NEAR EAST UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

DEPARTMENT OF MECHATRONICS ENGINEERING

A COMPARATIVE STUDY OF SUPPORT VECTOR MACHINE AND
CONVOLUTIONAL NEURAL NETWORK MODELS FOR INTRUSION DETECTION

MASTER THESIS

OKAH ONYEKACHI MICHAEL

NICOSIA

2023

NEAR EAST UNIVERSITY

INSTITUTE OF GRADUATE STUDIES

DEPARTMENT OF MECHATRONICS ENGINEERING

A COMPARATIVE STUDY OF SUPPORT VECTOR MACHINE AND
CONVOLUTIONAL NEURAL NETWORK MODELS FOR INTRUSION DETECTION

MASTER THESIS

OKAH ONYEKACHI MICHAEL

NICOSIA

2023

Approval

We certify that we have read the thesis submitted by Okah Onyekachi Michael titled “A
Comparative Study Support Vector Machine and Convolutional Neural Network Models for
Intrusion Detection” and that in our combined opinion it is fully adequate, in scope and in quality,

as a thesis for the degree of Master of Educational Sciences.

Examining Committee Name-Surname Signature

Head of the Committee: Assist. Prof. Dr. John Bush IDOKO

Committee Member: Assist. Prof. Dr. Mohammad Karimzadeh
Kolamroudi

Supervisor: Prof. Dr. Rahib ABIYEV

Approved by the Head of the Department

Approved by the Institute of Graduate Studies

Head of the Institute

Declaration

I hereby declare that this thesis is the result of my original research work conducted under the
supervision of Prof. Dr. Rahib H. Abiyev and it has not been previously submitted for any degree

or examination in any other university or institution.

I affirm that all sources used, including published or unpublished works of others, have been duly
acknowledged and referenced mn accordance with the guidelines provided by Near East University.

Any contributions made by others to this research have also been appropriately credited.

I take full responsibility for the content and findings presented in this thesis and confirm that all

data, figures, and results are authentic and accurately represent the outcomes of the conducted

research.

Furthermore, I understand that any misrepresentation or failure to abide by academic integrity and
ethical standards could result in severe consequences, including the rejection of this thesis or the

revocation of any degrees obtained as a result of this work.

Okah Onyekachi Michael

20th December 2023

Acknowledge ment

I would like to express my heartfelt gratitude to the Almighty God for granting me the wisdom,
strength, and perseverance throughout this research journey. Without His blessings and guidance,
this thesis would not have been possible.

I extend my sincere appreciation to my supervisor, for his invaluable support, patience, and expert
guidance. His mentorship and constructive feedback have been instrumental in shaping the

direction of this research.

I would like to express my gratitude to Dr. Ibrahim Shuaibu for his valuable insights and
contributions to this research. His expertise and constructive feedback have immensely enriched
the quality of this work.

I am deeply indebted to my parents for their unwavering love, encouragement, and continuous

belief in my abilities. Their sacrifices and unwavering support have been the driving force behind

my academic pursuits.

Furthermore, Iam also thankful to my friends and family for their encouragement, motivation, and
understanding during the course of this endeavor. Their unwavering support and words of

encouragement have been a constant source of inspiration.

Lastly, I acknowledge the contributions of all individuals and istitutions whose work and research

I have cited and utilized i this thesis. Theirr scholarly endeavors have laid the foundation for my

own exploration and understanding,

Thank you all for being an integral part of this journey. Your support and encouragement have been
pivotal in making this thesis a reality.

Okah Onyekachi Michael.

Abstract

A Comparative Study of Support Vector Machine and Convolutional Neural Network

Models for Intrusion Detection
Okah Onyekachi Michael
MSc Department of Mechatronics Engineering
Supervisor Prof. Dr. Rahib H. Abiyev
January, 2023 112 Pages

In this rapidly evolving era oftechnology and automation, Mechatronics systems are more exposed
to the threat of cyber-attacks and mtrusions as there are more increasingly interconnected and
reliant on digital communication. Failure to safeguard network security can lead to data breaches
and unauthorized access by potential hackers. In this study, we delve into the development and
evaluation of two deep learning models and we compare therr performance on an internet firewall
dataset which was collected from a school library. This analysis i this study was conducted using
Python programming language in the Google Colabaratory environment which encompasses data
preprocessing, splitting the data into train set and test set and feature scaling. CNNand SVM model
training and evaluation with the test data. The models were used to classify the data into classes
such as ‘Allow’, ‘Deny’, ‘Drop’ and ‘Reset-Both’ and we used various evaluation metrics such as
accuracy, precision, recall, F1-score, and ROC AUC, to assess the performance of each models. In
this study, we set out to thoroughly investigate the classification of network traffic action using
deep learning models. The effective creation and assessment of Convolutional Neural Network
(CNN) and Support Vector Machine (SVM) models, both of which shown excellent classification
accuracy and performance, are among our significant findings. The SVM model showed robust
classification abilities even in settings with non-linear data separability, whereas the CNN model,
distinguished by its neural architecture, excelled better n capturing subtle data patterns. By
integrating our models into a real-time intrusion detection system, our research was also made
applicable to the outside world, demonstrating the usefulness and potential significance of our
work. Finally, our study highlights the value of deep learning in boosting cybersecurity measures

while also making significant contributions to the field of network security. The specific needs of

Vi

the activity at hand determme whether to use the CNN or SVM models. Organizations can
strengthen their network security and proactively protect against threats by utilizing these methods.

Keywords Intrusion Detection, CNN Model, SVM Model, M echatronics.

Vi

A Comparative Study of Support Vector Machine and Convolutional Neural Network

Models for Intrusion Detection
Okah Onyekachi Michael
MSc Department of Mechatronics Engineering
Supervisor Prof. Dr. Rahib H. Abiyev

January, 2023 112 Pages

Hizla gelisen teknoloji ve otomasyon caginda, Mekatronik sistemler giderek daha fazla birbirine
bagh hale geldikce ve dijital iletisime bagmmli hale geldikge siber saldir1 ve izinsiz giris tehdidine
daha fazla maruz kahyor. Ag giivenliginin korunmamasi, veri ihlallerine ve potansiyel bilgisayar
korsanlarinin yetkisiz erisimine yol acabilr Bu c¢ahymada, iki derin Ogrenme modelinin
gelistirilmesi ve degerlendirilmesi iizerinde duruldu ve bunlarin bir okul kiitiiphanesinden toplanan
mternet giivenlk duvart veri seti ilizerindeki performanslar1 karsilastwrildi. Bu ¢alismadaki bu
analiz, veri On islemeyi, verileri tren seti ve test setine bolmeyi ve dzellik olgeklendirmeyi kapsayan
Google Colabaratory ortammda Python programlama dili kullanilarak gerceklestirildi. Test
verileriyle CNN ve SVM modelinin egitimi ve degerlendirilmesi. Modeller, verileri 'zin Ver,
"Reddet', 'Brrak' ve 'Ikisini de Sifirla' gbi smiflara ayrmak icin kullanild1 ve dogruluk, hassasiyet,
geri ¢agrma, F1 puan1 ve ROC AUC gibi ¢esitl degerlendirme OSlgtimleri kullandik. Her modelin
performansmi degerlendirmek i¢in. Bu caliymada, derin 6grenme modellerini kullanarak ag trafigi
eyleminin smiflandirilmasini kapsamh bir sekilde arastrmak i¢cn yola c¢iktk. Her ikisi de
mikemmel smiflaindirma dogrulugu ve performansit gosteren Evrisimsel Sinir Ag (CNN) ve
Destek Vektor Makinesi (SVM) modellerinin etkin bir sekilde olusturulmasi ve degerlendirilmesi
onemli bulgularimiz arasmdadr. SVM modeli, dogrusal olmayan veri ayrilabilirligine sahip
ortamlarda bile gicli smiflandirma yetenekleri sergilerken, sinir mimarisiyle One ¢ikan CNN
modeli, incelikli veri modellerini yakalamada daha basarih oldu. Modellerimizi gergek zamanli
izinsiz giris tespit sistemine entegre ederek arasgtrmamiz dig diinyaya dauygulanabilir hale getirildi
ve bu da calsmalarimizin yararhligini ve potansiyel dnemini ortaya koydu. Son olarak ¢alsmamiz,
siber gilivenlik Onlemlerini artrmada derin 68renmenin degerini vurgularken aym zamanda ag

giivenligi alamna da onemli katkilar saglyor. Eldeki faaliyetin Ozel ihtiyaglary, CNN veya SVM

VI

modellerinin kullanilip kullanilmayacagmi belirler. Kuruluglar bu yontemleri kullanarak ag
giivenliklerini giliclendirebilir ve tehditlere karsi proaktif bir sekilde koruma saglayabilirler.

Keywords Intrusion Detection System, CNN Model, SVM Model, M echatronics .

Table of Contents

ACKNOWICAZEIMEIIE ..ot e e e e nee s \%
ADSTIACT. ...ttt e e e R b na e e b e nre e e nes VI
CHAPTER ...ttt b e bt s e st e e be e nbeeseesbe e beeneesneenteaneenreeas 1
INEFOAUCTION ...ttt e st e s n b e e e ab e e e bt e e e nne e e e nnneeas 1
1.1 Background and CONEEXEeeiuiiiiiiiiiiieiniiiie st siee et e ettt e s bb e aneesne e e s nneeas 1
1.2 Problem StateImMEntc.eiiiiiiieiiieiee ettt n e 1
1.3 RESCATCH GAP ...ttt nnes 1
1.4 Objective 0T the STUAY ...coueiiiieie e 2
1.5 Scope and SIZNITICANCEeeiviiiiiiieiiiie et 2
1.6 Research Hypothesis or QUESLIONScvvvieiiviiiiiiiiiiieiiie st sine e 2
1.7 Rationale for Model SEIECtIONcoiuviiiieiiiiiiieiie et 3
1.8 TRESIS OVETVIEW ...ttt ettt e e s e e e e n e e n e nnn e e neenneas 3
CHAPTER IL.......ooii ettt bt st e b e st e st e s beesbe e st e saeenbeaneenreeas 5
LIte rature ReVIEWooiiiiiiiiii ettt e e e e e ne e e anne e 5
2.1 Overview of Intrusion Detection System (IDS)ocovoriiiiiiiineeceee e 5
2.2 Intrusion Detection System TEChNIQUESccoiviiiiiiiiiiiiie i 6
2.3 Signature-based Intrusion Detection SYSIEM........c.ccviiiiiieiiiiiiiii e 6
2.4 Anomaly-based Intrusion Detection System (AIDS)ccovviiiiiiiiiiiiiiie e 7
2.5 Techniques for Implementing AIDS (SVM and CNN)ocoeiiiiiiiniiniiiec e 9
2.6 Supervised Learning in Intrusion Detection SYStEMScvvevivieiiiieiiiie it 9
2.7 Support Vector Machine (SVM) in Intruion Detection SYstemscccceevureieeiiieenneaninns 10
2.8 Application of Support Vector Machines...........ccocveiiiiiiiiiiinieee e 13
2.9 Deep Learning in Intrusion Detection SYSIEIMScccveiviiiiiieiininiienienie e 14
2.10 Application of Deep Learning in Intrusion Detection Systems..........ccceevvveeriveeniineeenne 16
2.11 Convolutional Neural Networks (CINNS)ccoeiiiiiiiiiieiiieie e 18
2.12 Convolutional Neural Networks in Network Intrusion Detectionc.ccevvervenennne. 19
2.13 Comparative Studies: SVM vs. CNN in Intrusion Detection..........ccccevvvrieeiieenneennnnns 20
(@) 5 1N o 1 2 1 1 OSSR 26
MethOdOIOGYcocoviiiiiiiii 26

3.1 ReESEATCH DESIZI ..ot 26

3.2 Data COIIECTION ...ttt ettt et sb e b e et e e be e e ne e nnn e 27
R T D 1 T AT (17810) o PSPPSR 29
3.4 Data PrePrOCESSINE «..vvieiuiiiiiiiieiitiieeitttessieeesitee e stee st eeasbe e e s be e e e ssbe e e sbbe e s sbbeeabbeesbeeeesnbeesnnnees 30
3.5 Model CONTIGUIATIONcvvviiiiiiiiiieeiti et 30
3.5.1 Support Vector Machine (SVM) AlgOrithmccccevviiiiiiiiiiiiiii e 30
3.5.2 Support Vector Machines in Intrusion Detectionccocvrveriiiiiiiniiniciiienn 34
3.5.3 Convolutional Neural Network for Intrusion Detectioncccooeviniiiiiniiiiinns 36
3.5.4 Components 0fa CINNoooiiiiiiiiiii e 36
3.5.5 Overfitting and Regularization in CNNS.......cccoiiiiiiiiiiiiicece e 40
3.5.6 EVATUALION. ...coiiiiiiie e 41

3.6 CONTUSTON MALIIX 1eiuviiiiiiiiesiieaieesite ettt sae et et e et sae e e e e e beesbbeenbeesbbeebeesbbe e beeenbeesrneenes 43
3.7 Analysis 0f the MOAEIScoiuiiiiiiiiiiii e 44
CHAPTER LV ...ttt ettt ettt s bt e bt e s bb e et e et e e e beeenteenbeeanbeennee s 47
Simulations and ReSUISccooiiiiiiiii e 47
4.1 Simulation and Results of Intrusion Detection SysStem...........ccocveriiiiiiiiecniiiieeneeee 47
4.2 Training and Testing Results 0f the Modelscccoiiiiiiiiiiiiici 49
4.3 Confusion matrix for SVM and CNN.........oooiiiiiiiiiiee e 52
4.4 Precision-Recall Curve for CNN and SVM 53
4.6 Real-Time Representation of Intrusion DeteCtioncccvevvvreiiiniiiiin i 56
4.7 Comparative analysis for both model...........cccoooiiiiiiiii e 58
4.8 Analysis and DISCUSSION ...ecueiiueiiiiiriiiieii ettt sne s 60
CHAPTER 'V ettt ettt b e e b e e s h e et et e e ne e ann e e s neeanreennee s 63
CONCLUSITON ..o bbb s 63
Recommendation for Future Worki..........cooiiiiiiii e 63

L A (5 () 1 TV PP PP R PPRT PP 65
APPENDICESottt nn e 71
F N 8] 01531 1 G PRSPPI 71
IMPORTING THE DEPENDENCIEScooiiiiiiiiiiii s 71
DATA COLLECTION AND PREPROCESSING.......ccoeiiiiiieiieniieiieenee e 73
SEPARATING FEATURES AND TARGEToooiiiiiiiiiiiiieccee e 74

Xl

SPLITTING THE DATASETS INTO TRAINING DATA AND TESTING

DIATA . e 74
ENCODE THE TARGET LABELSoooiiiiiiiiee e 75
DATA STANDARDIZATION ..ottt 75
BUILD THE SVM MODEL ..ottt 75
FIT THE SVM MODEL.......ccoiiiiiiiiiiiii s 75
CALIBRATE THE PROBABILITIES OF THE SVM MODELccccooiiiiiiiiiieececee 75
EVALUATE MODELS ON THE TEST DATAoooiiiiiiiiiseeeeeeene e 76
EVALUATE THE SVM ON THE TEST DATAcoooiiiiieiie s 76
PRINT EVALUATION METRICS FOR THE SVMccoiiiiiiiiii e 76
PLOT THE CONFUSION MATRIX FOR THE SVM MODEL.........cccccciiiiiiiiiiiiiiic 77
SAVING THE SVM MODEL.......oiiiiiiiiiie i 77
PRECISION RECALL CURVE FOR SVMoiiiiiiiiiiiii s 77
BUILDING THE CNN MODELc.oiiiiiiiiiiiieeiee e 80
TRAIN THE CNN MODEL.......cccoiiiiiiiiiii e 80
ROC CURVE OF CNN ...ttt nne e nn e 85
PRECISION RECALL CURVE CNN ..ottt 86
APPENATX 2 iR bbb et 91
COMPARATION OF THE MODELScoiiiiiieiiiieieeeese s 91
BAR PLOT ..o 94
RADAR PLOT ...t 97
CONFUSION MATRIX ..ottt 99
REAL TIME INTRUSION DETECTION CLASSIFICATIONccceiiiiiiiinencseeeene, 100
TAKING THE INPUTS DIRECTLY FROM THE DATASET/USER INPUT.................... 100

List of Tables

Table 3. 1: Some Attributes and Features of the Datasetcccocoeeiiiiiiiiiiiicniie e 30
Table 3. 2: Models and Their Libraries USEdcccvvveriiiiiiriiiiieii e 42
Table 3. 3: Evaluation Metrics and Its DeSCIIPtIONcevvveviiieiiiiiiiieie e 43
Table 3. 4: Comparative Analysis Strategies 0f ModelSc.ccovviiiiiiiiiiiiii, 44
Table 3. 5: Visualization Plots and their DeSCription............cocoviviiieriiiiienieese e 44
Table 4. 1: Descriptive Analysis of Network Traffic AHTibute.........ccoovevviviiiiiiinicecee 47
Table 4. 2: Structure of the uSed CNN.......c.oiiiiiiii e 27
Table 4. 3: SVM and CNN Model Evaluationsccccceeiiiiiiiiiiiiic e 49
Table 4. 4: CNN Confusion Matrix Table...........ccooiiiiiiiiiii e 55
Table 4. 5: SVM Cross Validation RESUILScceiviiiieiiiiiiciiieie e 55
Table 4. 6: Visual Representation of the User Inputs on the Classification Features

