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Abstract 

 

Comparative Analysis of Machine Learning Models in Predicting Solar Power 

in Photovoltaic Systems. 

 

Orish Goodness Chinaza 

MSc, Department of Electrical and Electronics Engineering 

January 2024, 90pages 

 

Renewable energy has become a global focus in these recent times which also includes 

harnessing solar power using photovoltaic systems. Photovoltaic systems supply a 

renewable source of energy that is environmentally friendly by converting sunlight 

into electricity. Due to the variability of weather conditions, photovoltaic systems are 

not entirely reliable, to improve energy planning and consumption an accurate system 

for solar power prediction is needed. In this thesis, a careful comparison of six machine 

learning models which are Decision Tree (DT), Linear Regression (LR), Support 

Vector Regression (SVR), Random Forest (RF), and K-Nearest Neighbors (KNN), to 

examine the complex issue of solar power prediction. A large meteorological dataset 

is used to study the patterns and relationship between the variables which are majorly 

the weather conditions and the output which is the solar power generated. With the use 

of significant error metrics which are R-squared (R2), Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), the models 

undergo a thorough evaluation to observe how well each of them handles the complex 

nonlinear relationships of the meteorological data, the results of this study show that 

Random Forest outperforms the other five models consistently over the different ratios 

of data splits. It consistently has the lowest error metrics of RMSE of 0.1295, MSE of  

0.0168, and MAE of 0.0605 in the training and RMSE of 0.2897, MSE of 0.0839, and 

MAE of 0.1393 in the testing and the highest R-squared scores of  0.9216, 0.8837, and 

0.8879 on all the different ratios of data splits which were 10:90, 20:80, and 30:70 

respectively, which shows a great capacity and ability to adapt and reduce over-fitting 

problems in prediction of solar power. 
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Özet 

 

       Fotovoltaik Sistemlerde Güneş Enerjisi Tahmininde Makine Öğrenmesi 

Modellerinin Karşılaştırmalı Analizi. 

 

Goodness Chinaza Orish 

    Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü  

Ocak, 2024, 90 sayfa 

 

Yenilenebilir enerji, fotovoltaik sistemler kullanarak güneş enerjisinden yararlanmayı 

da içeren bu son zamanlarda küresel bir odak noktası haline gelmiştir. Fotovoltaik 

sistemler, güneş ışığını elektriğe dönüştürerek çevre dostu yenilenebilir bir enerji 

kaynağı sağlamaktadır. Hava koşullarının değişkenliği nedeniyle, fotovoltaik sistemler 

tamamen güvenilir değildir, enerji planlamasını ve tüketimini iyileştirmek için güneş 

enerjisi tahmini için doğru bir sisteme ihtiyaç vardır. Bu tezde, güneş enerjisi tahmini 

gibi karmaşık bir konuyu incelemek için Karar Ağacı (DT), Doğrusal Regresyon (LR), 

Destek Vektör Regresyonu (SVR), Rastgele Orman (RF) ve K-En Yakın Komşular 

(KNN) olmak üzere altı makine öğrenimi modeli dikkatli bir şekilde karşılaştırılmıştır. 

Büyük bir meteorolojik veri seti, büyük ölçüde hava koşulları olan değişkenler ile 

üretilen güneş enerjisi olan çıktı arasındaki kalıpları ve ilişkiyi incelemek için 

kullanılır. R-kare (R2), Ortalama Karesel Hata (MSE), Ortalama Karesel Hatanın 

Kökü (RMSE) ve Ortalama Mutlak Hata (MAE) gibi önemli hata ölçütlerinin 

kullanılmasıyla, modeller, her birinin meteorolojik verilerin karmaşık doğrusal 

olmayan ilişkilerini ne kadar iyi ele aldığını gözlemlemek için kapsamlı bir 

değerlendirmeye tabi tutulur, bu çalışmanın sonuçları Rastgele Orman'ın farklı veri 

bölme oranlarında tutarlı bir şekilde diğer beş modelden daha iyi performans 

gösterdiğini göstermektedir. Eğitimde 0,1295 RMSE, 0,0168 MSE ve 0,0605 MAE ile 

en düşük hata metriklerine ve testte 0,2897 RMSE, 0,0839 MSE ve 0,1393 MAE ile 
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0,9216, 0,8837 ve 0,8878 ile en yüksek R-kare skorlarına sahiptir. Sırasıyla 10:90, 

20:80 ve 30:70 olan tüm farklı veri bölme oranlarında 8837 ve 0.8879, bu da güneş 

enerjisinin tahmininde aşırı uyum sorunlarını uyarlama ve azaltma konusunda büyük 

bir kapasite ve yetenek göstermektedir. 

 

Anahtar Kelimeler: Güneş Enerjisi Tahmini, Fotovoltaik Sistemler, Makine 

Öğrenmesi Modelleri, Rastgele Orman, Meteorolojik Veri Kümesi. 
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CHAPTER I 

Introduction 

 

Background of the study  

In Germany, the proliferation of solar micro-grid systems is evident, with some 

integrated into the national grid and others contemplating future connections without 

prior studies. The dynamic nature of solar PV power generation significantly impacts 

system planning, operation, and economic analysis. Improved prediction methods for 

smart grid systems would be advantageous. Practical scenarios differ, influencing PV 

panel performance. Hence, it is crucial to explore the relationship between solar PV 

power output and external environmental factors such as solar irradiance, cell 

temperature, and wind speed. These uncertain factors contribute to power output 

uncertainty. A precise estimation of generated power is vital for investors 

incorporating such resources into the grid. This research aims to develop a solar PV 

data prediction model based on solar irradiance, emphasizing low complexity and 

acceptable modeling accuracy. Numerous studies in the literature have investigated 

PV characteristics for modeling and predicting PV power. With the rapid growth of 

PV system technology, a comprehensive understanding and research of PV system 

performance and accurate power output prediction is crucial (Ozerdem, Tackie, & 

Biricik, 2015). 

 

Purpose of the Study 

The purpose of this study is to research solar PV power prediction utilizing machine 

learning techniques (MLT) for the photo voltaic system. It aims to specifically analyze 

data, comparing solar PV power and irradiance and other parameters that affect the 
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generation of solar power. Including wind and temperature to determine how these 

variables relate to one another and affect solar power generation. Another goal is to 

create a solar PV power predicting model comparing different Machine learning 

models and evaluate them by using various evaluation metrics to compare the 

predicted and actual power. By comparing the results of these different machine 

learning models we will be able to suggest a very accurate model for predicting solar 

PV power. In achieving the aforementioned objectives, the study aims to instill 

confidence among stakeholders, attract investments, and catalyze the widespread 

adoption of solar microgrid systems. Thereby contributing to sustainable energy 

transitions. This contribution aligns with the broader goal of fostering a sustainable 

transition in the energy landscape. 

 

Research Question 

• How do external elements in the environment, such as solar irradiance, 

temperature, and wind speed impact the output of solar PV power? 

• Can machine learning algorithms, specifically KNN, SVR, Random Forest, 

Decision Tree, Linear Regression and AdaBoost accurately predict solar PV 

power output? 

• What is the relative performance of the chosen machine learning algorithms 

concerning precision, intricacy and applicability for practical deployment? 

• How viable is the incorporation of the formulated prediction model into 

existing photovoltaic systems to enhance solar energy management? 
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Significance of the Study 

• Strategic Decision-Making for Stakeholders: By enhancing the accuracy of 

solar PV power output predictions, this study empowers stakeholders, 

including investors, energy planners, and policymakers with reliable insights. 

The precise forecasting provided by the developed model serves as a strategic 

tool for informed decision-making allowing stakeholders to allocate resources 

efficiently and plan for the integration of solar resources into the grid. 

• Economic Viability and Investment Confidence: As renewable energy 

investments gain momentum globally, the study's emphasis on optimizing 

model complexity ensures economic viability. The low-complexity prediction 

model proposed here not only facilitates seamless integration into existing 

photovoltaic systems but also instills confidence among investors. The ability 

to navigate complexities efficiently encourages sustained investments in solar 

microgrid systems. 

• Promoting Sustainable Energy Transition: This research is important because 

it has the potential to hasten the shift to renewable energy sources. The research 

advances the goal of integrating renewable energy sources, especially solar 

power, into the global energy mix by boosting trust, offering precise prediction 

and streamlining integration procedures. In summation, the expanded 

significance of this study encompasses strategic decision-making, economic 

viability, advancements in machine learning applications, environmental 

impact mitigation, facilitation of photovoltaic systems integration and the 

overarching promotion of a sustainable energy transition on a global scale. 
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Limitations 

While this study strives to provide valuable insights into solar power prediction and 

the incorporation of machine learning algorithms, it is imperative to recognize specific 

constraints that could impact the extent and applicability of the results (Fayyad, 2023) 

• Data Restrictions: The precision and efficacy of the created prediction model 

heavily rely on the quality and representativeness of the accessible data. 

Constraints in the quantity or diversity of the dataset might influence the 

model's capacity to extrapolate to a broader spectrum of environmental 

conditions. 

• Presumptions in Machine Learning: This study presupposes that the chosen 

machine learning algorithms (KNN, SVR, Random Forest, Decision Tree, 

Linear Regression and AdaBoost) are apt for the distinctive characteristics of 

the solar PV dataset. The efficacy of these algorithms hinges on optimal 

parameter adjustment, and less-than-optimal tuning could impact predictive 

capability. 

• Fluctuating Nature of Environmental Factors: External environmental factors, 

such as solar irradiance, cell temperature and wind speed exhibit an inherently 

dynamic nature and are subject to swift alterations. The study may not 

encompass all potential variations, and real-time shifts in these factors might 

introduce uncertainties in the forecasts. 

• Single-Location Emphasis: This study may concentrate on a particular 

geographic locale or a set of solar photovoltaic systems in Germany. While this 

provides insights at a local level, it constrains the generalizability of findings 

to diverse geographical and climatic settings. 
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• Balancing Model Complexity and Accuracy: Striking a balance between low 

model complexity and high accuracy poses a formidable challenge. The 

developed prediction model might prioritize simplicity, potentially 

compromising a degree of accuracy or vice versa. 

• External Factors Beyond the Scope: The study focuses on the correlation 

between solar PV power output and specific external environmental factors. 

Other potential influencers, such as dust accumulation on solar panels or 

shading effects, are acknowledged but may not receive exhaustive treatment. 

• Variability in Photovoltaic Systems: The assessment of feasibility for 

integrating the prediction model into photovoltaic systems assumes a certain 

level of standardization. Disparities in infrastructures across regions may 

impact the applicability of the proposed model. 

 

Structure of Research 

The research project comprises several elements, the first of which is the introduction 

that provides background information and context for the study topic. Solar power 

prediction using machine learning models and other relevant studies regarding the 

machine learning-based prediction are presented in the literature review section.  

