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ABSTRACT 

ML-BASED ECO-FRIENDLY MOBILITY: PREDICTING FUEL, EMISSIONS 

AND SAVINGS IN CONVENTIONAL AND ELECTRIC VEHICLES 

Mahmoud Abduswamad Omar Abubakar 

MSc Department of Artificial Intelligence Engineering 

12.27.2023. 83 pages 

   

The transport industry is among the top contributors to human-made Greenhouse 

Gases (GHG). One of the (GHGs) is carbon emissions, which contribute to an 

increase in global temperature. Moreover, airborne pollutants lead to human health 

risks. That being said, a need for simplified and effective techniques arises to assist 

in controlling emissions and reducing fuel costs by forecasting fuel consumption and 

CO2 emissions for Internal Combustion Engine (ICE) cars. Driven by these 

objectives, this research explores machine learning techniques to create a new era of 

environmentally responsible transportation. This study aims to use machine learning 

techniques to predict fuel consumption and CO2 emissions of different conventional 

vehicles. It also compares Internal Combustion Engine (ICE) cars with a specified 

Electric Vehicle (EV) efficiency in fuel and charging costs. Regression analysis and 

machine learning methodologies were used to explore a large dataset with diverse 

ICE vehicle characteristics from 2016 to 2023. The data was pre-processed, analysed 

using Exploratory Data Analysis (EDA), and then trained using machine learning 

models such as the Support Vector Regression (SVR), Passive Aggressive Regressor 

(PAR), Extra Tree Regressor (ETR), Extreme Gradient Boosting Regressor (XGB), 

Bagging Regressor (BR), Tweedie Regressor (TR), and k-Nearest Neighbours 

Regressor (KNN). The ETR model fared the best among the models, proving its 

capacity to estimate fuel consumption with an R2 of 0.97 and an R2 of 0.94 in 

predicting CO2 emissions for conventional vehicles. The project also includes 

creating a user-friendly online application that provides users with real-time forecasts 

which will be fetched from the deployed trained model. The incorporation of 

geographical information via Map box improves forecast accuracy by taking driving 

distance into account. The research intends to assist sustainable transportation by 

offering valuable insights into environmentally friendly mobility alternatives and 

aiding automobile decision-making. The results showed that car users will save more 
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if they use EVs. The study also recommends more use of predictive methods to be 

applied in other modes of transport in order to reduce carbon emissions.   

Key Words: Machine learning, electronic vehicles, internal combustion engine, predictions, 

carbon emission.
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Chapter 1  

Introduction 

Throughout the decades, the earth has been witnessing fluctuations in temperature, 

experiencing warmer and colder phases than average. Human activities have been 

primarily attributed to rapid global warming in the new era. One of the human activities is 

transport. Several studies have illustrated the significant contribution of the transportation 

sector to emissions (Grazi et al., 2008; Y. H. Liu et al., 2019; Michaelis, 1993; Mustapa & 

Bekhet, 2016; Ross Morrow et al., 2010).  

Figure 1.1  

Emissions in transport industry (IEA, 2019) 

 

 

 

Land transportation is the most commonly used mode of transportation and shares 

three-quarters of total emissions, as explained in the Intergovernmental Panel on Climate 

Change (2012). The emissions are shown in the accompanying chart in Figure 1.1. 

Shipping and aviation sectors emit the least GHG, followed by road freight and passenger 

vehicles. The increasing number of vehicle users influences this hierarchy as cars become 

more affordable. 

Goals twelve and thirteen of the Sustainable Development Goals (SDGs) are 

specifically relevant to this project. The twelfth aim is to guarantee that consumption and 

production patterns are sustainable enough to support the livelihoods of current and future 

generations. Climate change is addressed in the twelfth objective, where urgent action is 

required to handle climate change and its consequences. In response, the advent of new 
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technologies, such as advanced computers, signifies a watershed moment in human 

activities, especially in the transport sector. The capabilities of machine learning 

significantly influence how we predict and manage fuel consumption, carbon emissions, 

and costs in various vehicles, including both conventional models and electric vehicles. As 

we move into an era where technology intertwines with ecological responsibility, we need 

a trailblazer, empowering users with granular insights into the complex interplay of 

vehicle specifications and their broader ecological footprint. The machine learning 

underpinning this endeavor extends its scope beyond predictive analytics, marking the 

beginning of a new era characterized by informed decision-making within the world of 

transportation. 

This research was conducted for more than one year at the Near East university’s 

innovation center. Originating as an investigation into predicting fuel consumption and 

carbon emissions in air transportation, the focus shifted to cars due to data accessibility 

challenges. Air transportation emits a lot of carbon emissions too but accessing data from 

different flights is hard as it is very sensitive. This project was done with an aim to help 

reduce carbon emissions and bring about fuel efficiency. This will be accomplished by 

demonstrating the difference in fuel usage, fuel cost, and CO2 emissions between 

conventional and electrical vehicles.  

Data from conventional vehicles that was used in this research was accessed online 

containing different car classes, their specifications, fuel consumption and emissions. 

Machine learning models were then trained using Google Colab. The model with the best 

R2 score, MAE and MSE was chosen for deployment in a web app. The EV data was 

simulated from the vehicle’s specifications and added to the web app for comparison 

purposes. The webapp developed, provides users with a multifaceted lens to evaluate their 

choices, this initiative seeks to catalyze a paradigm shift, steering individuals towards 

more responsible and ecologically sensitive vehicular preferences. By comparing the fuel 

costs in ICE and EVs, users will have a first-hand point of view on which vehicle is the 

better option. The research problem, significance, limitations, motivation and problem 

statements are explained in the following sections. 

Research problem 

The transport industry has influenced greenhouse gas emissions, especially carbon 

emissions. This leads to a rise in the need for new techniques to forecast fuel consumption 

and emissions in conventional cars to have control. Addressing this problem requires 
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leveraging machine learning techniques to provide accurate and timely predictions, 

promote environmentally responsible transportation choices, and inform decision-making 

within the automotive sector. Beyond the focus on fuel consumption, the research widens 

its scope to explore the broader environmental implications of different ICE vehicle 

specifications, aiming to establish a thorough understanding of the ecological footprint 

associated with these variations. There is also an increase in demand for comparative 

assessments of conventional and electric vehicles (EVs), focusing on estimating fuel and 

charging costs. The central aim is to investigate whether long-term economic and 

environmental benefits balance the fuel cost difference between refueling ICE and EV 

vehicles. The research aims to offer nuanced insights into the dynamic nature of vehicle 

performance without the need for specific driving scenarios. 

Significance 

The significance of this study transcends conventional boundaries, positioning itself as 

a potentially transformative force in sustainable transportation. By harnessing the formidable 

power of machine learning, this research furnishes users with meticulously detailed and real-

time estimates of their vehicles' environmental impact. It actively cultivates a heightened 

awareness of eco-friendly driving practices. The implications extend beyond individual users, 

making noteworthy contributions to broader ecological conservation endeavors. In a global 

context where sustainable transportation is pivotal in various initiatives, this research proffers 

a practical and accessible tool. The web app developed will allow users to actively participate 

in reducing carbon emissions, contributing to a greener and more sustainable future. 

Limitations  

Transitioning from the exploration of vehicle specifications and their impact on fuel 

efficiency, it's crucial to acknowledge the inherent limitations of the proposed model. The 

precision of predictions intricately links to the quality and representativeness of the training 

data. Some assumptions were made during the modelling process where there was disregard 

of unforeseen changes in driving conditions, variations in road infrastructure, or the fluid 

nature of fuel prices. Additionally, the model's applicability may exhibit subtle regional 

variations, and its precision might fluctuate based on individual driving behaviours. Despite 

these acknowledged limitations, the model stands as an innovative and invaluable tool. It 

serves as a pioneering force, steering users towards more sustainable travel practices while 

actively contributing to ongoing advancements in the field. 
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Motivation 

The motivation propelling this research is deeply rooted in the urgency to address the 

far-reaching environmental consequences of conventional transportation practices. The 

consequences of climate change are no longer a distant future; therefore, more eco-friendly 

practices are needed. The environment study also seeks to inspire individuals to make 

informed decisions by synergizing machine learning capabilities with real-time data and 

mapping features. 

Problem statement 

A notable hole remains in today's world of multidimensional transportation challenges, 

and that is a comprehensive and user-centric tool that analyses both conventional and electric 

cars. This research, therefore, addresses this problem, filling the gap and giving users first-

hand information to make informed choices. The optimization of fuel efficiency in ICE 

vehicles stands as a paramount challenge with significant implications for environmental 

sustainability. This research explores the intricate dynamics of vehicle specifications, 

including engine sizes, fuel injection systems, and transmission mechanisms, and their 

profound impact on fuel consumption. That being said, the research questions are as follows: 

a) How are machine learning techniques effective in forecasting fuel consumption and carbon 

emissions in Internal Combustion Engine (ICE) cars? 

b) How do ICE vehicle specifications affect fuel consumption and carbon emissions? 

c) How do the Internal Combustion Engine (ICE) vehicles compare with Electric Vehicles (EVs) 

in terms of fuel and charging costs and efficiency?  

The consequent sections of the thesis include Chapter 2, where we look into the work done by 

other researchers on the study topic. Chapter 3 gives the methodology of this study, and the results are 

explained and discussed in chapter 4. Lastly, chapter 5 presents the conclusion and recommendations 

for future work. 
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Chapter 2  

Literature review 

Banking, healthcare, manufacturing, agriculture, transportation, automobile and many 

more industries have achieved success using new technologies. The potential of artificial 

intelligence is having a significant influence on the automotive industry environment. 

Customers' preferences for enhanced and novel features, driver assistance, self-driving, and 

so on have accelerated the implementation of artificial intelligence in the automobile sector. 

Artificial intelligence is being employed in many phases of the automobile industries, ranging 

from autonomous driving (Kumari & Bhat, 2021; Othman, 2022; Tewari et al., 2021) to 

manufacturing, production, supply chain and driver safety. There are several studies from 

Internal Combustion Engine (ICE) vehicles and some EVs literature on fuel consumption and 

emissions presented. They present the use of various AI techniques in making predictions.  