In Tabular Format with Truth Label “AloW™. ..o 56
Table 4. 7: Visual Representation of the User Inputs on the Classification Features

In Tabular Format with Truth Label — “DIopccccccvviiiiiiiiiiiciiic e 57
Table 4. 8: Visual Representation of the User Inputs on the Classification Features

in Tabular Format with Truth Label “Deny”ccccooiiiiiiiiiiiiee e 57
Table 4. 9: Visual Representation of the User Inputs on the Classification Features

In Tabular Format with Truth Label: “Reset-Both”ccccoviiiiiiicc e 58

Xl

List of Figures

Figure 3. 1: Block Diagram of The Design Stages ofan IDScccccovviiiiiii s 26
Figure 3. 2: Distribution of Action Classes from the Datasetccooveiiiiiiiiiiiciiicicen 29
Figure 3. 4: Graphical Representation of Dataset with Two Colors divided

linearly (source https://Www.javatpOINt.COMY) ..occvriiiiiiiiiiiiiiie it 32
Figure 3. 5: Graphical Representation of a Linear SVM showing Support Vector

And Hyperplane (source https://Www.Javatpoint. COMY)cevvviriiueeinirieiniieensieessinee e 32
Figure 3. 6: Graphical Representation of a Non-Linear Dataset (source

https://WWW.JaVatPOINE.COMY) ...eiiviiiiiiiiiiiiiiiie e 33
Figure 3. 7: Graphical Representation of a Non-Linear SVM i 3D (source

https://WWW.JaVAPOINE.COMY) ...eiiiiiiiiiiiiieiii et 33
Figure 3. 8: Graphical Representation of a Non-Linear SVM in 2D (source

https ://WWW.JaVAPOINE.COMY) ...eiiiiiiiiiiiiiciii et 34
Figure 3. 9: Data Representation and Classification of SVM in Intrusion

LD) 1o 5 (o) s A TSP UPP PR 34
Figure 3. 10: Convolutional Neural Networkcccocoiiiiiiiiiiii 36
Figure 3. 11: Architecture of CNN Applied to Intrusion Detection

(https://towardsdatasCiENCE.COMY)uviiuriiiiiiiiiie ittt 37
Figure 3. 12: Illustration of The Input Image and Its Pixel Representation

(SOUTCE: ZOUIMANA) ...ttt ettt et e e e e e s e e e e e nre e e n e e eneennneeneens 38
Figure 3. 13: Application of The Convolution Task Using A Stride of 1 with 3x3

Kernel (Source: Zoumana, 2023)eiiiiiriiiieiiiie ettt 38
Figure 3. 14: Application of Max pooling with a Stride of 2 Using 2X2 Filter

(Source: Zoumana, 2023)oiieeiiieiieiie et nre e nree 39
Figure 3. 15: Graphical Representation of Overfitting and Underfitting (Source:

Z0UMANA, 2023) 1oiiiiiiiiiiie et nes 40
Figure 3. 16: ConfusSiON IMatIIXuiiiieiiiiiieiiiie it siee st see st esssbe e s sibeessssesssbeeesneeeens 43
Figure 4. 1: SVM model 1earning CUrve..........ccviviiiiiiiiiiis e 50
Figure 4. 2: Fragment of CNN model learning Curvecccocvviieiiiniie e 51
Figure 4. 3: Training Of CINNooiiiiiiiec e 52
Figure 4. 4: SVM and CNN Confusion MatriX.........coceeieiiiieeiiiiiiesie e 52
Figure 4. 5: SVM Precision Recall CUIVe..........ocviiiiiiiiiicee e 53
Figure 4. 6: CNN Precision Recall CUIVEc.oooviiiiiiiiiiicieeeie e 54
Figure 4. 7: CNN ROC CUINVEouiiiiiiiiiie ittt a e e e s e e s annnnee s 54
Figure 4. 8: ROC-AUC Curve for SVM ..o 55
Figure 4. 9: Bar Plot Comparing SVM and CNN Evaluation Metrics..........cccuvvvvriiviriineeiniinenns 59
Figure 4. 10: Radial Plot of the SVM and CNN modelcccoovviiiiiniiiiiieeee e 60

List of Abbreviations

IDS Intrususion Detection System
SVM Support Vector Machines
CNN Convolutional Neural Network

DL Deep Learning

PCA Principal Component Analysis
CPU Central Processing Unit

MLP Multiple Layer Perceptron
TCP/IP Transmission Control ProtocolInternet Protocol
RNN Recurrent Neural Network
LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

ID Intrusion Detection

DL Deep Learning

DNN Deep Neural Network

NAT Network Address Translation
Pkts Packets

ConvNet Convolutional Neural Network
ReLU Rectified Linear Unit

ROC Receiver Operator Characteristics

AUC-ROC Area Under the Receiver Operator Characteristics
TP True Positive

FN False Negative

X

FP False Positive
TN True Negative

RMSE Root Mean Square Error

A Comparative Study Support Vector Machine and Convolutional Neural Network Models

for Intrusion Detection

CHAPTER 1

Introduction

1.1 Background and Context:

In today's interconnected digital world, the escalating frequency and sophistication of cyber
threats pose a severe risk to the security and integrity of information systems. As
organizations increasingly rely on networked technologies, the need for robust and adaptive
security measures, particularly in the form of Intrusion Detection Systems (IDS), becomes
mperative. These systems act as vigilant guardians, continuously monitoring network

activities to detect and respond to potential security breaches.

1.2 Problem Statement:

The landscape of cyber threats is dynamic, characterized by novel attack vectors, stealthy
mfiltration techniques, and polymorphic malware. While traditional intrusion detection
methods have proven effective to a certain extent, they often struggle to keep pace with the
evolving tactics employed by malicious actors. The madequacies i existing approaches
highlight the pressing need for inovative strategies that can enhance the capabilities of
mtrusion detection systems and fortify networks against an ever-expanding array of threats.
In this thesis machine learning and deep learning algorithms are considered for intrusion

detection.

1.3 Research Gap:

While a substantial body of literature addresses various facets of intrusion detection, there is
a noticeable gap in comprehensive studies that systematically compare the performance of

distinct models. This research void mhibits a holistic understanding of the strengths and

1

weaknesses of different approaches. Bridging this gap through a comparative study is
essential to inform the development of more resiient and adaptive ntrusion detection

systems.

1.4 Objective of the Study:

This research endeavors to conduct an in-depth comparative analysis of two prominent
models—deep learning model based on convolutional neural networks and support vector
machines—within the realm of ntrusion detection systems. The primary objectives include
assessing the efficacy of these models in identifying and mitigating cyber mtrusions,
delineating their nuanced strengths and limitations, and providing nuanced msights to refine

and optimize intrusion detection strategies.

1.5 Scope and Significance:

The scope of this study extends beyond a surface-level comparison; it encompasses anuanced
examination of the theoretical underpinnings and practical implementations of the chosen
models in real-world scenarios. By addressing this research gap, the study aspires to furnish
valuable insights that are not only pertinent to cybersecurity practitioners but also contribute
to the body of knowledge accessible to researchers and policymakers. The significance lies
in the potential enhancement of overall cybersecurity resilience through informed decision-

making and strategic implementations.

1.6 Research Hypothesis or Questions:

At the core of this research lies the hypothesis that the chosen models—support vector
machines, and convolutional neural networks—exhibit diverse levels of effectiveness in
detecting and mitigating intrusions. Complementary to this hypothesis, the study will explore
critical research questions such as the comparative performance metrics, adaptability to

evolving threats, and scalability of these models in practical mtrusion detection scenarios.

1.7 Rationale for Model Selection:

The selection of machine learning and deep learning models- support vector machines, and
convolutional neural networks is underpinned by therr mnherent capabilities m pattern
recognition, feature extraction, and complex data processing. Each model brings unique
strengths to the table, making them relevant choices for addressing the multifaceted
challenges posed by sophisticated cyber-threats. The rationale is rooted in leveraging the
diverse strengths of these models to attam a comprehensive understanding of their

applicability and effectiveness in the context of intrusion detection.

1.8 Thesis Overview:

The remainder of this thesis will contain

Chapter 2: Literature Review which will provide a comprehensive overview of the state of
the art in intrusion detection systems (IDS), covering both traditional and machine learning-
based approaches. It will discuss the different types of intrusions, the challenges of detecting

mtrusions, and the evaluation metrics used to assess the performance of IDSs.

Chapter 3: Methodology which will describe the methodology used in the research, including
the data sets used, the experimental setup, and the chosen evaluation metrics. It will also
provide a detailed explanation ofthe SVM and CNN algorithms, highlighting their strengths

and weaknesses in the context of intrusion detection.

Chapter 4: Results will present the results of the experiments conducted on the real-world
data sets. It will compare the performance of SVMs and CNNs in terms of accuracy,
precision, recall, and F1 score, and provide insights into the factors that affect their

performance.

Chapter 5: Discussion and Conclusion will discuss the implications of the findings, including
the strengths and weaknesses of SVMs and CNNs for intrusion detection. It will also provide

recommendations for future research and practical applications, such as the development of

hybrid IDS systems that combine SVMs and CNNgs.

CHAPTER 11
Literature Review

2.1 Overview of Intrusion Detection System (IDS)

According to Khraisat et al. (2019), any type of unauthorized activity that damages an
nformation system is commonly referred to as intrusion. This means that any attack that would
endanger the availability, confidentiality, or integrity of the mformation will be viewed as an
mtrusion. Comparably, to enable the maintenance of system security, an mtrusion detection
system (IDS) is a hardware or software system that recognizes harmful activity on computer
systems (Liao et al, 2013). Thus, monitoring network resources, identifying various forms of
harmful network traffic, and preventing network misuse are the primary goals of mtrusion
detection.

The commercial development of intrusion detection technologies started i the 1990s
(Rajasekaran, 2020). The first company to sell ntrusion detection systems (IDS) was Haystack
Labs, with its Stalker line of host-based products. Additionally, at the time, SAIC was also
developing a host-based mtrusion detection system known as the Computer Misuse Detection
system (CMDS) (Rajasekaran, 2020). Based on these assumptions, IDSs are designed to
distinguish between an intruder's behavior and that of a legitimate user.

On the strength of the importance of Intrusion Detection Systems, this literature review aims to
provide a comprehensive understanding of Traditional Intrusion Detection Systems (IDS) as a
foundational aspect of cybersecurity. Therefore, in the context of our comparative study on
mtrusion detection, utilizing supervised learning models, such as support vector machine, and deep
learning models, such as convolutional neural networks, it is crucial to establish a solid foundation

by examining the strengths, weaknesses, and advancements in each traditional approach.

In their research, Kumar et al. (2021) proposed a pioneering approach with the 'Security and
privacy-aware Artificial Intrusion Detection System using Federated Machine Learning.' The
study introduced a federated machine learning mechanism as a machine learning model that assists
mn training decentralized data n devices to ensure data privacy and security. Addtionally, an
Artificial Immune Intrusion Detection System was designed to classify the node and monitor
anomaly in the network. The experimental result showed that the model displayed better and more
efficient result that the edge security models in existence.

Alhajjar et al. (2021) investigate the nature of adversarial machine learning examples in the scope
of intrusion detection systems. They employ the use of particle swarm optimization and genetic
algorithm as tools on NSL-KDD dataset and UNSW-NBI15 dataset and evaluated its performance.
The result was compared to Monte Carlo Simulation, which is a baseline perturbation method. The
result of this approach showed that the adversarial example generation method exhibits high
misclassification rates in machine learning models.

5

Mustapha Qahatan Alsudani, Salah H, Abbdal Reflish, Kohbolan, and Myasar Mundher Adnan
(2022) in therr study explored a comparative approach on three different machine learning
algorithms which are; traditional machine learning, ensemble learning, and deep learning. They
performed experiments on decision trees, Naive Bayes, support vector machines, random forestsm
XGBoost, CNN and RNN using the KDD CUPP99 and NSL-KDD datasets. They compared the
performance metrics of the algorithms, the result obtained showed that the Naive Bayes algorithm
has faster training speed, and can face various types of attacks but with low accuracy in detecting

the learned data.

Paya, Arroni, Garcia-Diaz, & Gomez, (2024) mntroduced ‘Apollon: A robust defense system
designed to counter Adversarial Machine Learning attacks within Intrusion Detection Systems™.
They defined Apollon as a novel defense-based system that applies various set of classifiers to
detect mtrusion and safeguard mntrusion detection system against potential threats. Apollon was
evaluated on different datasets and the result shown that it can successfully identify attacks without
affecting its performance on network traffic.

2.2 Intrusion Detection System Techniques
Due to the exponential growth of networking technologies and the rise in cyber threats, effective

cybersecurity has become increasingly important. One critical component of cybersecurity is the
detection and prevention ofmalicious activity and unauthorized access within computer networks.
This makes computer systems extremely resistant to malicious actions that could jeopardize their
availability, mtegrity, or confidentiality. There are two primary subcategories of intrusion detection
systems: Signature-based Intrusion Detection System (SIDS) and Anomaly-based Intrusion
Detection System (AIDS).

2.3 Signature-based Intrusion Detection System
Known alternatively as knowledge-based detection or misuse detection, signature intrusion

detection systems (SIDS) use pattern matching techniques to identify a known attack (Khraisat et
al, 2018). This kind of detection operates highly effectively against known assaults, but it is
dependent on getting regular pattern updates and is not able to identify unexpected threats from
the past or future releases. This implies that matching techniques are employed in SIDS to locate
a prior intrusion. Stated differently, an alarm signal is generated when the signature of an intrusion
corresponds with the signature of an earlier intrusion that is already recorded in the signature
database (Modi et al., 2013).

Additionally, the primary idea behind the SIDS system is to create a database of intrusion
signatures, compare the present set of activities to the signatures already in place, and trigger an
alarm when a match is discovered. If a rule is written like "if (source IP address=destination IP
address) then label as an attack," for instance, it may result from the expression "if antecedent -
then: consequent." Consequently, for known itrusions, SIDS typically provides good detection
accuracy (Symantec, 2017). Nevertheless, until the signature of the fresh assault is retrieved and
saved, SIDS cannot identify zero-day attacks because the database lacks a matching signature.
Many widely used tools, like NetSTAT (Vigna & Kemmerer, 1999) and Snort (Roesch, 1999), use
SIDS.

A major challenge for signature-based intrusion detection systems is that each signature
necessitates a database entry; hence, an entire database could have hundreds or even thousands of
entries (Meiners et al., 2010). Because traditional SIDS approaches analyze network packets and
match them against a signature database, they are not as effective at recognizing assaults that span
many packets. Every packet needs to be checked against every entry in the database. Given the
mtricacy of today's malware, it could be necessary to extract signature data from several packets.
IDS must also bring the contents of previous packets with it. It can take a lot of resources to achieve

this, which will reduce throughput and expose the IDS to denial-of-service assaults.

In summary, with the increasing rate of zero-day attacks (Symantec, 2017), SIDS techniques have
become progressively less effective because of the absence of signature for any such attacks. The
other factors such as the polymorphic variants of the malware and the rising number of targeted
attacks also add up n compromising the adequacy of this traditional model. Some of the IDS
evasion tools use this vulnerability and flood the signature-based IDS systems with too many
packets to the point that the IDS cannot keep up with the traffic, thus making the IDS time out and
drop packets, and as a result, possibly miss attacks.

24 Anomaly-based Intrusion Detection System (AIDS)

Due to the ability to overcome SIDS's limitations, AIDS has drawn a lot of academic attention
over the years (Butun et al, 2014). AIDS does not operate by identifying abnormal behavior;
rather, it distinguishes between behavior that is acceptable and undesirable. Rather than patterns
or fingerprints, this categorization is based on rules or heuristics, and identifying the network's
typical behavior is necessary for system implementation. A typical model of a computer system's

behavior is also developed in AIDS through the use of statistical, knowledge-based, or machine
7

learning techniques. A notable divergence between the observed conduct and the model is
considered an anomaly, which may be construed as an infriingement. This type of technique relies

on the distinction between malicious and normal user behavior.

The evolution of AIDS occurs in two stages: the testing phase and the training phase. During the
traming phase, a model of typical behavior is learned using the normal traffic profile. During the
testing phase, a fresh collection of data is utilized to enhance the system's ability to adapt to
previously undiscovered incursions. AIDS can be divided into subgroups according to the training
methodology, such as statistical, knowledge-based, and machine learning-based (Butun et al.,
2014).

