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A Comparative Study of Support Vector Machine and Convolutional Neural Network 

Models for Intrusion Detection                                                       

Okah Onyekachi Michael 

MSc Department of Mechatronics Engineering 

Supervisor Prof. Dr. Rahib H. Abiyev 

January, 2023 112 Pages 

In this rapidly evolving era of technology and automation, Mechatronics systems are more exposed 

to the threat of cyber-attacks and intrusions as there are more increasingly interconnected and 

reliant on digital communication. Failure to safeguard network security can lead to data breaches 

and unauthorized access by potential hackers. In this study, we delve into the development and 

evaluation of two deep learning models and we compare their performance on an internet firewa ll 

dataset which was collected from a school library. This analysis in this study was conducted using 

Python programming language in the Google Colabaratory environment which encompasses data 

preprocessing, splitting the data into train set and test set and feature scaling. CNN and SVM model 

training and evaluation with the test data. The models were used to classify the data into classes 

such as ‘Allow’, ‘Deny’, ‘Drop’ and ‘Reset-Both’ and we used various evaluation metrics such as 

accuracy, precision, recall, F1-score, and ROC AUC, to assess the performance of each models. In 

this study, we set out to thoroughly investigate the classification of network traffic action using 

deep learning models. The effective creation and assessment of Convolutional Neural Network 

(CNN) and Support Vector Machine (SVM) models, both of which shown excellent classifica t ion 

accuracy and performance, are among our significant findings. The SVM model showed robust 

classification abilities even in settings with non-linear data separability, whereas the CNN model, 

distinguished by its neural architecture, excelled better in capturing subtle data patterns. By 

integrating our models into a real-time intrusion detection system, our research was also made 

applicable to the outside world, demonstrating the usefulness and potential significance of our 

work. Finally, our study highlights the value of deep learning in boosting cybersecurity measures 

while also making significant contributions to the field of network security. The specific needs of 
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the activity at hand determine whether to use the CNN or SVM models. Organizations can 

strengthen their network security and proactively protect against threats by utilizing these methods.  

  

Keywords Intrusion Detection, CNN Model, SVM Model, Mechatronics . 
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A Comparative Study of Support Vector Machine and Convolutional Neural Network 

Models for Intrusion Detection                                                      

Okah Onyekachi Michael 

MSc Department of Mechatronics Engineering 

Supervisor Prof. Dr. Rahib H. Abiyev 

January, 2023 112 Pages 

Hızla gelişen teknoloji ve otomasyon çağında, Mekatronik sistemler giderek daha fazla birbirine 

bağlı hale geldikçe ve dijital iletişime bağımlı hale geldikçe siber saldırı ve izinsiz giriş tehdidine 

daha fazla maruz kalıyor. Ağ güvenliğinin korunmaması, veri ihlallerine ve potansiyel bilgisayar 

korsanlarının yetkisiz erişimine yol açabilir. Bu çalışmada, iki derin öğrenme modelinin 

geliştirilmesi ve değerlendirilmesi üzerinde duruldu ve bunların bir okul kütüphanesinden toplanan 

internet güvenlik duvarı veri seti üzerindeki performansları karşılaştırıldı. Bu çalışmadaki bu 

analiz, veri ön işlemeyi, verileri tren seti ve test setine bölmeyi ve özellik ölçeklendirmeyi kapsayan 

Google Colabaratory ortamında Python programlama dili kullanılarak gerçekleştirildi. Test 

verileriyle CNN ve SVM modelinin eğitimi ve değerlendirilmesi. Modeller, verileri 'İzin Ver', 

'Reddet', 'Bırak' ve 'İkisini de Sıfırla' gibi sınıflara ayırmak için kullanıldı ve doğruluk, hassasiyet, 

geri çağırma, F1 puanı ve ROC AUC gibi çeşitli değerlendirme ölçümleri kullandık. Her modelin 

performansını değerlendirmek için. Bu çalışmada, derin öğrenme modellerini kullanarak ağ trafiği 

eyleminin sınıflandırılmasını kapsamlı bir şekilde araştırmak için yola çıktık. Her ikisi de 

mükemmel sınıflandırma doğruluğu ve performansı gösteren Evrişimsel Sinir Ağı (CNN) ve 

Destek Vektör Makinesi (SVM) modellerinin etkin bir şekilde oluşturulması ve değerlendirilmes i 

önemli bulgularımız arasındadır. SVM modeli, doğrusal olmayan veri ayrılabilirliğine sahip 

ortamlarda bile güçlü sınıflandırma yetenekleri sergilerken, sinir mimarisiyle öne çıkan CNN 

modeli, incelikli veri modellerini yakalamada daha başarılı oldu. Modellerimizi gerçek zamanlı 

izinsiz giriş tespit sistemine entegre ederek araştırmamız dış dünyaya da uygulanabilir hale getirild i 

ve bu da çalışmalarımızın yararlılığını ve potansiyel önemini ortaya koydu. Son olarak çalışmamız, 

siber güvenlik önlemlerini artırmada derin öğrenmenin değerini vurgularken aynı zamanda ağ 

güvenliği alanına da önemli katkılar sağlıyor. Eldeki faaliyetin özel ihtiyaçları, CNN veya SVM 
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modellerinin kullanılıp kullanılmayacağını belirler. Kuruluşlar bu yöntemleri kullanarak ağ 

güvenliklerini güçlendirebilir ve tehditlere karşı proaktif bir şekilde koruma sağlayabilirler.  

  

Keywords Intrusion Detection System, CNN Model, SVM Model, Mechatronics . 



 

  

X  

Table of Contents 

Acknowledgement ......................................................................................................................... V 

Abstract........................................................................................................................................ VI 

CHAPTER I....................................................................................................................................1 

Introduction ....................................................................................................................................1 

1.1 Background and Context ...................................................................................................... 1 

1.2 Problem Statement ................................................................................................................ 1 

1.3 Research Gap ........................................................................................................................ 1 

1.4 Objective of the Study .......................................................................................................... 2 

1.5 Scope and Significance  ......................................................................................................... 2 

1.6 Research Hypothesis or Questions ....................................................................................... 2 

1.7 Rationale for Model Selection .............................................................................................. 3 

1.8 Thesis Overview ................................................................................................................... 3 

CHAPTER II ..................................................................................................................................5 

Literature Review ..........................................................................................................................5 

2.1 Overview of Intrusion Detection System (IDS) ................................................................... 5 

2.2 Intrusion Detection System Techniques  ............................................................................... 6 

2.3 Signature-based Intrusion Detection System ........................................................................ 6 

2.4 Anomaly-based Intrusion Detection System (AIDS)  ........................................................... 7 

2.5 Techniques for Implementing AIDS (SVM and CNN) ........................................................ 9 

2.6 Supervised Learning in Intrusion Detection Systems ........................................................... 9 

2.7 Support Vector Machine (SVM) in Intruion Detection Systems  ........................................ 10 

2.8 Application of Support Vector Machines ............................................................................ 13 

2.9 Deep Learning in Intrusion Detection Systems  .................................................................. 14 

2.10 Application of Deep Learning in Intrusion Detection Systems ...................................... 16 

2.11 Convolutional Neural Networks (CNNs) ....................................................................... 18 

2.12  Convolutional Neural Networks in Network Intrusion Detection .............................. 19 

2.13 Comparative Studies: SVM vs. CNN in Intrusion Detection ......................................... 20 

CHAPTER III ..............................................................................................................................26 

Methodology .................................................................................................................................26 



 

  

XI  

3.1 Research Design ................................................................................................................. 26 

3.2 Data Collection ................................................................................................................... 27 

3.3 Dataset Selection ................................................................................................................ 29 

3.4 Data Preprocessing ............................................................................................................. 30 

3.5 Model Configuration .......................................................................................................... 30 

3.5.1 Support Vector Machine (SVM) Algorithm .............................................................30 

3.5.2 Support Vector Machines in Intrusion Detection .....................................................34 

3.5.3 Convolutional Neural Network for Intrusion Detection ..........................................36 

3.5.4 Components of a CNN ..................................................................................................36 

3.5.5 Overfitting and Regularization in CNNs .......................................................................40 

3.5.6  Evaluation....................................................................................................................41 

3.6 Confusion matrix ................................................................................................................ 43 

3.7 Analysis of the Models ....................................................................................................... 44 

CHAPTER IV...............................................................................................................................47 

Simulations and Results ..............................................................................................................47 

4.1  Simulation and Results of Intrusion Detection System ..................................................... 47 

4.2 Training and Testing Results of the Models  ....................................................................... 49 

4.3 Confusion matrix for SVM and CNN................................................................................. 52 

4.4 Precision-Recall Curve for CNN and SVM........................................................................ 53 

4.6 Real-Time Representation of Intrusion Detection .............................................................. 56 

4.7 Comparative analysis for both model ................................................................................. 58 

4.8 Analysis and Discussion ..................................................................................................... 60 

CHAPTER V ................................................................................................................................63 

CONCLUSION  ............................................................................................................................63 

Recommendation for Future Work  ............................................................................................ 63 

Reference.......................................................................................................................................65 

APPENDICES  ..............................................................................................................................71 

Appendix 1 ................................................................................................................................ 71 

IMPORTING THE DEPENDENCIES ...................................................................................71 

DATA COLLECTION AND PREPROCESSING..................................................................73 

SEPARATING FEATURES AND TARGET .........................................................................74 



 

  

XII  

SPLITTING THE DATASETS INTO TRAINING DATA AND TESTING 

DATA......................................................................................................................................74 

ENCODE THE TARGET LABELS .......................................................................................75 

DATA STANDARDIZATION ................................................................................................75 

BUILD THE SVM MODEL ..................................................................................................75 

FIT THE SVM MODEL.........................................................................................................75 

CALIBRATE THE PROBABILITIES OF THE SVM MODEL ...........................................75 

EVALUATE MODELS ON THE TEST DATA .....................................................................76 

EVALUATE THE SVM ON THE TEST DATA ....................................................................76 

PRINT EVALUATION METRICS FOR THE SVM  .............................................................76 

PLOT THE CONFUSION MATRIX FOR THE SVM MODEL ...........................................77 

SAVING THE SVM MODEL ................................................................................................77 

PRECISION RECALL CURVE FOR SVM  ..........................................................................77 

BUILDING THE CNN MODEL ...........................................................................................80 

TRAIN THE CNN MODEL...................................................................................................80 

ROC CURVE OF CNN ..........................................................................................................85 

PRECISION RECALL CURVE CNN ...................................................................................86 

Appendix 2 ................................................................................................................................ 91 

COMPARATION OF THE MODELS  ...................................................................................91 

BAR PLOT .............................................................................................................................94 

RADAR PLOT .......................................................................................................................97 

CONFUSION MATRIX .........................................................................................................99 

REAL TIME INTRUSION DETECTION CLASSIFICATION  ..........................................100 

TAKING THE INPUTS DIRECTLY FROM THE DATASET/USER INPUT ....................100 

 

 

 

  



 

  

XIII  

List of Tables 

  

Table 3. 1: Some Attributes and Features of the Dataset .............................................................. 30 
Table 3. 2: Models and Their Libraries Used  ............................................................................... 42 

Table 3. 3: Evaluation Metrics and Its Description ...................................................................... 43 

Table 3. 4: Comparative Analysis Strategies of Models  ............................................................... 44 
Table 3. 5: Visualization Plots and their Description.................................................................... 44 

 

Table 4. 1: Descriptive Analysis of Network Traffic Attribute ..................................................... 47 

Table 4. 2: Structure of the used CNN.......................................................................................... 27 

Table 4. 3: SVM and CNN Model Evaluations  ............................................................................ 49 
Table 4. 4: CNN Confusion Matrix Table ..................................................................................... 55 

Table 4. 5: SVM Cross Validation Results ................................................................................... 55 

Table 4. 6: Visual Representation of the User Inputs on the Classification Features        

In Tabular Format with Truth Label “Allow”. ...................................................................... 56 

Table 4. 7: Visual Representation of the User Inputs on the Classification Features 

In Tabular Format with Truth Label – “Drop ........................................................................ 57 

Table 4. 8: Visual Representation of the User Inputs on the Classification Features 

in Tabular Format with Truth Label “Deny” ......................................................................... 57 

Table 4. 9: Visual Representation of the User Inputs on the Classification Features 

In Tabular Format with Truth Label: “Reset-Both” .............................................................. 58 

 

 



 

  

XIV  

List of Figures 

   

Figure 3. 1: Block Diagram of The Design Stages of an IDS  ...................................................... 26 

Figure 3. 2: Distribution of Action Classes from the Dataset ...................................................... 29 

Figure 3. 4: Graphical Representation of Dataset with Two Colors divided 

linearly (source https://www.javatpoint.com/)  ...................................................................... 32 

Figure 3. 5: Graphical Representation of a Linear SVM showing Support Vector 

And Hyperplane (source https://www.javatpoint.com/) ........................................................ 32 

Figure 3. 6: Graphical Representation of a Non-Linear Dataset (source 

https://www.javatpoint.com/) ................................................................................................ 33 

Figure 3. 7: Graphical Representation of a Non-Linear SVM in 3D (source 

https://www.javatpoint.com/) ................................................................................................ 33 

Figure 3. 8: Graphical Representation of a Non-Linear SVM in 2D (source 

https://www.javatpoint.com/) ................................................................................................ 34 

Figure 3. 9: Data Representation and Classification of SVM in Intrusion 

Detection ............................................................................................................................... 34 

Figure 3. 10: Convolutional Neural Network  .............................................................................. 36 

Figure 3. 11: Architecture of CNN Applied to Intrusion Detection 

(https://towardsdatascience.com/) ......................................................................................... 37 

Figure 3. 12: Illustration of The Input Image and Its Pixel Representation 

(Source: Zoumana) ................................................................................................................ 38 

Figure 3. 13: Application of The Convolution Task Using A Stride of 1 with 3x3 

Kernel (Source: Zoumana, 2023) .......................................................................................... 38 

Figure 3. 14: Application of Max pooling with a Stride of 2 Using 2X2 Filter 

(Source: Zoumana, 2023) ...................................................................................................... 39 

Figure 3. 15: Graphical Representation of Overfitting and Underfitting (Source: 

Zoumana, 2023) .................................................................................................................... 40 

Figure 3. 16: Confusion Matrix.................................................................................................... 43 

 

Figure 4. 1: SVM model learning curve....................................................................................... 50 

Figure 4. 2: Fragment of CNN model learning curve  .................................................................. 51 

Figure 4. 3: Training of CNN ....................................................................................................... 52 

Figure 4. 4: SVM and CNN Confusion Matrix ............................................................................ 52 

Figure 4. 5: SVM Precision Recall Curve .................................................................................... 53 

Figure 4. 6:  CNN Precision Recall Curve  ................................................................................. 54 

Figure 4. 7: CNN ROC Curve ...................................................................................................... 54 

Figure 4. 8: ROC-AUC Curve for SVM ...................................................................................... 55 

Figure 4. 9: Bar Plot Comparing SVM and CNN Evaluation Metrics ......................................... 59 

Figure 4. 10: Radial Plot of the SVM and CNN model ............................................................... 60 

 

 



 

  

XV  

           List of Abbreviations 

IDS  Intrususion  Detection System  

SVM        Support Vector Machines 

CNN        Convolutional  Neural Network    

DL     Deep Learning    

PCA  Principal Component Analysis 

CPU        Central Processing Unit  

MLP      Multiple Layer Perceptron  

TCP/IP Transmission Control Protocol/Internet Protocol 

RNN   Recurrent Neural Network 

LSTM  Long Short-Term Memory 

GRU    Gated Recurrent Unit 

ID   Intrusion Detection 

DL   Deep Learning 

DNN  Deep Neural Network 

NAT  Network Address Translation 

Pkts  Packets 

ConvNet Convolutional Neural Network 

ReLU  Rectified Linear Unit 

ROC  Receiver Operator Characteristics 

AUC-ROC Area Under the Receiver Operator Characteristics 

TP  True Positive 

FN  False Negative 



 

  

XVI  

FP  False Positive 

TN  True Negative 

RMSE  Root Mean Square Error 

 

 

 



 1 

A Comparative Study Support Vector Machine and Convolutional Neural Network Models 

for Intrusion Detection            

CHAPTER I 

Introduction 

1.1 Background and Context: 

 

In today's interconnected digital world, the escalating frequency and sophistication of cyber 

threats pose a severe risk to the security and integrity of information systems. As 

organizations increasingly rely on networked technologies, the need for robust and adaptive 

security measures, particularly in the form of Intrusion Detection Systems (IDS), becomes 

imperative. These systems act as vigilant guardians, continuously monitoring network 

activities to detect and respond to potential security breaches. 

 

 

1.2 Problem Statement: 

 

The landscape of cyber threats is dynamic, characterized by novel attack vectors, stealthy 

infiltration techniques, and polymorphic malware. While traditional intrusion detection 

methods have proven effective to a certain extent, they often struggle to keep pace with the 

evolving tactics employed by malicious actors. The inadequacies in existing approaches 

highlight the pressing need for innovative strategies that can enhance the capabilities of 

intrusion detection systems and fortify networks against an ever-expanding array of threats. 

In this thesis machine learning and deep learning algorithms are considered for intrus ion 

detection.  

 

1.3 Research Gap: 

 

While a substantial body of literature addresses various facets of intrusion detection, there is 

a noticeable gap in comprehensive studies that systematically compare the performance of 

distinct models. This research void inhibits a holistic understanding of the strengths and 
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weaknesses of different approaches. Bridging this gap through a comparative study is 

essential to inform the development of more resilient and adaptive intrusion detection 

systems. 

 

1.4 Objective of the Study: 

 

This research endeavors to conduct an in-depth comparative analysis of two prominent 

models—deep learning model based on convolutional neural networks and support vector 

machines—within the realm of intrusion detection systems. The primary objectives include 

assessing the efficacy of these models in identifying and mitigating cyber intrusions, 

delineating their nuanced strengths and limitations, and providing nuanced insights to refine 

and optimize intrusion detection strategies. 

