our non-informative prior. To assign a prior to each unknown parameter, we adopt 
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a normal distribution with a mean of zero to define the prior distribution. Consequently, the 

prior distribution takes the shape of a normal distribution. 

We propose a multivariate normal prior for 𝛽 

𝛽~𝑁(0, 𝜎𝛽
2) 

Its probability density function log without constant terms is as followings: 

𝑙𝑜𝑔 𝑝(𝛽/𝜎𝛽
2) = −

1

2
 𝑙𝑜𝑔 𝜎𝛽

2 − 
𝛽𝑇𝛽

2𝜎𝛽
2       3.14 

 

Deriving Posterior distribution 

The posterior distribution for the coefficients 𝛽 is computed by multiplying the 

likelihood function, as described in Equation (3.13), with the prior distribution mentioned in 

Equation (3.14). This yields the posterior distribution, which is expressed as: 

𝑓(𝛽/𝑋, 𝑦, 𝜎𝛽
2) ∝  𝑓(𝑦/𝑋, 𝛽) ∗  𝑝(𝛽/𝜎𝛽

2)      3.15 

 

Thus, the log of the posterior distribution is driven as below 

𝑙𝑜𝑔 𝑓(𝛽/𝑋, 𝑦, 𝜎𝛽
2) ∝  𝛽𝑋(𝑦 − 1𝑛) − 1𝑛[lo g(1 + 𝑒−𝑋𝛽)] −

𝛽𝑇𝛽

2𝜎𝛽
2    3.16 

 

As a result, the gradient function of the leapfrog function can be written as 

 

∆𝛽 log 𝑓(𝛽, 𝑋, 𝑦, 𝜎𝛽
2) ∝ 𝑋 (𝑦 − 1𝑛 +

𝑒−𝑋𝛽

1+𝑒−𝑋𝛽) −
𝛽

𝜎𝛽
2     3.17 

The equation (3.14) indicates that the prior distribution utilized in the Bayesian 

logistic regression model does not fall into a conjugate family, ruling out the possibility of 

using a conjugate prior. Furthermore, the normalizing constant in the denominator of equation 

(3.7) cannot be computed explicitly, necessitating the use of simulation methods to derive the 

posterior distributions of the parameters. Markov Chain Monte Carlo (MCMC) methods are 

commonly employed to generate a Markov chain with a stationary distribution that aligns 

with the posterior distribution of the vector β. 
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Approximate methods in Bayesian inference 

Bayesian logistic regression aims to estimate the posterior distribution of the model 

coefficients, considering both the observed data and prior beliefs regarding their distribution. 

Equation (3.17) clearly illustrates that it is a complex function of the parameters, necessitating 

the use of numerical methods to compute the marginal posterior, posterior moments, and 

predictive densities for each parameter of the model. Approximations can be obtained using 

techniques based on Markov Chain Monte Carlo (MCMC). 

 

Markov Chain Monte Carlo: The Basics 

MCMC (Markov Chain Monte Carlo) methods are a diverse set of computational 

techniques utilized to estimate integrals and produce posterior samples. In Bayesian analysis, 

MCMC algorithms are commonly employed to approximate the posterior distribution by 

generating simulated samples. The Metropolis-Hastings (MH) algorithm is a widely used 

principle in Bayesian analysis for generating posterior samples. A specific variant of the MH 

algorithm is the Gibbs sampler, which is often utilized in practice. 

 

Metropolis-Hastings 

The Metropolis-Hastings (MH) algorithm employs a proposal density 𝒒(𝜷𝑷𝒓𝒐𝒑|𝜷𝒕−𝟏) 

to determine the values of 𝛽𝑡−1 in the chain. Here, 𝛽𝑃𝑟𝑜𝑝 represents the proposed value for 

the next element in the chain, while the proposal density is conditioned on the preceding value 

𝛽𝑡−1. Several proposal functions can be used, with random walk proposals being the most 

prevalent approach, but we propose Gibbs sampler as a new technique. 

Thus, the basic Metropolis-Hastings algorithm is as follows: a candidate state 𝑥 is 

generated at step 𝑡 from the proposal distribution 𝒒(𝜷𝑷𝒓𝒐𝒑|𝜷𝒕−𝟏). The candidate state is then 

either accepted or rejected as the next state in the chain, with probabilities determined by the 

algorithm.  
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Algorithm (1): Metropolis Hastings 

𝑆𝑒𝑡𝑡𝑖𝑛𝑔 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝒍𝒐𝒈 𝒇(𝜷/𝑿, 𝒚, 𝝈𝜷
𝟐 )  

𝒇𝒐𝒓 𝒕 = 𝟏 𝒕𝒐 𝑵 

         𝛽𝑃𝑟𝑜𝑝 = 𝒒(𝜷𝑷𝒓𝒐𝒑|𝜷𝒕−𝟏) 

         𝑢 = 𝑅𝑎𝑛𝑑. 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1) 

          ∝ = 𝑚𝑖𝑛 (1,
𝒍𝒐𝒈 𝒇(

𝜷

𝑿
,𝒚,𝝈𝜷

𝟐 )
𝑷𝒓𝒐𝒑

𝒒(𝜷𝑷𝒓𝒐𝒑
|𝜷𝒕−𝟏

)

𝒍𝒐𝒈 𝒇(
𝜷

𝑿
,𝒚,𝝈𝜷

𝟐 )
𝒕−𝟏

𝒒(𝜷𝑷𝒓𝒐𝒑
|𝜷𝒕−𝟏

)
) 

          𝐴𝑐𝑐𝑒𝑝𝑡 𝜷𝑷𝒓𝒐𝒑 𝑖𝑓 ∝< 𝑢, 𝜷𝒕 = 𝜷𝒕−𝟏 

𝐸𝑛𝑑 𝑓𝑜𝑟 

𝑹𝒆𝒕𝒖𝒓𝒏 𝜷(𝟏), 𝜷(𝟐), … 𝜷(𝑵)    

 

Hamiltonian Monte Carlo Algorithm 

By utilizing a guided proposal generation scheme, Hamiltonian Monte Carlo (HMC) 

enhances the efficiency of the MH algorithm. HMC achieves this by utilizing the gradient of 

the log posterior, which directs the Markov chain towards regions of higher posterior density 

where the majority of samples are taken. Consequently, a well-optimized HMC chain is 

capable of accepting proposals at a significantly higher rate compared to the traditional MH 

algorithm (Gelman et al., 1997). Further detailed explanations can be found in other sources, 

such as (Betancourt, 2017; Neal, 2012). 

The Hamiltonian function, denoted as 𝐻(𝛽, 𝑝), is expressed as the sum of potential 

energy 𝑈(𝛽) and kinetic energy 𝐾(𝑝), where 𝛽 and 𝑝 are both in the real 𝑘 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 

space, i.e., 𝛽, 𝑝 ∈  ℝ^𝑘. Specifically, the expression is given as 𝐻(𝛽, 𝑝)  =  𝑈(𝛽)  +  𝐾(𝑝). 

In MCMC applications in statistics, our primary objective is to generate θ from a 

specified distribution 𝑓(𝛽). To achieve this, we set the potential energy function as 𝑈(𝛽)  =

 −𝑙𝑜𝑔 𝑓(𝛽). By doing so, the generated 𝛽 values from the Hamiltonian function will adhere 

to the intended distribution. In terms of momentum, it is usually assumed that 𝑝 follows a 

multivariate normal distribution with mean 0 and a user-defined covariance matrix 

𝑀, 𝑖. 𝑒. , 𝑝 ~ 𝑁𝑘(0, 𝑀). With this formulation, we possess/obtain. 

𝐻(𝛽, 𝑝) =  − 𝑙𝑜𝑔 𝑓(𝛽) +  
1

2
𝑝𝑇𝑀−1𝑝      3.18 
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As time progresses, HMC moves along paths that are controlled by the first-order 

differential equations, which are commonly referred to as the Hamiltonian equations. 

𝑑𝑝

𝑑𝑡
= −

𝜕𝐻(𝛽, 𝑝)

𝜕𝛽
= −

𝜕𝑈(𝛽)

𝜕𝛽
= ∇𝛽𝑙𝑜𝑔𝑓(𝛽) 

𝑑𝛽

𝑑𝑡
=

𝜕𝐻

𝜕𝑝
=

𝜕𝐻(𝛽,𝑝)

𝜕𝑝
=

𝜕𝐾(𝑝)

𝜕𝑝
= 𝑀−1𝑝      3.19 

Therefore, the resolution of the Hamiltonian equations becomes a critical stage in 

HMC simulation. Although Euler's method is a conventional approach for solving differential 

equations, it tends to accumulate errors, particularly after numerous steps, as noted by Neal 

(2012). In HMC, a larger number of steps may be required to guarantee that the new proposal 

is adequately distant from the previous sample's location. The leapfrog method, introduced 

by Ruth (1983), is a viable alternative to Euler's method for approximating the solutions to 

Hamiltonian equations. The leapfrog algorithm adjusts Euler's method by utilizing a discrete 

step size 𝜖 for 𝑝 and theta independently, with a complete step 𝜖 in theta surrounded by two 

half-steps 𝜖/2 for 𝑝. 

𝑝(𝑡 + 𝜖 2⁄ ) = 𝑝(𝑡) + (𝜖 2⁄ )∇𝛽 log 𝑓(𝛽(𝑡)) 

𝛽(𝑡 + 𝜖) = 𝛽(𝑡) + 𝜖𝑀−1𝑝(𝑡 + 𝜖 2⁄ )𝑝(𝑡 + 𝜖) = 𝑝(𝑡 + 𝜖 2⁄ ) +

(𝜖 2⁄ ) ∇𝛽 log 𝑓(𝛽(𝑡 + 𝜖))    3.20 

 



56 

 

 

Artificial Neural Network Analysis 

Because of their advances in fields such as image recognition, natural language 

processing, and reinforcement learning, significant attention nowadays is on the usage of 

neural networks regardless of their advancements in optimization and learning algorithms. 

Nevertheless, there are several issues that have yet to be addressed such as overfitting which 

it easily tends to produce such phenomena regardless of how well they perform on some data 

sets, and eventually provide poor generalization. Finally, their model hyperparameters need 

a large number of the tuning. 

A neural network is defined as a parametric approach which attempts to estimate the 

x-y mapping. 𝑓: 𝑥 → 𝑦, given a certain set of data 𝐷 = {𝑥𝑖 , 𝑦𝑖}  ∈ (𝑋, 𝑌). The set of neural 

network parameters is identified as weights 𝑤, and the issue of determining the set of weights 

that best describes the mapping 𝑓 is calculated by applying Maximum Likelihood Estimation 

(MLE) technique. 

Algorithm (2): Hamiltonian Monte Carlo 

𝑰𝒏𝒑𝒖𝒕 (𝜷(𝟎), 𝒍𝒐𝒈 𝒇(𝜷/𝑿, 𝒚, 𝝈𝜷
𝟐 ), 𝑴, 𝑵, 𝑳, 𝝐)  

𝑆𝑒𝑡𝑡𝑖𝑛𝑔 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝑙𝑜𝑔 𝑓(𝛽/𝑋, 𝑦, 𝜎𝛽
2)  

𝑓𝑜𝑟 𝑡 = 1 𝑡𝑜 𝑁 

         𝑝 = 𝑅𝑎𝑛𝑑. 𝑛𝑜𝑟𝑎𝑚𝑎𝑙(0, 𝑀) 

        𝛽(𝑡) = 𝛽(𝑡−1), 𝛽 = 𝛽(𝑡−1), 𝑝 = 𝑝 

        𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝐿 

               𝛽, 𝑝 → 𝐿𝑒𝑎𝑝𝑓𝑟𝑜𝑔( 𝛽, 𝑝, 𝜖, 𝑀) 

        𝐸𝑛𝑑 𝑓𝑜𝑟 

       ∝ = 𝑚𝑖𝑛 (1,
exp (log 𝑓( �̃�)− 

1

2
 �̃�𝑇𝑀−1 �̃�

exp (log 𝑓( �̃�(𝑡−1))− 
1

2
 𝑝𝑇𝑀−1𝑝

) 

       𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝, 𝛽(𝑡) = 𝛽 𝑎𝑛𝑑 𝑝(𝑡) = −𝑝 

𝐸𝑛𝑑 𝑓𝑜𝑟 

𝑅𝑒𝑡𝑢𝑟𝑛 𝛽(1), 𝛽(2), … 𝛽(𝑁)    

 Run (LeapFrog Function) 
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𝑊𝑀𝐿𝐸 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑤

(log 𝑝(𝑋/𝑊)      3.21 

 

Feed-forward Approach 

Neural networks, known as adjustable nonlinear regression and discriminant models, 

as well as models for nonlinear dynamical systems and data reduction, consist of numerous 

interconnected "neurons" that perform computations in linear or nonlinear ways. These 

neurons are often organized into layers. When utilizing neural networks (NNs) for data 

analysis, it is crucial to distinguish between NN models and NN methods. Many NN models 

resemble or can be directly compared to popular statistical tests, such as generalized linear 

models, binomial regression, nonparametric regression, discriminant analysis, projection 

pursuit regression, principal components analysis, and cluster analysis, especially when the 

focus is on prediction rather than interpretation. These NN models have the potential to be 

highly practical. However, standard NN learning algorithms are inefficient as they are 

designed for parallel processing computers but are often implemented on simple serial 

machines like regular PCs. The neural network formula, known as feed-forward, involves a 

linear combination of independent variables, their weights, and the bias (or intercept) term 

for each neuron. 

 

A feed-forward network is a linear perceptron generalization in which artificial 

neurons layers are packed together with non-linearities utilized between each layer. 

According to Hornik et al. (1989), the universal approximation theorem is the reason for the 

many successful applications of neural networks. It demonstrates that feed-forward neural 

networks with non-linear activation functions and at least one hidden layer can approximate 

universal functions. 