Related work 

Reducing CO2 emissions in road transport is crucial. Bappon et al. (2022) utilized 

machine learning for predicting the CO2 rating of fuel-consuming vehicles in Canada, 

employing eight techniques. The Random Forest (RF) model excelled with a 96% accuracy, 

while the Naïve Bayes (NB) classifier performed least with 73%. Additionally, Bousonville 

et al. (2019) emphasized factors like weight, speed, driving style, and weather impacting fuel 

usage. They utilized RF, Linear Regression (LR), and Gradient Boosting (GB) models and 

incorporated weather data for improved accuracy. The GB model performed exceptionally 

well, achieving an R-squared value of 0.84 with weather data. Furthermore, temperature and 

wind speed were identified as significant influencers on fuel consumption. To assess the 

correlation between fuel efficiency and other features, Yin et al. (2016) suggested employing 

a Mutual Information Index (MII)-based technique. The authors analysed and predicted 

vehicle fuel efficiency using over 10,000 real-world vehicle samples. Employing regression 

methods such as Partial Least Squares (PLS), Gaussian Process Regression (GPR), Quantile 

Regression (QR), Ordinary Least Squares (OLS), and Support Vector Regression (SVR), they 

found that QR demonstrated the highest prediction accuracy. In another study, Hamed et al. 

(2021) developed a fuel consumption prediction model using the SVM algorithm. The dataset 

included On-Board Diagnostics (OBD) data, predicting fuel consumption based on Mass Air 

Flow (MAF), vehicle speed, Revolutions Per Minute (RPM), and throttle position sensor 

features. RF and decision tree (DT) algorithms were used for feature weighting, revealing 
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that the Vehicle Speed Mass Air Flow (VS_MAF)-based equation achieved a higher accuracy 

with an R-Squared value of 0.97 compared to the original equations. 

It is very important as an EV user that you know the battery life. This will really come 

in handy in preventing unforeseen problems such as getting stuck on the road with a low 

charge battery in the vehicle. Mahesh Prasanna et al. (2022) used SVM, RF and Gradient 

Boosting Decision Tree (GBDT) to predict the battery life in electrical vehicles. The authors 

aimed to address the issue of battery degradation. The effectiveness of the models was 

evaluated based on accuracy and loss values, and it was concluded that the SVM method 

performed the best with a high accuracy of 97.3%. Cabani et al. (2021) argued that the main 

factors that influence energy consumption in electric vehicles are the environment, driver 

behaviour and the vehicle. On this basis, the authors used k-NN algorithm to predict the 

energy consumption in EVs. They also proposed an algorithm for finding the optimal path in 

terms of energy consumption using a heuristic estimation function based on the energy 

consumption model. The results from the simulation demonstrate the potential of the 

proposed model for accurately estimating energy consumption and finding optimal paths for 

EVs having an accuracy of 96.5%. 

Katreddi et al. (2023) developed a predictive model for heavy-duty vehicle maintenance 

costs, encompassing diesel and alternative fuels. The mixed-effects random forest model 

demonstrated exceptional accuracy, achieving a 98.96% R2 score for the training dataset and 

94.31% for the validation dataset. The model's efficacy was consistently proven across 

diverse heavy-duty vehicles and fuel types, spanning school buses, delivery trucks, vocational 

trucks, refuse trucks, and goods movement trucks. Moreover, Li et al. (2019) used a 

Multilayer Perceptron (MLP) method to estimate the real-world fuel consumption rate of 

light-duty vehicles. The authors used a large dataset from the Bear Oil database in China, 

consisting of over 2 million samples for model optimization. The MLP algorithm regression 

had 417-dimensional input vectors representing various features such as city, brand, vehicle 

type, engine parameters, and transmission type. The results showed that differences exist 

between real-world fuel consumption and standard fuel consumption, with actual fuel 

consumption generally higher than the standard. The MLP model performed well in 

predicting fuel consumption, and the sensitivity analysis provides insights into the factors 

affecting the predictions. Still on the light duty vehicles, Hien and Kor (2022) focused on 

analysing and predicting fuel consumption and carbon dioxide emissions with the aim of 

delivering a comparative view of different vehicle brands and models. The study used a 

dataset containing fuel consumption and CO2 for 4974 samples of light duty vehicles. The 
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authors used Univariate Polynomial Regression (UPR) model which acquired an accuracy of 

98.6%. There are other models used including Multiple Linear Regression (MLR) and 

Multivariate Polynomial Regression (MPL) which had an accuracy of approximately 75%. 

Moreover, a deep learning model, Convolutional Neural Network was used attaining an 

accuracy of 70%.  

In a separate investigation, Hassan et al. (2023) employed Random Forest (RF) 

ensemble models to anticipate fuel consumption and emission rates in the urban areas of 

Greater Cairo, Egypt. Assessment using indicators like mean bias error (MBE), root mean 

squared error (RMSE), and coefficient of determination (R2) showcased the RF models' 

accuracy and robustness, particularly for CO2 and CO emissions, with testing R2 values 

ranging from 0.814 to 0.935. Another study by Zhang et al. (2023) tackled key issues related 

to CO2, CO, and HC emissions from gasoline vehicles under various fuel detergency 

conditions. Conducted in Zhengzhou, China, the study involved testing a passenger car under 

different fuel detergency conditions, monitoring emissions using a Portable Emissions 

Measurement System (PEMS), and creating a deep learning prediction model. Results 

included the identification of emission characteristics with different fuel detergency, 

assessment of synergistic emission reduction potential, and development of an accurate 

prediction model. Gasoline detergent significantly impacted emissions, and the deep learning 

prediction model exhibited high accuracy. Al-Nefaie & Aldhyani (2023) concentrated on 

predicting CO2 emissions from vehicle traffic using deep learning models. Utilizing a dataset 

with official records of carbon emission data from cars with diverse features, the authors 

proposed a framework employing methodologies like rough k-means clustering, statistical 

analysis, and deep learning models such as Long- and BiLSTM. The deep learning models, 

especially the BiLSTM model, displayed robust performance in predicting CO2 emissions, as 

evidenced by high R% and R2 values and low MSE and RMSE values in training and testing 

results. 

Table 2.1  

Summary of selected studies 

Variable Predicted Models 

Used 

Result Reference 

CO2 rating of fuel-

consuming vehicles 

CO2 rating NB, RF NB: 73%, 

RF: 96% 

(Bappon et al. 2022) 

Factors impacting 

fuel usage 

Fuel usage RF, LR, 

GB 

GB with 

weather data: 

R-squared 

(Bousonville et al. 

2019) 
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0.84 with 

weather data 

Vehicle fuel 

efficiency 

Fuel 

efficiency 

PLS, 

GPR, 

QR, 

OLS, 

SVR 

QR highest 

accuracy 

(Yin et al. 2016) 

Fuel consumption Fuel 

consumption 

SVM, 

RF, DT 

VS_MAF-

based 

equation: R-

Squared 0.97 

(Hamed et al. 2021) 

Battery life in 

electrical vehicles 

Battery life SVM, 

RF, 

GBDT 

SVM: 97.3% 

accuracy 

(Mahesh Prasanna 

et al. 2022) 

Energy consumption 

in electric vehicles 

Energy 

consumption 

k-NN Accuracy 

96.5% 

(Cabani et al. (2021 

Heavy-duty vehicle 

maintenance costs 

Maintenance 

costs 

RF Training: 

98.96% R^2, 

Validation: 

94.31% R^2 

(Katreddi et al., 

2023) 

Real-world fuel 

consumption rate of 

vehicles 

Real-world 

fuel 

consumption 

rate 

MLP MLP model 

performed 

well 

(Li et al., 2019) 

Fuel consumption 

and CO2 emissions 

Fuel 

consumption, 

CO2 

emissions 

UPR, 

MLR, 

MPL, 

CNN 

UPR: 98.6%, 

MLR/MPL: 

~75%, CNN: 

70% 

(Hien and Kor 

2022) 

Fuel consumption 

and emission rates 

Fuel 

consumption, 

CO, CO2 

emissions 

RF, DL RF models' 

accuracy: R2 

0.814 to 

0.935 

(Hassan et al. 2023) 

CO2, CO, and HC 

emissions 

CO2 

emissions 

DL 

models 

(Long- 

and 

BiLSTM) 

BiLSTM 

displayed 

robust 

performance 

Al-Nefaie and 

Aldhyani (2023) 

 

As evident in table 2.1, RF model appears to frequently demonstrate high accuracy in 

different studies in fuel consumption, CO2 ratings and maintenance costs. On the other hand, 

SVM, GBDT and GB models show effectiveness in predicting battery life and fuel 

consumption. The recurrent of these models can be attributed to their strengths. RF's 

ensemble learning approach, known for building robust decision trees and handling diverse 

features effectively, provides stability and accurate predictions, making it versatile for 

different scenarios. Gradient Boosting models, including GBDT on the other hand excel in 
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handling nonlinear relationships and boosting model accuracy with weak learners, proving 

valuable in complex prediction scenarios. Their successful application across domains, 

versatility, and robustness in dealing with real-world datasets contribute to their continued 

adoption.  

Limitations of existing studies 

From the reviewed papers, it is evident that many studies focused on just predictive 

modelling and there is a relative scarcity of research that goes into integration of artificial 

intelligence technologies. These can help make real-time decisions in critical areas such as 

energy management. Moreover, since the main aim of most of the studies is to bring about 

fuel efficiency, there are very few studies that show comparison between conventional and 

electrical vehicles.  
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Chapter 3  

Methodology 

Theoretical framework 

In the ever-changing landscape of technological evolution, the advent of Industry 4.0 

has brought about a transformative era which is characterized by intelligent automation and 

cutting-edge technologies. This shift, driven by innovations such as the Internet of Things, 

cloud computing, blockchain, simulation, and artificial intelligence, has revolutionized 

efficiency, manufacturing processes, and overall productivity (Michael Rüßmann et al., 

2015). As we navigate this industrial renaissance, the focus sharpens on the profound 

implications of Industry 4.0 on fuel-related predictions. The intersection of these technologies 

not only enhances predictive capabilities but also propels us into a realm where machine 

learning and deep learning become pivotal in understanding and optimizing fuel consumption 

and CO2 emissions. In this section, we delve into the intricacies of machine learning and deep 

learning, exploring their roles as primary data sources and methodologies in the pursuit of 

more sustainable and efficient transportation solutions.  

The following sections discuss and contextualize key study themes. Machine learning 

identified as the primary data source crucial for statistical predictions of the fuel consumption 

and CO2 emissions is the main focus. Moving on to the next section the focus shifts to deep 

learning. 