 

1.5 Scope and Significance: 

 

The scope of this study extends beyond a surface-level comparison; it encompasses a nuanced 

examination of the theoretical underpinnings and practical implementations of the chosen 

models in real-world scenarios. By addressing this research gap, the study aspires to furnish 

valuable insights that are not only pertinent to cybersecurity practitioners but also contribute 

to the body of knowledge accessible to researchers and policymakers. The significance lies 

in the potential enhancement of overall cybersecurity resilience through informed decision-

making and strategic implementations. 

 

1.6 Research Hypothesis or Questions: 

 

At the core of this research lies the hypothesis that the chosen models—support vector 

machines, and convolutional neural networks—exhibit diverse levels of effectiveness in 

detecting and mitigating intrusions. Complementary to this hypothesis, the study will explore 

critical research questions such as the comparative performance metrics, adaptability to 

evolving threats, and scalability of these models in practical intrusion detection scenarios.  
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1.7 Rationale for Model Selection: 

 

The selection of machine learning and deep learning models- support vector machines, and 

convolutional neural networks is underpinned by their inherent capabilities in pattern 

recognition, feature extraction, and complex data processing. Each model brings unique 

strengths to the table, making them relevant choices for addressing the multifaceted 

challenges posed by sophisticated cyber-threats. The rationale is rooted in leveraging the 

diverse strengths of these models to attain a comprehensive understanding of their 

applicability and effectiveness in the context of intrusion detection. 

 

1.8 Thesis Overview:  

The remainder of this thesis will contain  

 

Chapter 2: Literature Review which will provide a comprehensive overview of the state of 

the art in intrusion detection systems (IDS), covering both traditional and machine learning-

based approaches. It will discuss the different types of intrusions, the challenges of detecting 

intrusions, and the evaluation metrics used to assess the performance of IDSs. 

 

Chapter 3: Methodology which will describe the methodology used in the research, includ ing 

the data sets used, the experimental setup, and the chosen evaluation metrics. It will also 

provide a detailed explanation of the SVM and CNN algorithms, highlighting their strengths 

and weaknesses in the context of intrusion detection. 

 

Chapter 4: Results will present the results of the experiments conducted on the real-world 

data sets. It will compare the performance of SVMs and CNNs in terms of accuracy, 

precision, recall, and F1 score, and provide insights into the factors that affect their 

performance. 

 

Chapter 5: Discussion and Conclusion will discuss the implications of the findings, includ ing 

the strengths and weaknesses of SVMs and CNNs for intrusion detection. It will also provide 
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recommendations for future research and practical applications, such as the development of 

hybrid IDS systems that combine SVMs and CNNs. 
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CHAPTER II 

Literature Review 

2.1 Overview of Intrusion Detection System (IDS) 

According to Khraisat et al. (2019), any type of unauthorized activity that damages an 

information system is commonly referred to as intrusion. This means that any attack that would 

endanger the availability, confidentiality, or integrity of the information will be viewed as an 

intrusion. Comparably, to enable the maintenance of system security, an intrusion detection 

system (IDS) is a hardware or software system that recognizes harmful activity on computer 

systems (Liao et al., 2013). Thus, monitoring network resources, identifying various forms of 

harmful network traffic, and preventing network misuse are the primary goals of intrus ion 

detection. 

The commercial development of intrusion detection technologies started in the 1990s 

(Rajasekaran, 2020). The first company to sell intrusion detection systems (IDS) was Haystack 

Labs, with its Stalker line of host-based products. Additionally, at the time, SAIC was also 

developing a host-based intrusion detection system known as the Computer Misuse Detection 

system (CMDS) (Rajasekaran, 2020). Based on these assumptions, IDSs are designed to 

distinguish between an intruder's behavior and that of a legitimate user.   

On the strength of the importance of Intrusion Detection Systems, this literature review aims to 

provide a comprehensive understanding of Traditional Intrusion Detection Systems (IDS) as a 

foundational aspect of cybersecurity. Therefore, in the context of our comparative study on 

intrusion detection, utilizing supervised learning models, such as support vector machine, and deep 

learning models, such as convolutional neural networks, it is crucial to establish a solid foundation 

by examining the strengths, weaknesses, and advancements in each traditional approach. 

In their research, Kumar et al. (2021) proposed a pioneering approach with the 'Security and 

privacy-aware Artificial Intrusion Detection System using Federated Machine Learning.' The 

study introduced a federated machine learning mechanism as a machine learning model that assists 

in training decentralized data in devices to ensure data privacy and security. Addtionally, an 

Artificial Immune Intrusion Detection System was designed to classify the node and monitor 

anomaly in the network. The experimental result showed that the model displayed better and more 

efficient result that the edge security models in existence. 

Alhajjar et al. (2021) investigate the nature of adversarial machine learning examples in the scope 

of intrusion detection systems. They employ the use of particle swarm optimization and genetic 

algorithm as tools on NSL-KDD dataset and UNSW-NB15 dataset and evaluated its performance. 

The result was compared to Monte Carlo Simulation, which is a baseline perturbation method. The 

result of this approach showed that the adversarial example generation method exhibits high 

misclassification rates in machine learning models. 
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Mustapha Qahatan Alsudani, Salah H, Abbdal Reflish, Kohbolan, and Myasar Mundher Adnan 

(2022) in their study explored a comparative approach on three different machine learning 

algorithms which are; traditional machine learning, ensemble learning, and deep learning. They 

performed experiments on decision trees, Naïve Bayes, support vector machines, random forestsm 

XGBoost, CNN and RNN using the KDD CUPP99 and NSL-KDD datasets. They compared the 

performance metrics of the algorithms, the result obtained showed that the Naïve Bayes algorithm 

has faster training speed, and can face various types of attacks but with low accuracy in detecting 

the learned data.  

Paya, Arroni, García-Díaz, & Gómez, (2024) introduced ‘Apollon: A robust defense system 

designed to counter Adversarial Machine Learning attacks within Intrusion Detection Systems ”. 

They defined Apollon as a novel defense-based system that applies various set of classifiers to 

detect intrusion and safeguard intrusion detection system against potential threats. Apollon was 

evaluated on different datasets and the result shown that it can successfully identify attacks without 

affecting its performance on network traffic. 

2.2 Intrusion Detection System Techniques  

Due to the exponential growth of networking technologies and the rise in cyber threats, effective 

cybersecurity has become increasingly important. One critical component of cybersecurity is the 

detection and prevention of malicious activity and unauthorized access within computer networks. 

This makes computer systems extremely resistant to malicious actions that could jeopardize their 

availability, integrity, or confidentiality. There are two primary subcategories of intrusion detection 

systems: Signature-based Intrusion Detection System (SIDS) and Anomaly-based Intrusion 

Detection System (AIDS). 

2.3 Signature-based Intrusion Detection System 

Known alternatively as knowledge-based detection or misuse detection, signature intrus ion 

detection systems (SIDS) use pattern matching techniques to identify a known attack (Khraisat et 

al., 2018). This kind of detection operates highly effectively against known assaults, but it is 

dependent on getting regular pattern updates and is not able to identify unexpected threats from 

the past or future releases. This implies that matching techniques are employed in SIDS to locate 

a prior intrusion. Stated differently, an alarm signal is generated when the signature of an intrus ion 

corresponds with the signature of an earlier intrusion that is already recorded in the signature 

database (Modi et al., 2013).  
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Additionally, the primary idea behind the SIDS system is to create a database of intrus ion 

signatures, compare the present set of activities to the signatures already in place, and trigger an 

alarm when a match is discovered. If a rule is written like "if (source IP address=destination IP 

address) then label as an attack," for instance, it may result from the expression "if: antecedent -

then: consequent." Consequently, for known intrusions, SIDS typically provides good detection 

accuracy (Symantec, 2017). Nevertheless, until the signature of the fresh assault is retrieved and 

saved, SIDS cannot identify zero-day attacks because the database lacks a matching signature. 

Many widely used tools, like NetSTAT (Vigna & Kemmerer, 1999) and Snort (Roesch, 1999), use 

SIDS. 

A major challenge for signature-based intrusion detection systems is that each signature 

necessitates a database entry; hence, an entire database could have hundreds or even thousands of 

entries (Meiners et al., 2010). Because traditional SIDS approaches analyze network packets and 

match them against a signature database, they are not as effective at recognizing assaults that span 

many packets. Every packet needs to be checked against every entry in the database. Given the 

intricacy of today's malware, it could be necessary to extract signature data from several packets. 

IDS must also bring the contents of previous packets with it. It can take a lot of resources to achieve 

this, which will reduce throughput and expose the IDS to denial-of-service assaults.   

In summary, with the increasing rate of zero-day attacks (Symantec, 2017), SIDS techniques have 

become progressively less effective because of the absence of signature for any such attacks. The 

other factors such as the polymorphic variants of the malware and the rising number of targeted 

attacks also add up in compromising the adequacy of this traditional model. Some of the IDS 

evasion tools use this vulnerability and flood the signature-based IDS systems with too many 

packets to the point that the IDS cannot keep up with the traffic, thus making the IDS time out and 

drop packets, and as a result, possibly miss attacks.  

2.4 Anomaly-based Intrusion Detection System (AIDS) 

Due to the ability to overcome SIDS's limitations, AIDS has drawn a lot of academic attention 

over the years (Butun et al., 2014). AIDS does not operate by identifying abnormal behavior; 

rather, it distinguishes between behavior that is acceptable and undesirable. Rather than patterns 

or fingerprints, this categorization is based on rules or heuristics, and identifying the network's 

typical behavior is necessary for system implementation. A typical model of a computer system's 

behavior is also developed in AIDS through the use of statistical, knowledge-based, or machine 
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learning techniques. A notable divergence between the observed conduct and the model is 

considered an anomaly, which may be construed as an infringement. This type of technique relies 

on the distinction between malicious and normal user behavior. 

The evolution of AIDS occurs in two stages: the testing phase and the training phase. During the 

training phase, a model of typical behavior is learned using the normal traffic profile. During the 

testing phase, a fresh collection of data is utilized to enhance the system's ability to adapt to 

previously undiscovered incursions. AIDS can be divided into subgroups according to the training 

methodology, such as statistical, knowledge-based, and machine learning-based (Butun et al., 

2014).  

AIDS methods can be classified into four primary categories: supervised learning (Chao et al., 

2015), unsupervised learning (Elhag et al., 2015; Can & Sahingoz, 2015), reinforcement learning 

and deep learning (Buczak & Guven, 2016; Meshram & Haas, 2017). The comparative analysis 

of intrusion detection using supervised learning models like support vector machines (SVM) and 

deep learning models like convolutional neural networks will be the main emphasis of this review 

of the literature. In supervised learning, all input and output variables are gathered, examined, and 

an algorithm is used to determine the typical user behavior from the input to the output. The goal 

is to approximate the mapping function to the point where it can anticipate the output variables for 

each new input record that is gathered. On the other hand, deep learning models are built on 

artificial neural networks, specifically convolutional neural networks (CNN)s.  

According to Alazab et al. (2012), the primary advantage of AIDS its capacity to detect zero-day 

attacks, as it eliminates the need for a signature database to identify anomalous user behavior. 

When the conduct under examination diverges from typical behavior, AIDS sends out a warning 

signal. Moreover, there are several advantages to AIDS. They can first find harmful activity 

occurring within. An alarm is set off when an intruder begins to make transactions in a stolen 

account that are not recognized in the regular user activity. Second, since the system is built using 

personalized profiles, it is difficult for a cybercriminal to identify typical user activity without 

raising an alert. 

However, since the intruders are unpredictable, defining what constitutes a normal network 

behavior, determining the threshold for raising an alarm, and avoiding false alarms are the main 

challenges faced by anomaly-based detection systems. Therefore, if the normal model is not 
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defined carefully, there will be a high number of false alarms and the detection system's 

performance will be negatively impacted. 

2.5 Techniques for Implementing AIDS (SVM and CNN)  

Therefore, as was previously indicated, machine learning techniques have been used to construct 

a variety of AIDSs. The four primary categories of these AIDS techniques are supervised learning, 

unsupervised learning, reinforcement learning, reinforcement learning, and deep learning. The 

primary goal of applying machine learning techniques is to develop IDS that are more accurate 

and require less human understanding. In the past several years, there has been a rise in the number 

of AIDS cases that employ machine learning approaches. But the comparative analysis of intrus ion 

detection using supervised learning models—like support vector machines (SVM) and deep 

learning models—like convolutional neural networks (CNN)—will be the exclusive focus of this 

review of the literature. 

2.6 Supervised Learning in Intrusion Detection Systems 

Supervised learning-based intrusion detection systems use labeled training data to find intrusions. 

Basically, there are two phases in a supervised learning approach: training and testing (Jahdav et 

al., 2021). Relevant classes and features are found during the training phase, after which the 

algorithm gains knowledge from these data samples. Each record in a supervised learning intrus ion 

detection system (IDS) is a pair that comprises a network or host data source and an associated 

output value, or label, such as normal or intrusion. After that, extraneous features can be removed 

using feature selection. A classifier is then trained using a supervised learning technique to 

discover the intrinsic link between the input data and the labelled output value using the training 

data for specific features.  

On the other hand, in the testing stage, the unknown data is divided into intrusion and normal 

classes using the trained model. The resulting classifier subsequently turns into a model that 

predicts the class to which the data that was provided may belong given a collection of feature 

values. Several supervised learning-based neural network, decision tree, rule-based, neural, 

support vector, naïve Bayes, and k-nearest neighbor IDS classification techniques exist (Jahdav et 

al., 2021). Every method builds a classification model using a learning strategy. This work, 

however, examines support vector machines in depth. 
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Umer et al. (2022), conducts a survey that specialise on for types of method for ML namely; 

supervised learning, semi-supervised learning, unsupervised learning and reinforcement learning. 

Likewise, Abdallah et al. (2022) conducts another survey in the supervised machine learning 

technique and cyber-security attacks in the field of intrusion detection systems. This provides a 

taxonomy based on related topics. The result of this survey when conducted on the KDD99, NSL-

KDD, CICDS2017, and UNSW-NB15 displayed that the performance metrics of the supervised 

learning is high when classified accordingly. In another survey, Dina, A.S., & Manivannan(2021) 

presents a comprehensive review of ML-based detection techniques developed in the last ten years. 

The goal of the survey in the study to serve a reference point for future researchers in the field of 

ML-based IDSs. 

2.7 Support Vector Machine (SVM) in Intruion Detection Systems 

As we progress in our exploration of intrusion detection methodologies, the focus now shifts to 

the utilization of Support Vector Machines (SVM). SVMs have garnered attention for their 

prowess in classification tasks, and this literature review aims to dissect the performance, 

methodologies, and contributions of SVMs in the realm of intrusion detection. 

Originally introduced by Vladimir Vapnik (Vapnik, 1998), Support Vector Machines (SVMs) have 

proven to be effective on a variety of classification and forecasting tasks in the fields of statistica l 

learning theory and structural risk minimization. SVMs' effectiveness in classification problems 

has drawn significant attention. They have been applied to the several pattern recognition and 

regression estimation problems,  as well as dependency estimation, forecasting, and building 

intelligent robots  (Sami, 2012). Additionally, because of the generalization concept based on 

Structural Risk Minimization Theory (SRM), or the method being based on guaranteed risk bounds 

of statistical learning theory, SVMs have the potential to encompass very vast feature spaces 

(Joachim, 2002). 

As a discriminative classifier, SVM is defined by a maximum fringe hyperplane that lies in some 

space and classifies the data separated by non-linear boundaries, which can be constructed by 

finding a set of hyperplanes that divide two or more classes of data points. Different kinds of 

splitting hyperplanes are achievable by applying kernels, such as linear, polynomial, Gaussian 

Radial Basis Function (RBF), or hyperbolic tangent. Consequently, SVMs employ kernel 

functions to map the training data into a higher-dimensioned space, thereby allowing for the linear 
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classification of intrusion. Following the construction of the hyperplanes, the SVM determines the 

lines of separation between the input classes and the input elements defining the boundaries 

(support vectors (Sivanandam et al. (2006)). A maximum margin hyperplane divides a given set 

of training samples labeled as positive or negative; this maximizes the distance between the margin 

and the hyperplane. In the event that no hyperplanes are able to divide the positive or negative 

samples, an SVM chooses a hyperplane that splits the sample as precisely as possible. 

In a seminal work by Vinayakumar et al. (2017), the authors leverage CNN architectures for 

intrusion detection by modeling network traffic as time-series, particularly TCP/IP packets. This 

study employs supervised learning methods such as multi- layer perceptron (MLP), CNN, CNN-

recurrent neural network (CNN-RNN), CNN-long short-term memory (CNN-LSTM), and CNN-

gated recurrent unit (GRU). The evaluation, performed on the KDDCup 99 synthetic ID dataset, 

reveals the efficacy of CNN and its variants. The ability of CNNs to extract high-level feature 

representations proves instrumental in outperforming classical machine learning classifiers 

[(Vinayakumar et al., 2017)]. 

Finally, SVMs are also highly known for their capacity to generalize, and they work best in 

situations where there are a lot of attributes and few data points. The data mining, pattern 

recognition, and machine learning groups have become interested in SVM recently due to its 

exceptional generalization ability, optimal solution, and discriminative capacity. SVM is a potent 

technique that has been used to solve real-world binary classification issues. It is used in a way 

that maximizes the margin—the existing space between the decision borders—in a feature space, 

which is a high-dimensional space. Many features in IDS datasets are redundant or have less of an 

impact on classifying data items into the appropriate categories.  

As we navigate through diverse intrusion detection methodologies, our attention now turns to the 

application of Convolutional Neural Networks (CNN). Renowned for their prowess in computer 

vision, CNN architectures have recently been extended to the domain of intrusion detection in 

cybersecurity. This literature review endeavors to dissect the models, methodologies, and 

accomplishments of CNNs in the context of network intrusion detection. 