𝑍 = 𝑏𝑖𝑎𝑠 + 𝑊1 ∗ 𝑋1𝑖 + 𝑊2𝑋2𝑖 + ⋯ 𝑊𝑚𝑋𝑛      3.22 

Where: 𝑍 is defined as the symbol for denotation of the graphical representation  

 𝑊s, are the weights or the beta coefficients 

𝑋s are known as the inputs or independent variables  
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Figure 2: Feed-forward neural network illustration with 2 hidden layers  

Feed-forward neural network illustration with 2 hidden layers 

 

 

By considering an input vector 𝑥 and an output vector 𝑦, a feed-forward neural 

network can be constructed. This neural network consists of m hidden layers, each containing 

ℎ𝑖 nodes, along with weights 𝑤, bias 𝑏, and a non-linear activation function 𝑓. By utilizing 

this network, new outputs can be generated, as expressed by the following equation: 

                                                            𝐻𝐿(1) = 𝜑(𝑤(1)𝑥 + 𝑏𝑖𝑎𝑠(1)) 

                                                            𝐻𝐿(2) = 𝜑(𝑤(2)𝐻𝐿(1) + 𝑏𝑖𝑎𝑠(2)) 

�̂� = 𝜎(𝑤(3)𝐻𝐿(2) + 𝑏𝑖𝑎𝑠(3)) 
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In the case of classification, the function 𝜑 can be linear and 𝜎 can be non-linear 

activation functions, as is regularly the case for regression problems. There are numerous 

other options for 𝜑 𝑎𝑛𝑑 𝜎 however. 

 

Types Activation Functions 

To empower neural networks in utilizing complex nonlinear transformations, some form 

of nonlinearity must be added to the model. There are numerous possible activation functions, 

but for the purposes of this thesis, we will focus only on two of them.  

 

1- ReLU Activation: 

This function is to be implemented for the input layer as well as hidden layer neurons. 

 

 

 

 

 

 

 

 

 

2- Sigmoid Activation Function  

The sigmoid activation function is utilized with regressors because it "squishes" a set of 

outputs from 0 to 1 from negative infinity to positive infinity. The constraints denote the two 

classes that could exist. The sigmoid equation is as follows: 

 

 

-12

-7

-2

3

8

13

-10 -5 0 5 10

𝑦 = ቄ
𝑥 𝑥 > 0
0 𝑥 ≤ 0

ቅ 

Figure 3: ReLU Activation Function Demonstration  

ReLU Activation Function Demonstration 
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It will be run for the output values since we are predicting 0 and 1 values for the 

response variables.  

Derivative of Sigmoid Function  

Let us derive the Sigmoid function's derivative with respect to its input 

𝜎 =
1

1 + 𝑒−𝑥
→ 𝑑𝜎 =

𝑑

𝑑𝑥
(1 + 𝑒−𝑥)−1 = −1 ∗ (1 + 𝑒−𝑥)−1−1 ∗

𝑑

𝑑𝑥
(1 + 𝑒−𝑥) 

  

= − (1 + 𝑒−𝑥)−2 ∗ (
𝑑

𝑑𝑥
1 +

𝑑

𝑑𝑥
𝑒−𝑥) = − (1 + 𝑒−𝑥)−2 ∗ (0 + 𝑒−𝑥 ∗

𝑑

𝑑𝑥
[−𝑥]) 

= − (1 + 𝑒−𝑥)−2 ∗ (𝑒−𝑥 ∗ (−1 ∗
𝑑

𝑑𝑥
𝑥)) = − (1 + 𝑒−𝑥)−2 ∗ (𝑒−𝑥 ∗ (−1)) 

= − (1 + 𝑒−𝑥)−2 ∗ (−𝑒−𝑥) = (1 + 𝑒−𝑥)−2 ∗ 𝑒−𝑥 

=
𝑒−𝑥

 (1 + 𝑒−𝑥)2
=

𝑒−𝑥

(1 + 𝑒−𝑥) ∗ (1 + 𝑒−𝑥)
=

1

1 + 𝑒−𝑥
∗

𝑒−𝑥

1 + 𝑒−𝑥
 

=
1

 1 + 𝑒−𝑥
∗

1 + 𝑒−𝑥 − 1

(1 + 𝑒−𝑥)
=

1

1 + 𝑒−𝑥
∗ (

1 + 𝑒−𝑥

1 + 𝑒−𝑥
−

1

1 + 𝑒−𝑥
) 

 ∴ 𝑑𝜎 = 𝜎 ∗ (1 − 𝜎) 

-1.5

-1

-0.5

0

0.5

1

1.5

-10 -5 0 5 10

𝑦 =
1

1 + 𝑒−𝑥
 

Figure 4: SIGMOID Activation Function Demonstration 

SIGMOID Activation Function Demonstration 
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To employ a neural network to learn from data, it first must be indicated what to learn. 

We are interested in determining the set of weights, w, that can fit to the training data while 

also generalizing to new data. As a result, we must develop a loss function that calculates the 

performance of how well our current model fits the data. Instead of calculating categorical 

cross-entropy for loss function, binary cross-entropy terminology is used and its partial 

derivative of the Binary Cross-Entropy loss is a fairly simple equation that will be 

straightforward to implement in practice. 

𝐿𝑜𝑠𝑠𝑖 = (𝑦𝑖)(− log �̂�𝑖) + (1 − 𝑦𝑖)(− log ( 1 − �̂�𝑖) 

= −𝑦𝑖 ∗ log(�̂�𝑖) − (1 − 𝑦𝑖) ∗ log(1 − �̂�𝑖) 

𝜕𝐿𝑜𝑠𝑠𝑖

𝜕�̂�𝑖
=

𝜕

𝜕�̂�𝑖

(−𝑦𝑖 ∗ log(�̂�𝑖) − (1 − 𝑦𝑖) ∗ log(1 − �̂�𝑖)) 

= −𝑦𝑖 ∗
1

�̂�𝑖
∗ 1 − (1 − 𝑦𝑖) ∗

1

1 − �̂�𝑖

(0 − 1) 

= −
𝑦𝑖

�̂�𝑖
+

1 − 𝑦𝑖

1 − �̂�𝑖
→

𝜕𝐿𝑜𝑠𝑠𝑖

𝜕�̂�𝑖
= − (

𝑦𝑖

�̂�𝑖
−

1 − 𝑦𝑖

1 − �̂�𝑖
) 

Regularization 

Since neural network is highly complex and it normally ends with facing overfitting and 

thus produces very poor generalization while unseen datapoints go through to the model. 

There is a numerous regularization technique which have been proposed to overcome this 

issue.  

 

1- Dropout 

The addition of noise to the model is a different style to regularization. The idea is that by 

presenting noise during training, the model rather performs better on new data and will 

struggle to outperform fit. This concept has been applied in a variety of studies, such as adding 

Gaussian noise to weights or noise to training data. The most prominent approach, however, 

is dropout, as studied by Srivastava et al. (2014). 

 

2- L1-Regularization 

L1-regularization is often recognized as Lasso which penalize large weight’s values 

where works on parameter Lambda as following: 
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𝐿𝑜𝑠𝑠𝑖(𝑦|𝑥, 𝑤) + 𝜆 ∑ ∑ |𝑤𝑖𝑗|
𝐻𝐿𝑖
𝑗

𝑚
𝑖       3.23 

L is the loss function of the network for a new prediction, setting new datapoints, and 

trained weights. L1-regularization causes model sparsity by forcing parameters to equal zero. 

L1-regularization is equivalent to presenting a Laplace-prior on the distribution of weights in 

the network from a probabilistic standpoint. 

 

3- L2-Regularization 

L2-regularization, also recognized as Ridge regression, where large weights are forced 

to be penalized by adding an L2-penalty to the model's cost function as follows: 

𝐿𝑜𝑠𝑠𝑖(𝑦|𝑥, 𝑤) + 𝜆 ∑ ∑ 𝑤𝑖,𝑗
2𝐻𝐿𝑖

𝑗
𝑚
𝑖       3.24 

 

Bayesian Neural Network 

Brief introduction 

A Bayesian neural network (BNN) is a type of neural network that incorporates 

Bayesian inference into its architecture. Like traditional neural networks, a BNN consists of 

layers of interconnected nodes, or neurons, that receive inputs, apply weights and biases, and 

produce outputs. However, unlike traditional neural networks, a BNN is designed to model 

not only the mapping from inputs to outputs but also the uncertainty associated with that 

mapping. Figure 5 demonstrates the architecture of both Bayesian neural network as well as 

neural network with point estimation. 

Figure 5: Left: Bayesian Neural Network with probability distribution over weights. 

Right: Classic Neural Network with point estimates for weights. 

Left: Bayesian Neural Network with probability distribution over weights. Right: Classic 

Neural Network with point estimates for weights. 
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In a BNN, the weights and biases of the neural network are treated as random variables 

with prior distributions. The prior distributions reflect the prior belief or uncertainty about the 

values of the weights and biases. The goal of Bayesian inference is to update the prior 

distributions based on observed data, resulting in posterior distributions that reflect the 

updated beliefs or uncertainty about the values of the weights and biases. 

The use of Bayesian inference in a neural network has several advantages. For 

example, it allows for the quantification of uncertainty in the model's predictions, which can 

be useful in many applications, such as finance or medicine. Additionally, it can help prevent 

overfitting by regularizing the model and reducing the impact of outliers. 

However, BNNs can be computationally expensive and require specialized algorithms 

to perform inference over the posterior distribution. Despite this, they have become an 

increasingly popular tool in machine learning and have shown promising results in various 

applications such as image classification, language modeling, and reinforcement learning. 

 

Bayesian Learning Process 

The Bayesian learning process begins with the definition of a model, M, and a prior 

distribution 𝑝(𝑤) for the model parameters a. After examining additional data used to update 

the updated distribution of priors is used to create the posterior distribution with utilizing 

Bayes' rule. 

𝑃(𝑊/𝑋)  ∝  𝑝(𝑊) ∗ 𝑝(𝑋/𝑊)      3.25 

Likelihood 

In statistics, likelihood function is driven from its original pdf for n data points in 

multiplying the function for each joint (𝑥, 𝑦) dataset. Its general written formula is as 

followings: 

𝐿(𝑊/𝑋) = ∏ 𝑝(𝑦(𝑖)|𝑋(𝑖), 𝑊)𝑛
𝑖=1       3.26 

In order to write in more detail explicitly for two class as in our cases where sigmoid 

function is intended to be used for the output layer, eq6 provides more insights on the 

likelihood function: 

𝑝(𝑦 = 1|𝑋, 𝑊) = [1 + exp (−𝑓(𝑥, 𝑤))]−1     3.27 
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Free parameters where are called (weights) in the model must be set corresponding to 

the training set size, the noise level as well as the target function complexity when computing 

classical estimation (error minimization) for the MLP. However, limiting the network size is 

no longer an issue in the Bayesian technique, but it is wise to minimize number of hidden 

units in practice for computational purposes. In addition, referring Neal (2012), for small 

sample sizes, the process of converging tends to be Gaussian while implying limiting hidden 

unit numbers which is considered as a feasible practice in such circumstances. 

 

Choosing Priors 

Smoothing priors, for instance, state that functions with small values of second 

derivative are more likely in Bayesian approximation. According to (Bishop, 1993; Lampinen 

& Selonen, 1997), however, results in a fairly complex treatise with MLP. The MLP 

complexity can be roughly treated by varying the weights w size. Eventually, this can be 

accomplished, for example, by using a Gaussian prior distribution for weights w by specifying 

the hyperparameter alpha. 

𝑝(𝑊|𝛼) = (2𝜋)−𝑚/2𝛼𝑚/2exp (−𝛼 ∑ 𝑤𝑖
2/2𝑚

𝑖=1 )    3.28 

Vague hyperprior (𝛼) is set due to the complexity as well as no knowledge for the 

correct value caused by the hyperparameter and this is attributable to produce either very high 

or very low values of alpha. Therefore, a Gamma distribution of vague type is expressed with 

mean and shape parameter alpha  

𝑝(𝛼)~𝐺𝑀(𝜇, 𝑎) ∝ 𝛼𝑎exp (−𝛼𝑎 2𝜇⁄ )     3.29 

As Neal (1998) applied run separate priors each with its own 𝛼 at each weight group 

from each layer in order to have a prior which is invariance under linear transformation of the 

dataset used. Neverthelss, this approach often cause creating common priors for all considered 

inputs and to avoid such phenomenon, Automatic Relevance Determination (ARD) is taken 

step into the discussion per (MacKay, 1994; Neal, 1998). The input-to-hidden weights linked 

to the identical input have shared variance extracted from the priors which lead to have same 

distribution of the prior (hyperprior). Consequently, prior’s posterior values are adjusted, and 

the weights of unrelated inputs move towards to zero.  
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The predictive distribution is achieved by calculating the model's integration of 

predictions regarding the posterior distribution to forecast the new output 𝑦(𝑛+1)  when new 

values of input 𝑥(𝑛+1) is available. 

 

𝑝(𝑦(𝑛+1)|𝑥(𝑛+1), 𝑋) = ∫ 𝑝(𝑦(𝑛+1)|𝑋(𝑛+1), 𝑊)𝑝(𝑊/𝑋) 𝑑𝑊   3.30 

This can be understood as taking the average of the predictions from all models, where 

the weights are determined by their respective posterior probability distributions. To illustrate, 

the predictive distribution for new data is derived by integrating the posterior distributions of 

the parameters and hyperparameters, resulting in the following expression: 

𝑝(𝑦(𝑛+1)|𝑥(𝑛+1), 𝑋) = ∫ 𝑝(𝑦(𝑛+1)|𝑋(𝑛+1), 𝑤, 𝛼, 𝜏)𝑝(𝑤, 𝛼, 𝜏/𝑋) 𝑑𝑤𝛼𝜏 3.31 

 

Various functions' expectations in relation to the posterior distribution for parameters 

is feasible to be evaluated and in regression, for instance, the probability of 𝑦(𝑛+1) component 

can be evaluated as following: 

�̂�(𝑛+1)
𝑘

= ∫ 𝑓𝑘(𝑋(𝑛+1), 𝑤) 𝑝(𝑤, 𝛼, 𝜏/𝑋) 𝑑𝑤𝛼𝜏    3.32 

Except in certain circumstances where Bayesian model is simple and both the 

likelihood and the prior are conjugate distributions, this integration is likely to be intractable. 

Thus, this is when numerical analysis such as Monte Carlo Markov Chain comes and its 

algorithms play major role in estimating model's posterior distribution for more complex 

models. 

Hybird Monte Carlo Algorithm for BNN 

The Hybrid Monte Carlo (HMC) algorithm is a computational method used in 

statistical physics, Bayesian statistics, and other fields to sample from complex probability 

distributions. The algorithm combines molecular dynamics simulations with Markov Chain 

Monte Carlo (MCMC) sampling to explore high-dimensional spaces efficiently. 

In the HMC algorithm, the target distribution is represented as a probability density 

function (PDF), which can be evaluated up to a constant of proportionality. The algorithm 

starts by simulating a Hamiltonian system, consisting of a set of particles with mass and 
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position variables, subject to a potential energy function. This simulation generates a new 

proposed state, which is then accepted or rejected based on the Metropolis-Hastings criterion. 