Machine learning 

Machine learning is often synonymous with artificial intelligence, attributed to its 

capacity for learning and decision-making. Machine learning gives the computers the ability 

to learn without being programmed explicitly as explained by Samuel (2000). Until the 

1970s, machine learning was a component of AI evolution where it then split on its own as 

depicted in figure 3.1. It has evolved into a critical response tool for cloud computing and e-

commerce, and it is now being employed in a wide range of technologies.  
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Figure 3.1 

Artificial intelligence and its subsets (Tiwari et al., 2018) 

 

Algorithms may develop prediction models by recognising patterns in data and 

learning from it. The purpose of machine learning is to make excellent enough predictions to 

be helpful but not flawless forecasts (Medar et al., 2017). However, the performance of the 

machine learning techniques is determined by the data's qualities and complexity (Sarker, 

2021). Figure 3.2 shows a typical machine learning workflow. 

Figure 3.2  

A typical workflow in machine learning 

 

 

Data is retrieved, cleaned and pre-processed in the initial phase of the workflow. The 

processed data is then trained using a developed model where the model learns the patterns 
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and relationships within the data to makes predictions. The model’s performance is then 

evaluated using a testing data set. Once one is satisfied with the performance, the model is 

deployed to make predictions on new unseen data. Deployment can involve integrating the 

model into a web application, server, or any other system. There is continuous monitoring of 

the model’s performance in real-world scenarios. It is retrained periodically with updated data 

to ensure it remains effective as patterns in the data evolve. 

Machine learning is made up other subsets namely, supervised, unsupervised, semi 

supervised and reinforcement learning which are determined by the type of data at hand 

(Chitralekha & Roogi, 2021). Data is the main key to machine learning whereby its quantity 

dictates how many times it should be trained moreover; the type of algorithm dictates the 

amount of training the system should undergo. Figure 3.3 gives a visual representation of the 

four categories discussed in the sections that follow. 

Figure 3.3  

Machine learning techniques (Sarker, 2021) 

 

 

Techniques in machine learning  

1. Supervised leaning: The purpose of this technique is for the algorithm to "learn" by 

comparing its actual output to the "taught" outputs offered, identifying flaws, and 

updating the model as needed (Q. Liu & Wu, 2012).  In supervised learning, patterns are 

utilised to predict label values for further unlabelled data. Throughout the learning 

process, complex mathematical approaches are used to optimize this function. In figure 

3.3 discrete variable refers to the target variable when it has discrete values, meaning it 

can only take specific, predefined categories. The continuous variable on the other hand, 
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means that the values in the target variable are continuous and any value within a range 

can be taken. 

2. Unsupervised learning: It uncovers patterns in unlabelled data without extensive human 

guidance, contrasting with supervised learning that relies on labelled data. It explores 

probability densities over inputs, learning from input data to identify patterns and create 

new features (Saman Siadati, 2020). This approach finds applications in clustering, 

dimensionality reduction, feature extraction, and anomaly detection. Without predefined 

answers, unsupervised learning excels in organizing complex and seemingly unrelated 

data, making it suitable for anomaly detection and recommender systems. Its strength lies 

in exploring diverse datasets, revealing valuable insights that structured approaches may 

miss. 

3. Semi-supervised learning is a hybrid strategy that incorporates characteristics of both 

supervised and unsupervised approaches. In contrast to closely supervised learning, it 

functions with less strict control, decreasing its load. The dataset is purposefully built 

with the bulk of unlabelled data and a smaller collection of labelled data. This 

arrangement is useful in situations where labelled data is scarce. 

4. Reinforcement learning: It operates primarily through a trial-and-error approach(Barto, 

1994), where algorithms eschew labelled data in favour of positive and negative feedback 

to reinforce their learning. This environment-driven method relies on a system of rewards 

and penalties, akin to insights from environmental activists seeking to enhance rewards 

and minimize risks. Reinforcement learning is employed to train models aimed at 

increasing automation or optimizing performance, particularly in domains such as 

autonomous driving, robotics, manufacturing, and supply chain management. 

Advantages of machine learning 

1. Quick adaptability to fluctuations in data. 

2. Prioritization of the decision-making process leading to swift decisions. 

3. Immediate analysis of data patterns, allowing for prompt action. 

Since its commencement, machine learning has evolved to include a diverse array 

of approaches, algorithms, and applications, with ongoing room for enhancement. The 

latest advancements in computer technology have facilitated parallel data processing, 

elevating the relevance of machine learning methodologies. The introduction of deep 
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learning has particularly emerged as a consequence of advancements in memory 

capabilities. 

Deep learning 

Deep learning constitutes a machine learning methodology wherein inputs traverse 

multiple layers interconnected by neuron-like structures, enabling the system to learn 

from data. Due to its flexible architecture, neural networks can learn from raw data. 

Neural networks possess the ability to learn directly from raw data with minimal pre-

processing, and their prediction accuracy is heightened by their flexible architectures 

(Prabhudesai et al., 2019). The number of hidden layers that build connections for 

increased learning determines the depth of machine learning. The best results are obtained 

by minimizing loss through weight and bias adjustments. While the conceptual 

foundations of artificial neurons date back to 1943, as envisioned by Walter Pitts and 

Warren McCulloch (Piccinini, 2004), it's crucial to note that the modern manifestation of 

deep learning has gained prominence more recently. The surge in computational power, 

especially in recent years, has been a catalyst, enabling the scalability and complexity 

required for deep learning networks. Widespread applications of deep learning in 

industries such as health (Al Turjman et al., 2024; Ibrahim et al., 2021) have become 

increasingly prevalent with advancements in technology. This is what shapes the 

landscape of artificial intelligence in contemporary time. Deep Learning specializes in 

managing complex mappings from input to output, relying on extensive datasets and high 

computational capabilities.  

Figure 3.4  

Machine and deep learning(Del Real et al., 2020) 

 

 

In figure 3.4, we can see how different machine learning is to deep learning. For 

instance, machine learning uses simple algorithms like regression which may require human 
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intervention for feature engineering. On the other hand, deep learning employs neural 

networks with multiple layers enabling it to learn directly from the data. These networks can 

automatically extract features, eliminating the need for manual feature engineering. 

 

This study employs regression analysis through machine learning methodologies to 

give predictions on the fuel consumed and carbon emissions of different ICE vehicles. The 

reason behind employing these models stems from the complex relationships between the 

variables influencing fuel consumption and CO2 emissions.  The main advantages of the 

regression analysis are (Saleh et al., 2022): 

1. They allow for the prediction of outcomes based on relationship between variables. This 

in turn provides valuable insight for decision-making and planning. 

2. There is clear understanding of relationships between the dependent and independent 

variables which in turn allow interpretation of the impact of each predictor variable on the 

outcome.  

3. They are simple and easy to interpret. 

4. Regression models are compatible to a wide range of problems. 

The model input comprises a pre-processed data set linked to an individual car, 

encompassing 8058 rows of the actual vehicle specifications. For the EV, the specifications 

of one car namely, B9 from Gunsel company in the Turkish Republic of Northern Cyprus 

were used later on. This particular car was chosen as a representative for most EVs and 

because it will give the engineers at Gunsel a real time comparison between their vehicle and 

other conventional vehicles. The methodology of this project includes data pre-processing, 

Exploratory Data Analysis (EDA) and machine learning techniques implementations as 

shown in figure 3.5. Data is first acquired, processed, split and then trained using seven 

machine learning models. The regression models were first used for fuel consumption 

predictions and later on the same models were used to predict the emissions. Since the data 

set has input-output pairs with the correct output known, all the models used fall under 

supervised machine learning technique and were used to make predictions for unseen data.  
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Figure 3.5 

Methodology flowchart 

 

Data collection and exploration 

The dataset used for this study is sourced from an open source (Government of 

Canada, 2023), containing comprehensive information on vehicle characteristics and 

emissions. The dataset covers the years 2016 to 2023 and serves as the foundation for model 

training and evaluation. I uploaded the data to Google Drive and used Google Colab to 

execute the Python code. Colab, or Google Colaboratory, is a cloud-based service based on 

the Jupyter Notebook design. Google Colaboratory provides researchers with free access to 

GPUs for deep learning applications, allowing them to execute high-end machine learning 

concepts (J. & V., 2021). After importing the dataset, an initial investigation is performed to 

determine its structure. Table 3.1 shows what each column in the data represents.  

Table 3.1 

Data key 

Vehicle class It represents the category system used in the automotive industry 

grouping vehicles based on size, body style and use  

Model Refers to a distinct variation of a vehicle created by a manufacturer 

under a specific make or brand. 

Make Denotes the brand or manufacturer of a vehicle. 
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Model Year Indicates the production year of a specific vehicle model 

Engine size (L) Typically measured in cubic centimeters (cc) or liters (L), it tells the 

total volume of air and fuel that can be drawn into the engine 

cylinders of a vehicle in one cycle. 

Cylinders Refers to the number of chambers in vehicles’ engine. It is where 

combustion takes place. 

Transition This system facilitates power transfer ideally from the engine to the 

wheels, enabling the vehicle to make either forward or backward 

direction movements. Different designations are used to denote 

various transmission types: A stands for automatic, AM for automated 

manual, AS for automatic with select shift, AV for continuously 

variable, and M for manual. 

Fuel type It provides information about the vehicle's fuel type. Z stands for 

premium petrol, D stands for diesel, E stands for ethanol and X stands 

for normal petrol.  

 Fuel 

Consumption  

Gives the average fuel consumed in highway and city roads 

CO2 

Emissions(g/km)  

It refers to the amount of CO2 that is emitted by a vehicle for every 

kilometer that it is driven. 

CO2 Rating It measures a vehicle's carbon dioxide (CO2) emissions, typically 

expressed in grams of CO2 per kilometer(g/km) 

 

There are different vehicle classes ranging from compact to full size vehicles in the 

dataset. The different models in the dataset have different engine sizes which range from 1 to 

10 where the number of cylinders have the lowest value at 1 and highest at 16. The CO2 rating 

values are from 1 to 10. If the rating is high and is getting closer to 10, it means that the 

vehicle has lower CO2 emissions and lower fuel consumption. On the other hand, a lower 

rating closer to 1 suggests higher CO2 emissions and a potentially greater environmental 

impact. 

Data Cleaning 

Since we are predicting both fuel consumption and CO2, the data went through two 

phases. For the first phase, a new data frame is generated with a focus on pertinent columns 

essential for the regression model for predicting fuel consumption. Columns such as model 
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year, make, and model are excluded, emphasizing key attributes as illustrated in table 3.2. 