Section on methodology providing an overview of the different machine learning 

model used in this study, along with an explanation of the data pre-processing steps, 

such as data cleaning details, as well as an explanation of the research dataset and 

performance evaluation metrics then the discussion section that carefully evaluates the 

results of the  research. 
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CHAPTER II 

Literature Review 

 

Theoretical Framework on Renewable Energy Theories 

Drawing upon relevant theories in renewable energy, machine learning, and 

photovoltaic systems, this framework offers a methodical approach to address the 

research questions and hypotheses. With the rise of the oil crisis in the 1970s solar 

energy has become on the increase in its use. Renewable energy has become a general 

source of energy which has made researchers and policy makers globally focus on the 

various manners to effectively utilise solar energy. There are two methods by which 

solar energy can be used in terrestrial regions: solar photovoltaic (SPV), as displayed 

in Figure 1 or solar Chimney, collectors, cookers, Air Conditioning System, and other 

sun thermal devices (Timilsina, Kurdgelashvili, & Narbel, 2012). 

Photovoltaic energy conversion converts energy directly without an intermediary. A 

Solar photovoltaic (PV) system can generate power without an external inducer within 

the range of microwatts to megawatts. They are usually very simple to maintain and 

 

Figure 1: Various solar energy kinds according to availability on the global 

market(Timilsina et al., 2012) 
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adjustable in their design. Having an independent photovoltaic system has become 

increasing important for rural areas in order to access electricity most especially in 

countries that are developing. The solar house lighting system is made of a charge 

controller, solar PV module and a battery that are all necessary to electrify a rural home 

(Elhadidy, 2002). Charge controller, solar PV module and batteries are also 

constituents of a solar house lighting system which are chosen based on the needs of 

the rural home. As a result, there is a greater need for solar PV across a range of fields. 

Future predictions indicate that the price of a watt of solar PV will decrease even 

further to 0.50 $/Wp and 1.0 $/Wp, from a value of 3.50 $/Wp for first-generation and 

second-generation solar cells respectively (Díaz, Peña, Muñoz, Arias, & Sandoval, 

2011). The popularity and installation of PV systems have been boosted by 

government feed-in tariff schemes put in place in many developing countries. The total 

installation capacity for the nations taking part in the IEAPVPS program was 

determined to have expanded from 103 MW in 1992 to 63,611 MW in 201 (Moosavian, 

Rahim, Selvaraj, & Solangi, 2013). The solar panel is like a sandwich made of silicon. 

It is usually made of a non-reflective coating made of tempered glass on the outside 

that serves as environmental protection. A conducting electrode on top of the solar 

panel serves as the cathode, or negative electrode, in most cases. Next is a thick layer 

of semi-conductors, either n-type or p-type. There are more free electrons than atoms 

are present in N-type solar panels. While the Solar panels of the P type has less free 

electrons. The opposite type of material is found on the other side of the depletion zone, 

which follows the top layer. The anode or positive electrode is the opposing electrode 

and makes up the bottom layer of the solar panel. Light in sun have energy which is 

transferred to them by the chemical processes taking place in the sun. As a result of 

the light's energy being transmitted to the solar cells' semi-conductor materials, a 



23 

 

constant flow of electrons is produced. This electron flow then produces electric 

current generating electricity which is used by the inverter to create AC energy, which 

can power your home or place of business. On thing to note is that, the sun is a huge 

star that emits energy continuously. The radiation from this energy is received by 

everything and eventually reaches the earth. This radiation is particularly crucial for 

solar installations since it affects peak power output. The impact of the different solar 

radiation components on photovoltaic system is covered in the section below and 

shown in Figure 2. 

• Direct Radiation: This is all of the solar energy that makes it to Earth 

undisturbed, meaning that no buildings, trees, clouds or other obstructions are 

interfering with it. Going outside on a bright, sunny day and observing how 

light falls on the ground without obstruction is the simplest method to 

comprehend this. When solar PV systems are powered by direct sunlight, they 

produce the greatest electricity. 

• Diffused Radiation: This type of radiation travels through more indirect routes 

to reach the planet. Usually, airborne particles, clouds, and water vapor 

disperse or obstruct the path that radiation takes to get to the surface of the 

earth. It can be experienced on a cloudy or rainy day, observe that light can still 

be seen but this is diffused light, not direct light. The environment is not 

entirely dark, solar panels can continue to generate electricity in the presence 

of clouds and overcast by utilizing the indirect radiation that is already present. 

• Reflected Radiation: The quantity of solar energy reflected from a surface, 

determined by the albedo or solar reflectance of the substance on the surface, 

is known as reflected radiation. Either the planet's surface absorbs the solar  
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Figure 2: Direct, Diffuse & Reflected Radiation (Elhadidy, 2002) 

energy that enters the atmosphere or snow, ice, and other surfaces reflect it back. 

Generally speaking, only a small percentage of radiation is reflected, with the 

exception of areas that are surrounded by highly reflecting surfaces like snow cover. 

Types of Photovoltaic Systems  

Photovoltaic systems vary in components, size, and application type with rural solar 

water pumping using slightly different components than residential rooftop systems, 

which use similar components for both types. The main types and component of a 

Photovoltaic systems which are shown in Figures 3, 4 & 5 are: 

• Grid-Connected Solar Photovoltaic Systems:  A DC-AC converter is used 

by a grid-connected solar photovoltaic (PV) system to transform solar energy 

into AC power. The inverter controls and regulates changes in the system by 

converting DC voltage from solar panels or the output voltage of a DC-DC 

converter into AC voltage. The inverter transforms the solar energy into AC 

power at a frequency compatible with the utility grid as this AC voltage is  
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Figure 3: Grid-Connected Solar Photovoltaic Systems (Elhadidy, 2002) 

included into the grid. The inverter AC output meets the grid's criteria for 

voltage and power quality. The solar PV system is typically deployed in  

conjunction with a metering system. In residential settings, utility grid power 

is not used when photovoltaic system power can cover the entire load. The 

remaining power is taken from the grid when photovoltaic power is limited. 

More photovoltaic power is put into the grid if it is generated. The solar 

photovoltaic  system only generates electricity when the grid is operational. By 

connecting directly to the National Grid, the system lowers energy costs and 

its carbon footprint. It uses solar to power appliances instead of a battery 

storage system. Overage energy is exported back to the grid and reimbursed 

via SEG or Feed-in-Tariff. Because the National Grid consistently supports the 

energy supply, on-grid technologies provide security. Grid failure, however, 

can result power outages caused by grid-tied inverters. By including a battery 

in an existing hybrid system, solar power can be used even amid power outages.  

• Stand-Alone or Off-Grid PV Systems: A PV system that is off-grid or stand-

alone may run on DC or AC power. The photovoltaic system is not linked to 

the electric grid in either setup. The solar panels can provide the DC voltage if 
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DC loads remain attached to the solar PV structure, or a DC-DC converter can 

be utilized to convert the photovoltaic energy to higher DC levels. The PV 

voltage is increased by the DC-DC converter to a level appropriate for the DC 

loads. The number of solar panels in the PV system can be decreased by 

incorporating the DC-DC converter. Off-grid PV systems convert PV voltage 

to AC using inverters, reducing solar panel usage and storing voltage in 

batteries and can be integrated with DC-DC converters for stand-alone systems. 

For people who wish to be energy independent or who find it difficult to 

connect to the national grid, an off-grid solar system is a renewable energy 

source that doesn't depend on it. Demand for energy independence is growing 

as energy prices rise. Off-grid solutions include backup generators, solar 

energy generation equipment and renewable energy sources to guarantee 

battery charging throughout the year. They are energy independent since they 

can supply electricity even in isolated areas. Although off-grid systems can be 

modular, making them more flexible in fulfilling energy requirements, they are 

more expensive than regular grid-tied systems. 

 

Figure 4: Stand-Alone or Off-Grid PV Systems (Elhadidy, 2002) 
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• Hybrid Solar PV Systems: In hybrid solar systems the techonlogies of solar 

panels and solar batteries are combined to generate green energy solutions that 

serves as a backup energy source. Even if the hybrid PV remains connected to 

the the national grid, solar enegy generated by it is initially held in a home 

battery then transferred to the grid. With hybrid solar system, excess solar 

energy is used to power homes at night and less enegy can be exported to the 

grid through battery storage. Additionally, in contrast to an on-grid system, the 

battery storage can be utilized for producing electricity in a case where the 

national grid experiences a disruption. This procedure known as "islanding"  is 

particularly advantageous for owners living in areas with frequent blackouts. 

You can draw from the grid even in the event that your battery runs out of 

electricity when using hybrid solar panel structures, giving great deal of 

malleability. For this reason, a hybrid solar system is the best temporary 

solution. Although they are more expensive than on-grid systems, hybrid solar 

systems are a more affordable middle-of-the-road alternative to off-grid 

solutions. Two key advantages of a hybrid solar system are the capacity to 

expand your battery storage system at any time and the lower peak charging 

rates you receive from your continuous grid connection. However, because a 

hybrid solar system needs more components than a grid-tied system, it is less 

efficient. A hybrid PV system integrates solar PV with other power sources 

like diesel generators or wind, using converters to convert energy into DC or 

AC voltage. A maximum power point tracker (MPPT) is used for maximum 

power harnessing. While MPPT is not a requirement for solar PV systems, it  
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Figure 5: Hybrid Solar PV Systems (Elhadidy, 2002) 

can assist raise overall system efficiency. The most promising answer to the worldwide 

energy problem that we are currently experiencing is solar  photovoltaic systems. Any 

kind of solar PV system can be designed and simulated with the aid of Cadence's 

software 

Methods of Solar Power Prediction 

Four general categories can be used to group the methods used to forecast solar power 

generation: 

• Meteorological models – These methods are usually indirect; they make use of 

satellite image processing and Numerical Weather Prediction (NWP) 

techniques. They initially predict how strong the sun will be, and then they 

translate that estimate into data for photovoltaic (PV) output. 

• Statistical models - Statistical techniques like Exponential Smoothing (ES), 

Auto-Regressive Integrated Moving Average (ARIMA) and Auto-Regressive 

Moving Average (ARMA) are frequently utilized in these methods. Statistical 

models, in contrast to meteorological models, do not require the initial 

prediction of solar irradiance in order to directly predict PV power outputs. 
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• Machine learning models - In order to anticipate PV power output directly, 

machine learning algorithms like k-NN, Neural Networks (NN), Support 

Vector Regression (SVR), and Pattern Sequence-based Forecasting (PSF) are 

used. Creating a single forecasting model and assembling many forecasting 

models into an ensemble are the two main uses cases for machine learning 

techniques. (“Performance Evaluation and Viability Studies of Photovoltaic 

Power Plants in North Cyprus,” 2022)  

• Hybrid models - These methods incorporate elements or models from the first 

three groups. In contrast to ensembles, which often comprise machine learning 

models, hybrid models frequently incorporate elements from statistical, 

machine learning, and meteorological methodologies. 