Support Vector Machines (SVMs) for Intrusion Detection Systems by N. Jabbour et al. (2017) 

provides a comprehensive overview of SVM applications in intrusion detection systems. It 

discusses the inherent interpretability of SVMs, making them easier to understand and debug 
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compared to some deep learning models. This can be advantageous if understanding the decision-

making process behind your intrusion detection system is important. 

In a comprehensive study by Ahmad et al. (2018), the performance of SVM is rigorously compared 

with other techniques, namely random forest and extreme learning machine, for intrus ion 

detection. The study addresses the critical need for an efficient classification technique, especially 

in handling large datasets, such as system and network data. Employing well-known machine 

learning techniques, the authors utilize the NSL–knowledge discovery and data mining dataset, 

presenting results that demonstrate the superiority of extreme learning machine over other 

approaches [(Ahmad et al., 2018)]. 

Bhati and Rai (2020) contribute to the literature with an analytical study of SVM-based intrus ion 

detection techniques. The methodology involves data collection, preprocessing, SVM technique 

for training and testing, and decision-making. The study utilizes the NSL-KDD dataset, a 

benchmark in intrusion detection techniques. The results showcase the effectiveness of different 

SVM variations, including Linear SVM, Quadratic SVM, Fine Gaussian SVM, and Medium 

Gaussian SVM, in achieving high overall detection accuracy [(Bhati & Rai, 2020)]. 

Performance Analysis of Machine Learning Algorithms for Network Intrusion Detection by S. M. 

Latif et al. (2020): The study evaluates the performance of various machine learning algorithms, 

including SVMs, decision trees, and K-nearest neighbors, for intrusion detection using the NSL-

KDD dataset. They find that SVMs achieve the highest F1-score (93%), followed by CNNs (92%) 

and decision trees (89%). This paper provides a head-to-head comparison of various algorithms 

on a similar dataset, offering insights into their relative strengths and weaknesses. 

In their innovative research, Alzaqebah et al. (2023) presents a 'Hierarchical Intrusion Detection 

System based on Extreme Learning Machine and Nature-Inspired Optimization.' They developed 

a better bio-inspired meta-heuristic method effective detection and classification problems. The 

suggested model is used to address the multi-class classification problem using a one-versus-all 

model-based approach. This approach was evaluated with several meta-heuristic methods and 

multi-class classifiers on the UNSWNB-15 dataset. The result showed that the new experimenta l 

result performed more effectively than pre-existing methods. 
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2.8 Application of Support Vector Machines  

This section provides a survey of some major contributions towards SVM and its successful 

applications in IDS. For example, Heba et al. (2010) introduce an intrusion detection system 

employing Principal Component Analysis (PCA) with SVMs. The approach aims to select the 

optimum feature subset, reducing the number of features and enhancing the efficiency of intrus ion 

detection. Through experiments on the NSL-KDD dataset, the proposed system demonstrates 

effectiveness in speeding up the detection process while minimizing memory space and CPU time 

costs (Heba et al., 2010). In the work by Li et al. (2012), an SVM classifier with an RBF kernel 

was applied to classify the KDD 1999 dataset into predefined classes. From a total of 41 attributes, 

a subset of features was carefully chosen by using a feature selection method. Simila r ly, 

Chowdhury et al. (2016) introduced a method of detecting intrusion based on network traffic. They 

randomly picked three variables from a feature pool and used SVM model to differentiate attacks 

and normal traffic accordingly. This was a continuous process until all permutations of the features 

were covered. The model was tested on the UNSW-NB15 dataset and the result of exhibit an 

accuracy of 98.76%.  

Support Vector Machines (SVMs) for Intrusion Detection Systems by N. Jabbour et al. (2017) 

provides a comprehensive overview of SVM applications in intrusion detection systems. It 

discusses the inherent interpretability of SVMs, making them easier to understand and debug 

compared to some deep learning models. This can be advantageous if understanding the decision-

making process behind your intrusion detection system is important. 

In a comprehensive study by Ahmad et al. (2018), the performance of SVM is rigorously compared 

with other techniques, namely random forest and extreme learning machine, for intrus ion 

detection. The study addresses the critical need for an efficient classification technique, especially 

in handling large datasets, such as system and network data. Employing well-known machine 

learning techniques, the authors utilize the NSL–knowledge discovery and data mining dataset, 

presenting results that demonstrate the superiority of extreme learning machine over other 

approaches (Ahmad et al., 2018). 

Bhati and Rai (2020) contribute to the literature with an analytical study of SVM-based intrus ion 

detection techniques. The methodology involves data collection, preprocessing, SVM technique 

for training and testing, and decision-making. The study utilizes the NSL-KDD dataset, a 

benchmark in intrusion detection techniques. The results showcase the effectiveness of different 
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SVM variations, including Linear SVM, Quadratic SVM, Fine Gaussian SVM, and Medium 

Gaussian SVM, in achieving high overall detection accuracy [(Bhati & Rai, 2020)]. 

SVM is basically supervised machine learning method designed for binary classification. Using 

SVM in IDS domain has some limitation. SVM being a supervised machine learning method 

requires labelled information for efficient learning. Pre existing knowledge is required for 

classification which may not be available all the time (Shon et al., 2005). SVM has the intrins ic 

structural limitation of the binary classifier i.e. it can only handle binary-class classifica t ion 

whereas intrusion detection requires multi-class classification (Sandya et al., 2005). Although 

there are some improvements, the number of dimensions still affects the performance of SVM-

based classifier (Kyaw, 2010). SVM treats every feature of data equally. In real intrusion detection 

datasets, many features are redundant or less important. It would be better if feature weights during 

SVM training are considered (Kyaw, 2010). Training of SVM is time-consuming for IDS domain 

and requires large dataset storage. Thus, SVM is computationally expensive for resource-limited 

ad hoc network (Joseph et al., 2011). Moreover, SVM requires the processing of raw features for 

classification which increases the architecture complexity and decreases the accuracy of detecting 

intrusion (Joseph et al., 2011). 

In their contribution, Turukmane and Devendiran (2024) present "M-MultiSVM: An efficient 

feature selection assisted network intrusion detection system utilizing machine learning". This 

study introduced an effective automatic abnormality detection system that aids the detection 

system to identify false detection. The study proposed M-MultiSVM model using the CSE-CIC-

IDS 2018 and UNSW-NB15 datasets. They utilized the Null value handling and MIN-Max 

normalization for data pre-processing and the features of the dataset was extracted using the 

Modified Singular Value Decomposition which was then optimized. The result of the performance 

metric displayed that the suggested method has an accuracy of 99.9% when the CSE-CIC-IDS 

2018 dataset was utilized and an accuracy of 97.535% when the UNSW-NB15 dataset was utilized.  

2.9 Deep Learning in Intrusion Detection Systems 

Deep learning is a subfield of machine learning where a computer uses a hierarchy of data based 

on experience and form multiple layers as an output. Deep learning can be supervised as well as 

unsupervised. In the case of supervised deep learning, data can be classified whereas in the case 

of unsupervised deep learning data patterns are analyzed. Deep learning is directly related to 

artificial intelligence where machines will acquire knowledge by learning with experience and will 
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replace human intelligence. Deep learning works on the platform of artificial neural networks by 

studying massive amounts of data with the help of algorithms prepared by human intelligence. It 

is referred to as ‘deep learning’ as the artificial neural networks possess different deep layers that 

enables them to learn. In neural networks, each neural node of every single hidden layer calculates 

the weighted values receiving from the previous layer and passes on the output values to the 

subsequent layer. The result value of the last layer can be considered as the final results achieved 

by the neural networks from the raw data. 

IDSs play an important part in cybersecurity as they defend the network from cyber-attacks by 

monitoring the network. IDSs in cybersecurity have evolved using deep learning (DL) due to their 

findings in computer vision, image processing, and natural language processing (Avci et al., 2021). 

Due to their two key properties, hierarchical feature representations and the acquisition of long-

term temporal patterning, this structure of hierarchical and heuristic search is highly effective. DL 

is popular among researchers. Therefore, considerable thought has been given to DL approaches 

for enhancing the intelligence of IDSs, despite a lack of research comparing such machine learning 

methods with openly available datasets. DL’s complex structuring architecture facilitates high-

quality learning for complex data processing. Rapid progress in parallel processing technology has 

produced a robust system basis for DL approaches.  

DL-IDS leverages complex neural network architectures to learn intricate patterns from data. 

Convolutional Neural Networks (CNNs) are particularly effective for processing grid-like data 

such as images, making them well-suited for analyzing network packet data. Recurrent Neural 

Networks (RNNs), on the other hand, excel in capturing sequential dependencies, making them 

valuable for time-series data like system logs. The synergy of these architectures allows DL-IDS 

to handle diverse input formats efficiently. The strength of DL-IDS also lies in its ability to 

automatically extract features from raw data. Traditional IDS often requires manual feature 

engineering, a time-consuming and expertise-dependent process. DL-IDS eliminates this 

bottleneck by autonomously learning relevant features during the training phase. This adaptability 

ensures that the system can recognize both known and previously unseen patterns associated with 

normal and malicious behavior.  

Al-Kashoori and Alsultan (2019) explores a comparative approach of deep learning that compares 

various deep learning architectures, including DNNs, CNNs, and LSTMs, for intrusion detection 
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using the NSL-KDD dataset. They report that CNNs achieve the highest accuracy (92%), followed 

by LSTMs (89%) and DNNs (86%), demonstrating the potential of CNNs for high detection rates 

on similar datasets. In another study Y. Li et al. (2020), The survey paper explores various deep 

learning methods for intrusion detection, including CNNs, LSTMs, and autoencoders. They 

emphasize that achieving a balanced F1-score, which considers both precision and recall, is crucial 

for practical intrusion detection systems. This paper can help you understand the trade-offs 

between different models and select the one that offers the best balance for your specific needs. 

However, Gill et al. (2020) conducts a survey that provides a broad overview of recent advances 

in machine learning techniques for intrusion detection, including deep learning, 

In there contribution by Zhu et al. (2023), they propose a novel deep CNN framework for DDoS 

attack detection. Their model achieves an accuracy of 99.2% and a low false positive rate of 0.7% 

on the CICIDS2017 dataset, showcasing the strength of CNNs in achieving high accuracy with 

low false alarms for specific attack types. Contrarily, Cevallos et al. (2023) proposes a survey in 

the field of deep learning where they explore DRL-based intrusion detection design choices. The 

goal of the survey is to explore the merits and deployment of IOT environments with the objective 

of the survey to act a guide to future researchers interested in Intrusion Detection in the field of 

IOT.  

Deep Learning Approach for Network Intrusion Detection Using a Small Features Vector by M. 

R.G.S.N. Kumar et al. (2023): This study investigates a deep learning approach with a small feature 

vector for intrusion detection using the UNSW-NB15 dataset. Their model achieves a precision of 

96.5% compared to other models requiring more features, highlighting the potential of deep 

learning for reducing false positives while maintaining high accuracy. 

2.10 Application of Deep Learning in Intrusion Detection Systems  

This section provides a survey of some major contributions towards deep learning and its 

successful applications in IDS. This literature review aims to unravel the advancements, 

methodologies, and applicability of deep learning models in addressing crucial cybersecurity 

challenges, including intrusion detection, malware detection, phishing/spam detection, and 

website defacement detection. For example, in their survey, Mahdavifar and Ghorbani (2019) 

provided a comprehensive overview of recent DL approaches in cybersecurity. The survey 

delineates preliminary definitions of popular DL models and algorithms, proposing a general DL 

framework for cybersecurity applications. The authors analyze related papers, considering focus 
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areas, methodologies, model applicability, and feature granularity, culminating in concluding 

remarks and future research considerations (Mahdavifar & Ghorbani, 2019). 

Renowned for their prowess in computer vision, CNN architectures have recently been extended 

to the domain of intrusion detection in cybersecurity. In a seminal work by Vinayakumar et al. 

(2017), the authors leverage CNN architectures for intrusion detection by modeling network traffic 

as time-series, particularly TCP/IP packets. This study employs supervised learning methods such 

as multi-layer perceptron (MLP), CNN, CNN-recurrent neural network (CNN-RNN), CNN-long 

short-term memory (CNN-LSTM), and CNN-gated recurrent unit (GRU). The evaluation, 

performed on the KDDCup 99 synthetic ID dataset, reveals the efficacy of CNN and its variants. 

The ability of CNNs to extract high- level feature representations proves instrumental in 

outperforming classical machine learning classifiers (Vinayakumar et al., 2017).  

Parameswari et al. (2024) propose a developed an optimized enabled deep learning method named 

RAT Swarm Hunter Prey Optimization-Deep Maxout Network (RHPO-DMN) programmed to 

handle a variety of threat efficiently. The data is transformed using the CNN model formerly pre-

procesed using the Z-score data normalization. The result showed that the RSHPO-DMN model 

repectivelly achieved an accuracy of 90.88%, precision of 93.58%, recall of 96.54% and F1 score 

of 95.04%. 

Devendiran and Turukmane (2024) proposed an innovative approach using deep learning to 

improve accuracy of the classification with minimal error. In this method, the dataset which was 

the TON-IOT and NSL-KDD dataset was pre-processed by M-squared normalisation techniques 

and data cleansing.  Thereafter, the data was balanced by employing the chaotic optimiza t ion 

approach. Furthermore, the extracted features are then classified using the Gated Attention Dual 

Long Short-Term Memory (Dugat-LSTM). The result of this approach showed that the accuracy 

of the prototype was 98.76% in the TON-IOT dataset while the NSL-KDD dataset was 99.65%. 

Yuan et al. (2024) proposed a study titled: "A simple framework to enhance the adversarial 

robustness of deep learning-based intrusion detection system". The study presents a novel IDS 

architecture that combines machine learning models and to improves the effectiveness of IDS 

against potential attacks. An Adversarial Example (AE) detector was first developed then with the  

fusion of ML and DL models a more complex ML models was formed that aid in identifying 
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malicious AE. The outcome of the fusion between the ML and DL result in a very high accurate 

prediction and low attack transferability between both models.  

Aljehane et al. (2024) presents a new approach of integrating Golden Jackal Optimiza t ion 

Algorithm with deep learning assisted IDS. The goal of this method is to effectively identify and 

classify intrusion. The data was first normalized to scale then the GJOADL-IDSNS is used to 

select the best subset of features. The dataset was simulated using the Salo Swarm Algorithm 

(SSA) and the GJOADL-IDSNS model was compared with other models. The results showed that 

the technique when compared to other models exhibit a higher performance accuracy when 

compared with other models. 

Talukder, Hasan, Islam, Uddin, Akhter, Yousuf, Alharbi, and Moni (2023) introduced a study that 

developed a new hybrid model that integrates machine learning and deep learning to improve 

detection rates and dependability. The research aims to improve pre-processing with the 

combination of SMOTE for data balancing and XGBoost for feature selection. The proposed 

method was in comparison with various machine learning and deep algorithm to develop a more 

efficient model. The method was evaluated on two datasets and produced great result. The 

KDDCUP’99 produced and accuracy of 99.95% and the CIC-MalMem-2022 dataset produced and 

accuracy of 100% with no overfitting. 

2.11 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs), a breakthrough in the field of deep learning, have 

revolutionized the way computers interpret and process visual information. This neural network 

architecture is specifically designed for tasks such as image recognition, object detection, and 

feature extraction from visual data. A key innovation of CNNs lies in their ability to automatica l ly 

learn hierarchical representations of features from raw input data. The concept of Convolutiona l 

Neural Networks can be traced back to the early 1990s. While the foundations were laid by Yann 

LeCun, a computer scientist and AI researcher, it was in collaboration with Léon Bottou and 

Yoshua Bengio that the CNN architecture truly took shape. LeCun's seminal work on 

convolutional neural networks, particularly the LeNet-5 architecture developed in 1998, marked a 

significant milestone in the application of deep learning to image recognition tasks. 

The distinctive feature of CNNs is their use of convolutional layers, which apply convolut ion 

operations to input data. These layers consist of filters that automatically learn spatial hierarchies 
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of features, capturing patterns from local to global scales. Pooling layers, commonly used in 

conjunction with convolutional layers, further reduce the spatial dimensions of the input, retaining 

essential features while discarding unnecessary details. Furthermore, CNNs have demonstrated 

unparalleled success in various applications, from image classification tasks, such as identifying 

objects in photographs, to more complex tasks like facial recognition and autonomous vehicle 

navigation. The architecture's ability to automatically learn relevant features from raw data, 

coupled with its spatial hierarchies, makes it particularly effective in capturing complex patterns 

in visual information. 

As technology has advanced, CNNs have become a cornerstone in computer vision and image 

processing, with applications extending beyond traditional image recognition. Their impact spans 

industries, contributing to advancements in medical image analysis, satellite image interpretat ion, 

and even artistic style transfer in the realm of creative computing. The continued refinement and 

application of Convolutional Neural Networks underscore their significance in shaping the 

landscape of modern artificial intelligence. 

2.12  Convolutional Neural Networks in Network Intrusion Detection 

Navigating the landscape of intrusion detection systems, our exploration extends to traditiona l 

methods, deep learning models, and the specific focus on Support Vector Machines (SVM) and 

Convolutional Neural Networks (CNN). This synthesis aims to distill key insights, aligning our 

research with the nuanced challenges and advancements observed in the literature, setting the stage 

for a focused comparative study. 

Within the literature, a recurring theme revolves around the pursuit of precision in intrus ion 

detection. Traditional methods rely on signature-based detection, while deep learning models, 

particularly SVM and CNN, showcase promise in handling dynamic and complex datasets. The 

exploration of high-level feature representations emerges as a pivotal trend, emphasizing the 

adaptability of SVM and the feature extraction capabilities of CNN. 