The columns were dropped as they are not significant for the model training. The model is 

going to be deployed and used for all kind of conventional cars. In the second phase, all the 

columns were dropped leaving only two, fuel consumption and CO2 emissions as we are 

going to see in the following sections. 

Table 3.2  

Data outlook after dropping unwanted columns 

 

It is very important to also check for null values in the data.  These values can affect 

the statistical measures such as the mean, median and the standard deviation. That being said, 

if we understand the presence of missing values, we can then choose the appropriate way to 

handle them so as they do not affect our analysis. Some of the columns were also renamed to 

make them more concise for ease of use.  

Concerning CO2 ratings, new ratings are assigned based on fuel consumption values 

in instances where the original ratings are absent. To improve the model's interpretability, this 

transformation is implemented. The new values of the CO2 ratings are assigned based on 

different ranges of fuel consumption where in this case a higher rating means the 

consumption is low leading to lower emissions. This approach allows the model to capture 

the impact of fuel efficiency on emissions more explicitly. Standardization of numeric values 

within the transmission column is also performed, wherein detailed values like 'AM8' are 

replaced with simplified representations such as 'AM.' This was done so as to enable the 

models to understand and generalize the data.   
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Exploratory Data Analysis (EDA) 

It is very important to understand the underlying patterns and the characteristics in the 

data. This is done by using EDA, which gives a valuable insight into the dataset’s 

structure(Morgenthaler, 2009). This project applied both univariate and bivariate analysis. 

Univariate Analysis 

Univariate analysis, a statistical methodology focused on the examination of a single 

variable within a dataset, plays a pivotal role in scrutinizing and elucidating the distribution, 

characteristics, and patterns inherent in that specific variable. Its significance lies in its ability 

to provide a comprehensive understanding of the variable's distribution, including the 

identification of range, central tendency, and variability measures(Cleff, 2014). Univariate 

analysis aids in outlier detection, crucial for maintaining the integrity of statistical properties. 

That being said, histograms were used to show variables’ distribution. Figures 3.6 to 3.10 

show the distribution of all the variables. 

Figure 3.6  

Transmission and Fuel type distribution 

 

In figure 3.6 above, it is evident that there are many vehicles in the dataset which use 

petrol fuel whether normal ‘X’ or premium ‘Z’. Ethanol ‘E’ and diesel ‘D’ are the least used 

types of fuel. This might be because of the widespread availability of petrol and it being 

affordable. Moreover, petrol cars are generally cheaper compared to other cars. Most of the 

cars also use semi-automatic mode of transmission followed by automatic then manual cars.  
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Figure 3.7 

Fuel consumption distribution 

 

Most vehicles consume an average of ten litres for every 100 km as depicted in figure 

3.7. Very few vehicles consume four to seven litres and fifteen to seventeen litres of fuel for 

every 100 km. This could be influenced mainly by the preferences of the consumers to use 

efficient vehicles driving manufacturers to produce vehicles with a consumption of rate of 

between eight to fourteen litres per 100 km. The next figures 3.8 to 3.10 illustrate engine size, 

number of cylinders and the CO2 rating distributions. 

Figure 3.8  

Engine size contribution 
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Figure 3.9  

Number of cylinders distribution  

 

Figure 3.10  

CO2 rating distribution 

 

In figure 3.8 it is evident that most vehicles have 2-liter engine sizes with some 

ranging from 3 to 4. Also, most of the vehicles have four-cylinder engine configuration in the 

dataset as shown in figure 3.9. This implies that most of the cars are designed with a balance 

of power and fuel efficiency. On the other hand, the CO2 rating is at an average of 5 meaning 

the carbon emissions from most vehicles is neither good nor bad. 

Bivariate Analysis 

Bivariate analysis involves the examination and analysis of relationships between two 

variables(Bertani et al., 2018). For this project, a heatmap was generated to visualize the 

Pearson correlation between various attributes, aiding in identifying potential 

multicollinearity. The value of correlation ranges between -1 and 1 where the value closest to 
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either of them shows that here is high correlation. Negative values show negative correlation 

meaning if x increases, y decreases and a positive value shows positive correlation meaning 

an increase in x causes an increase in y. 

Figure 3.11  

Pearson correlation heatmap 

 

As shown in figure 3.11, the number of cylinders, CO2 rating and the engine size have 

very high correlation with the fuel consumption. The CO2 rating has a correlation value of -

0.9 meaning it negatively affects the fuel consumption. If its value increases, then the value of 

fuel consumption decreases an vice versa. The number of cylinders and engine size have a 

positive correlation value of 0.8 and 0.82 respectively, an increase in one leads to an increase 

in the other variable. 

Data Pre-processing 

Ordinal encoding and One-Hot encoding 

The dataset, as shown in Table 3.2, has three categorical variables: vehicle class, 

transmission, and fuel type. Machine learning techniques cannot process these categories as 

they are not numeric. Therefore, two encoding techniques, ordinal and one-hot encoding, 

were used to convert the data into numerical form. Ordinal encoding assigns each value an 

integer from the categories with a natural ranking between them. For the dataset in this 

project, ordinal encoding is applied to transform categorical variables like transmission and 

vehicle class into numeric representations, maintaining their ordinal relationships. 
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On the other hand, one hot encoding uses absolute values in a binary matrix where 

each category will be represented as a column. The fuel type column was chosen for this, 

creating binary columns for each fuel type, as shown in Table 3.3. Each categorical variable 

was changed into a numerical value, and the fuel types for each variable were binary digits. 

Table 3.3  

Dataset after ordinal and One-hot encoding 

 

Splitting the data 

The x and y features were chosen where the y feature here is the fuel consumption for 

the first part and the x features are as shown in table 3.4. For predicting the CO2 emissions, 

the x feature was chosen as the fuel consumption. The training and testing sets were set to 

90% and 10 % respectively for both predictions. This was done so as to enable the models to 

have a high performance. The more the training dataset is, the better the performance.  

Table 3.4 Input features for predicting fuel consumption 

 

The original vehicle class, transmission and fuel type columns were dropped as shown 

in table 3.4. The remaining columns contained the encoded columns, engine size, cylinders 

and the CO2 columns. It is also important scale the data to avoid bias outcome of predictions. 

Standardization is therefore applied to scale numerical features, ensuring that all variables 

contribute equally to the model and preventing dominance by variables with larger 

magnitudes. 
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Model training 

Support Vector Regression (SVR) 

The model is a supervised learning machine used for pattern recognition and 

regression. It was developed from the support vector machine (SVM). It constructs models 

complex enough to handle a large class of problems, yet simple enough to be analysed 

mathematically (Busuttil, n.d.). The model is based on the concept of hyperplane classifiers 

and uses feature spaces and kernels to create a nonlinear decision surface in the input space as 

depicted in figure 3.12. It is useful since it simplifies to an optimization issue with a unique 

solution and has been used effectively to a variety of real-world challenges. The decision 

function in the SVR model is a key component used for classifying input vectors. In this 

research, the SVR model employed a linear kernel function to simulate linear correlations 

between input variables and the target variable. This is due to the fact that both the input and 

output characteristics are linear. 

Figure 3.12  

Support Vector Regression principle (Moradzadeh et al., 2020) 

 

Extreme Gradient Boosting Model (XGB) 

XGB is a powerful and scalable ensemble machine learning algorithm based on 

decision trees and gradient boosting as shown in figure 3.13. Introduced by Tianqi Chen and 

Carlos Guestrin  (2016), it has achieved success in Kaggle tournaments and is widely used for 

diverse data science problems. With features like cross-validation, distributed weighted 

quantile sketch, and parallelization, XGB excels in modelling attributes, classification, 

prediction, and system optimization. Its efficiency and accuracy make it a popular choice in 

various applications. The XGB model used in this project is a specialized class within the 

XGB library designed specifically for regression. The objective parameter was set to “reg: 

squared error” meaning the model is being used for regression, and the objective function is 
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the mean squared error (MSE). The random state parameter was set to 51 ensuring that the 

random processes (like random initialization of weights) in the model are reproducible. 

Figure 3.13  

XGB model principle (Wang et al., 2021) 

 

Passive Aggressive Regressor (PAR) 

Another model that was used is the PAR which falls under online learning in machine 

learning(Crammer et al., 2006; Herbster, 2001). The passive component is where minimal 

updates are made to the model when the predictions are correct while the aggressive 

component makes updates when they are incorrect predictions. The passive-aggressive 

behaviour allows for quick adaptability to changes in the data distribution. The model is 

created with hyperparameter c set to 1 in order to control the regularization strength and the 

random state parameter is set to 51. 

Extra Tree Regressor (ETR) 

The ETR model, originates from the Random Forest (RF) model (Geurts et al., 2006). 

It works in an advanced approach that constructs an ensemble of unpruned decision or 

regression trees as depicted in figure 3.14. Employing two critical parameters k and nmin the 

ETR algorithm governs the splitting process to enhance precision while concurrently 

mitigating overfitting (Mishra et al., 2017). This model strategically utilizes all cutting points, 

selecting randomly from these points to divide nodes, and employs the entire learning 

samples for tree cultivation. By doing so, it minimizes bias and significantly amplifies the 

model's precision. The ETR model serves the purpose of predicting a target variable based on 

input features, consistently achieving remarkable accuracy in its predictions. The ensemble 
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configuration for this project includes 10 decision trees, with a designated random state set at 

51. 

Figure 3.14  

Regression trees in ETR model  (Aziz et al., 2023) 

 

Bagging Regressor model (BR) 

It is also an ensemble model categorized within the family of bagging algorithms. 

Bagging, short for bootstrap aggregating, involves training numerous instances of a base 

model on distinct subsets of the training data and combining their predictions to formulate a 

final prediction as is evidence in figure 3.15. This approach, enhancing performance, is 

recognized as one of the models employed in this project for predicting fuel consumption and 

CO2 emissions. 