 

Application of Solar Photovoltaic Power Prediction in Smart Grid 

Large-scale integration of solar photovoltaic power into smart grids decreases system 

stability and dependability, particularly affecting smart grid energy management. This 

leads to issues with distribution network short-circuit current, power flow, grid losses, 

and voltage volatility. Electric power planning decision makers, system operators, and 

energy users may find useful assistance from solar PV power projection. Various 

forecasting models with varying prediction periods have been utilized for energy 

management in smart grids. PV outputs can fluctuate dramatically in a short amount 

of time based on the weather, including the passage of clouds. A precise very short-

time solar PV power prediction model that can forecast for a few minutes to several 

hours could be useful to stabilize the PV outputs in order to prevent significant 

variations in the smart grid's frequency and voltage. Many techniques have been used 
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to smooth the PV outputs in order to reduce the ramp rate of PV generations. To absorb 

 

 

Figure 6. The Architecture of Solar radiation predicting System.(Kuo & Huang, 

2018) 

 

the sharp swings in solar PV power supply, fast ramping generators, battery storage  

systems, and electric double-layer capacitors are often used technologies. Many 

approaches are put forth for scheduling smart networks' intraday electric power 

consumption that integrate solar PV power generation. Intelligent energy management 

systems that are both grid-connected and island-connected are modeled, taking into 

account fluctuations in household load, storage capacity and charging rate, and 
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distribution network electricity pricing. The development of day-ahead energy 

management tools, such as demand response and storage units, for next-generation 

solar PV installations in the context of smart grids gives smart grid operators flexibility 

and uncertainty. It is suggested to implement a cost-based day-ahead energy 

management system with demand response and storage to mitigate swings caused by 

PV output uncertainties. Additionally, with thermal generators having sluggish ramp 

limitations, day-ahead power scheduling is becoming a crucial component of power 

systems. An assessment is conducted on the impact of prediction accuracy on large-

scale aggregated solar power output. It is suggested to schedule PV generation in 

advance and combine it with battery storage for unit commitment issues. The bidding 

method used by PV businesses to compete in the day-ahead electricity markets is 

another way that the day-ahead prediction model is put to use (Amjady & Hemmati, 

2009). Forecasting approaches for solar photovoltaic power enhance the quality of 

electricity supplied to the grid and reduce the extra expenses linked to weather 

dependence. The historical Solar PV Power data used in this paper were gathered by 

Belgium's power transmission system, Elia. The testing dataset is utilized to assess 

how well the suggested method predicts the future, while the training dataset is used 

to train the RNN network and uncover the nonlinear properties concealed in the PV 

power data.(Sharkawy, Ali, Mousa, Ali, & Abdel-Jaber, 2022). This study discusses 

four techniques to solar PV power forecasting: statistical, artificial, physical, and 

hybrid. It suggests that solar power forecasting is necessary to overcome certain 

technological and financial challenges. The statistical approach forecasts time series 

solar PV power data by data-driven formulation based on previously observed data 

(Behera, Majumder, & Nayak, 2018). A type of mathematical analysis known as 

statistics makes use of quantified models, representations for a particular group of 
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testing data, or empirical research. Statistics examines data collection, evaluation, 

analysis, and conclusion-drawing techniques. Artificial neural networks (ANN) are 

employed in artificial intelligence (AI) approaches to build solar builders, which are 

also included in the statistical approach category (Sfetsos & Coonick, 2000). It focuses 

on how machines that are programmed to process information and act like individuals 

mimic human intelligence. The phrase also refers to any machine that exhibits 

cognitive functions like problem-solving or learning skills that are comparable to those 

of a person. The optimal attribute of artificial intelligence is the ability to process 

information and act in a manner that optimizes the possibility of achieving a peculiar 

goal. 

The physical model estimates solar irradiance and PV generation using satellite 

imagery or numerical weather prediction (NWP) (V. E. Larson, 2013). To forecast 

solar PV power, the hybrid model combines the three models mentioned above 

(Castillo-Rojas, Medina Quispe, & Hernández, 2023). A hybrid campaign could 

combine two performance-based models, or it could be a combination of impression-

based (CPM) and performance-based (CPC or CPA). Sometimes, hybrid agreements 

are thought to be a means of further dividing the risk between marketers and publishers. 

 

Machine Learning 

Artificial intelligence (AI) allows computers to autonomously acquire knowledge from 

training and get better at something in the absence of explicit programming. One use 

of AI is machine learning. The primary objective of machine learning is the 

development of with the ability to acquire data and utilize it for independent learning. 

The training starts with training data that can be made of examples, first-hand 

experience or instructing, so that the learner can look for patterns in the data and apply 
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the examples given to improve their decision-making process. The primary aim is to 

empower computers to independently improve, devoid of human assistance or 

intervention, and update their operations correspondingly. Artificial intelligence and 

machine learning enable data engineers to assess outcomes with exceptional precision. 

Comparing deep learning methods for forecasting solar PV power. When faced with a 

dataset or scenario that has never been encountered before, machine learning 

algorithms are pre-trained to generate a particular result. But compared to humans, 

computers require more examples to learn. Intelligent decision-making may now be 

used in many fields and applications where significant algorithm development is 

required to get the desired results due to machine learning (Cohen, 2021). 

There are various classifications for machine learning algorithms, which includes 

semi-supervised, supervised, unsupervised, and reinforcement learning. A quick 

description of these many algorithmic categories is provided below. 

 

Supervised Learning 

These techniques are able to forecast label values with the input consisting of not-

labeled data once trained on a group of labeled data samples. Regression and 

classification are the two common issues with this kind of learning. The goal of the 

regression algorithm is to determine how the independent and dependent variables 

relate to one another. The procedure is used in classification to forecast the data's class 

label. Typical classification issues include of  binary classsification, wherein in 

contrast to conventional classification issues with mutually exclusive class labels, 

there are three types of classification: two class labels; multi-label classification, in 

which a single fragment of data is connected to multiple labels or classes; and multi-

class classification, including above two class labels (Sarker, 2021) 
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 A variety of techniques are employed in supervised learning, such as Logistic 

Regression (LR), Linear Regression (LR), Decision Trees, Naive Bayes, K-nearest 

Neighbors (KNN), Support Vector Machine (SVM), Random Forest (RF), 

Convolutional Neural Networks (CNN), Adaptive Boosting (AdaBoost), and Extreme 

Gradient Boosting (XGBoost) for regression (Sarker, 2021). The DT, NB, and SVM 

algorithms are the most frequently used and used supervised learners in the literature 

(Alloghani, Al-Jumeily, Mustafina, Hussain, & Aljaaf, 2020) Text categorization and 

emotion prediction (for example, from Tweets or other posts on online); evaluating the 

sustainability of clothing products for the environment. (Satinet & Fouss, 2022) 

identifying, diagnosing, and treating mental illnesses (Jiang, Gradus, & Rosellini, 

2020) and calculating peak energy demand are a few fascinating real-world uses. 

 

Unsupervised Learning 

In this kind of learning, unlabelled data is used. Instead of forecasting the right result 

in this instance, the algorithm investigates the unlabelled data to uncover hidden 

structures. Due to the uncertain potential values of the results, regression or 

classification problems do not instantly lend themselves to this type of learning.. 

Rather, it is frequently applied to dimensionality reduction, association, and grouping. 

Unlabelled data can be grouped using clustering according to their resemblances or 

dissimilarities. (El Bouchefry & De Souza, 2020). To find fresh and pertinent 

connections between the items in a set, association employs a variety of rules. Lastly, 

dimension reduction enables a dataset's features (or dimensions) to be lowered in order 

to remove elements that are unnecessary or of low importance, therefore lowering the 

model's complexity (Sarker, 2021). This feature reduction can be achieved in two 

ways: either by producing entirely new features (feature extraction) or by retaining a 
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portion of the original features (feature selection). The most often used clustering 

algorithm is likely K-means clustering, in which the k value indicates the dimension 

of the cluster. (Sarker, 2021) Apriori, Equivalency Class Transformation (ECLAT), 

and Frequent Pattern (F-P) Growth algorithms are examples of association algorithms. 

Last but not least, dimensionality reduction frequently makes use of the Pearson's 

correlation coefficient, Chi-squared test, Recursive Feature Elimination (RFE), 

Analysis of Variance (ANOVA) test, for feature selection, and Principal Components 

Analysis (PCA) for feature extraction. K-means, PCA, and hierarchical clustering are 

the most often utilized unsupervised learners, per (Alloghani et al., 2020) Numerous 

real-world uses for these unsupervised learners exist, including facial recognition, 

medical and consumer classification, data analysis and cyber-attack and intrusion 

detection in the field of astronomy (Y. Chen, Kong, & Kong, 2020). 

 

Semi Supervised Learning 

This technique, logically positioned between unsupervised and learning supervised, 

enables the utilization of the sizable unlabelled datasets that are occasionally paired 

with (typically smaller) quantities of labelled data (Van Engelen & Hoos, 2020). This 

creates intriguing opportunities because unlabelled data are more common than 

labelled data, and a semi supervised learner can produce predictions that are superior 

to those made with solely labelled data (Sarker, 2021). Applications that have a large 

amount of unlabelled samples and a limited amount of identified samples, or where 

the labelling effort is excessive, are considered candidates. In medical imaging, for 

instance, a modest quantity of data used for learning can result in an important increase 

in precision (Huynh, Nibali, & He, 2022). The main tasks that each type of training is 

utilized for (classification, regression versus clustering, association, and 
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dimensionality reduction) as well as the kind of input data that is utilized in every 

instance (labelled or un-labelled data) are highlighted in Table 4's contrast of 

unsupervised and supervised learning. 

 

Reinforcement Learning 

This method is reliant on the interaction between an agent engaged in an action and its 

surroundings, which offer constructive or critical criticism. The agent has to decide 

what to do in given situation to maximize reward. Monte Carlo, Q-learning, and Deep 

Q-learning are popular techniques (Sarker, 2021). Historically, prevalent uses have 

included strategy games like chess, self-driving cars, manufacturing and supply chain 

logistics, genetic algorithms, 5G mobility management, and customized healthcare (S. 

Liu et al., 2020). 

 

Related Research 

Building on the theoretical foundation, this section reviews existing literature relevant 

to solar power forecasting, machine learning applications in renewable energy, and the 

integration of solar microgrid systems into smart grids. It synthesizes findings from 

previous studies to identify gaps, trends, and methodologies employed in similar 

research domains. 

In  a study by (Mirjalili, Aslani, Zahedi, & Soleimani, 2023)The research uses Design 

Builder to model a neighborhood with solar panels and electric automobiles, predicting 

energy equilibrium  for each building and micro grid by getting the final balance of 

the generation and use of energy for every construction and the entire neighborhood 

as a micro grid. The overall energy equilibrium is predicted using machine learning 

techniques such as K-Nearest Neighbor (KNN), Regression Support Vector (SVR), 
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Adaptive Boosting (AdaBoost), and Deep Neural Networks (DNN). Design Builder is 

used to model neighborhood structures. The effectiveness of the KNN, SVR, 

AdaBoost, and DNN algorithms was compared in order to ascertain which approach 

is best at predicting energy balance. To optimize the use of energy and minimize the 

effect on the environment, this research adopts a new method by creating a model that 

accounts for an integrated system of homes, solar cells, and electric usage for every 

construction in an area. 