The comparative analysis reveals a dynamic landscape where SVM and CNN stand out as potential 

front-runners. SVM demonstrates stability and adaptability, while CNN excels in capturing 

intricate patterns. The absence of a standardized framework for comprehensive evaluations is 

apparent, urging the need for a focused study to discern the specific strengths and limitations of 

SVM and CNN in the context of intrusion detection. 
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A Comparative Analysis of Deep Learning Approaches for Network Intrusion Detection Systems 

(N-IDSs) by H. Al-Kashoori and J. Alsultan (2019): This study compares various deep learning 

architectures, including DNNs, CNNs, and LSTMs, for intrusion detection using the NSL-KDD 

dataset. They report that CNNs achieve the highest accuracy (92%), followed by LSTMs (89%) 

and DNNs (86%), demonstrating the potential of CNNs for high detection rates on similar datasets.  

In another study Intrusion Detection Systems Based on Deep Learning Techniques by Y. Li et al. 

(2020): The survey paper explores various deep learning methods for intrusion detection, includ ing 

CNNs, LSTMs, and autoencoders. They emphasize that achieving a balanced F1-score, which 

considers both precision and recall, is crucial for practical intrusion detection systems. This paper 

can help you understand the trade-offs between different models and select the one that offers the 

best balance for your specific needs. 

2.13 Comparative Studies: SVM vs. CNN in Intrusion Detection 

In the realm of Intrusion Detection Systems (IDS), a burgeoning area of research revolves around 

the comparative analysis of traditional machine learning methods, exemplified by Support Vector 

Machines (SVM), and more advanced deep learning approaches, particularly Convolutiona l 

Neural Networks (CNN). Various studies have been conducted to scrutinize the effectiveness of 

these algorithms in identifying and mitigating cybersecurity threats, each employing distinct ive 

methodologies to assess their respective strengths and limitations. One notable study, by H. Al-

Kashoori and J. Alsultan (2019), delved into the comparative analysis of SVM and CNN. The 

study utilized a dataset comprising both normal and anomalous network traffic, training and 

evaluating SVM and CNN models on extracted features. Performance metrics such as accuracy, 

precision, recall, and F1 score were employed to assess the models' effectiveness. The findings 

revealed that SVM performed well in recognizing known attack patterns, while CNN exhibited 

superior adaptability to novel threats, showcasing higher overall performance. 

Analysis of Network Intrusion Detection Performance Using SVM and Deep Learning 

Techniques" by S. R. Bhuiyan et al. (2020): The study compares SVM and CNN performance on 

the NSL-KDD dataset. While the CNN achieves a higher accuracy (94%) than the SVM (90%), 

the SVM exhibits a slightly higher recall (92% vs. 90%). This suggests that if maximizing the 

detection of even low-probability intrusions is crucial, SVMs might be a good choice depending 

on your data and risk tolerance. 
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In a similar vein, the study titled "Evaluating SVM and CNN for Anomaly-based Intrusion 

Detection" by Y. Li et al. (2020) focused on anomaly-based intrusion detection. The study utilized 

datasets encompassing various attack scenarios and assessed the performance of SVM and CNN 

models. Performance metrics, including accuracy, precision, recall, and F1 score, were leveraged 

for comparative evaluation. The results showcased the robust performance of SVM in detecting 

known attack patterns, while CNN demonstrated exceptional accuracy in identifying previous ly 

unseen anomalies, highlighting its adaptability to evolving threats. 

Similarly, the methodologies employed in these studies followed a systematic approach. Diverse 

datasets were selected to ensure the representation of various cyber threats and normal network 

behaviors (Vinayakumar et al., 2017). Both SVM and CNN models underwent training on labeled 

datasets, with a focus on optimizing parameters for each algorithm. Feature extraction techniques 

differed, with SVM relying on handcrafted features and CNN automatically learning hierarchica l 

representations, reducing the need for extensive manual feature engineering. 

According to Zhang, Jia, Wang, Wang, Liu, and Yang (2022), in their recent study, they conducted 

"comparative research on network intrusion detection methods based on machine learning". The 

research compared three categories; traditional machine learning, ensemble learning and deep 

learning tested on the KDD CUP99 dataset and NSL-KDD dataset. The experiment performed was 

on decision tree, Naïve Bayes, support vector machines, random forest, XGBoost, convolutiona l 

neural networks and RNN networks. The evaluation metrics of these algorithms were compared 

and the result displayed that the ensemble learning algorithm is more effective than the others. The 

Naïve Bayes algorithm is better in facing diverse forms of attack and faster training speed but with 

low accuracy in detecting the learned data. The deep learning model does not significantly stand 

out but the optimal results are influenced by various factor such a hyperparameters, structure and 

the number of iterations. 

This section includes other important contribution related to the field of network intrus ion 

detection for machine learning and deep learning models includes; 

Lv et al. (2020) introduced a novel approach that utilizes on signature attacks to differentia te 

normal and anomalous activities to identify attacks based on extreme learning machine with a 

hybrid kernel function (HKELM). Additionally, Kernel Principal Component Analysis (KPCA) is 
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employed for data preprocessing and feature extraction on the KDD99 dataset and the industria l 

intrusion detection dataset. The result of this proposed method displayed high accuracy with time.  

Kalimuthan et al, (2020), presents a review of existing artificial intelligence-based methods with 

bench mark dataset. The study focused on identifying various kinds of attacks using ML 

classification algorithms. They explore the performance analysis of pre-existing IDS and the 

outcome obtained by various method was classified.  

Asif et al. (2022) developed an intelligent intrusion detection model that integrate Machine 

Learning and MapReduce-Based intelligent model. This MR-IMID identifies intrusion of big data 

sources and unknown test scenarios. This approach produces an accuracy of 97.7% during training 

phase and 97.7% during the validation phase, however, Yang et al. (2022) developed an IDS-ML 

program that optimizes ML models to detect various forms of attacks to network security systems. 

The result of this ML code when evaluated proves that it can be implemented on all kind of datasets 

for intrusion detection in the cope of cybersecurity.  

Khalil et al (2023) introduced an Artificial intelligence-based intrusion Detection based system 

that combines deep learning and edge computing. This method utilizes the Order Preference by 

Similarity to Ideal (TOPSIS) technique and it uses a Bidirectional Generative Adversarial Network 

(BiGAN) to detect intrusions. This is a problem because the dataset is highly unbalanced and 

unstructured, and ordinary traffic samples are usually more common than aberrant traffic. Our 

BiGAN-based model resolves generator and discriminator network synchronization issues. 

Training iterations increase on their own until the prerequisites for cross-entropy loss are satisfied. 

Being a single-class classifier, the trained encoder-discriminator network can discriminate between 

normal and pathological input. When compared to similar approaches, experimental results show 

greater performance on the NSL-KDD dataset. In contrast to the previous study, Hossain and Islam 

(2023) proposes an ensemble-based ML approach to intrusion detection. Several ensemble 

algorithms such as random forest, Gradient Boosting, Adaboost, XGBoost was evaluated on 

popular datasets. The features of the dataet was extracted by correlation analysis, mutual 

information and PCA. The result from this ensemble approach showed that the Random forest 

algorithm exhibit better performance metrics than other algorithms with an accuracy of 99%.  

In their research, Lu et al. (2024) delve into the realm of cybersecurity for the Industrial Internet 

of Things (IIoT), by introducing hierarchical clustering algorithm to under sampled technology, 
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which diminishes data loss of majority samples while solving the problem of false detection of 

samples. This method optimizes feature selection while eradicating redundancy through deep 

neural network. The result of this experiment shown that the method is very effective in improving 

the intrusion detection for Internet of Things. 

However, Nabi, Zhou (2024) in their contribution developed a high accurate classifier with 

minimum false alarm. They employed the NSL-KDD dataset on a set of classifiers. The result 

when evaluated showed that the j48 tree had the better accuracy of 79.1%. In other to improve the 

performance of the classifier, the Random Projection algorithm and PCA algorithm was explored. 

This approach showed the PART algorithm has a better accuracy than the random projection 

algorithm and the original set, with an accuracy of 82.0%, however random projection was less 

time consuming. 

Alazab et al. (2024) in their comprehensive research proposed a method of optimizing MLP 

learning by using the Harris Hawk Optimization algorithm. This approach is carried out by the 

optimization of bias and weight parameters to select the bet variable in training process for minimal 

errors in intrusion detection. The HHO-MLP method carried out using the EvoloPy NN 

framework, and the model evaluation metric such as accuracy, precision, specificity and 

sensitivity, MSE and RMSE values was compared with other evolutionary methods. The HHO-

MLP exhibit better performance with an accuracy of 93.17%. sensitivity of 89.25% and specific ity 

of 95.41%.  

Nie et al. (2024) developed a packet-smart representation of IOT traffic. The design method was 

a double stage multi-task multi-view IoT intrusion detection (M2vTIDS) learning architecture 

comprising of a multi-view that can automatically identify anomaly.  The outcome of the 

experiment when evaluated on three well known IoT datasets displayed that the M2vT-IDS had 

better accuracy when compared with popular specialized IDS systems. 

However, Jayaraj et al, (2024) presents a Hybrid Ensemble Feature Selection (HEFS) method that 

combats various phishing techniques. They employed a Cumulative Distribution Function gradient 

to extract the features which are then fused into a data perturbation ensemble to form a subset of 

primary features. The result of this approach is compared to pre-existing studies in the field of 

intrusion detection. 
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Sun et al. (2024) explores an IDS system that integrate particle swarm optimization and AdaBoost 

algorithms to identify intrusion in health application platforms. Particle Swarm optimization was 

employed to extract the features and the IDS classifies the various forms of attacks from the NSL 

KDD dataset. The results exhibit that the PSO-AdaBoost achieved a very high-quality performance 

metrics. This approach of integrating ml into health care industry can help minimize cost and 

improve confidentiality of sensitive information. 

Futhermore, performance metrics played a crucial role in the comparative analysis, with accuracy, 

precision, recall, and F1 score offering nuanced insights. SVM exhibited high accuracy in 

recognizing known attack patterns and demonstrated superior precision, minimizing false 

positives. Conversely, CNN showcased superior accuracy, particularly in scenarios with evolving 

and previously unseen threats, and exhibited higher recall, indicating its proficiency in identifying 

true positives, especially in the case of novel threats. F1 score, balancing precision and recall, 

further underscored the nuanced trade-offs between the two approaches (Vinayakumar et al., 

2017). 

Trends and patterns observed in these studies indicated that CNN consistently demonstrated 

superior adaptability to previously unseen threats, showcasing its potential for real-time intrus ion 

detection in dynamic environments. However, SVM, being a traditional machine learning method, 

demonstrated lower computational complexity during both training and inference compared to the 

resource-intensive nature of CNN. Additionally, SVM models offered more straightforward 

interpretability compared to the complex internal representations of CNN (Mahdavifar & 

Ghorbani, 2019). 

In discerning the literature, gaps become evident, and specific limitations emerge. Methodologica l 

inconsistencies and the lack of tailored evaluations for SVM and CNN in intrusion detection 

scenarios underscore the need for a dedicated investigation. Our research seeks to address these 

gaps by focusing on a detailed comparative analysis, contributing tailored insights to the existing 

body of knowledge. 

Aligned with the synthesis, our research pivots around focused questions. How do SVM and CNN 

perform in real-world intrusion detection scenarios? What tailored benchmarks and evaluation 

criteria are paramount for a nuanced comparative analysis of these specific methods? Our 

objectives are outlined—to bridge existing gaps, establish a robust comparative framework, and 
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contribute tailored insights that advance the understanding of intrusion detection with a focus on 

SVM and CNN. 

In conclusion, while SVM and CNN both exhibit strengths in specific aspects of intrus ion 

detection, the choice between them hinges on the specific requirements of the cybersecurity 

context. SVM proves robust in detecting known attack patterns, whereas CNN's adaptability to 

evolving threats positions it as a promising solution for dynamic and complex network 

environments. Understanding these nuances is essential for tailoring intrusion detection systems 

to the unique challenges posed by modern cyber threats. 
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CHAPTER III 

Methodology 

3.1 Research Design 

The overarching goal of this research is to conduct an in-depth comparative analysis of SVM 

and CNN within the realm of intrusion detection. The study aims to assess the efficacy of these 

models and provide nuanced insights to refine and optimize intrusion detection strategies. 

 

  

 

Figure 3. 1: Block Diagram of The Design Stages of an IDS 

1. Input Dataset- The internet firewall dataset is the input that was imported into the google 

colab python environment and processed. 

2. Data preprocessing/Feature Scaling- The dataset is then checked for missing variables and 

the categorical variables which are; Allow, Deny, Drop and Reset-both are then encoded into 

numerical values. 

3. Model Training- The dataset is then splitted into training data and testing data using the 

train_test_split feature. The training data is then used to fit the SVM model and trained while 

the CNN model is constructed on the reshaped training data. 

4. Model Predictions- The models are then used to make predictions on the test data set and 

we used various evaluation metrics to know how well the models perform on the test dataset. 

The program is then used to accept user input for the network traffic features such as source 

port and destination port and the user input is standardize using the standard scaler features 

used for training. The CNN models and the SVM models is then used to predict the actions 

and calculate the accuracy of the predictions. 
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The design modelling of SVM and CNN in this has been done using Python. SVM model uses 

sigmoid kernel function. CNN model used one dimensional convolutional layer with 32 filters of 

sizes 3 and ReLU activation function. After extraction features by Convolutional layer, MaxPooling 

layer is appled. Pooling size is taken as 2. Obtained features are flattened and entered to fully 

connected network presented by Dense layers. The structure of used CNN is presented below. 

Table 3. 1: Structure of the used CNN 

Layer (type) Output Shape 

Conv1d  (32,3,’Relu’) 

MaxPooling1D (pool_size=2) 

Flatten One dimensional array 

dense_1 (Dense) (128, ‘ReLU’) 

dense_1 (Dense) (4,’Softmax’) 

 

The Simulation has been done using 500 epochs and 64 batch size, Adam optimization learning 

algorithm.   

3.2 Data Collection 

The dataset utilized in this research study was sourced from the UC Irvine Machine Learning 

Repository, specifically from the "Internet Firewall Data" collection, which is publicly availab le 

at 

[https://archive.ics.uci.edu/dataset/542/internet+firewall+data](https://archive.ics.uci.edu/datas

et/542/internet+firewall+data). The dataset was originally compiled from internet traffic records 

captured by a university's firewall system. It serves as the foundational data upon which our 

research is based. 

The dataset comprises a total of 65,532 instances or data points, each characterized by a set of 

multivariate attributes. These attributes are pivotal in the classification task, as they serve as input 

features for both Support Vector Machine (SVM) model and CNN. A comprehensive analysis of 

these attributes is essential for a holistic understanding of the dataset and the problem at hand.  

The dataset consists of 12 attributes that provide valuable information about the network traffic 

records. These attributes are as follows: 
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1. Source Port: The port from which the network traffic originates. 

2. Destination Port: The port to which the network traffic is directed. 

3. Network Address Translation (NAT) Source Port: It refers to the port number assigned 

in mapping multiple connections from private IP address to a single Public IP address 

4. Network Address Translation (NAT) Destination Port: It is the port number assigned to 

the destination device that manages incoming traffic from public IP address to the accurate 

private IP address based on the destination port number. 

5. Bytes: The port measures the amount of data transmitted or received over the network traffic  

6. . Bytes Sent: The number of bytes transmitted in the network traffic. 

7.  Bytes Received: The number of bytes received in the network traffic. 

8.  Packets: The total number of packets involved in the network communication. 

9. Elapsed Time (sec): The duration of the network communication in seconds. 

10.  pkts_sent: The number of packets sent. 

11. pkts_received: The number of packets received. 

12. Action: This attribute serves as the target class for our classification task. It encompasses 

four distinct classes, which the SVM and CNN models aim to predict based on the dataset. 

The "Action" attribute serves as the class label in our dataset and represents the outcome to be 

predicted. This categorical feature encompasses four classes, each denoting a specific action or 

response based on the network traffic records. The accurate classification of these actions is the 

primary objective of our research (Figure 3.2). 

 

1. Class 1: [Allow] 

2. Class 2: [Deny] 

3. Class 3: [Drop] 

4. Class 4: [Reset Both] 
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Understanding the characteristics of these class labels is crucial for evaluating the performance 

of our machine learning models and drawing meaningful insights from the results. 

In summary, the dataset used in this research comprises a diverse set of attributes extracted from 

internet traffic records. These attributes, including network port information, data transfer 

metrics, and elapsed time, are employed as input features for our deep learning models. The 

"Action" attribute, with its four distinct classes, forms the basis for the classification task that the 

SVM and CNN models are designed to tackle. A thorough analysis of the dataset attributes sets 

the foundation for the subsequent experimentation and analysis presented in this research. 

 

 

Figure 3. 2: Distribution of Action Classes from the Dataset 

 

3.3 Dataset Selection 

The dataset chosen for this study is instrumental in achieving a realistic evaluation. The dataset 

includes real-world network traffic data with attributes such as Source Port, Destination Port, 

Action, Bytes, and Elapsed Time. This dataset was selected due to its relevance to intrus ion 

scenarios and its suitability for evaluating the performance of SVM and CNN in intrus ion 

detection (Table 3.1). 
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3.4 Data Preprocessing 

 The dataset undergoes standard preprocessing steps, including cleaning, normalization, and 

feature extraction. Each attribute carefully examined to ensure compatibility with SVM and CNN 

models. Categorical variables will be encoded appropriately, and features scaled to facilitate 

effective model training. 

 

Table 3. 2: Some Attributes and Features of the Dataset 

   

FEATURE DESCRIPTION 

SOURCE PORT 
The port from which the network traffic originates 

Destination Port The type of network traffic, such as data transfer, control 

message, or error message 

Action 
The type of network traffic, such as data transfer, control 

message, or error message 

Bytes The number of bytes transferred in the network traffic 

Elapsed Time The amount of time it took to transfer the network traffic 

 

3.5 Model Configuration  

 For SVM, the model configured with a specific kernel function and hyper-parameters tailored 

to intrusion detection. The CNN architecture defined, specifying layers, filter sizes, and 

activation functions. These configurations are motivated by existing literature and preliminary 

experiments, aiming to capture the intricacies of intrusion patterns. 