Figure 3.15  

Working principle of bagging regression model  (Salcedo-Sanz et al., 2022) 
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Tweedie Regressor 

Tweedie Regressor (TR) (Kokonendji et al., 2021) is a regression model designed for 

predicting non-negative target variables and can handle semi-continuous data with excess 

zero. It is a compound distribution that encompasses both the Poisson and gamma 

distributions. The TR model used in this study was set at a power parameter value of 1 which 

corresponds to the Poisson distribution. Strength in the model is controlled by the alpha 

parameter which was added to the loss function to prevent overfitting and set to 0.5 implying 

a moderate level of regularization. Moreover, link parameter used in this model is log which 

represents a logarithmic link. The choice of the log-link is suitable for predicting positive and 

right-skewed data, as it allows the linear predictor to be related to the log of the expected 

value of the response variable. 

k-Neighbours Regressor 

Another model that was used is the k-Neighbors Regressor. This is another type of 

regression algorithm which belongs to the family of k-Nearest Neighbors (k-NN) methods. 

KNN is a non-parametric, supervised learning classifier that employs proximity to classify or 

predict the grouping of a single data point(IBM, 2022). It is used for predicting a continuous 

target variable based on the values of its k-nearest neighbors in the feature space. 

All the models used in this project were used to train the data in predicting the fuel 

consumption and carbon emissions. The parameter settings in the models were the same for 

training the x features fuel consumption and CO2 emissions.  

Model Evaluation 

All the models were quantitively assessed using three metrics. The most commonly used 

metrics were made use of including the R2 score, the Mean Absolute Error (MAE) and Mean 

Squared Error (MSE). 
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Mean Squared Error (MSE) 

As mentioned earlier, it is one of the common metrics used for evaluation of 

regression models to see how they performed. A lower MSE value shows that the model 

performed well because the squared differences between predicted and actual values are 

smaller. The MSE calculates the average squared difference between the target variable's 

expected and true values. It is as shown in equation 3.1 

 3.1 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

  

The number of observations is represented by n, the real value of the target variable is 

𝑦𝑖, and the predicted value of the target variable is 𝑦�̂� . It is a positive number, and a lower 

MSE indicates that the model worked well. 

R-squared (R2) 

The R2 score, also referred to as the coefficient of determination, gauges the 

proportion of variance in the dependent variable that the independent variables in the 

regression model can account for. This metric is pivotal for assessing the model's fitting 

quality. The R2 score is calculated through the following formula as depicted in equation 3.2 

 3.2 

𝑅2  =  1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦�̅�)2𝑛
𝑖=1

  

Here, n denotes the number of observations, 𝑦𝑖 signifies the actual value of the 

dependent variable, 𝑦�̂� represents the predicted value of the dependent variable, and 𝑦�̅� denotes 

the mean of the true values of the dependent variable. R2 values range from 0 to 1. A score of 

1 indicates a perfect fit, explaining all variability in the dependent variable. Conversely, a 

score of 0 signifies that the model fails to explain variability. 

Mean Absolute Error (MAE) 

This type of metric measures the average absolute difference between the predicted 

values and the true values of the target variable. A smaller MAE value is more desirable in 

evaluating the models. This indicates that the predicted values are closer to the actual values. 

Equation 3.3 shows how MAE is calculated  
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3.3 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�| 

𝑛

𝑖=1

  

Here, n is the number of observations, 𝑦𝑖 depicts the true value of the target variable 

for the observation and 𝑦�̂� depicts the predicted value for the observation.  

Electrical vehicle and fuel prices  

As mentioned earlier, one electric vehicle was chosen to compare fuel consumption 

and energy consumed for a journey of the same distance. The Gunsel company manufactures 

the car named the B9. The main feature of the vehicle used in this project is the energy 

consumption, which is 14 kilowatt-hour/100km (kWh/100km). The car is a four-wheel drive 

two-seater powered by a 140-kW lithium-ion battery. The fuel and charging prices were 

accessed online, and these prices specifically for that particular day.. They were set to 

Turkish Lira (Tl) based on the geographic area in which this research was done: the Turkish 

Republic of Northern Cyprus (TRNC).  

Web application development 

A Python Application Programming Interface (API) was created in the backend. This 

is because the model was developed using python language. The application is first run 

locally and its backend is implemented using Flask, a micro web framework for Python. Flask 

is used to spin up a webserver and here it handles parameter inputs, passes them to the 

deployed model, and returns the predicted fuel consumption and CO2 emissions as JavaScript 

Object Notation (JSON) object. Upon confirmation that the web app runs, Waitress module 

was used to host the web app online. The module is a production quality pure -Python Web 

Server Gateway Interface (WSGI) with no dependencies(Chris & Waitress, 2023). This 

means that it does not rely on external libraries other than Python libraries, simplifying the 

installation and deployment process. 

Moreover, the web app is integrated with Mapbox to provide distance and navigation 

information. Mapbox is a platform that provides various tools and services for creating 

custom maps and location-based applications. It offers mapping and location-based services, 

including APIs (Application Programming Interfaces), SDKs (Software Development Kits), 

and a cloud-based platform for designing and hosting custom maps(Amy Lee Walton, n.d.). This 

enhances the accuracy of predictions, considering that fuel efficiency can be influenced by 

factors such as driving distance. The fuel consumption was then calculated based on the 
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distance the vehicle might travel and this also goes for the energy consumption of the EV. 

The formula for the fuel consumed and energy consumed are given by: 

3.4 

Fuel consumption (litres)

=
Fuel consumption rate (litres per 100km) ∗ Distance travelled (km)

100
 

3.5 

Energy consumption (Wh)

=
Energy consumption rate (Wh per 100km) ∗ Distance travelled (km)

100
 

The development of the web application's frontend utilized Visual Studio Code, a 

robust and lightweight source code editor designed for desktop use. It comes equipped with 

built-in support for various languages, including JavaScript and Python. The frontend of the 

web application is created using Hyper Text Markup Language (HTML), Cascading Style 

Sheets (CSS), and JavaScript (JS). The backend for the web user interface was created using 

Hypertext Pre-processor (PHP).  

Figure 3.16  

Web app login page 

 

The login page in figure 3.16 gives the user an opportunity to either create an account 

or login to an existing account. After logging in the user is presented with the dashboard with 

a list of added cars or an option to add a new car. 
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Figure 3.17  

Dashboard view 

 

In figure 3.17, the user has an option to either add a new car or use the previously 

added cars for prediction. 

Figure 3.18  

Adding car details 

 

On clicking add new car, the user adds the car name and its details and clicks on add car as 

shown in figure 3.18. The user inputs, vehicle class, engine size, number of cylinders, fuel 

type, transmission and the CO2 rating are sent to the backend where they are read as input 

features for the trained model as shown in figure 3.19. 
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Figure 3.19  

User parameter inputs 

 

 The car details are stored in the back end while the prediction is given after the user 

inputs the start and destination of his drive.  

Upon clicking the 'predict' button for his chosen car, the user is redirected to the next 

page where he can input the start and destination as shown in figure 3.20. The user can input 

locations of his choice and he will get the distance and route, moreover, the fuel consumption, 

CO2 emissions, energy consumption results of the vehicles are given. The fuel and energy 

charging prices are also displayed for comparison. This is elaborated more in the results 

section. 

Figure 3.20  

Integrated map with start location and destination inputs 

 

 



 45 

Chapter 4   

 
Results and Discussion 

The study represents fuel consumption and CO2 emissions in ICE vehicles. For the 

fuel consumption, the vehicle class, engine size, cylinders, transmission, fuel type and CO2 

rating were used as the inputs. As for the CO2 rating, fuel consumption was use as the input 

and in this instance, the predicted fuel consumption was taken as the input to predict the CO2 

emissions. All the models were trained and the performances were taken note of for the fuel 

consumption and emissions respectively. Scatter plots were used to give a visual presentation 

of the models’ performances as shown in figures 4.1and 4.2 for fuel consumption prediction 

and figures 4.3 and 4.4. for CO2 emission predictions. 

Figure 4.1  

Fuel consumption scatter plots for ETR, BR and XGB Regressor models  
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Figure 4.2  

Fuel consumption scatter plots for SVR, PAR, KNN and TR models  

 

 
The scatter plots are used to show the relationship between two quantitative variables 

and in our case would be the predicted and actual or test values(Mindrila & Phoebe, n.d.). 

The scatter plots allow for a quick identification of trends, clusters or potential outliers. From 

figure 4.1, we can see that the ETR, XGB regressor and the BR models show tight clusters 

around the diagonal line which indicates accurate predictions of the fuel consumption even 

though there are deviations. The SVR and TR models shown in are not quite impressive as 

most of the points stray away from the diagonal shown in figure 4.2.  
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Figure 4.3  

CO2 emissions scatter plots for ETR, BR and XGB Regressor models 

 

Figure 4.4  

CO2 emissions scatter plots for SVR, PAR, KNN and TR models 
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As observed in figure 4.3, XGB regressor model has tightly clustered point around the 

diagonal line although it has outliers which suggest underestimation of some values. The 

points in the TR model are the most scattered forming sort of a curve along the diagonal. This 

means that there is a non-linear relationship between the predicted and actual values leading 

to higher degree of uncertainty in the model. There is a tight cluster in around the diagonal 

for the ETR model outperforming the other models in terms of prediction accuracy. SVR and 

PAR models have a lot of points away from the diagonal but with some clusters at the 

diagonal too making their performance moderate. 

The models were further evaluated using R2 score, MSE and MAE metrics as shown 

in table 4.1 where the model with the best performance was selected for deployment. 

Table 4.1.  

Model performance for fuel prediction and CO2 emissions 

 Fuel consumption CO2 emissions 

Model MSE R2 MAE MSE R2 MAE 

SVR 0.49 0.93 0.52 314.19 0.92 4.37 

PAR 1.09 0.85 0.79 325.31 0.91 4.72 

BR 0.23 0.97 0.32 211.68 0.94 5.37 

ETR 0.21 0.97 0.31 211.15 0.94 5.33 

TR 0.43 0.94 0.50 471.33 0.87 14.12 

k-Neighbours 

Regressor 
0.29 0.96 0.36 275.14 0.93 6.21 

XGB Regressor 0.23 0.97 0.34 211.22 0.94 5.33 

 

In fuel consumption predictions, the Extra Tree Regression (ETR) model had the 

highest R2 score of 0.97, lowest MSE and MAE values of 0.21 and 0.31 respectively as 

shown in table 4.1 making it the best performing model. The next best performing models 

were the XGB Regressor and the BR models with an R2 score of 0.97 for both but had a 

relatively higher values for the MSE and MAE. The Moreover, in predicting the CO2 

emissions the (ETR) model had the highest R2 score of 0.94 although closely followed by 

XGB Regressor and BR models. The model also scored lowest MSE score of 211.15. The 

model with the lowest MAE value is the SVR model which scored 4.37. That being said, the 

ETR model emerged as the best model for predicting both variables.  

