

 I

 NEAR EAST UNIVERSITY

 INSTITUTE OF GRADUATE STUDIES

DEPARTMENT OF MECHATRONICS ENGINEERING

A COMPARATIVE STUDY OF SUPPORT VECTOR MACHINE AND

CONVOLUTIONAL NEURAL NETWORK MODELS FOR INTRUSION DETECTION

 MASTER THESIS

 OKAH ONYEKACHI MICHAEL

 NICOSIA

 2023

 II

 NEAR EAST UNIVERSITY

 INSTITUTE OF GRADUATE STUDIES

DEPARTMENT OF MECHATRONICS ENGINEERING

A COMPARATIVE STUDY OF SUPPORT VECTOR MACHINE AND

CONVOLUTIONAL NEURAL NETWORK MODELS FOR INTRUSION DETECTION

 MASTER THESIS

 OKAH ONYEKACHI MICHAEL

 NICOSIA

 2023

 IV

 Declaration

I hereby declare that this thesis is the result of my original research work conducted under the

supervision of Prof. Dr. Rahib H. Abiyev and it has not been previously submitted for any degree

or examination in any other university or institution.

I affirm that all sources used, including published or unpublished works of others, have been duly

acknowledged and referenced in accordance with the guidelines provided by Near East Univers ity.

Any contributions made by others to this research have also been appropriately credited.

I take full responsibility for the content and findings presented in this thesis and confirm that all

data, figures, and results are authentic and accurately represent the outcomes of the conducted

research.

Furthermore, I understand that any misrepresentation or failure to abide by academic integrity and

ethical standards could result in severe consequences, including the rejection of this thesis or the

revocation of any degrees obtained as a result of this work.

Okah Onyekachi Michael

20th December 2023

 V

Acknowledgement

I would like to express my heartfelt gratitude to the Almighty God for granting me the wisdom,

strength, and perseverance throughout this research journey. Without His blessings and guidance,

this thesis would not have been possible.

I extend my sincere appreciation to my supervisor, for his invaluable support, patience, and expert

guidance. His mentorship and constructive feedback have been instrumental in shaping the

direction of this research.

I would like to express my gratitude to Dr. Ibrahim Shuaibu for his valuable insights and

contributions to this research. His expertise and constructive feedback have immensely enriched

the quality of this work.

I am deeply indebted to my parents for their unwavering love, encouragement, and continuous

belief in my abilities. Their sacrifices and unwavering support have been the driving force behind

my academic pursuits.

Furthermore, I am also thankful to my friends and family for their encouragement, motivation, and

understanding during the course of this endeavor. Their unwavering support and words of

encouragement have been a constant source of inspiration.

Lastly, I acknowledge the contributions of all individuals and institutions whose work and research

I have cited and utilized in this thesis. Their scholarly endeavors have laid the foundation for my

own exploration and understanding.

Thank you all for being an integral part of this journey. Your support and encouragement have been

pivotal in making this thesis a reality.

 Okah Onyekachi Michael.

 VI

Abstract

A Comparative Study of Support Vector Machine and Convolutional Neural Network

Models for Intrusion Detection

Okah Onyekachi Michael

MSc Department of Mechatronics Engineering

Supervisor Prof. Dr. Rahib H. Abiyev

January, 2023 112 Pages

In this rapidly evolving era of technology and automation, Mechatronics systems are more exposed

to the threat of cyber-attacks and intrusions as there are more increasingly interconnected and

reliant on digital communication. Failure to safeguard network security can lead to data breaches

and unauthorized access by potential hackers. In this study, we delve into the development and

evaluation of two deep learning models and we compare their performance on an internet firewa ll

dataset which was collected from a school library. This analysis in this study was conducted using

Python programming language in the Google Colabaratory environment which encompasses data

preprocessing, splitting the data into train set and test set and feature scaling. CNN and SVM model

training and evaluation with the test data. The models were used to classify the data into classes

such as ‘Allow’, ‘Deny’, ‘Drop’ and ‘Reset-Both’ and we used various evaluation metrics such as

accuracy, precision, recall, F1-score, and ROC AUC, to assess the performance of each models. In

this study, we set out to thoroughly investigate the classification of network traffic action using

deep learning models. The effective creation and assessment of Convolutional Neural Network

(CNN) and Support Vector Machine (SVM) models, both of which shown excellent classifica t ion

accuracy and performance, are among our significant findings. The SVM model showed robust

classification abilities even in settings with non-linear data separability, whereas the CNN model,

distinguished by its neural architecture, excelled better in capturing subtle data patterns. By

integrating our models into a real-time intrusion detection system, our research was also made

applicable to the outside world, demonstrating the usefulness and potential significance of our

work. Finally, our study highlights the value of deep learning in boosting cybersecurity measures

while also making significant contributions to the field of network security. The specific needs of

 VII

the activity at hand determine whether to use the CNN or SVM models. Organizations can

strengthen their network security and proactively protect against threats by utilizing these methods.

Keywords Intrusion Detection, CNN Model, SVM Model, Mechatronics .

 VIII

A Comparative Study of Support Vector Machine and Convolutional Neural Network

Models for Intrusion Detection

Okah Onyekachi Michael

MSc Department of Mechatronics Engineering

Supervisor Prof. Dr. Rahib H. Abiyev

January, 2023 112 Pages

Hızla gelişen teknoloji ve otomasyon çağında, Mekatronik sistemler giderek daha fazla birbirine

bağlı hale geldikçe ve dijital iletişime bağımlı hale geldikçe siber saldırı ve izinsiz giriş tehdidine

daha fazla maruz kalıyor. Ağ güvenliğinin korunmaması, veri ihlallerine ve potansiyel bilgisayar

korsanlarının yetkisiz erişimine yol açabilir. Bu çalışmada, iki derin öğrenme modelinin

geliştirilmesi ve değerlendirilmesi üzerinde duruldu ve bunların bir okul kütüphanesinden toplanan

internet güvenlik duvarı veri seti üzerindeki performansları karşılaştırıldı. Bu çalışmadaki bu

analiz, veri ön işlemeyi, verileri tren seti ve test setine bölmeyi ve özellik ölçeklendirmeyi kapsayan

Google Colabaratory ortamında Python programlama dili kullanılarak gerçekleştirildi. Test

verileriyle CNN ve SVM modelinin eğitimi ve değerlendirilmesi. Modeller, verileri 'İzin Ver',

'Reddet', 'Bırak' ve 'İkisini de Sıfırla' gibi sınıflara ayırmak için kullanıldı ve doğruluk, hassasiyet,

geri çağırma, F1 puanı ve ROC AUC gibi çeşitli değerlendirme ölçümleri kullandık. Her modelin

performansını değerlendirmek için. Bu çalışmada, derin öğrenme modellerini kullanarak ağ trafiği

eyleminin sınıflandırılmasını kapsamlı bir şekilde araştırmak için yola çıktık. Her ikisi de

mükemmel sınıflandırma doğruluğu ve performansı gösteren Evrişimsel Sinir Ağı (CNN) ve

Destek Vektör Makinesi (SVM) modellerinin etkin bir şekilde oluşturulması ve değerlendirilmes i

önemli bulgularımız arasındadır. SVM modeli, doğrusal olmayan veri ayrılabilirliğine sahip

ortamlarda bile güçlü sınıflandırma yetenekleri sergilerken, sinir mimarisiyle öne çıkan CNN

modeli, incelikli veri modellerini yakalamada daha başarılı oldu. Modellerimizi gerçek zamanlı

izinsiz giriş tespit sistemine entegre ederek araştırmamız dış dünyaya da uygulanabilir hale getirild i

ve bu da çalışmalarımızın yararlılığını ve potansiyel önemini ortaya koydu. Son olarak çalışmamız,

siber güvenlik önlemlerini artırmada derin öğrenmenin değerini vurgularken aynı zamanda ağ

güvenliği alanına da önemli katkılar sağlıyor. Eldeki faaliyetin özel ihtiyaçları, CNN veya SVM

 IX

modellerinin kullanılıp kullanılmayacağını belirler. Kuruluşlar bu yöntemleri kullanarak ağ

güvenliklerini güçlendirebilir ve tehditlere karşı proaktif bir şekilde koruma sağlayabilirler.

Keywords Intrusion Detection System, CNN Model, SVM Model, Mechatronics .

X

Table of Contents

Acknowledgement ... V

Abstract.. VI

CHAPTER I..1

Introduction ..1

1.1 Background and Context .. 1

1.2 Problem Statement .. 1

1.3 Research Gap .. 1

1.4 Objective of the Study .. 2

1.5 Scope and Significance ... 2

1.6 Research Hypothesis or Questions ... 2

1.7 Rationale for Model Selection .. 3

1.8 Thesis Overview ... 3

CHAPTER II ..5

Literature Review ..5

2.1 Overview of Intrusion Detection System (IDS) ... 5

2.2 Intrusion Detection System Techniques ... 6

2.3 Signature-based Intrusion Detection System .. 6

2.4 Anomaly-based Intrusion Detection System (AIDS) ... 7

2.5 Techniques for Implementing AIDS (SVM and CNN) .. 9

2.6 Supervised Learning in Intrusion Detection Systems ... 9

2.7 Support Vector Machine (SVM) in Intruion Detection Systems .. 10

2.8 Application of Support Vector Machines .. 13

2.9 Deep Learning in Intrusion Detection Systems .. 14

2.10 Application of Deep Learning in Intrusion Detection Systems 16

2.11 Convolutional Neural Networks (CNNs) ... 18

2.12 Convolutional Neural Networks in Network Intrusion Detection 19

2.13 Comparative Studies: SVM vs. CNN in Intrusion Detection ... 20

CHAPTER III ..26

Methodology ...26

XI

3.1 Research Design ... 26

3.2 Data Collection ... 27

3.3 Dataset Selection .. 29

3.4 Data Preprocessing ... 30

3.5 Model Configuration .. 30

3.5.1 Support Vector Machine (SVM) Algorithm ...30

3.5.2 Support Vector Machines in Intrusion Detection ...34

3.5.3 Convolutional Neural Network for Intrusion Detection ..36

3.5.4 Components of a CNN ..36

3.5.5 Overfitting and Regularization in CNNs ...40

3.5.6 Evaluation..41

3.6 Confusion matrix .. 43

3.7 Analysis of the Models ... 44

CHAPTER IV...47

Simulations and Results ..47

4.1 Simulation and Results of Intrusion Detection System ... 47

4.2 Training and Testing Results of the Models ... 49

4.3 Confusion matrix for SVM and CNN... 52

4.4 Precision-Recall Curve for CNN and SVM.. 53

4.6 Real-Time Representation of Intrusion Detection .. 56

4.7 Comparative analysis for both model ... 58

4.8 Analysis and Discussion ... 60

CHAPTER V ..63

CONCLUSION ..63

Recommendation for Future Work .. 63

Reference...65

APPENDICES ..71

Appendix 1 .. 71

IMPORTING THE DEPENDENCIES ...71

DATA COLLECTION AND PREPROCESSING..73

SEPARATING FEATURES AND TARGET ...74

XII

SPLITTING THE DATASETS INTO TRAINING DATA AND TESTING

DATA..74

ENCODE THE TARGET LABELS ...75

DATA STANDARDIZATION ..75

BUILD THE SVM MODEL ..75

FIT THE SVM MODEL...75

CALIBRATE THE PROBABILITIES OF THE SVM MODEL ...75

EVALUATE MODELS ON THE TEST DATA ...76

EVALUATE THE SVM ON THE TEST DATA ..76

PRINT EVALUATION METRICS FOR THE SVM ...76

PLOT THE CONFUSION MATRIX FOR THE SVM MODEL ...77

SAVING THE SVM MODEL ..77

PRECISION RECALL CURVE FOR SVM ..77

BUILDING THE CNN MODEL ...80

TRAIN THE CNN MODEL...80

ROC CURVE OF CNN ..85

PRECISION RECALL CURVE CNN ...86

Appendix 2 .. 91

COMPARATION OF THE MODELS ...91

BAR PLOT ...94

RADAR PLOT ...97

CONFUSION MATRIX ...99

REAL TIME INTRUSION DETECTION CLASSIFICATION ..100

TAKING THE INPUTS DIRECTLY FROM THE DATASET/USER INPUT100

XIII

List of Tables

Table 3. 1: Some Attributes and Features of the Dataset .. 30
Table 3. 2: Models and Their Libraries Used ... 42

Table 3. 3: Evaluation Metrics and Its Description .. 43

Table 3. 4: Comparative Analysis Strategies of Models ... 44
Table 3. 5: Visualization Plots and their Description.. 44

Table 4. 1: Descriptive Analysis of Network Traffic Attribute ... 47

Table 4. 2: Structure of the used CNN.. 27

Table 4. 3: SVM and CNN Model Evaluations .. 49
Table 4. 4: CNN Confusion Matrix Table ... 55

Table 4. 5: SVM Cross Validation Results ... 55

Table 4. 6: Visual Representation of the User Inputs on the Classification Features

In Tabular Format with Truth Label “Allow”. .. 56

Table 4. 7: Visual Representation of the User Inputs on the Classification Features

In Tabular Format with Truth Label – “Drop .. 57

Table 4. 8: Visual Representation of the User Inputs on the Classification Features

in Tabular Format with Truth Label “Deny” ... 57

Table 4. 9: Visual Representation of the User Inputs on the Classification Features

In Tabular Format with Truth Label: “Reset-Both” .. 58

XIV

List of Figures

Figure 3. 1: Block Diagram of The Design Stages of an IDS .. 26

Figure 3. 2: Distribution of Action Classes from the Dataset .. 29

Figure 3. 4: Graphical Representation of Dataset with Two Colors divided

linearly (source https://www.javatpoint.com/) .. 32

Figure 3. 5: Graphical Representation of a Linear SVM showing Support Vector

And Hyperplane (source https://www.javatpoint.com/) .. 32

Figure 3. 6: Graphical Representation of a Non-Linear Dataset (source

https://www.javatpoint.com/) .. 33

Figure 3. 7: Graphical Representation of a Non-Linear SVM in 3D (source

https://www.javatpoint.com/) .. 33

Figure 3. 8: Graphical Representation of a Non-Linear SVM in 2D (source

https://www.javatpoint.com/) .. 34

Figure 3. 9: Data Representation and Classification of SVM in Intrusion

Detection ... 34

Figure 3. 10: Convolutional Neural Network .. 36

Figure 3. 11: Architecture of CNN Applied to Intrusion Detection

(https://towardsdatascience.com/) ... 37

Figure 3. 12: Illustration of The Input Image and Its Pixel Representation

(Source: Zoumana) .. 38

Figure 3. 13: Application of The Convolution Task Using A Stride of 1 with 3x3

Kernel (Source: Zoumana, 2023) .. 38

Figure 3. 14: Application of Max pooling with a Stride of 2 Using 2X2 Filter

(Source: Zoumana, 2023) .. 39

Figure 3. 15: Graphical Representation of Overfitting and Underfitting (Source:

Zoumana, 2023) .. 40

Figure 3. 16: Confusion Matrix.. 43

Figure 4. 1: SVM model learning curve... 50

Figure 4. 2: Fragment of CNN model learning curve .. 51

Figure 4. 3: Training of CNN ... 52

Figure 4. 4: SVM and CNN Confusion Matrix .. 52

Figure 4. 5: SVM Precision Recall Curve .. 53

Figure 4. 6: CNN Precision Recall Curve ... 54

Figure 4. 7: CNN ROC Curve .. 54

Figure 4. 8: ROC-AUC Curve for SVM .. 55

Figure 4. 9: Bar Plot Comparing SVM and CNN Evaluation Metrics ... 59

Figure 4. 10: Radial Plot of the SVM and CNN model ... 60

XV

 List of Abbreviations

IDS Intrususion Detection System

SVM Support Vector Machines

CNN Convolutional Neural Network

DL Deep Learning

PCA Principal Component Analysis

CPU Central Processing Unit

MLP Multiple Layer Perceptron

TCP/IP Transmission Control Protocol/Internet Protocol

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

ID Intrusion Detection

DL Deep Learning

DNN Deep Neural Network

NAT Network Address Translation

Pkts Packets

ConvNet Convolutional Neural Network

ReLU Rectified Linear Unit

ROC Receiver Operator Characteristics

AUC-ROC Area Under the Receiver Operator Characteristics

TP True Positive

FN False Negative

XVI

FP False Positive

TN True Negative

RMSE Root Mean Square Error

 1

A Comparative Study Support Vector Machine and Convolutional Neural Network Models

for Intrusion Detection

CHAPTER I

Introduction

1.1 Background and Context:

In today's interconnected digital world, the escalating frequency and sophistication of cyber

threats pose a severe risk to the security and integrity of information systems. As

organizations increasingly rely on networked technologies, the need for robust and adaptive

security measures, particularly in the form of Intrusion Detection Systems (IDS), becomes

imperative. These systems act as vigilant guardians, continuously monitoring network

activities to detect and respond to potential security breaches.

1.2 Problem Statement:

The landscape of cyber threats is dynamic, characterized by novel attack vectors, stealthy

infiltration techniques, and polymorphic malware. While traditional intrusion detection

methods have proven effective to a certain extent, they often struggle to keep pace with the

evolving tactics employed by malicious actors. The inadequacies in existing approaches

highlight the pressing need for innovative strategies that can enhance the capabilities of

intrusion detection systems and fortify networks against an ever-expanding array of threats.

In this thesis machine learning and deep learning algorithms are considered for intrus ion

detection.

1.3 Research Gap:

While a substantial body of literature addresses various facets of intrusion detection, there is

a noticeable gap in comprehensive studies that systematically compare the performance of

distinct models. This research void inhibits a holistic understanding of the strengths and

2

weaknesses of different approaches. Bridging this gap through a comparative study is

essential to inform the development of more resilient and adaptive intrusion detection

systems.

1.4 Objective of the Study:

This research endeavors to conduct an in-depth comparative analysis of two prominent

models—deep learning model based on convolutional neural networks and support vector

machines—within the realm of intrusion detection systems. The primary objectives include

assessing the efficacy of these models in identifying and mitigating cyber intrusions,

delineating their nuanced strengths and limitations, and providing nuanced insights to refine

and optimize intrusion detection strategies.

1.5 Scope and Significance:

The scope of this study extends beyond a surface-level comparison; it encompasses a nuanced

examination of the theoretical underpinnings and practical implementations of the chosen

models in real-world scenarios. By addressing this research gap, the study aspires to furnish

valuable insights that are not only pertinent to cybersecurity practitioners but also contribute

to the body of knowledge accessible to researchers and policymakers. The significance lies

in the potential enhancement of overall cybersecurity resilience through informed decision-

making and strategic implementations.

1.6 Research Hypothesis or Questions:

At the core of this research lies the hypothesis that the chosen models—support vector

machines, and convolutional neural networks—exhibit diverse levels of effectiveness in

detecting and mitigating intrusions. Complementary to this hypothesis, the study will explore

critical research questions such as the comparative performance metrics, adaptability to

evolving threats, and scalability of these models in practical intrusion detection scenarios.