In another study by (Gaviria, Narváez, Guillen, Giraldo, & Bressan, 2022) modern 

machine learning approaches for photovoltaic systems are reviewed with a major 

emphasis on deep learning. How machine learning is used in control, PV system 

management, islanding identification, problem diagnosis and detection, irradiance and 

power production predictions, scaling, and region adaptability. The three major 

contributions by this study are reviews over hundred research articles that apply 

cutting-edge machine learning methods to PV systems; next, It assesses materials that 

offer researchers access to free datasets, source code, and experimental environments 

designed for evaluating machine learning algorithms. Third, to help academics seeking 

a deeper understanding of these subjects, encourage them to expose themselves to the 

applications of cutting-edge ML methods applied to PV systems. They also give a case 

study with open source code and data for each of the topics, gave guidelines, 

perspectives and opportunities for further advancement. 

Although renewable energy sources, such as solar and wind power, are essential for 

satisfying global energy requirements, power system workers face difficulties due to 

their unpredictability and fluctuation. Grid stability depends on precise estimation of 

renewable energy production. Machine learning and deep learning (ML) and deep 

learning (DL) algorithms have found a potential use in forecasting renewable energy. 
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Classical ML models like linear regression are straightforward and facile to understand, 

but lack the ability to capture complex patterns. Random forest, SVMs, and XGBoost 

models perform better than linear regression in tackling non-linear relationships and 

intricate data. Inconsistently distributed data is best handled by dedicated time-series 

prediction methods like the autoregressive models, moving averages, and RNNs. 

Mixed models integrate ML and DL algorithms with conventional time-series analysis, 

but design is challenging due to the need for high-quality data and transparency (Benti, 

Chaka, & Semie, 2023) 

San Diego, (Chow et al., 2011) presented a technique for intra-hour, sub-kilometer 

cloud irradiance forecasting utilizing a ground-based sky imager. Every thirty seconds, 

they captured sky photos, which were then analyzed using sunshine characteristics and 

a clear sky library to calculate the amount of sky cover. In order to predict cloud 

shadows at the surface, they created a two-dimensional cloud map using coordinate-

transformed sky cover, which is then utilized to create forecasts. The projected horizon 

and cloud speed had the biggest effects on forecast accuracy. The findings 

demonstrated that the forecasting error in the 30s predictions was down to 50%–60% 

of the inaccuracy of the persistence models. 

(Chu & Coimbra, 2017) suggested k-NN ensemble models to produce probability 

density function estimates for intra-hour Direct Normal Irradiance (DNI) utilizing 

lagged irradiance and image data. A variety of data sets (continental, coastal, and 

island) was used to assess the model by criterions like Prediction Interval Coverage 

Probability (PICP), Prediction Interval Normalized Averaged Width (PINAW), and 

other general error criterions. The model received measurements of diffuse irradiance 

and cloud cover information as exogenous feature inputs. They used a Gaussian 

probabilistic forecasting model and a persistent ensemble probabilistic forecasting 



39 

 

model as baselines. According to their findings, when the forecasting horizon was 

longer than five minutes, the suggested k-NN ensembles performed better than both 

reference models across all assessment criteria for every site. Chu et al., (2015) used a 

NN-optimized re-forecasting strategy to expand a k-NN model. The k-NN’s 

performance over a period of  5, 10, and 15 minutes might be considerably enhanced 

by the reforecasting approach, according to the results of this model's evaluation, 

which used data from a 48 MW PV facility. 

By using a k-NN model, Pedro & Coimbra (2012) demonstrated that it performed 

better than the comparative persistence model. A novel k-NN based technique for 

forecasting intra-hour GHI and DNI, together with the associated uncertainty 

estimation ranges. An optimization approach was used to establish the parameters, and 

the forecasting horizon varied from 5 to 30 minutes. The proposed method surpassed 

the persistence model by 10% to 25%, according to the results. Additionally, the 

scientists reported that incorporating sky photos into the optimization can result in a 

negligible improvement of roughly 5%. 

Chen et al. presented a mechanism in C.-R. Chen & Kartini (2017) for hourly GSI 

value forecasting. To be more precise, they constructed a k-NN model to prepare the 

data before training a NN to predict the target PV station's GSI value one hour in 

advance. The k-NN model creates the inputs for the NN model that is utilized to 

produce the predictions, using meteorological data from eight nearby PV stations. The 

hybrid model produced an RMSE of 242 W/m2 and a Mean Absolute Bias Error 

(MABE) of 42 W/m2, according to the data. 

The Pattern Sequence similarity Forecasting (PSF) approach was presented by 

Martinez Alvarez et al.(2011) as a means of forecasting time series connected to 

energy. PSF initially divides the previously recorded data into a number of sets, then 
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assigns a cluster label to each day. A pattern sequence of cluster labels is formed by 

the days leading up to the target day. Next, using the days just successive to the closest 

sequences to calculate the prediction for the upcoming days by averaging their values, 

PSF looks through the previously recorded data for these pattern sequences' closest 

neighbors. The outcomes demonstrated that PSF was an effective and successful 

forecasting technique. 

In a study by (Chahboun & Maaroufi, 2021) one of the main objectives is to thoroughly 

compare three widely used machine learning methods for hourly power prediction 

from photovoltaic solar panels: multiple linear regression, support vector regression, 

and random forest. Residual analysis is done to visually test the regression models 

under investigation, With R 2 = 96% and RMSE = 0.39 KW, the outcomes 

demonstrated that random forest had the optimal prediction accuracy during the testing 

phase. 

Performance indicators were used to measure the accuracy of the solar power forecast 

models that were developed in another study by Kuriakose et al.(2020). It is discovered 

that ANN outperforms support vector machines and linear regression in terms of 

results. While the accuracy of the SVM model is not as high as that of the ANN, it is 

nevertheless comparable. The linear regression model's accuracy is low. Datasets from 

the weather station and on-site pyranometer might be used to improve the precision of 

the power forecast.  

After analyzing the meteorological station's weather report, (Mellit, Massi Pavan, & 

Lughi (2014) categorized the days into groups such as sunny, foggy, cloudy, and wet 

before training an independent SVR model. It forecasts the PV power for the following 

day for each kind of day. They used the mean daily temperature estimation for the 

following day as well as the PV power production of the nearest day with an identical 
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label in the training data. On sunny days (RMSE = 1.57MW), the maximum accuracy 

was attained; on foggy days (RMSE = 2.52MW), the lowest. 

A 2D-interval forecasting model utilizing SVR was presented by (Rana, Koprinska, & 

Agelidis (2015). It estimates the 2D-interval PV power output directly based on 

previous meteorological data and solar power. Australian PV data was used to assess 

the model during a two-year period. Their findings demonstrated that, when compared 

to several baselines and various approaches for comparison, such as NN2D and two 

persistence models, SVR2D produced the most precise forecasts. 

Ramli et al. (2015) utilized information from Saudi Arabia to contrast NN and SVM 

for solar irradiance projections. They assessed the models in terms of global solar 

radiation and direct diffuse on the horizontal surface as input data. Correlation 

coefficient, RMSE, MRE, and computing speed. The findings demonstrated that the 

SVM models offered improved computation robustness and accuracy, with MRE 

values of 0.33 and 0.51 for the two cities and a 2.15-second forecasting speed. 

Seven SVM models with different inputs were proposed by J.-L. Chen et al.(2013) to 

forecast the daily sun irradiation levels. Five sunshine-based models (cubic, quadratic, 

linear, exponential and linear exponential,) that utilize data collected from three 

locations in China were contrasted to the suggested models. The potential of SVM 

models was demonstrated by the 10% reduced RMSE that the SVM models provided 

in comparison to the empirical models. 

(Wolff, Kühnert, Lorenz, Kramer, & Heinemann, 2016) created SVR models to predict 

PV power data over horizons of five hours and fifteen minutes. The model was created 

as a substitute to neural network prediction models (NWP). According to the authors’ 

findings, the cloud motion vector model was the most effective model among the 

NWP-based models, which offered superior period forecasts beginning at three hours 



42 

 

ahead. SVR, on the other hand, performed well for predictions made one hour ahead. 

The authors proposed that the accuracy could be increased even further by merging 

the output from various prediction models. 

The Support Vector Machine Firefly Algorithm (SVM-FFA), which (Olatomiwa et al., 

2015) devised, is used to estimate the mean horizontal global solar radiation levels. 

The length of the sun, the highest temperature, and the lowest temperature were their 

inputs. The outcomes of the comparison between the suggested model and the GP and 

NN models indicated that the suggested model produced the optimal RMSE, MAPE, 

r, and R2. Numerous research publications have conducted forecasting and modeling 

of solar PV output from PV installations in the American Southwest were published 

by Renewable Energy 91 in 2016. This publication by Larson et al., (2016) presents 

the research effort on predicting for hourly-averaged, day-ahead power outcomes from 

PV power plants based on least-square optimization of numerical weather prediction 

(NWP).We compare power output data from two nontracking facilities in California 

for the years 2011–2014 to three different predicting methods. The study confirms the 

suggested methodology's effectiveness in comparison to earlier research. Solar 

photovoltaic power is heavily reliant on the weather outside. They can also result in 

unanticipated variations in the voltages and PV power for the PV systems. Essentially, 

for the power system to operate safely and integrate economically, it is imperative to 

precisely estimate PV power generation (Wang et al., 2017). 
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CHAPTER III 

Methodology 

 

Simple Linear Regression 

Basic linear regression is a simple way to predict a target variable's real value denoted 

as Y, by considering an input variable, denoted as X. It is thought that there is an 

approximately linear relationship between X and Y. A popular formal formulation for 

this connection is Y regressed onto X (Smys, Iliyasu, Bestak, & Shi, 2020). 

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖                                                                      (1) 

Here, β1 is the mean variation in Y for an increment of a single unit of X, and β0 

denotes the predicted variable of Y if X is zero (the intercept). The coefficients β0 and 

β1 are unknown. The “term error, ϵ" recognizes that. The variation in Y is not 

explained by this simple linear model. Put another way, since Y is probably impacted 

by other factors not included in the model, the possibility of a totally linear relationship 

between X and Y is quite low. After estimating the unknown model coefficients, β0 

and β1, we may use the following formula to estimate Y for a given value of X: 

�̂�𝑖 = �̂�0 + �̂�1𝑥𝑖                                                                        (2) 

Where, Y is estimated for the i-th value of X = x by y ̂. An estimated value for an 

unknown coefficient, parameter, or result is indicated by the hat ˆ symbol. The least 

squares approach, which was created at the start of the 19th century and it is used to 

solve astronomical issues and it is the oldest type of linear regression. 