The HMC algorithm is called "hybrid" because it combines the benefits of both Monte 

Carlo sampling and molecular dynamics simulations. The molecular dynamics simulation 

allows the algorithm to make proposals that are more efficient and less correlated than in 

traditional MCMC methods, while the Metropolis-Hastings criterion ensures that the 

algorithm produces valid samples from the target distribution. 

Overall, the HMC algorithm is a powerful tool for sampling from complex 

distributions, particularly those with high-dimensional spaces or strong correlations between 

variables. It has been successfully used in a variety of applications, including Bayesian 

inference, machine learning, and computational physics. 

Equation (3.32) represents the expectation of function 𝑓(𝑋(𝑛+1) ; 𝑊) with regards to the  

parameter's posterior distribution. The Monte Carlo method can implemtend to approximate 

this by drawing a sample of values 𝑊(𝑡) from the posterior distribution. 

�̂�𝑘
(𝑛+1)

≈
1

𝑁
∑ 𝑓𝑘(𝑋(𝑛+1), 𝑤(𝑡))𝑁

𝑡=1       3.33 

The hybrid Monte Carlo (HMC) algorithm is employed to compute the parameters, 

while Gibbs sampling is utilized for the hyperparameters. HMC is an advanced Monte Carlo 

method that leverages gradient information to mitigate random walk behavior often observed 

in the Metropolis algorithm. The gradient provides guidance on the direction to explore in 

order to discover states with higher probabilities. The inclusion of Gibbs sampling for the 

hyperparameters helps to reduce the need for extensive tuning to achieve satisfactory 

performance in HMC. 

 

Variational Inference 

Variational inference is an alternative approach for approximating inference in 

Bayesian modeling that can be considered as a parametric alternative to the MCMC-sampling 

algorithm class. The advantage of variational inference is that it substitutes the integration 

component of inference with optimization or differentiation, which typically requires less 

computational resources. Nonetheless, the primary limitation of these algorithms is that they 

assume independence among the model's parameters and the resulting variational posterior 
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may deviate substantially from the true posterior. In essence, variational inference presents a 

powerful option for replacing integration with optimization, but its assumptions and potential 

divergence from the true posterior must be taken into account. 

The aim of variational inference is not to perform sampling from the exact posterior 

but rather to utilize a distribution 𝑞𝜃(𝑊), referred to as the variational distribution, that is 

parameterized by a set of phi parameters. These phi parameters are then learned such that the 

variational distribution 𝑞𝜃(𝑊)approximates the exact posterior 𝑝(𝑊/𝑋) as closely as 

possible. The standard measure of closeness between probability distributions is the 

Kullback-Leibler divergence (KL-divergence) (Hoffman et al., 2013), which leverages 

Shannon's information theory (Shannon, 1948). The KL-divergence calculates the average 

number of additional bits that would be required to encode a sample from 𝑃 using a code 

optimized for 𝑞. In Bayesian inference, the KL-divergence is computed as: 

 

𝐷𝐾𝐿(𝑞𝜃(𝑊)||𝑝(𝑊/𝑋) = ∫ 𝑞𝜃(𝑊)𝑙𝑜𝑔
𝑞𝜃(𝑊)

𝑝(𝑊/𝑋)

 

∅
  𝑑𝑊    3.34 

 

However, there exists a notable issue in this context, namely the requirement to compute 

𝑃(𝑊|𝑋) in order to calculate 𝐷𝐾𝐿(𝑞𝜃(𝑊)||𝑝(𝑊/𝑋). To circumvent this, a distinct formula 

known as the evidence lower bound (𝐸𝐿𝐵𝑂) can be employed as a loss function, which is 

straightforward to derive. 

∫ 𝑞𝜃(𝑊)𝑙𝑜𝑔
 

∅
(

𝑝(𝑊,𝑋)

𝑞𝜃(𝑊)
)  𝑑𝑊 = log(𝑝(𝑋) − 𝐷𝐾𝐿(𝑞𝜃(𝑊)||𝑝(𝑊/𝑋)  3.35 

Due to the fact that 𝑙𝑜𝑔(𝑃(𝑋)) is exclusively determined by the prior, the minimization of 

𝐷𝐾𝐿(𝑞𝜃(𝑊)||𝑝(𝑊/𝑋) is equal to the maximization of the evidence lower bound (𝐸𝐿𝐵𝑂). 

 

Given their size, it is crucial to select an optimization technique that is 

computationally efficient when updating the parameters of neural networks. This is why the 

gradient descent algorithm with backpropagation is a popular method for training neural 

networks, as it enables efficient parameter updates. A significant portion of contemporary 

research in this field is focused on finding novel solutions to address this issue, with Bayes 

by Backprop Blundell et al. (2015), the local reparameterization trick (Kingma et al., 2015), 

and flip out (Wen et al., 2018) being among the most prominent approaches.  
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Bayes by backpropagation 

Variational inference is a useful mathematical tool for Bayesian inference, however, 

it requires modifications to be suitable for deep learning. The primary issue arises from the 

fact that stochasticity prevents backpropagation from functioning at the internal nodes of a 

network (Buntine, 1994). Various solutions have been suggested to address this problem, such 

as probabilistic backpropagation (Hernández-Lobato & Adams, 2015) or Bayes-by-backprop 

(Blundell et al., 2015). The latter option may be more familiar to those working with deep 

learning, and therefore, we will focus on Bayes-by-backprop in this tutorial. Bayes-by-

backprop is a practical implementation of stochastic variational inference (SVI) combined 

with a reparameterization trick (Kingma & Welling, 2019), which ensures that 

backpropagation works normally. 

To optimize the network using the prior distribution, variational posterior, and training 

data, the negative evidence lower bound (𝐸𝐿𝐵𝑂) is defined as the loss function. 

𝐹(𝑋, 𝑊) = 𝐷𝐾𝐿(𝑞𝜃(𝑊)||𝑝(𝑊/𝑋) − 𝐸𝑞𝜃(𝑊) [𝐿𝑜𝑔 (
𝑋

𝑊
)] 

= ∫ 𝑞𝜃(𝑊)𝑙𝑜𝑔
𝑞𝜃(𝑊)

𝑝(𝑊)

 

∅
  𝑑𝜃 − ∫ 𝑞𝜃(𝑊) log 𝑝(𝑋/𝑊) 

 

∅
  𝑑𝜃   3.36 

 

As the objective is to minimize 𝐹(𝑋, 𝑊) using gradient descent, computing the 

gradients of the two expectations in Equation (3.36) is not feasible analytically, and instead 

requires Monte Carlo sampling. Blundell et al. (2015) proposes a modification of the local 

reparameterization trick (Kingma et al., 2015) to obtain unbiased gradient estimates. The 

derivative of an expectation can be expressed as the expectation of the derivative under certain 

conditions. For a function 𝑓(𝑤;  𝜃), a random variable E with distribution 𝑞(𝐸), and a 𝑤 =

 𝑡(𝜃;  𝐸) with marginal distribution such that 𝑞(𝑤)𝑑𝑤 =  𝑞(𝐸)𝑑𝐸, the following equation is 

valid: 

 

𝝏

𝝏𝜽
𝐸𝑞𝜃(𝑊)[𝑓(𝑊, 𝜃)] = 𝐸𝑞(𝜀) [

𝜕𝑓(𝑊,𝜃)

𝜕𝑊

𝜕𝑊

𝜕𝜃
+

𝜕𝑓(𝑊,𝜃)

𝜕𝜃
]    3.37 

The technique of using 𝑓(𝑤𝑖;  𝜃) =  𝑙𝑜𝑔 𝑞(𝑤𝑖) −  𝑙𝑜𝑔 𝑝(𝑤𝑖) 𝑝(𝑋|𝑤𝑖), where 𝑤𝑖 is the 

𝑖𝑡ℎ Monte Carlo sample from the variational posterior 𝑞(𝑤), allows for the approximation of 

the gradients of the loss function 5.1 through Monte Carlo sampling. The number of samples, 
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𝑀, needed is often low, with 𝑀 =  1 producing sufficient results. In Gaussian variational 

posterior, the goal is to find the mean, 𝑚, and variance, 𝜌2, of the variational posterior, 

assuming a diagonal covariance matrix. Blundell et al. (2015) optimization procedure can be 

generalized to allow for an arbitrary M. The variables are initialized to set the variational 

posterior to a standard normal distribution, with m as 0 and p as 1 as per appendix A 

 

Algorithm (3): Bayes by Backprop 

𝑆𝑒𝑡 ∅ = ∅0 

𝒇𝒐𝒓 𝒕 = 𝟏 𝒕𝒐 𝑵 

         𝑠𝑎𝑚𝑝𝑙𝑒 𝜖~𝑞(𝜖) 

         𝑊 = 𝑡(𝜖, ∅) 

          𝑓(𝑊, ∅) = log(𝑞∅(W)) − log(𝑝(𝑦/𝑋, 𝑊)𝑃(𝑊) 

          ∆∅𝑓 = 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝∅(𝑓) 

          ∅ = ∅ − α∆∅𝑓 

𝑬𝒏𝒅 𝒇𝒐𝒓 

 

 

 

Other Machine Learning Methods 

K-Nearest Neighbour (kNN) 

The purpose of the classification algorithm is to allocate anonymous data to the class 

containing the most comparable labelled samples. For both the training and test datasets, 

observational parameters are obtained. While using the kNN method, the datasets must be 

readied. After predicting the outcome with the kNN method, the model's analytical accuracy 

should be evaluated. The most commonly used statistic to represent the kNN algorithm is 

average accuracy. The 𝑘 value, distance computation, and selection of acceptable predictors 

all substantially impact model performance. By default, the kNN function uses Euclidean 

distance, which the following equation can specify. (Hastie et al., 2009). 

𝐷𝑖𝑠(𝑝, 𝑞) = √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2   3.38 
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Where p and q are the subjects to be evaluated with n features, other techniques of calculating 

distance exist, such as the Manhattan distance. Another notion is the k parameter, which 

determines how many neighbors are chosen by the kNN algorithm. The selection of k 

considerably impacts the diagnostic performance of the kNN algorithm. A higher k decreases 

the influence of variability produced by random error, but it runs the risk of disregarding 

minor but significant patterns. The key to selecting a fair k value is to find a happy medium 

between errors and regression problems. 

 

SVM (Support Vector Machines) 

Support Vector Machines (SVMs) classification method is proposed for cluster 

analysis without prior knowledge of input classes. The algorithm begins by running a bipolar 

classification model on randomly labeled vectors until initial convergence is achieved. At this 

stage, SVM confidence values for each training instance are obtained. The data with the 

lowest confidence (worst mislabeled data) is then relabeled with the other class label. The 

SVM is re-run on the dataset with the partially relabeled data, benefiting from the previous 

convergence and reduced misidentification penalties. This approach mitigates the risk of 

singularity traps observed in other methods. By retraining the SVM after each relabeling on 

the worst misclassified vectors, specifically those with confidence factor values above a 

certain threshold, the approach addresses its poorly convergent outcome (Schölkopf et al., 

2002). 

 

Random Forest: 

Random Forest, as explored by Louppe (2014), is an ensemble method in machine 

learning. It is a versatile approach for classification and regression that leverages the strength 

of multiple decision trees to create a robust and precise model. The fundamental concept of 

Random Forest involves constructing a forest of decision trees, with each tree built using a 

random subset of the training data and a random subset of features. This randomization 

strategy serves to mitigate overfitting issues and enhances the model's capacity for 

generalization. The trees in the forest are trained independently and their predictions are 

aggregated through a majority vote to yield the final prediction. 
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Random Forest offers numerous advantages compared to alternative machine learning 

algorithms. Firstly, it is a non-parametric method, eliminating the need for assumptions about 

data distribution. This flexibility enables Random Forest to accommodate various types of 

data effectively. Secondly, it exhibits high scalability, enabling it to handle extensive datasets 

with complex, high-dimensional feature spaces. This scalability makes Random Forest 

suitable for large-scale applications. Furthermore, Random Forest provides a valuable feature 

importance measure, allowing users to identify the most significant features for the 

classification task at hand. This information aids in understanding the underlying factors that 

drive the model's predictions and supports feature selection processes (Kursa & Rudnicki, 

2010). 

Random Forest is a versatile machine learning algorithm applicable to both 

classification and regression tasks. Its foundation lies in constructing an ensemble of decision 

trees using various subsets of the input data. By combining the predictions of these individual 

trees, Random Forest enhances the overall accuracy of the model. This ensemble approach 

empowers Random Forest to effectively handle complex data patterns and deliver reliable 

results across diverse problem domains. 

The Random Forest algorithm excels in handling intricate and nonlinear associations 

between input features and target variables. By introducing randomness during the model 

construction, it effectively mitigates overfitting. Unlike a single decision tree, a random forest 

combines predictions from multiple trees and determines the final outcome based on the 

majority vote. Increasing the number of trees in the forest not only improves accuracy but 

also reduces the risk of overfitting, thereby ensuring a more reliable and robust model. 

 

Naïve Bayesian 

Naive Bayes is a popular probabilistic machine learning algorithm utilized for 

classification tasks. It leverages Bayes' theorem, which enables the calculation of the 

probability of a hypothesis given observed evidence. The "naive" aspect of Naive Bayes stems 

from its simplifying assumption of feature independence, although this may not hold true in 

real-world data. Nonetheless, Naive Bayes remains a powerful algorithm capable of achieving 

high accuracy in various classification tasks (Brownlee, 2019). It constructs a model of the 

probabilities of each input feature for every possible output class. When presented with a new 
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input instance, the algorithm computes the probabilities of it belonging to each potential class 

based on the model. It then selects the class with the highest probability as the predicted 

output. 

One significant advantage of Naive Bayes is its simplicity and speed. It operates 

effectively even with limited training data, swiftly generating accurate predictions for large 

datasets. Furthermore, Naive Bayes can handle high-dimensional feature spaces and exhibits 

resilience towards irrelevant features. Its versatility is evident in its successful applications 

across diverse domains, including text classification, spam filtering, and image recognition. 

Given its simplicity, efficacy, and broad utility, Naive Bayes remains a favoured choice for 

numerous machine learning applications (Sammut & Webb, 2011). 

 

Summary 

In this chapter, we mainly focus the patient’s profile as they had hospitalized due to 

the being infected with Covid-19. For this purpose, two particular hospitals would be chosen 

as they are known for having Covid-19 cases from the beginning and one belongs to public 

sector while the other one is private sector. The dataset ends up with huge number of variables, 

for instance, age, gender, status (cured/died), lab tests (including blood test, chest test, urine 

test and etc), oxygen measurements, blood pressure measurements and others. We have no 

access to sensitive information such as, name of the patients, telephone numbers or any other 

means to be non-anonymous. This means the dataset is fully anonymous, thus neither consent 

form is nor ethical paper is needed. Hence, this current study considers on a secondary data 

analysis of a cross-sectional study type since the information was already collected by the 

hospitals itself.  