3

1.7 Rationale for Model Selection:

The selection of machine learning and deep learning models- support vector machines, and

convolutional neural networks is underpinned by their inherent capabilities in pattern

recognition, feature extraction, and complex data processing. Each model brings unique

strengths to the table, making them relevant choices for addressing the multifaceted

challenges posed by sophisticated cyber-threats. The rationale is rooted in leveraging the

diverse strengths of these models to attain a comprehensive understanding of their

applicability and effectiveness in the context of intrusion detection.

1.8 Thesis Overview:

The remainder of this thesis will contain

Chapter 2: Literature Review which will provide a comprehensive overview of the state of

the art in intrusion detection systems (IDS), covering both traditional and machine learning-

based approaches. It will discuss the different types of intrusions, the challenges of detecting

intrusions, and the evaluation metrics used to assess the performance of IDSs.

Chapter 3: Methodology which will describe the methodology used in the research, includ ing

the data sets used, the experimental setup, and the chosen evaluation metrics. It will also

provide a detailed explanation of the SVM and CNN algorithms, highlighting their strengths

and weaknesses in the context of intrusion detection.

Chapter 4: Results will present the results of the experiments conducted on the real-world

data sets. It will compare the performance of SVMs and CNNs in terms of accuracy,

precision, recall, and F1 score, and provide insights into the factors that affect their

performance.

Chapter 5: Discussion and Conclusion will discuss the implications of the findings, includ ing

the strengths and weaknesses of SVMs and CNNs for intrusion detection. It will also provide

4

recommendations for future research and practical applications, such as the development of

hybrid IDS systems that combine SVMs and CNNs.

5

CHAPTER II

Literature Review

2.1 Overview of Intrusion Detection System (IDS)

According to Khraisat et al. (2019), any type of unauthorized activity that damages an

information system is commonly referred to as intrusion. This means that any attack that would

endanger the availability, confidentiality, or integrity of the information will be viewed as an

intrusion. Comparably, to enable the maintenance of system security, an intrusion detection

system (IDS) is a hardware or software system that recognizes harmful activity on computer

systems (Liao et al., 2013). Thus, monitoring network resources, identifying various forms of

harmful network traffic, and preventing network misuse are the primary goals of intrus ion

detection.

The commercial development of intrusion detection technologies started in the 1990s

(Rajasekaran, 2020). The first company to sell intrusion detection systems (IDS) was Haystack

Labs, with its Stalker line of host-based products. Additionally, at the time, SAIC was also

developing a host-based intrusion detection system known as the Computer Misuse Detection

system (CMDS) (Rajasekaran, 2020). Based on these assumptions, IDSs are designed to

distinguish between an intruder's behavior and that of a legitimate user.

On the strength of the importance of Intrusion Detection Systems, this literature review aims to

provide a comprehensive understanding of Traditional Intrusion Detection Systems (IDS) as a

foundational aspect of cybersecurity. Therefore, in the context of our comparative study on

intrusion detection, utilizing supervised learning models, such as support vector machine, and deep

learning models, such as convolutional neural networks, it is crucial to establish a solid foundation

by examining the strengths, weaknesses, and advancements in each traditional approach.

In their research, Kumar et al. (2021) proposed a pioneering approach with the 'Security and

privacy-aware Artificial Intrusion Detection System using Federated Machine Learning.' The

study introduced a federated machine learning mechanism as a machine learning model that assists

in training decentralized data in devices to ensure data privacy and security. Addtionally, an

Artificial Immune Intrusion Detection System was designed to classify the node and monitor

anomaly in the network. The experimental result showed that the model displayed better and more

efficient result that the edge security models in existence.

Alhajjar et al. (2021) investigate the nature of adversarial machine learning examples in the scope

of intrusion detection systems. They employ the use of particle swarm optimization and genetic

algorithm as tools on NSL-KDD dataset and UNSW-NB15 dataset and evaluated its performance.

The result was compared to Monte Carlo Simulation, which is a baseline perturbation method. The

result of this approach showed that the adversarial example generation method exhibits high

misclassification rates in machine learning models.

6

Mustapha Qahatan Alsudani, Salah H, Abbdal Reflish, Kohbolan, and Myasar Mundher Adnan

(2022) in their study explored a comparative approach on three different machine learning

algorithms which are; traditional machine learning, ensemble learning, and deep learning. They

performed experiments on decision trees, Naïve Bayes, support vector machines, random forestsm

XGBoost, CNN and RNN using the KDD CUPP99 and NSL-KDD datasets. They compared the

performance metrics of the algorithms, the result obtained showed that the Naïve Bayes algorithm

has faster training speed, and can face various types of attacks but with low accuracy in detecting

the learned data.

Paya, Arroni, García-Díaz, & Gómez, (2024) introduced ‘Apollon: A robust defense system

designed to counter Adversarial Machine Learning attacks within Intrusion Detection Systems ”.

They defined Apollon as a novel defense-based system that applies various set of classifiers to

detect intrusion and safeguard intrusion detection system against potential threats. Apollon was

evaluated on different datasets and the result shown that it can successfully identify attacks without

affecting its performance on network traffic.

2.2 Intrusion Detection System Techniques

Due to the exponential growth of networking technologies and the rise in cyber threats, effective

cybersecurity has become increasingly important. One critical component of cybersecurity is the

detection and prevention of malicious activity and unauthorized access within computer networks.

This makes computer systems extremely resistant to malicious actions that could jeopardize their

availability, integrity, or confidentiality. There are two primary subcategories of intrusion detection

systems: Signature-based Intrusion Detection System (SIDS) and Anomaly-based Intrusion

Detection System (AIDS).

2.3 Signature-based Intrusion Detection System

Known alternatively as knowledge-based detection or misuse detection, signature intrus ion

detection systems (SIDS) use pattern matching techniques to identify a known attack (Khraisat et

al., 2018). This kind of detection operates highly effectively against known assaults, but it is

dependent on getting regular pattern updates and is not able to identify unexpected threats from

the past or future releases. This implies that matching techniques are employed in SIDS to locate

a prior intrusion. Stated differently, an alarm signal is generated when the signature of an intrus ion

corresponds with the signature of an earlier intrusion that is already recorded in the signature

database (Modi et al., 2013).

7

Additionally, the primary idea behind the SIDS system is to create a database of intrus ion

signatures, compare the present set of activities to the signatures already in place, and trigger an

alarm when a match is discovered. If a rule is written like "if (source IP address=destination IP

address) then label as an attack," for instance, it may result from the expression "if: antecedent -

then: consequent." Consequently, for known intrusions, SIDS typically provides good detection

accuracy (Symantec, 2017). Nevertheless, until the signature of the fresh assault is retrieved and

saved, SIDS cannot identify zero-day attacks because the database lacks a matching signature.

Many widely used tools, like NetSTAT (Vigna & Kemmerer, 1999) and Snort (Roesch, 1999), use

SIDS.

A major challenge for signature-based intrusion detection systems is that each signature

necessitates a database entry; hence, an entire database could have hundreds or even thousands of

entries (Meiners et al., 2010). Because traditional SIDS approaches analyze network packets and

match them against a signature database, they are not as effective at recognizing assaults that span

many packets. Every packet needs to be checked against every entry in the database. Given the

intricacy of today's malware, it could be necessary to extract signature data from several packets.

IDS must also bring the contents of previous packets with it. It can take a lot of resources to achieve

this, which will reduce throughput and expose the IDS to denial-of-service assaults.

In summary, with the increasing rate of zero-day attacks (Symantec, 2017), SIDS techniques have

become progressively less effective because of the absence of signature for any such attacks. The

other factors such as the polymorphic variants of the malware and the rising number of targeted

attacks also add up in compromising the adequacy of this traditional model. Some of the IDS

evasion tools use this vulnerability and flood the signature-based IDS systems with too many

packets to the point that the IDS cannot keep up with the traffic, thus making the IDS time out and

drop packets, and as a result, possibly miss attacks.

2.4 Anomaly-based Intrusion Detection System (AIDS)

Due to the ability to overcome SIDS's limitations, AIDS has drawn a lot of academic attention

over the years (Butun et al., 2014). AIDS does not operate by identifying abnormal behavior;

rather, it distinguishes between behavior that is acceptable and undesirable. Rather than patterns

or fingerprints, this categorization is based on rules or heuristics, and identifying the network's

typical behavior is necessary for system implementation. A typical model of a computer system's

behavior is also developed in AIDS through the use of statistical, knowledge-based, or machine

8

learning techniques. A notable divergence between the observed conduct and the model is

considered an anomaly, which may be construed as an infringement. This type of technique relies

on the distinction between malicious and normal user behavior.

The evolution of AIDS occurs in two stages: the testing phase and the training phase. During the

training phase, a model of typical behavior is learned using the normal traffic profile. During the

testing phase, a fresh collection of data is utilized to enhance the system's ability to adapt to

previously undiscovered incursions. AIDS can be divided into subgroups according to the training

methodology, such as statistical, knowledge-based, and machine learning-based (Butun et al.,

2014).

AIDS methods can be classified into four primary categories: supervised learning (Chao et al.,

2015), unsupervised learning (Elhag et al., 2015; Can & Sahingoz, 2015), reinforcement learning

and deep learning (Buczak & Guven, 2016; Meshram & Haas, 2017). The comparative analysis

of intrusion detection using supervised learning models like support vector machines (SVM) and

deep learning models like convolutional neural networks will be the main emphasis of this review

of the literature. In supervised learning, all input and output variables are gathered, examined, and

an algorithm is used to determine the typical user behavior from the input to the output. The goal

is to approximate the mapping function to the point where it can anticipate the output variables for

each new input record that is gathered. On the other hand, deep learning models are built on

artificial neural networks, specifically convolutional neural networks (CNN)s.

According to Alazab et al. (2012), the primary advantage of AIDS its capacity to detect zero-day

attacks, as it eliminates the need for a signature database to identify anomalous user behavior.

When the conduct under examination diverges from typical behavior, AIDS sends out a warning

signal. Moreover, there are several advantages to AIDS. They can first find harmful activity

occurring within. An alarm is set off when an intruder begins to make transactions in a stolen

account that are not recognized in the regular user activity. Second, since the system is built using

personalized profiles, it is difficult for a cybercriminal to identify typical user activity without

raising an alert.

However, since the intruders are unpredictable, defining what constitutes a normal network

behavior, determining the threshold for raising an alarm, and avoiding false alarms are the main

challenges faced by anomaly-based detection systems. Therefore, if the normal model is not

9

defined carefully, there will be a high number of false alarms and the detection system's

performance will be negatively impacted.

2.5 Techniques for Implementing AIDS (SVM and CNN)

Therefore, as was previously indicated, machine learning techniques have been used to construct

a variety of AIDSs. The four primary categories of these AIDS techniques are supervised learning,

unsupervised learning, reinforcement learning, reinforcement learning, and deep learning. The

primary goal of applying machine learning techniques is to develop IDS that are more accurate

and require less human understanding. In the past several years, there has been a rise in the number

of AIDS cases that employ machine learning approaches. But the comparative analysis of intrus ion

detection using supervised learning models—like support vector machines (SVM) and deep

learning models—like convolutional neural networks (CNN)—will be the exclusive focus of this

review of the literature.

2.6 Supervised Learning in Intrusion Detection Systems

Supervised learning-based intrusion detection systems use labeled training data to find intrusions.

Basically, there are two phases in a supervised learning approach: training and testing (Jahdav et

al., 2021). Relevant classes and features are found during the training phase, after which the

algorithm gains knowledge from these data samples. Each record in a supervised learning intrus ion

detection system (IDS) is a pair that comprises a network or host data source and an associated

output value, or label, such as normal or intrusion. After that, extraneous features can be removed

using feature selection. A classifier is then trained using a supervised learning technique to

discover the intrinsic link between the input data and the labelled output value using the training

data for specific features.

On the other hand, in the testing stage, the unknown data is divided into intrusion and normal

classes using the trained model. The resulting classifier subsequently turns into a model that

predicts the class to which the data that was provided may belong given a collection of feature

values. Several supervised learning-based neural network, decision tree, rule-based, neural,

support vector, naïve Bayes, and k-nearest neighbor IDS classification techniques exist (Jahdav et

al., 2021). Every method builds a classification model using a learning strategy. This work,

however, examines support vector machines in depth.

10

Umer et al. (2022), conducts a survey that specialise on for types of method for ML namely;

supervised learning, semi-supervised learning, unsupervised learning and reinforcement learning.

Likewise, Abdallah et al. (2022) conducts another survey in the supervised machine learning

technique and cyber-security attacks in the field of intrusion detection systems. This provides a

taxonomy based on related topics. The result of this survey when conducted on the KDD99, NSL-

KDD, CICDS2017, and UNSW-NB15 displayed that the performance metrics of the supervised

learning is high when classified accordingly. In another survey, Dina, A.S., & Manivannan(2021)

presents a comprehensive review of ML-based detection techniques developed in the last ten years.

The goal of the survey in the study to serve a reference point for future researchers in the field of

ML-based IDSs.

2.7 Support Vector Machine (SVM) in Intruion Detection Systems

As we progress in our exploration of intrusion detection methodologies, the focus now shifts to

the utilization of Support Vector Machines (SVM). SVMs have garnered attention for their

prowess in classification tasks, and this literature review aims to dissect the performance,

methodologies, and contributions of SVMs in the realm of intrusion detection.

Originally introduced by Vladimir Vapnik (Vapnik, 1998), Support Vector Machines (SVMs) have

proven to be effective on a variety of classification and forecasting tasks in the fields of statistica l

learning theory and structural risk minimization. SVMs' effectiveness in classification problems

has drawn significant attention. They have been applied to the several pattern recognition and

regression estimation problems, as well as dependency estimation, forecasting, and building

intelligent robots (Sami, 2012). Additionally, because of the generalization concept based on

Structural Risk Minimization Theory (SRM), or the method being based on guaranteed risk bounds

of statistical learning theory, SVMs have the potential to encompass very vast feature spaces

(Joachim, 2002).

As a discriminative classifier, SVM is defined by a maximum fringe hyperplane that lies in some

space and classifies the data separated by non-linear boundaries, which can be constructed by

finding a set of hyperplanes that divide two or more classes of data points. Different kinds of

splitting hyperplanes are achievable by applying kernels, such as linear, polynomial, Gaussian

Radial Basis Function (RBF), or hyperbolic tangent. Consequently, SVMs employ kernel

functions to map the training data into a higher-dimensioned space, thereby allowing for the linear

11

classification of intrusion. Following the construction of the hyperplanes, the SVM determines the

lines of separation between the input classes and the input elements defining the boundaries

(support vectors (Sivanandam et al. (2006)). A maximum margin hyperplane divides a given set

of training samples labeled as positive or negative; this maximizes the distance between the margin

and the hyperplane. In the event that no hyperplanes are able to divide the positive or negative

samples, an SVM chooses a hyperplane that splits the sample as precisely as possible.

In a seminal work by Vinayakumar et al. (2017), the authors leverage CNN architectures for

intrusion detection by modeling network traffic as time-series, particularly TCP/IP packets. This

study employs supervised learning methods such as multi- layer perceptron (MLP), CNN, CNN-

recurrent neural network (CNN-RNN), CNN-long short-term memory (CNN-LSTM), and CNN-

gated recurrent unit (GRU). The evaluation, performed on the KDDCup 99 synthetic ID dataset,

reveals the efficacy of CNN and its variants. The ability of CNNs to extract high-level feature

representations proves instrumental in outperforming classical machine learning classifiers

[(Vinayakumar et al., 2017)].

Finally, SVMs are also highly known for their capacity to generalize, and they work best in

situations where there are a lot of attributes and few data points. The data mining, pattern

recognition, and machine learning groups have become interested in SVM recently due to its

exceptional generalization ability, optimal solution, and discriminative capacity. SVM is a potent

technique that has been used to solve real-world binary classification issues. It is used in a way

that maximizes the margin—the existing space between the decision borders—in a feature space,

which is a high-dimensional space. Many features in IDS datasets are redundant or have less of an

impact on classifying data items into the appropriate categories.

As we navigate through diverse intrusion detection methodologies, our attention now turns to the

application of Convolutional Neural Networks (CNN). Renowned for their prowess in computer

vision, CNN architectures have recently been extended to the domain of intrusion detection in

cybersecurity. This literature review endeavors to dissect the models, methodologies, and

accomplishments of CNNs in the context of network intrusion detection.

Support Vector Machines (SVMs) for Intrusion Detection Systems by N. Jabbour et al. (2017)

provides a comprehensive overview of SVM applications in intrusion detection systems. It

discusses the inherent interpretability of SVMs, making them easier to understand and debug

12

compared to some deep learning models. This can be advantageous if understanding the decision-

making process behind your intrusion detection system is important.

In a comprehensive study by Ahmad et al. (2018), the performance of SVM is rigorously compared

with other techniques, namely random forest and extreme learning machine, for intrus ion

detection. The study addresses the critical need for an efficient classification technique, especially

in handling large datasets, such as system and network data. Employing well-known machine

learning techniques, the authors utilize the NSL–knowledge discovery and data mining dataset,

presenting results that demonstrate the superiority of extreme learning machine over other

approaches [(Ahmad et al., 2018)].

Bhati and Rai (2020) contribute to the literature with an analytical study of SVM-based intrus ion

detection techniques. The methodology involves data collection, preprocessing, SVM technique

for training and testing, and decision-making. The study utilizes the NSL-KDD dataset, a

benchmark in intrusion detection techniques. The results showcase the effectiveness of different

SVM variations, including Linear SVM, Quadratic SVM, Fine Gaussian SVM, and Medium

Gaussian SVM, in achieving high overall detection accuracy [(Bhati & Rai, 2020)].

Performance Analysis of Machine Learning Algorithms for Network Intrusion Detection by S. M.

Latif et al. (2020): The study evaluates the performance of various machine learning algorithms,

including SVMs, decision trees, and K-nearest neighbors, for intrusion detection using the NSL-

KDD dataset. They find that SVMs achieve the highest F1-score (93%), followed by CNNs (92%)

and decision trees (89%). This paper provides a head-to-head comparison of various algorithms

on a similar dataset, offering insights into their relative strengths and weaknesses.

In their innovative research, Alzaqebah et al. (2023) presents a 'Hierarchical Intrusion Detection

System based on Extreme Learning Machine and Nature-Inspired Optimization.' They developed

a better bio-inspired meta-heuristic method effective detection and classification problems. The

suggested model is used to address the multi-class classification problem using a one-versus-all

model-based approach. This approach was evaluated with several meta-heuristic methods and

multi-class classifiers on the UNSWNB-15 dataset. The result showed that the new experimenta l

result performed more effectively than pre-existing methods.