The ETR model was then selected for deployment to the web application for real-time 

predictions. The model was also serialized using joblib library ensuring efficient integration 

and seamless user experience. The developed web app was tried with real world data and it 
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did not disappoint. Ten vehicles were chosen for experimental purposes for real life testing 

where the user would have his inputs of different place he wants to go. The results are as 

shown in table 4.2. 

Table 4.2  

Example inputs from real world data 

Fuel consumption (L) CO2 emissions (kg) 

Car name  

Distance 

(km) Real  Predicted Error Real  Predicted  Error 

Dodge challenger 

SXT AWD 29.36 3.73 2.22 -1.51 8.87 5.96 -2.91 

Acura MDX Hybrid 

AWD 10.71 0.96 0.93 -0.04 2.25 2.17 -0.07 

Aston Martin DB11 

V12 45.53 4.46 4.19 -0.27 12.25 12.11 -0.14 

AUDI A3 12 1.16 1.26 0.09 2.72 2.94 0.22 

Audi Q3 25.7 2.13 2.80 0.67 4.47 6.56 2.08 

BMW 328d drive 

Touring 34.6 2.33 2.76 0.43 6.30 6.46 0.17 

Hyundai Elantra 50.2 3.51 5.84 2.32 9.49 13.45 3.97 

GMC Canyon 36.6 3.51 4.00 0.49 9.41 9.37 -0.04 

Honda Civic 

Hatchback Sport 67.4 4.92 8.00 3.08 11.46 18.60 7.14 

Infiniti Q50 Hybrid 

AWD 7.7 0.65 0.69 0.04 1.54 1.63 0.09 

 

The results show that the model gives accurate predictions especially with the fuel 

predictions. The carbon emissions predictions fluctuate in accuracy and this might be because 

of the model’s performance whereby the accuracy was not too high. The distance column 

from table 4.2 is auto generated from the app when the user inputs his start location and 

destination. The same cars were also used to show the fuel and charging price differences as 

illustrated in table 4.3 below 

Table 4.3  

Fuel and charging costs comparison between ICE and EV 

ICE vehicles Gunsel B9 (EV) 

Distance 

(km) 

Fuel 

consumed (L) 

Fuel price 

(TL) 

Energy consumed 

(kWh) 

Charging 

cost 

Money 

saved  

29.36 2.22 76.59 4.1104 38.925488 37.66 

10.71 0.93 31.96 1.4994 14.199318 17.76 

45.53 4.19 144.34 6.3742 60.363674 83.98 

12 1.26 43.30 1.68 15.9096 27.39 
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25.7 2.80 96.44 3.598 34.07306 62.37 

34.6 2.76 95.03 4.844 45.87268 49.15 

50.2 5.84 201.19 7.028 66.55516 134.63 

36.6 4.00 148.41 5.124 48.52428 99.89 

67.4 8.00 275.69 9.436 89.35892 186.33 

7.7 0.69 23.93 1.078 10.20866 13.73 

 

 The amount of money a road user will save is significantly a lot when he uses an 

electric vehicle as is evident in table 4.3. The fuel prices keep on fluctuating and for the table 

above, the price of petrol cars was set at 34.46 Turkish Liras per litre and for diesel at 37.1 

per litre. The charging price was 9.47 for every kWh and all the prices were accessed online. 

Figure 4.5  

Route suggestion from the app  

 

The route is also suggested for the user as shown in figure 4.5 with the details. In the 

web app there is a side bar which shows the saved car details, start and destination, distance, 

the predicted fuel consumption and carbon emissions, energy consumption of the EV and the 

fuel and charging prices as shown in figure 4.6.  In the figure an example of a car input, KIA 

Optima, was used by inputting start location and destination as Nicosia and Kyrenia 

respectively located in the TRNC. The distance between then was determined to be 30.1 km 

with the fuel consumption of 3.54 litres and 8300 g of CO2 emissions. The vehicle uses 

premium gasoline and it was calculated to be 130.48 Turkish lira. The amount of energy that 

would be consumed for the same distance for the electric vehicle was 4.21 kWh and for this 

amount of energy, the price for charging was determined to be 39.91 Turkish lira. This meant 
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that the user would have saved 90 Turkish lira with zero carbon emissions if he used the EV 

instead of the conventional vehicle. 

Figure 4.6.  

Web app side pane showing car details, route predictions and car comparisons 

 

The results show that it is ideal to use electronic cars because of two main reasons, 

cost efficiency and environment safety. Since EVs run on battery, they have no emissions 

compared to their counterparts ICE vehicles which contribute a lot to the global warming. 

There have been so many studies on using machine learning in predicting either fuel 

consumption or carbon emissions (Azeez et al., 2019; Nyhan et al., 2016; Syahputra, 2016; 

Zargarnezhad et al., 2019; Ziółkowski et al., 2021) which goes to show that the advancements 

in technology can really help in solving world problems such as global warming. Machine 

learning algorithms can be used to efficiently describe dynamic relationships in the processed 

data, enable multi-level modelling of key performance indices, and facilitate sustainability 

performance evaluation and prediction(Ge et al., 2017). 

The findings of various studies advocate for adoption EVs as an ideal choice. In his 

study, (Hawkins et al., 2013) found out that EVs powered by the European electricity mix 

offer 10% to 20% decrease in Global Warming Potential (GWP) compared to conventional 

vehicles if they were to assume a lifetimes of 150,000 km. Even though EVs sound 

promising, there is need for a comprehensive approach to environmental policy and decision-

making in the adoption of electric transportation technologies (Ma et al., 2012). The vehicle 

life cycle emissions of electrical vehicles are fairly higher than in the conventional vehicles 
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due to the GHG emissions associated with battery manufacture. With the advent of inflation, 

the fuel prices are already sky rocketing, therefore using electronic vehicles becomes more 

economically efficient. As shown from the results, the price of charging electrical cars is way 

less than when one uses fuel. A study conducted in Portugal Borges et al. (2010) found out 

that fast charging an EV is 43% cheaper than refuelling a diesel ICE vehicle and 70% less 

expensive than refuelling a gasoline vehicle. The initial cost of purchasing the EV may be 

higher than the conventional vehicle. 

The specifications in conventional vehicles also affect their performance and the 

amount of CO2 gases they emit. The results show that vehicles with larger engines have more 

cylinders and consume more fuel compared to smaller engine vehicles with less cylinders. 

The more the fuel is consumed the higher the CO2 emissions. Automatic transmission 

vehicles also have higher fuel consumption rates compared to manual transmission. The 

vehicle class of different vehicles also influence the amount of fuel consumed and CO2 

emitted. The research found that SUVs, pickup trucks and sports cars consume a lot of fuel 

and emit the most gases. 
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Chapter 5  

Conclusion 

This research showcases the application of machine learning models to forecast fuel 

consumption and CO2 emissions in Internal Combustion Engine (ICE) cars. Utilizing a 

dataset encompassing vehicles from 2016 to 2023, seven machine learning models were 

trained, with the Extra Trees Regressor emerging as the top performer, achieving an 

impressive R2 score of 0.97 for fuel predictions and 0.94 for CO2 emissions. The model was 

then used for deployment in a web app. An electronic vehicle’s specifications were added to 

the backend of the web app, together with the charging and fuel prices. The web app was also 

integrated with map box to enable real-time visualization of the distance between start and 

end point. The results show that EVs are more efficient in that they are cheaper to charge 

with zero emissions. On the other hand, the use of predictive models can help journey 

planning for drivers who use ICE vehicles, also bringing about efficiency and cost savings.  

The research did not consider the driving conditions, driving behaviour, and the road 

infrastructure; therefore, application in real life might not be as accurate. Comparisons were 

also made between conventional vehicles and only one electric vehicle. That being said, it 

would be better to include these factors for future research and add the different types of 

electric cars for a more extensive comparison spectrum. Future work should also have more 

comparisons between the use of ICE vehicles and EVs concerning emissions, initial and 

maintenance costs, and life span. This will help car users get a good point of view on the 

better option. 

There is also room for more research to be done, especially in the other modes of 

transport such as sea and air transport. Significant emissions are produced by planes and 

airports. Using machine learning and artificial intelligence in flight planning will help 

companies save fuel costs and reduce emissions. In sea transport artificial intelligence can 

also be used to predict the weather conditions and suggest alternative routes to save fuel 

costs. There is also a need to acknowledge that the manufacture of electric vehicles leads to a 

lot of emissions. If the manufacturing industries considered using renewable energy sources 

such as solar in their plants for production, it would effectively reduce emissions. 

Manufacturers can also recycle used batteries instead of producing more batteries for EVs. 

Some recycled materials can also be added to some parts of the EVs for a fully carbon-neutral 

vehicle. If all this is done, then electric vehicles are the future cars. 
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Appendices 

Appendix A. JavaScript project controller code 

let viewContainer = document.querySelector(".user-credentials-view"); 

let imageView = document.querySelector(".image-view"); 

let dashboard = document.querySelector(".dashboard"); 

let dashboardLoader = document.querySelector(".dashboard-loader"); 

let userActions =document.querySelector(".user-actions"); 

let loginContainer = document.querySelector(".login-container") 

let signupContainer = document.querySelector(".signup-container") 

let mapView = document.querySelector(".map-view-container") 

let carOverlay = document.querySelector(".car-overlay"); 

let carListContainer = document.querySelector(".car-list-container"); 

let carNameInput = carOverlay.querySelector("#car-name-input"); 

let vehicleClassInput = carOverlay.querySelector("#vehicle-class-input"); 

let engineSizeInput = carOverlay.querySelector("#engine-size-input"); 

let cylindersInput = carOverlay.querySelector("#cylinders-input"); 

let transmissionInput = carOverlay.querySelector("#transmission-input"); 

let CO2RatingInput = carOverlay.querySelector("#co2-rating-input"); 

let fuelTypeInput = carOverlay.querySelector("#fuel-type-input"); 

let APIResults = { }; 

if(USERNAME != ""){ 

    showUsername(USERNAME); 

    maximize(); 

    getAvailableCars(); 

} 

function AJAXCall(callObject){ 

    let { 

        phpFilePath, 

        rejectMessage, 

        params, 

        type, 

    } = callObject; 

    return new Promise((resolve,reject) => { 

        let xhr = new XMLHttpRequest(); 

        xhr.open("POST", phpFilePath, true); 

        xhr.setRequestHeader("Content-type", "application/x-www-form-urlencoded"); 

        xhr.onload = function(){ 

            if( this.status == 200 ){ 

                let result = type == "fetch" ?  