Both traditional mathematical and data mining approaches will be used in this study. 

Traditional statistical methods provide distributions that describe an observable property 

(descriptive statistics) which are used to determine the reliability of a sample taken from a 

population (inferential statistics). They are focused on continuously measuring the properties 

of objects with the goal of predicting the frequency with which such effects will occur when 

the measuring operation is replicated at random or stochastically, and the established 

hypotheses are then tested against the evidence (Bzdok et al., 2017).  
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CHAPTER IV 

Statistical Analysis Results 

 

Descriptive and Visualization Analysis   

It is begun with descriptive statistics since it is considered as a vital stage of any 

study’s outcomes where initial thoughts on the nature of the dataset are noticed as well as 

sometime enables the researchers to find potential patterns among the explanatories and 

response variable. To simplify the discussion and easy to follow, it was split to two parts, 

exploring the association of predicted variable with quantitative and qualitative covariates 

separately.  

 

Response Association with Quantitative Variable 

Table 3 catches attention on the effect of the laboratory measurements on the response 

variables and whether the increase or decrease unit of any of them caused to Covid-19 patients 

to death. According to the outcomes, it was obvious that except Netrophil variable, there were 

highly significant differences between mean values of the survivors and died cases with p-

values <0.001. For instance, mean value of HR for those discharged alive in the hospital was 

measured with (84.78 ± 13.80) while it was (107.92 ± 16.46) for those who died, thus it led 

us to report that the disease had impact on increasing heart rate pulse. Furthermore, also great 

difference of mean values was noticed for CRP variable with 16.60 and 48.37 for recovered 

and died cases respectively. When compared to upper respiratory tract infection, those dies 

with Covid-19 were more likely to be diagnosed with pneumonia mean value (22.69 ± 4.6901 

vs 18.81 ± 1.85, p-value<0.001), and mean value of quadrant (2.51 ± 1.07 vs. 3.183± 1.13, p-

value<0.001) and pulmonary (33.28 ± 17.87 vs. 39.76 ± 16.93, P-value<0.001) were slightly 

higher and significantly differed. As stated, no significant difference was occurred due to 

Neutrophil results between died and recovered cases with (3.1601 ± 0.4974 vs. 3.1403 ± 0.68, 

p-value = 0.70). On admission, patients with severe/critically ill Covid-19 caused to death 

had higher temperatures, lower SpO2, and higher CT image quadrant scores and pulmonary 

opacity values.  
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Table 3: Descriptive Statistics of Laboratory Results Under Investigation Recovered and Died Cases 

Descriptive Statistics of Laboratory Results Under Investigation Recovered and Died Cases 

Variables 
Recovered Died 

P-Valuea 
N Mean ± SD Median IQR N Mean ± SD Median IQR 

Temperature 341 37.56 ± 1.97 38.30 3.90 196 38.30 ± 1.66 38.40 1.78 0.000 

HR 341 84.78 ± 13.79 84.60 17.90 196 107.92 ± 16.46 107.40 22.75 0.000 

Respiratory 341 18.81 ± 1.85 18.70 2.50 196 22.69 ± 4.69 21.90 6.60 0.000 

Quadrant 341 2.52 ± 1.087 2.00 1.00 196 3.18 ± 1.13 4.00 1.00 0.000 

Pulmonary 341 33.28 ± 17.87 30.00 25.00 196 39.76 ± 16.93 37.00 35.00 0.000 

Neutrophil 341 3.16 ± 0.50 3.10 0.95 196 3.14 ± 0.68 3.10 1.00 0.699 

Lymphocyte 341 1.37 ± 0.27 1.40 0.50 196 0.78 ± 0.21 0.75 0.30 0.000 

Platelet 341 192.91 ± 22.97 200.10 21.00 196 172.70 ± 27.02 178.10 47.00 0.000 

Albumin 341 41.49 ± 2.27 41.60 3.70 196 38.55 ± 2.23 38.60 2.90 0.000 

Creatinine 341 66.63 ± 7.42 68.30 13.95 196 68.28 ± 9.11 68.10 13.90 0.024 

APTHT 341 33.53 ± 2.55 33.50 4.00 196 32.28 ± 2.28 32.70 4.90 0.000 

Fibrinogen 341 3.3 ± 0.40 3.30 0.70 196 4.45 ± 0.83 4.20 1.40 0.000 

SpO2 341 96.68 ± 3.65 98.20 4.85 196 91.18 ± 4.40 91.20 5.30 0.000 

WBC_Count 341 4.96 ± 0.93 5.20 1.50 196 3.84 ± 0.76 3.70 0.50 0.000 

CRP 341 16.60 ± 19.99 8.30 12.65 196 48.37 ± 30.81 51.20 54.60 0.000 

D_dimer 341 0.45 ± 0.23 0.40 0.30 196 0.62 ± 0.24 0.65 0.40 0.000 

aContinuous variables: T-test or Mann-Whitney tests as appropriate 

 

In addition, infected cases who died from Covid-19 had higher C-reactive protein, 

fibrinogen, and D-dimer levels than recovered cases. Similarly, those who passed away had 

lower APTHT, lymphocyte, platelet, and albumin counts as per the results provided in Table 

3. 

According to box-plots shown in Figure 6, the differences and the distributions of the 

variables were clearly provided. Normality assumption can also be seen were the boxes inside 

the plots for almost all of them had normal shapes with very small amounts of outliers.  
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Figure 6: Box-Plot Illustration for continuous covariates 

Box-Plot Illustration for continuous covariates 
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Figure 7 illustrates the distribution of the variables against the response variable where 

one can simply identify the effectiveness of the covariates on dependent variable. For 

example, regarding CRP, HR, SpO2, Lymphocyte and WBC_Count measurements, the 

distribution of the survived and died cases were clearly split for two different areas with a 

very low rate of overlaps, and these variables were already providing insights to be listed on 

predicting the probability not surviving a patient. However, it was not wise to decide at this 

stage to highlight variables had impact on increasing the risk of dying from the disease since 

further tests are required to be implemented.  

Likewise, we can detect that Pulmonary, Quadrant, Temperature, Neutrophil and 

Creatinine quantities were not highly associated with the response variable based on their 

distributions shown in Appendix D. 

 

Response Association with Qualitative Variables 

The study calculated figures for nine categorical variables were counted to predict the 

probability of death due to Covid-19. Table 4 calculates the ratio in death rates per gender 

(male death rate: female death rate) in Covid-19 patients. The male death rate was 25% times 

higher than the overall female death rate. This means that according to the cohort included in 

this study, men make up to 20.5% of all Covid-19 deaths while only 16% of the death rate 

was recorded as women. 

With respect to Smoking factor, a total of 537 Covid-19 patients are included in our 

analysis, 196 of whom (36.5%) experienced disease progression and 214 (40%) with a history 

of smoking. Among those with a history of smoking, 13.4% experienced disease progression 

and died, compared with 23.1% of non-smokers. The analysis showed non-significant 

association between ever smoking and Covid-19 progression. Moreover, the results of this 

statistic analysis demonstrated that stroke was not significantly associated with Covid-19 

mortality as shown in the below table. The mortality rate among patients who had stroke was 

lower than those without stroke that is 13.8% and 22.7% respectively. On the contrary, 

patients with no previous history of stroke had shown greater improvement and recovery 

which is 38.6% compared to recovery among patients who had previous history of stroke 

which is 25%. 
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Figure 7: Density Distribution with respect of response variable 

Density Distribution with respect of response variable 
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Table 4: Descriptive Statistics of Categorical Variables Associated with Response Variable 

Descriptive Statistics of Categorical Variables Associated with Response Variable 

Variables Levels 
Recovered Died 

P-Valuesb 

N % N % 

Gender Male 199 37.1% 110 20.5% 

0.614   Female 142 26.4% 186 16.0% 

        

Age <18 98 18.2% 4 0.7% 

0.000 

  18-44 167 31.1% 39 7.3% 

  45-64 53 9.9% 55 10.2% 

  65+ 23 4.3% 98 18.2% 

        

Smoking Yes 142 26.4% 72 13.4% 

0.263   No 199 37.1% 124 23.1% 

        

Fever Yes 137 25.5% 112 20.9% 

0.000 
 

  No 204 38.0% 84 15.6% 

        

Cough Yes 142 26.4% 126 23.5% 
0.000 

   No 199 37.1% 70 13.0% 

Sputum Yes 99 18.4% 75 14.0% 

0.028   No 242 45.1% 121 22.5% 

        

Hypertension 
Yes 135 25.1% 133 24.8% 

0.000 No 206 38.4% 63 11.7% 

        

Diabetes Yes 119 22.2% 133 24.8% 
0.000 

  No 222 41.3% 63 11.7% 

Stroke Yes 134 25.0% 74 13.8% 
0.724 

  No 207 38.5% 122 22.7% 

aCategorical variables: Fisher Exact or Chi-square tests as appropriate 

 

Age variable has been one of the main factors of mortality rate among Covid-19 

patients as shown in Figure 8 and test analysis in Table 4. 18.25% of death rate was among 

patients aged over 65 years. The (18-44) age-group was the most affected by a wide margin 
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meanwhile the recovery rate was at the peak in this age group which is 31.10%. Fatality rate 

among those under ages of 18 was only 0.74% which is considerably low compared to the 

rest of the other age groups. 

 

Figure 8: Bar chart presentation of Age with respect to Response variable levels 

Bar chart presentation of Age with respect to Response variable levels 

 

 

 

 

 

 

 

 

 

 

 Furthermore, as shown in Figure 9, the cohort included in this study showed that 23.5% 

of the patients died had sever coughing whereas only 13% of the death rate was among those 

without coughing per Figure 9.A. This explains that acute respiratory distress syndrome was 

correlated with mortality rate. In addition, Fever has been one of the main factors that is 

common to the majority of hospitalized Covid-19 patients. As presented in Figure 9.B, a high 

body temperature corelates with the mortality in Covid-19 patients to a great extent. Patients 

with body fever ≤ 36 °C had significantly higher mortality compared to normothermia 

patients. 

In addition, patients were suffering from diabetes revealed significant death rate 

compared to non-diabetes holders as illustrated in Figure (10.a). The fatality among patients 

with diabetes was more than double with those without diabetes, 24.8% and 11.7% 
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respectively. It is worth noting that the recovery among patients without diabetes was 

significantly higher compared to the ones with diabetes that is 41.3% and 22.2% respectively. 

Also, the mortality rate in patients with Covid-19 was reviewed. 

 

The analysis showed that the overall mortality rate was 24.77% among those patients 

with hypertension. Hypertension assessment results showed high death rates in the results of 

this study as presented in Figure (10.b). Of the 537 patients sampled, sputum is counted for 

14% of the deaths whereas death rate among patients without sputum was much higher which 

is 22.5% as shown in Figure (10.c). The recovery among patients with no sputum was 

significantly higher 45.1% compared to those with sputum 18.4%. 

 

Figure 9: Cough vs Response Bar plot                     B) Fever vs Response bar plot 

A) Cough vs Response Bar plot             B) Fever vs Response bar plot 
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Model Building Analysis: 

To avoid multicollinearity issues which results high p-value as well as unreliable 

estimated parameters while building up models with especially multiple variables which of 

course influence the predicted values afterwards, and it was most likely believed there might 

be high correlation among the covariates. Hence, correlation matrix was plotted in order to 

easily detect how the variables highly linked to each other and referencing to Figure 12, it 

  

 

 

Figure 10: Bar charts for A) Diabetes, B) Hypertension, C) Sputum 

 Bar charts for A) Diabetes, B) Hypertension, C) Sputum 
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was noted that Fibrinogen had moderate and positive relationship with Age and HR, Age and 

Lymphocyte with 0.4,0.4 and -0.6, while Lymphocyte was found to correlated with 

WBC_count and CRP with 0.5 and -0.6 respectively. Consequently, among any related pairs, 

only one retained to be included in the model selection process and 16 of the 26 independent 

variables were retained for the next step. 

 

Figure 11: Correlation Heatmap Matrix For All Variables Study 

Correlation Heatmap Matrix For All Variables Study 
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Univariate Model: 

We start with fitting classic simple Logistic regression as well as Bayesian Logistic 

regression on the trained dataset where the spilt was made based on 70% for training the 

model and 30% for the testing model, all the remaining explanatory variables from previous 

section were inputted each at a time and their AIC along with Nagelkerke R-Sqaure values 

were measured and tracked to evaluate the changes. Table 5 demonstrates the univariate 

outcomes for both approaches and although no considerable differences were found in terms 

of the coefficient values, the changes from their SE values were important to report. Table 5 

explores the SE values of the coefficients estimated from MCMC had lower SE in most of 

the models since the lower SE, the better and more reliable value is. As a result, this helped 

us to choose Bayesian Logistic over classic Logistic regression.  

Table 5: Univariate Logistic Regression Analysis 

Univariate Logistic Regression Analysis 

Models Vairables 
MLE Approach MCMC Approach 

Coefficients SE P-value Coefficients SD P-value 

Model 1 Age (18-44) 2.0130 0.7533 0.0075 1.9170 0.7050 0.0167 

 Age (45-65) 3.6306 0.7578 0.0000 3.5540 0.7029 0.0175 

 Age (>65) 5.1066 0.7751 <0.001 5.0490 0.7217 0.0180 

Model 2 APTHT -0.1831 0.0466 <0.001 -0.1699 0.0437 <0.001 

Model 3 Cough 1.0477 0.2316 <0.001 -1.0447 0.2297 <0.001 

Model 4 CRP 0.0430 0.0049 <0.001 0.0435 0.0049 <0.001 

Model 5 D_dimer 3.2779 0.5304 <0.001 3.2600 0.5211 0.0036 

Model 6 Diabetes 1.0596 0.2306 <0.001 -1.0600 0.2267 <0.001 

Model 7 Fever 0.5621 0.2247 0.0120 -0.5635 0.2225 0.0015 

Model 8 Hypertension 1.0244 0.2327 <0.001 -1.0248 0.2288 <0.001 

Model 9 Platelet -0.0300 0.0047 <0.001 -0.0295 0.0045 <0.001 

Model 10 Pulmonary 0.0176 0.0063 <0.001 0.0176 0.0062 <0.001 

Model 11 Quadrant 0.5589 0.1079 <0.001 0.5630 0.1067 <0.001 

Model 12 SpO2 -0.2912 0.0326 <0.001 -0.2943 0.0324 <0.001 

Model 13 Sputum 0.4770 0.2340 0.0410 -0.4767 0.2290 0.0560 

Model 14 Stroke 0.0903 0.2280 0.6920 -0.0901 0.2237 0.6430 

Model 15 Temperature 0.2267 0.0637 <0.001 0.1829 0.0550 <0.001 

Model 16 WBC_Count -1.3782 0.1573 <0.001 -1.3690 0.1523 <0.001 

 

Another way to evaluate the models is to compute AIC as well as Nagelkerke R-

Sqaure values for each model separately and the lower AIC is the better model however the 
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higher R-square is the preferrable model. According to Table 6, AIC extracted from Bayesian 

models had lower values than that from classic Logistic regression models whereas their R-

square values were quite identical. It was worth mentioning that model 1 where the effect of 

Age variable entered had the lowest AIC with 314.500 as well as had 48% total variability on 

predicting death cases, followed by SpO2 refers to patient’s oxygen with 37.8% percentage 

of changes on the probability of dying someone where his/her oxygen level was not stable. 