3.5.1 Support Vector Machine (SVM) Algorithm 

Support Vector Machine (SVM) is one of the most common and powerful classifica t ion 

techniques used. SVM is a computer algorithm that assigns labels to objects through learning by 

examples (Noble, W.S, 2006). For instance, SVM may learn to recognize handwritten numbers 

by evaluating a verse collection of scanned images of handwritten characters (Noble, W.S, 2006). 
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SVMs is a type of supervised machine learning model that can be applied in the field of network 

intrusion detection. The main objective of SVM algorithm is to formulate the best line or the best 

decision boundary called the hyperplane that divides the n-dimensional spaces into classes so we 

can put the new data point in the right category. 

There are two types of SVM which are: 

1. Linear SVM: Linear SVM are used for dataset that can be classified by using a single  

straight lines 

2. Non-Linear SVM: Non-linear SVM are used for dataset that cannot be classified using a 

straight line. 

The Working Principle of an SVM as follows 

1. Linear SVM: The following figure illustrates how SVM functions. A dataset with two 

classes; green and blue and two features (x1 and x2) is depicted in the image below. The pair 

of coordinates x1 and x2 needs to be classified as either green or blue by the classifier as 

shown below. 

 

 

Figure 3.3a: Graphical Representation of Dataset with Two Colors (source 

https://www.javatpoint.com/) 

 

Since it’s a two-dimensional space, the two classes can be divided with a straight line, although 

there can be more than one line dividing these classes. Therefore, the objective of the SVM 

https://www.javatpoint.com/
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method is to locate the ideal line or decision boundary in other to find the closest point between 

the classes. These sites are called support vectors.  

 

Figure 3. 3: Graphical Representation of Dataset with Two Colors divided 

linearly (source https://www.javatpoint.com/) 

Margin is the distance measured between the vectors and the hyperplane. And SVM's objective 

is to increase this margin. The ideal hyperplane is the one with the largest margin. 

 

Figure 3. 4: Graphical Representation of a Linear SVM showing Support Vector 

And Hyperplane (source https://www.javatpoint.com/) 

2. Non-Linear SVM: As shown above a straight line can be easily used to divide data that is 

structured linearly but this is not the case with data that is not structured linearly. These are 

illustrated in the figures below. 

 

https://www.javatpoint.com/
https://www.javatpoint.com/
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Figure 3. 5: Graphical Representation of a Non-Linear Dataset (source 

https://www.javatpoint.com/) 

 

The data points shown above cannot be linearly divided so one dimension needs to be added.  

One dimension must be added since the data points displayed above cannot be separated linear ly. 

We have employed two dimensions, x and y, for linear data; thus, we will add a third dimens ion, 

z, for non-linear data. It is calculable as: 

z=x2 +y 2 

With the addition of the third dimension Z the sample space is then represented in figure 3.5 

 

Figure 3. 6: Graphical Representation of a Non-Linear SVM in 3D (source 

https://www.javatpoint.com/) 

If we convert the image to 2D apace with z=1 the image would be represented as; 

https://www.javatpoint.com/
https://www.javatpoint.com/
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Figure 3. 7: Graphical Representation of a Non-Linear SVM in 2D (source 

https://www.javatpoint.com/) 

 

3.5.2 Support Vector Machines in Intrusion Detection 

The figure below represents data representation and classification of a Support Vector Machine 

 

Figure 3. 8: Data Representation and Classification of SVM in Intrus ion 

Detection 

https://www.javatpoint.com/
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1. Input Features: The SVM model are provided with set of input features derived from the 

dataset classes such as Source Port, Destination port etc. 

2. Data Representation: Each datapoints of the features of the dataset are represented by a 

point in a 3D space. 

3. Hyperplane: The objective of the SVM model is to find a hyperplane that separate the data 

into normal activities and malicious activities 

4. Support Vectors: Support vectors are the nearest vectors to the hyperplane and are 

important in defining the decision boundaries 

5. Kernel Trick: They are utilized by the SVMs for the transformation of the input space to a 

higher dimensional space. 

6. Training: The SVM algorithm changes the position of the hyperplane to increase the margin 

between the classes 

7. Classification: Once the program is trained, the SVM can now classify new unseen 

datapoints by examining the side of the hyperplane it falls whether it is malicious side or 

not. 

The SVM model was chosen for its ability to handle complex, high-dimensional data. The scikit-

learn library was employed for its implementation. 

In the evaluation phase of the intrusion detection system, the trained Support Vector Machine 

(SVM) model was employed. Utilizing the scikit-learn library, the predict_proba method was 

applied to obtain probability estimates for each class, yielding an array of dimens ions 

representing the probabilities of the samples belonging to respective classes. The predict method, 

also applied, directly provided the predicted class labels for the samples in the testing set. The 

dimensions of both outputs were communicated through print statements for a clearer 

understanding of the results.  
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3.5.3 Convolutional Neural Network for Intrusion Detection 

Convolutional neural network was first developed in 1980 by Kunihiko Fukushima. The first 

CNN introduced was necognitron, it is a hierarchical, multilayered ANN mostly used to 

recognize handwritten digits and another pattern recognition. 

Zoumana Kei (Nov. 2023) defined convolutional neural network (CNN) or ConvNet as a unique 

deep learning algorithm that is mainly applicable in the field that performs object recognit ion 

tasks such as image classification object detection and segmentation. Real life application of 

CNNs are autonomous vehicles and camera security systems. 

Convolutional Neural Network is a type of feed forward network that learns feature engineer ing 

by itself with the use of optimization techniques. A CNN consists of an input layer which is the 

dataset in this research the hidden layers and the output layer which is the predictions by the 

model in this paper. The hidden layers consist of one or more layers which performs 

convolutions. This usually includes a layer that performs a dot product of the convolution kernel 

with the layer’s input matrix. This product is the frobenius inner product and the activation 

function is called the ReLU (Zoumana Kei, 2023). 

 

Figure 3. 9: Convolutional Neural Network 

3.5.4 Components of a CNN 

CNN consists of four major layers. These layers support the CNNs to imitate the working 

principle of the human brain to recognize patterns and features in images. 

These layers are: 

1. The Convolutional layers 

2. The Rectified Linear Unit (ReLU) 
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3. The Pooling layers 

4. The Fully connected layers 

. 

Figure 3. 10: Architecture of CNN Applied to Intrusion Detection 

(https://towardsdatascience.com/) 

 

1. Convolutional layer: It is the first building block of a CNN which performs convolution 

mathematically. Convolution is when a sliding window function usually called kernel or filter 

is applied to a matrix of pixels that represent an image. 

In a convolutional layer, multiple kernels of equal size are applied and each kernel is used to 

identify unique patterns from the image. In other words, convolutional layers used small grids 

often called kernels or filters that acts like a magnifying glass that scans then images or dataset 

to identify unique patterns in the image or dataset such as shapes or numeric patterns or trends 

in numeric dataset. For instance, CNN can identify different patterns of an image or dataset by 

using different filters that specialized on different purposes such as one filter can be used to 

identify patterns and another would be used to identify anomalies (Zoumana Kei, 2023).  
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Figure 3.10 is an illustration of a 32X32 grayscale image of a handwritten digit with sample values. 

 

Figure 3. 11: Illustration of The Input Image and Its Pixel Representation 

(Source: Zoumana) 

 

The filter used in the convolution is a 3X3 matrix with the weights displayed on the grid. 

 

 

Figure 3. 12: Application of The Convolution Task Using A Stride of 1 with 3x3 

Kernel (Source: Zoumana, 2023) 
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The training process of the CNN determines the weight of the kernel in real life but in the case of the 

two matrices above, convolution is performed by applying the dot product. 

2. Rectified Linear Unit (ReLU): After convolutional operation occurs in the CNN the ReLU 

activation function is applied. This function assists the network identify non-linea r 

relationships in the images. This function assists the network in mitigating the vanishing 

gradient problems (Zoumana Kei, 2023). 

3. Pooling Layer: The goal of the pooling layer is to decrease the dimensions of the dataset 

by merging the output of neuron clusters into a single neuron. There are common types of 

pooling used, which are; Max pooling, Average Pooling, and sum pooling. Max pooling 

utilizes the maximum number of each local clusters of neurons in the feature map 

(Yamaguchi, 1990), sum pooling is the sum of all the values of the feature map while average 

pooling utilizes the average number of each local clusters of neurons in the feature map 

(Ciresan, 2012). Pooling layer is essential to mitigate overfitting (Zoumana .2023) 

 

Figure 3. 13: Application of Max pooling with a Stride of 2 Using 2X2 Filter 

(Source: Zoumana, 2023) 
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4. Fully Connected Layers: These are the last layer of the CNN generated by flattened output 

of the ReLU activation functions.  

3.5.5 Overfitting and Regularization in CNNs  

Overfitting is a common phenomenon in machine learning and deep learning models. This occurs 

when the model learns the training data far too good, this includes learning the noise and 

anomalies. As a result, the model performs well on training data but badly on new, unseen data. 

One popular deep learning model that is prone to overfitting is CNN. This is because to their 

exceptional proficiency in managing intricate data and their capacity to acquire intricate patterns 

on a vast scale (Zoumana, 2023). 

A graphical example of overfitting when the performance on the new unseen data unlike the 

training data is given below. 

 

Figure 3. 14: Graphical Representation of Overfitting and Underfitting (Source: 

Zoumana, 2023) 
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Regularization techniques are techniques to reduce overfitting in deep learning models. These 

techniques are: 

1. Dropout: This is the process of dropping random neurons during training. Which compels 

the leftover neurons to learn new features from the input data. 

2. Batch Normalization: This is the process of adjusting and scaling the activations to 

normalize the input layer. This activity also aids to speed up and stabilize the training 

process. 

3. Pooling Layers: Pooling layers are used to decrease the dimensions of an input image to 

represent the model in abstract form. This process reduces the probability of overfitting. 

4. Early Stopping: This is the consistence observation of the model’s performance and 

interrupting training when validation error does not improve. 

5. Noise Injection: This is the consistent addition of noise to the input data or the outputs of 

hidden layers in the process of training in other to make the model more robust to avoid 

weak generalization 

6. L1 and L2 Normalization: Based on the size of the weights, a penalty is added to the loss 

function using both L1 and L2. More precisely, L1 promotes sparing of the weights, which 

improves feature selection. L2, also known as weight decay, on the other hand, promotes 

small weights in order to limit their impact on the predictions. 

7. Data Augmentation: The size and variety of the dataset are artificially increased with the 

application of random transformations like editing the images. 

3.5.6  Evaluation 

The predictions was obtained from our Convolutional Neural Network (CNN) model for the 

testing set (X_test_reshaped). The predict method returned one-hot encoded predictions 

(y_pred_one_hot). To interpret these predictions, the class labels was extracted using np.argmax 

along the specified axis, resulting in y_pred_labels_cnn. To understand the diversity of classes 

in our training set (y_train), was communicated through print statements to display the unique 

values. Furthermore, the performance of the CNN model was evaluated using standard 

classification metrics. The accuracy was calculated using accuracy_score, while precision, recall, 

and F1 score were computed with precision_score, recall_score, and f1_score functions, 
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respectively. The use of 'weighted' in the averaging parameter indicates that we considered the 

class imbalance while computing these metrics, and the results displayed below.  

Table 3. 3: Models and Their Libraries Used 

MODEL LIBRARY 

SVM Scikit-learn 

CNN Keras 

 

Evaluation Metrics: Model performance will be assessed using a set of standard metrics to 

comprehensively evaluate the effectiveness of both the Support Vector Machine (SVM) and 

Convolutional Neural Network (CNN) models in detecting intrusions. The chosen evaluat ion 

metrics include: 

1. Accuracy: A measure of the overall correctness of the model predictions, calculated as the 

ratio of correctly predicted instances to the total instances. 

2. Precision: Precision quantifies the accuracy of positive predictions, indicating the ability of 

the models to correctly identify instances of intrusion. It is computed as the ratio of true positive 

predictions to the sum of true positives and false positives. 

3. Recall: Also known as sensitivity or true positive rate, recall measures the ability of the models 

to capture all instances of intrusion. It is calculated as the ratio of true positive predictions to the 

sum of true positives and false negatives. 

4. F1 Score: The F1 score is the harmonic mean of precision and recall, providing a balanced 

measure of a model's performance. It is particularly useful when there is an imbalance between 

classes. 

5. Area Under the Receiver Operating Characteristic Curve (AUC-ROC): The AUC-ROC 

metric assesses the trade-off between true positive rate and false positive rate across different 

classification thresholds. It provides insight into the models' ability to discriminate between 

intrusion and normal instances. 
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These metrics offer a comprehensive evaluation of both SVM and CNN models, considering 

aspects of accuracy, precision, recall, and the ability to handle imbalanced datasets. The AUC-

ROC further provides a graphical representation of the models' discriminative power. 

 Table 3. 4: Evaluation Metrics and Its Description 

Metric Description 

Accuracy 
Measures the overall correctness of the model 

predictions 

Precision Quantifies the accuracy of positive predictions 

Recall 
Measures the ability of the models to capture 
all instances of intrusion 

F1 Score 
Provides a balanced measure of a model's 

performance 

AUC-ROC 
Assesses the trade-off between true positive 
rate and false positive rate 

 

3.6 Confusion matrix 

A confusion matrix is a tool used to evaluate the performance of a classification model in 

machine learning. It is an N x N matrix that represents the accuracy of the model where N 

represents the number of classes. The confusion matrix is used to compare the actual target values 

with the predicted values which displays a holistic view of classification model performance and 

calculates the error. 

 

Figure 3. 15: Confusion Matrix 

 

The target variables contain two values which are positive and negative 

Where TP is the true positive 
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TN is the true negative 

FN is the false positive  

FP is the false negative 

 

3.7 Analysis of the Models 

The results obtained from both the Support Vector Machine (SVM) and Convolutional Neural 

Network (CNN) models will undergo a rigorous comparative analysis. This analysis aims to 

discern the strengths and limitations of each model, providing nuanced insights that contribute 

to refining and optimizing intrusion detection strategies. 

 Table 3. 5: Comparative Analysis Strategies of Models 

Aspect Comparison Method 

Strengths and limitations Rigorous analysis and visualizations 

Performance metrics Accurate comparison using tables or graphs 

Intrusion detection strategies 
Refined and optimized based on the 
comparative analysis 

 

Visualizations: Visualizations, such as bar plots and radar plots, will be utilized to present a 

clear and intuitive comparison of performance metrics between SVM and CNN. These graphical 

representations will enhance the interpretability of the results and facilitate a visual 

understanding of the models' relative strengths. 

Table 3. 6: Visualization Plots and their Description 

 

 Visualization Description 

Bar plots 
Show the performance of each model on 
different metrics 

Radar plots 
Provide a comprehensive overview of the 

relative strengths of each model 

 

Performance Analysis: In-depth performance analysis will be conducted, focusing on key 

aspects such as accuracy, precision, recall, F1 score, and AUC-ROC. The analysis will consider 

the context of intrusion detection, addressing challenges related to imbalanced datasets and 

varying degrees of model complexity. 
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The interpretation of results will be guided by a commitment to providing detailed and insightful 

observations. The goal is to offer a comprehensive understanding of how each model performs 

in the specific context of intrusion detection, allowing for informed decisions regarding their 

practical applicability and potential areas for improvement. 

Ethical Considerations: Ethical considerations will be addressed, emphasizing the responsible 

use of data, minimizing biases, and ensuring the privacy and security of individuals and 

organizations represented in the dataset. 

Data Privacy and Consent:The dataset used in this study, originating from internet traffic 

records, contains potentially sensitive information. To uphold ethical standards: 

Data Privacy: We ensured that any personally identifiable information (PII) or sensitive data 

within the dataset was anonymized and de-identified, adhering to data privacy regulations and 

guidelines. 

Informed Consent:  As the data was obtained from publicly available sources, we considered 

it as already anonymized and de-identified. Nonetheless, we acknowledge the importance of 

obtaining informed consent when working with potentially identifiable data. 

Fair and Unbiased Modeling: To mitigate potential biases and uphold fairness in our modeling: 

Feature Selection: We carefully considered the attributes used as input features in our models, 

excluding any that might introduce bias or unfairness. 

Transparency and Reproducibility: Transparency is vital in research to ensure the verifiabi lity 

and reproducibility of results: 

Open Data: We have made efforts to ensure that the dataset used in this study is publicly 

accessible and clearly referenced, promoting transparency and the ability for other researchers to 

replicate our work. 

Code Availability: The code used for data preprocessing, model development, and evaluation is 

made available to facilitate the replication of our experiments. 

Regulatory Compliance: We complied with all relevant local, national, and internationa l 

regulations and ethical standards governing research, including data protection laws and 

intellectual property rights. 
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Responsible Use of Research Outcomes: We recognize the potential impact of our research 

outcomes on various stakeholders. It is our commitment to use the results responsibly, promoting 

their constructive and ethical utilization. 

Ethical Reporting: In this research paper, we provide a comprehensive and transparent account 

of our methodologies, results, and interpretations. We acknowledge the importance of accurate 

and ethical reporting to prevent misinterpretation or misuse of the findings. 

Acknowledgment of Prior Work: We acknowledge and cite prior research and contributions 

related to our study. Proper attribution to the work of others is essential for ethical scholarship.  

In conclusion, this research was conducted with careful consideration of ethical princip les, 

emphasizing privacy, fairness, transparency, and responsible research conduct. We are committed 

to upholding these principles throughout the research process and beyond, ensuring the ethical 

integrity of our work. 
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CHAPTER IV 

 Simulations and Results 

This section presents the simulations, findings and outcomes of the research, focusing on the 

classification of network traffic actions using Support Vector Machine (SVM) models and CNN.  

Integrate domain knowledge into the models by incorporating features extracted from network 

protocols, application data, and host-based information to improve the models' understanding of 

network behavior. Evaluate the impact of different feature representations on the performance of 

the models, such as using statistical measures, time-frequency representations, or network flow 

features. The SVM and CNN models are implemented network traffic anomaly detection in order 

to identify and classify network intrusions, preventing unauthorized access and system breaches.  