AIDS methods can be classified into four primary categories: supervised learning (Chao et al.,
2015), unsupervised learning (Elhag et al., 2015; Can & Sahingoz, 2015), reinforcement learning
and deep learning (Buczak & Guven, 2016; Meshram & Haas, 2017). The comparative analysis
of mtrusion detection using supervised learning models like support vector machnes (SVM) and
deep learning models like convolutional neural networks will be the main emphasis of this review
of the literature. In supervised learning, all input and output variables are gathered, exammned, and
an algorithm is used to determine the typical user behavior from the mput to the output. The goal
is to approximate the mapping function to the point where it can anticipate the output variables for
each new mput record that is gathered. On the other hand, deep learning models are built on

artificial neural networks, specifically convolutional neural networks (CNN)s.

According to Alazab et al. (2012), the primary advantage of AIDS its capacity to detect zero-day
attacks, as it eliminates the need for a signature database to identify anomalous user behavior.
When the conduct under exammation diverges from typical behavior, AIDS sends out a warning
signal. Moreover, there are several advantages to AIDS. They can first find harmful activity
occurring within. An alarm is set off when an intruder begns to make transactions in a stolen
account that are not recognized in the regular user activity. Second, since the system is built using
personalized profiles, it is difficult for a cybercriminal to identify typical user activity without

raising an alert.

However, since the intruders are unpredictable, defining what constitutes a normal network
behavior, determmning the threshold for raising an alarm, and avoiding false alarms are the main

challenges faced by anomaly-based detection systems. Therefore, if the normal model is not

8

defined carefully, there will be a high number of false alarms and the detection system's

performance will be negatively impacted.

2.5 Techniques for Implementing AIDS (SVM and CNN)
Therefore, as was previously indicated, machine learning techniques have been used to construct

a variety of AIDSs. The four primary categories ofthese AIDS techniques are supervised learning,
unsupervised learning, reinforcement learning, reinforcement learning, and deep learning. The
primary goal of applying machine learning techniques is to develop IDS that are more accurate
and require less human understanding. In the past several years, there has been arise in the number
of AIDS cases that employ machine learning approaches. But the comparative analysis of intrusion
detection using supervised learning models—Iike support vector machines (SVM) and deep
learning models—Ilike convolutional neural networks (CNN)—will be the exclusive focus of this

review of the literature.

2.6 Supervised Learning in Intrusion Detection Systems
Supervised learning-based mtrusion detection systems use labeled training data to find intrusions.

Basically, there are two phases in a supervised learning approach: tramning and testing (Jahdav et
al., 2021). Relevant classes and features are found during the training phase, after which the
algorithm gains knowledge from these data samples. Each record in a supervised learning mntrusion
detection system (IDS) is a pair that comprises a network or host data source and an associated
output value, or label, such as normal or intrusion. After that, extraneous features can be removed
using feature selection. A classifier is then trained using a supervised learning technique to
discover the ntrinsic link between the input data and the labelled output value using the training
data for specific features.

On the other hand, in the testing stage, the unknown data is divided into intrusion and normal
classes using the trained model. The resulting classifier subsequently turns mto a model that
predicts the class to which the data that was provided may belong given a collection of feature
values. Several supervised learning-based neural network, decision tree, rule-based, neural,
support vector, naive Bayes, and k-nearest neighbor IDS classification techniques exist (Jahdav et
al, 2021). Every method builds a classification model using a learning strategy. This work,

however, examines support vector machines in depth.

Umer et al. (2022), conducts a survey that specialise on for types of method for ML namely;
supervised learning, semi-supervised learning, unsupervised learning and reinforcement learning.
Likewise, Abdallah et al. (2022) conducts another survey i the supervised machine learning
technique and cyber-security attacks in the field of intrusion detection systems. This provides a
taxonomy based on related topics. The result of this survey when conducted on the KDD99, NSL-
KDD, CICDS2017, and UNSW-NBI1S5 displayed that the performance metrics of the supervised
learning is high when classified accordingly. In another survey, Dina, A.S., & Manivannan(2021)
presents a comprehensive review of ML-based detection techniques developed in the last ten years.
The goal of the survey in the study to serve a reference pomt for future researchers in the field of

ML-based IDSs.

2.7 Support Vector Machine (SVM) in Intruion Detection Systems
As we progress in our exploration of mtrusion detection methodologies, the focus now shifts to

the utilization of Support Vector Machines (SVM). SVMs have garnered attention for their
prowess in classification tasks, and this literature review aims to dissect the performance,

methodologies, and contributions of SVMs in the realm of intrusion detection.

Originally introduced by Vladimir Vapnik (Vapnik, 1998), Support Vector Machines (SVMs) have
proven to be effective on a variety of classification and forecasting tasks in the fields of statistical
learning theory and structural risk minimization. SVMs' effectiveness in classification problems
has drawn significant attention. They have been applied to the several pattern recognition and
regression estimation problems, as well as dependency estimation, forecasting, and building
mtelligent robots (Sami, 2012). Additionally, because of the generalization concept based on
Structural Risk Minimization Theory (SRM), or the method being based on guaranteed risk bounds

of statistical learning theory, SVMs have the potential to encompass very vast feature spaces
(Joachim, 2002).

As a discriminative classifier, SVM is defined by a maximum fringe hyperplane that lies n some
space and classifies the data separated by non-linear boundaries, which can be constructed by
finding a set of hyperplanes that divide two or more classes of data ponts. Different kinds of
splitting hyperplanes are achievable by applying kernels, such as linear, polynomial, Gaussian
Radial Basis Function (RBF), or hyperbolic tangent. Consequently, SVMs employ kernel

functions to map the training data into a higher-dimensioned space, thereby allowing for the linear

10

classification of mtrusion. Following the construction of the hyperplanes, the SVM determines the
lines of separation between the mput classes and the mput elements defining the boundaries
(support vectors (Sivanandam et al. (2006)). A maximum margin hyperplane divides a given set
oftraining samples labeled as positive or negative; this maximizes the distance between the margin
and the hyperplane. In the event that no hyperplanes are able to divide the positive or negative
samples, an SVM chooses a hyperplane that splits the sample as precisely as possible.

In a seminal work by Vinayakumar et al. (2017), the authors leverage CNN architectures for
mtrusion detection by modeling network traffic as time-series, particularly TCP/IP packets. This
study employs supervised learning methods such as multi-layer perceptron (MLP), CNN, CNN-
recurrent neural network (CNN-RNN), CNN-long short-term memory (CNN-LSTM), and CNN-
gated recurrent unit (GRU). The evaluation, performed onthe KDDCup 99 synthetic ID dataset,
reveals the efficacy of CNN and its variants. The ability of CNNs to extract high-level feature
representations proves mstrumental i outperforming classical machine learning classifiers

[(Vinayakumar et al., 2017)].

Finallyy, SVMs are also highly known for their capacity to generalize, and they work best in
situations where there are a lot of attrbutes and few data points. The data mining, pattern
recognition, and machine learning groups have become interested in SVM recently due to its
exceptional generalization ability, optimal solution, and discriminative capacity. SVM is a potent
technique that has been used to solve real-world bimary classification issues. It is used in a way
that maximizes the margin—the existing space between the decision borders—in a feature space,
which is a high-dimensional space. Many features in IDS datasets are redundant or have less of an

mpact on classifying data items into the appropriate categories.

As we navigate through diverse intrusion detection methodologies, our attention now turns to the
application of Convolutional Neural Networks (CNN). Renowned for their prowess in computer
vision, CNN architectures have recently been extended to the domain of intrusion detection in
cybersecurity. This literature review endeavors to dissect the models, methodologies, and

accomplishments of CNNs in the context of network mtrusion detection.

Support Vector Machines (SVMs) for Intrusion Detection Systems by N. Jabbour et al. (2017)
provides a comprehensive overview of SVM applications i intrusion detection systems. It

discusses the mherent nterpretability of SVMs, making them easier to understand and debug
11

compared to some deep learning models. This can be advantageous if understanding the decision-

making process behind your intrusion detection system is important.

In a comprehensive study by Ahmad etal. (2018), the performance of SVM is rigorously compared
with other techniques, namely random forest and extreme learning machine, for intrusion
detection. The study addresses the critical need for an efficient classification technique, especially
in handling large datasets, such as system and network data. Employing well-known machine
learning techniques, the authors utilize the NSL—knowledge discovery and data mmning dataset,
presenting results that demonstrate the superiority of extreme learning machine over other

approaches [(Ahmad et al., 2018)].

Bhati and Rai (2020) contribute to the literature with an analytical study of SVM-based mtrusion
detection techniques. The methodology involves data collection, preprocessing, SVM technique
for traming and testing, and decision-making. The study utilizes the NSL-KDD dataset, a
benchmark in intrusion detection techniques. The results showcase the effectiveness of different
SVM variations, including Linear SVM, Quadratic SVM, Fine Gaussian SVM, and Medium
Gaussian SVM, in achieving high overall detection accuracy [(Bhati & Rai, 2020)].

Performance Analysis of Machine Learning Algorithms for Network Intrusion Detection by S. M.
Latif et al. (2020): The study evaluates the performance of various machine learning algorithms,
including SVMs, decision trees, and K-nearest neighbors, for intrusion detection using the NSL-
KDD dataset. They find that SVMs achieve the highest F1-score (93%), followed by CNNs (92%)
and decision trees (89%). This paper provides a head-to-head comparison of various algorithms

on a similar dataset, offering insights into their relative strengths and weaknesses.

In their nnovative research, Alzagebah et al. (2023) presents a 'Hierarchical Intrusion Detection
System based on Extreme Learning Machine and Nature-Inspired Optimization.! They developed
a better bio-inspired meta-heuristic method effective detection and classification problems. The
suggested model is used to address the multi-class classification problem using a one-versus-all
model-based approach. This approach was evaluated with several meta-heuristic methods and
multi-class classifiers on the UNSWNB-15 dataset. The result showed that the new experimental

result performed more effectively than pre-existing methods.

12

2.8 Application of Support Vector Machines
This section provides a survey of some major contributions towards SVM and its successful

applications in IDS. For example, Heba et al. (2010) introduce an mtrusion detection system
employing Principal Component Analysis (PCA) with SVMs. The approach aims to select the
optimum feature subset, reducing the number of features and enhancing the efficiency of intrusion
detection. Through experiments on the NSL-KDD dataset, the proposed system demonstrates
effectiveness in speeding up the detection process while mmnimizing memory space and CPU time
costs (Heba et al, 2010). In the work by Li et al. (2012), an SVM classifier with an RBF kernel
was applied to classify the KDD 1999 dataset into predefined classes. From a total of 41 attributes,
a subset of features was carefully chosen by using a feature selection method. Similarly,
Chowdhury et al. (2016) introduced a method of detecting intrusion based on network traffic. They
randomly picked three variables from a feature pool and used SVM model to differentiate attacks
and normal traffic accordingly. This was a continuous process until all permutations of'the features
were covered. The model was tested on the UNSW-NBI15 dataset and the result of exhibit an

accuracy of 98.76%.

Support Vector Machines (SVMs) for Intrusion Detection Systems by N. Jabbour et al. (2017)
provides a comprehensive overview of SVM applications in intrusion detection systems. It
discusses the inherent nterpretability of SVMs, making them easier to understand and debug
compared to some deep learning models. This can be advantageous if understanding the decision-

making process behind your intrusion detection system is important.

In a comprehensive study by Ahmad etal. (2018), the performance of SVM is rigorously compared
with other techniques, namely random forest and extreme learning machine, for intrusion
detection. The study addresses the critical need for an efficient classification technique, especially
in handling large datasets, such as system and network data. Employing well-known machine
learning techniques, the authors utilize the NSL—knowledge discovery and data mining dataset,
presenting results that demonstrate the superiority of extreme learning machine over other

approaches (Ahmad ef al., 2018).

Bhati and Rai (2020) contribute to the literature with an analytical study of SVM-based intrusion
detection techniques. The methodology involves data collection, preprocessing, SVM technique
for traming and testing, and decision-making. The study utilizes the NSL-KDD dataset, a

benchmark in intrusion detection techniques. The results showcase the effectiveness of different
13

SVM variations, including Linear SVM, Quadratic SVM, Fine Gaussian SVM, and Medium
Gaussian SVM, in achieving high overall detection accuracy [(Bhati & Rai, 2020)].

SVM is basically supervised machine learning method designed for binary classification. Using
SVM in IDS domain has some limitation. SVM being a supervised machine learning method
requires labelled information for efficient learning. Pre existing knowledge is required for
classification which may not be available all the time (Shon ef al, 2005). SVM has the ntrinsic
structural limitation of the binary classifier ie. it can only handle binary-class classification
whereas mtrusion detection requires multi-class classification (Sandya et al., 2005). Although
there are some improvements, the number of dimensions still affects the performance of SVM-
based classifier (Kyaw, 2010). SVM treats every feature of data equally. In real ntrusion detection
datasets, many features are redundant or less important. It would be better if feature weights during
SVM training are considered (Kyaw, 2010). Training of SVM is time-consuming for IDS domain
and requires large dataset storage. Thus, SVM is computationally expensive for resource-limited
ad hoc network (Joseph et al, 2011). Moreover, SVM requires the processing of raw features for
classification which increases the architecture complexity and decreases the accuracy of detecting

mtrusion (Joseph et al., 2011).

In theirr contribution, Turukmane and Devendiran (2024) present "M-MultiSVM: An eflicient
feature selection assisted network intrusion detection system utilizing machine learning". This
study introduced an effective automatic abnormality detection system that aids the detection
system to identify false detection. The study proposed M-MultiSVM model using the CSE-CIC-
IDS 2018 and UNSW-NBIS5 datasets. They utillized the Null value handling and MIN-Max
normalization for data pre-processing and the features of the dataset was extracted using the
Modified Singular Value Decomposition which was then optimized. The result of the performance
metric displayed that the suggested method has an accuracy of 99.9% when the CSE-CIC-IDS
2018 dataset was utilized and an accuracy of 97.535% when the UNSW-NBI15 dataset was utilized.

2.9 DeepLearning in Intrusion Detection Systems
Deep learning is a subfield of machine learning where a computer uses a hierarchy of data based

on experience and form multiple layers as an output. Deep learning can be supervised as well as
unsupervised. In the case of supervised deep learning, data can be classified whereas in the case
of unsupervised deep learning data patterns are analyzed. Deep learning is directly related to

artificial intelligence where machines will acquire knowledge by learning with experience and will
14

replace human intelligence. Deep learning works on the platform of artificial neural networks by
studying massive amounts of data with the help of algorithms prepared by human intelligence. It
is referred to as ‘deep learning’ as the artificial neural networks possess different deep layers that
enables them to learn. In neural networks, each neural node of every single hidden layer calculates
the weighted values receiving from the previous layer and passes on the output values to the
subsequent layer. The result value of the last layer can be considered as the final results achieved
by the neural networks from the raw data.

IDSs play an important part in cybersecurity as they defend the network from cyber-attacks by
monitoring the network. IDSs in cybersecurity have evolved using deep learning (DL) due to their
findings in computer vision, image processing, and natural language processing (Avci etal., 2021).
Due to their two key properties, hierarchical feature representations and the acquisition of long-
term temporal patterning, this structure of hierarchical and heuristic search is highly effective. DL
is popular among researchers. Therefore, considerable thought has been given to DL approaches
for enhancing the intelligence of IDSs, despite a lack of research comparing such machine learning
methods with openly available datasets. DL’s complex structuring architecture facilitates high-
quality learning for complex data processing. Rapid progress in parallel processing technology has

produced a robust system basis for DL approaches.

DL-IDS leverages complex neural network architectures to learn intricate patterns from data.
Convolutional Neural Networks (CNNs) are particularly effective for processing grid-like data
such as images, making them well-suited for analyzing network packet data. Recurrent Neural
Networks (RNNs), on the other hand, excel in capturing sequential dependencies, making them
valuable for time-series data like system logs. The synergy of these architectures allows DL-IDS
to handle diverse mput formats efliciently. The strength of DL-IDS also lies in its ability to
automatically extract features from raw data. Traditional IDS often requires manual feature
engineering, a time-consuming and expertise-dependent process. DL-IDS eliminates this
bottleneck by autonomously learning relevant features during the training phase. This adaptability
ensures that the system can recognize both known and previously unseen patterns associated with

normal and malicious behavior.