13

2.8 Application of Support Vector Machines

This section provides a survey of some major contributions towards SVM and its successful

applications in IDS. For example, Heba et al. (2010) introduce an intrusion detection system

employing Principal Component Analysis (PCA) with SVMs. The approach aims to select the

optimum feature subset, reducing the number of features and enhancing the efficiency of intrus ion

detection. Through experiments on the NSL-KDD dataset, the proposed system demonstrates

effectiveness in speeding up the detection process while minimizing memory space and CPU time

costs (Heba et al., 2010). In the work by Li et al. (2012), an SVM classifier with an RBF kernel

was applied to classify the KDD 1999 dataset into predefined classes. From a total of 41 attributes,

a subset of features was carefully chosen by using a feature selection method. Simila r ly,

Chowdhury et al. (2016) introduced a method of detecting intrusion based on network traffic. They

randomly picked three variables from a feature pool and used SVM model to differentiate attacks

and normal traffic accordingly. This was a continuous process until all permutations of the features

were covered. The model was tested on the UNSW-NB15 dataset and the result of exhibit an

accuracy of 98.76%.

Support Vector Machines (SVMs) for Intrusion Detection Systems by N. Jabbour et al. (2017)

provides a comprehensive overview of SVM applications in intrusion detection systems. It

discusses the inherent interpretability of SVMs, making them easier to understand and debug

compared to some deep learning models. This can be advantageous if understanding the decision-

making process behind your intrusion detection system is important.

In a comprehensive study by Ahmad et al. (2018), the performance of SVM is rigorously compared

with other techniques, namely random forest and extreme learning machine, for intrus ion

detection. The study addresses the critical need for an efficient classification technique, especially

in handling large datasets, such as system and network data. Employing well-known machine

learning techniques, the authors utilize the NSL–knowledge discovery and data mining dataset,

presenting results that demonstrate the superiority of extreme learning machine over other

approaches (Ahmad et al., 2018).

Bhati and Rai (2020) contribute to the literature with an analytical study of SVM-based intrus ion

detection techniques. The methodology involves data collection, preprocessing, SVM technique

for training and testing, and decision-making. The study utilizes the NSL-KDD dataset, a

benchmark in intrusion detection techniques. The results showcase the effectiveness of different

14

SVM variations, including Linear SVM, Quadratic SVM, Fine Gaussian SVM, and Medium

Gaussian SVM, in achieving high overall detection accuracy [(Bhati & Rai, 2020)].

SVM is basically supervised machine learning method designed for binary classification. Using

SVM in IDS domain has some limitation. SVM being a supervised machine learning method

requires labelled information for efficient learning. Pre existing knowledge is required for

classification which may not be available all the time (Shon et al., 2005). SVM has the intrins ic

structural limitation of the binary classifier i.e. it can only handle binary-class classifica t ion

whereas intrusion detection requires multi-class classification (Sandya et al., 2005). Although

there are some improvements, the number of dimensions still affects the performance of SVM-

based classifier (Kyaw, 2010). SVM treats every feature of data equally. In real intrusion detection

datasets, many features are redundant or less important. It would be better if feature weights during

SVM training are considered (Kyaw, 2010). Training of SVM is time-consuming for IDS domain

and requires large dataset storage. Thus, SVM is computationally expensive for resource-limited

ad hoc network (Joseph et al., 2011). Moreover, SVM requires the processing of raw features for

classification which increases the architecture complexity and decreases the accuracy of detecting

intrusion (Joseph et al., 2011).

In their contribution, Turukmane and Devendiran (2024) present "M-MultiSVM: An efficient

feature selection assisted network intrusion detection system utilizing machine learning". This

study introduced an effective automatic abnormality detection system that aids the detection

system to identify false detection. The study proposed M-MultiSVM model using the CSE-CIC-

IDS 2018 and UNSW-NB15 datasets. They utilized the Null value handling and MIN-Max

normalization for data pre-processing and the features of the dataset was extracted using the

Modified Singular Value Decomposition which was then optimized. The result of the performance

metric displayed that the suggested method has an accuracy of 99.9% when the CSE-CIC-IDS

2018 dataset was utilized and an accuracy of 97.535% when the UNSW-NB15 dataset was utilized.

2.9 Deep Learning in Intrusion Detection Systems

Deep learning is a subfield of machine learning where a computer uses a hierarchy of data based

on experience and form multiple layers as an output. Deep learning can be supervised as well as

unsupervised. In the case of supervised deep learning, data can be classified whereas in the case

of unsupervised deep learning data patterns are analyzed. Deep learning is directly related to

artificial intelligence where machines will acquire knowledge by learning with experience and will

15

replace human intelligence. Deep learning works on the platform of artificial neural networks by

studying massive amounts of data with the help of algorithms prepared by human intelligence. It

is referred to as ‘deep learning’ as the artificial neural networks possess different deep layers that

enables them to learn. In neural networks, each neural node of every single hidden layer calculates

the weighted values receiving from the previous layer and passes on the output values to the

subsequent layer. The result value of the last layer can be considered as the final results achieved

by the neural networks from the raw data.

IDSs play an important part in cybersecurity as they defend the network from cyber-attacks by

monitoring the network. IDSs in cybersecurity have evolved using deep learning (DL) due to their

findings in computer vision, image processing, and natural language processing (Avci et al., 2021).

Due to their two key properties, hierarchical feature representations and the acquisition of long-

term temporal patterning, this structure of hierarchical and heuristic search is highly effective. DL

is popular among researchers. Therefore, considerable thought has been given to DL approaches

for enhancing the intelligence of IDSs, despite a lack of research comparing such machine learning

methods with openly available datasets. DL’s complex structuring architecture facilitates high-

quality learning for complex data processing. Rapid progress in parallel processing technology has

produced a robust system basis for DL approaches.

DL-IDS leverages complex neural network architectures to learn intricate patterns from data.

Convolutional Neural Networks (CNNs) are particularly effective for processing grid-like data

such as images, making them well-suited for analyzing network packet data. Recurrent Neural

Networks (RNNs), on the other hand, excel in capturing sequential dependencies, making them

valuable for time-series data like system logs. The synergy of these architectures allows DL-IDS

to handle diverse input formats efficiently. The strength of DL-IDS also lies in its ability to

automatically extract features from raw data. Traditional IDS often requires manual feature

engineering, a time-consuming and expertise-dependent process. DL-IDS eliminates this

bottleneck by autonomously learning relevant features during the training phase. This adaptability

ensures that the system can recognize both known and previously unseen patterns associated with

normal and malicious behavior.

Al-Kashoori and Alsultan (2019) explores a comparative approach of deep learning that compares

various deep learning architectures, including DNNs, CNNs, and LSTMs, for intrusion detection

16

using the NSL-KDD dataset. They report that CNNs achieve the highest accuracy (92%), followed

by LSTMs (89%) and DNNs (86%), demonstrating the potential of CNNs for high detection rates

on similar datasets. In another study Y. Li et al. (2020), The survey paper explores various deep

learning methods for intrusion detection, including CNNs, LSTMs, and autoencoders. They

emphasize that achieving a balanced F1-score, which considers both precision and recall, is crucial

for practical intrusion detection systems. This paper can help you understand the trade-offs

between different models and select the one that offers the best balance for your specific needs.

However, Gill et al. (2020) conducts a survey that provides a broad overview of recent advances

in machine learning techniques for intrusion detection, including deep learning,

In there contribution by Zhu et al. (2023), they propose a novel deep CNN framework for DDoS

attack detection. Their model achieves an accuracy of 99.2% and a low false positive rate of 0.7%

on the CICIDS2017 dataset, showcasing the strength of CNNs in achieving high accuracy with

low false alarms for specific attack types. Contrarily, Cevallos et al. (2023) proposes a survey in

the field of deep learning where they explore DRL-based intrusion detection design choices. The

goal of the survey is to explore the merits and deployment of IOT environments with the objective

of the survey to act a guide to future researchers interested in Intrusion Detection in the field of

IOT.

Deep Learning Approach for Network Intrusion Detection Using a Small Features Vector by M.

R.G.S.N. Kumar et al. (2023): This study investigates a deep learning approach with a small feature

vector for intrusion detection using the UNSW-NB15 dataset. Their model achieves a precision of

96.5% compared to other models requiring more features, highlighting the potential of deep

learning for reducing false positives while maintaining high accuracy.

2.10 Application of Deep Learning in Intrusion Detection Systems

This section provides a survey of some major contributions towards deep learning and its

successful applications in IDS. This literature review aims to unravel the advancements,

methodologies, and applicability of deep learning models in addressing crucial cybersecurity

challenges, including intrusion detection, malware detection, phishing/spam detection, and

website defacement detection. For example, in their survey, Mahdavifar and Ghorbani (2019)

provided a comprehensive overview of recent DL approaches in cybersecurity. The survey

delineates preliminary definitions of popular DL models and algorithms, proposing a general DL

framework for cybersecurity applications. The authors analyze related papers, considering focus

17

areas, methodologies, model applicability, and feature granularity, culminating in concluding

remarks and future research considerations (Mahdavifar & Ghorbani, 2019).

Renowned for their prowess in computer vision, CNN architectures have recently been extended

to the domain of intrusion detection in cybersecurity. In a seminal work by Vinayakumar et al.

(2017), the authors leverage CNN architectures for intrusion detection by modeling network traffic

as time-series, particularly TCP/IP packets. This study employs supervised learning methods such

as multi-layer perceptron (MLP), CNN, CNN-recurrent neural network (CNN-RNN), CNN-long

short-term memory (CNN-LSTM), and CNN-gated recurrent unit (GRU). The evaluation,

performed on the KDDCup 99 synthetic ID dataset, reveals the efficacy of CNN and its variants.

The ability of CNNs to extract high- level feature representations proves instrumental in

outperforming classical machine learning classifiers (Vinayakumar et al., 2017).

Parameswari et al. (2024) propose a developed an optimized enabled deep learning method named

RAT Swarm Hunter Prey Optimization-Deep Maxout Network (RHPO-DMN) programmed to

handle a variety of threat efficiently. The data is transformed using the CNN model formerly pre-

procesed using the Z-score data normalization. The result showed that the RSHPO-DMN model

repectivelly achieved an accuracy of 90.88%, precision of 93.58%, recall of 96.54% and F1 score

of 95.04%.

Devendiran and Turukmane (2024) proposed an innovative approach using deep learning to

improve accuracy of the classification with minimal error. In this method, the dataset which was

the TON-IOT and NSL-KDD dataset was pre-processed by M-squared normalisation techniques

and data cleansing. Thereafter, the data was balanced by employing the chaotic optimiza t ion

approach. Furthermore, the extracted features are then classified using the Gated Attention Dual

Long Short-Term Memory (Dugat-LSTM). The result of this approach showed that the accuracy

of the prototype was 98.76% in the TON-IOT dataset while the NSL-KDD dataset was 99.65%.

Yuan et al. (2024) proposed a study titled: "A simple framework to enhance the adversarial

robustness of deep learning-based intrusion detection system". The study presents a novel IDS

architecture that combines machine learning models and to improves the effectiveness of IDS

against potential attacks. An Adversarial Example (AE) detector was first developed then with the

fusion of ML and DL models a more complex ML models was formed that aid in identifying

18

malicious AE. The outcome of the fusion between the ML and DL result in a very high accurate

prediction and low attack transferability between both models.

Aljehane et al. (2024) presents a new approach of integrating Golden Jackal Optimiza t ion

Algorithm with deep learning assisted IDS. The goal of this method is to effectively identify and

classify intrusion. The data was first normalized to scale then the GJOADL-IDSNS is used to

select the best subset of features. The dataset was simulated using the Salo Swarm Algorithm

(SSA) and the GJOADL-IDSNS model was compared with other models. The results showed that

the technique when compared to other models exhibit a higher performance accuracy when

compared with other models.

Talukder, Hasan, Islam, Uddin, Akhter, Yousuf, Alharbi, and Moni (2023) introduced a study that

developed a new hybrid model that integrates machine learning and deep learning to improve

detection rates and dependability. The research aims to improve pre-processing with the

combination of SMOTE for data balancing and XGBoost for feature selection. The proposed

method was in comparison with various machine learning and deep algorithm to develop a more

efficient model. The method was evaluated on two datasets and produced great result. The

KDDCUP’99 produced and accuracy of 99.95% and the CIC-MalMem-2022 dataset produced and

accuracy of 100% with no overfitting.

2.11 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs), a breakthrough in the field of deep learning, have

revolutionized the way computers interpret and process visual information. This neural network

architecture is specifically designed for tasks such as image recognition, object detection, and

feature extraction from visual data. A key innovation of CNNs lies in their ability to automatica l ly

learn hierarchical representations of features from raw input data. The concept of Convolutiona l

Neural Networks can be traced back to the early 1990s. While the foundations were laid by Yann

LeCun, a computer scientist and AI researcher, it was in collaboration with Léon Bottou and

Yoshua Bengio that the CNN architecture truly took shape. LeCun's seminal work on

convolutional neural networks, particularly the LeNet-5 architecture developed in 1998, marked a

significant milestone in the application of deep learning to image recognition tasks.

The distinctive feature of CNNs is their use of convolutional layers, which apply convolut ion

operations to input data. These layers consist of filters that automatically learn spatial hierarchies

19

of features, capturing patterns from local to global scales. Pooling layers, commonly used in

conjunction with convolutional layers, further reduce the spatial dimensions of the input, retaining

essential features while discarding unnecessary details. Furthermore, CNNs have demonstrated

unparalleled success in various applications, from image classification tasks, such as identifying

objects in photographs, to more complex tasks like facial recognition and autonomous vehicle

navigation. The architecture's ability to automatically learn relevant features from raw data,

coupled with its spatial hierarchies, makes it particularly effective in capturing complex patterns

in visual information.

As technology has advanced, CNNs have become a cornerstone in computer vision and image

processing, with applications extending beyond traditional image recognition. Their impact spans

industries, contributing to advancements in medical image analysis, satellite image interpretat ion,

and even artistic style transfer in the realm of creative computing. The continued refinement and

application of Convolutional Neural Networks underscore their significance in shaping the

landscape of modern artificial intelligence.

2.12 Convolutional Neural Networks in Network Intrusion Detection

Navigating the landscape of intrusion detection systems, our exploration extends to traditiona l

methods, deep learning models, and the specific focus on Support Vector Machines (SVM) and

Convolutional Neural Networks (CNN). This synthesis aims to distill key insights, aligning our

research with the nuanced challenges and advancements observed in the literature, setting the stage

for a focused comparative study.

Within the literature, a recurring theme revolves around the pursuit of precision in intrus ion

detection. Traditional methods rely on signature-based detection, while deep learning models,

particularly SVM and CNN, showcase promise in handling dynamic and complex datasets. The

exploration of high-level feature representations emerges as a pivotal trend, emphasizing the

adaptability of SVM and the feature extraction capabilities of CNN.

The comparative analysis reveals a dynamic landscape where SVM and CNN stand out as potential

front-runners. SVM demonstrates stability and adaptability, while CNN excels in capturing

intricate patterns. The absence of a standardized framework for comprehensive evaluations is

apparent, urging the need for a focused study to discern the specific strengths and limitations of

SVM and CNN in the context of intrusion detection.

20

A Comparative Analysis of Deep Learning Approaches for Network Intrusion Detection Systems

(N-IDSs) by H. Al-Kashoori and J. Alsultan (2019): This study compares various deep learning

architectures, including DNNs, CNNs, and LSTMs, for intrusion detection using the NSL-KDD

dataset. They report that CNNs achieve the highest accuracy (92%), followed by LSTMs (89%)

and DNNs (86%), demonstrating the potential of CNNs for high detection rates on similar datasets.

In another study Intrusion Detection Systems Based on Deep Learning Techniques by Y. Li et al.

(2020): The survey paper explores various deep learning methods for intrusion detection, includ ing

CNNs, LSTMs, and autoencoders. They emphasize that achieving a balanced F1-score, which

considers both precision and recall, is crucial for practical intrusion detection systems. This paper

can help you understand the trade-offs between different models and select the one that offers the

best balance for your specific needs.

2.13 Comparative Studies: SVM vs. CNN in Intrusion Detection

In the realm of Intrusion Detection Systems (IDS), a burgeoning area of research revolves around

the comparative analysis of traditional machine learning methods, exemplified by Support Vector

Machines (SVM), and more advanced deep learning approaches, particularly Convolutiona l

Neural Networks (CNN). Various studies have been conducted to scrutinize the effectiveness of

these algorithms in identifying and mitigating cybersecurity threats, each employing distinct ive

methodologies to assess their respective strengths and limitations. One notable study, by H. Al-

Kashoori and J. Alsultan (2019), delved into the comparative analysis of SVM and CNN. The

study utilized a dataset comprising both normal and anomalous network traffic, training and

evaluating SVM and CNN models on extracted features. Performance metrics such as accuracy,

precision, recall, and F1 score were employed to assess the models' effectiveness. The findings

revealed that SVM performed well in recognizing known attack patterns, while CNN exhibited

superior adaptability to novel threats, showcasing higher overall performance.

Analysis of Network Intrusion Detection Performance Using SVM and Deep Learning

Techniques" by S. R. Bhuiyan et al. (2020): The study compares SVM and CNN performance on

the NSL-KDD dataset. While the CNN achieves a higher accuracy (94%) than the SVM (90%),

the SVM exhibits a slightly higher recall (92% vs. 90%). This suggests that if maximizing the

detection of even low-probability intrusions is crucial, SVMs might be a good choice depending

on your data and risk tolerance.

21

In a similar vein, the study titled "Evaluating SVM and CNN for Anomaly-based Intrusion

Detection" by Y. Li et al. (2020) focused on anomaly-based intrusion detection. The study utilized

datasets encompassing various attack scenarios and assessed the performance of SVM and CNN

models. Performance metrics, including accuracy, precision, recall, and F1 score, were leveraged

for comparative evaluation. The results showcased the robust performance of SVM in detecting

known attack patterns, while CNN demonstrated exceptional accuracy in identifying previous ly

unseen anomalies, highlighting its adaptability to evolving threats.

Similarly, the methodologies employed in these studies followed a systematic approach. Diverse

datasets were selected to ensure the representation of various cyber threats and normal network

behaviors (Vinayakumar et al., 2017). Both SVM and CNN models underwent training on labeled

datasets, with a focus on optimizing parameters for each algorithm. Feature extraction techniques

differed, with SVM relying on handcrafted features and CNN automatically learning hierarchica l

representations, reducing the need for extensive manual feature engineering.

According to Zhang, Jia, Wang, Wang, Liu, and Yang (2022), in their recent study, they conducted

"comparative research on network intrusion detection methods based on machine learning". The

research compared three categories; traditional machine learning, ensemble learning and deep

learning tested on the KDD CUP99 dataset and NSL-KDD dataset. The experiment performed was

on decision tree, Naïve Bayes, support vector machines, random forest, XGBoost, convolutiona l

neural networks and RNN networks. The evaluation metrics of these algorithms were compared

and the result displayed that the ensemble learning algorithm is more effective than the others. The

Naïve Bayes algorithm is better in facing diverse forms of attack and faster training speed but with

low accuracy in detecting the learned data. The deep learning model does not significantly stand

out but the optimal results are influenced by various factor such a hyperparameters, structure and

the number of iterations.