4.1  Simulation and Results of Intrusion Detection System 

The table below presents a comprehensive descriptive analysis of key attributes in our dataset, 

including source port, destination port, NAT source port, NAT destination port, action, bytes, bytes 

sent, bytes received, packets, elapsed time (sec), pkts_sent, and pkts_received used in modelling.  

Table 4. 1: Descriptive Analysis of Network Traffic Attribute 

 

 

 

Statistics 

Source 

Port 

Destination 

Port 

NAT Source  

Port 

NAT Desti-

nation Port 

Action  Bytes 

 

N (Valid) 65532 65532 65532 65532 65532 65532 

Missing 0 0 0 0 0 0 

Mean  49391.97  10577.39 19282.97  2671.05 - 97123.95 

Median  53776.50 445.00 8820.50 53.00 - 168.00 

Mode 58638 53 0 0 70 70 

Std.Deviation 15255.713 18466.027 21970.690 9739.162 - 5618438.909 

Range 65534 65535 65535 65535 - 1269358955 

Minimum 
0 0 0 0 60 60 

Maximum 65534 65535 65535 65535 - 1269359015 

N (Valid) 65532 65532 65532 65532 65532 65532 



 

  

48  

Table 4.1(continued) 

 

Statistics 

Source 

Port 

Destination 

Port 

NAT 

Source 

Port 

NAT 

Destination 

Port Action Bytes 

Missing 0 0 0 0 0 0 

Mean 49391.97 10577.39 19282.97 2671.05 - 97123.95 

Median 53776.50 445.00 8820.50 53.00 - 168.00 

Mode 58638 53 0 0 70 70 

Std. 

Deviation 15255.713 18466.027 21970.690 9739.162 - 5618438.909 

Range 65534 65535 65535 65535 - 1269358955 

Minimum 0 0 0 0 60 60 

Maximum 65534 65535 65535 65535 - 1269359015 

 

Table 4.1(continued) 

 

 

Bytes Received Packets Elapsed Time (sec) pkts_sent pkts_received 

65532 65532 65532 65532 65532 

0 0 0 0 0 

74738.15 102.87 65.83 41.40 61.47 

79.00 2.00 15.00 1.00 1.00 

1 0 1 0 1 

2463207.712 5133.002 302.462 3218.871 2223.332 

320881795 1036115 10824 747519 327208 

1 0 1 0 1 

320881795 1036116 10824 747520 327208 
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This table above provides insights into the central tendencies, variability, and distributions of the 

analyzed attributes, forming a crucial basis for subsequent data interpretation and modeling. 

Table 4. 2: SVM and CNN Model Evaluations 

 SVM CNN 

Metric Score Score 

Accuracy 0.7395 0.9906 

Precision 0.6200 0.9900 

Recall 0.7395 0.9906 

F1-Score 0.6600 0.9902 

ROC AUC 0.9243 0.8774 

 

The Support Vector Machine (SVM) model demonstrates a commendable performance in classifying 

instances within the Intrusion Detection System dataset. It achieves a balanced precision and recall, 

resulting in a solid F1-score. The high ROC AUC score signifies the model's excellent discrimina tory 

ability between positive and negative instances.  

instances within the dataset. It achieves high scores in accuracy, precision, recall, and F1-score, 

highlighting its robustness in identifying instances accurately. The ROC AUC score of 0.8774 

indicates good discrimination ability, although slightly lower than the SVM model. The 

accompanying ROC curve further visualizes the trade-off between the true positive rate and false 

positive rate.  

4.2 Training and Testing Results of the Models   

Learning curve is the graphical representation of a model’s performance with time, the learning curve 

in the CNN model shows the relationship between accuracy and the changes in epochs. The learning 

curve in the SVM model below displays the improvement in the model performance. 
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Figure 4. 1: SVM model learning curve 
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Figure 4. 2: Fragment of CNN model learning curve  

 

Loss Function: Loss function also known as error function is an important component in machine 

learning that measures a machine learning model’s predicted output and actual value Loss function 

is a function of the learning system that is required to be reduced. RMSE is a typical example of a 

loss function in the case of regression problems. It is a performance metric used to measure the 

accuracy of the model’s prediction. Therefore, the lower the RMSE the better the performance of the 

model. 
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Figure 4. 3: Training of CNN 

 

For 200 training epochs the RMSE value of CNN model for training data was obtained as 0.833861, 
for test data- 0.812646 

 

4.3 Confusion matrix for SVM and CNN  

The figure below displays the confusion matrix of the SVM and CNN model within the python 

google colab environment. Confusion matrix table displayed below is used to evaluate 

theperformance of CNNs and SVMs. 

 

 

Figure 4. 4: SVM and CNN Confusion Matrix 
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4.4 Precision-Recall Curve for CNN and SVM  

The figure 4.2 and figure 4.3 illustrates the precision-recall curve of the SVM and CNN model. 

Precision recall curve is a graphical representation that shows the relationship between precision and 

recall at different classifications threshold. It is commonly used in ML and intrusion detection when 

particularly working with imbalanced dataset. 

 

 

Figure 4. 5: SVM Precision Recall Curve  
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Figure 4. 6:  CNN Precision Recall Curve  

4.5 The CNN and SVM ROC Curve 

The figure below displays the CNN ROC curve generated from the program 

 

Figure 4. 7: CNN ROC Curve 
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Figure 4. 8: ROC-AUC Curve for SVM 

Table 4. 3: CNN Confusion Matrix Table 

Predicted Positive Predicted Negative 

Actual Positive 991 20 

Actual Negative 95 200 

 

Table 4.4 above is the CNN confusion matrix shows CNN model excels in correctly identifying both 

positive and negative instances, as evident from the high number of true positives and true negatives 

Table 4. 4: SVM Cross Validation Results 

Fold Accuracy Precision Recall F1-score ROC AUC 

1 0.7454 0.6215 0.7395 0.6758 0.9253 

2 0.7388 0.6207 0.7395 0.6741 0.9249 

3 0.7352 0.6172 0.7395 0.6727 0.9241 

4 0.7405 0.6200 0.7395 0.6744 0.9243 

5 0.7371 0.6188 0.7395 0.6733 0.9245 

Average  0.7392  0.6201 0.7395  0.6742  0.9245 
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These results provide a comprehensive overview of the SVM model's performance across different 

folds in the cross-validation process, showcasing metrics such as accuracy, precision, recall, F1-score, 

and ROC AUC. The average values offer a summary of the overall performance. 

4.6 Real-Time Representation of Intrusion Detection 

This is a visual representation of the CNN model and the SVM model detects intrusion in real time 

by taking inputs directly from the dataset. 

The table 4.6 shows the result of the prediction and its accuracy when the ground truth label is 

“Allow” 

From a section of the dataset where “Drop” is the ground truth label we inputted the values into our 

real time detection model, the result in table 4.7 shows that the SVM model predicted Allow which 

was inaccurate and the CNN predicted drop which is 100% accurate. 

Similarly, we input datapoints of the dataset with deny and reset-both as ground truth label and the 

results is shown in table 4.8 and table 4.9. 

Table 4. 5: Visual Representation of the User Inputs on the Classification Features In 

Tabular Format with Truth Label “Allow”. 

 

 

 

 

 

  

 

 

 

 

Source Port 51737 

Destination Port 53 

NAT Source Port 3505 

NAT Destination Port 53 

Bytes 231 

Bytes Sent 78 

Received, 153 

Packet 2 

Elapsed Time(sec) 30 

pkts_sent 1 

pkts_received 1 

Action/Real Time Prediction of the 

Models 

 

SVM- ALLOW 

CNN- ALLOW 

SVM ACCURACY 100% 

CNN ACCURACY 100% 
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Table 4. 6: Visual Representation of the User Inputs on the Classification Features In 

Tabular Format with Truth Label – “Drop 

Source Port 50937 

Destination Port 445 

NAT Source Port 0 

NAT Destination Port 0 

Bytes 70 

Bytes Sent 70 

Received, 0 

Packet 1 

Elapsed Time(sec) 0 

pkts_sent 1 

pkts_received 0 

Action/Real Time Prediction of the Models 

 

SVM - ALLOW 

CNN - DROP 

SVM ACCURACY 0% 

CNN ACCURACY 100% 

 

Table 4. 7: Visual Representation of the User Inputs on the Classification Features in 

Tabular Format with Truth Label “Deny” 

Source Port 33314 

Destination Port 44847 

NAT Source Port 0 

NAT Destination Port 0 

Bytes 62 

Bytes Sent 62 

Received, 0 

Packet 1 

Elapsed Time(sec) 0 

pkts_sent 1 

pkts_received 0 

Action/Real Time Prediction of the Models 

 

SVM - ALLOW 

CNN- DENY 

SVM ACCURACY 0% 

CNN ACCURACY 100% 
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Table 4. 8: Visual Representation of the User Inputs on the Classification Features In 

Tabular Format with Truth Label: “Reset-Both” 

 

Source Port 11317 

Destination Port 61248 

NAT Source Port 0 

NAT Destination Port 0 

Bytes 143 

Bytes Sent 143 

Received, 0 

Packet 1 

Elapsed Time(sec) 0 

pkts_sent 1 

pkts_received 0 

Action/Real Time Prediction of the Models 

 

SVM - ALLOW 

CNN - DENY 

SVM ACCURACY 0% 

CNN ACCURACY 0% 

The SVM Model predicted “Allow” while the CNN model predicted deny which were both 
inaccurate from the datasets. 

 

4.7 Comparative analysis for both model 

Bar Plot: It is a very means of comparing the performance metrics of the models using bar graphs. 

Figure 4.9 depicts comparison of the SVM and CNN models used for intrusion detection 

The bar plot in figure 4.9 provides a comprehensive comparison of the Support Vector Machine 

(SVM) and Convolutional Neural Network (CNN) models based on various evaluation metrics. Let's 

delve into the key observations: 

Accuracy: The CNN model significantly outperforms the SVM model in terms of accuracy. With an 

accuracy of 99.06%, the CNN model demonstrates a remarkable ability to correctly classify instances, 

surpassing the SVM model's accuracy of 73.95%. 



 

  

59  

 

Figure 4. 9: Bar Plot Comparing SVM and CNN Evaluation Metrics 

Precision, Recall, and F1-score: Across precision, recall, and F1-score, the CNN model consistent ly 

exhibits higher values compared to the SVM model. This signifies that the CNN model not only 

accurately identifies positive instances (precision) but also captures a larger proportion of actual 

positive instances (recall). The balanced F1-score further emphasizes the CNN model's robust 

performance in both precision and recall. 

ROC AUC: Interestingly, the SVM model outperforms the CNN model in terms of ROC AUC. This 

metric measures the discriminatory ability of the models in distinguishing between positive and 

negative instances. The SVM model achieves a ROC AUC of 92.45%, indicating a slightly better 

ability in this specific aspect compared to the CNN model's ROC AUC of 87.74%. 

Radial Plot: Radial plot is a graphical representation of the performance metrics used. It is a quick 

visual representation of the accuracy, precision, recall and F1 score of both models. 
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Figure 4. 10: Radial Plot of the SVM and CNN model 

In summary, the CNN model emerges as the superior performer across key metrics such as accuracy, 

precision, recall, and F1-score. However, the SVM model showcases a stronger discriminatory ability 

in terms of ROC AUC. The choice between these models may depend on specific priorities, such as 

maximizing overall accuracy or optimizing for a particular trade-off between true positives and false 

positives. 

4.8 Analysis and Discussion 

Data Quality: The dataset used in this study was obtained from publicly available sources. Its quality 

and completeness rely on the original data collection methods, and it may contain inaccuracies or 

inconsistencies inherent to real-world data. 

Dataset Size: The dataset consists of a substantial number of instances; however, a larger dataset 

could potentially enhance the robustness of the models and their generalization capabilities.  

Generalization: The models developed and evaluated in this study are specific to the dataset and its 

characteristics. Generalizing the findings to different network environments or scenarios may require 

further investigation and validation. 
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Model Complexity: Simplicity vs. Complexity: The chosen SVM and CNN models have their 

respective complexities in terms of architecture and hyper-parameters. Striking the right balance 

between model complexity and performance remains a challenge, and alternative model architectures 

could yield different results. 

Model Interpretability: Both the SVM and CNN models, being complex machine learning 

algorithms, might lack interpretability. Understanding the rationale behind specific predictions or 

decisions could be challenging, especially in critical applications where interpretability is paramount. 

Computational Constraints: The availability of computational resources, such as processing power 

and memory, may impose limitations on the scale and complexity of experiments. This could impact 

the optimization and training of models. 

External Factors: Dynamic Network Environments: Network traffic patterns can evolve over time 

due to various external factors, making it challenging to maintain model accuracy in dynamic 

environments. 

Future Research: Unexplored Approaches: This study focused on SVM and CNN models for 

classification. Future research could explore alternative machine learning techniques or hybrid 

models to further enhance classification accuracy. 

Replicability: Dataset Variability: The results obtained in this study may vary with different datasets 

or variations of the same dataset. Replicating the research on other datasets would provide a broader 

perspective on the model performance. 

In conclusion, this study offers valuable insights into the classification of network traffic actions. 

However, the outlined limitations underscore the need for caution in interpreting the results and 

emphasize potential directions for future research and improvement. 

The results of this study demonstrate that both SVM and CNN models exhibit strong 

performance in classifying network traffic as normal or anomalous. The SVM model achieves 

an accuracy of 0.7395, precision of 0.6200, recall of 0.7395, F1-score of 0.6600, and ROC AUC 

of 0.9243. The CNN model surpasses the SVM model in accuracy, precision, recall, F1-score, 

and ROC AUC, achieving 0.9906, 0.9900, 0.9906, 0.9902, and 0.8774, respectively. 

The superior performance of the CNN model can be attributed to its ability to capture patterns 

and features in the data that are not readily apparent to traditional machine learning algorithms. 
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The CNN model's architecture, with its convolutional layers and pooling layers, allows it to learn 

hierarchical representations of the data, enabling it to identify subtle patterns that are indicat ive 

of anomalous network behavior. 

Moreover, considering the literature review conducted earlier, the incorporation of deep learning 

models, such as CNNs, in intrusion detection systems aligns with the trend observed in recent 

research. Deep learning models have demonstrated a capacity to automatically extract relevant 

features from complex data, making them well-suited for anomaly detection tasks. 

The SVM model, on the other hand, relies on a linear decision boundary to separate positive and 

negative instances. This approach may be less effective in capturing complex patterns in the data, 

but it can provide a more interpretable model. 

The cross-validation results further support the conclusion that the CNN model is more robust 

and generalizable than the SVM model. The average accuracy and F1-score for the CNN model 

across all folds are higher than those of the SVM model, indicating that the CNN model is less 

susceptible to overfitting. 
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CHAPTER V 

CONCLUSION 

In conclusion, both SVM and CNN models can be effectively employed for network traffic 

anomaly detection. The CNN model exhibits superior performance in terms of accuracy, 

precision, recall, F1-score, and ROC AUC, making it a better choice for scenarios where high 

detection rates are crucial. However, for applications where interpretability is critical, the SVM 

model may be a better fit. 

Building on the literature review insights, the adoption of advanced machine learning and deep 

learning techniques for intrusion detection reflects the evolving landscape of cybersecurity. The 

increasing sophistication of cyber threats necessitates the exploration and implementation of 

cutting-edge models to enhance detection capabilities. 

The choice between the SVM and CNN models will depend on the specific requirements of the 

application. For scenarios where, high detection rates are paramount, the CNN model is the 

preferred choice. However, for applications where interpretability is critical, the SVM model 

may offer advantages. 

In addition to the performance and interpretability considerations, the computational resources 

required for training and deploying the models should also be factored into the decision. The 

CNN model typically requires more computational resources than the SVM model, especially 

for complex network datasets. 

Overall, the study provides valuable insights into the effectiveness of SVM and CNN models for 

network traffic anomaly detection. The findings can guide the selection of appropriate models 

for specific applications and inform future research in the area of anomaly detection, aligning 

with the dynamic nature of cybersecurity challenges. 