                JSON.parse(this.responseText) : this.responseText ; 
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                //TODO: Take a look one more time 

                if(result.length < 1 && type != "fetch") reject(rejectMessage || "SQLError"); 

                else { resolve(result) } 

            } 

            else{ 

                reject("Error With PHP Script"); 

            } 

        } 

        xhr.send(params); 

    });    

} 

function showUsername(username){ 

    let placeholder = document.querySelector(".username"); 

    placeholder.textContent = username; 

} 

function showLogin(){ 

    loginContainer.style.display = "grid"; 

    signupContainer.style.display = "none"; 

} 

function showSignup(){ 

    signupContainer.style.display = "grid"; 

    loginContainer.style.display = "none"; 

} 

async function logout(){ 

    let callObject = { 

        phpFilePath: "include/logout-script.php", 

        rejectMessage: "oooops", 

        params: "", 

        type: "post", 

    } 

    try { 

        let result = await AJAXCall(callObject); 

        console.log(result); 

    } 

    catch(error){ 

        console.log(error); 

    } 

    minimize(); 

} 

function minimize(){ 

    viewContainer.style.width = "500px"; 
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    viewContainer.style.boxShadow = "0px 0px 200px var(--accent)"; 

    dashboard.style.display = "none"; 

    userActions.style.display = "none"; 

    imageView.style.left = "0px"; 

    viewContainer.style.top = "0px"; 

    viewContainer.style.left = "calc(100vw - 500px)"; 

    loginContainer.style.display = "grid"; 

    loginContainer.style.transform = "scale(0)"; 

    signupContainer.style.display = "none"; 

    setTimeout(() => { 

        loginContainer.style.transform = "scale(1)"; 

    }, 200) 

} 

function maximize(){ 

    viewContainer.style.width = "100vw"; 

    viewContainer.style.boxShadow = "unset"; 

    // viewContainer.style.position = "absolute"; 

    imageView.style.left = "calc(-100vw + 500px)"; 

    viewContainer.style.top = "0px"; 

    viewContainer.style.left = "0px"; 

    loginContainer.style.display = "none"; 

    signupContainer.style.display = "none"; 

    // show loader 2s 

    dashboardLoader.style.display = "flex"; 

    setTimeout(() => { 

        dashboardLoader.style.display = "none"; 

        dashboard.style.display = "grid"; 

        userActions.style.display = "grid"; 

    }, 2000) 

} 

async function login() { 

    let loginButton = document.querySelector(".login-button"); 

    let loginLoader = loginButton.querySelector(".button-loader"); 

    let buttonText = loginButton.querySelector("p"); 

 

    buttonText.style.display = "none"; 

    loginLoader.style.display = "flex"; 

    // REGEX Inputs 

    let username = document.querySelector(".login-username-field").value; 

    let password = document.querySelector(".login-password-field").value; 

    let params = username=${username}&&+password=${password}; 
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    let callObject = { 

        phpFilePath: "include/login-script.php", 

        rejectMessage: "shoot", 

        params, 

        type: "post", 

    } 

    try { 

        let result = await AJAXCall(callObject) 

        console.log(result); 

        if( result == "success" ){ 

            setTimeout(() => { 

                maximize(); 

                getAvailableCars(); 

                showUsername(username); 

                buttonText.style.display = "block"; 

                loginLoader.style.display = "none"; 

            }, 2000); 

        } 

        else { 

            // showWrongCredentialsWarning(); 

            setTimeout(() => { 

                buttonText.style.display = "block"; 

                loginLoader.style.display = "none"; 

            }, 1300); 

        } 

    } 

    catch(error){ 

        console.log((error)); 

    } 

} 

function slideOutMapView(){ 

    mapView.style.left = "100vw"; 

    viewContainer.style.left = "0vw"; 

} 

function showAddCarOverlay(){ 

    carOverlay.style.display = "grid"; 

} 

 

function closeAddCarOverlay(){ 

    carOverlay.style.display = "none"; 

    resetCarForm(); 
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} 

 

async function addCar(element){ 

    let text = element.querySelector("p"); 

    let buttonLoader = element.querySelector(".button-loader"); 

    text.style.display = "none"; 

    buttonLoader.style.display = "flex"; 

    let details = getCarDetails(); 

    try { 

        console.log(details); 

        let result = await sendCarDetails(details); 

        console.log("result: ", result); 

        //TODO: resetFormAndLoadingButton() 

    } 

    catch(error){ 

        console.log(error); 

    } 

    setTimeout(() => { 

        text.style.display = "none"; 

        buttonLoader.style.display = "flex"; 

        closeAddCarOverlay(); 

        getAvailableCars(); 

        // refreshDashboard(); 

    }, 3000); 

} 

 

function resetCarForm() { 

    carNameInput.value = ""; 

     

    vehicleClassInput.setAttribute("data-value", "Select Vehicle Class"); 

    vehicleClassInput.setAttribute("data-empty", "true"); 

    resetRangeElement(engineSizeInput); 

    resetRangeElement(cylindersInput); 

    resetRangeElement(CO2RatingInput); 

    transmissionInput.setAttribute("data-value", "Select Transmission"); 

    transmissionInput.setAttribute("data-empty", "true"); 

    fuelTypeInput.setAttribute("data-value", "Select Fuel Type"); 

    fuelTypeInput.setAttribute("data-empty", "true"); 

    let button = document.querySelector(".add-car-button"); 

    button.querySelector(".button-loader").style.display = "none"; 

    button.querySelector("p").style.display = "block"; 
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} 

function getCarDetails() { 

    let carName = carNameInput.value; 

    let vehicleClass = vehicleClassInput.getAttribute("data-value"); 

    let engineSize = engineSizeInput.value; 

    let cylinders = cylindersInput.value; 

    let transmission = transmissionInput.getAttribute("data-value"); 

    let CO2Rating = CO2RatingInput.value; 

    let fuelType = fuelTypeInput.getAttribute("data-value"); 

 

    switch (fuelType) { 

        case "Diesel": 

            fuelType = "D"; 

        break; 

        case "Ethanol": 

            fuelType = "E"; 

        break; 

        case "Regular Gasoline": 

            fuelType = "X"; 

        break; 

        case "Premium Gasoline": 

            fuelType = "Z"; 

        break; 

    } 

 

 

    // checkEmptyInputs(); 

 

    return { 

        carName, 

        vehicleClass, 

        engineSize, 

        cylinders, 

        transmission, 

        CO2Rating, 

        fuelType 

    } 

 

} 

 

async function sendCarDetails(details){ 
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    let { 

        carName, 

        vehicleClass, 

        engineSize, 

        cylinders, 

        transmission, 

        CO2Rating, 

        fuelType 

    } = details; 

 

    let params =  

    userID=${userID}&&+ 

    carName=${carName}&&+ 

    vehicleClass=${vehicleClass}&&+ 

    engineSize=${engineSize}&&+ 

    cylinders=${cylinders}&&+ 

    transmission=${transmission}&&+ 

    CO2Rating=${CO2Rating}&&+ 

    fuelType=${fuelType}; 

 

    let callObject = { 

        phpFilePath: "include/add-car.php", 

        rejectMessage: "car not added", 

        params, 

        type: "post", 

    } 

 

    return await AJAXCall(callObject); 

} 

 

async function getAvailableCars(){ 

 

    let params = userID=${userID}; 

 

    let callObject = { 

        phpFilePath: "include/cars.fetch.php", 

        rejectMessage: "cars not fetched", 

        params, 

        type: "fetch", 

    } 
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    try { 

        let cars = await AJAXCall(callObject); 

         

        if (cars.length > 0) { 

 

            let innerHTML = cars.map( car =>  

                `<div class="car-item"> 

                    <h1>${car.carName}</h1> 

                    <div class="button" onclick="predictWithID(${car.id})">Predict</div> 

                </div>` 

            ) 

     

            carListContainer.innerHTML = innerHTML.join(""); 

        } 

        else { 

            carListContainer.innerHTML =  

            <div class="span-all-directions">There are no cars yet, add a new car.</div> 

        } 

    } 

    catch(error){ 

        console.log(error); 

    } 

async function predictWithID(givenID){ 

 

    mapView.style.left = "0vw"; 

    viewContainer.style.left = "-100vw"; 

 

    try{ 

        let carArray = await fetchDetailsFor(givenID); 

 

        carArray = carArray[0] 

 

 

        // let carArray = { 

        //     carName: "Mercedes", 

        //     vehicleClass: "Two-seater", 

        //     engineSize: 5, 

        //     cylinders: 6, 

        //     transmission : "AV", 

        //     CO2Rating: 6, 
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        //     fuelType: "X" 

        // }    

        let indexesArray = convertToArrayOfIndexes(carArray); 

        console.log("indexesArray: ", indexesArray) 

        let results = await predictWithObject(indexesArray); 

        setSidePaneValues(carArray, results); 

        console.log("results: ", results); 

        // Make sure server is on... 