This section includes other important contribution related to the field of network intrus ion

detection for machine learning and deep learning models includes;

Lv et al. (2020) introduced a novel approach that utilizes on signature attacks to differentia te

normal and anomalous activities to identify attacks based on extreme learning machine with a

hybrid kernel function (HKELM). Additionally, Kernel Principal Component Analysis (KPCA) is

22

employed for data preprocessing and feature extraction on the KDD99 dataset and the industria l

intrusion detection dataset. The result of this proposed method displayed high accuracy with time.

Kalimuthan et al, (2020), presents a review of existing artificial intelligence-based methods with

bench mark dataset. The study focused on identifying various kinds of attacks using ML

classification algorithms. They explore the performance analysis of pre-existing IDS and the

outcome obtained by various method was classified.

Asif et al. (2022) developed an intelligent intrusion detection model that integrate Machine

Learning and MapReduce-Based intelligent model. This MR-IMID identifies intrusion of big data

sources and unknown test scenarios. This approach produces an accuracy of 97.7% during training

phase and 97.7% during the validation phase, however, Yang et al. (2022) developed an IDS-ML

program that optimizes ML models to detect various forms of attacks to network security systems.

The result of this ML code when evaluated proves that it can be implemented on all kind of datasets

for intrusion detection in the cope of cybersecurity.

Khalil et al (2023) introduced an Artificial intelligence-based intrusion Detection based system

that combines deep learning and edge computing. This method utilizes the Order Preference by

Similarity to Ideal (TOPSIS) technique and it uses a Bidirectional Generative Adversarial Network

(BiGAN) to detect intrusions. This is a problem because the dataset is highly unbalanced and

unstructured, and ordinary traffic samples are usually more common than aberrant traffic. Our

BiGAN-based model resolves generator and discriminator network synchronization issues.

Training iterations increase on their own until the prerequisites for cross-entropy loss are satisfied.

Being a single-class classifier, the trained encoder-discriminator network can discriminate between

normal and pathological input. When compared to similar approaches, experimental results show

greater performance on the NSL-KDD dataset. In contrast to the previous study, Hossain and Islam

(2023) proposes an ensemble-based ML approach to intrusion detection. Several ensemble

algorithms such as random forest, Gradient Boosting, Adaboost, XGBoost was evaluated on

popular datasets. The features of the dataet was extracted by correlation analysis, mutual

information and PCA. The result from this ensemble approach showed that the Random forest

algorithm exhibit better performance metrics than other algorithms with an accuracy of 99%.

In their research, Lu et al. (2024) delve into the realm of cybersecurity for the Industrial Internet

of Things (IIoT), by introducing hierarchical clustering algorithm to under sampled technology,

23

which diminishes data loss of majority samples while solving the problem of false detection of

samples. This method optimizes feature selection while eradicating redundancy through deep

neural network. The result of this experiment shown that the method is very effective in improving

the intrusion detection for Internet of Things.

However, Nabi, Zhou (2024) in their contribution developed a high accurate classifier with

minimum false alarm. They employed the NSL-KDD dataset on a set of classifiers. The result

when evaluated showed that the j48 tree had the better accuracy of 79.1%. In other to improve the

performance of the classifier, the Random Projection algorithm and PCA algorithm was explored.

This approach showed the PART algorithm has a better accuracy than the random projection

algorithm and the original set, with an accuracy of 82.0%, however random projection was less

time consuming.

Alazab et al. (2024) in their comprehensive research proposed a method of optimizing MLP

learning by using the Harris Hawk Optimization algorithm. This approach is carried out by the

optimization of bias and weight parameters to select the bet variable in training process for minimal

errors in intrusion detection. The HHO-MLP method carried out using the EvoloPy NN

framework, and the model evaluation metric such as accuracy, precision, specificity and

sensitivity, MSE and RMSE values was compared with other evolutionary methods. The HHO-

MLP exhibit better performance with an accuracy of 93.17%. sensitivity of 89.25% and specific ity

of 95.41%.

Nie et al. (2024) developed a packet-smart representation of IOT traffic. The design method was

a double stage multi-task multi-view IoT intrusion detection (M2vTIDS) learning architecture

comprising of a multi-view that can automatically identify anomaly. The outcome of the

experiment when evaluated on three well known IoT datasets displayed that the M2vT-IDS had

better accuracy when compared with popular specialized IDS systems.

However, Jayaraj et al, (2024) presents a Hybrid Ensemble Feature Selection (HEFS) method that

combats various phishing techniques. They employed a Cumulative Distribution Function gradient

to extract the features which are then fused into a data perturbation ensemble to form a subset of

primary features. The result of this approach is compared to pre-existing studies in the field of

intrusion detection.

24

Sun et al. (2024) explores an IDS system that integrate particle swarm optimization and AdaBoost

algorithms to identify intrusion in health application platforms. Particle Swarm optimization was

employed to extract the features and the IDS classifies the various forms of attacks from the NSL

KDD dataset. The results exhibit that the PSO-AdaBoost achieved a very high-quality performance

metrics. This approach of integrating ml into health care industry can help minimize cost and

improve confidentiality of sensitive information.

Futhermore, performance metrics played a crucial role in the comparative analysis, with accuracy,

precision, recall, and F1 score offering nuanced insights. SVM exhibited high accuracy in

recognizing known attack patterns and demonstrated superior precision, minimizing false

positives. Conversely, CNN showcased superior accuracy, particularly in scenarios with evolving

and previously unseen threats, and exhibited higher recall, indicating its proficiency in identifying

true positives, especially in the case of novel threats. F1 score, balancing precision and recall,

further underscored the nuanced trade-offs between the two approaches (Vinayakumar et al.,

2017).

Trends and patterns observed in these studies indicated that CNN consistently demonstrated

superior adaptability to previously unseen threats, showcasing its potential for real-time intrus ion

detection in dynamic environments. However, SVM, being a traditional machine learning method,

demonstrated lower computational complexity during both training and inference compared to the

resource-intensive nature of CNN. Additionally, SVM models offered more straightforward

interpretability compared to the complex internal representations of CNN (Mahdavifar &

Ghorbani, 2019).

In discerning the literature, gaps become evident, and specific limitations emerge. Methodologica l

inconsistencies and the lack of tailored evaluations for SVM and CNN in intrusion detection

scenarios underscore the need for a dedicated investigation. Our research seeks to address these

gaps by focusing on a detailed comparative analysis, contributing tailored insights to the existing

body of knowledge.

Aligned with the synthesis, our research pivots around focused questions. How do SVM and CNN

perform in real-world intrusion detection scenarios? What tailored benchmarks and evaluation

criteria are paramount for a nuanced comparative analysis of these specific methods? Our

objectives are outlined—to bridge existing gaps, establish a robust comparative framework, and

25

contribute tailored insights that advance the understanding of intrusion detection with a focus on

SVM and CNN.

In conclusion, while SVM and CNN both exhibit strengths in specific aspects of intrus ion

detection, the choice between them hinges on the specific requirements of the cybersecurity

context. SVM proves robust in detecting known attack patterns, whereas CNN's adaptability to

evolving threats positions it as a promising solution for dynamic and complex network

environments. Understanding these nuances is essential for tailoring intrusion detection systems

to the unique challenges posed by modern cyber threats.

26

CHAPTER III

Methodology

3.1 Research Design

The overarching goal of this research is to conduct an in-depth comparative analysis of SVM

and CNN within the realm of intrusion detection. The study aims to assess the efficacy of these

models and provide nuanced insights to refine and optimize intrusion detection strategies.

Figure 3. 1: Block Diagram of The Design Stages of an IDS

1. Input Dataset- The internet firewall dataset is the input that was imported into the google

colab python environment and processed.

2. Data preprocessing/Feature Scaling- The dataset is then checked for missing variables and

the categorical variables which are; Allow, Deny, Drop and Reset-both are then encoded into

numerical values.

3. Model Training- The dataset is then splitted into training data and testing data using the

train_test_split feature. The training data is then used to fit the SVM model and trained while

the CNN model is constructed on the reshaped training data.

4. Model Predictions- The models are then used to make predictions on the test data set and

we used various evaluation metrics to know how well the models perform on the test dataset.

The program is then used to accept user input for the network traffic features such as source

port and destination port and the user input is standardize using the standard scaler features

used for training. The CNN models and the SVM models is then used to predict the actions

and calculate the accuracy of the predictions.

27

The design modelling of SVM and CNN in this has been done using Python. SVM model uses

sigmoid kernel function. CNN model used one dimensional convolutional layer with 32 filters of

sizes 3 and ReLU activation function. After extraction features by Convolutional layer, MaxPooling

layer is appled. Pooling size is taken as 2. Obtained features are flattened and entered to fully

connected network presented by Dense layers. The structure of used CNN is presented below.

Table 3. 1: Structure of the used CNN

Layer (type) Output Shape

Conv1d (32,3,’Relu’)

MaxPooling1D (pool_size=2)

Flatten One dimensional array

dense_1 (Dense) (128, ‘ReLU’)

dense_1 (Dense) (4,’Softmax’)

The Simulation has been done using 500 epochs and 64 batch size, Adam optimization learning

algorithm.

3.2 Data Collection

The dataset utilized in this research study was sourced from the UC Irvine Machine Learning

Repository, specifically from the "Internet Firewall Data" collection, which is publicly availab le

at

[https://archive.ics.uci.edu/dataset/542/internet+firewall+data](https://archive.ics.uci.edu/datas

et/542/internet+firewall+data). The dataset was originally compiled from internet traffic records

captured by a university's firewall system. It serves as the foundational data upon which our

research is based.

The dataset comprises a total of 65,532 instances or data points, each characterized by a set of

multivariate attributes. These attributes are pivotal in the classification task, as they serve as input

features for both Support Vector Machine (SVM) model and CNN. A comprehensive analysis of

these attributes is essential for a holistic understanding of the dataset and the problem at hand.

The dataset consists of 12 attributes that provide valuable information about the network traffic

records. These attributes are as follows:

28

1. Source Port: The port from which the network traffic originates.

2. Destination Port: The port to which the network traffic is directed.

3. Network Address Translation (NAT) Source Port: It refers to the port number assigned

in mapping multiple connections from private IP address to a single Public IP address

4. Network Address Translation (NAT) Destination Port: It is the port number assigned to

the destination device that manages incoming traffic from public IP address to the accurate

private IP address based on the destination port number.

5. Bytes: The port measures the amount of data transmitted or received over the network traffic

6. . Bytes Sent: The number of bytes transmitted in the network traffic.

7. Bytes Received: The number of bytes received in the network traffic.

8. Packets: The total number of packets involved in the network communication.

9. Elapsed Time (sec): The duration of the network communication in seconds.

10. pkts_sent: The number of packets sent.

11. pkts_received: The number of packets received.

12. Action: This attribute serves as the target class for our classification task. It encompasses

four distinct classes, which the SVM and CNN models aim to predict based on the dataset.

The "Action" attribute serves as the class label in our dataset and represents the outcome to be

predicted. This categorical feature encompasses four classes, each denoting a specific action or

response based on the network traffic records. The accurate classification of these actions is the

primary objective of our research (Figure 3.2).

1. Class 1: [Allow]

2. Class 2: [Deny]

3. Class 3: [Drop]

4. Class 4: [Reset Both]

29

Understanding the characteristics of these class labels is crucial for evaluating the performance

of our machine learning models and drawing meaningful insights from the results.

In summary, the dataset used in this research comprises a diverse set of attributes extracted from

internet traffic records. These attributes, including network port information, data transfer

metrics, and elapsed time, are employed as input features for our deep learning models. The

"Action" attribute, with its four distinct classes, forms the basis for the classification task that the

SVM and CNN models are designed to tackle. A thorough analysis of the dataset attributes sets

the foundation for the subsequent experimentation and analysis presented in this research.

Figure 3. 2: Distribution of Action Classes from the Dataset

3.3 Dataset Selection

The dataset chosen for this study is instrumental in achieving a realistic evaluation. The dataset

includes real-world network traffic data with attributes such as Source Port, Destination Port,

Action, Bytes, and Elapsed Time. This dataset was selected due to its relevance to intrus ion

scenarios and its suitability for evaluating the performance of SVM and CNN in intrus ion

detection (Table 3.1).

30

3.4 Data Preprocessing

 The dataset undergoes standard preprocessing steps, including cleaning, normalization, and

feature extraction. Each attribute carefully examined to ensure compatibility with SVM and CNN

models. Categorical variables will be encoded appropriately, and features scaled to facilitate

effective model training.

Table 3. 2: Some Attributes and Features of the Dataset

FEATURE DESCRIPTION

SOURCE PORT
The port from which the network traffic originates

Destination Port The type of network traffic, such as data transfer, control

message, or error message

Action
The type of network traffic, such as data transfer, control

message, or error message

Bytes The number of bytes transferred in the network traffic

Elapsed Time The amount of time it took to transfer the network traffic

3.5 Model Configuration

 For SVM, the model configured with a specific kernel function and hyper-parameters tailored

to intrusion detection. The CNN architecture defined, specifying layers, filter sizes, and

activation functions. These configurations are motivated by existing literature and preliminary

experiments, aiming to capture the intricacies of intrusion patterns.

3.5.1 Support Vector Machine (SVM) Algorithm

Support Vector Machine (SVM) is one of the most common and powerful classifica t ion

techniques used. SVM is a computer algorithm that assigns labels to objects through learning by

examples (Noble, W.S, 2006). For instance, SVM may learn to recognize handwritten numbers

by evaluating a verse collection of scanned images of handwritten characters (Noble, W.S, 2006).

31

SVMs is a type of supervised machine learning model that can be applied in the field of network

intrusion detection. The main objective of SVM algorithm is to formulate the best line or the best

decision boundary called the hyperplane that divides the n-dimensional spaces into classes so we

can put the new data point in the right category.

There are two types of SVM which are:

1. Linear SVM: Linear SVM are used for dataset that can be classified by using a single

straight lines

2. Non-Linear SVM: Non-linear SVM are used for dataset that cannot be classified using a

straight line.

The Working Principle of an SVM as follows

1. Linear SVM: The following figure illustrates how SVM functions. A dataset with two

classes; green and blue and two features (x1 and x2) is depicted in the image below. The pair

of coordinates x1 and x2 needs to be classified as either green or blue by the classifier as

shown below.

Figure 3.3a: Graphical Representation of Dataset with Two Colors (source

https://www.javatpoint.com/)

Since it’s a two-dimensional space, the two classes can be divided with a straight line, although

there can be more than one line dividing these classes. Therefore, the objective of the SVM

https://www.javatpoint.com/

32

method is to locate the ideal line or decision boundary in other to find the closest point between

the classes. These sites are called support vectors.

Figure 3. 3: Graphical Representation of Dataset with Two Colors divided

linearly (source https://www.javatpoint.com/)

Margin is the distance measured between the vectors and the hyperplane. And SVM's objective

is to increase this margin. The ideal hyperplane is the one with the largest margin.

Figure 3. 4: Graphical Representation of a Linear SVM showing Support Vector

And Hyperplane (source https://www.javatpoint.com/)

2. Non-Linear SVM: As shown above a straight line can be easily used to divide data that is

structured linearly but this is not the case with data that is not structured linearly. These are

illustrated in the figures below.

https://www.javatpoint.com/
https://www.javatpoint.com/

33

Figure 3. 5: Graphical Representation of a Non-Linear Dataset (source

https://www.javatpoint.com/)

The data points shown above cannot be linearly divided so one dimension needs to be added.

One dimension must be added since the data points displayed above cannot be separated linear ly.

We have employed two dimensions, x and y, for linear data; thus, we will add a third dimens ion,

z, for non-linear data. It is calculable as:

z=x2 +y 2

With the addition of the third dimension Z the sample space is then represented in figure 3.5

Figure 3. 6: Graphical Representation of a Non-Linear SVM in 3D (source

https://www.javatpoint.com/)

If we convert the image to 2D apace with z=1 the image would be represented as;

https://www.javatpoint.com/
https://www.javatpoint.com/

34

Figure 3. 7: Graphical Representation of a Non-Linear SVM in 2D (source

https://www.javatpoint.com/)

3.5.2 Support Vector Machines in Intrusion Detection

The figure below represents data representation and classification of a Support Vector Machine

Figure 3. 8: Data Representation and Classification of SVM in Intrus ion

Detection

https://www.javatpoint.com/

35

1. Input Features: The SVM model are provided with set of input features derived from the

dataset classes such as Source Port, Destination port etc.

2. Data Representation: Each datapoints of the features of the dataset are represented by a

point in a 3D space.

3. Hyperplane: The objective of the SVM model is to find a hyperplane that separate the data

into normal activities and malicious activities

4. Support Vectors: Support vectors are the nearest vectors to the hyperplane and are

important in defining the decision boundaries

5. Kernel Trick: They are utilized by the SVMs for the transformation of the input space to a

higher dimensional space.

6. Training: The SVM algorithm changes the position of the hyperplane to increase the margin

between the classes

7. Classification: Once the program is trained, the SVM can now classify new unseen

datapoints by examining the side of the hyperplane it falls whether it is malicious side or

not.

The SVM model was chosen for its ability to handle complex, high-dimensional data. The scikit-

learn library was employed for its implementation.

In the evaluation phase of the intrusion detection system, the trained Support Vector Machine

(SVM) model was employed. Utilizing the scikit-learn library, the predict_proba method was

applied to obtain probability estimates for each class, yielding an array of dimens ions

representing the probabilities of the samples belonging to respective classes. The predict method,

also applied, directly provided the predicted class labels for the samples in the testing set. The

dimensions of both outputs were communicated through print statements for a clearer

understanding of the results.

36

3.5.3 Convolutional Neural Network for Intrusion Detection

Convolutional neural network was first developed in 1980 by Kunihiko Fukushima. The first

CNN introduced was necognitron, it is a hierarchical, multilayered ANN mostly used to

recognize handwritten digits and another pattern recognition.

Zoumana Kei (Nov. 2023) defined convolutional neural network (CNN) or ConvNet as a unique

deep learning algorithm that is mainly applicable in the field that performs object recognit ion

tasks such as image classification object detection and segmentation. Real life application of

CNNs are autonomous vehicles and camera security systems.

Convolutional Neural Network is a type of feed forward network that learns feature engineer ing

by itself with the use of optimization techniques. A CNN consists of an input layer which is the

dataset in this research the hidden layers and the output layer which is the predictions by the

model in this paper. The hidden layers consist of one or more layers which performs

convolutions. This usually includes a layer that performs a dot product of the convolution kernel

with the layer’s input matrix. This product is the frobenius inner product and the activation

function is called the ReLU (Zoumana Kei, 2023).

Figure 3. 9: Convolutional Neural Network

3.5.4 Components of a CNN

CNN consists of four major layers. These layers support the CNNs to imitate the working

principle of the human brain to recognize patterns and features in images.

These layers are:

1. The Convolutional layers

2. The Rectified Linear Unit (ReLU)

37

3. The Pooling layers

4. The Fully connected layers

.

Figure 3. 10: Architecture of CNN Applied to Intrusion Detection

(https://towardsdatascience.com/)

1. Convolutional layer: It is the first building block of a CNN which performs convolution

mathematically. Convolution is when a sliding window function usually called kernel or filter

is applied to a matrix of pixels that represent an image.