Al-Kashoori and Alsultan (2019) explores a comparative approach of deep learning that compares
various deep learning architectures, including DNNs, CNNs, and LSTMs, for mtrusion detection

15

using the NSL-KDD dataset. They report that CNNsachieve the highest accuracy (92%), followed
by LSTMs (89%) and DNN’s (86%), demonstrating the potential of CNNs for high detection rates
on similar datasets. In another study Y. Li et al. (2020), The survey paper explores various deep
learning methods for intrusion detection, including CNNs, LSTMs, and autoencoders. They
emphasize that achieving a balanced F1-score, which considers both precision and recall, is crucial
for practical intrusion detection systems. This paper can help you understand the trade-offs
between different models and select the one that offers the best balance for your specific needs.
However, Gill et al. (2020) conducts a survey that provides a broad overview of recent advances

in machine learning techniques for intrusion detection, including deep learning,

In there contribution by Zhu et al. (2023), they propose a novel deep CNN framework for DDoS
attack detection. Their model achieves an accuracy of 99.2% and a low false positive rate of 0.7%
on the CICIDS2017 dataset, showcasing the strength of CNNs in achieving high accuracy with
low false alarms for specific attack types. Contrarily, Cevallos et al. (2023) proposes a survey in
the field of deep learning where they explore DRL-based mtrusion detection design choices. The
goal of the survey is to explore the merits and deployment of IOT environments with the objective
of the survey to act a guide to future researchers mterested in Intrusion Detection in the field of

IOT.

Deep Learning Approach for Network Intrusion Detection Using a Small Features Vector by M.
R.G.S.N. Kumar et al. (2023): This study investigates a deep learning approach with a small feature
vector for ntrusion detection using the UNSW-NBIS5 dataset. Their model achieves a precision of
96.5% compared to other models requiring more features, highlighting the potential of deep
learning for reducing false positives while maintaining high accuracy.

2.10 Application of Deep Learning in Intrusion Detection Systems

This section provides a survey of some major contributions towards deep learning and its
successful applications i IDS. This literature review aims to unravel the advancements,
methodologies, and applicability of deep learning models in addressing crucial cybersecurity
challenges, including intrusion detection, malware detection, phishing/spam detection, and
website defacement detection. For example, in their survey, Mahdavifar and Ghorbani (2019)
provided a comprehensive overview of recent DL approaches in cybersecurity. The survey
delineates preliminary definitions of popular DL models and algorithms, proposing a general DL

framework for cybersecurity applications. The authors analyze related papers, considering focus
16

areas, methodologies, model applicability, and feature granularity, culminating i concluding
remarks and future research considerations (Mahdavifar & Ghorbani, 2019).

Renowned for their prowess in computer vision, CNN architectures have recently been extended
to the domain of intrusion detection in cybersecurity. In a seminal work by Vinayakumar et al
(2017), the authors leverage CNN architectures for intrusion detection by modeling network traffic
as time-series, particularly TCP/IP packets. This study employs supervised learning methods such
as multi-layer perceptron (MLP), CNN, CNN-recurrent neural network (CNN-RNN), CNN-long
short-term memory (CNN-LSTM), and CNN-gated recurrent unit (GRU). The evaluation,
performed on the KDDCup 99 synthetic ID dataset, reveals the efficacy of CNN and its variants.
The ability of CNNs to extract high-level feature representations proves mstrumental in

outperforming classical machine learning classifiers (Vinayakumar et al., 2017).

Parameswari et al. (2024) propose a developed an optimized enabled deep learning method named
RAT Swarm Hunter Prey Optimization-Deep Maxout Network (RHPO-DMN) programmed to
handle a variety of threat efficiently. The data is transformed using the CNN model formerly pre-
procesed using the Z-score data normalization. The result showed that the RSHPO-DMN model
repectivelly achieved an accuracy of 90.88%, precision of 93.58%, recall of 96.54% and F1 score
0f 95.04%.

Devendiran and Turukmane (2024) proposed an innovative approach using deep learning to
improve accuracy of the classification with minimal error. In this method, the dataset which was
the TON-IOT and NSL-KDD dataset was pre-processed by M-squared normalisation techniques
and data cleansing. Thereafter, the data was balanced by employing the chaotic optimization
approach. Furthermore, the extracted features are then classified using the Gated Attention Dual
Long Short-Term Memory (Dugat-LSTM). The result of this approach showed that the accuracy
of the prototype was 98.76% in the TON-IOT dataset while the NSL-KDD dataset was 99.65%.

Yuan et al. (2024) proposed a study titled: "A simple framework to enhance the adversarial
robustness of deep learning-based intrusion detection system". The study presents a novel IDS
architecture that combines machine learning models and to improves the effectiveness of IDS
against potential attacks. An Adversarial Example (AE) detector was first developed then with the
fusion of ML and DL models a more complex ML models was formed that aid in identifying

17

malicious AE. The outcome of the fusion between the ML and DL result in a very high accurate
prediction and low attack transferability between both models.

Aljehane et al. (2024) presents a new approach of integrating Golden Jackal Optimization
Algorithm with deep learning assisted IDS. The goal of this method is to effectively identify and
classify mtrusion. The data was first normalized to scale then the GJOADL-IDSNS is used to
select the best subset of features. The dataset was simulated using the Salo Swarm Algorithm
(SSA) and the GJOADL-IDSNS model was compared with other models. The results showed that
the technique when compared to other models exhibit a higher performance accuracy when

compared with other models.

Talukder, Hasan, Islam, Uddin, Akhter, Yousuf, Alharbi, and Moni (2023) introduced a study that
developed a new hybrid model that integrates machine learning and deep learning to improve
detection rates and dependability. The research aims to improve pre-processing with the
combmation of SMOTE for data balancing and XGBoost for feature selection. The proposed
method was in comparison with various machine learning and deep algorithm to develop a more
efficient model. The method was evaluated on two datasets and produced great result. The
KDDCUP’99 produced and accuracy 0f99.95% and the CIC-MalMem-2022 dataset produced and

accuracy of 100% with no overfitting.

2.11 Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs), a breakthrough i the field of deep learning, have

revolutionized the way computers interpret and process visual information. This neural network
architecture is specifically designed for tasks such as image recognition, object detection, and
feature extraction from visual data. A key mnovation of CNNslies in their ability to automatically
learn hierarchical representations of features from raw mput data. The concept of Convolutional
Neural Networks can be traced back to the early 1990s. While the foundations were laid by Yann
LeCun, a computer scientist and Al researcher, it was in collaboration with Léon Bottou and
Yoshua Bengio that the CNN architecture truly took shape. LeCun's seminal work on
convolutional neural networks, particularly the LeNet-5 architecture developed in 1998, marked a

significant milestone in the application of deep learning to image recognition tasks.

The distinctive feature of CNNs is their use of convolutional layers, which apply convolution

operations to input data. These layers consist of filters that automatically learn spatial hierarchies

18

of features, capturing patterns from local to global scales. Pooling layers, commonly used in
conjunction with convolutional layers, further reduce the spatial dimensions of the input, retaining
essential features while discarding unnecessary details. Furthermore, CNNs have demonstrated
unparalleled success in various applications, from image classification tasks, such as identifying
objects m photographs, to more complex tasks like facial recognition and autonomous vehicle
navigation. The architecture's ability to automatically learn relevant features from raw data,
coupled with its spatial hierarchies, makes it particularly effective in capturing complex patterns
i visual information.

As technology has advanced, CNNs have become a cornerstone in computer vision and image
processing, with applications extending beyond traditional image recognition. Their impact spans
industries, contributing to advancements in medical image analysis, satellite image interpretation,
and even artistic style transfer in the realm of creative computing. The continued refinement and
application of Convolutional Neural Networks underscore their significance in shaping the
landscape of modern artificial ntelligence.

2.12 Convolutional Neural Networks in Network Intrusion Detection

Navigating the landscape of intrusion detection systems, our exploration extends to traditional
methods, deep learning models, and the specific focus on Support Vector Machines (SVM) and
Convolutional Neural Networks (CNN). This synthesis aims to distill key msights, aligning our
research with the nuanced challenges and advancements observed in the literature, setting the stage

for a focused comparative study.

Within the literature, a recurring theme revolves around the pursuit of precision in intrusion
detection. Traditional methods rely on signature-based detection, while deep learning models,
particularly SVM and CNN, showcase promise in handling dynamic and complex datasets. The
exploration of high-level feature representations emerges as a pivotal trend, emphasizing the

adaptability of SVM and the feature extraction capabilities of CNN.

The comparative analysis reveals a dynamic landscape where SVM and CNN stand out as potential
front-runners. SVM demonstrates stability and adaptability, while CNN excels in capturing
mtricate patterns. The absence of a standardized framework for comprehensive evaluations is
apparent, urging the need for a focused study to discern the specific strengths and limitations of
SVM and CNN in the context of intrusion detection.

19

A Comparative Analysis of Deep Learning Approaches for Network Intrusion Detection Systems
(N-IDSs) by H. Al-Kashoori and J. Alsultan (2019): This study compares various deep learning
architectures, including DNNs, CNNs, and LSTMs, for intrusion detection using the NSL-KDD
dataset. They report that CNNs achieve the highest accuracy (92%), followed by LSTMs (89%)
and DNNs (86%), demonstrating the potential of CNNs for high detection rates on similar datasets.

In another study Intrusion Detection Systems Based on Deep Learning Techniques by Y. Li et al.
(2020): The survey paper explores various deep learning methods for ntrusion detection, including
CNNs, LSTMs, and autoencoders. They emphasize that achieving a balanced F1-score, which
considers both precision and recall, is crucial for practical intrusion detection systems. This paper
can help you understand the trade-offs between different models and select the one that offers the

best balance for your specific needs.

2.13 Comparative Studies: SVM vs. CNN in Intrusion Detection
In the realm of Intrusion Detection Systems (IDS), a burgeoning area of research revolves around

the comparative analysis of traditional machine learning methods, exemplified by Support Vector
Machines (SVM), and more advanced deep learning approaches, particularly Convolutional
Neural Networks (CNN). Various studies have been conducted to scrutinize the effectiveness of
these algorithms in identifying and mitigating cybersecurity threats, each employing distinctive
methodologies to assess their respective strengths and limitations. One notable study, by H. Al-
Kashoori and J. Alsultan (2019), delved mnto the comparative analysis of SVM and CNN. The
study utilized a dataset comprising both normal and anomalous network traffic, training and
evaluating SVM and CNN models on extracted features. Performance metrics such as accuracy,
precision, recall, and F1 score were employed to assess the models' effectiveness. The findings
revealed that SVM performed well in recognizing known attack patterns, while CNN exhibited

superior adaptability to novel threats, showcasing higher overall performance.

Analysis of Network Intrusion Detection Performance Using SVM and Deep Learning
Techniques" by S. R. Bhuiyan et al. (2020): The study compares SVM and CNN performance on
the NSL-KDD dataset. While the CNN achieves a higher accuracy (94%) than the SVM (90%),
the SVM exhibits a slightly higher recall (92% vs. 90%). This suggests that if maximizing the
detection of even low-probability mtrusions is crucial, SVMs might be a good choice depending

on your data and risk tolerance.

20

In a similar vein, the study titled "Evaluating SVM and CNN for Anomaly-based Intrusion
Detection" by Y. Li et al. (2020) focused on anomaly-based intrusion detection. The study utilized
datasets encompassing various attack scenarios and assessed the performance of SVM and CNN
models. Performance metrics, including accuracy, precision, recall, and F1 score, were leveraged
for comparative evaluation. The results showcased the robust performance of SVM in detecting
known attack patterns, while CNN demonstrated exceptional accuracy i identifying previously

unseen anomalies, highlighting its adaptability to evolving threats.

Similarly, the methodologies employed in these studies followed a systematic approach. Diverse
datasets were selected to ensure the representation of various cyber threats and normal network
behaviors (Vinayakumar et al., 2017). Both SVM and CNN models underwent training on labeled
datasets, with a focus on optimizing parameters for each algorithm. Feature extraction techniques
differed, with SVM relying on handcrafted features and CNN automatically learning hierarchical

representations, reducing the need for extensive manual feature engneering.

According to Zhang, Jia, Wang, Wang, Liu, and Yang (2022), in their recent study, they conducted
"comparative research on network mtrusion detection methods based on machine learning". The
research compared three categories; traditional machine learning, ensemble learning and deep
learning tested on the KDD CUP99 dataset and NSL-KDD dataset. The experiment performed was
on decision tree, Naive Bayes, support vector machines, random forest, XGBoost, convolutional
neural networks and RNN networks. The evaluation metrics of these algorithms were compared
and the result displayed that the ensemble learning algorithm is more effective than the others. The
Naive Bayes algorithm is better in facing diverse forms of attack and faster traming speed but with
low accuracy in detecting the learned data. The deep learning model does not significantly stand
out but the optimal results are influenced by various factor such a hyperparameters, structure and

the number of iterations.

This section includes other important contribution related to the field of network intrusion

detection for machine learning and deep learning models includes;

Lv et al. (2020) introduced a novel approach that utilizes on signature attacks to differentiate
normal and anomalous activities to identify attacks based on extreme learning machine with a

hybrid kernel function (HKELM). Additionally, Kernel Principal Component Analysis (KPCA) is

21

employed for data preprocessing and feature extraction on the KDD99 dataset and the mdustrial
mtrusion detection dataset. The result of this proposed method displayed high accuracy with time.

Kalimuthan et al, (2020), presents a review of existing artificial intelligence-based methods with
bench mark dataset. The study focused on identifying various kinds of attacks using ML
classification algorithms. They explore the performance analysis of pre-existing IDS and the

outcome obtained by various method was classified.

Asif et al. (2022) developed an intelligent intrusion detection model that integrate Machine
Learning and MapReduce-Based intelligent model. This MR-IMID identifies ntrusion of big data
sources and unknown test scenarios. This approach produces an accuracy of 97.7% during training
phase and 97.7% during the validation phase, however, Yang et al. (2022) developed an IDS-ML
program that optimizes ML models to detect various forms of attacks to network security systems.
The result of this ML code when evaluated proves that it can be implemented on all kind of datasets

for intrusion detection in the cope of cybersecurity.

Khalil et al (2023) introduced an Artificial mtelligence-based mntrusion Detection based system
that combines deep learning and edge computing. This method utilizes the Order Preference by
Similarity to Ideal (TOPSIS) technique and it uses a Bidirectional Generative Adversarial Network
(BiGAN) to detect intrusions. This is a problem because the dataset is highly unbalanced and
unstructured, and ordinary traffic samples are usually more common than aberrant traffic. Our
BiGAN-based model resolves generator and discriminator network synchronization issues.
Traning iterations increase on their own until the prerequisites for cross-entropy loss are satisfied.
Being a single-class classifier, the trained encoder-discriminator network can discriminate between
normal and pathological mput. When compared to similar approaches, experimental results show
greater performance onthe NSL-KDD dataset. In contrast to the previous study, Hossain and Islam
(2023) proposes an ensemble-based ML approach to mtrusion detection. Several ensemble
algorithms such as random forest, Gradient Boosting, Adaboost, XGBoost was evaluated on
popular datasets. The features of the dataet was extracted by correlation analysis, mutual
mformation and PCA. The result from this ensemble approach showed that the Random forest

algorithm exhibit better performance metrics than other algorithms with an accuracy of 99%.

In theirr research, Lu et al. (2024) delve into the realm of cybersecurity for the Industrial Internet

of Things (IloT), by introducing hierarchical clustering algorithm to under sampled technology,

22

which diminishes data loss of majority samples while solving the problem of false detection of
samples. This method optimizes feature selection while eradicating redundancy through deep
neural network. The result of this experiment shown that the method is very effective in improving

the intrusion detection for Internet of Things.

However, Nabi, Zhou (2024) in their contribution developed a high accurate classifier with
minimum false alarm. They employed the NSL-KDD dataset on a set of classifiers. The result
when evaluated showed that the j48 tree had the better accuracy of 79.1%. In other to improve the
performance of the classifier, the Random Projection algorithm and PCA algorithm was explored.
This approach showed the PART algorithm has a better accuracy than the random projection
algorithm and the origmal set, with an accuracy of 82.0%, however random projection was less

time consuming,

Alazab et al. (2024) in their comprehensive research proposed a method of optimizing MLP
learning by using the Harris Hawk Optimization algorithm. This approach is carried out by the
optimization ofbias and weight parameters to select the bet variable in training process for minimal
errors in intrusion detection. The HHO-MLP method carried out using the EvoloPy NN
framework, and the model evaluation metric such as accuracy, precision, specificity and
sensitivity, MSE and RMSE values was compared with other evolutionary methods. The HHO-
MLP exhibit better performance with an accuracy of93.17%. sensitivity of 89.25% and specificity
0f 95.41%.

Nie et al. (2024) developed a packet-smart representation of IOT traffic. The design method was
a double stage multi-task multi-view IoT mtrusion detection (M2vTIDS) learning architecture
comprising of a multi-view that can automatically identify anomaly. = The outcome of the
experiment when evaluated on three well known IoT datasets displayed that the M2vI-IDS had
better accuracy when compared with popular specialized IDS systems.

However, Jayaraj et al, (2024) presents a Hybrid Ensemble Feature Selection (HEFS) method that
combats various phishing techniques. They employed a Cumulative Distribution Function gradient
to extract the features which are then fused into a data perturbation ensemble to form a subset of
primary features. The result of this approach is compared to pre-existing studies i the field of

mtrusion detection.