White blood cell count was found to be as effective as SpO2 with producing changes on 

probability of dying a Covid-19 contacted case with 37.5%. Furthermore, CRP was also 

discovered to be a significant factor in infected individuals to Covid-19 disease, accounting 

for 35.4% and there were likewise other effective variables such as Platelet and D-dimer 

where had relatively high R-Square values with 17.00% and 16.30% respectively.  Their 

associations can easily be noticed in Figure 13. 

 

Table 6: Diagnosis Test Result For Univariate Logistic Regression Models (MLE And MCMC) Parameter Estimation 

Diagnosis Test Result For Univariate Logistic Regression Models (MLE And MCMC) 

Parameter Estimation 

Models 
MLE Approach MCMC Approach 

AIC Nagelkerke R-Sqaure AIC Nagelkerke R-Sqaure 

Model 1 314.500 48.00% 302.6572 47.96% 

Model 2 444.5900 6.20% 442.5915 6.20% 

Model 3 439.4300 8.10% 437.4257 8.12% 

Model 4 356.5500 35.40% 354.5629 35.39% 

Model 5 416.5800 16.30% 414.5797 16.30% 

Model 6 438.8400 8.30% 436.8356 8.34% 

Model 7 454.4100 2.50% 452.4143 2.46% 

Model 8 440.4900 7.70% 438.4882 7.73% 

Model 9 414.5900 17.00% 412.6027 16.98% 

Model 10 452.8500 3.10% 450.8506 3.06% 

Model 11 431.0600 11.20% 429.0620 11.18% 

Model 12 348.2100 37.80% 346.2192 37.80% 

Model 13 456.5800 1.60% 454.5760 1.62% 

Model 14 460.5600 0.10% 458.5650 0.06% 

Model 15 447.1100 5.20% 445.5916 5.07% 

Model 16 349.2000 37.50% 347.2044 37.52% 

 

 



85 

 

Figure 12: Association of Quantitative variables with response using Logistic Regression (MCMC) 

Association of Quantitative variables with response using Logistic Regression (MCMC) 
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In classification modeling, performance evaluation holds great significance, and the 

AUC-ROC Curve serves as a valuable tool for assessing the fitted model. Classification 

accuracy, which measures the proportion of correctly classified cases by a classifier model 

out of the total cases, is a fundamental metric for evaluating model performance, particularly 

for unbalanced data. Sensitivity, specificity, precision, recall, and the AUC-ROC curve are 

additional commonly used performance measures closely related to classification accuracy. 

The AUC-ROC curve, also known as the Area Under the Receiver Operating 

Characteristics curve, is a vital evaluation metric for gauging the performance of any 

classification model. It quantifies the degree of separability, with AUC representing the 

measure of separability and ROC representing the probability curve. The AUC reflects the 

model's ability to correctly predict class 0 as 0 and class 1 as 1. For instance, in the context of 

Covid-19 disease, a higher AUC indicates the model's proficiency in differentiating between 

patients who have recovered and those who have succumbed to the illness. 

Consequently, the ROC curve was specifically plotted for Bayesian Logistic 

regression, as this approach exhibited superior parameter estimation compared to the classic 

approach. By utilizing the AUC-ROC curve, we can effectively evaluate the performance of 

the Bayesian Logistic regression model in distinguishing between the classes of interest. 

 

Figure 13: ROC Evaluation Curves for applied univariate models in Bayesian logistic regression 

ROC Evaluation Curves for applied univariate models in Bayesian logistic regression 
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Figure 13 serves us finding the most important factor which was significantly 

contributed in increasing probability of dying due to Covid-19 disease, and it can be noticed 

that Age variable at almost all joint points between calculated sensitivity and 1-specificity 

had highest coordination and was above all the others. According to Table 7, the highest AUC 

values were calculated for Age, CRP and white blood cells variable with 73.44% and 95% CI 

(0.729, 0.744), 73.28% with 95% CI (0.728, 0.741) and 73% with 95% CI (0.712, 0.763)) 

respectively. Followed by diabetes, cough and fever with AUC values 68.83%, 67.79% and 

65.42% correspondingly.   

Table 7: Accuracy Analysis for Univariate Logistic Regression models (MLE and MCMC) parameter estimation 

Accuracy Analysis for Univariate Logistic Regression models (MLE and MCMC) parameter 

estimation 

 Predictors Accuracy 95% CI P-Value 

Age 73.44% (0.729, 0.744) 0.0210 

APTHT 47.80% (0.463, 0.481) 0.0000 

Cough 67.79% (0.671, 0.680) 0.0330 

CRP 73.28% (0.728, 0.741) 0.0130 

D_dimer 57.77% (0.562, 0.625) 0.0000 

Diabetes 68.83% (0.677, 0.689) 0.0000 

Fever 65.42% (0.649, 0.660) 0.0000 

Hypertension 59.38% (0.591, 0.601) 0.0254 

Platelet 59.33% (0.512, 0.664) 0.0342 

Pulmonary 53.97% (0.492, 0.632) 0.0012 

Quadrant 47.16% (0.471, 0.476) 0.0037 

SpO2 57.81% (0.572, 0.580) 0.0021 

Sputum 48.16% (0.453, 0.491) 0.0560 

Stroke 60.06% (0.592, 0.624) 0.0674 

Temperature 46.67% (0.452, 0.563) 0.5210 

WBC_Count 73.00% (0.712, 0.763) 0.0341 

 

Building Multivariate Models: With More Than One Explanatory Variables 

Forward selection was used to determine which variables should be included in the 

final model, starting with a simple null assumption. First, the null model with (Status ~ 1) was 

calculated, and the residual (or "null") deviance was taken. The null model has (𝑛 − 1) 

degrees of freedom, where n is the total number of cases of our response variable Status. This 

model was assumed to be poor, so additional analysis was required. Then, for each 

explanatory variable, only the response variable was used, yielding Status ~ Age, Status ~ 
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Gender, and so on. The residual deviance was calculated for each model, and the model with 

the lowest residual deviance was studied further. Each residual deviance has (𝑛 − 𝑝) degrees 

of freedom, where 𝑝 is 2 because we are only interested in one variable in the model plus the 

intercept, which was also included in the null model. The difference in deviance between our 

best fitting single variable model and the null model had to be analyzed to see if the new 

model provided significant improvements. The model with Age variable included was chosen 

to the next phase and proceeded the same as above (See Appendix 1) where their AIC as well 

as Nagelkerke R-Sqaure were measured and recorded as shown in Table 8. As a result, this 

analysis led to the identification of the 7 variables that are most significant.   

 

Table 8: Result of stepwise forward model selection approach for Bayesian logistic regression (MCMC) and classic logistic regression (MLE) 

Result of stepwise forward model selection approach for Bayesian logistic regression 

(MCMC) and classic logistic regression (MLE) 

Models 
MLE Approach MCMC Approach 

AIC Nagelkerke R-Sqaure AIC Nagelkerke R-Sqaure 

Model 1 314.500 48.000% 308.4967 47.970% 

Model 2 224.700 68.700% 216.2335 68.660% 

Model 3 183.970 76.500% 174.1632 76.430% 

Model 4 171.490 78.900% 159.7710 78.870% 

Model 5 160.870 81.000% 148.3420 82.310% 

Model 6 146.35 83.600% 132.4520 84.643% 

Model 7 142.21 84.500% 129.3280 85.212% 

 

Table 9 illustrates the best fitted model from both approaches. Similar to univariate 

outputs, the same conclusion can be made where Bayesian approach performed better 

according to the standard errors of the coefficients, although at Age (2) and Age (3) the MLE 

technique produced lower SE of the parameters.    
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Table 9: The best fitted model outcomes by Bayesian logistic regression (MCMC parameter estimation) 

The best fitted model outcomes by Bayesian logistic regression (MCMC parameter 

estimation) 

Included Variables 
Classic Logistic Regression (MLE) Bayesian Logistic Regression (MCMC) 

Coefficients SE P-value Coefficients SE P-value 

Intercept 28.6433 6.1532 0.0000 27.6297 4.2894 0.0000 

Age (18-44) 2.2171 0.9668 0.0218 2.4636 1.0315 0.0000 

Age (45-65) 4.8459 1.0393 0.0000 4.8139 1.0792 0.0000 

Age (>65) 6.0925 1.0975 0.0000 6.0791 1.0708 0.0000 

SpO2 -0.3333 0.0655 0.0000 -0.2132 0.0453 0.0000 

WBC_Count -1.1157 0.2649 0.0000 -0.9886 0.2441 0.0000 

Diabetes (Yes) 1.2976 0.5109 0.0111 1.0398 0.4518 0.0000 

Cough (yes) 2.0109 0.5858 0.0006 1.9824 0.5305 0.0000 

Hypertension (Yes) 2.0048 0.5565 0.0003 1.8886 0.4864 0.0000 

CRP 0.0225 0.0093 0.0156 0.0268 0.0085 0.0000 

 

Parameter Interpretation for Final Bayesian Logistic Regression: 

Table 9 and 10 are the most important part in logistic regression modeling where the 

magnitude of the variables can be identified. To begin with, Age (18-44) coefficient (2.2171) 

which stands for 18-44 years old provided in Table 9, is statistically significant (associated 

with a p-value of 0.05), implying that Age factor does influence risk of being died from 

Covid19 disease. Because it is a positive number, we can conclude that age raises the risk of 

developing the disease. Therefore, the odds ratio of Age (18-44) was calculated as 

approximately 12 with 95%CI (9.380-17.069) as shown in Table 10. This means holding other 

variables as constant, a patient in age group (18-44) had 12 times higher chance of losing life 

because of Covid19 compared to individuals who were less than 18 years old, and people in 

age group (45-65) had 123 more odds to die as well as 436 times more chance in age group 

more 65 years old than patients were less than 18 years old. It can be noticed that younger 

people had higher chance to survive from the disease.  

Similarly, coughing symptom severely identified among admitted patients had 

significant impact on increasing the odds to die. This pointed to that inpatient with coughing 

will rise the odds of being dying by Exp (1.9824) = 7.26 times as seen in Table 10. That being 

said, inpatient with coughing had 7 times higher chances to die compared to not having strong 

cough.  Like coughing, diabetes was also found to be statistically significant with coefficient 

(1.2976) and p-value <0.001, and recognized to increase the risk’s odds by Exp (1.2976) = 
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2.8287. This enables us to report that there was a 182% increase in the odds of passing away 

with presence diabetes.  

In addition, people with possessing covid19 as well as hypertension had high risk and 

pointing to the result, the factor had positive coefficient value with (2.0048) and statistically 

significant under 0.05 level were led to increase the logit of predicting dying. Thus, the odds 

of patient died who had hypertension was 6.6 time higher than patients who did not suffer 

from hypertension with a 95% CI of (2.495 and 12.097).  

Moving to SpO2 which refers to measured oxygen for hospitalized cases, with 

coefficient (-0.2132), and its odds ratio was (0.80). Hence, SpO2 is associated with a 20% (1 

– 0.80 = 0.20) reduction in the relative risk of dying. In addition to that, for a 1-unit increase 

in the corresponding oxygen’s level of patient admitted to hospital due to the disease is 

associated with a lower risk of dying due to Covid19.  

Table 10: Odds Ration and 95% Confidence Interval of Odds Ratio for Bayesian logistic regression coefficients estimated by MCMC 

Odds Ration and 95% Confidence Interval of Odds Ratio for Bayesian logistic regression 

coefficients estimated by MCMC 

Variables in the model 
Odds Ratio 

(MCMC Logistic Regression) 
95% CI of Odds Ratio 

Age (18-44) 11.7469 9.380 17.069 

Age (45-65) 123.2075 106.592 175.452 

Age (>65) 436.6317 421.492 521.402 

SpO2 0.808 0.630 0.815 

WBC_Count 0.3721 0.195 0.551 

Diabetes (Yes) 2.8287 1.345 9.963 

Cough (Yes) 7.2601 2.370 11.547 

Hypertension (Yes) 6.6104 2.495 12.097 

CRP 1.0272 1.004 1.042 

 

Referencing to the effect of white cell count in blood on the probability of dying 

holding other variables as constant, the estimated parameter was (-0.9886), means that one 

unit increase from white blood cell, the logit of predicting dying deceases. Turning to odds 

ratio, it was estimated to be 0.37; for every 1 increase in white blood cell count, an infected 

Covid19 person had 63% chance to survive than not with a 95% CI of (0.195 and 0.551). 

The CRP turned out to be contributing in increasing the odds of dying with coefficient 

(0.0225), which is positive. And this means that a rise in CRP was associated with an increase 
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in the likelihood of being dead due to Covid19. It was important to state that CRP was 

associated with a 2.72% rising the chance to die. Although the effect size small, it was 

statistically significant with p-value < 0.001. 

 

MCMC Result Assessment (Posterior Distribution) 

Traceplots and Histograms of Posterior Distribution 

The resulting posterior distributions and some diagnostic tests were required to 

evaluate the estimated parameters. The standard procedure is to set the number of MCMC 

trials (usually several thousand) and discard the first 1000 trials or more as a burn-in. 

Following that, one of the first tests is usually a traceplot analysis. Consider our results for a 

21,000-trial MCMC analysis with a 3000-trial burn-in and every other result pruned. To 

begin, look at the traceplots for the first 100 trials after the burn-in (see Figure 8). 

Furthermore, each of the unknown parameters' posterior distributions can be summarized as 

a histogram, which provides the shape of the parameter's marginal distribution. 