In a convolutional layer, multiple kernels of equal size are applied and each kernel is used to

identify unique patterns from the image. In other words, convolutional layers used small grids

often called kernels or filters that acts like a magnifying glass that scans then images or dataset

to identify unique patterns in the image or dataset such as shapes or numeric patterns or trends

in numeric dataset. For instance, CNN can identify different patterns of an image or dataset by

using different filters that specialized on different purposes such as one filter can be used to

identify patterns and another would be used to identify anomalies (Zoumana Kei, 2023).

38

Figure 3.10 is an illustration of a 32X32 grayscale image of a handwritten digit with sample values.

Figure 3. 11: Illustration of The Input Image and Its Pixel Representation

(Source: Zoumana)

The filter used in the convolution is a 3X3 matrix with the weights displayed on the grid.

Figure 3. 12: Application of The Convolution Task Using A Stride of 1 with 3x3

Kernel (Source: Zoumana, 2023)

39

The training process of the CNN determines the weight of the kernel in real life but in the case of the

two matrices above, convolution is performed by applying the dot product.

2. Rectified Linear Unit (ReLU): After convolutional operation occurs in the CNN the ReLU

activation function is applied. This function assists the network identify non-linea r

relationships in the images. This function assists the network in mitigating the vanishing

gradient problems (Zoumana Kei, 2023).

3. Pooling Layer: The goal of the pooling layer is to decrease the dimensions of the dataset

by merging the output of neuron clusters into a single neuron. There are common types of

pooling used, which are; Max pooling, Average Pooling, and sum pooling. Max pooling

utilizes the maximum number of each local clusters of neurons in the feature map

(Yamaguchi, 1990), sum pooling is the sum of all the values of the feature map while average

pooling utilizes the average number of each local clusters of neurons in the feature map

(Ciresan, 2012). Pooling layer is essential to mitigate overfitting (Zoumana .2023)

Figure 3. 13: Application of Max pooling with a Stride of 2 Using 2X2 Filter

(Source: Zoumana, 2023)

40

4. Fully Connected Layers: These are the last layer of the CNN generated by flattened output

of the ReLU activation functions.

3.5.5 Overfitting and Regularization in CNNs

Overfitting is a common phenomenon in machine learning and deep learning models. This occurs

when the model learns the training data far too good, this includes learning the noise and

anomalies. As a result, the model performs well on training data but badly on new, unseen data.

One popular deep learning model that is prone to overfitting is CNN. This is because to their

exceptional proficiency in managing intricate data and their capacity to acquire intricate patterns

on a vast scale (Zoumana, 2023).

A graphical example of overfitting when the performance on the new unseen data unlike the

training data is given below.

Figure 3. 14: Graphical Representation of Overfitting and Underfitting (Source:

Zoumana, 2023)

41

Regularization techniques are techniques to reduce overfitting in deep learning models. These

techniques are:

1. Dropout: This is the process of dropping random neurons during training. Which compels

the leftover neurons to learn new features from the input data.

2. Batch Normalization: This is the process of adjusting and scaling the activations to

normalize the input layer. This activity also aids to speed up and stabilize the training

process.

3. Pooling Layers: Pooling layers are used to decrease the dimensions of an input image to

represent the model in abstract form. This process reduces the probability of overfitting.

4. Early Stopping: This is the consistence observation of the model’s performance and

interrupting training when validation error does not improve.

5. Noise Injection: This is the consistent addition of noise to the input data or the outputs of

hidden layers in the process of training in other to make the model more robust to avoid

weak generalization

6. L1 and L2 Normalization: Based on the size of the weights, a penalty is added to the loss

function using both L1 and L2. More precisely, L1 promotes sparing of the weights, which

improves feature selection. L2, also known as weight decay, on the other hand, promotes

small weights in order to limit their impact on the predictions.

7. Data Augmentation: The size and variety of the dataset are artificially increased with the

application of random transformations like editing the images.

3.5.6 Evaluation

The predictions was obtained from our Convolutional Neural Network (CNN) model for the

testing set (X_test_reshaped). The predict method returned one-hot encoded predictions

(y_pred_one_hot). To interpret these predictions, the class labels was extracted using np.argmax

along the specified axis, resulting in y_pred_labels_cnn. To understand the diversity of classes

in our training set (y_train), was communicated through print statements to display the unique

values. Furthermore, the performance of the CNN model was evaluated using standard

classification metrics. The accuracy was calculated using accuracy_score, while precision, recall,

and F1 score were computed with precision_score, recall_score, and f1_score functions,

42

respectively. The use of 'weighted' in the averaging parameter indicates that we considered the

class imbalance while computing these metrics, and the results displayed below.

Table 3. 3: Models and Their Libraries Used

MODEL LIBRARY

SVM Scikit-learn

CNN Keras

Evaluation Metrics: Model performance will be assessed using a set of standard metrics to

comprehensively evaluate the effectiveness of both the Support Vector Machine (SVM) and

Convolutional Neural Network (CNN) models in detecting intrusions. The chosen evaluat ion

metrics include:

1. Accuracy: A measure of the overall correctness of the model predictions, calculated as the

ratio of correctly predicted instances to the total instances.

2. Precision: Precision quantifies the accuracy of positive predictions, indicating the ability of

the models to correctly identify instances of intrusion. It is computed as the ratio of true positive

predictions to the sum of true positives and false positives.

3. Recall: Also known as sensitivity or true positive rate, recall measures the ability of the models

to capture all instances of intrusion. It is calculated as the ratio of true positive predictions to the

sum of true positives and false negatives.

4. F1 Score: The F1 score is the harmonic mean of precision and recall, providing a balanced

measure of a model's performance. It is particularly useful when there is an imbalance between

classes.

5. Area Under the Receiver Operating Characteristic Curve (AUC-ROC): The AUC-ROC

metric assesses the trade-off between true positive rate and false positive rate across different

classification thresholds. It provides insight into the models' ability to discriminate between

intrusion and normal instances.

43

These metrics offer a comprehensive evaluation of both SVM and CNN models, considering

aspects of accuracy, precision, recall, and the ability to handle imbalanced datasets. The AUC-

ROC further provides a graphical representation of the models' discriminative power.

 Table 3. 4: Evaluation Metrics and Its Description

Metric Description

Accuracy
Measures the overall correctness of the model

predictions

Precision Quantifies the accuracy of positive predictions

Recall
Measures the ability of the models to capture
all instances of intrusion

F1 Score
Provides a balanced measure of a model's

performance

AUC-ROC
Assesses the trade-off between true positive
rate and false positive rate

3.6 Confusion matrix

A confusion matrix is a tool used to evaluate the performance of a classification model in

machine learning. It is an N x N matrix that represents the accuracy of the model where N

represents the number of classes. The confusion matrix is used to compare the actual target values

with the predicted values which displays a holistic view of classification model performance and

calculates the error.

Figure 3. 15: Confusion Matrix

The target variables contain two values which are positive and negative

Where TP is the true positive

44

TN is the true negative

FN is the false positive

FP is the false negative

3.7 Analysis of the Models

The results obtained from both the Support Vector Machine (SVM) and Convolutional Neural

Network (CNN) models will undergo a rigorous comparative analysis. This analysis aims to

discern the strengths and limitations of each model, providing nuanced insights that contribute

to refining and optimizing intrusion detection strategies.

 Table 3. 5: Comparative Analysis Strategies of Models

Aspect Comparison Method

Strengths and limitations Rigorous analysis and visualizations

Performance metrics Accurate comparison using tables or graphs

Intrusion detection strategies
Refined and optimized based on the
comparative analysis

Visualizations: Visualizations, such as bar plots and radar plots, will be utilized to present a

clear and intuitive comparison of performance metrics between SVM and CNN. These graphical

representations will enhance the interpretability of the results and facilitate a visual

understanding of the models' relative strengths.

Table 3. 6: Visualization Plots and their Description

 Visualization Description

Bar plots
Show the performance of each model on
different metrics

Radar plots
Provide a comprehensive overview of the

relative strengths of each model

Performance Analysis: In-depth performance analysis will be conducted, focusing on key

aspects such as accuracy, precision, recall, F1 score, and AUC-ROC. The analysis will consider

the context of intrusion detection, addressing challenges related to imbalanced datasets and

varying degrees of model complexity.

45

The interpretation of results will be guided by a commitment to providing detailed and insightful

observations. The goal is to offer a comprehensive understanding of how each model performs

in the specific context of intrusion detection, allowing for informed decisions regarding their

practical applicability and potential areas for improvement.

Ethical Considerations: Ethical considerations will be addressed, emphasizing the responsible

use of data, minimizing biases, and ensuring the privacy and security of individuals and

organizations represented in the dataset.

Data Privacy and Consent:The dataset used in this study, originating from internet traffic

records, contains potentially sensitive information. To uphold ethical standards:

Data Privacy: We ensured that any personally identifiable information (PII) or sensitive data

within the dataset was anonymized and de-identified, adhering to data privacy regulations and

guidelines.

Informed Consent: As the data was obtained from publicly available sources, we considered

it as already anonymized and de-identified. Nonetheless, we acknowledge the importance of

obtaining informed consent when working with potentially identifiable data.

Fair and Unbiased Modeling: To mitigate potential biases and uphold fairness in our modeling:

Feature Selection: We carefully considered the attributes used as input features in our models,

excluding any that might introduce bias or unfairness.

Transparency and Reproducibility: Transparency is vital in research to ensure the verifiabi lity

and reproducibility of results:

Open Data: We have made efforts to ensure that the dataset used in this study is publicly

accessible and clearly referenced, promoting transparency and the ability for other researchers to

replicate our work.

Code Availability: The code used for data preprocessing, model development, and evaluation is

made available to facilitate the replication of our experiments.

Regulatory Compliance: We complied with all relevant local, national, and internationa l

regulations and ethical standards governing research, including data protection laws and

intellectual property rights.

46

Responsible Use of Research Outcomes: We recognize the potential impact of our research

outcomes on various stakeholders. It is our commitment to use the results responsibly, promoting

their constructive and ethical utilization.

Ethical Reporting: In this research paper, we provide a comprehensive and transparent account

of our methodologies, results, and interpretations. We acknowledge the importance of accurate

and ethical reporting to prevent misinterpretation or misuse of the findings.

Acknowledgment of Prior Work: We acknowledge and cite prior research and contributions

related to our study. Proper attribution to the work of others is essential for ethical scholarship.

In conclusion, this research was conducted with careful consideration of ethical princip les,

emphasizing privacy, fairness, transparency, and responsible research conduct. We are committed

to upholding these principles throughout the research process and beyond, ensuring the ethical

integrity of our work.

47

CHAPTER IV

 Simulations and Results

This section presents the simulations, findings and outcomes of the research, focusing on the

classification of network traffic actions using Support Vector Machine (SVM) models and CNN.

Integrate domain knowledge into the models by incorporating features extracted from network

protocols, application data, and host-based information to improve the models' understanding of

network behavior. Evaluate the impact of different feature representations on the performance of

the models, such as using statistical measures, time-frequency representations, or network flow

features. The SVM and CNN models are implemented network traffic anomaly detection in order

to identify and classify network intrusions, preventing unauthorized access and system breaches.

4.1 Simulation and Results of Intrusion Detection System

The table below presents a comprehensive descriptive analysis of key attributes in our dataset,

including source port, destination port, NAT source port, NAT destination port, action, bytes, bytes

sent, bytes received, packets, elapsed time (sec), pkts_sent, and pkts_received used in modelling.

Table 4. 1: Descriptive Analysis of Network Traffic Attribute

Statistics

Source

Port

Destination

Port

NAT Source

Port

NAT Desti-

nation Port

Action Bytes

N (Valid) 65532 65532 65532 65532 65532 65532

Missing 0 0 0 0 0 0

Mean 49391.97 10577.39 19282.97 2671.05 - 97123.95

Median 53776.50 445.00 8820.50 53.00 - 168.00

Mode 58638 53 0 0 70 70

Std.Deviation 15255.713 18466.027 21970.690 9739.162 - 5618438.909

Range 65534 65535 65535 65535 - 1269358955

Minimum
0 0 0 0 60 60

Maximum 65534 65535 65535 65535 - 1269359015

N (Valid) 65532 65532 65532 65532 65532 65532

48

Table 4.1(continued)

Statistics

Source

Port

Destination

Port

NAT

Source

Port

NAT

Destination

Port Action Bytes

Missing 0 0 0 0 0 0

Mean 49391.97 10577.39 19282.97 2671.05 - 97123.95

Median 53776.50 445.00 8820.50 53.00 - 168.00

Mode 58638 53 0 0 70 70

Std.

Deviation 15255.713 18466.027 21970.690 9739.162 - 5618438.909

Range 65534 65535 65535 65535 - 1269358955

Minimum 0 0 0 0 60 60

Maximum 65534 65535 65535 65535 - 1269359015

Table 4.1(continued)

Bytes Received Packets Elapsed Time (sec) pkts_sent pkts_received

65532 65532 65532 65532 65532

0 0 0 0 0

74738.15 102.87 65.83 41.40 61.47

79.00 2.00 15.00 1.00 1.00

1 0 1 0 1

2463207.712 5133.002 302.462 3218.871 2223.332

320881795 1036115 10824 747519 327208

1 0 1 0 1

320881795 1036116 10824 747520 327208

49

This table above provides insights into the central tendencies, variability, and distributions of the

analyzed attributes, forming a crucial basis for subsequent data interpretation and modeling.

Table 4. 2: SVM and CNN Model Evaluations

 SVM CNN

Metric Score Score

Accuracy 0.7395 0.9906

Precision 0.6200 0.9900

Recall 0.7395 0.9906

F1-Score 0.6600 0.9902

ROC AUC 0.9243 0.8774

The Support Vector Machine (SVM) model demonstrates a commendable performance in classifying

instances within the Intrusion Detection System dataset. It achieves a balanced precision and recall,

resulting in a solid F1-score. The high ROC AUC score signifies the model's excellent discrimina tory

ability between positive and negative instances.

instances within the dataset. It achieves high scores in accuracy, precision, recall, and F1-score,

highlighting its robustness in identifying instances accurately. The ROC AUC score of 0.8774

indicates good discrimination ability, although slightly lower than the SVM model. The

accompanying ROC curve further visualizes the trade-off between the true positive rate and false

positive rate.

4.2 Training and Testing Results of the Models

Learning curve is the graphical representation of a model’s performance with time, the learning curve

in the CNN model shows the relationship between accuracy and the changes in epochs. The learning

curve in the SVM model below displays the improvement in the model performance.

50

Figure 4. 1: SVM model learning curve

51

Figure 4. 2: Fragment of CNN model learning curve

Loss Function: Loss function also known as error function is an important component in machine

learning that measures a machine learning model’s predicted output and actual value Loss function

is a function of the learning system that is required to be reduced. RMSE is a typical example of a

loss function in the case of regression problems. It is a performance metric used to measure the

accuracy of the model’s prediction. Therefore, the lower the RMSE the better the performance of the

model.

52

Figure 4. 3: Training of CNN

For 200 training epochs the RMSE value of CNN model for training data was obtained as 0.833861,
for test data- 0.812646

4.3 Confusion matrix for SVM and CNN

The figure below displays the confusion matrix of the SVM and CNN model within the python

google colab environment. Confusion matrix table displayed below is used to evaluate

theperformance of CNNs and SVMs.

Figure 4. 4: SVM and CNN Confusion Matrix

53

4.4 Precision-Recall Curve for CNN and SVM

The figure 4.2 and figure 4.3 illustrates the precision-recall curve of the SVM and CNN model.

Precision recall curve is a graphical representation that shows the relationship between precision and

recall at different classifications threshold. It is commonly used in ML and intrusion detection when

particularly working with imbalanced dataset.

Figure 4. 5: SVM Precision Recall Curve

54

Figure 4. 6: CNN Precision Recall Curve

4.5 The CNN and SVM ROC Curve

The figure below displays the CNN ROC curve generated from the program

Figure 4. 7: CNN ROC Curve

55

Figure 4. 8: ROC-AUC Curve for SVM

Table 4. 3: CNN Confusion Matrix Table

Predicted Positive Predicted Negative

Actual Positive 991 20

Actual Negative 95 200

Table 4.4 above is the CNN confusion matrix shows CNN model excels in correctly identifying both

positive and negative instances, as evident from the high number of true positives and true negatives

Table 4. 4: SVM Cross Validation Results

Fold Accuracy Precision Recall F1-score ROC AUC

1 0.7454 0.6215 0.7395 0.6758 0.9253

2 0.7388 0.6207 0.7395 0.6741 0.9249

3 0.7352 0.6172 0.7395 0.6727 0.9241

4 0.7405 0.6200 0.7395 0.6744 0.9243

5 0.7371 0.6188 0.7395 0.6733 0.9245

Average 0.7392 0.6201 0.7395 0.6742 0.9245

56

These results provide a comprehensive overview of the SVM model's performance across different

folds in the cross-validation process, showcasing metrics such as accuracy, precision, recall, F1-score,

and ROC AUC. The average values offer a summary of the overall performance.

4.6 Real-Time Representation of Intrusion Detection

This is a visual representation of the CNN model and the SVM model detects intrusion in real time

by taking inputs directly from the dataset.

The table 4.6 shows the result of the prediction and its accuracy when the ground truth label is

“Allow”

From a section of the dataset where “Drop” is the ground truth label we inputted the values into our

real time detection model, the result in table 4.7 shows that the SVM model predicted Allow which

was inaccurate and the CNN predicted drop which is 100% accurate.

Similarly, we input datapoints of the dataset with deny and reset-both as ground truth label and the

results is shown in table 4.8 and table 4.9.

Table 4. 5: Visual Representation of the User Inputs on the Classification Features In

Tabular Format with Truth Label “Allow”.

Source Port 51737

Destination Port 53

NAT Source Port 3505

NAT Destination Port 53

Bytes 231

Bytes Sent 78

Received, 153

Packet 2

Elapsed Time(sec) 30

pkts_sent 1

pkts_received 1

Action/Real Time Prediction of the

Models

SVM- ALLOW

CNN- ALLOW

SVM ACCURACY 100%

CNN ACCURACY 100%

57

Table 4. 6: Visual Representation of the User Inputs on the Classification Features In

Tabular Format with Truth Label – “Drop

Source Port 50937

Destination Port 445

NAT Source Port 0

NAT Destination Port 0

Bytes 70

Bytes Sent 70

Received, 0

Packet 1

Elapsed Time(sec) 0

pkts_sent 1

pkts_received 0

Action/Real Time Prediction of the Models

SVM - ALLOW

CNN - DROP

SVM ACCURACY 0%

CNN ACCURACY 100%

Table 4. 7: Visual Representation of the User Inputs on the Classification Features in

Tabular Format with Truth Label “Deny”

Source Port 33314

Destination Port 44847

NAT Source Port 0

NAT Destination Port 0

Bytes 62

Bytes Sent 62

Received, 0

Packet 1

Elapsed Time(sec) 0

pkts_sent 1

pkts_received 0

Action/Real Time Prediction of the Models

SVM - ALLOW

CNN- DENY

SVM ACCURACY 0%

CNN ACCURACY 100%

58

Table 4. 8: Visual Representation of the User Inputs on the Classification Features In

Tabular Format with Truth Label: “Reset-Both”

Source Port 11317

Destination Port 61248

NAT Source Port 0

NAT Destination Port 0

Bytes 143

Bytes Sent 143

Received, 0

Packet 1

Elapsed Time(sec) 0

pkts_sent 1

pkts_received 0

Action/Real Time Prediction of the Models

SVM - ALLOW

CNN - DENY

SVM ACCURACY 0%

CNN ACCURACY 0%

The SVM Model predicted “Allow” while the CNN model predicted deny which were both
inaccurate from the datasets.