        // setResultsGlobally 

        // <--- Wait for start and destination 

        // <-- displayDetailsOnScreen() 

    } 

    catch(error){ 

        console.log(error) 

    } 

} 

async function fetchDetailsFor(givenID){ 

    let params = carID=${givenID}; 

    let callObject = { 

        phpFilePath: "include/car.fetch.php", 

        rejectMessage: "car details not fetched", 

        params, 

        type: "fetch", 

    } 

 

    try { 

        return await AJAXCall(callObject); 

    } 

    catch(error){ 

        console.log(error); 

    } 

} 

function setSidePaneValues(carArray, results){ 

        let { 

            carName, 

            vehicleClass, 

            engineSize, 

            cylinders, 

            transmission, 

            CO2Rating, 

            fuelType, 
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        } = carArray; 

        APIResults = results; 

        let carNameBox = document.querySelector(".car-name-box"); 

        let carVehicleClassBox = document.querySelector(".car-vehicle-class-box"); 

        let carEngineBox = document.querySelector(".car-engine-box"); 

        let carCylinderBox = document.querySelector(".car-cylinders-box"); 

        let carFuelTypeBox = document.querySelector(".car-fuel-type-box"); 

        let carTransmissionBox = document.querySelector(".car-transmission-box"); 

        let carCO2RatingBox = document.querySelector(".car-co2-rating-box"); 

        carNameBox.querySelector("div").textContent = carName; 

        carVehicleClassBox.querySelector("div").textContent = vehicleClass; 

        carEngineBox.querySelector("div").textContent = engineSize; 

        carCylinderBox.querySelector("div").textContent = cylinders; 

 

        let _fuelType; 

 

        switch (fuelType) { 

            case "D": 

                _fuelType = "Diesel"; 

            break; 

            case "E": 

                _fuelType = "Ethanol"; 

            break; 

            case "X": 

                _fuelType = "Regular Gasoline"; 

            break; 

            case "Z": 

                _fuelType = "Premium Gasoline"; 

            break; 

        } 

        carFuelTypeBox.querySelector("div").textContent = _fuelType; 

        carTransmissionBox.querySelector("div").textContent = transmission; 

        carCO2RatingBox.querySelector("div").textContent = CO2Rating;   

} 

Appendix B. Map view controller code 

let suggestionsView = document.querySelector(".suggestions"); 

let startLocationName = "" 

let endLocationName = "" 

let startInputBox = document.querySelector(".start-input-location") 

let endInputBox = document.querySelector(".end-input-location") 

let newID = generateUUID(); 
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mapboxgl.accessToken = 

'pk.eyJ1IjoiaWJyYWhpbWFtZTEzIiwiYSI6ImNsb2xlaDUxbDJlcXYya3A5bzZoZWc5MzkifQ.YyKfquv1mvX

7xrUj5oG1Ow'; 

const map = new mapboxgl.Map({ 

    container: 'map', // container ID 

    style: 'mapbox://styles/mapbox/streets-v12', // style URL 

    center: [33.321258,35.212448], // starting position [lng, lat] 

    pitch: 60, 

    bearing: -60, 

    zoom: 10 

}); 

let source; 

let destination; 

let startMarker; 

let endMarker; 

async function getRoute(start, end) { 

    if(startMarker) startMarker.remove() 

    if(endMarker) endMarker.remove() 

    // Set marker options. 

endMarker = new mapboxgl.Marker({ 

    color: "#FFFFFF", 

    draggable: true 

    }) 

    .setLngLat(end) 

    .setPopup(new mapboxgl.Popup().setHTML("<h1>Destination</h1>")) 

    .addTo(map); 

startMarker = new mapboxgl.Marker({ 

    color: "var(--accent)", 

    draggable: true 

    }) 

    .setLngLat(start) 

    .setPopup(new mapboxgl.Popup().setHTML("<h1>Destination</h1>")) 

    .addTo(map); 

    const bbox = [start, end]; 

    map.fitBounds(bbox, { 

    padding: {top: 200, bottom: 300, left: 150, right: 150}, 

    duration: 2000, 

    }); 

const query = await fetch( 

https://api.mapbox.com/directions/v5/mapbox/driving/${start[0]},${start[1]};${end[0]},${end[1]}?steps=true&

geometries=geojson&access_token=${mapboxgl.accessToken}, 
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{ method: 'GET' } 

); 

    const json = await query.json(); 

    const routes = json.routes; 

    console.log("routes: ",routes); 

    const data = json.routes[0]; 

    console.log("data: ", data.duration /* in seconds */); 

    console.log("distance: ", data.distance); 

    const route = data.geometry.coordinates; 

    setDistance(data.distance); 

const geojson = { 

    type: 'Feature', 

    properties: {}, 

    geometry: { 

    type: 'LineString', 

    coordinates: route 

    } 

}; 

console.log(geojson); 

// if the route already exists on the map, we'll reset it using setData 

if (map.getSource('route')) { 

map.getSource('route').setData(geojson); 

} 

// otherwise, we'll make a new request 

else { 

map.addLayer({ 

id: 'route', 

type: 'line', 

source: { 

    type: 'geojson', 

    data: geojson 

}, 

layout: { 

    'line-join': 'round', 

    'line-cap': 'round' 

}, 

paint: { 

    'line-color': '#ff0000', 

    'line-width': 5, 

    'line-opacity': 0.75 

} 
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}); 

} 

// add turn instructions here at the end 

} 

async function giveSuggestions(element) { 

    let value = element.value 

    showSuggestionsView(); 

 

    const query = await fetch( 

https://api.mapbox.com/search/searchbox/v1/suggest?q=${value}&limit=3&session_token=${newID}&access_

token=${mapboxgl.accessToken}, 

        { method: 'GET' } 

    ); 

    const json = await query.json(); 

    suggestionsView.innerHTML = ""; 

    if (element.className == "start-input-location"){ 

        if(json.suggestions){ 

            json.suggestions.forEach( result => { 

                populateList(result.name, setSourceTo); 

            }); 

        } 

        // store source lang lat 

    } 

    else if(element.className == "end-input-location"){ 

        if(json.suggestions){ 

            json.suggestions.forEach( result => { 

                populateList(result.name, setEndTo); 

            }); 

        } 

    } 

    function populateList(value, evenListenerCallback) { 

        let element = document.createElement('div'); 

        console.log("value: ",value); 

        element.textContent = value; 

        element.className = "suggestion-row"; 

        element.addEventListener('click', () => { evenListenerCallback(value); hideSuggestionsView() }); 

        suggestionsView.appendChild(element); 

    } 

    async function setSourceTo(value){ 

        startLocationName = value; 

        console.log("babe: ", value); 
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        startInputBox.value = value; 

        document.querySelector(".start-route-box").textContent = value; 

        const query = await fetch( 

  https://api.mapbox.com/geocoding/v5/mapbox.places/${value}.json?access_token=${mapboxgl.accessToken}, 

            { method: 'GET' } 

        ); 

        const json = await query.json(); 

        if(json){ 

            console.log(json) 

            console.log("[lat, long]: ", json.features[0].center); 

            let result = json.features[0].center; 

            source = result; 

            // getRoute(source, result); 

        } 

        // hideSuggestionsView(); 

    } 

    async function setEndTo(value){ 

        endLocationName = value; 

        endInputBox.value = value; 

        document.querySelector(".end-route-box").textContent = value; 

        const query = await fetch( 

  https://api.mapbox.com/geocoding/v5/mapbox.places/${value}.json?access_token=${mapboxgl.accessToken}, 

            { method: 'GET' } 

        ); 

        const json = await query.json(); 

        if(json){ 

            console.log(json) 

            console.log("[lat, long]: ", json.features[0].center); 

            let result = json.features[0].center; 

            destination = result; 

            // getRoute(source, result); 

        } 

        // hideSuggestionsView(); 

    } 

    function showSuggestionsView(){ 

        suggestionsView.style.display = "grid" 

    } 

    function hideSuggestionsView(){ 

        suggestionsView.style.display = "none" 

    } 

} 
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function setDistance(distance){ 

    let distanceBox = document.querySelector(".distance-box"); 

    let roundedDistance = Math.round(distance / 1000 * 100) / 100 ; 

    distanceBox.querySelector("b").textContent = roundedDistance; 

    let { 

        fuel, 

        co2 

    } = APIResults; 

    let fuelResult = (fuel * roundedDistance) / 100; 

    fuelResult = Math.round(fuelResult * 100) / 100; 

    let co2Result = co2 * roundedDistance; 

    co2Result = Math.round(roundedDistance * 100); 

    let litresBox = document.querySelector(".litres-box"); 

    let gramsBox = document.querySelector(".grams-box"); 

    litresBox.querySelector("b").textContent = fuelResult; 

    gramsBox.querySelector("b").textContent = co2Result; 

    let fuelPrice = getFuelPrice(fuelResult); 

    let electicityCost = setEVDetails(roundedDistance); 

    let fuelPriceBox = document.querySelector(".fuel-price-box"); 

    fuelPriceBox.querySelector("b").textContent = fuelPrice; 

 

    let savingsResult = fuelPrice - electicityCost; 

    savingsResult = Math.round((fuelPrice - electicityCost) * 100) / 100; 

    let savingsBox = document.querySelector(".savings-box"); 

    savingsBox.querySelector("b").textContent = savingsResult; 

    // What if the fuelPrice is less than the electic cost.  

    // What if it comes back negative 

} 

function getFuelPrice(fuelInLitres) { 

    let fuelPriceDifferentiator = document.querySelector(".fuel-price-differentiator"); 

    let carFuelTypeBox = document.querySelector(".car-fuel-type-box"); 

    let fuelType = carFuelTypeBox.querySelector("div").textContent; 

    let costPrice; 

    fuelPriceDifferentiator.textContent = Fuel Price For ${fuelType}; 

    switch (fuelType){ 

        case "Diesel": 

            costPrice = 39.06; 

        break; 

        case "Ethanol": 

            costPrice = 34.91; 

        break; 
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        case "Regular Gasoline": 

            costPrice = 34.55; 

        break; 

        case "Premium Gasoline": 

            costPrice = 36.86; 

        break; 

    } 

    return Math.round(fuelInLitres * costPrice * 100) / 100; 

} 

function getElectricityCost(electicityUse) { 

    return Math.round(electicityUse * 9.48 * 100) / 100; 

} 

function calculateElectricityUse(distance){ 

    return Math.round(distance * 0.14 * 100) / 100; 

} 

function setEVDetails(distance){ 

    let electicityUse = calculateElectricityUse(distance); 

    let electricityCost = getElectricityCost(electicityUse); 

    let electicityUseBox = document.querySelector(".electicity-use-box"); 

    let electicityCostBox = document.querySelector(".electricity-cost-box"); 

    electicityUseBox.querySelector("b").textContent = electicityUse; 

    electicityCostBox.querySelector("b").textContent = electricityCost; 

 

    return electricityCost; 

} 

function generateUUID() { // Public Domain/MIT 

    var d = new Date().getTime();//Timestamp 

    var d2 = ((typeof performance !== 'undefined') && performance.now && (performance.now()*1000)) || 

0;//Time in microseconds since page-load or 0 if unsupported 

    return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) { 

        var r = Math.random() * 16;//random number between 0 and 16 

        if(d > 0){//Use timestamp until depleted 

            r = (d + r)%16 | 0; 

            d = Math.floor(d/16); 

        } else {//Use microseconds since page-load if supported 

            r = (d2 + r)%16 | 0; 

            d2 = Math.floor(d2/16); 

        } 

        return (c === 'x' ? r : (r & 0x3 | 0x8)).toString(16); 

    }); 

} 
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Appendix X. Turnitin Similarity Report 

 

 

 

 