The 95% Bayesian credible intervals for each of the three parameters were calculated 

although there are various approaches to this. The 0.025 and 0.975 quantiles for each 

parameter are shown in Table 11. (along add in the 25th, 50th, and 75th percentiles for fun). 

The credible intervals for each parameter can be found by listing the values in the first and 

last rows. The credible interval for the Age appears to be positive and does not include zero, 

implying that there is evidence that Age group was positively related to odds of not surviving 

from the disease. However, SpO2 as well as WBC were negatively associated the response 

variable confirming negative link. The credible intervals also provide us insights about the 

posterior distribution whether can be reliable or not.  

 

Table 11: Credible Interval Finding of Posterior Parameters 

Credible Interval Finding of Posterior Parameters 

Variables 2.50% 25% 50% 75% 97.50% 

(Intercept) 24.4444 32.23747 37.15356 41.72098 51.58415 

Age (18-44) 0.5287 1.86368 2.52554 3.26089 4.96312 

Age (45-65) 3.4288 4.62444 5.41182 6.20153 7.90676 

Age (>65) 4.482 5.9219 6.74958 7.56156 9.35048 

SpO2 -0.5124 -0.41129 -0.3613 -0.31581 -0.2351 

WBC_Count -1.7747 -1.43344 -1.23675 -1.04139 -0.72505 

Diabetes (Yes) 2.5318 1.75568 1.37872 1.06351 0.40886 
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Table 11 (Continued.) 

Cough (Yes) 3.5371 2.69687 2.24775 1.79789 1.05507 

Hypertension (Yes) 3.4463 2.60355 2.20743 1.83704 1.11822 

CRP 0.005 0.01708 0.02368 0.03057 0.04452 

 

  

There are additional ways to summarize our findings such as the minimum, maximum, 

mean, and SD. Table 12 shows some basic statistical measure of the posterior distribution and 

enables us to understand the distribution easier. 

Figure 14: Trace plots and Histogram charts of posterior distribution estimated for Bayesian logistic regression model (MCMC) 

Trace plots and Histogram charts of posterior distribution estimated for Bayesian logistic 

regression model (MCMC) 
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Because we used a normal distribution as a prior distribution, the mean and standard 

deviation outputs are extremely useful in this context, particularly for our parameters b0 and 

b1. Keep in mind that our prior distribution had a mean of zero and a precision of 0.0001, 

yielding a standard deviation of 100. One major advantage of the Bayesian method over 

other methods such as maximum likelihood and least squares is the ability to incorporate 

existing knowledge into your analysis. 

 

Table 12: Descriptive Statistics (Minimum, Maximum, Mean, Median, SD) of the posterior findings 

Descriptive Statistics (Minimum, Maximum, Mean, Median, SD) of the posterior findings 

Variables Mean Meadian SD Minimum Maximum 

(Intercept) 27.6297 21.4559 4.2894 6.1509 35.9283 

Age (18-44) 2.4636 2.3519 1.0315 -0.7125 6.1421 

Age (45-65) 4.8139 4.6886 1.0792 1.8271 8.8339 

Age (>65) 6.0791 5.9705 1.0708 3.2534 10.4790 

SpO2 -0.2132 -0.2129 0.0453 -0.3733 -0.0390 

WBC_Count -0.9886 -0.9874 0.2441 -1.9287 -0.2663 

Diabetes (Yes) 1.0398 1.0305 0.4518 0.3077 2.9687 

Cough (Yes) 1.9824 1.9632 0.5305 0.2308 4.1327 

Hypertension (Yes) 1.8886 1.8610 0.4864 0.2638 3.6134 

CRP 0.0268 0.0267 0.0085 -0.0031 0.0547 

 

Model Accuracy and Diagnosis Assessment 

Checking the adequacy of the regression model is just as essential for logistic models 

as it is for general linear models. Examining the goodness-of-fit is a simple but important 

diagnostic tool for determining whether our model is adequate. There are two common 

statistical methods for determining a logistic regression model's goodness-of-fit. The first 

statistic is the Pearson 𝑋2 statistic, which is calculated using observed (o) and expected, fitted, 

or predicted (e) observations. The other one is the G2. 

 

Table 13: Test of Goodness-of-fit for the final model 

Test of Goodness-of-fit for the final model 

Statistic Value df P-value 

Hosmer–Lemeshow (Cˆ) 7.653 8 0.607 

Deviance (G2) 120.11 338 0.000 

Nagelkerke R-Sqaure 85.21%   
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Low values indicate that the model is a better fit to the data in both cases, means the 

observed and fitted values are similar. To evaluate the model's fit, goodness of fit statistics 

was computed as indicated in Table 13. The Hosmer-Lemeshow statistic was not significant, 

indicating that there was no evidence of model is fit, and the logistic analogue of R2 stated 

that about 85% of the uncertainty in the presence of no surviving from Covid19 could be of 

the Age, SpO2, WBC, Diabetes, Cough, Hypertension and CRP variables. 

Similar to univariate models, classification accuracy was also applied on both trained 

(in-sample) and tested (out-sample) datasets and we can notice that in-sample prediction’s 

area under the curve was higher than the out-sample prediction and which is corrected since 

the model had already seen the data. However, 83.1% overall accuracy was also considered 

as good model for predictions.  Table 11 shows very important results in terms of models and 

the AUC test where provided significant and very tight range of 95% CI for both samples. In 

addition to that, the model also had high sensitivity and specificity for out-sample dataset with 

85.568% and 79.487%, which was another sign of the model that can be reliable while 

predicting for unseen data points.  Figure 16 explores ROC curve and shows performances of 

both models. 

 

Table 14: Confusion Matrix Result of Bayesian Logistic Regression 

Confusion Matrix Result of Bayesian Logistic Regression 

 

 

 

 

 

 

  Out-Sample Dataset In-Sample Dataset 

 Recovered Died Recovered Died 

Recovered 95 16 103 9 

Died 16 62 12 65 

AUC 0.8301 0.8891 

P-Value 0.0147 0.0318 

95% CI (0.817, 0.854) (0.86, 0.91) 

Sensitivity 85.586% 91.964% 

Specificity 79.487% 84.416% 
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Figure 15: ROC Curve characteristics for Out-sample and In-sample dataset run in Bayesian Logistic Regression Model 

ROC Curve characteristics for Out-sample and In-sample dataset run in Bayesian Logistic 

Regression Model 

 

 

 

 

 

 

 

 

The model appears practical as shown in Figure 16, but the residuals have some 

outliers, 23 binned residuals but 3 outliers = 0.13. The model performs well when fitted values 

are greater than about.1, but struggles below.1, where we find three negative outliers. This 

means that the model predicts a higher average rate of died cases in these bins than is actually 

the case. 

 

 

 

 

 

 

 

Figure 16: Bayesian Logistic Regression Assessment Graph 

 Bayesian Logistic Regression Assessment Graph 
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Implementing Other Machine Learning Methods 

Before applying models such as Bayesian neural network (BNN), backpropagation 

neural networks (BPNN), Naïve Bayes, SVM, and kNN to the cereal dataset, it is crucial to 

scale the data. Data scaling is necessary because the scale of a variable alone can significantly 

impact the prediction variable, and using unscaled data may result in meaningless outcomes. 

Various techniques are commonly employed to scale data, including min-max normalization, 

Z-score normalization, median, and tan-h estimators. 

Min-max normalization is a method that transforms the data into a common range, 

effectively eliminating the scaling effect caused by individual variables. Unlike Z-score 

normalization and median, the min-max method preserves the original distribution of the 

variables. In this case, we utilize min-max normalization to scale the data. Additionally, the 

chosen best model obtained through the stepwise forward method consists of a hidden layer 

with 7 neurons. 

To evaluate the models and provide an overview of the error magnitudes, three key 

effectiveness measures are employed. One of these measures is the mean absolute error 

(MAE), which assesses prediction accuracy. The mean squared prediction error (MSPE) is 

utilized to calculate the variance between predicted and observed results. From an operational 

standpoint, the percentage of underestimated cases is also analyzed. In Equations (4.1 - 4.3), 

�̂�𝑖 represents the predicted values and 𝑦𝑖 represents the observed values. These measures help 

gauge the performance of the models and provide insights into their accuracy. 

1. Absolute Mean Square:  

𝐴𝑀𝐸 =
1

𝑛
∑ |�̂�𝑖 − 𝑦𝑖|

𝑛
𝑖=1       4.1 

2. Mean Square prediction error: 

             𝑀𝑆𝑃𝐸 =
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1       4.2 

3. The proportion of underestimated prediction: 

𝑈𝑃 =
1

𝑛
∑ 𝑈𝑖

𝑛
𝑖=1 , 𝑖𝑓 �̂�𝑖 − 𝑦𝑖 < 0, 𝑈𝑖 = 1, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  4.3 

 

Table 15 reviews the five model’s testing performances and the Random Forest model 

did not outperform the other four fitted models, but it had somewhat smaller percentage of 
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underestimated predictions than the SVM model. Furthermore, looking at Naïve Bayes and 

RF techniques, their performances were very close to BPNN. This appears to support the 

notion that neural network and SVM models can better approximate nonlinear functions. For 

testing MSPE values, the BPNN and Naïve Bayes models perform similarly. When compared 

to the other two models, the BNN performs the best. Bayesian methods used the hybrid Monte 

Carlo algorithm to update network parameters and develop neural network generalization 

without compromising nonlinear approximation. 

 

Table 15: Model Performance Analysis of Applied Algorithms 

 Model Performance Analysis of Applied Algorithms 

 BNN BPNN RF SVM Naïve Bayes kNN 

MAE 0.17 0.18 0.26 0.25 0.23 0.28 

MSPE 0.23 0.24 0.31 0.33 0.29 0.38 

Measure of Underestimation 8.10% 10.24% 11.21% 12.94% 11.74% 14.35% 

 

Result of Bayesian Neural Network and Classic Neural Network Analysis 

Since the results of the above measurements were quite similar to both BNN and BPN, 

thus, the confusion matrix for (BNN) and (BPNN) was calculated and presented below. 

Following the architecture shown in Figure 17, it was obvious that Bayesian neural network 

approach achieved way better results with AUC value 84.66% (95% CI of 83.26% - 85.21%) 

than point estimation neural network with AUC value 81.38% (95% CI of 80.25% - 82.03%).  

Furthermore, both sensitivity and specificity were higher in Bayesian approach 

compared to classic neural network (see Table 16). Figure 18 illustrates the performance of 

both techniques and it can be seen that Bayesian neural network was above the classic neural 

network, which confirms its preferability of the model. 

 

Table 16: Confusion Matrix Result of Bayesian Neural Network and Classic Neural Network 

Confusion Matrix Result of Bayesian Neural Network and Classic Neural Network 

  Bayesian Neural Network Neural Network 

 Recovered Died Recovered Died 

Recovered 98 13 93 16 

Died 16 62 19 60 

AUC 0.8466 0.8138 
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Table 16 (Continued.) 

P-Value 0.001 0.0382 

95% CI (0.8326, 0.8521) (0.8025, 0.8203) 

Sensitivity 85.96% 83.04% 

Specificity 82.67% 78.95% 

 

 

 

 

 

Figure 17: Bayesian Neural Network Architecture for The Study 

 Bayesian Neural Network Architecture for The Study 
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Relative Importance Analysis of Bayesian Neural Network 

The mean of the posterior distribution was calculated in Table 17 and describes the 

joining weight matrices of 7x7 (input-hidden) and 7x1 (hidden-output) imported from trained 

Bayesian neural networks with the superlative fit.  

The computation of the contribution of each input variable to the output involves 

multiplying the input-hidden weight with the hidden-output weight. As indicated in Table 14, 

the magnitude and direction of the connection weights play a crucial role in determining the 

relative contribution of each input variable. Variables with higher connection weights signify 

stronger signal transfer and therefore hold greater importance in predicting death cases 

compared to variables with lower weights. This finding also reveals that negative values for 

the input variables "SpO2, WBC, CRP" correspond to lower values, which are typically 

associated with an increased risk, while positive values for other factors are positively 

associated with incident death, as outlined in Table 18. 

 

Figure 18: ROC plot of Bayesian Neural Network and Classic Neural Network 

ROC plot of Bayesian Neural Network and Classic Neural Network 
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Table 17: Posterior Weight Matrix of Bayesian Neural Network 

Posterior Weight Matrix of Bayesian Neural Network 

 Input Variables 
Hidden 

Layer1 

Hidden 

Layer2 

Hidden 

Layer3 

Hidden 

Layer4 

Hidden 

Layer5 

Hidden 

Layer6 

Hidden 

Layer7 

Age 5.6716 -1.5890 -2.0012 -1.4991 -1.1888 1.6994 -0.7911 

SpO2 1.9448 1.7333 -0.9148 7.1883 5.8809 0.3827 -0.1980 

WBC_Count 0.5226 1.3398 -5.0120 -1.5861 -0.5607 -3.9801 -1.1508 

Diabetes 0.4938 -15.3042 2.0612 3.4254 -0.1351 -1.7945 -0.4281 

Cough -1.5258 -5.7740 0.9962 -4.7652 -1.1682 2.3727 -1.7079 

Hypertension -1.1953 -2.1020 1.4023 0.7178 -0.3395 0.2146 1.0262 

CRP 0.1698 3.9359 -0.3914 32.5188 -1.4921 -0.4147 2.1442 

Multiply  

Output Layer 1.6100 -0.7695 -0.5490 -0.5840 -1.8736 -0.5930 1.5397 

 

 Input Variables 
Hidden 

Layer1 

Hidden 

Layer2 

Hidden 

Layer3 

Hidden 

Layer4 

Hidden 

Layer5 

Hidden 

Layer6 

Hidden 

Layer7 

Age 9.1312 1.2227 1.0986 0.8755 2.2274 -1.0077 -1.2180 

SpO2 3.1311 -1.3337 0.5022 -4.1980 -11.0186 -0.2269 -0.3048 

WBC_Count 0.8414 -1.0309 2.7513 0.9263 1.0506 2.3602 -1.7719 

Diabetes 0.7949 11.7760 -1.1315 -2.0004 0.2532 1.0642 -0.6592 

Cough -2.4565 4.4429 -0.5469 2.7829 2.1888 -1.4070 -2.6297 

Hypertension -1.9245 1.6174 -0.7698 -0.4192 0.6361 -0.1272 1.5800 

CRP 0.2734 -3.0285 0.2148 -18.9909 2.7957 0.2459 3.3014 

 

Table 18: Result of Relative Importance Measurement 

Result of Relative Importance Measurement 

Input Variables Age SpO2 WBC Diabetes Cough HP CRP 

Relative Importance 12.33 13.45 5.13 10.10 2.37 0.59 15.19 

Relative Importance % 20.84% 22.73% 8.67% 17.07% 4.01% 1% 25.67% 

 

To facilitate the interpretation of relative importance, the contributions of each input 

variable to the output are divided by the sum of all contributions and presented as percentages, 

as depicted in Figure 19. In comparison to the other factors, the CRP, SpO2, Age, and 

Diabetes are the strongest predictors of increasing chances to die due to Covid-19. 
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Figure 19: Relative Importance of Inputs with Analyzing Weight Matrix 

Relative Importance of Inputs with Analyzing Weight Matrix 

 

 

Confusion Matrix Analysis of Applied Models 

It has come to the stage where all applied methods can be summarized into reasonable 

findings in order to understand and easy to follow on the model’s performances. Table 19 

illustrates the potential key characteristics extracted from the model after tested with unseen 

datasets which was the core objective of this study. To start with, AUC measurement is a 

performance metric for machine learning classification models that is defined as the ratio of 

true positives and true negatives to all positive and negative observations. Bayesian neural 

network had the highest value with 84.66%, followed by Bayesian logistic regression with 

83.07%, classic neural network with 81.38% and Logistic regression (MLE) with 80.95%. 

kNN and Naïve Bayesian classification techniques were found to be the worst out of the eight 

methods with only success rate of overall prediction by 52.38% and 56.08% respectively. 