Ordinary least squares (OLS) is the most popular method for fitting a linear regression 

model, however, there are other alternatives as well. For �̂�0 and �̂�1 , OLS chooses 

coefficients that minimize the residual sum of squares (RSS), which is defined by: 
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Figure 7: Minimizing RSS with Ordinary Least Squares (OLS) fit(Smys et al., 2020) 

𝑅𝑆𝑆 = (𝑦1 − �̂�0 − �̂�1𝑥1)
2

+ (𝑦2 − �̂�0 − �̂�1𝑥2)
2

+ ⋯ + (𝑦𝑛 − �̂�0 − �̂�1𝑥𝑛)
2
    (3) 

 

OLS builds a model for each value of X such that the squared difference between the 

actual (𝑦𝑖)  and anticipated (�̂�0 + �̂�1𝑥𝑖)  values is as little as feasible. The outcome of 

employing OLS to minimize RSS is shown in Figure 6. The following defines the 

minimizers for the estimations of the least squares coefficients (Smys et al., 2020): 

�̂�1 =
∑  𝑛

𝑖=1 (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)

∑  𝑛
𝑖=1 (𝑥𝑖−�̅�)2                                                       (4) 

Support Vector Machine 

SVMs were first designed for classification and have been expanded for regression 

and classification learning. SVMs are first implemented as binary classifiers, where 

the learnt function returns a positive or negative value. By merging many binary 

classifiers using the pairwise coupling approach, a multiclass classification may be 

built (Jensen & Snodgrass, 2009). The two main characteristics of SVM, margin 

maximization and kernel technique are explained in this section along with how it was 

motivated and formalized as a binary classifier. 
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Figure 8: Two-dimensional linear classifiers (hyperplane). (Cortes & Vapnik, 1995) 

 

Classifiers distinguishing between points of data from two groups are called binary 

SVMs. Every data is expressed by a vector with n dimensions. These particular data 

items are all part of just one of two classifications. A hyperplane is used to divide them 

using a linear classifier. For instance, two data sets and dividing hyperplanes—lines in 

a two-dimensional space—are displayed in Figure 7. Numerous linear classifiers 

accurately identify (or split) the two categories of data (Cortes & Vapnik, 1995). 

SVM selects the largest margin hyperplane is needed to get the greatest prospective 

division between the two groups. The minimal distance between the splitting 

hyperplane and the nearest data point for each of the two classes adds up to the gap. 

As the hyperplane accurately classifies "unseen" or testing data points, it is more likely 

to generalize than other types of hyperplanes.(Ogidan, Dimililer, & Ever, 2018) 

SVMs conducts the mappings from inputs space to features space to handle nonlinear 

classification issues. The kernel technique helps with this by permitting the mapping 

function to not be precisely defined, which may lead to the curse of dimensionality 

problem. This gives a linear categorization in the newer space comparable to nonlinear  
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Figure 9: Hyper-plane for SVR(Smys et al., 2020). 

 

categorization within the original space (or the data provided space). To do this, SVMs 

translate input vectors to a feature space which is a space with greater dimensions on 

which a maximum separating hyperplane is built (Smys et al., 2020). 

 

Hard-Margin SVM Classification 

This is a type of SVM that best separates various groups in a dataset without any points 

of data in the margin. Calculate the maximized marginal hyper-plane together with the 

support nonlinear categorization to grasp the working of SVM. Firstly, we discuss the 

hard-margin SVM when the data for training is devoid of noise and could be 

successfully categorized using a linear function. The training set, or points of data D, 

have the following mathematical expression. 

𝐷 = {(𝐱1, 𝑦1), (𝐱2, 𝑦2), … , (𝐱𝑚, 𝑦𝑚)}                                      (5) 
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If 𝐱𝑖 is an n-dimensional real vectors, 𝐱𝑖 is either 1 or -1 representing the class in 

which the point 𝐱𝑖  belong. The form of the SVM classification function 𝐹(𝐱) is: 

𝐹(𝐱) = w ⋅ x − 𝑏                                                                  (6) 

During the training phase, SVM will compute the weight vector, denoted as w, and the 

bias, represented as b. F(⋅) (or w and b) must initially offer positive values for positive 

points of data and numbers that are negative otherwise to accurately categorize the 

training set. Put another way, for each point 𝐱𝑖 in D, 

𝐰 ⋅ 𝐱𝑖 − 𝑏 > 0 if 𝑦𝑖 = 1, and 

𝐰 ⋅ 𝐱𝑖 − 𝑏 < 0 if 𝑦𝑖 = −1
                                                 (7) 

These requirements can be changed to: 

𝑦𝑖(𝐰 ⋅ 𝐱𝑖 − 𝑏) > 0, ∀(𝐱𝑖, 𝑦𝑖) ∈ 𝐷                                          (8) 

D is said to be linearly separable if there is a linear function F which properly classifies 

each point in D or fulfills Eq. (8). Second, the margin must be maximized by F, or the 

hyperplane. The gap between the nearest data points and the hyperplane is known as 

the margin. To do this, Eq. (8) is rewritten into the following Eq. (9). 

𝑦𝑖(𝐰 ⋅ 𝐱𝑖 − 𝑏) ≥ 1, ∀(𝐱𝑖, 𝑦𝑖) ∈ 𝐷                                  (9) 

Take note that the equality sign is included in Eq. (3.9), thus the value on the right end 

becomes 1 rather than 0. 

There is such a F that meets Eq. (9) when D is linearly distinguishable or if each point 

in D meets Eq. (8). The reason for this is that, if such w and b exist and fulfill Eq. (8), 

they can always be rescaled to meet Eq. (9). The distance between a vector xi and the 

hyperplane is expressed as  
𝐹(𝐱𝑗)∣

∥𝐰∥
. The margin thus becomes 

𝑚𝑎𝑟𝑔𝑖𝑛 =
1

∥𝐰∥
                                                            (12) 

Thus, the margin becomes because, 𝐹(𝐱) will equal 1, if x are the nearest vectors. 

Support vectors are the nearest vectors that have an equality sign and meet Eq. (8). 
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Minimizing ||w|| results from maximizing the margin. As a result, the SVM training 

issue is transformed into the following restricted optimization problem. 

 minimize: 𝑄(𝐰) =
1

2
∥ 𝐰 ∥2

 subject to: 𝑦𝑖(𝐰 ⋅ 𝐱𝑖 − 𝑏) ≥ 1, ∀(𝐱𝑖, 𝑦𝑖) ∈ 𝐷 
                     (11) 

In mathematics, the factor 1/2 is employed for convenience. Figure 8 is the graphical 

illustration for SVR. (Jensen & Snodgrass, 2009) 

 

KNN Classifier 

The nearest neighbor classification's underlying principle, sometimes referred to as K-

nearest neighbors (KNN), is that patterns that most closely resemble the objective 

pattern,  x^', for which a label is needed, offer valuable label information. For the 

majority of K-nearest patterns, KNN represents the class label in data space. We have 

to be capable to develop a similarity metric in the data space. It is reasonable to apply 

the Minkowski metric. (p-norm) in ℝ𝑞(Subasi, Khateeb, Brahimi, & Sarirete, 2020) 

∥∥𝐱′ − 𝐱𝑗∥∥
𝑝

= (∑  𝑞
𝑖=1 |(𝑥𝑖)

′ − (𝑥𝑖)𝑗|
𝑝

)
1

𝑝                              (12) 

This, for p = 2, is equivalent to the Euclidean distance. It is necessary to select 

appropriate distance functions in different data spaces, like the distance calculated by 

Hamming in 𝔹𝑞. The label for the set Y = {1, −1} is used in the binary classification 

scenario, and KNN is specified as with neighborhood dimension K and with the 

collection of indexes 𝒩𝐾(x′) of the K-nearest patterns. The KNN location is defined 

by selecting K. 

𝑓KNN(𝐱′) = {
1     if ∑  𝑖∈𝑁𝐾(𝐱′) 𝑦𝑖 ≥ 0

−1     if ∑  𝑖∈𝑁𝐾(𝐱′) 𝑦𝑖 < 0
                                     (13) 

In locations where patterns from various classes are dispersed when K = 1 little 

neighborhoods appear. (K = 20, for example) Larger neighborhood sizes result in the 
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disregard of patterns whose labels are in the minority. The classification differences 

between KNN with K = 1 and K = 20 are shown in Figure 9 using a straightforward 

two overlapping data clouds comprise this 2-dimensional collection of data with 50 

Gaussian-sampled blue and red points each. Red-classified places are depicted in white, 

whereas blue-classified data space locations are displayed in vivid blue. The predicted 

value is local for K = 1. For instance, the middle of the red cloud contains a point with 

a blue color that stands out within the blue class. The machine learning model ignores 

tiny agglomerations of patterns in favor of generalization for big K. In data space, 

KNN creates a Voronoi tessellation. KNN can already provide a fair estimate 

depending on the K-nearest neighbors in a screened subset, but it must look over the 

whole area to find the K-nearest patterns in cases of big data sets (Kramer, 2013). 

The issue of how to select K—that is, which neighborhood size produces the greatest 

categorization outcome. Model selection is another name for this issue and there are 

other methods, such as cross-validation, that may be used to pick the optimal model 

and parameters. 

 

Figure 10: A evaluation of KNN classification on two Gaussian-based data clouds 

for different neighborhood sizes ((a) K = 1 and (b) K = 20). While KNN ignores tiny 

agglomerations of patterns in favor of generalizing for bigger K, it over-fits and 

becomes local in in small neighborhoods (𝑆𝑢𝑏𝑎𝑠𝑖, 𝐾ℎ𝑎𝑡𝑒𝑒𝑏, 𝐵𝑟𝑎ℎ𝑖𝑚𝑖, & 𝑆𝑎𝑟𝑖𝑟𝑒𝑡𝑒, 2020) 
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Multi-Class K-Nearest Neighbors 

Applications of KNN extend to multi-class classification issues. KNN for 

classification with multiple classes predicts the classification label of the majority of 

the data set's K-nearest patterns for an unknown pattern x (Kramer, 2013). 

𝑓KNN(𝐱′) = arg 𝑚𝑎𝑥
𝑦∈𝒴

 ∑  𝑖∈𝒩𝐾(𝐱′) ℐ(𝑦𝑖 = 𝑦)                          (14) 

Using the indicator function ℐ(⋅) which yields zero otherwise and one if its input is 

true. 

 

KNN Regression 

Regression is closely associated with categorization. Functional regression models 

relate patterns to continuous labels perhaps to a ℝ𝑑  subspace. In contrast to 

classification issues, where the collection of labels is limited to a discrete collection of 

numbers, the distinction becomes evident when considering that in reality machine 

precision only permits a mapping to a very large set of labels. 

 

Figure 11: K nearest neighbor algorithm with K=3 and K = 6. (Gabrieli D. Silva, Mariza 

Ferro, & Schulze, 2021) 
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A few components. Regression analysis's challenge is to forecast labels 𝐲′ ∈ ℝ𝑑    for 

novel patterns 𝐱′ ∈ ℝ𝑞 given a collection of N observations, or labeled patterns 

{(𝐱1, 𝐲1), … , (𝐱𝑁 , 𝐲𝑁)} . The objective is to become familiar with the regression 

function, 𝐟: ℝ𝑞 → ℝ𝑑. 

𝐟𝐾𝑁𝑁(𝐱′) =
1

𝐾
∑  𝑖∈𝑁𝐾(𝐱′) 𝐲𝑖                                          (15) 

Using a set 𝒩𝐾(𝐱′) that contains the indexes of the K-nearest neighbors of an unknown 

pattern 𝐱′. KNN regression calculates the mean of the function's parameters values of 

its K-nearest neighbors. The localization of functions in data and label space is the 

underlying premise of the KNN average concept. Patterns x are predicted to have 

continuous labels f(x′) that are identical to yi in the immediate neighbors of  𝐱′ . 