Recommendation for Future Work 

Based on the findings of the study, we propose the following directions for further research on 

SVM and CNN models for network traffic anomaly detection: 

Exploration of More Advanced CNN Architectures: Investigate the use of more sophisticated 

CNN architectures, such as recurrent neural networks (RNNs) or convolutional long short-term 
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memory (LSTM) networks, to further enhance the ability of the models to capture complex 

patterns in network  
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APPENDICES 

Appendix 1 

IMPORTING THE DEPENDENCIES 

!pip install numpy pandas scikit-learn matplotlib tensorflow 

!pip install seaborn 

!pip install joblib 

!pip install pdfkit 

!pip install tabulate 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.utils import to_categorical 

from keras.optimizers import Adam 

from sklearn.preprocessing import label_binarize 

%matplotlib inline 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras import layers 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 
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from sklearn.preprocessing import StandardScaler, LabelEncoder 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.callbacks import EarlyStopping 

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, 

recall_score, f1_score 

import seaborn as sns 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, 

roc_auc_score 

from sklearn.metrics import confusion_matrix 

from sklearn.preprocessing import label_binarize 

from sklearn.metrics import roc_curve 

from sklearn.metrics import confusion_matrix 

import joblib 

import os 

from sklearn.multiclass import OneVsRestClassifier 

from sklearn.calibration import CalibratedClassifierCV 

from sklearn.metrics import roc_auc_score 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder, StandardScaler 

from sklearn.svm import SVC 

from sklearn.neural_network import MLPClassifier 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, 

roc_curve, roc_auc_score, confusion_matrix 
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from sklearn.metrics import roc_curve, roc_auc_score 

from sklearn.metrics import precision_recall_curve, roc_curve, roc_auc_score 

from sklearn.preprocessing import LabelBinarizer 

from sklearn.metrics import precision_recall_curve, average_precision_score 

from sklearn.metrics import roc_auc_score 

import tkinter as tk 

from tkinter import simpledialog 

import pdfkit 

from keras.models import load_model 

import numpy as np 

import joblib 

from sklearn.metrics import precision_recall_curve, auc 

from sklearn.metrics import precision_recall_curve, auc 

from sklearn.metrics import roc_curve, auc 

DATA COLLECTION AND PREPROCESSING 

#LOAD THE DATASET 

#loading the csv file into a panda dataframe 

log2_data = pd.read_csv('/content/drive/MyDrive/FirewallData.csv') 

# first 5 rows of the dataframe 

log2_data.head() 

# number of rows & columns 

log2_data.shape 

log2_data.describe() 
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SEPARATING FEATURES AND TARGET 

# Encode the target labels 

label_encoder = LabelEncoder() 

log2_data['Action_encoded'] = label_encoder.fit_transform(log2_data['Action']) 

# Assuming 'Action' is your target column 

# Features and labels 

X = log2_data.drop(['Action', 'Action_encoded'], axis=1) 

y = log2_data['Action_encoded'] 

print(X) 

print(y) 

sns.countplot(x='Action', data=log2_data) 

plt.xlabel('Action')  # Optional: Set the x-axis label 

plt.ylabel('Count')   # Optional: Set the y-axis label 

plt.title('Count of Actions')  # Optional: Set the plot title 

plt.show() 

SPLITTING THE DATASETS INTO TRAINING DATA AND TESTING DATA 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, 

random_state=30, stratify=y) 

# Split the training set into training and validation sets 

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, 

random_state=42) 

# Perform one-hot encoding on the labels 

y_train_one_hot = to_categorical(y_train) 

y_test_one_hot = to_categorical(y_test) 
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# Assuming y_test_bin is your true labels (one-hot encoded) for CNN 

y_test_bin = to_categorical(log2_data['Action_encoded']) 

ENCODE THE TARGET LABELS 

print(X.shape, X_train.shape, X_test.shape) 

DATA STANDARDIZATION 

scaler = StandardScaler() 

X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

scaler = StandardScaler() 

standardized_data = scaler.fit_transform(X) 

print(standardized_data) 

X = standardized_data 

print(X) 

print(y) 

BUILD THE SVM MODEL 

# Build and train SVM model 

svm_model = SVC(probability=True) 

calibrated_model = CalibratedClassifierCV(svm_model, method='sigmoid', 

cv='prefit') 

FIT THE SVM MODEL 

# Fit the SVM model 

svm_model.fit(X_train, y_train) 

# Fit the calibrated model 

calibrated_model.fit(X_train, y_train) 

CALIBRATE THE PROBABILITIES OF THE SVM MODEL 

print(X_test.shape, y_test_bin.shape) 
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EVALUATE MODELS ON THE TEST DATA 

# Predictions using predict_proba 

svm_probabilities = svm_model.predict_proba(X_test) 

print("SVM Probabilities shape:", svm_probabilities.shape) 

# Predictions using predict 

svm_predicted_labels = svm_model.predict(X_test) 

print("SVM Predicted Labels shape:", svm_predicted_labels.shape) 

# Calculate accuracy 

svm_accuracy = accuracy_score(y_test, svm_predicted_labels) 

print("SVM Accuracy:", svm_accuracy) 

EVALUATE THE SVM ON THE TEST DATA 

# Calculate evaluation metrics 

svm_accuracy = accuracy_score(y_test, svm_predicted_labels) 

svm_precision = precision_score(y_test, svm_predicted_labels, average='weighted') 

svm_recall = recall_score(y_test, svm_predicted_labels, average='weighted') 

svm_f1_score = f1_score(y_test, svm_predicted_labels, average='weighted') 

# Calculate ROC AUC for multi-class using the one-vs-rest approach 

svm_roc_auc = roc_auc_score(y_test, svm_probabilities, multi_class='ovr') 

PRINT EVALUATION METRICS FOR THE SVM  

# Print evaluation metrics for the SVM model 

print("SVM Model Evaluation:") 

print("Accuracy:", svm_accuracy) 

print("Precision:", svm_precision) 

print("Recall:", svm_recall) 



 

  

77  

print("F1-score:", svm_f1_score) 

print("ROC AUC:", svm_roc_auc) 

# Calculate the decision scores for the ROC curve (using decision_function) 

svm_decision_scores = svm_model.decision_function(X_test_scaled) 

PLOT THE CONFUSION MATRIX FOR THE SVM MODEL 

# Get unique class labels 

labels = log2_data['Action_encoded'].unique() 

# Confusion matrix for SVM 

cm_svm = confusion_matrix(y_test, svm_predicted_labels) 

plt.figure(figsize=(8, 6)) 

sns.heatmap(cm_svm, annot=True, fmt='g', cmap='Blues', xticklabels=labe ls, 

yticklabels=labels) 

plt.title('Confusion Matrix - SVM') 

plt.xlabel('Predicted') 

plt.ylabel('Actual') 

plt.show() 

from sklearn.model_selection import learning_curve 

SAVING THE SVM MODEL 

svm_model_path = '/content/drive/MyDrive/log2.csv' 

joblib.dump(svm_model, svm_model_path) 

PRECISION RECALL CURVE FOR SVM  

# Assuming svm_probabilities are the predicted probabilities for each class 

precision_svm, recall_svm, _ = precision_recall_curve(y_test_one_hot.rave l(), 

svm_probabilities.ravel()) 

auc_svm = auc(recall_svm, precision_svm) 
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plt.figure(figsize=(8, 6)) 

plt.plot(recall_svm, precision_svm, color='darkorange', lw=2, label=f'SVM (AUC = 

{auc_svm:.2f})') 

plt.xlabel('Recall') 

plt.ylabel('Precision') 

plt.title('Precision-Recall Curve - SVM') 

plt.legend(loc='lower left') 

plt.show() 

n_classes = 4 

# Assuming y_test is your true labels, and y_score is the decision function output of 

your SVM 

# If you have a multi-class problem, make sure to binarize the labels 

y_test_bin = label_binarize(y_test, classes=[0, 1, 2, 3])  # Adjust classes based on 

your problem 

# Assuming svm_predicted_scores is the decision function output of your SVM 

svm_predicted_scores = svm_model.decision_function(X_test) 

# Compute ROC curve and ROC area for each class 

fpr = dict() 

tpr = dict() 

roc_auc = dict() 

# For each class (assuming a multi-class problem) 

for i in range(n_classes): 

    fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], svm_predicted_scores[:, i]) 

    roc_auc[i] = auc(fpr[i], tpr[i]) 
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# Compute micro-average ROC curve and ROC area 

fpr["micro"], tpr["micro"], _ = roc_curve(y_test_bin.rave l(), 

svm_predicted_scores.ravel()) 

roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) 

# Plot the ROC curve 

plt.figure(figsize=(10, 6)) 

# Plot individual class curves 

for i in range(n_classes): 

    plt.plot(fpr[i], tpr[i], label=f'Class {i} (AUC = {roc_auc[i]:.2f})') 

# Plot micro-average curve 

plt.plot(fpr["micro"], tpr["micro"], label=f'Micro-average (AUC = 

{roc_auc["micro"]:.2f})', linestyle='--', linewidth=2) 

 

 

# Plot random guessing line 

plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random Guessing') 

# Customize the plot 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('ROC-AUC Curve for SVM') 

plt.legend(loc='lower right') 

plt.grid(True) 

plt.show() 
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BUILDING THE CNN MODEL 

from keras import layers, models 

# Assuming you have reshaped your input data for the CNN model 

X_train_reshaped = np.array(X_train).reshape(X_train.shape[0], X_train.shape[1], 1) 

X_val_reshaped = np.array(X_val).reshape(X_val.shape[0], X_val.shape[1], 1) 

X_test_reshaped = np.array(X_test).reshape(X_test.shape[0], X_test.shape[1], 1) 

# Convert labels to one-hot encoding 

from keras.utils import to_categorical 

y_train_one_hot = to_categorical(y_train) 

y_val_one_hot = to_categorical(y_val) 

y_test_one_hot = to_categorical(y_test) 

 

# Build your CNN model 

model = Sequential() 

model.add(Conv1D(filters=32, kernel_size=3, activation='ReLU', 

input_shape=(X_train.shape[1], 1))) 

model.add(MaxPooling1D(pool_size=2)) 

model.add(Flatten()) 

model.add(Dense(128, activation='ReLU')) 

model.add(Dense(y_train_one_hot.shape[1], activation='softmax')) 

TRAIN THE CNN MODEL 

# Train the CNN model 

model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 
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model.fit(X_train_reshaped, y_train_one_hot, epochs=10, batch_size=64, 

validation_data=(X_test_reshaped, y_test_one_hot)) 

# Train the CNN model with validation data 

history = model.fit(X_train_reshaped, y_train_one_hot, epochs=500, batch_size=64, 

validation_data=(X_val_reshaped, y_val_one_hot)) 

# Plot Training and Validation Accuracy 

plt.figure(figsize=(12, 5)) 

plt.plot(history.history['accuracy'], label='Training Accuracy') 

plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 

plt.title('CNN Model Learning Curve - Accuracy') 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.legend() 

plt.show() 

# Plot Training and Validation Loss 

plt.figure(figsize=(12, 5)) 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.title('CNN Model Learning Curve - Loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend() 

plt.show() 

from sklearn.model_selection import GridSearchCV 
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# Assuming X_train_scaled and y_train are your training data 

# Set up the parameter grid for GridSearchCV 

param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100], 

              'gamma': [0.001, 0.01, 0.1, 1, 10, 100], 

              'kernel': ['linear', 'rbf', 'poly', 'sigmoid']} 

# Create GridSearchCV 

grid_search = GridSearchCV(svm_model, param_grid, cv=5, scoring='accuracy', 

verbose=1, n_jobs=-1) 

# Fit the model 

grid_search.fit(X_train_scaled, y_train) 

 

# Get the results 

results = grid_search.cv_results_ 

best_params = grid_search.best_params_ 

# Plot the performance 

plt.figure(figsize=(10, 6)) 

plt.plot(param_grid['C'], results['mean_test_score'], marker='o') 

plt.xscale('log') 

plt.xlabel('C (Regularization parameter)') 

plt.ylabel('Mean cross-validated accuracy') 

plt.title('SVM Performance with different C values') 

plt.show() 

print(X_test.shape, y_test_bin.shape) 
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# Get predictions from the CNN model 

y_pred_one_hot = model.predict(X_test_reshaped) 

y_pred_labels_cnn = np.argmax(y_pred_one_hot, axis=1) 

# Check unique values in y_train 

print("Unique values in y_train:", np.unique(y_train)) 

# Accuracy 

cnn_accuracy = accuracy_score(y_test, y_pred_labels_cnn) 

print("\nCNN Accuracy:", cnn_accuracy) 

# Precision, Recall, F1 Score 

cnn_precision = precision_score(y_test, y_pred_labels_cnn, average='weighted') 

cnn_recall = recall_score(y_test, y_pred_labels_cnn, average='weighted') 

cnn_f1 = f1_score(y_test, y_pred_labels_cnn, average='weighted') 

cnn_precision = precision_score(y_test, y_pred_labels_cnn, average='weighted') 

print("CNN Precision:", cnn_precision) 

# Calculate CNN recall 

cnn_recall = recall_score(y_test, y_pred_labels_cnn, average='weighted') 

print("CNN Recall:", cnn_recall) 

# Calculate CNN F1 score 

cnn_f1 = f1_score(y_test, y_pred_labels_cnn, average='weighted') 

print("CNN F1 Score:", cnn_f1) 

# Assuming y_test is your true labels, and y_pred_one_hot is the predicted 

probabilities from your CNN 

# If you have a multi-class problem, make sure to binarize the labels 
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y_test_bin = label_binarize(y_test, classes=[0, 1, 2, 3])  # Adjust classes based on 

your problem 

# Assuming y_pred_one_hot is the predicted probabilities from your CNN  

y_pred_one_hot = cnn_model.predict(X_test_reshaped) 

# Compute ROC curve and ROC area for each class 

fpr = dict() 

tpr = dict() 

roc_auc = dict() 

# For each class (assuming a multi-class problem) 

for i in range(n_classes): 

    fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_pred_one_hot[:, i]) 

    roc_auc[i] = auc(fpr[i], tpr[i]) 

# Compute micro-average ROC curve and ROC area 

fpr["micro"], tpr["micro"], _ = roc_curve(y_test_bin.ravel(), y_pred_one_hot.ravel()) 

roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) 

# Plot the ROC curve 

plt.figure(figsize=(10, 6)) 

# Plot individual class curves 

for i in range(n_classes): 

    plt.plot(fpr[i], tpr[i], label=f'Class {i} (AUC = {roc_auc[i]:.2f})') 

# Plot micro-average curve 

plt.plot(fpr["micro"], tpr["micro"], label=f'Micro-average (AUC = 

{roc_auc["micro"]:.2f})', linestyle='--', linewidth=2) 

# Plot random guessing line 
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plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random Guessing') 

# Customize the plot 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('ROC-AUC Curve for CNN') 

plt.legend(loc='lower right') 

plt.grid(True) 

plt.show() 

 

ROC CURVE OF CNN 

# Assuming y_pred_probs is the predicted probabilities for each class 

# Assuming you have predictions from your model stored in y_pred_probs 

y_pred_probs = model.predict(X_test_reshaped) 

fpr_cnn, tpr_cnn, _ = roc_curve(y_test_one_hot.ravel(), y_pred_probs.ravel()) 

roc_auc_cnn = auc(fpr_cnn, tpr_cnn) 

plt.figure(figsize=(8, 6)) 

plt.plot(fpr_cnn, tpr_cnn, color='darkblue', lw=2, label=f'CNN (AUC = 

{roc_auc_cnn:.2f})') 

plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')  # Random classifier 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('Receiver Operating Characteristic (ROC) Curve - CNN') 

plt.legend(loc='lower right') 

plt.show() 
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PRECISION RECALL CURVE CNN 

# Assuming X_train.shape[1] is the number of features (12 in your case) 

input_shape = (X_train.shape[1], 1) 

# Assuming y_test_one_hot is the true labels in one-hot encoded format 

precision_cnn, recall_cnn, _ = precision_recall_curve(y_test_one_hot.rave l(), 

y_pred_probs.ravel()) 

auc_cnn = auc(recall_cnn, precision_cnn) 

plt.figure(figsize=(8, 6)) 

plt.plot(recall_cnn, precision_cnn, color='darkorange', lw=2, label=f'CNN (AUC = 

{auc_cnn:.2f})') 

plt.xlabel('Recall') 

plt.ylabel('Precision') 

plt.title('Precision-Recall Curve - CNN') 

plt.legend(loc='upper right') 

plt.show() 

# Assuming y_test is your true labels, and y_pred_one_hot is the predicted 

probabilities from your CNN 

# If you have a multi-class problem, make sure to binarize the labels 

y_test_bin = label_binarize(y_test, classes=[0, 1, 2, 3])  # Adjust classes based on 

your problem 

# Assuming y_pred_one_hot is the predicted probabilities from your CNN  

y_pred_one_hot = cnn_model.predict(X_test_reshaped) 

# Compute ROC curve and ROC area for each class 

fpr = dict() 

tpr = dict() 
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roc_auc = dict() 

# For each class (assuming a multi-class problem) 

for i in range(n_classes): 

    fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_pred_one_hot[:, i]) 

    roc_auc[i] = auc(fpr[i], tpr[i]) 

# Compute micro-average ROC curve and ROC area 

fpr["micro"], tpr["micro"], _ = roc_curve(y_test_bin.ravel(), y_pred_one_hot.ravel()) 

roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) 

# Plot the ROC curve 

plt.figure(figsize=(10, 6)) 

 

# Plot individual class curves 

for i in range(n_classes): 

    plt.plot(fpr[i], tpr[i], label=f'Class {i} (AUC = {roc_auc[i]:.2f})') 

# Plot micro-average curve 

plt.plot(fpr["micro"], tpr["micro"], label=f'Micro-average (AUC = 

{roc_auc["micro"]:.2f})', linestyle='--', linewidth=2) 

# Plot random guessing line 

plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random Guessing') 

# Customize the plot 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('ROC-AUC Curve for CNN') 
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plt.legend(loc='lower right') 

plt.grid(True) 

plt.show() 

# Save the CNN model 

model.save('/content/drive/MyDrive/cnn_model.h5') 

# Learning curve for SVM 

train_sizes, train_scores_svm, test_scores_svm = learning_curve( 

    svm_model, X, y, cv=5, scoring='accuracy', n_jobs=-1) 

from sklearn.model_selection import learning_curve 

# Learning curve for SVM 

train_sizes, train_scores_svm, test_scores_svm = learning_curve( 

svm_model, X, y, cv=5, scoring='accuracy', n_jobs=-1) 

# Calculate mean and standard deviation of training and test scores 

train_mean_svm = np.mean(train_scores_svm, axis=1) 

train_std_svm = np.std(train_scores_svm, axis=1) 

test_mean_svm = np.mean(test_scores_svm, axis=1) 

test_std_svm = np.std(test_scores_svm, axis=1) 

# Plot learning curve for SVM 

plt.figure(figsize=(10, 6)) 

plt.plot(train_sizes, train_mean_svm, label='Training Score', color='blue') 

plt.fill_between(train_sizes, train_mean_svm - train_std_svm, train_mean_svm + 

train_std_svm, color='blue', alpha=0.2) 

plt.plot(train_sizes, test_mean_svm, label='Cross-Validation Score', color='green') 
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plt.fill_between(train_sizes, test_mean_svm - test_std_svm, test_mean_svm + 

test_std_svm, color='green', alpha=0.2) 

plt.title('SVM Model Learning Curve') 

plt.xlabel('Training Size') 

plt.ylabel('Accuracy Score') 

plt.legend() 

plt.show() 

# Number of classes 

num_classes = 4 

# Calculate mean and standard deviation of training and test scores 

train_mean_svm = np.mean(train_scores_svm, axis=1) 

train_std_svm = np.std(train_scores_svm, axis=1) 

test_mean_svm = np.mean(test_scores_svm, axis=1) 

test_std_svm = np.std(test_scores_svm, axis=1) 

# Plot learning curve for SVM 

plt.figure(figsize=(10, 6)) 

plt.plot(train_sizes, train_mean_svm, label='Training Score', color='blue') 

plt.fill_between(train_sizes, train_mean_svm - train_std_svm, train_mean_svm + 

train_std_svm, color='blue', alpha=0.2) 

plt.plot(train_sizes, test_mean_svm, label='Cross-Validation Score', color='green') 

plt.fill_between(train_sizes, test_mean_svm - test_std_svm, test_mean_svm + 

test_std_svm, color='green', alpha=0.2) 

plt.title('SVM Model Learning Curve') 

plt.xlabel('Training Size') 
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plt.ylabel('Accuracy Score') 

plt.legend() 

plt.show() 

# Number of classes 

num_classes = 4 

# Convert your y_train and y_test to one-hot encoding 

y_train_one_hot = to_categorical(y_train, num_classes=num_classes) 

y_test_one_hot = to_categorical(y_test, num_classes=num_classes) 

epochs = 200 

from keras.utils import to_categorical 

# Convert your y_train and y_test to one-hot encoding 

y_train_one_hot = to_categorical(y_train, num_classes=num_classes) 

y_test_one_hot = to_categorical(y_test, num_classes=num_classes) 

# Learning history for CNN 

history = model.fit(X_train, y_train, epochs=10, batch_size=64, 

validation_data=(X_test, y_test)) 

# Plot learning history for CNN 

plt.figure(figsize=(12, 5)) 

plt.subplot(1, 2, 1) 

plt.plot(history.history['accuracy'], label='Training Accuracy') 

plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 

plt.title('CNN Model Training Accuracy') 

plt.xlabel('Epoch') 
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plt.ylabel('Accuracy') 

plt.legend() 

plt.tight_layout() 

plt.show() 

plt.tight_layout() 

plt.show() 

 

 

. 