However, accuracy cannot judge the model’s performance alone and there are other 

measurements such as F1-score, precision as well as recall.  
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Table 19: Confusion Matrix Outputs of Computed Models 

Confusion Matrix Outputs of Computed Models 

Classifier AUC F1 Precision Recall 

kNN 0.5238 0.5755 0.5701 0.581 

SVM 0.6984 0.7397 0.7941 0.6923 

Random Forest 0.7326 0.7788 0.8224 0.7395 

Classic Neural Network 0.8138 0.8416 0.8532 0.8304 

Bayesian Neural Network 0.8466 0.8711 0.8829 0.8596 

Naïve Bayes 0.5608 0.5561 0.5909 0.5253 

Logistic Regression (MLE) 0.8095 0.8378 0.8455 0.8304 

Bayesian Logistic Regression 0.8307 0.8559 0.8559 0.8559 

 

Thus, both neural network approach scored the highest precision rates with 88.29% 

and 86.24% for Bayesian neural network and classic neural network respectively, then 

followed by logistic regression (MCMC) and MLE with success rate in predicting positive 

records by 85.59% and 84.55% correspondingly. It was important to report that Random 

Forest algorithm had relatively high precision percentage with 82.24%. Moreover, in relation 

to recall perspective measurement, Bayesian neural network, classic neural network, logistic 

regression (MCMC) and logistic regression (MLE) all had similar recall rate close to 85%. 

This denotes the model's capability to appropriately foresee positives from definite positives. 

This contrasts with precision, which computes the number of positive predictions made by 

models out of all positive predictions made.     

F1-Score was also calculated for all eight methods. It was more useful than accuracy, 

since an uneven class distribution was presence in our case. Bayesian neural network came 

out to be on the top of the list with resulting the highest F1-score by 87.11%. Logistic 

regression (MCMC) turned out to have the second highest F1-score rate by 85.59%. This can 

be interpreted as the model’s capacity to both catch positive cases and be precise with the 

cases. 

Figure 20 displays the ROC plot of the methods where the performances can easily be 

detected and followed. Because ROC curves can be misleading in imbalanced datasets as in 

this case, precision and recall figures are frequently used instead, where the number of true 

positive labels is very different from the number of true negative labels. 
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Figure 20: ROC Evaluation Curve of all eight models applied to predict risk of dying from Covid-19 

ROC Evaluation Curve of all eight models applied to predict risk of dying from Covid-19 

 

  

 

 

 

 

 

 

 

 

Summary 

We utilised a Bayesian approach that made use of the MCMC method in order to 

estimate parameters and decide whether or not the projected parameters could be recognised 

in a singular way. Before applying the approach to any calculations, the Bayesian method 

insisted that we should fulfil an initial requirement of lowering the sum of squared residuals 

(SSRs). For the purpose of accomplishing the work of minimization, the optimize/minimize 

module in Python is utilised; nevertheless, other approaches are alternatives that are just as 

acceptable. The goal of the MCMC technique is to get samples from the posterior PDF that 

are representative of the whole distribution. It is of the utmost importance to determine the 

correct values for the hyper parameters of both dimensions. The Markov chain Monte Carlo 

method is something that we used to provide parameter estimates along with confidence 

intervals. Utilizing MCMC affords us the opportunity to do correlation analysis between 

several parameters, which is an additional advantage. 
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CHAPTER V 

Discussion And Analysis 

Within the context of a Bayesian methodology, the primary concentration of this work 

is on the integration of Bayesian neural networks, classic neural network, Bayesian logistic 

regression and linear regression. It is possible to make it better by converting the predictions 

into a prior distribution and utilising them as prior knowledge in the Bayesian inference 

process by exchanging the predictions from neural networks with predicted values for the 

linear regression. This will result in an improved outcome. In this particular instance, we 

utilised a two-stage strategy; however, a combined approach, such as spatio-temporal 

recurrent neural networks that are able to provide accurate result predictions in the presence 

of uncertainty, would be the method of choice in an ideal world. Additionally, the treatment 

for the Covid-19 infection is only a temporary fix utilising the technique that is advised. In 

order to evaluate the adaptability of the model, you should use data that spans a longer period 

of time and a variety of spatial scales. 

After adjusting for a few other variables, it was found that age had a significant 

correlation with the state the patients were in. As you get older, your odds of living become 

less likely. Age has been recognised as the primary variable in Covid-19 patients as the 

primary variable impacting the outcome ever since the beginning of the pandemic. The early 

Chinese records suggest that the case-fatality rate (CRF) rises considerably beyond the age of 

60, reaching 14.8% in those over the age of 80. The patient data also revealed a significant 

increase in the number of patients who passed away. According to the findings of this 

experiment, people in age group (45-65) had 123 more odds to die as well as 436 times more 

chance in age group more 65 years old than patients were less than 18 years old. It can be 

noticed that younger people had higher chance to survive from the disease. This is in line with 

previous research that has established age as a significant factor for cases died because of 

Covid-19, particularly for individuals between the age of 45 and 64, and especially those over 

the age of 65 (Gralinski & Menachery, 2020; J. Wu et al., 2020). Other reports have also 

noted that patients in ICUs tend to be older than those who are not, and that case fatality rates 

are higher among older individuals (N. Chen et al., 2020; Huang et al., 2020; D. Wang et al., 

2020; Yang et al., 2020). As a result, the risk of death is significantly increased in patients 

who are older than compared to those who are younger. 
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In this study, it was discovered that fever, cough, and sputum were prevalent 

symptoms among Covid-19 patients, particularly in those who were severely or critically ill 

and resulted to death. Interestingly, fever and cough are also the most common symptoms 

seen in patients with severe acute respiratory syndrome (SARS) and Middle East respiratory 

syndrome (MERS), which are also caused by coronaviruses. Fever is known to be a primary 

symptom for cytokine storms, which occur when high concentrations of cytokines cause an 

abnormally excessive immune response and inflammation. The vital signs of severely ill 

patients indicated higher body temperature and respiratory rate, as well as lower SpO2 upon 

admission. During the outbreak, glucocorticoids have been used when SpO2 levels fall below 

90%, and the oxygenation saturation index is associated with both ARDS severity and 

increased mortality. Our result indicated that SpO2 is associated with a 20% (1 – 0.80 = 

0.20) reduction in the relative risk of dying. Thus, for a 1-unit increase in the corresponding 

oxygen’s level of patient admitted to hospital due to the disease is associated with a lower 

risk of dying due to Covid-19.  

The severity of Covid-19 patients was found to be unaffected by gender in our study. 

While initial reports from other countries suggested a higher proportion of men experiencing 

severe cases of Covid-19, more recent studies have shown that similar proportions of men 

and women are being admitted to ICUs (N. Chen et al., 2020; Huang et al., 2020; D. Wang et 

al., 2020; Yang et al., 2020), indicating that any gender differences may have diminished with 

the increase in incidence. It's possible that earlier reports included a higher number of males 

due to their higher occupational risk of infection in crowded places like markets and 

congregations (D. Wang et al., 2020). 

Our study discovered that patients who passed away due to Covid-19 had more 

pronounced damage to white blood cells and immune cells, and the odds ratio was estimated 

to be 0.37; for every 1 increase in white blood cell count, an infected Covid19 person had 

63% chance to survive than not with a 95% CI of (0 and 0). Covid-19 may lead to reduced 

levels of T lymphocytes, including CD4+ T and CD8+ T cells, which can result in decreased 

production of interferon-gamma (IFN-γ), potentially contributing to disease severity (G. Chen 

et al., 2020). Additionally, while a more intense inflammatory response was indicated by 

much higher levels of inflammatory markers, such as C-reactive protein (Jousilahti et al., 

2001; Sproston & Ashworth, 2018), CRP was also one of the attributors and that it was 
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associated with a 2.72% rising the chance to die. Although the effect size small, it was 

statistically significant with p-value < 0.001. 

D-dimer is a protein fragment that is produced in the blood after the breakdown of a 

blood clot through fibrinolysis (Jacobs et al., 2016). In healthy individuals, D-dimer is 

typically not detectable in the bloodstream, except in cases where blood clots are formed and 

broken down. This makes a D-dimer serum test useful for ruling out thrombotic episodes and 

aiding in the early diagnosis of various thromboembolic conditions, including deep vein 

thrombosis, pulmonary embolism, and disseminated intravascular coagulation (Le Gal & 

Bounameaux, 2005; Schaefer et al., 2017). 

Initial studies suggested that Covid-19 patients may experience a hypercoagulable 

state, as evidenced by thromboembolism formation observed in pathological studies from 

autopsies or biopsies (Lang et al., 2003; Xu et al., 2020). Based on these findings, several 

researchers have linked the increase in D-dimer levels to this hypercoagulable state in Covid-

19 patients (Wright et al., 2020; Zhou et al., 2020). However, other researchers suggest that 

elevated D-dimer levels may be associated with the inflammatory response rather than the 

thromboembolic condition in Covid-19 patients (Yu et al., 2020). In fact, the precise 

mechanisms that result in elevated D-dimer levels in Covid-19 patients remain only partially 

understood, and further research is needed to clarify the underlying processes. 

In this investigation, we constructed a series of models that were increasingly more 

difficult to understand by making use of Bayesian MCMC simulation techniques. The Covid-

19 model's risk factors have very good discrimination power. After taking into account the 

Age predictor, the AUC of the Covid-19 model became severe. According to the results of a 

sensitivity analysis, the performance of the model was comparable when it was used to 

anticipate mortality based on Covid-19 risk factors. In order to better plan health policy 

interventions and take the necessary actions to limit the spread of the virus as much as is 

practically possible, public decision-makers can benefit from using models that capture the 

effects of diseases on mortality of cases and can indicate whether disease has an impact on 

the status. 

In comparison to more traditional Bayesian and likelihood-based point estimation 

approaches, our methodology has two significant advantages. To begin, it is compatible with 

models and data structures of any degree of complexity and does not call for closed-form 
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likelihoods or ad hoc distributional limits to be placed on the form of the joint prior or 

posterior. Standard SIR models, which are commonly constructed using stochastic ordinary 

differential equations, offer a perspective of the dynamics of the epidemic that is on a coarser 

scale.  

When utilising classical logistic regression, there are three significant sources of error 

that have the potential to have an effect on the results and interpretations of amortised 

Bayesian workflows. These sources of error are: The first possible cause of a simulation gap 

is a misspecification of the model, followed by corrupted data. A simulation gap occurs when 

a model is unable to accurately represent the dynamics of the disease that is being considered, 

or when data collection is distorted or polluted in ways that the model does not account for. 

Another scenario in which a simulation gap may occur is when the data collection is distorted 

or polluted. By utilising the necessary model extensions that were supported by theoretical 

explanations and ablation investigations, we were able to resolve these difficulties. 

Conventional Bayesian model verification procedures, such as low posterior probability 

under the prior, divergent re-simulations, or insufficient posterior predictive accuracy, are 

often utilised to unearth any lingering misspecifications. The fact that our method does not 

provide any theoretical guarantees regarding upper bounds for the residual errors, on the other 

hand, is an essential issue that has not yet been answered. 

The Monte Carlo error is the second thing that can go wrong, and it happens when 

trying to estimate anything using only a few different simulations. It is also known as the error 

of approximation, and it is a fact that all Monte Carlo algorithms take it into account. Because 

we may manufacture what is effectively an unending stream of synthetic data until the 

continually monitored forecast accuracy is satisfactory, finding a solution to this problem in 

this particular setting is not very difficult to accomplish. In this regard, simulation-based 

inference is better suited to fully utilise the potential of deep neural networks than traditional 

supervised learning approaches, which rely on a limited supply of labelled real data. This is 

because simulation-based inference is based on the assumption that there is an infinite supply 

of training data. 
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CHAPTER VI 

Conclusion And Recommendation 

Conclusion 

The implementation of this concept is expected to make it simpler for government 

agencies to keep an eye out for any contagious diseases. The findings of the model can be 

utilised in the formulation of public health policy, such as the administration of immunisations 

or the implementation of preventative measures. This research makes a contribution by 

utilising neural network approaches to learn complicated dependencies from the data as well 

as a Bayesian paradigm to associate the uncertainty in the predictions. Both of these methods 

are described in the following sentence. Because of this, our method has the potential to 

produce a model that can make accurate forecasts regarding infectious diseases and contribute 

to the mitigation of the negative effects those diseases have. 

This research contributes by utilizing neural network approaches to learn complicated 

dependencies from the data as well as a Bayesian paradigm to associate the uncertainty in the 

predictions. Thus, our method has the potential to produce a model that can make accurate 

forecasts regarding infectious diseases and contribute to the mitigation of the negative effects 

those have diseases. To accomplish this, it is essential to keep the following information about 

the prior distributions in mind, as it will be utilized to estimate the parameters of the model. 

Even though it was assumed that these prior distributions did not provide any useful 

information, it is nevertheless recommended to carry out a sensitivity analysis to determine 

level of effectiveness.  

Each parameter of the model has a normal prior distribution mean, and in addition to 

this, a value ranging from 102 to 106 was appended to the variance of the normal distributions. 