23

Sun et al. (2024) explores an IDS system that integrate particle swarm optimization and AdaBoost
algorithms to identify mtrusion in health application platforms. Particle Swarm optimization was
employed to extract the features and the IDS classifies the various forms of attacks from the NSL
KDD dataset. The results exhibit that the PSO-AdaBoost achieved a very high-quality performance
metrics. This approach of mtegrating ml mto health care industry can help minimize cost and

improve confidentiality of sensitive information.

Futhermore, performance metrics played a crucial role in the comparative analysis, with accuracy,
precision, recall, and F1 score offering nuanced insights. SVM exhibited high accuracy in
recognizing known attack patterns and demonstrated superior precision, minimizing false
positives. Conversely, CNN showcased superior accuracy, particularly in scenarios with evolving
and previously unseen threats, and exhibited higher recall, indicating its proficiency in identifying
true positives, especially in the case of novel threats. F1 score, balancing precision and recall,
further underscored the nuanced trade-offs between the two approaches (Vinayakumar et al.,
2017).

Trends and patterns observed in these studies indicated that CNN consistently demonstrated
superior adaptability to previously unseen threats, showcasing its potential for real-time intrusion
detection in dynamic environments. However, SVM, being a traditional machine learning method,
demonstrated lower computational complexity during both training and inference compared to the
resource-intensive nature of CNN. Additionally, SVM models offered more straightforward
interpretability compared to the complex internal representations of CNN (Mahdavifar &
Ghorbani, 2019).

In discerning the literature, gaps become evident, and specific limitations emerge. Methodological
inconsistencies and the lack of tailored evaluations for SVM and CNN i intrusion detection
scenarios underscore the need for a dedicated investigation. Our research seeks to address these
gaps by focusing on a detailed comparative analysis, contributing tailored insights to the existing

body of knowledge.

Aligned with the synthesis, our research pivots around focused questions. How do SVM and CNN
perform in real-world mtrusion detection scenarios? What tailored benchmarks and evaluation
criteria are paramount for a nuanced comparative analysis of these specific methods? Our
objectives are outlined—to bridge existing gaps, establish a robust comparative framework, and

24

contribute tailored msights that advance the understanding of mtrusion detection with a focus on

SVM and CNN.

In conclusion, while SVM and CNN both exhibit strengths i specific aspects of mtrusion
detection, the choice between them hinges on the specific requirements of the cybersecurity
context. SVM proves robust in detecting known attack patterns, whereas CNN's adaptability to
evolving threats positions it as a promising solution for dynamic and complex network
environments. Understanding these nuances is essential for tailoring intrusion detection systems

to the unique challenges posed by modern cyber threats.

25

CHAPTER III
Methodology

3.1 ResearchDesign
The overarching goal of this research is to conduct an n-depth comparative analysis of SVM

and CNN within the realm of intrusion detection. The study aims to assess the efficacy of these

models and provide nuanced insights to refine and optimize mtrusion detection strategies.

DATA MODEL TRAINING MODEL PREDICTIONS

E>PREPR0CESSING/FEATU RE E>
S

CALLING

INPUT DATASET

Figure 3. 1: Block Diagram of The Design Stages of an IDS

1. Input Dataset- The internet firewall dataset is the nput that was imported into the google

colab python environment and processed.

2. Data preprocessing/Feature Scaling- The dataset is then checked for missing variables and
the categorical variables which are; Allow, Deny, Drop and Reset-both are then encoded mnto

numerical values.

3. Model Training- The dataset is then splitted into training data and testing data using the
train test split feature. The training data is then used to fit the SVM model and trained while
the CNN model is constructed on the reshaped traning data.

4. Model Predictions- The models are then used to make predictions on the test data set and
we used various evaluation metrics to know how well the models perform on the test dataset.
The program is then used to accept user mput for the network traffic features such as source
port and destination port and the user input is standardize using the standard scaler features
used for training. The CNN models and the SVM models is then used to predict the actions

and calculate the accuracy of the predictions.

26

The design modelling of SVM and CNN m this has been done using Python. SVM model uses
sigmoid kernel function. CNN model used one dimensional convolutional layer with 32 filters of
sizes 3 and ReLU activation function. After extraction features by Convolutional layer, MaxPooling

layer is appled. Pooling size is taken as 2. Obtained features are flattened and entered to fully
connected network presented by Dense layers. The structure of used CNN is presented below.

Table 3. 1: Structure of the used CNN

Layer (type) Output Shape
Convld (32,3,’Reln’)
MaxPoolingl D (pool size=2)
Flatten One dimensional array
dense 1 (Dense) (128, ‘ReLU’)
dense 1 (Dense) (4,”Softmax’)

The Simulation has been done using 500 epochs and 64 batch size, Adam optimization learning
algorithm.

3.2 Data Collection

The dataset utilized in this research study was sourced from the UC Irvine Machine Learning
Repository, specifically from the "Internet Firewall Data" collection, which is publicly available

at

[httpsv//archive.ics.uciedu/dataset/542/internet+ firewall+data](https://archive.ics.uci.edu/datas
et/542/internet+firewalt-data). The dataset was originally compiled from mternet traffic records
captured by a university's firewall system. It serves as the foundational data upon which our

research is based.

The dataset comprises a total of 65,532 instances or data points, each characterized by a set of
multivariate attributes. These attributes are pivotal in the classification task, as they serve as input
features for both Support Vector Machine (SVM) model and CNN. A comprehensive analysis of
these attributes is essential for a holistic understanding of the dataset and the problem at hand.

The dataset consists of 12 attributes that provide valuable information about the network traffic

records. These attributes are as follows:
27

10.

1.

12.

Source Port: The port from which the network traffic originates.
Destination Port: The port to which the network traffic is directed.

Network Address Translation (NAT) Source Port: It refers to the port number assigned

in mapping multiple connections from private IP address to a single Public IP address

Network Address Translation (NAT) Destination Port: It is the port number assigned to
the destination device that manages incoming traffic from public IP address to the accurate

private IP address based on the destination port number.
Bytes: The port measures the amount of data transmitted orreceived over the network traffic
. Bytes Sent: The number of bytes transmitted in the network traffic.
Bytes Received: The number of bytes received in the network traffic.
Packets: The total number of packets nvolved i the network communication.
Elapsed Time (sec): The duration of the network communication in seconds.
pkts_sent: The number of packets sent.
pkts_received: The number of packets received.

Action: This attribute serves as the target class for our classification task. It encompasses
four distinct classes, which the SVM and CNN models aim to predict based on the dataset.

The "Action" attribute serves as the class label in our dataset and represents the outcome to be

predicted. This categorical feature encompasses four classes, each denoting a specific action or

response based on the network traffic records. The accurate classification of these actions is the

primary objective of our research (Figure 3.2).

1. Class 1: [Allow]

2. Class 2: [Deny]

3. Class 3: [Drop]

4. Class 4: [Reset Both]

28

Understanding the characteristics of these class labels is crucial for evaluating the performance

of our machine learning models and drawing meaningful insights from the results.

In summary, the dataset used in this research comprises a diverse set of attributes extracted from
mternet traffic records. These attributes, including network port information, data transfer
metrics, and elapsed time, are employed as input features for our deep learning models. The
"Action" attribute, with its four distinct classes, forms the basis for the classification task that the
SVM and CNN models are designed to tackle. A thorough analysis of the dataset attributes sets

the foundation for the subsequent experimentation and analysis presented in this research.

Count of Actions

Count

allow drop deny reset-both
Action

Figure 3. 2: Distribution of Action Classes from the Dataset

33 Dataset Selection
The dataset chosen for this study is instrumental in achieving a realistic evaluation. The dataset

mcludes real-world network traffic data with attributes such as Source Port, Destination Port,
Action, Bytes, and Elapsed Time. This dataset was selected due to its relevance to intrusion

scenarios and its suitability for evaluating the performance of SVM and CNN i mtrusion
detection (Table 3.1).

29

3.4 Data Preprocessing
The dataset undergoes standard preprocessing steps, including cleaning, normalization, and

feature extraction. Each attribute carefully examined to ensure compatibility with SVM and CNN
models. Categorical variables will be encoded appropriately, and features scaled to facilitate

effective model training.

Table 3. 2: Some Attributes and Features of the Dataset

FEATURE DESCRIPTION

SOURCE PORT The port from which the network traffic originates

Destination Port The type of network traffic, such as data transfer, control

message, Or Crror message

The type of network traffic, such as data transfer, control

Action

message, or error message
Bytes The number of bytes transferred in the network traffic
Elapsed Time The amount of time it took to transfer the network traffic

3.5 Model Configuration
For SVM, the model configured with a specific kernel function and hyper-parameters tailored

to itrusion detection. The CNN architecture defined, specifying layers, fiter sizes, and
activation functions. These configurations are motivated by existing literature and preliminary
experiments, aiming to capture the intricacies of mtrusion patterns.

3.5.1 Support Vector Machine (SVM) Algorithm

Support Vector Machine (SVM) is one of the most common and powerful classification
techniques used. SVM is a computer algorithm that assigns labels to objects through learning by
examples (Noble, W.S, 2006). For mstance, SVM may learn to recognize handwritten numbers

by evaluating a verse collection ofscanned images of handwritten characters (Noble, W.S, 2006).
30

SVMs is a type of supervised machine learning model that can be applied in the field of network
mtrusion detection. The main objective of SVM algorithm is to formulate the best line or the best
decision boundary called the hyperplane that divides the n-dimensional spaces into classes so we

can put the new data point in the right category.

There are two types of SVM which are:

1. Linear SVM: Linear SVM are used for dataset that can be classified by using a single
straight lines

2. Non-Linear SVM: Non-lnear SVM are used for dataset that cannot be classified using a
straight line.

The Working Principle of an SVM as follows

1. Linear SVM: The following figure illustrates how SVM functions. A dataset with two
classes; green and blue and two features (x1 and x2) is depicted in the image below. The pair

of coordinates x1 and x2 needs to be classified as either green or blue by the classifier as

shown below.

Figure 3.3a: Graphical Representation of Dataset with Two Colors (source
https://www. javatpoint.com/)

Since it’s a two-dimensional space, the two classes can be divided with a straight line, although
there can be more than one line dividing these classes. Therefore, the objective of the SVM

31

https://www.javatpoint.com/

method is to locate the ideal line or decision boundary in other to find the closest point between

the classes. These sites are called support vectors.

Figure 3. 3: Graphical Representation of Dataset with Two Colors divided
linearly (source https://www.javatpoint.com/)

Margin is the distance measured between the vectors and the hyperplane. And SVM's objective
is to increase this margin. The ideal hyperplane is the one with the largest margin.

Support vector i Optimal Hyperplane

Figure 3. 4: Graphical Representation of a Linear SVM showing Support Vector
And Hyperplane (source https://www.javatpoint.com/)

2. Non-Linear SVM: As shown above a straight line can be easily used to divide data that is
structured lnearly but this is not the case with data that is not structured linearly. These are
illustrated in the figures below.

32

https://www.javatpoint.com/
https://www.javatpoint.com/

A
A
A
A b
Y .'- C 3 A
A .%
“ A
A A

Figure 3. 5: Graphical Representation of a Non-Linear Dataset (source
https://www. javatpoint.com/)

The data points shown above cannot be linearly divided so one dimension needs to be added.

One dimension must be added since the data pomts displayed above cannot be separated linearly.
We have employed two dimensions, x and y, for linear data; thus, we will add a third dimension,
z, for non-linear data. It is calculable as:

Z=X2 +Y2
With the addition of the third dimension Z the sample space is then represented n figure 3.5

Best Hyperplane

— -

Figure 3. 6: Graphical Representation of a Non-Linear SVM in 3D (source
https://www.javatpoint.com/)

If we convert the image to 2D apace with z=1 the image would be represented as;

33

https://www.javatpoint.com/
https://www.javatpoint.com/

A A

A A

®
A o Best Hyperplane
A A
A
A

0
X

Figure 3. 7: Graphical Representation of a Non-Linear SVM in 2D (source
https ://www. javatpoint.com/)

3.5.2 Support Vector Machines in Intrusion Detection
The figure below represents data representation and classification of a Support Vector Machine

SOURCEIP

DESTINATION IP
PACKETSIZES ®S)pDATASET
PORT NUMBERS

" | mALICIOUS ACTIVITES

a" H
'._ — — — — — — — L
= H

- i

‘ |_‘|.'0RJL-\I. ACTIVITES I

DECISION BOUND

STPPORT VECTORS

Figure 3. 8: Data Representation and Classification of SVM in Intrusion
Detection

34

https://www.javatpoint.com/

1. Input Features: The SVM model are provided with set of input features derived from the

dataset classes such as Source Port, Destination port etc.

2. Data Representation: Each datapoints of the features of the dataset are represented by a

point in a 3D space.

3. Hyperplane: The objective of the SVM model is to find a hyperplane that separate the data

mto normal activities and malicious activities

4. Support Vectors: Support vectors are the nearest vectors to the hyperplane and are
important in defining the decision boundaries

5. Kemnel Trick: They are utilized by the SVMs for the transformation of the mput space to a

higher dimensional space.

6. Training: The SVM algorithm changes the position ofthe hyperplane to increase the margin
between the classes

7. Classification: Once the program is traned, the SVM can now classify new unseen
datapoints by examining the side of the hyperplane it falls whether it is malicious side or

not.

The SVM model was chosen for its ability to handle complex, high-dimensional data. The scikit-
learn library was employed for its implementation.

In the evaluation phase of the itrusion detection system, the tramed Support Vector Machine
(SVM) model was employed. Utilizing the scikit-learn library, the predict proba method was
applied to obtain probabilty estimates for each class, yielding an array of dimensions
representing the probabilities of the samples belonging to respective classes. The predict method,
also applied, directly provided the predicted class labels for the samples in the testing set. The
dimensions of both outputs were communicated through print statements for a clearer

understanding of the results.

35

3.5.3 Convolutional Neural Network for Intrusion Detection
Convolutional neural network was first developed in 1980 by Kunihiko Fukushima. The first

CNN introduced was necognitron, it is a hierarchical, multilayered ANN mostly used to

recognize handwritten digits and another pattern recognition.

Zoumana Kei (Nov. 2023) defined convolutional neural network (CNN)or ConvNet as a unique
deep learning algorithm that is mainly applicable in the field that performs object recognition
tasks such as image classification object detection and segmentation. Real life application of

CNNs are autonomous vehicles and camera security systems.

Convolutional Neural Network is a type of feed forward network that learns feature engineering
by itself with the use of optimization techniques. A CNN consists of an input layer which is the
dataset in this research the hidden layers and the output layer which is the predictions by the
model i this paper. The hidden layers consist of one or more layers which performs
convolutions. This usually includes a layer that performs a dot product of the convolution kernel
with the layer’s mput matrix. This product is the frobenius mner product and the activation

function is called the ReLU (Zoumana Kei, 2023).

DATASET |— — —I I_ﬁ

Convolution Pooling Dense Ouiput

Layver Laver Layers Laver

Figure 3. 9: Convolutional Neural Network

3.5.4 Components of a CNN
CNN consists of four major layers. These layers support the CNNs to imitate the working

principle of the human brain to recognize patterns and features in images.
These layers are:
1. The Convolutional layers

2. The Rectified Linear Unit (ReLU)

36

3. The Pooling layers

4. The Fully connected layers

fc 3
Fully-Connected

fc 4
Fully-Connected

Neural Network Neural Network

Conv_1 Conv_2

RelU activation
Convolution Convolution /—M
(5 x 5) kernel Max- (5 x 5) kernel .
. : Max-Pooling : Max-Pooling (with
valid padding (2x2) valid padding (2x2) dropout)
DATASET m ROP
INPUT nl channels nl channels n2 channels n2 channels E .

(Bx8xn2) (Axd4xn2)

(24 x 24 x n1)

(28x28x1) (12x12xnl)

OUTPUT ¢

n3 units

Figure 3. 10: Architecture
(https ://towardsdatascience.com/)

of CNN Applied to Intrusion Detection

1. Convolutional layer: It is the first building block of a CNN which performs convolution
mathematically. Convolution is when a sliding window function usually called kernel or filter
is applied to a matrix of pixels that represent an image.

In a convolutional layer, multiple kernels of equal size are applied and each kernel is used to
identify unique patterns from the image. In other words, convolutional layers used small grids
often called kernels or filters that acts like a magnifying glass that scans then images or dataset
to identify unique patterns in the image or dataset such as shapes or numeric patterns or trends
in numeric dataset. For instance, CNN can identify different patterns of an image or dataset by
using different filters that specialized on different purposes such as one filter can be used to
identify patterns and another would be used to identify anomalies (Zoumana Kei, 2023).

37

Figure 3.10 is an illustration of a 32X32 grayscale image of a handwritten digit with sample values.

Illustration of the Inpu‘t ima\?e ondl

ts Pixgl representation

I
—
—_——— G o |lo |o |oa o_\"
‘ - olo |o 0.2 |03
o|o |01 os |o.a
32 o>
0|02a] 0|02 0] 0.6
| { oloa|lo| o |oal or
\ |
\{; g o o] O o o
Input Image Pixel representation

o CHARAD PO, KJ

Figure 3. 11: Illustration of The Input Image and Its Pixel Representation
(Source: Zoumana)

The filter used in the convolution is a 3X3 matrix with the weights displayed on the grid.