Because of this, the label for an unknown  𝐱′  needs to resemble the labels of the 

patterns that are the closest, which are represented by the average of the K-nearest 

patterns' labels. KNN has been demonstrated well in numerous applications, e.g., with 

the discovery of quasars depending on spectroscopic data. The neighborhood size K of 

the KNN is a crucial parameter in regression as well(Dimililer, Kayali, & Tackie, 

2023). While KNN regression averages across all patterns for K = N, it over fits to the 

label of  𝐱′ closest neighbor for K = 1. A comparison of the KNN regression model 

with the two neighborhood sizes, (a) K = 2 and (b) K = 5 is presented in Figure 11 and 

Figure 10 shows the K nearest neighbor algorithm with K=3 and K = 6. The regression 

of weighted KNNs causes plateaus. 
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(a)                                                          (b) 

Figure 62: Shows a uniform KNN regression for the values of (a) K = 2 and (b) K = 

5. (Gabrieli D. Silva et al., 2021) 

Decision Tree Regressor 

The learning function 𝑓(𝐗) is represented as a tree in DT algorithms. The branches of 

each node in the tree indicate a test using the values of the associated property, and 

each node itself symbolizes a test on an attribute. The 𝑦𝑖 labels are represented by the 

leaves. Divide and conquer is how the algorithm constructs the categorization model. 

At the base of the tree is the characteristic that, in accordance with the term, "best" 

distinguishes the samples(Sekeroglu, Ever, Dimililer, & Al-Turjman, 2022). An 

attribute selection metric, such as knowledge gain or the Gini index, is used in this 

process. Every node (together with its accompanying properties) goes through this 

procedure repeatedly until every node covers the greatest amount of samples from a 

single class and, ideally, none from other classes. The structure of a decision tree (DT) 

is shown in Figure 12. A DT is made up of an initial element called the root, branches 

that have different decision nodes based on the best attribute that separates the data, 

and an end node, also called a leaf, that represents the final decision (the outcome of 

the classification or regression) (Gabrieli D. Silva et al., 2021). 



53 

 

 

Figure13: A decision tree structure illustration. (Gabrieli D. Silva et al., 2021) 

 

As indicated, despite their straightforwardness, DT are among the most extensively 

used ML algorithms and may be utilized for classifications or regression applications 

(KAGGLE, 2020). Classification is the objective of DT, same as it is in model C4.5 

(QUINLAN, 1996), where the dependent variable (Y) denotes a category value. The 

goal of the regression tree is to forecast Y with a numerical value, just like in the CART 

(BREIMAN et al., 1984) method. Among the first Dictotomiser 3 (ID3) algorithms is 

the an iterative Dichotomiser 3 (QUINLAN, 1986). The technique builds a tree by 

identifying the category property that will result in the greatest information gain for 

each node. Numerical characteristics are not accepted by ID3, only category ones. 

Furthermore, it is incapable of handling missing values and lacks a post-pruning 

technique. 

Equation 16 provides the information gain that ID3 uses, taking into account the T 

dataset displayed in Table 1, to determine which characteristic (attribute) to assign to 

each node. Entropy(T) is defined as the purity of data in the T set and 𝑋𝑗 is a particular 

characteristic of the dataset T. 𝑇𝑣 is the subset of rows in T for which the characteristic 
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column Xj has value v, | 𝑇𝑣| is the amount of rows in 𝑇𝑣 and similarly |T| is the number 

of rows in T. N_cl is the total amount of classes in the Y characteristic, and 𝑝𝑖 is the 

percentage of T that has class I, according to Equation 17. 

𝐺𝑎𝑖𝑛 (𝑇, 𝑋) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑇) − ∑  𝑣∈ values (𝑋𝑗)
|𝑇𝑣|

|𝑇|
 Entropy (𝑇𝑣)              (16) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑇) = ∑  
𝑁𝑐𝑙
𝑖=1 − 𝑝𝑖𝑙𝑜𝑔2 𝑝𝑖                                                         (17) 

 

Adaboost Regressor 

By aggregating the forecasts produced by several learning algorithms/estimators, 

ensemble approaches aim to increase an estimator's resilience. Ensemble method can 

be divided into two categories 

• Averaging techniques: The goal is to create and forecast utilizing a variety of 

estimators, then average these forecasts. According to some, the average 

method's combined estimators outperform single estimators on average 

because of a lower variance. A few common ensemble techniques are bagging 

and random forest trees, among others (Van Der Walt et al., 2014). 

• Boosting techniques: These approaches aim to create an effective ensemble by 

merging numerous weak estimators, which is different from the average 

ensemble methods. By creating single estimators one after the other, these 

techniques aim to reduce the selection bias of the ensemble that is being built. 

Adaboost and gradient tree boosting are a couple of the boosting ensemble 

techniques. Boosting is the process of repeatedly executing a weak learning 

machine on various training sample distributions and aggregating the results. 

The machine's performance from the previous iteration determines the 

distributions of training samples for subsequent iteration.(Sekeroglu, Dimililer, 

& Tuncal, 2019). The process for determining the training example distribution 
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varies depending on the boosting technique used; for classification problems, 

the outputs of the many machines are aggregated using voting multiple 

classifiers, and for regression problems, they are merged using weighted 

average or median. (Bartlett, Freund, Lee, & Schapire, 1998) describes 

boosting via filtering, which is the original boosting strategy. The PAC 

(probably roughly correct) theory of learning (Haussler & Warmuth, 1993) 

served as its inspiration. In many real-world scenarios, it is not possible to 

obtain the huge number of training samples needed for boosting by filtering. 

AdaBoost (Cao, Xu, Liang, Zhang, & Li, (2010), a different boosting method, 

can be used in several versions to get around this restriction. In boosting by 

subsampling the, training instances and a fixed training size are employed, and 

during training, they are resampled in accordance with a specified probability 

distribution. During boosting by reweighting, the weak learning machine is 

trained using all of the training examples, with weights allocated to each 

example. This method is only useful when the weighted examples can be 

handled by the weak learning machine. 

AdaBoost is one of the most well-known boosting techniques for classification, and it 

serves as the foundation for both ExpBoost and TrAdaBoost (Cao et al., (2010). 

AdaBoost assigns a weight wi to each training instance, which is used to learn each 

hypothesis. This weight represents the relative relevance of each example and is used 

to calculate the inaccuracy of a hypothesis on the total amount of data. As in step 5 of 

Algorithm 1, instances are reweighted after each iteration, with bigger weights 

assigned to those that are incorrectly categorized by the final hypothesis. Learning 

therefore concentrates on the cases that are most challenging to categorize as the 

process proceeds. The basic idea behind the well-known boosting technique AdaBoost 
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is to combine weak estimators and apply them to better versions of the data. Next, each 

prediction's results are merged using hard voting or weighted majority voting. 

Regression issues are solved with the Adaboost Regressor. 

 

Adaboost Regressor 

1. Input 

• A list of m samples (𝑥1, 𝑦1), … (𝑥0,1, 𝑢𝑚) with an outcome of y ∈ R is the 

input. 

• Inadequate learning algorithm Weak learner 

• The number of iterations (machines) is indicated by the integer T. 

• A threshold φ(0 <φ<1) to distinguish between accurate and inaccurate 

predictions 

2. Initialize:  

• Iteration or machine number: t = 1 

• For every i, the distribution 𝐷𝑡(𝑖)= 1/m 

  Error rate 𝜀𝑡 = 0 

3. Continue until t ≤ T.  

• Call Weak Learner and supply it with the distribution, 𝐷𝑡 

• 𝑓𝑡(𝑥) → 𝑦 is the regression model to build.  

• Determine the absolute relative error for every training instance by 

𝐴𝑅𝐸𝑡(𝑖) = |
𝑓𝑡(𝑥𝑖)−𝑦𝑖

𝑦𝑖
|                                                     (18) 

• Determine 𝑓𝑡(𝑥) error rate: ∑  𝑖:𝐴𝑅𝐸𝑡(𝑖)>𝜙 𝐷𝑡(𝑖) 

• Set 𝛽𝑡 = 𝜀𝑡
𝑛, where n is the power coefficient (linear, square, or cubic, for 

example) 



57 

 

• Distribution of updates 𝐷𝑡   as 

𝐷𝑡+1(𝑖) =
𝐷𝑡(𝑖)

𝑍𝑡
× {

𝛽𝑡 if 𝐴𝑅𝐸𝑡(𝑖) <= 𝜙
1 otherwise 

}                         (19) 

𝑍𝑡 is a normalization factor selected so that the distribution D_(t+1) is obtained 

• Assign t = t + 1. 

4. Provide the end of the hypothesis: 

𝑓𝑓𝑖𝑛 (𝑥) =
∑  𝑡 (𝑙𝑜𝑔

1

𝛽𝑡
)𝑓𝑡(𝑥)

∑  𝑡 (𝑙𝑜𝑔
1

𝛽𝑡
)

                                                  (20) 

Random Forest 

An ensemble learning system called Random Forest is constructed using many 

decision trees. Using an RF classifier has several advantages, including:  

• being extremely quick when working with large, high-dimensional datasets; 

• being resilient to noise, multi-collinearity, and outliers; 

• being unable to fail to fit on training datasets (which results in more accurate 

generalization compared to a single decision tree); and  

• having a high degree of precision (Breiman, 2001) 

RF gathers predictions from many decision trees that were trained using various 

random feature subsets and random sample subsets that were produced using bagging. 

The class with the greatest averaged probability score is then allocated when the 

forecasts are averaged (Sarna, Gutierrez, Mooney, & Zhu, 2022).  