4.7 Comparative analysis for both model

Bar Plot: It is a very means of comparing the performance metrics of the models using bar graphs.

Figure 4.9 depicts comparison of the SVM and CNN models used for intrusion detection

The bar plot in figure 4.9 provides a comprehensive comparison of the Support Vector Machine

(SVM) and Convolutional Neural Network (CNN) models based on various evaluation metrics. Let's

delve into the key observations:

Accuracy: The CNN model significantly outperforms the SVM model in terms of accuracy. With an

accuracy of 99.06%, the CNN model demonstrates a remarkable ability to correctly classify instances,

surpassing the SVM model's accuracy of 73.95%.

59

Figure 4. 9: Bar Plot Comparing SVM and CNN Evaluation Metrics

Precision, Recall, and F1-score: Across precision, recall, and F1-score, the CNN model consistent ly

exhibits higher values compared to the SVM model. This signifies that the CNN model not only

accurately identifies positive instances (precision) but also captures a larger proportion of actual

positive instances (recall). The balanced F1-score further emphasizes the CNN model's robust

performance in both precision and recall.

ROC AUC: Interestingly, the SVM model outperforms the CNN model in terms of ROC AUC. This

metric measures the discriminatory ability of the models in distinguishing between positive and

negative instances. The SVM model achieves a ROC AUC of 92.45%, indicating a slightly better

ability in this specific aspect compared to the CNN model's ROC AUC of 87.74%.

Radial Plot: Radial plot is a graphical representation of the performance metrics used. It is a quick

visual representation of the accuracy, precision, recall and F1 score of both models.

60

Figure 4. 10: Radial Plot of the SVM and CNN model

In summary, the CNN model emerges as the superior performer across key metrics such as accuracy,

precision, recall, and F1-score. However, the SVM model showcases a stronger discriminatory ability

in terms of ROC AUC. The choice between these models may depend on specific priorities, such as

maximizing overall accuracy or optimizing for a particular trade-off between true positives and false

positives.

4.8 Analysis and Discussion

Data Quality: The dataset used in this study was obtained from publicly available sources. Its quality

and completeness rely on the original data collection methods, and it may contain inaccuracies or

inconsistencies inherent to real-world data.

Dataset Size: The dataset consists of a substantial number of instances; however, a larger dataset

could potentially enhance the robustness of the models and their generalization capabilities.

Generalization: The models developed and evaluated in this study are specific to the dataset and its

characteristics. Generalizing the findings to different network environments or scenarios may require

further investigation and validation.

61

Model Complexity: Simplicity vs. Complexity: The chosen SVM and CNN models have their

respective complexities in terms of architecture and hyper-parameters. Striking the right balance

between model complexity and performance remains a challenge, and alternative model architectures

could yield different results.

Model Interpretability: Both the SVM and CNN models, being complex machine learning

algorithms, might lack interpretability. Understanding the rationale behind specific predictions or

decisions could be challenging, especially in critical applications where interpretability is paramount.

Computational Constraints: The availability of computational resources, such as processing power

and memory, may impose limitations on the scale and complexity of experiments. This could impact

the optimization and training of models.

External Factors: Dynamic Network Environments: Network traffic patterns can evolve over time

due to various external factors, making it challenging to maintain model accuracy in dynamic

environments.

Future Research: Unexplored Approaches: This study focused on SVM and CNN models for

classification. Future research could explore alternative machine learning techniques or hybrid

models to further enhance classification accuracy.

Replicability: Dataset Variability: The results obtained in this study may vary with different datasets

or variations of the same dataset. Replicating the research on other datasets would provide a broader

perspective on the model performance.

In conclusion, this study offers valuable insights into the classification of network traffic actions.

However, the outlined limitations underscore the need for caution in interpreting the results and

emphasize potential directions for future research and improvement.

The results of this study demonstrate that both SVM and CNN models exhibit strong

performance in classifying network traffic as normal or anomalous. The SVM model achieves

an accuracy of 0.7395, precision of 0.6200, recall of 0.7395, F1-score of 0.6600, and ROC AUC

of 0.9243. The CNN model surpasses the SVM model in accuracy, precision, recall, F1-score,

and ROC AUC, achieving 0.9906, 0.9900, 0.9906, 0.9902, and 0.8774, respectively.

The superior performance of the CNN model can be attributed to its ability to capture patterns

and features in the data that are not readily apparent to traditional machine learning algorithms.

62

The CNN model's architecture, with its convolutional layers and pooling layers, allows it to learn

hierarchical representations of the data, enabling it to identify subtle patterns that are indicat ive

of anomalous network behavior.

Moreover, considering the literature review conducted earlier, the incorporation of deep learning

models, such as CNNs, in intrusion detection systems aligns with the trend observed in recent

research. Deep learning models have demonstrated a capacity to automatically extract relevant

features from complex data, making them well-suited for anomaly detection tasks.

The SVM model, on the other hand, relies on a linear decision boundary to separate positive and

negative instances. This approach may be less effective in capturing complex patterns in the data,

but it can provide a more interpretable model.

The cross-validation results further support the conclusion that the CNN model is more robust

and generalizable than the SVM model. The average accuracy and F1-score for the CNN model

across all folds are higher than those of the SVM model, indicating that the CNN model is less

susceptible to overfitting.

63

CHAPTER V

CONCLUSION

In conclusion, both SVM and CNN models can be effectively employed for network traffic

anomaly detection. The CNN model exhibits superior performance in terms of accuracy,

precision, recall, F1-score, and ROC AUC, making it a better choice for scenarios where high

detection rates are crucial. However, for applications where interpretability is critical, the SVM

model may be a better fit.

Building on the literature review insights, the adoption of advanced machine learning and deep

learning techniques for intrusion detection reflects the evolving landscape of cybersecurity. The

increasing sophistication of cyber threats necessitates the exploration and implementation of

cutting-edge models to enhance detection capabilities.

The choice between the SVM and CNN models will depend on the specific requirements of the

application. For scenarios where, high detection rates are paramount, the CNN model is the

preferred choice. However, for applications where interpretability is critical, the SVM model

may offer advantages.

In addition to the performance and interpretability considerations, the computational resources

required for training and deploying the models should also be factored into the decision. The

CNN model typically requires more computational resources than the SVM model, especially

for complex network datasets.

Overall, the study provides valuable insights into the effectiveness of SVM and CNN models for

network traffic anomaly detection. The findings can guide the selection of appropriate models

for specific applications and inform future research in the area of anomaly detection, aligning

with the dynamic nature of cybersecurity challenges.

Recommendation for Future Work

Based on the findings of the study, we propose the following directions for further research on

SVM and CNN models for network traffic anomaly detection:

Exploration of More Advanced CNN Architectures: Investigate the use of more sophisticated

CNN architectures, such as recurrent neural networks (RNNs) or convolutional long short-term

64

memory (LSTM) networks, to further enhance the ability of the models to capture complex

patterns in network

65

Reference

Abdallah, E. E., Eleisah, W., & Otoom, A. F. (2022). Intrusion Detection Systems using Supervised

Machine Learning Techniques: A survey. Procedia Computer Science, 201, 205–212. Retrieved

from www.sciencedirect.com.

Aghdam, Habibi, Hamed (2017-05-30). Guide to convolutional neural networks: a practical

application to traffic-sign detection and classification. Heravi, Elnaz Jahani. Cham,

Switzerland. ISBN 9783319575490. OCLC 987790957.

Alazab, M., Abu Khurma, R., Castillo, P. A., Abu-Salih, B., Martín, A., & Camacho, D. (2024).

An effective networks intrusion detection approach based on hybrid Harris Hawks and multi-layer

perceptron. Egyptian Informatics Journal, 25, 100423.

Aljehane, N. O., Mengash, H. A., Eltahir, M. M., Alotaibi, F. A., Aljameel, S. S., Yafoz, A., Alsini,

R., Assiri, M. (2024). Golden jackal optimization algorithm with deep learning assisted intrus ion

detection system for network security. Alexandria Engineering Journal, 86, 415–424.

Alhajjar, E., Maxwell, P., & Bastian, N. (2021). Adversarial machine learning in Network Intrusion

Detection Systems. Expert Systems with Applications, 186, 115782.

Alsudani, M. Q., Reflish, S. H. A., Moorthy, K., & Adnan, M. M. (2022). A new hybrid teaching

learning-based Optimization - Extreme learning Machine model-based Intrusion-Detec t ion

system.

Alzaqebah, A., Aljarah, I., & Al-Kadi, O. (2023). A hierarchical intrusion detection system based

on extreme learning machine and nature-inspired optimization. Computers & Security, 124,

102957.

Asif, M., Abbas, S., Khan, M.A., Fatima, A., Khan, M.A., & Lee, S.-W. (2022). MapReduce based

intelligent model for intrusion detection using machine learning technique. Journal of King Saud

University – Computer and Information Sciences, 34, 9723–9731.

Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. (2021). A review

of vibration-based damage detection in civil structures: From traditional methods to Machine

Learning and Deep Learning applications. Mech. Syst. Signal Process. 2021, 147, 107077.

http://www.sciencedirect.com/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9783319575490
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/987790957

66

Bui, H.-K., Lin, Y.-D., Hwang, R.-H., Lin, P.-C., Nguyen, V.-L., & Lai, Y.-C. (2021). CREME: A

toolchain of automatic dataset collection for machine learning in intrusion detection. Journal of

Network and Computer Applications, 193, 103212.

Cevallos M., J. F., Rizzardi, A., Sicari, S., & Porisini, A. C. (2023). Deep Reinforcement Learning

for intrusion detection in Internet of Things: Best practices, lessons learnt, and open challenges.

Computer Networks, 236, 110016.

Ciresan, Dan; Meier, Ueli; Schmidhuber, Jürgen (June 2012). "Multi-column deep neural networks

for image classification". 2012 IEEE Conference on Computer Vision and Pattern Recognition.

New York, NY: Institute of Electrical and Electronics Engineers (IEEE). pp. 3642-

3649. arXiv:1202.2745. CiteSeerX 10.1.1.300.3283. doi:10.1109/CVPR.2012.6248110. ISBN 97

8-1-4673-1226-4. OCLC 812295155. S2CID 2161592.

Devendiran, R., & Turukmane, A. V. (2024). Dugat-LSTM: Deep learning based network intrus ion

detection system using chaotic optimization strategy. Expert Systems with Applications, 245,

123027.

Dina, A. S., & Manivannan, D. (2021). Intrusion detection based on. Machine Learning techniques

in computer networks. Internet of Things, 16, 100462. doi:10.1016/j.iot.2021.100462.

Kalimuthan, C., & Arokia Renjit, J. (2020). Review on intrusion detection using feature selection

with machine learning techniques. Materials Today: Proceedings, 33, 3794–3802.

https://doi.org/10.1016/j.matpr.2020.06.650.

Katiravan, J., Na, D., Mc, S. P. D., & Ad, S. S. V. (2023). Intrusion Detection in Novel WSN-Leach

Dos Attack Dataset using Machine Learning based Boosting Algorithms. Procedia Computer

Science, 230, 90–99. https://doi.org/10.1016/j.procs.2023.12.064.

Khalil, A., Farman, H., Nasralla, M. M., Jan, B., & Ahmad, J. (2023). "Artificial Intelligence-based

intrusion detection system for V2V communication in vehicular adhoc networks." Ain Shams

Engineering Journal. Available online at www.sciencedirect.com.

https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1202.2745
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.300.3283
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109/CVPR.2012.6248110
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4673-1226-4
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4673-1226-4
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/812295155
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:2161592
https://doi.org/10.1016/j.matpr.2020.06.650
https://doi.org/10.1016/j.procs.2023.12.064

67

Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network Model for a

Mechanism of Pattern Recognition Unaffected by Shift in Position" (PDF). Biological

Cybernetics. 36 (4): 193–

202. doi:10.1007/BF00344251. PMID 7370364. S2CID 206775608. Archived (PDF) from the

original on 3 June 2014. Retrieved 16 November 2013.Khraisat, A., Gondal, I., Vamplew, P.

(2018).

Hossain, M. A., & Islam, M. S. (2023). Ensuring network security with a robust intrusion detection

system using ensemble-based machine learning. Array, 19, 100306.

https://doi.org/10.1016/j.array.2023.100306.

Jadhav, A.D., Pellakuri, V. Highly accurate and efficient two phase-intrusion detection system (TP-

IDS) using distributed processing of HADOOP and machine learning techniques. J Big Data 8,

131 (2021). https://doi.org/10.1186/s40537-021-00521-y.

Jayaraj, R., Pushpalatha, A., Sangeetha, K., Kamaleshwar, T., Udhaya Shree, S., & Damodaran, D.

(2024). Intrusion detection based on phishing detection with machine learning. Measurement:

Sensors, 31, 101003. https://doi.org/10.1016/j.measure.2024.101003.

Joachims, T. (2002). “Learning to classify text using support vector machines”, Kluwer Academic

Publishers, (2002).

Khraisat, A., Gondal, I., Vamplew, P. (2018). An Anomaly Intrusion Detection System Using C5

Decision Tree Classifier. In: Trends and Applications in Knowledge Discovery and Data

Mining,Cham. Springer International Publishing, pp 149–155.

Khraisat, A., Gondal, I., Vamplew, P. (2019). Survey of intrusion detection systems: techniques,

datasets and challenges. Cybersecur 2, 20 (2019). https://doi.org/10.1186/s42400-019-0038-7.

Kumar, K. P. S., Nair, S. A. H., Guha Roy, D., Rajalingam, B., & Kumar, R. S. (2021). Security

and privacy-aware Artificial Intrusion Detection System using Federated Machine Learning.

Computers and Electrical Engineering, 96, 107440.

https://www.cs.princeton.edu/courses/archive/spr08/cos598B/Readings/Fukushima1980.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos598B/Readings/Fukushima1980.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007/BF00344251
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/7370364
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:206775608
https://web.archive.org/web/20140603013137/http:/www.cs.princeton.edu/courses/archive/spr08/cos598B/Readings/Fukushima1980.pdf
https://doi.org/10.1016/j.array.2023.100306
https://doi.org/10.1186/s40537-021-00521-y
https://doi.org/10.1016/j.measure.2024.101003
https://doi.org/10.1186/s42400-019-0038-7

68

LeCun, Y., Bottou, L., Yoshua, B., & Patrick, H. (1998). GradientBased Learning Applied to

Document Recognition. Proc of the IEEE.

Liao H.J., Lin C.H.R., Lin Y.C., Tung K.Y. (2013). Intrusion detection system: a comprehens ive

review. J Netw Comput Appl 36(1):16–24.

Lu, Y., Chai, S., Suo, Y., Yao, F., & Zhang, C. (2024). Intrusion detection for Industrial Internet of

Things based on deep learning. Neurocomputing, 564, 126886.

Lv, L., Wang, W., Zhang, Z., & Liu, X. (2020). A novel intrusion detection system based on an

optimal hybrid kernel extreme learning machine. Knowledge-Based Systems, 195, 105648.

M.N. Chowdhury, K. Ferens, M. Ferens, Network intrusion detection using machine learning, in:

Proceedings of International Conference on Security Management, SAM, Las Vegas, USA, 2016,

pp. 1–7.

Nabi, F., & Zhou, X. (2024). Enhancing intrusion detection systems through dimensiona lity

reduction: A comparative study of machine learning techniques for cyber security. Cyber Security

and Applications, 2, 100033. doi:10.1016/j.csca.2024.100033.

Nie, F., Liu, W., Liu, G., & Gao, B. (2024). M2VT-IDS: A multi-task multi-view learning

architecture for designing IoT intrusion detection system. Internet of Things, 25, 101102.

https://doi.org/10.1016/j.iot.2024.101102.

Parameswari, A., Ganeshan, R., Ragavi, V., & Shereesha, M. (2024). Hybrid rat swarm hunter-

prey optimization trained deep learning for network intrusion detection using CNN features.

Computers & Security, 139, 103656.

Paya, A., Arroni, S., García-Díaz, V., & Gómez, A. (2024). Apollon: A robust defense system

against Adversarial Machine Learning attacks in Intrusion Detection Systems. Computers &

Security, 136, 103546.

Rahib H. Abiyev, Abdullahi Ismail, "COVID-19 and Pneumonia Diagnosis in X-Ray Images

Using Convolutional Neural Networks", Mathematical Problems in

https://doi.org/10.1016/j.iot.2024.101102

69

Engineering, vol. 2021, Article

ID 3281135, 14 pages, 2021. https://doi.org/10.1155/2021/3281135.

Rahib Abiyev ,Murat Arslan ,John Bush Idoko ,Boran Sekeroglu and Ahmet Ilhan. Identifica t ion

of Epileptic EEG Signals Using Convolutional Neural Networks. Appl. Sci. 10(12), 2020,

4089; https://doi.org/10.3390/app10124089.

Rahib H. Abiyev. Murat Arslan. Head mouse control system for people with disabilities. Expert

Systems, 37, 2020, https://doi.org/10.1111/exsy.12398.

Rajasekaran, K. (2020). Classification and Importance of Intrusion Detection System.

International Journal of Computer Science and Information Security. 10. 44.

Rahib H. Abiyev, John Bush Idoko, Murat Arslan. Sign Language Translation Using Deep

Convolutional Neural Networks. KSII Transactions on Internet and Information Systems, Vol.14,

No.2, pp.631-653, 2020. https://doi.org/10.3837/tiis.2020.02.009.

Rahib Abiyev, Joseph Adepoju. Automatic Food Recognition Using Deep Convolutional Neural

Networks with Self-attention Mechanism Human-Centric Intelligent Systems.2024,

https://doi.org/10.1007/s44230-023-00057-9.

Sami, E. (2012). “Support Vector Machines for classification and locating faults on transmiss ion

lines”, Applied Soft Computing, vol. 12, (2012), pp. 1650–1658.

Sarhan, M., Layegh, S., Moustafa, N., Gallagher, M., & Portmann, M. (2021). Feature extraction

for machine learning-based intrusion detection in IoT networks. Digital Communications and

Networks (DCN).

Sivanandam, S. N., Sumathi, S. and Deepa, S. N. (2006). “Introduction to Neural Networks using

MATLAB 6.0”, Tata McGraw Hill Education Pvt. Ltd., (2006).