 

 

 

 

Appendix 2 

COMPARATION OF THE MODELS 

from scipy.stats import ttest_rel 

# Statistical analysis (t-tests for example) 

from scipy import stats 

# Print evaluation metrics for the SVM model 

print("SVM Model Evaluation:") 

print("Accuracy:", svm_accuracy) 

print("Precision:", svm_precision) 

print("Recall:", svm_recall) 

print("F1-score:", svm_f1_score) 
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print("ROC AUC:", svm_roc_auc) 

# Actual accuracy, precision, recall, F1-score, and ROC AUC values for CNN and 

SVM 

cnn_accuracy = 0.9906000122077764 

cnn_precision = 0.9899951702164878 

cnn_recall = 0.9906000122077764 

cnn_f1 = 0.9901868458560885 

cnn_roc_auc = 0.8774261119352021 

svm_accuracy = 0.739486052615516 

svm_precision =0.6199914926592527 

svm_recall = 0.739486052615516 

svm_f1 = 0.6600092450578181 

svm_roc_auc = 0.9243266246663926 

# Perform a t-test for accuracy 

accuracy_stat, accuracy_p_value = stats.ttest_rel(cnn_accuracy, svm_accuracy) 

# Print the results 

print("T-test for Accuracy:") 

print("t-statistic:", accuracy_stat) 

print("p-value:", accuracy_p_value) 

# Check the p-value to determine if the difference is statistically significant 

alpha = 0.05  # Set your significance level 

if accuracy_p_value < alpha: 

    print("The difference in accuracy is statistically significant.") 
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else: 

    print("There is no significant difference in accuracy between the models.") 

# Print the results 

print("CNN Accuracy:", cnn_accuracy) 

print("SVM Accuracy:", svm_accuracy) 

print("Accuracy p-value:", accuracy_p_value) 

# Print the evaluation metrics 

print("CNN Accuracy:", cnn_accuracy) 

print("CNN Precision:", cnn_precision) 

print("CNN Recall:", cnn_recall) 

print("CNN F1-score:", cnn_f1) 

 

# Print the ROC AUC score 

print("CNN ROC AUC Score:", cnn_roc_auc) 

# Print the evaluation metrics 

print("CNN Accuracy:", cnn_accuracy) 

print("CNN Precision:", cnn_precision) 

print("CNN Recall:", cnn_recall) 

print("CNN F1-score:", cnn_f1) 

# Print evaluation metrics for the SVM model 

print("SVM Model Evaluation:") 

print("Accuracy:", svm_accuracy) 

print("Precision:", svm_precision) 
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print("Recall:", svm_recall) 

print("F1-score:", svm_f1_score) 

print("ROC AUC:", svm_roc_auc) 

# Metrics and models 

metrics = ['Accuracy', 'Precision', 'Recall', 'F1-Score', 'ROC AUC'] 

models = ['CNN', 'SVM'] 

# Values for CNN and SVM 

cnn_metrics = [cnn_accuracy, cnn_precision, cnn_recall, cnn_f1, cnn_roc_auc] 

svm_metrics = [svm_accuracy, svm_precision, svm_recall, svm_f1, svm_roc_auc] 

# Create an index for each metric 

x = np.arange(len(metrics)) 

 

# Define the width of the bars 

width = 0.35 

BAR PLOT 

# Print the evaluation metrics 

print("CNN Accuracy:", cnn_accuracy) 

print("CNN Precision:", cnn_precision) 

print("CNN Recall:", cnn_recall) 

print("CNN F1-score:", cnn_f1) 

# Print the ROC AUC score 

print("CNN ROC AUC Score:", cnn_roc_auc) 

# Calculate the differences 

accuracy_diff = cnn_accuracy - svm_accuracy 
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precision_diff = cnn_precision - svm_precision 

recall_diff = cnn_recall - svm_recall 

f1_diff = cnn_f1 - svm_f1 

roc_auc_diff = cnn_roc_auc - svm_roc_auc 

# Actual accuracy, precision, recall, F1-score, and ROC AUC values for CNN and 

SVM 

svm_accuracy = 0.739486052615516 

svm_precision =0.6199914926592527 

svm_recall = 0.739486052615516 

svm_f1 = 0.6600092450578181 

svm_roc_auc = 0.9243266246663926 

cnn_accuracy = 0.9906000122077764 

cnn_precision = 0.9899951702164878 

cnn_recall = 0.9906000122077764 

cnn_f1 = 0.9901868458560885 

cnn_roc_auc = 0.8774261119352021 

#Assuming you have computed performance metrics for two models 

metrics_svm = {'Accuracy': 0.739486052615516, 'Precision': 0.6199914926592527, 

'Recall': 0.739486052615516, 'F1 Score': 0.6600092450578181} 

metrics_cnn = {'Accuracy': 0.9906000122077764, 'Precision': 0.9899951702164878, 

'Recall': 0.9906000122077764, 'F1 Score': 0.9901868458560885} 

# Extract metric names and values 

metric_names = list(metrics_svm.keys()) 

values_svm = list(metrics_svm.values()) 
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values_cnn = list(metrics_cnn.values()) 

metrics = ['Metric1', 'Metric2', 'Metric3', 'Metric4'] # Replace with your actual metrics  

assert len(metrics) == len(values_svm) == len(values_cnn), "Length mismatch in 

metrics arrays" 

# Set up bar positions 

bar_width = 0.35 

ind = np.arange(len(metric_names)) 

# Set the width of the bars 

width = 0.35 

 

# Set the x locations for the groups 

ind = np.arange(len(metric_names)) 

# Plot the bars 

fig, ax = plt.subplots(figsize=(10, 6)) 

bar1 = ax.bar(ind - width/2, values_svm, width, label='SVM') 

bar2 = ax.bar(ind + width/2, values_cnn, width, label='CNN') 

# Add some text for labels, title and custom x-axis tick labels, etc. 

ax.set_xlabel('Metrics') 

ax.set_ylabel('Values') 

ax.set_title('Model Comparison (SVM vs CNN)') 

ax.set_xticks(ind) 

ax.set_xticklabels(metric_names) 

ax.legend() 



 

  

97  

# Display the values on top of the bars 

for bar in bar1: 

    yval = bar.get_height() 

    plt.text(bar.get_x() + bar.get_width()/2, yval, round(yval, 6), ha='center', 

va='bottom') 

for bar in bar2: 

    yval = bar.get_height() 

    plt.text(bar.get_x() + bar.get_width()/2, yval, round(yval, 6), ha='center', 

va='bottom') 

# Set the y-axis scale 

plt.yticks(np.arange(0, 1.0, 0.05)) 

# Show the plot 

plt.show() 

RADAR PLOT 

# Number of metrics 

num_metrics = len(metric_names) 

# Set up angles for the radar chart 

angles = np.linspace(0, 2 * np.pi, num_metrics, endpoint=False) 

# Make the plot circular 

values_svm += values_svm[:1] 

values_cnn += values_cnn[:1] 

angles = np.concatenate((angles, [angles[0]])) 

# Plot the SVM values 

plt.polar(angles, values_svm, marker='o', label='SVM') 
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# Plot the CNN values 

plt.polar(angles, values_cnn, marker='o', label='CNN') 

# Fill the area between the lines 

plt.fill(angles, values_svm, alpha=0.25) 

plt.fill(angles, values_cnn, alpha=0.25) 

# Add labels, title, and legend 

plt.thetagrids(angles[:-1] * 180/np.pi, metric_names) 

plt.title('Model Comparison (SVM vs CNN)') 

plt.legend() 

# Show the plot 

plt.show() 

# Assuming you have reshaped your input data for the CNN model 

X_train_reshaped = X_train.reshape(X_train.shape[0], X_train.shape[1], 1) 

X_val_reshaped = X_val.reshape(X_val.shape[0], X_val.shape[1], 1) 

X_test_reshaped = X_test.reshape(X_test.shape[0], X_test.shape[1], 1) 

# Load the CNN model 

loaded_model = load_model('/content/drive/MyDrive/cnn_model.h5') 

# Load the SVM model 

svm_model_path = '/content/drive/MyDrive/log2.csv' 

svm_model = joblib.load(svm_model_path) 

# Reshape the input data to 2D 

#X_test_reshaped_2d = X_test_reshaped.reshape(X_test_reshaped.shape[0], -1) 

# Get predicted labels and probabilities for SVM 
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#y_pred_svm = svm_model.predict(X_test_reshaped_2d) 

#y_pred_probs_svm = svm_model.predict_proba(X_test_reshaped_2d) 

CONFUSION MATRIX 

from sklearn.metrics import confusion_matrix, classification_report 

# If y_test is one-hot encoded, convert it back to labels 

if len(y_test.shape) > 1: 

    y_test_labels = np.argmax(y_test, axis=1) 

else: 

    y_test_labels = y_test 

 

svm_pred_labels = svm_model.predict(X_test) 

cnn_pred_one_hot = model.predict(X_test_reshaped) 

cnn_pred_labels = np.argmax(cnn_pred_one_hot, axis=1) 

# Get the confusion matrixes 

cm_svm = confusion_matrix(y_test_labels, svm_pred_labels) 

cm_cnn = confusion_matrix(y_test_labels, cnn_pred_labels) 

# Plot the confusion matrices side by side 

fig, axes = plt.subplots(1, 2, figsize=(12, 5)) 

# SVM Confusion Matrix 

sns.heatmap(cm_svm, annot=True, fmt="d", cmap="Blues", cbar=False, ax=axes[0]) 

axes[0].set_title('SVM Confusion Matrix') 

axes[0].set_xlabel('Predicted') 

axes[0].set_ylabel('Actual') 

# CNN Confusion Matrix 
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sns.heatmap(cm_cnn, annot=True, fmt="d", cmap="Blues", cbar=False, ax=axes[1]) 

axes[1].set_title('CNN Confusion Matrix') 

axes[1].set_xlabel('Predicted') 

axes[1].set_ylabel('Actual') 

plt.show() 

# Assuming y_test_bin is your true labels (one-hot encoded) for CNN 

y_test_bin = to_categorical(log2_data['Action_encoded']) 

 

# Assuming svm_model and model are your trained SVM and CNN models 

svm_probabilities = svm_model.predict_proba(X_test) 

svm_predicted_labels = svm_model.predict(X_test) 

from sklearn.model_selection import learning_curve 

REAL TIME INTRUSION DETECTION CLASSIFICATION 

# Load the CNN model 

cnn_model_path = '/content/drive/MyDrive/cnn_model.h5' 

loaded_model = load_model(cnn_model_path) 

# Load the SVM model 

svm_model_path = '/content/drive/MyDrive/log2.csv' 

svm_model = joblib.load(svm_model_path) 

# Load the CNN model 

cnn_model = load_model('/content/drive/MyDrive/cnn_model.h5') 

TAKING THE INPUTS DIRECTLY FROM THE DATASET/USER INPUT 

# Features list (excluding 'Action') 

features = ['Source Port', 'Destination Port', 'NAT Source Port', 'NAT Destination Port',  
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            'Bytes', 'Bytes Sent', 'Bytes Received', 'Packets', 'Elapsed Time (sec)', 

            'pkts_sent', 'pkts_received'] 

# User input dictionary 

user_input = {} 

# Input values for each feature 

for feature in features: 

    value = float(input(f"{feature}: ")) 

    user_input[feature] = [value] 

 

# Convert user input to a DataFrame 

user_input_df = pd.DataFrame(user_input) 

# Standardize user input for SVM 

user_input_scaled = scaler.transform(user_input_df)  # Use the same scaler as before  

# Classify action using the SVM model 

svm_predicted_action = svm_model.predict(user_input_scaled) 

svm_predicted_action = svm_predicted_action[0] 

# Assuming you have reshaped your input data for the CNN model 

user_input_reshaped = user_input_df.values.reshape(1, user_input_df.shape[1], 1) 

# Classify action using the CNN model 

cnn_predicted_action = cnn_model.predict(user_input_reshaped) 

cnn_predicted_action = 

label_encoder.inverse_transform([cnn_predicted_action.argmax()])[0] 

# Hypothetical ground truth labels 
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y_true = 'Allow'  # Replace with the actual label for this example 

# Mapping dictionary to convert predictions to class labels 

class_mapping = {0: 'Allow', 1: 'Deny', 2: 'Drop', 3: 'Reset-Both'} 

# Convert the predicted actions to class labels using the mapping dictionary 

svm_predicted_action = class_mapping[svm_predicted_action] 

# Convert both predicted actions to lowercase 

svm_predicted_action_lower = str(svm_predicted_action).lower() 

cnn_predicted_action_lower = str(cnn_predicted_action).lower() 

# Calculate accuracy in percentage 

svm_accuracy = 100 if svm_predicted_action_lower == y_true.lower() else 0 

cnn_accuracy = 100 if cnn_predicted_action_lower == y_true.lower() else 0 

# Print the results 

print("SVM Predicted Action:", svm_predicted_action) 

print("CNN Predicted Action:", cnn_predicted_action) 

# Calculate accuracy in percentage 

svm_accuracy = 100 if svm_predicted_action_lower == y_true.lower() else 0 

cnn_accuracy = 100 if cnn_predicted_action_lower == y_true.lower() else 0 

print("SVM Accuracy: {:.2f}%".format(svm_accuracy)) 

print("CNN Accuracy: {:.2f}%".format(cnn_accuracy)) 

# Features list (excluding 'Action') 

features = ['Source Port', 'Destination Port', 'NAT Source Port', 'NAT Destination Port', 

            'Bytes', 'Bytes Sent', 'Bytes Received', 'Packets', 'Elapsed Time (sec)', 

            'pkts_sent', 'pkts_received'] 
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# User input dictionary 

user_input = {} 

# Input values for each feature 

for feature in features: 

    value = float(input(f"{feature}: ")) 

    user_input[feature] = [value] 

 

# Convert user input to a DataFrame 

user_input_df = pd.DataFrame(user_input) 

# Standardize user input for SVM 

user_input_scaled = scaler.transform(user_input_df)  # Use the same scaler as before  

# Classify action using the SVM model 

svm_predicted_action = svm_model.predict(user_input_scaled) 

svm_predicted_action = svm_predicted_action[0] 

# Assuming you have reshaped your input data for the CNN model 

user_input_reshaped = user_input_df.values.reshape(1, user_input_df.shape[1], 1) 

# Classify action using the CNN model 

cnn_predicted_action = cnn_model.predict(user_input_reshaped) 

cnn_predicted_action = 

label_encoder.inverse_transform([cnn_predicted_action.argmax()])[0] 

# Hypothetical ground truth labels 

y_true = 'drop' # Replace with the actual label for this example 

# Mapping dictionary to convert predictions to class labels 
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class_mapping = {0: 'Allow', 1: 'Deny', 2: 'Drop', 3: 'Reset-Both'} 

# Convert the predicted actions to class labels using the mapping dictionary 

svm_predicted_action = class_mapping[svm_predicted_action] 

# Convert both predicted actions to lowercase 

svm_predicted_action_lower = str(svm_predicted_action).lower() 

cnn_predicted_action_lower = str(cnn_predicted_action).lower() 

# Calculate accuracy in percentage 

svm_accuracy = 100 if svm_predicted_action_lower == y_true.lower() else 0 

cnn_accuracy = 100 if cnn_predicted_action_lower == y_true.lower() else 0 

# Print the results 

print("SVM Predicted Action:", svm_predicted_action) 

print("CNN Predicted Action:", cnn_predicted_action) 

# Calculate accuracy in percentage 

svm_accuracy = 100 if svm_predicted_action_lower == y_true.lower() else 0 

cnn_accuracy = 100 if cnn_predicted_action_lower == y_true.lower() else 0 

print("SVM Accuracy: {:.2f}%".format(svm_accuracy)) 

print("CNN Accuracy: {:.2f}%".format(cnn_accuracy)). 
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Appendix X 

Similarity Report 
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