 

The CART algorithm maximizes the data gain at each node by utilizing the input 

attributes and potential thresholds. To group samples with comparable goal values, the 

decision tree divides the feature space recursively through each node. Let's assume for 

the purposes of our research that the data at node 𝑚 of the decision tree is represented 
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by 𝐷𝑚, whose samples are 𝑛𝑚. Features 𝑘 and its thresholds 𝑘𝑡 are selected from our 

input features set (settlement reports from January 1995 to April 1997) for each 

possible split (𝑘, 𝑘𝑡 ) to divide the data into two subsets: 𝐷𝑚
left 

 with data 𝑛𝑚
l " and  

𝐷𝑚
right 

" with samples 𝑛𝑚
r " . By reducing a function of loss determined by the mean 

squared error, the level of quality associated with this split is maximized as follows: 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃
𝐷𝑚

left 

𝐷𝑚
𝐻 (𝐷𝑚

left (𝜃)) +
𝐷𝑚

righ 

𝐷𝑚
𝐻 (𝐷𝑚

righ (𝜃))              (21) 

In this in Equation (22) is the loss function, or mean squared error function, which is 

defined as follows: 

𝐻(𝐷𝑚) =
1

𝑛𝑚
∑  

𝑛𝑚
𝑖=1 (𝑦 − �̅�)2                                           (22) 

Where, 𝑦 represents the desired feature value and �̅� denotes the target feature value's 

mean inside the subgroup. Random Forest ensures independence of each decision 

tree by training separate subsets from the entire dataset using the bootstrap sampling 

approach. Figure 13 displays an illustration of the procedure. In this study, distinct 

Random Forest models for settlements and horizontal convergence, for example were 

trained for each goal feature. 
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Figure 14: Random Forest Model(Pham & Tran, 2022) 

 

Data Collection and Statistical Description of Dataset 

The dataset is gotten from a Git-hub repository where a German PV system output and 

inputs are recorded and used to forecast solar power that will be produced. Germany 

has 21 distinct PV facilities established at various geographic regions for the model's 

training and testing. These establishments are situated in various locations, varying 

from rooftop to fully-functional solar farms. Each dataset includes historical power 

data for 990 days at a granularity of three hours together with NWP data. The PVs 

have nominal powers ranging from 100kW to 8500kW. The data was separated, and 

then it was normalized. All input values, with the exception of the output power, are 

normalized between 0 and 1. The target value or output power is normalized based on 

the power capacity of the corresponding PV installation. The figure 14 illustrates their 

distribution across Germany. The nominal output capacity of the relevant PV plant is 

used to normalize the target variable, the measured power output. Consequently, 
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permit the forecasting performance to be compared without accounting for the PV 

facilities' sizes. 

 

 

Figure 15: The Location of 21 Photovoltaic systems in Germany 

 

Framework 

 

Figure 16: Machine Learning Models and Evaluation: Comparing SVR, LR, 

ADABOOST, RT, KNN, and DT 
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The framework of the research is discussed systematically in this section. Figure 15 

shows the procedural framework used in this thesis, which makes use of machine 

learning methods which includes K-Nearest Neighbors, Random Forest, Support 

Vector Regression, Decision Tree, linear Regression and Adaboost. The first step 

involves collecting the metrological data and then data preprocessing which is the 

cleaning and converting the raw data into a format appropriate for machine learning. 

Cleaning the data and preprocessing are crucial phases in the creation of AI-based 

prediction techniques because the methodology create models for prediction from the 

information given. The prediction model becomes less accurate when raw data used is 

not in the appropriate format or data points are missing. Therefore no omitted data 

points and the meteorological data must be error-free. In this light the dataset on solar 

PV electricity underwent further procedures, including cleaning and analysis. This 

required locating and handling anomalies by making sure there is no missing data point. 

Another crucial stage in creating precise and useful predictive frameworks involves 

feature scaling. Scaling, normalization, and standardization which entails modifying 

the information to make it more suited for modeling this is an important components 

of feature engineering. By using these methods, one may guarantee that the 

information being analyzed is on a comparable scale, lessen the effect of unusual 

values, and enhance the accuracy of the model. The procedure of transforming the 

features in a data set to a comparable scale is known as feature scaling. The goal is to 

prevent variables with higher values from predominating and to make sure that every 

feature contributes similarly to the models. When working with data including 

elements that have varying ranges, degrees of magnitudes, or measurement units, 

scaling of features becomes important. Under such circumstances, the variance in the 

values of the features may result in skewed performance of models or issues with 
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learning. Therefore the type of feature scaling used in this thesis is normalization, 

which is a data preparation method used to standardize each feature in the dataset by 

converting them to a uniform scale. This procedure reduces the impact of different 

sizes on the models, improving the models ability to learn and modelling accuracy. 

Values are rescaled and altered throughout the normalization process to make them 

fall between 0 and 1. The normalization equation is expressed (23). 

 𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                        (23) 

The maximum and minimum values of the features are denoted by X_max and X_min, 

respectively. Normalizing or standardizing the data. Furthermore in the next stage in 

order to further enhance the dataset, other procedures like choosing features was 

carried out. The study's objective is to create a predictive algorithm that can estimate 

solar PV power given a set of metrological input data. As a result, the generation of 

PV power was designated as the output variable, while meteorological information 

were employed as the input feature variables. The meteorological variables as shown 

in Appendix A, selected for the machine learning models are discussed below: 

• Clear sky diffuse: This is the amount of solar energy that, on a clear sky day, 

reaches the Earth's surface after being scattered by gases and particles in the 

atmosphere in different directions. 

• Clear sky direct: This describes solar energy that, on a clear sky day, reaches 

the Earth's surface straight from the sun without being impacted by air 

particle dispersion. 

• Albedo: A surface's proportion of reflected sunlight is measured; higher 

numbers denote more reflectivity. 

• WindComponentUat0 and WindComponentVat0: These represent the winds 

direction and strength in the east-west (U) and north-south (V) directions, 
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respectively, as well as the horizontal components of wind speed at ground 

level (0 meters above ground). 

• WindComponentUat100 and WindComponentVat100: At a height of 100 

meters above sea level, they are comparable to the preceding. 

• TemperatureAt0: This is the temperature of the air at zero meters above 

ground, or ground level. 

• RelativeHumidityAt1000, RelativeHumidityAt950, and 

RelativeHumidityAt0 : These represent the air's relative humidity at three 

distinct elevations: zero meters, 950 meters, and 1000 meters. 

• SolarRadiationGlobalAt0: Indicates the entire amount of solar radiation that, 

at ground level, reaches the surface of the Earth. 

• SolarRadiationDirectAt0: This is the amount of solar radiation that, at ground 

level, comes straight from the sun to the Earth's surface. 

• SolarRadiationDiffuseAt0: This indicates the portion of solar radiation that 

reaches the surface of the Earth and scatters owing to ground-level air 

particles in different directions. 

• TotalCloudCoverAt0: Indicates the portion of the sky that is cloud-covered at 

ground level. 

• Lower Wind Speed and Upper Wind Speed: Defines the wind speed in the 

atmosphere at various vertical levels; "Lower" and "Upper" most likely relate 

to different ranges of altitude. 

 The next step is the training stage; two groups (Training and Testing) are formed from 

the chosen data points. The data is divided into the testing and training sets by 20:80 

ratio, in thesis different ratios of testing and training data splitting is examined 30:70, 

10:90. Afterwards each of the machine learning technique is trained using the training 
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dataset, subsequently in the trained models are tested using the testing dataset. Finally 

in the performance evaluation stage several machine learning evaluation metrics are 

employed, the following evaluation metrics are utilized stated in following section. 

 

Performance Metric 

Four different statistical assessment criteria were used to evaluate the suggested 

models' prediction performance. Which includes: 

 

Mean Absolute Error (MAE): 

The mean absolute deviation (MAE) of the variation between expected and actual 

values is quantified. By averaging the absolute differences between the values that 

were predicted and those that were seen, the MAE is calculated. 

𝑀𝐴𝐸 =
1

𝑁
∑  𝑁

𝑖=1 |𝑜𝑖 − 𝑝𝑖|                                             (24) 

 

Root Mean Square Error (RMSE): 

The standard deviation of the estimating errors is denoted by RMSE. The square root 

of the mean of the squared differences between the predicted and actual values is used 

to calculate the root mean square error, or RMSE. 

𝑅𝑀𝑆𝐸 = √∑  𝑁
𝑖=1 (𝑜𝑖−𝑝𝑖)2

𝑁
                                            (25) 

 

Coefficient of Determination (R²): 

R2 measures how strongly there is a linear connection between the model's predicted 

values and the real values. The percentage of the dependent variable's variation that 

can be predicted from the independent variables is how the R2 is calculated. 
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𝑅2 = 1 −
∑  𝑁

𝑖=1 (𝑜𝑖−𝑝𝑖)2

∑  𝑁
𝑖=1 (𝑜𝑖−�̅�)2                                              (26) 

Mean Squared Error (MSE): 

The average squared difference (MSE) between the actual and projected values is a 

statistic used to evaluate a predictive model's accuracy. It measures how well the 

model performs overall in terms of capturing the dataset's variability. 

𝑀𝑆𝐸 =
1

𝑁
∑  𝑁

𝑖=1 (𝑜𝑖 − 𝑝𝑖)
2                                            (27) 

Equations 5 through 8: 

- The expected value for the i-th actual value 𝑜𝑖 is denoted by 𝑝𝑖 

-The number of samples is N. 

- The average of the real data is shown by �̅� 
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CHAPTER IV 

Results and Discussion 

 

In this chapter, we evaluate models such as SVR, DT, AB, LR, RF, and KNN to 

determine the optimal model for power prediction in a PV system using the data 

collected. In the comparison, three metrics are used to understand the performance of 

the models in terms of how well they can keep prediction errors to the barest minimum. 

The error metrics used are MSE, MAE, and RMSE which measure the error value 

between the predicted and the actual value. Low values of RMSE, MSE, MAE shows 

a better performance of the model. Additionally, the accuracy of the models is 

examined using R2 which quantifies the proportion of variance by the model, the value 

range from 0 to 1 and higher values of R2 shows a better performance of the model. 

The ratio of data split is considered in the analysis because it has a significant impact 

on the performance and generalization of the machine learning model. In machine 

learning, the standard practice is to divide the whole dataset into two parts: training 

and testing. In this experiment, three ratios are tried: 80:20, 90:10, and 70:30. 80:20 is 

a ratio where 80% of the data is used for training each models while the remaining 

20% is used for testing the performance of the model. In the same manner 90:10 is a 

ratio where 90% of the data is used for training each models while the remaining 10% 

is used for testing the performance of the model. This also applies to the 70:30 ratio. 
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Performance Analysis of Models using Error Evaluation Metrics: 

 

Training Dataset 

Tables 1, 2, and 3 show the well-detailed analysis of the machine learning models that 

were used for the different training of the dataset. It is seen that the decision tree’s 

results are different from the other models with a really low error for the 10%, 20%, 

and as well as 30% datasets. This points to the problem of overfitting that the decision 

tree model has with this dataset. For example, at the 10% dataset, DT has values such 

as 5.1419E-15 for RMSE, 2.6439E-29 for MSE, and 2.8549E-15 for MAE. Also, 

observing from the table, the Random Forest method gives the best results with the 

lowest RMSE, MSE, and MAE values of 0.1295, 0.0168, and 0.0605 respectively 

which shows a good ability to predict solar power. Observing the KNN and SVR, they 

tend to have similar results across the various datasets. The KNN has lower error 

metrics when compared to SVR. Linear Regression also gives more error values due 

to its less ideal fit for this dataset. Adaboost has the highest error metrics amongst these 

models making it the model with the poorest performance which shows there should 

be room for improving this model. One other thing to note from observing these results 

is, that as the data size increases from 10% to 30% the results of most of the models 

are better. The decision tree model’s low error values are indicative of an overfitting 

problem on this dataset meaning it can learn extremely well on the training set but is 

unable to predict unseen datasets accurately. Further investigation will be done on the 

accuracy analysis. In conclusion, Random Forest has the best performance compared 

with the other models 
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Table 1: Error Metric Results of Training using 10% of the Dataset for Test 