Apphcad:ion of the convolution task using
o stride of 1 with 3x3 kemel

Ox1+0x0+ ODx1+

Convolution Sigr\ Ox0D+0x1+ Ox0+

Ox1+0x0+ 0x1 =(0.1)

ﬁ' O D 0.2 (o)
0 o) C 0.2 103
(v 1o | 1)
0 o1l o |os|oa a
w4 0o 1 o]
0|0.2a| O |0.2|0.2] 0.6
1 o 1
oloal o] o |oal oz g !
o]l © o 0 33 Kemnel

Pixel representation

_ —

Figure 3. 12: Application of The Convolution Task Using A Stride of 1 with 3x3
Kernel (Source: Zoumana, 2023)

Convolu‘tep(Matrix
0.2x1+0x0+0.20 x1 +

O.2Ax0+0x1+ OxO~+

38

The training process of the CNN determines the weight of the kernel in real life but in the case of the
two matrices above, convolution is performed by applying the dot product.

2. Rectified Linear Unit (ReLU): After convolutional operation occurs in the CNN the ReLU
activation function is applied. This function assists the network identify non-linear
relationships i the mmages. This function assists the network in mitigating the vanishing

gradient problems (Zoumana Kei, 2023).

3. Pooling Layer: The goal of the pooling layer is to decrease the dimensions of the dataset
by merging the output of neuron clusters into a single neuron. There are common types of
pooling used, which are; Max pooling, Average Pooling, and sum pooling. Max pooling
utilizes the maximum number of each local clusters of neurons in the feature map
(Yamaguchi, 1990), sum pooling is the sum ofall the values of the feature map while average
pooling utilizes the average number of each local clusters of neurons in the feature map

(Ciresan, 2012). Pooling layer is essential to mitigate overfitting (Zoumana .2023)

Apphca‘bion of max pooling with
a strde of 2 using Ax flter

-

r— ™) Moux PDD“H.&-
1.0 104 2x2 Bilter
04| 1.6 Stride=2 1.6
03x|10.2] 1.7 1.1 o 0.5
0.2104] 11 1.7
" _J Pnohnﬁr Result
Convolut Mot
&Dn © eo{ > * Zoumamy

Application of max pooling with a stride of 2 using 2x2 filter

Figure 3. 13: Application of Max pooling with a Stride of 2 Using 2X2 Filter
(Source: Zoumana, 2023)

39

4. Fully Connected Layers: These are the last layer of the CNN generated by flattened output

of the ReLLU activation functions.

3.5.5 Overfitting and Regularization in CNNs
Overfitting is a common phenomenon in machine learning and deep learning models. This occurs

when the model learns the traming data far too good, this includes learning the noise and

anomalies. As a result, the model performs well on training data but badly on new, unseen data.

One popular deep learning model that is prone to overfitting is CNN. This is because to their

exceptional proficiency in managing intricate data and their capacity to acquire intricate patterns

on a vast scale (Zoumana, 2023).

A graphical example of overfitting when the performance on the new unseen data unlke the

traming data is given below.

Unale,r'l:?t'ting Vs. OVQr'P‘.'t‘ting

The MDOtE! s
not !e_nmiﬁa
enouﬁ-h

Model Error

~. °

Ideal Fit

‘ ;‘) The model is
< Underfitting —> (<= Overfitting = |0 ing "by heart”

A A

LA
~ \o-
3 ;_\\&

-E’Em'mkng Error

Model

Complexity ...
_/

Underfitting Vs. Overfitting

Figure 3. 14: Graphical Representation of Overfitting and Underfitting (Source:

Zoumana, 2023)

40

Regularization techniques are techniques to reduce overfitting in deep learning models. These

techniques are:

1. Dropout: This is the process of dropping random neurons during training. Which compels

the leftover neurons to learn new features from the input data.

2. Batch Normalization: This is the process of adjusting and scaling the activations to
normalize the input layer. This activity also aids to speed up and stabilize the training

process.

3. Pooling Layers: Pooling layers are used to decrease the dimensions of an input image to

represent the model in abstract form. This process reduces the probability of overfitting,

4. Early Stopping: This is the consistence observation of the model’s performance and

interrupting training when validation error does not improve.

5. Noise Injection: This is the consistent addition of noise to the mput data or the outputs of
hidden layers in the process of training in other to make the model more robust to avoid

weak generalization

6. L1 and L2 Normalization: Based on the size of the weights, a penalty is added to the loss
function using both L1 and L2. More precisely, L1 promotes sparing of the weights, which
improves feature selection. L2, also known as weight decay, on the other hand, promotes

small weights in order to limit their impact on the predictions.

7. Data Augmentation: The size and variety of the dataset are artificially increased with the
application of random transformations like editing the images.

3.5.6 Evaluation

The predictions was obtained from our Convolutional Neural Network (CNN) model for the
testing set (X test reshaped). The predict method returned one-hot encoded predictions
(y_pred one hot). To interpret these predictions, the class labels was extracted using np.argmax
along the specified axis, resulting in y pred labels cnn. To understand the diversity of classes
in our training set (y train), was communicated through print statements to display the unique
values. Furthermore, the performance of the CNN model was evaluated using standard
classification metrics. The accuracy was calculated using accuracy score, while precision, recall,

and F1 score were computed with precision score, recall score, and fl score functions,

41

respectively. The use of 'weighted' in the averaging parameter indicates that we considered the

class imbalance while computing these metrics, and the results displayed below.

Table 3. 3: Models and Their Libraries Used

MODEL LIBRARY

SVM Scikit-learn

CNN Keras

Evaluation Metrics: Model performance will be assessed using a set of standard metrics to
comprehensively evaluate the effectiveness of both the Support Vector Machne (SVM) and
Convolutional Neural Network (CNN) models in detecting intrusions. The chosen evaluation

metrics include:

1. Accuracy: A measure of the overall correctness of the model predictions, calculated as the

ratio of correctly predicted instances to the total instances.

2. Precision: Precision quantifies the accuracy of positive predictions, indicating the ability of
the models to correctly identify instances of ntrusion. It is computed as the ratio of true positive

predictions to the sum of true positives and false positives.

3. Recall: Also known as sensitivity ortrue positive rate, recall measures the ability of the models
to capture all instances of intrusion. It is calculated as the ratio of true positive predictions to the

sum of true positives and false negatives.

4. F1 Score: The F1 score is the harmonic mean of precision and recall, providing a balanced
measure of a model's performance. It is particularly useful when there is an imbalance between

classes.

5. Area Under the Receiver Operating Characteristic Curve (AUC-ROC): The AUC-ROC
metric assesses the trade-off between true positive rate and false positive rate across different
classification thresholds. It provides msight into the models' ability to discriminate between

mtrusion and normal instances.

42

These metrics offer a comprehensive evaluation of both SVM and CNN models, considering
aspects of accuracy, precision, recall, and the ability to handle imbalanced datasets. The AUC-

ROC further provides a graphical representation of the models' discriminative power.

Table 3. 4: Evaluation Metrics and Its Description

Metric Description
Measures the overall correctness of the model
Accuracy o
predictions
Precision Quantifies the accuracy of positive predictions
Measures the ability of the models to capture
Recall . . .
all instances of intrusion
Provides a balanced measure of a model's
F1 Score
performance
AUC-ROC Assesses the trade-off between true positive
rate and false positive rate

3.6 Confusion matrix
A confusion matrix is a tool used to evaluate the performance of a classification model in

machine learning. It is an N x N matrix that represents the accuracy of the model where N
represents the number of classes. The confusion matrix is used to compare the actual target values
with the predicted values which displays a holistic view of classification model performance and

calculates the error.

ACTUAL VALUES

POSITIVE MEGATIVE

TP FP

POSITIVE

PREDICTED
VALUES

FN TN

NEGATIVE

Figure 3. 15: Confusion Matrix

The target variables contain two values which are positive and negative

Where TP is the true positive
43

TN is the true negative
FN is the false positive

FPis the false negative

3.7 Analysis of the Models
The results obtained from both the Support Vector Machine (SVM) and Convolutional Neural

Network (CNN) models will undergo a rigorous comparative analysis. This analysis aims to
discern the strengths and Lmitations of each model, providing nuanced insights that contribute

to refining and optimizing intrusion detection strategies.

Table 3. 5: Comparative Analysis Strategies of Models

Aspect Comparison Method
Strengths and limitations Rigorous analysis and visualizations
Performance metrics Accurate comparison using tables or graphs

Refined and optimized based on the

Intrusion detection strategies . .
comparative analysis

Visualizations: Visualizations, such as bar plots and radar plots, will be utilized to present a
clear and mtuitive comparison of performance metrics between SVM and CNN. These graphical
representations will enhance the interpretability of the results and facilitate a visual

understanding of the models' relative strengths.

Table 3. 6: Visualization Plots and their Description

Visualization Description

Show the performance of each model on

Bar plots different metrics

Provide a comprehensive overview of the

Radar plots relative strengths of each model

Performance Analysis: In-depth performance analysis will be conducted, focusing on key
aspects such as accuracy, precision, recall, F1 score, and AUC-ROC. The analysis will consider
the context of intrusion detection, addressing challenges related to imbalanced datasets and

varying degrees of model complexity.

The mterpretation of results will be guided by a commitment to providing detailed and mnsightful
observations. The goal is to offer a comprehensive understanding of how each model performs
i the specific context of mtrusion detection, allowing for mformed decisions regarding their

practical applicability and potential areas for improvement.

Ethical Considerations: Ethical considerations will be addressed, emphasizing the responsible
use of data, minimizing biases, and ensuring the privacy and security of individuals and

organizations represented in the dataset.

Data Privacy and Consent:The dataset used in this study, originating from internet traffic

records, contains potentially sensitive information. To uphold ethical standards:

Data Privacy: We ensured that any personally identifiable information (PII) or sensitive data
within the dataset was anonymized and de-identified, adhering to data privacy regulations and
guidelines.

Informed Consent: As the data was obtained from publicly available sources, we considered
it as already anonymized and de-identified. Nonetheless, we acknowledge the importance of

obtaining informed consent when working with potentially identifiable data.
Fair and Unbiased Modeling: To mitigate potential biases and uphold fairness in our modeling:

Feature Selection: We carefully considered the attributes used as input features in our models,

excluding any that might introduce bias or unfairness.

Transparency and Reproducibility: Transparency is vital in research to ensure the verifiability

and reproducibility of results:

Open Data: We have made efforts to ensure that the dataset used in this study is publicly
accessible and clearly referenced, promoting transparency and the ability for other researchers to

replicate our work.

Code Availability: The code used for data preprocessing, model development, and evaluation is

made available to facilitate the replication of our experiments.

Regulatory Compliance: We complied with all relevant local, national, and international
regulations and ethical standards governing research, including data protection laws and

mtellectual property rights.

45

Responsible Use of Research Outcomes: We recognize the potential impact of our research
outcomes on various stakeholders. Itis our commitment to use the results responsibly, promoting

therr constructive and ethical utilization.

Ethical Reporting: In this research paper, we provide a comprehensive and transparent account
of our methodologies, results, and mnterpretations. We acknowledge the importance of accurate

and ethical reporting to prevent misinterpretation or misuse of the findings.

Acknowledgment of Prior Work: We acknowledge and cite prior research and contributions

related to our study. Proper attribution to the work of others is essential for ethical scholarship.

In conclusion, this research was conducted with careful consideration of ethical principles,
emphasizing privacy, fairness, transparency, and responsible research conduct. We are committed
to upholding these principles throughout the research process and beyond, ensuring the ethical

mtegrity of our work.

46

CHAPTER 1V

Simulations and Results

This section presents the simulations, findings and outcomes of the research, focusing on the

classification of network traffic actions using Support Vector Machine (SVM) models and CNN.

Integrate domain knowledge into the models by incorporating features extracted from network

protocols, application data, and host-based information to improve the models' understanding of

network behavior. Evaluate the impact of different feature representations on the performance of

the models, such as using statistical measures, time-frequency representations, or network flow

features. The SVM and CNN models are implemented network traffic anomaly detection in order

to identify and classify network intrusions, preventing unauthorized access and system breaches.

4.1 Simulation and Results of Intrusion Detection System
The table below presents a comprehensive descriptive analysis of key attributes in our dataset,

including source port, destination port, NAT source port, NAT destnation port, action, bytes, bytes

sent, bytes received, packets, elapsed time (sec), pkts sent, and pkts received used in modelling,

Table 4. 1: Descriptive Analysis of Network Traffic Attribute

Source Destination | NAT Source | NAT Desti- | Action Bytes
Statistics Port Port Port nation Port
N (Valid) 65532 65532 65532 65532 65532 | 65532
Missing 0 0 0 0 0 0
Mean 49391.97 | 10577.39 19282.97 2671.05 - 97123.95
Median 53776.50 | 445.00 8820.50 53.00 - 168.00
Mode 58638 53 0 0 70 70
Std.Deviation | 15255.713 | 18466.027 | 21970.690 9739.162 - 5618438.909
Range 65534 65535 65535 65535 - 1269358955
Minimum 0 0 0 0 60 60
Maximum 65534 65535 65535 65535 - 1269359015
N (Valid) 65532 65532 65532 65532 65532 | 65532

47

Table 4.1(continued)

NAT NAT
Source Destination | Source Destination
Statistics Port Port Port Port Action Bytes
Missing 0 0 0 0 0 0
Mean 49391.97 10577.39 19282.97 2671.05 - 97123.95
Median 53776.50 445.00 8820.50 53.00 - 168.00
Mode 58638 53 0 0 70 70
Std.
Deviation 15255.713 | 18466.027 | 21970.690 | 9739.162 - 5618438.909
Range 65534 65535 65535 65535 - 1269358955
Minimum | O 0 0 0 60 60
Maximum | 65534 65535 65535 65535 - 1269359015
Table 4.1(continued)
Bytes Received | Packets Elapsed Time (sec) | pkts_sent | pkts_received
65532 65532 65532 65532 65532
0 0 0 0 0
74738.15 102.87 65.83 41.40 61.47
79.00 2.00 15.00 1.00 1.00
1 0 1 0 1
2463207.712 5133.002 | 302.462 3218.871 | 2223.332
320881795 1036115 | 10824 747519 327208
1 0 1 0 1
320881795 1036116 | 10824 747520 327208

48

This table above provides insights mto the central tendencies, variability, and distributions of the

analyzed attributes, forming a crucial basis for subsequent data interpretation and modeling.

Table 4. 2: SVM and CNN Model Evaluations

SVM CNN
Metric Score Score
Accuracy 0.7395 0.9906
Precision 0.6200 0.9900
Recall 0.7395 0.9906
F1-Score 0.6600 0.9902
ROC AUC 0.9243 0.8774

The Support Vector Machine (SVM) model demonstrates a commendable performance in classifying
mstances within the Intrusion Detection System dataset. It achieves a balanced precision and recall,

resulting in asolid F1-score. The high ROC AUC score signifies the model's excellent discriminatory

ability between positive and negative nstances.

mstances within the dataset. It achieves high scores in accuracy, precision, recall, and F1-score,
highlighting its robustness in identifying instances accurately The ROC AUC score of 0.8774
indicates good discrimination ability, although slightly lower than the SVM model. The
accompanying ROC curve further visualizes the trade-off between the true positive rate and false

positive rate.

4.2 Training and Testing Results of the Models

Learning curve is the graphical representation of a model’s performance with time, the learning curve
in the CNN model shows the relationship between accuracy and the changes in epochs. The learning

curve in the SVM model below displays the improvement in the model performance.

49

SVM Model Learning Curve

—— Training Score
—— Cross-Validation Score
0.990
0.985
o
[=]
b
S 0.980 -
0.975 1
0.970 1
10000 20000 30000 40000 50000
Training Size

Figure 4. 1: SVM model learning curve

50

CHN Model Leaming Curve - Accuracy

4 e iFEl = LAl P p i 4 gl =
fasd ."-.'i'-d'u“'rh‘qr""!"d' If_"r Wl poF] ™ Iy () T (e s A ll:l--x.ﬁpm»\tr o
1 i 'y | i | [l |
\
| | *
954 1 |
. |

E 0.594 - |
A
i
A

0,592 4

900 |

— Training &COaracy
“alidaton ACourscy
a P =0 = 130 12= 150 173 200
Eacchs
CRN Model Leaming Curve - Loss
Training Loss
— walidation Loss

140 1

0.8
g 06
5

0.4 4

[

[:'l:" e e e A ot s P v o - _— —Pjn_n_._-. e e a'l'- e ———

a 23 30 Ex] 130 125 150 173 2040

Figure 4. 2: Fragment of CNN model learning curve

Loss Function: Loss function also known as error function is an important component in machine
learning that measures a machine learning model’s predicted output and actual value Loss function
is a function of the learning system that is required to be reduced. RMSE is a typical example of a
loss function in the case of regression problems. It is a performance metric used to measure the

accuracy of the model’s prediction. Therefore, the lower the RMSE the better the performance of the

model.