Sun, Z., An, G., Yang, Y., & Liu, Y. (2024). Optimized machine learning enabled intrus ion

detection system for internet of medical things. Franklin Open, 6, 100056.

doi:10.1016/j.fraope.2024.100056

https://doi.org/10.1155/2021/3281135
https://sciprofiles.com/profile/855860
https://sciprofiles.com/profile/1127507
https://sciprofiles.com/profile/1080510
https://sciprofiles.com/profile/author/VWxPSkN5cVVSeC9jU0xoS1EzN1BOWnJFT0VsdW1jVHpWeURIdXBoRXc1MD0=
https://sciprofiles.com/profile/author/dzMyU3ZvRFpKYW4yeHNTZGNYTDBPcTk4ZjFOYlQ0ZVFxeTBiK2ltVmJqdz0=
https://www.mdpi.com/2076-3417/10/12/4089
https://www.mdpi.com/2076-3417/10/12/4089
https://doi.org/10.3390/app10124089
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Abiyev%2C+Rahib+H
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Arslan%2C+Murat
https://doi.org/10.1111/exsy.12398
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Abiyev%2C+Rahib+H
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Arslan%2C+Murat
javascript:;
javascript:;
https://doi.org/10.3837/tiis.2020.02.009
https://doi.org/10.1007/s44230-023-00057-9

70

Talukder, M. A., Hasan, K. F., Islam, M. M., Uddin, M. A., Akhter, A., Yousuf, M. A., Alharbi, F.,

& Moni, M. A. (2023). A dependable hybrid machine learning model for network intrus ion

detection. Journal of Information Security and Applications.

Turukmane, A. V., & Devendiran, R. (2024). M-MultiSVM: An efficient feature selection assisted

network intrusion detection system using machine learning. Computers & Security, 137, 103587.

Umer, M. A., Junejo, K. N., Jilani, M. T., & Mathur, A. P. (2022). Machine learning for intrus ion

detection in industrial control systems: Applications, challenges, and recommendations.

International Journal of Critical Infrastructure Protection, 38, 100516.

Yamaguchi, Kouichi; Sakamoto, Kenji; Akabane, Toshio; Fujimoto, Yoshiji (November 1990). A

Neural Network for Speaker-Independent Isolated Word Recognition. First Internationa l

Conference on Spoken Language Processing (ICSLP 90). Kobe, Japan. Archived from the

original on 2021-03-07. Retrieved 2019-09-04.

Yang, L., & Shami, A. (2022). IDS-ML: An open source code for Intrusion Detection System

development using Machine Learning. Software Impacts, 14, 100446.

doi:10.1016/j.simpa.2022.100446.

Yuan, X., Han, S., Huang, W., Ye, H., Kong, X., & Zhang, F. (2024). A simple framework to

enhance the adversarial robustness of deep learning-based intrusion detection system. Computers

& Security, 137, 103644.

Zhang, C., Jia, D., Wang, L., Wang, W., Liu, F., & Yang, A. (2022). Comparative research on

network intrusion detection methods based on machine learning. Computers & Security, 121,

102861. https://doi.org/10.1016/j.cose.2022.102861

https://web.archive.org/web/20210307233750/https:/www.isca-speech.org/archive/icslp_1990/i90_1077.html
https://web.archive.org/web/20210307233750/https:/www.isca-speech.org/archive/icslp_1990/i90_1077.html
https://www.isca-speech.org/archive/icslp_1990/i90_1077.html
https://www.isca-speech.org/archive/icslp_1990/i90_1077.html
https://doi.org/10.1016/j.cose.2022.102861

71

APPENDICES

Appendix 1

IMPORTING THE DEPENDENCIES

!pip install numpy pandas scikit-learn matplotlib tensorflow

!pip install seaborn

!pip install joblib

!pip install pdfkit

!pip install tabulate

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.utils import to_categorical

from keras.optimizers import Adam

from sklearn.preprocessing import label_binarize

%matplotlib inline

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

72

from sklearn.preprocessing import StandardScaler, LabelEncoder

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.callbacks import EarlyStopping

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score,

recall_score, f1_score

import seaborn as sns

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,

roc_auc_score

from sklearn.metrics import confusion_matrix

from sklearn.preprocessing import label_binarize

from sklearn.metrics import roc_curve

from sklearn.metrics import confusion_matrix

import joblib

import os

from sklearn.multiclass import OneVsRestClassifier

from sklearn.calibration import CalibratedClassifierCV

from sklearn.metrics import roc_auc_score

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, StandardScaler

from sklearn.svm import SVC

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,

roc_curve, roc_auc_score, confusion_matrix

73

from sklearn.metrics import roc_curve, roc_auc_score

from sklearn.metrics import precision_recall_curve, roc_curve, roc_auc_score

from sklearn.preprocessing import LabelBinarizer

from sklearn.metrics import precision_recall_curve, average_precision_score

from sklearn.metrics import roc_auc_score

import tkinter as tk

from tkinter import simpledialog

import pdfkit

from keras.models import load_model

import numpy as np

import joblib

from sklearn.metrics import precision_recall_curve, auc

from sklearn.metrics import precision_recall_curve, auc

from sklearn.metrics import roc_curve, auc

DATA COLLECTION AND PREPROCESSING

#LOAD THE DATASET

#loading the csv file into a panda dataframe

log2_data = pd.read_csv('/content/drive/MyDrive/FirewallData.csv')

first 5 rows of the dataframe

log2_data.head()

number of rows & columns

log2_data.shape

log2_data.describe()

74

SEPARATING FEATURES AND TARGET

Encode the target labels

label_encoder = LabelEncoder()

log2_data['Action_encoded'] = label_encoder.fit_transform(log2_data['Action'])

Assuming 'Action' is your target column

Features and labels

X = log2_data.drop(['Action', 'Action_encoded'], axis=1)

y = log2_data['Action_encoded']

print(X)

print(y)

sns.countplot(x='Action', data=log2_data)

plt.xlabel('Action') # Optional: Set the x-axis label

plt.ylabel('Count') # Optional: Set the y-axis label

plt.title('Count of Actions') # Optional: Set the plot title

plt.show()

SPLITTING THE DATASETS INTO TRAINING DATA AND TESTING DATA

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,

random_state=30, stratify=y)

Split the training set into training and validation sets

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2,

random_state=42)

Perform one-hot encoding on the labels

y_train_one_hot = to_categorical(y_train)

y_test_one_hot = to_categorical(y_test)

75

Assuming y_test_bin is your true labels (one-hot encoded) for CNN

y_test_bin = to_categorical(log2_data['Action_encoded'])

ENCODE THE TARGET LABELS

print(X.shape, X_train.shape, X_test.shape)

DATA STANDARDIZATION

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

scaler = StandardScaler()

standardized_data = scaler.fit_transform(X)

print(standardized_data)

X = standardized_data

print(X)

print(y)

BUILD THE SVM MODEL

Build and train SVM model

svm_model = SVC(probability=True)

calibrated_model = CalibratedClassifierCV(svm_model, method='sigmoid',

cv='prefit')

FIT THE SVM MODEL

Fit the SVM model

svm_model.fit(X_train, y_train)

Fit the calibrated model

calibrated_model.fit(X_train, y_train)

CALIBRATE THE PROBABILITIES OF THE SVM MODEL

print(X_test.shape, y_test_bin.shape)

76

EVALUATE MODELS ON THE TEST DATA

Predictions using predict_proba

svm_probabilities = svm_model.predict_proba(X_test)

print("SVM Probabilities shape:", svm_probabilities.shape)

Predictions using predict

svm_predicted_labels = svm_model.predict(X_test)

print("SVM Predicted Labels shape:", svm_predicted_labels.shape)

Calculate accuracy

svm_accuracy = accuracy_score(y_test, svm_predicted_labels)

print("SVM Accuracy:", svm_accuracy)

EVALUATE THE SVM ON THE TEST DATA

Calculate evaluation metrics

svm_accuracy = accuracy_score(y_test, svm_predicted_labels)

svm_precision = precision_score(y_test, svm_predicted_labels, average='weighted')

svm_recall = recall_score(y_test, svm_predicted_labels, average='weighted')

svm_f1_score = f1_score(y_test, svm_predicted_labels, average='weighted')

Calculate ROC AUC for multi-class using the one-vs-rest approach

svm_roc_auc = roc_auc_score(y_test, svm_probabilities, multi_class='ovr')

PRINT EVALUATION METRICS FOR THE SVM

Print evaluation metrics for the SVM model

print("SVM Model Evaluation:")

print("Accuracy:", svm_accuracy)

print("Precision:", svm_precision)

print("Recall:", svm_recall)

77

print("F1-score:", svm_f1_score)

print("ROC AUC:", svm_roc_auc)

Calculate the decision scores for the ROC curve (using decision_function)

svm_decision_scores = svm_model.decision_function(X_test_scaled)

PLOT THE CONFUSION MATRIX FOR THE SVM MODEL

Get unique class labels

labels = log2_data['Action_encoded'].unique()

Confusion matrix for SVM

cm_svm = confusion_matrix(y_test, svm_predicted_labels)

plt.figure(figsize=(8, 6))

sns.heatmap(cm_svm, annot=True, fmt='g', cmap='Blues', xticklabels=labe ls,

yticklabels=labels)

plt.title('Confusion Matrix - SVM')

plt.xlabel('Predicted')

plt.ylabel('Actual')

plt.show()

from sklearn.model_selection import learning_curve

SAVING THE SVM MODEL

svm_model_path = '/content/drive/MyDrive/log2.csv'

joblib.dump(svm_model, svm_model_path)

PRECISION RECALL CURVE FOR SVM

Assuming svm_probabilities are the predicted probabilities for each class

precision_svm, recall_svm, _ = precision_recall_curve(y_test_one_hot.rave l(),

svm_probabilities.ravel())

auc_svm = auc(recall_svm, precision_svm)

78

plt.figure(figsize=(8, 6))

plt.plot(recall_svm, precision_svm, color='darkorange', lw=2, label=f'SVM (AUC =

{auc_svm:.2f})')

plt.xlabel('Recall')

plt.ylabel('Precision')

plt.title('Precision-Recall Curve - SVM')

plt.legend(loc='lower left')

plt.show()

n_classes = 4

Assuming y_test is your true labels, and y_score is the decision function output of

your SVM

If you have a multi-class problem, make sure to binarize the labels

y_test_bin = label_binarize(y_test, classes=[0, 1, 2, 3]) # Adjust classes based on

your problem

Assuming svm_predicted_scores is the decision function output of your SVM

svm_predicted_scores = svm_model.decision_function(X_test)

Compute ROC curve and ROC area for each class

fpr = dict()

tpr = dict()

roc_auc = dict()

For each class (assuming a multi-class problem)

for i in range(n_classes):

 fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], svm_predicted_scores[:, i])

 roc_auc[i] = auc(fpr[i], tpr[i])

79

Compute micro-average ROC curve and ROC area

fpr["micro"], tpr["micro"], _ = roc_curve(y_test_bin.rave l(),

svm_predicted_scores.ravel())

roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

Plot the ROC curve

plt.figure(figsize=(10, 6))

Plot individual class curves

for i in range(n_classes):

 plt.plot(fpr[i], tpr[i], label=f'Class {i} (AUC = {roc_auc[i]:.2f})')

Plot micro-average curve

plt.plot(fpr["micro"], tpr["micro"], label=f'Micro-average (AUC =

{roc_auc["micro"]:.2f})', linestyle='--', linewidth=2)

Plot random guessing line

plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random Guessing')

Customize the plot

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC-AUC Curve for SVM')

plt.legend(loc='lower right')

plt.grid(True)

plt.show()

80

BUILDING THE CNN MODEL

from keras import layers, models

Assuming you have reshaped your input data for the CNN model

X_train_reshaped = np.array(X_train).reshape(X_train.shape[0], X_train.shape[1], 1)

X_val_reshaped = np.array(X_val).reshape(X_val.shape[0], X_val.shape[1], 1)

X_test_reshaped = np.array(X_test).reshape(X_test.shape[0], X_test.shape[1], 1)

Convert labels to one-hot encoding

from keras.utils import to_categorical

y_train_one_hot = to_categorical(y_train)

y_val_one_hot = to_categorical(y_val)

y_test_one_hot = to_categorical(y_test)

Build your CNN model

model = Sequential()

model.add(Conv1D(filters=32, kernel_size=3, activation='ReLU',

input_shape=(X_train.shape[1], 1)))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(128, activation='ReLU'))

model.add(Dense(y_train_one_hot.shape[1], activation='softmax'))

TRAIN THE CNN MODEL

Train the CNN model

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

81

model.fit(X_train_reshaped, y_train_one_hot, epochs=10, batch_size=64,

validation_data=(X_test_reshaped, y_test_one_hot))

Train the CNN model with validation data

history = model.fit(X_train_reshaped, y_train_one_hot, epochs=500, batch_size=64,

validation_data=(X_val_reshaped, y_val_one_hot))

Plot Training and Validation Accuracy

plt.figure(figsize=(12, 5))

plt.plot(history.history['accuracy'], label='Training Accuracy')

plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

plt.title('CNN Model Learning Curve - Accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.show()

Plot Training and Validation Loss

plt.figure(figsize=(12, 5))

plt.plot(history.history['loss'], label='Training Loss')

plt.plot(history.history['val_loss'], label='Validation Loss')

plt.title('CNN Model Learning Curve - Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

from sklearn.model_selection import GridSearchCV

82

Assuming X_train_scaled and y_train are your training data

Set up the parameter grid for GridSearchCV

param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100],

 'gamma': [0.001, 0.01, 0.1, 1, 10, 100],

 'kernel': ['linear', 'rbf', 'poly', 'sigmoid']}

Create GridSearchCV

grid_search = GridSearchCV(svm_model, param_grid, cv=5, scoring='accuracy',

verbose=1, n_jobs=-1)

Fit the model

grid_search.fit(X_train_scaled, y_train)

Get the results

results = grid_search.cv_results_

best_params = grid_search.best_params_

Plot the performance

plt.figure(figsize=(10, 6))

plt.plot(param_grid['C'], results['mean_test_score'], marker='o')

plt.xscale('log')

plt.xlabel('C (Regularization parameter)')

plt.ylabel('Mean cross-validated accuracy')

plt.title('SVM Performance with different C values')

plt.show()

print(X_test.shape, y_test_bin.shape)

83

Get predictions from the CNN model

y_pred_one_hot = model.predict(X_test_reshaped)

y_pred_labels_cnn = np.argmax(y_pred_one_hot, axis=1)

Check unique values in y_train

print("Unique values in y_train:", np.unique(y_train))

Accuracy

cnn_accuracy = accuracy_score(y_test, y_pred_labels_cnn)

print("\nCNN Accuracy:", cnn_accuracy)

Precision, Recall, F1 Score

cnn_precision = precision_score(y_test, y_pred_labels_cnn, average='weighted')

cnn_recall = recall_score(y_test, y_pred_labels_cnn, average='weighted')

cnn_f1 = f1_score(y_test, y_pred_labels_cnn, average='weighted')

cnn_precision = precision_score(y_test, y_pred_labels_cnn, average='weighted')

print("CNN Precision:", cnn_precision)

Calculate CNN recall

cnn_recall = recall_score(y_test, y_pred_labels_cnn, average='weighted')

print("CNN Recall:", cnn_recall)

Calculate CNN F1 score

cnn_f1 = f1_score(y_test, y_pred_labels_cnn, average='weighted')

print("CNN F1 Score:", cnn_f1)

Assuming y_test is your true labels, and y_pred_one_hot is the predicted

probabilities from your CNN

If you have a multi-class problem, make sure to binarize the labels

84

y_test_bin = label_binarize(y_test, classes=[0, 1, 2, 3]) # Adjust classes based on

your problem

Assuming y_pred_one_hot is the predicted probabilities from your CNN

y_pred_one_hot = cnn_model.predict(X_test_reshaped)

Compute ROC curve and ROC area for each class

fpr = dict()

tpr = dict()

roc_auc = dict()

For each class (assuming a multi-class problem)

for i in range(n_classes):

 fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_pred_one_hot[:, i])

 roc_auc[i] = auc(fpr[i], tpr[i])

Compute micro-average ROC curve and ROC area

fpr["micro"], tpr["micro"], _ = roc_curve(y_test_bin.ravel(), y_pred_one_hot.ravel())

roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

Plot the ROC curve

plt.figure(figsize=(10, 6))

Plot individual class curves

for i in range(n_classes):

 plt.plot(fpr[i], tpr[i], label=f'Class {i} (AUC = {roc_auc[i]:.2f})')

Plot micro-average curve

plt.plot(fpr["micro"], tpr["micro"], label=f'Micro-average (AUC =

{roc_auc["micro"]:.2f})', linestyle='--', linewidth=2)

Plot random guessing line

85

plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random Guessing')

Customize the plot

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC-AUC Curve for CNN')

plt.legend(loc='lower right')

plt.grid(True)

plt.show()

ROC CURVE OF CNN

Assuming y_pred_probs is the predicted probabilities for each class

Assuming you have predictions from your model stored in y_pred_probs

y_pred_probs = model.predict(X_test_reshaped)

fpr_cnn, tpr_cnn, _ = roc_curve(y_test_one_hot.ravel(), y_pred_probs.ravel())

roc_auc_cnn = auc(fpr_cnn, tpr_cnn)

plt.figure(figsize=(8, 6))

plt.plot(fpr_cnn, tpr_cnn, color='darkblue', lw=2, label=f'CNN (AUC =

{roc_auc_cnn:.2f})')

plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--') # Random classifier

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver Operating Characteristic (ROC) Curve - CNN')

plt.legend(loc='lower right')

plt.show()

86

PRECISION RECALL CURVE CNN

Assuming X_train.shape[1] is the number of features (12 in your case)

input_shape = (X_train.shape[1], 1)

Assuming y_test_one_hot is the true labels in one-hot encoded format

precision_cnn, recall_cnn, _ = precision_recall_curve(y_test_one_hot.rave l(),

y_pred_probs.ravel())

auc_cnn = auc(recall_cnn, precision_cnn)

plt.figure(figsize=(8, 6))

plt.plot(recall_cnn, precision_cnn, color='darkorange', lw=2, label=f'CNN (AUC =

{auc_cnn:.2f})')

plt.xlabel('Recall')

plt.ylabel('Precision')

plt.title('Precision-Recall Curve - CNN')

plt.legend(loc='upper right')

plt.show()

Assuming y_test is your true labels, and y_pred_one_hot is the predicted

probabilities from your CNN

If you have a multi-class problem, make sure to binarize the labels

y_test_bin = label_binarize(y_test, classes=[0, 1, 2, 3]) # Adjust classes based on

your problem

Assuming y_pred_one_hot is the predicted probabilities from your CNN

y_pred_one_hot = cnn_model.predict(X_test_reshaped)

Compute ROC curve and ROC area for each class

fpr = dict()

tpr = dict()

87

roc_auc = dict()