Model RMSE MSE MAE 

KNN 0.3044 0.0927 0.1486 

SVR 0.3141 0.0987 0.1589 

Random Forest 0.1295 0.0168 0.0605 

Linear Regression 0.3626 0.1315 0.1993 

Decision Tree Regressor 5.1419E-15 2.6439E-29 2.8549E-15 

AdaBoost Regressor 0.4334 0.1878 0.3327 

 

Table 2: Error Metric Results of Training using 20% of the Dataset for Test 

Model RMSE MSE MAE 

KNN 0.3020 0.0912 0.1473 

SVR 0.3106 0.0964 0.1576 

Random Forest 0.1259 0.0159 0.0593 

Linear Regression 0.3601 0.1297 0.1989 

Decision Tree Regressor 4.7571E-15 2.2630E-29 2.7605E-15 

AdaBoost Regressor 0.4255 0.1810 0.3217 

 

Table 3: Error Metric Results of Training using 30% of the Dataset for Test 

Model RMSE MSE MAE 

KNN 0.3017 0.0910 0.1474 

SVR 0.3053 0.0932 0.1564 

Random Forest 0.1283 0.0165 0.0607 

Linear Regression 0.3590 0.1289 0.1991 

Decision Tree Regressor 3.8470E-15 1.4799E-29 1.8254E-15 

AdaBoost Regressor 0.4076 0.1662 0.3308 

 

Testing Dataset   

Below are Tables, 4, 5, and 6 of a comprehensive analysis of the different machine 

learning models on the testing dataset.  Again, the Decision Tree is observed to have 

a higher error value when compared to the five other machine learning models, with 

the figures of RMSE of 0.4279 at the 10% dataset which shows a problem of model 

generalization. On the other hand, the Random Forest model still maintains a 

consistently good performance as it did in the training with low error metrics across 

all the datasets for testing. For example, in the 10% dataset, Random Forest has an 
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RMSE of 0.2897, MSE of 0.0839, and MAE of 0.1393, which shows its good ability 

to predict the solar output well. It can be observed that there is a slow degradation of 

the performance of models like Random Forest and KNN.  Especially for the KNN 

model having an increased RMSE from 0.3348 at 10% to 0.3867 at 30%, which shows 

that this model is sensitive to how data varies. Also, LR and AB show a higher value 

of error as compared to other models which shows limitations in their prediction 

accuracy. For example, LR has an RMSE of 0.3215, MSE of 0.1033, and MAE of 

0.1773 while testing the 10% dataset. It is seen that Random Forest has the best 

performance compared to other models. 

 

Table 4: Error Metric Results of Testing using 10% of the Dataset for Test 

Model RMSE MSE MAE 

KNN 0.3348 0.1121 0.1608 

SVR 0.3006 0.0904 0.1555 

Random Forest 0.2897 0.0839 0.1393 

Linear Regression 0.3215 0.1033 0.1773 

Decision Tree Regressor 0.4279 0.1831 0.1935 

AdaBoost Regressor 0.4196 0.1761 0.3157 

 

Table 5: Error Metric Results of Testing using 20% of the Dataset for Test 

Model RMSE MSE MAE 

KNN 0.3648 0.1331 0.1780 

SVR 0.3347 0.1120 0.1715 

Random Forest 0.3414 0.1165 0.1620 

Linear Regression 0.3534 0.1249 0.1921 

Decision Tree Regressor 0.4695 0.2205 0.2169 

AdaBoost Regressor 0.4436 0.1968 0.3274 
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Table 6: Error Metric Results of Testing using 30% of the Dataset for Test 

Model                 RMSE MSE MAE 

KNN 0.3867 0.1496 0.1849 

SVR 0.3507 0.1230 0.1815 

Random Forest 0.3385 0.1146 0.1617 

Linear Regression 0.3593 0.1291 0.1972 

Decision Tree Regressor 0.4706 0.2215 0.2172 

AdaBoost Regressor 0.4309 0.1857 0.3403 

 

Performance Analysis of Models Using Accuracy Evaluation Metrics 

In Figures 16, 17, 18 and also in Tables 7, 8 and 9. We conducted a comprehensive 

analysis of three testing and training ratio data splits, namely 10:90, 20:80, and 30:70, 

using the accuracy metric, namely the determinant coefficient (R2). The analysis will 

further provide insights into their predictive performance. As observed from the 

figures, Random Tree Forest consistently shows outstanding performance, leading to 

high R2 scores for both the training and testing sets across all data split ratios. In 

Figures 17, 18, and 19, Random Forest obtained R2 scores of 0.9216, 0.8837, and 

0.8879, respectively. This showcases Random Forest's well-established predictive 

capabilities across different data split ratios. The effect of a model's ability to 

generalize can be better understood in models like KNN and SVR. The variation in the 

data split ratio had a slight impact on their prediction power, as their accuracy margin 

declined with the data split ratio varying from 10:90 to 20:80 and 30:70. On the other 

hand, Linear Regression and AdaBoost Regressor, in comparison to Random Forest, 

exhibited lower R2 scores. This is indicative of their limited potential to learn the 

patterns that exist between the meteorological data and generated power. Finally, the 

Decision Tree Regressor achieved an extremely high accuracy in the training set but 

achieved the lowest accuracy in testing. This is indicative of overfitting meaning the 

decision tree regressor has a potential limitation on this type of dataset. It can learn the 
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training dataset well but is unable to predict unseen data accurately. In conclusion, the 

best-performing model is Random Forest, showcasing reliability and high prediction 

accuracy on both training and testing data across all data split ratios compared to other 

models. 

 

Figure 17: R2 Score results using 10% of the Dataset for Test 

 

Figure 18: R2 Score results using 20% of the Dataset for Test 
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Figure 19: R2 Score results using 30% of the Dataset for Test 

 

Table 7, 8 & 9 are the R2 Scores represented in a tabular form. 

 

Table 7:R2 Score results using 10% of the Dataset 

Model               Train               Test 

KNN 0.91 0.9 

SVR 0.9 0.92 

Random Forest 0.98 0.92 

Linear Regression 0.87 0.9 

Decision Tree Regressor 1.0 0.83 

AdaBoost Regressor 0.81 0.84 

 

Table 8: R2 Score results using 20% of the Dataset 

Model               Train               Test 

KNN 0.91 0.87 

SVR 0.9 0.89 

Random Forest 0.98 0.88 

Linear Regression 0.87 0.88 

Decision Tree Regressor 1.0 0.78 

AdaBoost Regressor 0.82 0.8 
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Table 9: R2 Score results using 30% of the Dataset 

Model               Train               Test 

KNN 0.91 0.85 

SVR 0.91 0.88 

Random Forest 0.98 0.89 

Linear Regression 0.87 0.87 

Decision Tree Regressor 1.0 0.78 

AdaBoost Regressor 0.83 0.82 

              

Performance Analysis of Models on Observed Versus Predicted Data 

In the section, the actual vs predicted values of the model on various data split ratio is 

analyzed, Figures 19, 20, and 21 illustrate the scatter plot of these values, in the plots 

the x-axis represents the actual or observed data points while the y axis represents the 

predicted values of the model. The blue dots represent the individual data points of the 

predicted versus the actual data points while the red dashed line denotes the perfect 

prediction, this indicates where the blue dots should lie if the machine learning model 

predicted the actual data points perfectly meaning the predicted data points matches 

the actual datapoints exactly, if this is true the blue dot will be on or close to the red 

dashed line, otherwise the blue dotted line will be far away from the red dashed line. 

Worthy of note in practice, it's not uncommon for the predictions to deviate from the 

perfect prediction line depending on various factors e.g overfitting, underfitting, and 

noise, also the dataset or a machine learning model may not be suitable for the dataset 

due to inherent complexity in the dataset, here in Figures 19, 20 and 21, Random Forest 

has more blue dots closed to the red dashed line than other models, this validate the 

accuracy analysis established in the previous section. 

 



74 

 

     

 

 

Figure 20: Predicted vs Observed using 10% of the Dataset for Test 
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Figure 21: Predicted vs Observed using 20% of the Dataset for Test 
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Figure 22: Predicted vs Observed using 30% of the Dataset for Test 
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Conclusion 

 

This study is an extensive comparison of different machine learning models used in 

the prediction of solar power that is being generated in photovoltaic systems. Six 

unique models were employed which include the Decision Tree(DT), Linear 

Regression(LR), Support Vector Regression(SVR), Random Forest(RF), and the K-

Nearest Neighbors(KNN). Applying these models over an already existing 

meteorological dataset with variables and records of the solar power generated. The 

models are evaluated carefully using error metrics such as Root Mean Squared Error, 

Mean Squared Error (MSE), R-squared (R2), and Mean Absolute Error (MAE) to 

measure the model's efficiency. The results of this study show that Random Forest is 

the best model relative to the five other models to give accurate predictions of the solar 

power generated across the training and testing sets of data. RF has consistently the 

lowest error metrics of 0.1295, 0.0168, and 0.0605 respectively in the training and 

RMSE of value of 0.2897, MSE of 0.0839, and MAE of 0.1393 in the testing which 

shows a good ability to predict solar power and the highest R-squared scores of  0.9216, 

0.8837, and 0.8879 on all the different ratios of data splits which were 10:90, 20:80, 

and 30:70 respectively. This is connected to RF’s ability to adapt effectively and 

handle complex nonlinear input and output relationships while handling over-fitting 

problems.The RMSE/MSE/MAE value are decreasing in the training results and seems 

to be increasing in the testing results and this suggests that the models might be 

overfitting  to the training data which is when the model learns too well on the training 

data. The results of this study not only show a vivid recommendation for the use of 

Random Forests but also contribute to the wide use of machine learning in Renewable 

energy. The study highlights how the choice of a machine learning model can increase 



78 

 

the efficiency of the prediction which in turn, has a significant effect on reliability and 

efficiency in solar power predictions in photovoltaic systems. 

 

Recommendations 

The findings from this study are used to support the following suggestions whose 

objective is to improve solar power prediction in photovoltaic systems. 

• The adoption of the Random forest method as the core model. From observing 

the outstanding performance of this model in handling the intricate nonlinear 

meteorological data it shows that RF will well fit into proffering solutions in 

solar power prediction. 

• To improve the model’s generalizability and accuracy adding/expanding the 

training dataset with more meteorological data is recommended 

• Also, improving the prediction performance of the model integrating other 

machine learning models like the SVR or KNN into what is known as the 

ensemble technique is very well recommended. 

• To keep the model consistent with changing seasons or weather conditions, it 

will be best to always update them with new meteorological data of those 

regions. 

 

Future Works 

This study shows that there is more research to be put in place concerning solar power 

prediction in photovoltaic systems, which includes but is not limited to: 

• The application of deep learning models in solar power prediction using its 

ability to outperform the conventional machine learning models, working 

effectively with more complex nonlinear relationships. 
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• Having extended time horizons to have more effective energy management and 

planning, having meteorological data with the records of solar power generated 

over a longer time frame rather than the conventional daily predictions. 

• To ensure the smooth integration of solar power into the energy grid system, a 

study on the real-time dataset can be included in the model for predicting solar 

power. This will advance the reliability and efficiency of photovoltaic systems 

and facilitate the wider use of renewable energy sources. 
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