51

lel2 Training and wvalidation loss

8 = ——= Training loss
= —— Validation loss
-]
7 1
]
]
B]
[
[
N
5 "
O
u
A a4 n
n
3 n
i
3 n
n
n
2 4 n
1]
L]
1 1
L
o4
T T T T T T T T T
o] 25 50 75 100 125 150 175 200
Epochs

Figure 4. 3: Training of CNN

For 200 training epochs the RMSE value of CNN model for training data was obtained as 0.833861,
for test data- 0.812646

4.3 Confusion matrix for SVM and CNN
The figure below displays the confusion matrix of the SVM and CNN model within the python

google colab environment. Confusion matrix table displayed below is used to evaluate
theperformance of CNNsand SVMs.

SVM Confusion Matrix CMNN Confusion Matrix

= 61 0 0 = 9392 18 4] o

— - 1035 2712 0 0 - - 3 3603 L 64
= =
2 =
k- <

~ 3213 0 0 0 ~ 0 1047 2166 h]

" - 5 8 0 0 m = 3 10 4] o

o 1 2 3 0 1 2 3

Predicted Predicted

Figure 4. 4: SVM and CNN Confusion Matrix

52

4.4 Precision-Recall Curve for CNN and SVM
The figure 4.2 and figure 4.3 illustrates the precision-recall curve of the SVM and CNN model.

Precision recall curve is a graphical representation that shows the relationship between precision and

recall at different classifications threshold. It is commonly used in ML and intrusion detection when

particularly working with imbalanced dataset.

Precision-Recall Curve - SVM

1.0+

0.9 1

0.8 1

0.74

0.6 1

Precision

0.57

0.4

039
SVM (AUC = 0.94)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 4. 5: SVM Precision Recall Curve

53

4.5

Precision

1.0 4

0.9 1

0.8 1

0.6

0.5 1

0.4 1

Precision-Recall Curve - CNN

CNN (AUC = 0.99)

0.2 0.4 1.0

Recall

Figure 4. 6: CNN Precision Recall Curve

The CNN and SVM ROC Curve

The figure below displays the CNN ROC curve generated from the program

True Positive Rate

Receiver Operating Characteristic (ROC) Curve - CNN

1.0

—— CNN {AUC = 1.00)

0.4 0.6 0.8 1.0

False Positive Rate

Figure 4. 7: CNN ROC Curve

54

True Positive Rate

1.0

0.8

0.6

0.4

0.2

0.0

ROC-AUC Curve for SWM

Class 0 (AUC = 0.99)
Class 1 (AUC = 0.97)
Class 2 (AUC = 0.98)
Class 3 (AUC = 0.83)

Micro-average (AUC = 0.95)

Random Guessing

{).IQ

0.4

0.6

0.8

False Positive Rate

Figure 4. 8: ROC-AUC Curve for SVM

Table 4. 3: CNN Confusion Matrix Table

l_llD

Predicted Positive

Predicted Negative

Actual Positive

991

20

Actual Negative

95

200

Table 4.4 above is the CNN confusion matrix shows CNN model excels in correctly identifying both

positive and negative instances, as evident from the high number of true positives and true negatives

Table 4. 4: SVM Cross Validation Results

Fold Accuracy Precision Recall F1-score ROC AUC
1 0.7454 0.6215 0.7395 0.6758 0.9253
2 0.7388 0.6207 0.7395 0.6741 0.9249
3 0.7352 0.6172 0.7395 0.6727 0.9241
4 0.7405 0.6200 0.7395 0.6744 0.9243
5 0.7371 0.6188 0.7395 0.6733 0.9245
Average 0.7392 0.6201 0.7395 0.6742 0.9245

55

These results provide a comprehensive overview of the SVM model's performance across different

folds in the cross-validation process, showcasing metrics such as accuracy, precision, recall, F1-score,

and ROC AUC. The average values offer a summary of the overall performance.

4.6 Real-Time Representation of Intrusion Detection

This is a visual representation of the CNN model and the SVM model detects intrusion in real time

by taking inputs directly from the dataset.

The table 4.6 shows the result of the prediction and its accuracy when the ground truth label is
“Allow”

From a section of the dataset where “Drop” is the ground truth label we inputted the values into our
real time detection model, the result in table 4.7 shows that the SVM model predicted Allow which

was inaccurate and the CNN predicted drop which is 100% accurate.

Similarly, we input datapoints of the dataset with deny and reset-both as ground truth label and the
results is shown in table 4.8 and table 4.9.

Table 4. 5: Visual Representation of the User Inputs on the Classification Features In
Tabular Format with Truth Label “Allow”.

Source Port 51737
Destination Port 53
NAT Source Port 3505
NAT Destination Port 53
Bytes 231
Bytes Sent 78
Received, 153
Packet 2
Elapsed Time(sec) 30
pkts sent 1
pkts received 1
Action/Real Time Prediction of the SVM- ALLOW
Models
CNN- ALLOW
SVM ACCURACY 100%
CNN ACCURACY 100%

56

Table 4. 6: Visual Representation of the User Inputs on the Classification Features In

Tabular Format with Truth Label — “Drop

Source Port 50937

Destination Port 445

NAT Source Port 0

NAT Destination Port 0

Bytes 70

Bytes Sent 70

Received, 0

Packet 1

Elapsed Time(sec) 0

pkts_sent 1

pkts received 0

Action/Real Time Prediction of the Models SVM - ALLOW
CNN - DROP

SVM ACCURACY 0%

CNN ACCURACY 100%

Table 4. 7: Visual Representation of the User Inputs on the Classification Features in

Tabular Format with Truth Label “Deny”

Source Port 33314

Destination Port 44847

NAT Source Port 0

NAT Destination Port 0

Bytes 62

Bytes Sent 62

Received, 0

Packet 1

Elapsed Time(sec) 0

pkts sent 1

pkts received 0

Action/Real Time Prediction of the Models SVM - ALLOW
CNN- DENY

SVM ACCURACY 0%

CNN ACCURACY 100%

57

Table 4. 8: Visual Representation of the User Inputs on the Classification Features In

Tabular Format with Truth Label: “Reset-Both”

Source Port 11317

Destination Port 61248

NAT Source Port 0

NAT Destination Port 0

Bytes 143

Bytes Sent 143

Received, 0

Packet 1

Elapsed Time(sec) 0

pkts sent 1

pkts received 0

Action/Real Time Prediction of the Models SVM - ALLOW
CNN - DENY

SVM ACCURACY 0%

CNN ACCURACY 0%

The SVM Model predicted “Allow” while the CNN model predicted deny which were both
inaccurate from the datasets.

4.7 Comparative analysis for both model

Bar Plot: Itis a very means of comparing the performance metrics of the models using bar graphs.
Figure 4.9 depicts comparison of the SVM and CNN models used for intrusion detection

The bar plot in figure 4.9 provides a comprehensive comparison of the Support Vector Machine
(SVM) and Convolutional Neural Network (CNN) models based on various evaluation metrics. Let's

delve into the key observations:

Accuracy: The CNN model significantly outperforms the SVM model in terms of accuracy. With an
accuracy 0f 99.06%, the CNN model demonstrates a remarkable ability to correctly classify instances,
surpassing the SVM model's accuracy of 73.95%.

58

Model Comparison (SVM vs CNN)

0.989995 0.9906 0.990187

0.95 4
0.90 4
0.85
0.80
0.751
0.701
0.65
0.60
0.551
0.501
0.45 1
0.40
0.351
0.301
0.251
0.201
0.15 4
0.10 4
0.05
0.00-

Values

Accuracy Precision F1 Score
Metrics

Figure 4. 9: Bar Plot Comparing SVM and CNN Evaluation Metrics

Precision, Recall, and F1-score: Across precision, recall, and F1-score, the CNN model consistently
exhibits higher values compared to the SVM model. This signifies that the CNN model not only
accurately identifies positive instances (precision) but also captures a larger proportion of actual
positive instances (recall). The balanced F1-score further emphasizes the CNN model's robust
performance in both precision and recall.

ROC AUC: Interestingly, the SVM model outperforms the CNN model in terms of ROC AUC. This
metric measures the discriminatory ability of the models in distinguishing between positive and
negative instances. The SVM model achieves a ROC AUC of 92.45%, indicating a slightly better
ability in this specific aspect compared to the CNN model's ROC AUC of 87.74%.

Radial Plot: Radial plot is a graphical representation of the performance metrics used. It is a quick
visual representation of the accuracy, precision, recall and F1 score of both models.

59

Model Comparison (SVM vs CNN)

Precision

F1 Score

Figure 4. 10: Radial Plot of the SVM and CNN model

In summary, the CNN model emerges as the superior performer across key metrics such as accuracy,
precision, recall, and F1-score. However, the SVM model showcases a stronger discriminatory ability
in terms of ROC AUC. The choice between these models may depend on specific priorities, such as
maximizing overall accuracy or optimizing for a particular trade-off between true positives and false
positives.

4.8 Analysis and Discussion
Data Quality: The dataset used in this study was obtained from publicly available sources. Its quality

and completeness rely on the original data collection methods, and it may contain iaccuracies or

inconsistencies mherent to real-world data.

Dataset Size: The dataset consists of a substantial number of instances; however, a larger dataset

could potentially enhance the robustness of the models and their generalization capabilities.

Generalization: The models developed and evaluated i this study are specific to the dataset and its
characteristics. Generalizing the findings to different network environments or scenarios may require

further investigation and validation.

60

Model Complexity: Smmplicity vs. Complexity: The chosen SVM and CNN models have their
respective complexities in terms of architecture and hyper-parameters. Striking the right balance
between model complexity and performance remains achallenge, and alternative model architectures

could yield different results.

Model Interpretability: Both the SVM and CNN models, being complex machine learning
algorithms, might lack interpretability. Understanding the rationale behind specific predictions or

decisions could be challenging, especially i critical applications where interpretability is paramount.

Computational Constraints: The availability of computational resources, such as processing power

and memory, may impose limitations on the scale and complexity of experiments. This could impact
the optimization and training of models.

External Factors: Dynamic Network Environments: Network traffic patterns can evolve over time
due to various external factors, making it challenging to maintain model accuracy i dynamic

environments.

Future Research: Unexplored Approaches: This study focused on SVM and CNN models for
classification. Future research could explore alternative machine learning techniques or hybrid

models to further enhance classification accuracy.

Replicability: Dataset Variability: The results obtained in this study may vary with different datasets
or variations of the same dataset. Replicating the research on other datasets would provide a broader

perspective on the model performance.

In conclusion, this study offers valuable insights into the classification of network traffic actions.

However, the outlined Lmitations underscore the need for caution i interpreting the results and

emphasize potential directions for future research and improvement.

The results of this study demonstrate that both SVM and CNN models exhibit strong
performance m classifying network traffic as normal or anomalous. The SVM model achieves
an accuracy of 0.7395, precision of 0.6200, recall of 0.7395, F1-score of 0.6600, and ROC AUC
0f 0.9243. The CNN model surpasses the SVM model in accuracy, precision, recall, F1-score,
and ROC AUC, achieving 0.9906, 0.9900, 0.9906, 0.9902, and 0.8774, respectively.

The superior performance of the CNN model can be attributed to its ability to capture patterns
and features in the data that are not readily apparent to traditional machine learning algorithms.

61

The CNN model's architecture, with its convolutional layers and pooling layers, allows it to learn
hierarchical representations of the data, enabling it to identify subtle patterns that are indicative

of anomalous network behavior.

Moreover, considering the literature review conducted earlier, the incorporation of deep learning
models, such as CNNs, in ntrusion detection systems aligns with the trend observed in recent
research. Deep learning models have demonstrated a capacity to automatically extract relevant

features from complex data, making them well-suited for anomaly detection tasks.

The SVM model, on the other hand, relies on a linear decision boundary to separate positive and
negative instances. This approach may be less effective in capturing complex patterns in the data,

but it can provide a more interpretable model

The cross-validation results further support the conclusion that the CNN model is more robust
and generalizable than the SVM model. The average accuracy and F1-score for the CNN model
across all folds are higher than those of the SVM model, indicating that the CNN model is less

susceptible to overfitting.

62

CHAPTER V

CONCLUSION

In conclusion, both SVM and CNN models can be effectively employed for network traffic
anomaly detection. The CNN model exhibits superior performance in terms of accuracy,
precision, recall, F1-score, and ROC AUC, making it a better choice for scenarios where high
detection rates are crucial. However, for applications where interpretability is critical, the SVM

model may be a better fit.

Building on the literature review insights, the adoption of advanced machine learning and deep
learning techniques for intrusion detection reflects the evolving landscape of cybersecurity. The
increasing sophistication of cyber threats necessitates the exploration and implementation of

cutting-edge models to enhance detection capabilities.

The choice between the SVM and CNN models will depend on the specific requirements of the
application. For scenarios where, high detection rates are paramount, the CNN model is the
preferred choice. However, for applications where mterpretability is critical, the SVM model

may offer advantages.

In addition to the performance and interpretability considerations, the computational resources
required for traming and deploying the models should also be factored mto the decision. The
CNN model typically requires more computational resources than the SVM model, especially
for complex network datasets.

Overall, the study provides valuable insights into the effectiveness of SVM and CNN models for
network traffic anomaly detection. The findings can guide the selection of appropriate models
for specific applications and inform future research in the area of anomaly detection, aligning

with the dynamic nature of cybersecurity challenges.

Recommendation for Future Work
Based on the findings of the study, we propose the following directions for further research on

SVM and CNN models for network traffic anomaly detection:

Exploration of More Advanced CNN Architectures: Investigate the use of more sophisticated

CNN architectures, such as recurrent neural networks (RNNs) or convolutional long short-term

63

memory (LSTM) networks, to further enhance the ability of the models to capture complex

patterns in network

64

Reference

Abdallah, E. E., Eleisah, W., & Otoom, A. F.(2022). Intrusion Detection Systems using Supervised
Machine Learning Techniques: A survey. Procedia Computer Science, 201, 205-212. Retrieved
from www.sciencedirect.com.

Aghdam, Habibi, Hamed (2017-05-30). Guide to convolutional neural networks: a practical
application to traffic-sign detection and classification. Heravi, Elnaz Jahani Cham,
Switzerland. ISBN 9783319575490. OCLC 987790957.

Alazab, M., Abu Khurma, R., Castillo, P. A., Abu-Salh, B., Martin, A., & Camacho, D. (2024).
An effective networks mtrusion detection approach based on hybrid Harris Hawks and multi-layer
perceptron. Egyptian Informatics Journal, 25, 100423.

Aljehane, N. O., Mengash, H. A., Eltahir, M. M., Alotaibi, F. A., Aljameel, S. S., Yafoz, A., Alsini,

R., Assiri, M. (2024). Golden jackal optimization algorithm with deep learning assisted intrusion
detection system for network security. Alexandria Engneering Journal, 86, 415-424.

Alhajjar, E., Maxwell, P., & Bastian, N. (2021). Adversarial machine learning in Network Intrusion
Detection Systems. Expert Systems with Applications, 186, 115782.

Alsudani, M. Q., Reflish, S. H. A., Moorthy, K., & Adnan, M. M. (2022). A new hybrid teaching
learning-based Optimization - Extreme learning Machine model-based Intrusion-Detection

system.

Alzagebah, A., Aljarah, 1., & Al-Kadi, O. (2023). A hierarchical intrusion detection system based
on extreme learning machine and nature-inspired optimization. Computers & Security, 124,
102957.

Asif, M., Abbas, S., Khan, M.A., Fatima, A., Khan, M.A., & Lee, S.-W. (2022). MapReduce based
mtelligent model for mtrusion detection using machine learning technique. Journal of King Saud

University — Computer and Information Sciences, 34, 9723-9731.

Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. (2021). A review
of vibration-based damage detection in civil structures: From traditional methods to Machine

Learning and Deep Learning applications. Mech. Syst. Signal Process. 2021, 147, 107077.

65

http://www.sciencedirect.com/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9783319575490
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/987790957

Bui, H.-K., Lin, Y.-D., Hwang, R.-H., Lin, P.-C., Nguyen, V.-L., & Lai, Y.-C. (2021). CREME: A
toolchain of automatic dataset collection for machine learning in intrusion detection. Journal of

Network and Computer Applications, 193, 103212.

Cevallos M., J. F., Rizzardi, A., Sicari, S., & Porisini, A. C. (2023). Deep Reinforcement Learning
for intrusion detection in Internet of Things: Best practices, lessons learnt, and open challenges.

Computer Networks, 236, 110016.

Ciresan, Dan; Meier, Ueli; Schmidhuber, Jirgen (June 2012). "Multi-column deep neural networks
for mage classification". 2012 IEEE Conference on Computer Vision and Pattern Recognition.
New York, NY:Institute of Electrical and Electronics Engineers (IEEE). pp. 3642-
3649. arXiv:1202.2745. CiteSeerX 10.1.1.300.3283. doi:10.1109/CVPR.2012.6248110. ISBN 97
8-1-4673-1226-4. OCLC 812295155. S2CID 2161592.