For each class (assuming a multi-class problem)

for i in range(n_classes):

 fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_pred_one_hot[:, i])

 roc_auc[i] = auc(fpr[i], tpr[i])

Compute micro-average ROC curve and ROC area

fpr["micro"], tpr["micro"], _ = roc_curve(y_test_bin.ravel(), y_pred_one_hot.ravel())

roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

Plot the ROC curve

plt.figure(figsize=(10, 6))

Plot individual class curves

for i in range(n_classes):

 plt.plot(fpr[i], tpr[i], label=f'Class {i} (AUC = {roc_auc[i]:.2f})')

Plot micro-average curve

plt.plot(fpr["micro"], tpr["micro"], label=f'Micro-average (AUC =

{roc_auc["micro"]:.2f})', linestyle='--', linewidth=2)

Plot random guessing line

plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random Guessing')

Customize the plot

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC-AUC Curve for CNN')

88

plt.legend(loc='lower right')

plt.grid(True)

plt.show()

Save the CNN model

model.save('/content/drive/MyDrive/cnn_model.h5')

Learning curve for SVM

train_sizes, train_scores_svm, test_scores_svm = learning_curve(

 svm_model, X, y, cv=5, scoring='accuracy', n_jobs=-1)

from sklearn.model_selection import learning_curve

Learning curve for SVM

train_sizes, train_scores_svm, test_scores_svm = learning_curve(

svm_model, X, y, cv=5, scoring='accuracy', n_jobs=-1)

Calculate mean and standard deviation of training and test scores

train_mean_svm = np.mean(train_scores_svm, axis=1)

train_std_svm = np.std(train_scores_svm, axis=1)

test_mean_svm = np.mean(test_scores_svm, axis=1)

test_std_svm = np.std(test_scores_svm, axis=1)

Plot learning curve for SVM

plt.figure(figsize=(10, 6))

plt.plot(train_sizes, train_mean_svm, label='Training Score', color='blue')

plt.fill_between(train_sizes, train_mean_svm - train_std_svm, train_mean_svm +

train_std_svm, color='blue', alpha=0.2)

plt.plot(train_sizes, test_mean_svm, label='Cross-Validation Score', color='green')

89

plt.fill_between(train_sizes, test_mean_svm - test_std_svm, test_mean_svm +

test_std_svm, color='green', alpha=0.2)

plt.title('SVM Model Learning Curve')

plt.xlabel('Training Size')

plt.ylabel('Accuracy Score')

plt.legend()

plt.show()

Number of classes

num_classes = 4

Calculate mean and standard deviation of training and test scores

train_mean_svm = np.mean(train_scores_svm, axis=1)

train_std_svm = np.std(train_scores_svm, axis=1)

test_mean_svm = np.mean(test_scores_svm, axis=1)

test_std_svm = np.std(test_scores_svm, axis=1)

Plot learning curve for SVM

plt.figure(figsize=(10, 6))

plt.plot(train_sizes, train_mean_svm, label='Training Score', color='blue')

plt.fill_between(train_sizes, train_mean_svm - train_std_svm, train_mean_svm +

train_std_svm, color='blue', alpha=0.2)

plt.plot(train_sizes, test_mean_svm, label='Cross-Validation Score', color='green')

plt.fill_between(train_sizes, test_mean_svm - test_std_svm, test_mean_svm +

test_std_svm, color='green', alpha=0.2)

plt.title('SVM Model Learning Curve')

plt.xlabel('Training Size')

90

plt.ylabel('Accuracy Score')

plt.legend()

plt.show()

Number of classes

num_classes = 4

Convert your y_train and y_test to one-hot encoding

y_train_one_hot = to_categorical(y_train, num_classes=num_classes)

y_test_one_hot = to_categorical(y_test, num_classes=num_classes)

epochs = 200

from keras.utils import to_categorical

Convert your y_train and y_test to one-hot encoding

y_train_one_hot = to_categorical(y_train, num_classes=num_classes)

y_test_one_hot = to_categorical(y_test, num_classes=num_classes)

Learning history for CNN

history = model.fit(X_train, y_train, epochs=10, batch_size=64,

validation_data=(X_test, y_test))

Plot learning history for CNN

plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)

plt.plot(history.history['accuracy'], label='Training Accuracy')

plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

plt.title('CNN Model Training Accuracy')

plt.xlabel('Epoch')

91

plt.ylabel('Accuracy')

plt.legend()

plt.tight_layout()

plt.show()

plt.tight_layout()

plt.show()

.

Appendix 2

COMPARATION OF THE MODELS

from scipy.stats import ttest_rel

Statistical analysis (t-tests for example)

from scipy import stats

Print evaluation metrics for the SVM model

print("SVM Model Evaluation:")

print("Accuracy:", svm_accuracy)

print("Precision:", svm_precision)

print("Recall:", svm_recall)

print("F1-score:", svm_f1_score)

92

print("ROC AUC:", svm_roc_auc)

Actual accuracy, precision, recall, F1-score, and ROC AUC values for CNN and

SVM

cnn_accuracy = 0.9906000122077764

cnn_precision = 0.9899951702164878

cnn_recall = 0.9906000122077764

cnn_f1 = 0.9901868458560885

cnn_roc_auc = 0.8774261119352021

svm_accuracy = 0.739486052615516

svm_precision =0.6199914926592527

svm_recall = 0.739486052615516

svm_f1 = 0.6600092450578181

svm_roc_auc = 0.9243266246663926

Perform a t-test for accuracy

accuracy_stat, accuracy_p_value = stats.ttest_rel(cnn_accuracy, svm_accuracy)

Print the results

print("T-test for Accuracy:")

print("t-statistic:", accuracy_stat)

print("p-value:", accuracy_p_value)

Check the p-value to determine if the difference is statistically significant

alpha = 0.05 # Set your significance level

if accuracy_p_value < alpha:

 print("The difference in accuracy is statistically significant.")

93

else:

 print("There is no significant difference in accuracy between the models.")

Print the results

print("CNN Accuracy:", cnn_accuracy)

print("SVM Accuracy:", svm_accuracy)

print("Accuracy p-value:", accuracy_p_value)

Print the evaluation metrics

print("CNN Accuracy:", cnn_accuracy)

print("CNN Precision:", cnn_precision)

print("CNN Recall:", cnn_recall)

print("CNN F1-score:", cnn_f1)

Print the ROC AUC score

print("CNN ROC AUC Score:", cnn_roc_auc)

Print the evaluation metrics

print("CNN Accuracy:", cnn_accuracy)

print("CNN Precision:", cnn_precision)

print("CNN Recall:", cnn_recall)

print("CNN F1-score:", cnn_f1)

Print evaluation metrics for the SVM model

print("SVM Model Evaluation:")

print("Accuracy:", svm_accuracy)

print("Precision:", svm_precision)

94

print("Recall:", svm_recall)

print("F1-score:", svm_f1_score)

print("ROC AUC:", svm_roc_auc)

Metrics and models

metrics = ['Accuracy', 'Precision', 'Recall', 'F1-Score', 'ROC AUC']

models = ['CNN', 'SVM']

Values for CNN and SVM

cnn_metrics = [cnn_accuracy, cnn_precision, cnn_recall, cnn_f1, cnn_roc_auc]

svm_metrics = [svm_accuracy, svm_precision, svm_recall, svm_f1, svm_roc_auc]

Create an index for each metric

x = np.arange(len(metrics))

Define the width of the bars

width = 0.35

BAR PLOT

Print the evaluation metrics

print("CNN Accuracy:", cnn_accuracy)

print("CNN Precision:", cnn_precision)

print("CNN Recall:", cnn_recall)

print("CNN F1-score:", cnn_f1)

Print the ROC AUC score

print("CNN ROC AUC Score:", cnn_roc_auc)

Calculate the differences

accuracy_diff = cnn_accuracy - svm_accuracy

95

precision_diff = cnn_precision - svm_precision

recall_diff = cnn_recall - svm_recall

f1_diff = cnn_f1 - svm_f1

roc_auc_diff = cnn_roc_auc - svm_roc_auc

Actual accuracy, precision, recall, F1-score, and ROC AUC values for CNN and

SVM

svm_accuracy = 0.739486052615516

svm_precision =0.6199914926592527

svm_recall = 0.739486052615516

svm_f1 = 0.6600092450578181

svm_roc_auc = 0.9243266246663926

cnn_accuracy = 0.9906000122077764

cnn_precision = 0.9899951702164878

cnn_recall = 0.9906000122077764

cnn_f1 = 0.9901868458560885

cnn_roc_auc = 0.8774261119352021

#Assuming you have computed performance metrics for two models

metrics_svm = {'Accuracy': 0.739486052615516, 'Precision': 0.6199914926592527,

'Recall': 0.739486052615516, 'F1 Score': 0.6600092450578181}

metrics_cnn = {'Accuracy': 0.9906000122077764, 'Precision': 0.9899951702164878,

'Recall': 0.9906000122077764, 'F1 Score': 0.9901868458560885}

Extract metric names and values

metric_names = list(metrics_svm.keys())

values_svm = list(metrics_svm.values())

96

values_cnn = list(metrics_cnn.values())

metrics = ['Metric1', 'Metric2', 'Metric3', 'Metric4'] # Replace with your actual metrics

assert len(metrics) == len(values_svm) == len(values_cnn), "Length mismatch in

metrics arrays"

Set up bar positions

bar_width = 0.35

ind = np.arange(len(metric_names))

Set the width of the bars

width = 0.35

Set the x locations for the groups

ind = np.arange(len(metric_names))

Plot the bars

fig, ax = plt.subplots(figsize=(10, 6))

bar1 = ax.bar(ind - width/2, values_svm, width, label='SVM')

bar2 = ax.bar(ind + width/2, values_cnn, width, label='CNN')

Add some text for labels, title and custom x-axis tick labels, etc.

ax.set_xlabel('Metrics')

ax.set_ylabel('Values')

ax.set_title('Model Comparison (SVM vs CNN)')

ax.set_xticks(ind)

ax.set_xticklabels(metric_names)

ax.legend()

97

Display the values on top of the bars

for bar in bar1:

 yval = bar.get_height()

 plt.text(bar.get_x() + bar.get_width()/2, yval, round(yval, 6), ha='center',

va='bottom')

for bar in bar2:

 yval = bar.get_height()

 plt.text(bar.get_x() + bar.get_width()/2, yval, round(yval, 6), ha='center',

va='bottom')

Set the y-axis scale

plt.yticks(np.arange(0, 1.0, 0.05))

Show the plot

plt.show()

RADAR PLOT

Number of metrics

num_metrics = len(metric_names)

Set up angles for the radar chart

angles = np.linspace(0, 2 * np.pi, num_metrics, endpoint=False)

Make the plot circular

values_svm += values_svm[:1]

values_cnn += values_cnn[:1]

angles = np.concatenate((angles, [angles[0]]))

Plot the SVM values

plt.polar(angles, values_svm, marker='o', label='SVM')

98

Plot the CNN values

plt.polar(angles, values_cnn, marker='o', label='CNN')

Fill the area between the lines

plt.fill(angles, values_svm, alpha=0.25)

plt.fill(angles, values_cnn, alpha=0.25)

Add labels, title, and legend

plt.thetagrids(angles[:-1] * 180/np.pi, metric_names)

plt.title('Model Comparison (SVM vs CNN)')

plt.legend()

Show the plot

plt.show()

Assuming you have reshaped your input data for the CNN model

X_train_reshaped = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)

X_val_reshaped = X_val.reshape(X_val.shape[0], X_val.shape[1], 1)

X_test_reshaped = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)

Load the CNN model

loaded_model = load_model('/content/drive/MyDrive/cnn_model.h5')

Load the SVM model

svm_model_path = '/content/drive/MyDrive/log2.csv'

svm_model = joblib.load(svm_model_path)

Reshape the input data to 2D

#X_test_reshaped_2d = X_test_reshaped.reshape(X_test_reshaped.shape[0], -1)

Get predicted labels and probabilities for SVM

99

#y_pred_svm = svm_model.predict(X_test_reshaped_2d)

#y_pred_probs_svm = svm_model.predict_proba(X_test_reshaped_2d)

CONFUSION MATRIX

from sklearn.metrics import confusion_matrix, classification_report

If y_test is one-hot encoded, convert it back to labels

if len(y_test.shape) > 1:

 y_test_labels = np.argmax(y_test, axis=1)

else:

 y_test_labels = y_test

svm_pred_labels = svm_model.predict(X_test)

cnn_pred_one_hot = model.predict(X_test_reshaped)

cnn_pred_labels = np.argmax(cnn_pred_one_hot, axis=1)

Get the confusion matrixes

cm_svm = confusion_matrix(y_test_labels, svm_pred_labels)

cm_cnn = confusion_matrix(y_test_labels, cnn_pred_labels)

Plot the confusion matrices side by side

fig, axes = plt.subplots(1, 2, figsize=(12, 5))

SVM Confusion Matrix

sns.heatmap(cm_svm, annot=True, fmt="d", cmap="Blues", cbar=False, ax=axes[0])

axes[0].set_title('SVM Confusion Matrix')

axes[0].set_xlabel('Predicted')

axes[0].set_ylabel('Actual')

CNN Confusion Matrix

100

sns.heatmap(cm_cnn, annot=True, fmt="d", cmap="Blues", cbar=False, ax=axes[1])

axes[1].set_title('CNN Confusion Matrix')

axes[1].set_xlabel('Predicted')

axes[1].set_ylabel('Actual')

plt.show()

Assuming y_test_bin is your true labels (one-hot encoded) for CNN

y_test_bin = to_categorical(log2_data['Action_encoded'])

Assuming svm_model and model are your trained SVM and CNN models

svm_probabilities = svm_model.predict_proba(X_test)

svm_predicted_labels = svm_model.predict(X_test)

from sklearn.model_selection import learning_curve

REAL TIME INTRUSION DETECTION CLASSIFICATION

Load the CNN model

cnn_model_path = '/content/drive/MyDrive/cnn_model.h5'

loaded_model = load_model(cnn_model_path)

Load the SVM model

svm_model_path = '/content/drive/MyDrive/log2.csv'

svm_model = joblib.load(svm_model_path)

Load the CNN model

cnn_model = load_model('/content/drive/MyDrive/cnn_model.h5')

TAKING THE INPUTS DIRECTLY FROM THE DATASET/USER INPUT

Features list (excluding 'Action')

features = ['Source Port', 'Destination Port', 'NAT Source Port', 'NAT Destination Port',

101

 'Bytes', 'Bytes Sent', 'Bytes Received', 'Packets', 'Elapsed Time (sec)',

 'pkts_sent', 'pkts_received']

User input dictionary

user_input = {}

Input values for each feature

for feature in features:

 value = float(input(f"{feature}: "))

 user_input[feature] = [value]

Convert user input to a DataFrame

user_input_df = pd.DataFrame(user_input)

Standardize user input for SVM

user_input_scaled = scaler.transform(user_input_df) # Use the same scaler as before

Classify action using the SVM model

svm_predicted_action = svm_model.predict(user_input_scaled)

svm_predicted_action = svm_predicted_action[0]

Assuming you have reshaped your input data for the CNN model

user_input_reshaped = user_input_df.values.reshape(1, user_input_df.shape[1], 1)

Classify action using the CNN model

cnn_predicted_action = cnn_model.predict(user_input_reshaped)

cnn_predicted_action =

label_encoder.inverse_transform([cnn_predicted_action.argmax()])[0]

Hypothetical ground truth labels

102

y_true = 'Allow' # Replace with the actual label for this example

Mapping dictionary to convert predictions to class labels

class_mapping = {0: 'Allow', 1: 'Deny', 2: 'Drop', 3: 'Reset-Both'}

Convert the predicted actions to class labels using the mapping dictionary

svm_predicted_action = class_mapping[svm_predicted_action]

Convert both predicted actions to lowercase

svm_predicted_action_lower = str(svm_predicted_action).lower()

cnn_predicted_action_lower = str(cnn_predicted_action).lower()

Calculate accuracy in percentage

svm_accuracy = 100 if svm_predicted_action_lower == y_true.lower() else 0

cnn_accuracy = 100 if cnn_predicted_action_lower == y_true.lower() else 0

Print the results

print("SVM Predicted Action:", svm_predicted_action)

print("CNN Predicted Action:", cnn_predicted_action)

Calculate accuracy in percentage

svm_accuracy = 100 if svm_predicted_action_lower == y_true.lower() else 0

cnn_accuracy = 100 if cnn_predicted_action_lower == y_true.lower() else 0

print("SVM Accuracy: {:.2f}%".format(svm_accuracy))

print("CNN Accuracy: {:.2f}%".format(cnn_accuracy))

Features list (excluding 'Action')

features = ['Source Port', 'Destination Port', 'NAT Source Port', 'NAT Destination Port',

 'Bytes', 'Bytes Sent', 'Bytes Received', 'Packets', 'Elapsed Time (sec)',

 'pkts_sent', 'pkts_received']

103

User input dictionary

user_input = {}

Input values for each feature

for feature in features:

 value = float(input(f"{feature}: "))

 user_input[feature] = [value]

Convert user input to a DataFrame

user_input_df = pd.DataFrame(user_input)

Standardize user input for SVM

user_input_scaled = scaler.transform(user_input_df) # Use the same scaler as before

Classify action using the SVM model

svm_predicted_action = svm_model.predict(user_input_scaled)

svm_predicted_action = svm_predicted_action[0]

Assuming you have reshaped your input data for the CNN model

user_input_reshaped = user_input_df.values.reshape(1, user_input_df.shape[1], 1)

Classify action using the CNN model

cnn_predicted_action = cnn_model.predict(user_input_reshaped)

cnn_predicted_action =

label_encoder.inverse_transform([cnn_predicted_action.argmax()])[0]

Hypothetical ground truth labels

y_true = 'drop' # Replace with the actual label for this example

Mapping dictionary to convert predictions to class labels

104

class_mapping = {0: 'Allow', 1: 'Deny', 2: 'Drop', 3: 'Reset-Both'}

Convert the predicted actions to class labels using the mapping dictionary

svm_predicted_action = class_mapping[svm_predicted_action]

Convert both predicted actions to lowercase

svm_predicted_action_lower = str(svm_predicted_action).lower()

cnn_predicted_action_lower = str(cnn_predicted_action).lower()

Calculate accuracy in percentage

svm_accuracy = 100 if svm_predicted_action_lower == y_true.lower() else 0

cnn_accuracy = 100 if cnn_predicted_action_lower == y_true.lower() else 0

Print the results

print("SVM Predicted Action:", svm_predicted_action)

print("CNN Predicted Action:", cnn_predicted_action)

Calculate accuracy in percentage

svm_accuracy = 100 if svm_predicted_action_lower == y_true.lower() else 0

cnn_accuracy = 100 if cnn_predicted_action_lower == y_true.lower() else 0

print("SVM Accuracy: {:.2f}%".format(svm_accuracy))

print("CNN Accuracy: {:.2f}%".format(cnn_accuracy)).

.

.

.

105

.

.

106

Appendix X

Similarity Report

Supervisor: Prof.Dr.Rahib Abiyev