A normal prior with a variance of 106 is sufficiently non-informative and generally functions 

well with our dataset. This conclusion was reached as a result of the findings that the posterior 

distributions for the regression parameters differed only slightly from one another. This 

suggests that the outcomes produced by our model were reliable across a broad spectrum of 

prior distributions. Moreover, Bayesian neural network performed better than the other three 

approaches in terms of accuracy and stability as well as convergence.  

We utilised state-of-the-art methodologies in Bayesian neural networks. When 

compared to new neural network techniques, the Bayesian neural network made use of a 



109 

 

cutting-edge sampling strategy that improved sample quality by employing parallel 

computing and parallel tempering MCMC. This method was employed to improve sampling. 

According to the findings of our analysis, it is essential to incorporate data from a unique 

occurrence while formulating models. Early Covid-19 data were incorporated in the inquiry 

studies' dataset, which resulted in a considerable improvement in the accuracy of prediction. 

A high level of volatility amplifies the uncertainty introduced by models and makes predicting 

a very difficult task. Even while machine learning algorithms give excellent predictions, the 

value of those predictions is limited by volatility; hence, it is crucial that models be valid. 

Investors would have more faith in predictions made by Bayesian neural networks with strong 

uncertainty quantification achieved by Bayesian inference if these networks were used. Better 

forecasting performance was achieved with this strategy before the Covid-19 pandemic, 

which is not the case now. Even in the face of high market volatility during the early stages 

of the Covid-19 outbreak, the results reveal that Bayesian neural networks are able to produce 

trustworthy forecasts with robust uncertainty quantification. This is the case even though the 

results were obtained. 

 

Recommendation 

The implementation of this concept is expected to make it simpler for government 

agencies to keep an eye out for any contagious diseases. The findings of the model can be 

utilized in the formulation of public health policy, such as the administration of 

immunizations or the implementation of preventative measures. Another suggestion is to 

obtain more data with much more variables such as, x-ray, MRI, medications taken by the 

patients.  
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Appendix A:  

Full package of Bayes by Backprop Algorithm in Bayesian Neural Network 

Application 

 

Algorithm (3): Bayes by Backprop 

𝑺𝑻𝑬𝑷 𝑶𝑵𝑬: 
𝑆𝑎𝑚𝑝𝑙𝑒 𝜖𝑖~𝑁(0, 𝐼), 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁  

𝑺𝑻𝑬𝑷 𝑻𝑾𝑶: 
𝑆𝑒𝑡 𝑊𝑖 = 𝜇 + log(1 + 𝑒𝑥𝑝(𝜌)) + 𝜖𝑖  

𝑺𝑻𝑬𝑷 𝑻𝑯𝑹𝑬𝑬: 
𝑆𝑒𝑡 𝜃 = (𝜇, 𝜌)  

𝑺𝑻𝑬𝑷 𝑭𝑶𝑼𝑹: 
𝐿𝑒𝑡 𝑓(𝑊𝑖, 𝜃) = log 𝑞𝜃(𝑊𝑖) − log 𝑝(𝑊𝑖)𝑝(𝑋/𝑊𝑖) 

𝑺𝑻𝑬𝑷 𝑭𝑰𝑽𝑬: 
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝜇: 
 

𝜕𝑓(𝑊𝑖, 𝜃)

𝜕𝜇
=

𝜕𝑓(𝑊𝑖, 𝜃)

𝜕𝑊𝑖
+

𝑓(𝑊𝑖, 𝜃)

𝜕𝜇
 

 

𝑺𝑻𝑬𝑷 𝑺𝑰𝑿.  
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝜌: 
 

𝜕𝑓(𝑊𝑖, 𝜃)

𝜕𝜌
=

𝜕𝑓(𝑊𝑖, 𝜃)

𝜕𝑊𝑖

𝜖

1 + 𝑒𝑥𝑝 (−𝜌)
+

𝜕𝑓(𝑊𝑖, 𝜃)

𝜕𝜌
 

 

𝑺𝑻𝑬𝑷 𝑺𝑬𝑽𝑬𝑵: 
𝑈𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

 

𝜇 ← 𝜇 − 𝛼
1

𝑀
∑

𝜕𝑓(𝑊𝑖, 𝜃)

𝜕𝜇

𝑀

𝑖=1

 

𝜌 ← 𝜌 − 𝛼
1

𝑀
∑

𝜕𝑓(𝑊𝑖, 𝜃)

𝜕𝜌

𝑀

𝑖=1
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Appendix B:  

Stepwise Forward Selection 

Null Model 
Baseline Deviance 460.010 

Residual Deviance AIC Change in Deviance P-Value 

M1 334.030 342.030 125.980 0.0000 

M2 438.730 442.730 21.280 0.0000 

M3 448.220 452.220 11.790 0.0006 

M4 363.380 367.380 96.630 0.0000 

M5 428.830 432.830 31.180 0.0000 

M6 419.040 423.040 40.970 0.0000 

M7 453.950 457.950 6.060 0.0138 

M8 435.210 439.210 24.800 0.0000 

M9 398.590 402.590 61.420 0.0000 

M10 443.090 447.090 16.920 0.0000 

M11 443.860 447.860 16.150 0.0001 

M13 356.760 360.760 103.250 0.0000 

M14 455.540 459.540 4.470 0.0345 

M15 459.880 463.880 0.130 0.7184 

M16 453.190 457.190 6.820 0.0090 

Two Parameters 

M1 
Baseline Deviance 334.030 

Residual Deviance AIC Change in Deviance P-Value 

M1_1 320.550 330.550 13.480 0.0037 

M1_2 321.250 331.250 12.780 0.0004 

M1_3 254.470 264.470 79.560 0.0000 

M1_4 310.830 320.830 23.200 0.0000 

M1_5 312.400 322.400 21.630 0.0000 

M1_6 332.300 342.300 1.730 0.1884 

M1_7 309.790 319.790 24.240 0.0000 

M1_8 281.920 291.920 52.110 0.0000 

M1_9 321.900 331.900 12.130 0.0005 

M1_10 322.560 332.560 11.470 0.0007 

M1_11 240.700 250.700 93.330 0.0000 

M1_12 326.180 336.180 7.850 0.0051 

M1_13 330.120 340.120 3.910 0.0480 

M1_14 266.510 276.510 67.520 0.0000 

Three Parameters 

M1_11 
Baseline Deviance 240.700 

Residual Deviance AIC Change in Deviance P-Value 

M1_11_1 231.060 243.060 9.640 0.0219 

M1_11_2 233.040 245.040 7.660 0.0056 

M1_11_3 203.530 215.530 37.170 0.0000 

M1_11_4 227.260 239.260 13.440 0.0002 

M1_11_5 213.120 225.120 27.580 0.0000 

M1_11_6 225.110 237.110 15.590 0.0001 

M1_11_7 207.480 219.480 33.220 0.0000 

M1_11_8 230.410 242.410 10.290 0.0013 

M1_11_9 235.480 247.480 5.220 0.0223 
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M1_11_10 238.280 250.280 2.420 0.1198 

M1_11_11 231.060 243.060 9.640 0.0019 

M1_11_12 192.960 204.960 47.740 0.0000 

Four Parameters 

M1_11_12 
Baseline Deviance 192.960 

Residual Deviance AIC Change in Deviance P-Value 

M1_11_12_1 188.060 202.060 4.900 0.0269 

M1_11_12_2 177.070 191.070 15.890 0.0001 

M1_11_12_3 181.570 195.570 11.390 0.0007 

M1_11_12_4 190.650 204.650 2.310 0.1285 

M1_11_12_5 167.120 181.120 25.840 0.0000 

M1_11_12_6 176.790 190.790 16.170 0.0001 

M1_11_12_7 168.250 182.250 24.710 0.0000 

M1_11_12_8 188.000 202.000 4.960 0.0259 

M1_11_12_9 190.280 204.280 2.680 0.1016 

M1_11_12_9 182.780 196.780 10.180 0.0014 

Five Parameters 

M1_11_12_5 
Baseline Deviance 167.120 

Residual Deviance AIC Change in Deviance P-Value 

M1_11_12_5_1 164.630 180.630 2.490 0.1146 

M1_11_12_5_2 154.440 170.440 12.680 0.0004 

M1_11_12_5_3 156.070 172.070 11.050 0.0009 

M1_11_12_5_4 154.730 170.730 12.390 0.0004 

M1_11_12_5_5 154.640 170.640 12.480 0.0004 

M1_11_12_5_6 162.940 178.940 4.180 0.0409 

M1_11_12_5_7 162.630 178.630 4.490 0.0341 

Six Parameters 

M1_11_12_5_2 
Baseline Deviance 154.440 

Residual Deviance AIC Change in Deviance P-Value 

M1_11_12_5_2_1 147.860 165.860 6.580 0.0103 

M1_11_12_5_2_2 136.840 154.840 17.600 0.0000 

M1_11_12_5_2_3 143.650 161.650 10.790 0.0010 

M1_11_12_5_2_4 151.900 169.900 2.540 0.1110 

M1_11_12_5_2_5 150.800 168.800 3.640 0.0564 

Seven Parameters 

M1_11_12_5_2_2 
Baseline Deviance 136.840 

Residual Deviance AIC Change in Deviance P-Value 

M1_11_12_5_2_2_1 130.05 150.05 6.790 0.0092 

M1_11_12_5_2_2_2 130.12 150.12 6.720 0.0095 

M1_11_12_5_2_2_3 131.58 151.58 5.260 0.0218 
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Appendix C:  

Results of Fitted Models 

 

Models Variables Coefficients SE P-value Coefficients SE P-value 

Model 1 

Intercept 
-3.5410 0.7173 0.0000 -3.7640 0.7920 0.0000 

Age(2) 
2.0130 0.7533 0.0075 2.2280 0.8231 0.0000 

Age(3) 
3.6306 0.7578 0.0000 3.8610 0.8217 0.0000 

Age(4) 
5.1066 0.7751 0.0000 5.3730 0.8542 0.0000 

  

Model 2 

Intercept 
29.7000 4.2250 0.0000 30.3925 4.4679 0.0000 

Age(2) 
2.3096 0.8196 0.0048 2.5754 0.9084 0.0000 

Age(3) 
4.5109 0.8542 0.0000 4.8306 0.9312 0.0000 

Age(4) 
5.7969 0.8824 0.0000 6.1479 0.9695 0.0000 

SpO2 
-0.3585 0.0462 0.0000 -0.3691 0.0489 0.0000 

  

Model 3 

Intercept 
34.4009 4.8953 0.0000 35.6934 4.9764 0.0000 

Age(2) 
2.4293 0.8766 0.0056 2.6596 0.9829 0.0000 

Age(3) 
4.4973 0.9250 0.0000 4.7642 1.0152 0.0000 

Age(4) 
6.0688 0.9996 0.0000 6.4526 1.0960 0.0000 

SpO2 
-0.3551 0.0513 0.0000 -0.3692 0.0518 0.0000 

WBC_Count 
-1.1794 0.2036 0.0000 -1.2367 0.2064 0.0000 

        

Model 4 

Intercept 
35.6327 5.3110 0.0000 30.5759 4.3413 0.0000 

Age(2) 
2.5194 0.8929 0.0048 2.6760 0.9218 0.0000 

Age(3) 
4.5427 0.9418 0.0000 4.5474 0.9539 0.0000 

Age(4) 
6.0280 1.0192 0.0000 5.9553 0.9850 0.0000 

SpO2 
-0.3726 0.0561 0.0000 -0.3062 0.0448 0.0000 

WBC_Count 
-1.2493 0.2121 0.0000 -1.1932 0.1975 0.0000 

Diabetes(Yes) 
1.5790 0.4357 0.0003 -1.4828 0.4017 0.0000 

        

Model 5 

Intercept 
31.8854 5.3152 0.0000 29.3049 3.6401 0.0000 

Age(2) 
1.9192 0.9389 0.0409 2.1960 1.0087 0.0000 

Age(3) 
4.1428 0.9711 0.0000 4.2187 0.9836 0.0000 

Age(4) 
5.3996 1.0132 0.0000 5.4661 1.0034 0.0000 

SpO2 
-0.3318 0.0563 0.0000 -0.2241 0.0385 0.0000 

WBC_Count 
-1.3481 0.2246 0.0000 -1.2937 0.2052 0.0000 

Diabetes(Yes) 
1.4173 0.4604 0.0021 -1.2350 0.3945 0.0000 

Cough(yes) 1.6189 0.4763 0.0007 -1.6963 0.4392 0.0000 

        

Model 6 Intercept 
32.5760 5.9760 0.0000 30.4264 4.0674 0.0000 
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Models Variables Coefficients SE P-value Coefficients SE P-value 

Age(2) 
2.1677 0.9211 0.0186 2.3715 0.9638 0.0000 

Age(3) 
4.5358 0.9735 0.0000 4.4284 0.9724 0.0000 

Age(4) 
5.8882 1.0287 0.0000 5.8093 1.0042 0.0000 

SpO2 
-0.3503 0.0640 0.0000 -0.2149 0.0425 0.0000 

WBC_Count 
-1.4582 0.2385 0.0000 -1.3594 0.2110 0.0000 

Diabetes(Yes) 
1.1452 0.4897 0.0194 -0.8720 0.4289 0.0000 

Cough(yes) 2.2120 0.5543 0.0001 -2.1770 0.5090 0.0000 

Hypertension(Yes) 1.9815 0.5340 0.0002 -1.7779 0.4722 0.0000 

        

Model 7 

Intercept 
28.6433 6.1532 0.0000 27.6297 4.2894 0.0000 

Age(2) 
2.2171 0.9668 0.0218 2.4636 1.0315 0.0000 

Age(3) 
4.8459 1.0393 0.0000 4.8139 1.0792 0.0000 

Age(4) 
6.0925 1.0975 0.0000 6.0791 1.0708 0.0000 

SpO2 
-0.3333 0.0655 0.0000 -0.2132 0.0453 0.0000 

WBC_Count 
-1.1157 0.2649 0.0000 -0.9886 0.2441 0.0000 

Diabetes(Yes) 
1.2976 0.5109 0.0111 1.0398 0.4518 0.0000 

Cough(yes) 2.0109 0.5858 0.0006 1.9824 0.5305 0.0000 

Hypertension(Yes) 2.0048 0.5565 0.0003 1.8886 0.4864 0.0000 

CRP 0.0225 0.0093 0.0156 0.0268 0.0085 0.0000 
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Appendix D: 

 Density illustration of the non- significant variables  
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Appendix E:  

Bar chart of non-significant categorical variables 
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