Devendiran, R., & Turukmane, A.V.(2024). Dugat-LSTM: Deep learning based network intrusion
detection system using chaotic optimization strategy. Expert Systems with Applications, 245,
123027.

Dmna, A. S., & Manivannan, D. (2021). Intrusion detection based on. Machine Learning techniques
in computer networks. Internet of Things, 16, 100462. doi:10.1016/5.10t.2021.100462.

Kalimuthan, C., & Arokia Renjit, J. (2020). Review on intrusion detection using feature selection
with machine learning techniques. Materials Today: Proceedings, 33, 3794-3802.
https://doi.org/10.1016/j.matpr.2020.06.650.

Katiravan, J., Na, D., Mc, S. P.D., & Ad, S. S. V. (2023). Intrusion Detection in Novel WSN-Leach
Dos Attack Dataset using Machine Learning based Boosting Algorithms. Procedia Computer
Science, 230, 90-99. https://doi.org/10.1016/j.procs.2023.12.064.

Khalil, A., Farman, H., Nasralla, M. M., Jan, B., & Ahmad, J. (2023). "Artificial Intelligence-based
mtrusion detection system for V2V communication i vehicular adhoc networks." Ain Shams

Engineering Journal. Available online at www.sciencedirect.com.

66

https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1202.2745
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.300.3283
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109/CVPR.2012.6248110
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4673-1226-4
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4673-1226-4
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/812295155
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:2161592
https://doi.org/10.1016/j.matpr.2020.06.650
https://doi.org/10.1016/j.procs.2023.12.064

Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network Model for a
Mechanism of Pattern Recognition Unaffected by Shift in Position" (PDF). Biological
Cybernetics. 36 (4): 193—
202. doi:10.1007/BF00344251. PMID 7370364. S2CID 206775608. Archived (PDF) from the
orignal on 3 June 2014. Retrieved 16 November 2013 Khraisat, A., Gondal, I., Vamplew, P.
(2018).

Hossain, M. A., & Islam, M. S. (2023). Ensuring network security with a robust ntrusion detection

system using ensemble-based machine learning, Array, 19, 100306.
https://doi.org/10.1016/j.array.2023.100306.

Jadhav, A.D., Pellakuri, V. Highly accurate and efficient two phase-intrusion detection system (TP-
IDS) using distributed processing of HADOOP and machine learning techniques. J Big Data 8,
131 (2021). https//doiorg/10.1186/s40537-021-00521-y.

Jayaraj, R., Pushpalatha, A., Sangeetha, K., Kamaleshwar, T., Udhaya Shree, S., & Damodaran, D.

(2024). Intrusion detection based on phishing detection with machine learning. Measurement:
Sensors, 31, 101003. https://doi.org/10.1016/j.measure.2024.101003.

Joachims, T. (2002). “Learning to classify text using support vector machines”, Kluwer Academic
Publishers, (2002).

Khraisat, A., Gondal, 1., Vamplew, P. (2018). An Anomaly Intrusion Detection System Using C5
Decision Tree Classifier. In: Trends and Applications in Knowledge Discovery and Data
Mining,Cham. Springer International Publishing, pp 149-155.

Khraisat, A., Gondal, 1., Vamplew, P. (2019). Survey of intrusion detection systems: techniques,
datasets and challenges. Cybersecur 2,20 (2019). https://doi.org/10.1186/s42400-019-0038-7.

Kumar, K. P. S., Nair, S. A. H,, Guha Roy, D., Rajalingam, B., & Kumar, R. S. (2021). Security
and privacy-aware Artificial Intrusion Detection System using Federated Machine Learning.

Computers and Electrical Engineering, 96, 107440.

67

https://www.cs.princeton.edu/courses/archive/spr08/cos598B/Readings/Fukushima1980.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos598B/Readings/Fukushima1980.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007/BF00344251
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/7370364
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:206775608
https://web.archive.org/web/20140603013137/http:/www.cs.princeton.edu/courses/archive/spr08/cos598B/Readings/Fukushima1980.pdf
https://doi.org/10.1016/j.array.2023.100306
https://doi.org/10.1186/s40537-021-00521-y
https://doi.org/10.1016/j.measure.2024.101003
https://doi.org/10.1186/s42400-019-0038-7

LeCun, Y., Bottou, L., Yoshua, B., & Patrick, H. (1998). GradientBased Learning Applied to
Document Recognition. Proc of the IEEE.

Liao H.J., Lin C.H.R., Lin Y.C., Tung K.Y. (2013). Intrusion detection system: a comprehensive
review. J Netw Comput Appl 36(1):16-24.

Lu, Y., Chai, S., Suo, Y., Yao, F., & Zhang, C.(2024). Intrusion detection for Industrial Internet of
Things based on deep learning. Neurocomputing, 564, 126886.

Lv, L., Wang, W., Zhang, Z., & L, X. (2020). A novel intrusion detection system based on an
optimal hybrid kernel extreme learning machine. Knowledge-Based Systems, 195, 105648.

M.N. Chowdhury, K. Ferens, M. Ferens, Network intrusion detection using machine learning, in:
Proceedings of International Conference on Security Management, SAM, Las Vegas, USA, 2016,
pp. 1-7.

Nabi, F., & Zhou, X. (2024). Enhancing intrusion detection systems through dimensionality

reduction: A comparative study of machine learning techniques for cyber security. Cyber Security
and Applications, 2, 100033. doi:10.1016/j.csca.2024.100033.

Nie, F., Lm, W., Ly, G., & Gao, B. (2024). M2VT-IDS: A multi-task multi-view learning
architecture for designing IoT mtrusion detection system. Internet of Things, 25, 101102.
httpsy//doi.org/10.1016/.10t.2024.101102.

Parameswari, A., Ganeshan, R., Ragavi, V., & Shereesha, M. (2024). Hybrid rat swarm hunter-
prey optimization trained deep learning for network mtrusion detection using CNN features.

Computers & Security, 139, 103656.

Paya, A., Arroni, S., Garcia-Diaz, V., & Gomez, A. (2024). Apollon: A robust defense system

against Adversarial Machine Learning attacks in Intrusion Detection Systems. Computers &
Security, 136, 103546.

Rahib H. Abiyev, Abdullahi Ismai, "COVID-19 and Pneumonia Diagnosis in X-Ray Images
Using Convolutional Neural Networks", Mathematical Problems in

68

https://doi.org/10.1016/j.iot.2024.101102

Engineering, vol. 2021, Article
ID 3281135, 14 pages, 2021. https//doiorg/10.1155/2021/3281135.

Rahib Abiyev ,Murat Arslan ,John Bush Idoko ,Boran Sekeroglu and Ahmet Ilhan. Identification
of Epileptic EEG Signals Using Convolutional Neural Networks. Appl Sci. 10(12), 2020,
4089; https://doiorg/10.3390/app10124089.

Rahib H. Abiyev. Murat Arslan. Head mouse control system for people with disabilities. Expert
Systems, 37, 2020, https://doiorg/10.1111/exsy.12398.

Rajasekaran, K. (2020). Classification and Importance of Intrusion Detection System.

International Journal of Computer Science and Information Security. 10. 44.

Rahib H. Abiyev, John Bush Idoko, Murat Arslan. Sign Language Translation Using Deep
Convolutional Neural Networks. KSII Transactions on Internet and Information Systems, Vol.14,
No.2, pp.631-653, 2020. https://doi.org/10.3837/tiis.2020.02.009.

Rahib Abiyev, Joseph Adepoju. Automatic Food Recognition Using Deep Convolutional Neural
Networks with Self-attention =~ Mechanism Human-Centric Intelligent Systems.2024,
https://doi.org/10.1007/s44230-023-00057-9.

Sami, E. (2012). “Support Vector Machines for classification and locating faults on transmission
lines”, Applied Soft Computing, vol. 12, (2012), pp. 1650-1658.

Sarhan, M., Layegh, S., Moustafa, N., Gallagher, M., & Portmann, M. (2021). Feature extraction
for machine learning-based intrusion detection in IoT networks. Digital Communications and

Networks (DCN).

Sivanandam, S. N., Sumathi, S. and Deepa, S. N. (2006). “Introduction to Neural Networks using
MATLAB 6.0”, Tata McGraw Hill Education Pvt. Ltd., (2006).

Sun, Z., An, G., Yang, Y., & L, Y. (2024). Optimized machine learning enabled mntrusion
detection system for internet of medical things. Franklin Open, 6, 100056.
doi:10.1016/j.fraope.2024.100056

69

https://doi.org/10.1155/2021/3281135
https://sciprofiles.com/profile/855860
https://sciprofiles.com/profile/1127507
https://sciprofiles.com/profile/1080510
https://sciprofiles.com/profile/author/VWxPSkN5cVVSeC9jU0xoS1EzN1BOWnJFT0VsdW1jVHpWeURIdXBoRXc1MD0=
https://sciprofiles.com/profile/author/dzMyU3ZvRFpKYW4yeHNTZGNYTDBPcTk4ZjFOYlQ0ZVFxeTBiK2ltVmJqdz0=
https://www.mdpi.com/2076-3417/10/12/4089
https://www.mdpi.com/2076-3417/10/12/4089
https://doi.org/10.3390/app10124089
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Abiyev%2C+Rahib+H
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Arslan%2C+Murat
https://doi.org/10.1111/exsy.12398
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Abiyev%2C+Rahib+H
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Arslan%2C+Murat
javascript:;
javascript:;
https://doi.org/10.3837/tiis.2020.02.009
https://doi.org/10.1007/s44230-023-00057-9

Talukder, M. A., Hasan, K. F., Islam, M. M., Uddin, M. A., Akhter, A., Yousuf, M. A., Alharbi, F.,
& Moni, M. A. (2023). A dependable hybrid machine learning model for network intrusion

detection. Journal of Information Security and Applications.

Turukmane, A. V., & Devendiran, R. (2024). M-MultiSVM: An efficient feature selection assisted
network intrusion detection system using machine learning. Computers & Security, 137, 103587.

Umer, M. A., Junejo, K. N., Jilani, M. T., & Mathur, A. P. (2022). Machine learning for intrusion
detection in industrial control systems: Applications, challenges, and recommendations.

International Journal of Critical Infrastructure Protection, 38, 100516.

Yamaguchi, Kouichi; Sakamoto, Kenji; Akabane, Toshio; Fujimoto, Yoshiji (November 1990). 4
Neural Network for Speaker-Independent Isolated Word Recognition. First International
Conference on Spoken Language Processing (ICSLP 90). Kobe, Japan. Archived from the
original on 2021-03-07. Retrieved 2019-09-04.

Yang, L., & Shami, A. (2022). IDS-ML: An open source code for Intrusion Detection System
development using Machine Learning. Software Impacts, 14, 100446.
doi:10.1016/j.simpa.2022.100446.

Yuan, X., Han, S., Huang, W., Ye, H., Kong, X., & Zhang, F. (2024). A simple framework to
enhance the adversarial robustness of deep learning-based mtrusion detection system. Computers
& Security, 137, 103644.

Zhang, C., Jia, D., Wang, L., Wang, W., L, F., & Yang, A. (2022). Comparative research on
network mtrusion detection methods based on machine learning. Computers & Security, 121,
102861. https//doi.org/10.1016/j.cose.2022.102861

70

https://web.archive.org/web/20210307233750/https:/www.isca-speech.org/archive/icslp_1990/i90_1077.html
https://web.archive.org/web/20210307233750/https:/www.isca-speech.org/archive/icslp_1990/i90_1077.html
https://www.isca-speech.org/archive/icslp_1990/i90_1077.html
https://www.isca-speech.org/archive/icslp_1990/i90_1077.html
https://doi.org/10.1016/j.cose.2022.102861

APPENDICES

Appendix 1
IMPORTING THE DEPENDENCIES
Ipip mstall numpy pandas scikit-learn matplotlib tensorflow

Ipip install seaborn

!pip install joblib

Ipip nstall pdfkit

Ipip install tabulate

from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy score, precision score, recall score, fl score
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers mmport Dense

from tensorflow.keras.utils import to categorical
from keras.optimizers import Adam

from sklearn.preprocessing import label binarize
%matplotlib mline

mport tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model selection mmport train test split

71

from sklearn.preprocessing mmport StandardScaler, LabelEncoder
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.callbacks import EarlyStopping

from sklearn.metrics import confusion matrix, accuracy score, precision score,

recall_score, fl_score
import seaborn as sns

from sklearn.metrics import accuracy score, precision score, recall score, fl score,

roc_auc_score
from sklearn.metrics import confusion matrix

from sklearn.preprocessing import label binarize

from sklearn.metrics import roc_curve

from sklearn.metrics import confusion matrix

mmport joblib

mport os

from sklearn.multiclass mmport OneVsRestClassifier

from sklearn.calibration import CalibratedClassifierCV

from sklearn.metrics import roc_auc score

from sklearn.model selection import train test split

from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.svm mmport SVC

from sklearn.neural network import MLPClassifier

from sklearn.metrics import accuracy score, precision score, recall score, fl score,

roc_curve, roc_auc_score, confusion matrix

72

from sklearn.metrics import roc_curve, roc_auc score

from sklearn.metrics import precision recall curve, roc curve, roc_auc score
from sklearn.preprocessing import LabelBinarizer

from sklearn.metrics import precision recall curve, average precision_score
from sklearn.metrics import roc_auc score

mport tkinter as tk

from tkinter import simpledialog

import pdfkit

from keras.models import load model

import numpy as np

import joblib

from sklearn.metrics import precision recall curve, auc

from sklearn.metrics import precision recall curve, auc

from sklearn.metrics import roc curve, auc

DATA COLLECTION AND PREPROCESSING
#LOAD THE DATASET

#loading the csv file nto a panda dataframe

log2 data = pd.read csv('/content/drive/MyDrive/FirewallData.csv')
first 5 rows of the dataframe

log2 data.head()

number of rows & columns

log2 data.shape

log2 data.describe()

73

SEPARATING FEATURES AND TARGET
Encode the target labels

label encoder = LabelEncoder()

log2 data['Action encoded'] = label encoder.fit transform(log2 data['Action'])
Assuming 'Action’ is your target column

Features and labels

X =log2 data.drop(['Action’, 'Action encoded'], axis=1)
y = log2 data['Action_encoded']

print(X)

print(y)

sns.countplot(x="Action’, data=log2 data)
plt.xlabel("Action') # Optional: Set the x-axis label
plt.ylabel('Count') # Optional: Set the y-axis label
plt.title(Count of Actions') # Optional: Set the plot title

plt.show()

SPLITTING THE DATASETS INTO TRAINING DATA AND TESTING DATA
Split the data into training and testing sets

X train, X test, y train, y test = train test split(X, 'y, test size=0.25,
random state=30, stratify=y)

Split the traming set into training and validation sets

X tram, X val, y train, y val = tramn test split(X train, y tramn, test size=0.2,
random_state=42)

Perform one-hot encoding on the labels
y tran one hot =to categorical(y train)

y test one hot =to categorical(y test)
74

Assuming y test bin is your true labels (one-hot encoded) for CNN

y test bin =to categorical(log2 data['Action encoded'])

ENCODE THE TARGET LABELS
print(X.shape, X train.shape, X test.shape)

DATA STANDARDIZATION
scaler = StandardScaler()

X train scaled = scaler.fit transform(X train)
X test scaled = scaler.transform(X test)
scaler = StandardScaler()

standardized data = scaler.fit transform(X)
print(standardized data)

X = standardized data

print(X)

print(y)

BUILD THE SVM MODEL
Build and train SVM model

svm_model = SVC(probability=True)

calbrated model @ = CalibratedClassifierCV(svm_model,

cv="prefit')

FIT THE SVM MODEL
Fit the SVM model

svm_model fit(X train, y_train)
Fit the calibrated model

calibrated model fit(X train, y train)

method='"sigmoid’,

CALIBRATE THE PROBABILITIES OF THE SVM MODEL

print(X_test.shape, y test bin.shape)
75

EVALUATE MODELS ON THE TEST DATA
Predictions using predict proba

svm_probabilities = svm modelpredict proba(X test)

print("SVM Probabilities shape:", svm probabilities.shape)

Predictions using predict

svm predicted labels = svm modelpredict(X test)

print("SVM Predicted Labels shape:", svm predicted labels.shape)
Calculate accuracy

svm_accuracy = accuracy score(y test, svm predicted labels)

print("SVM Accuracy:", svm accuracy)

EVALUATE THE SVM ON THE TEST DATA
Calculate evaluation metrics

svm_accuracy = accuracy score(y test, svm predicted labels)

svm_precision = precision_score(y_test, svm predicted labels, average='weighted')
svm recall = recall score(y test, svm predicted labels, average='weighted')
svm fl score ={fl score(y test, svm predicted labels, average='weighted')

Calculate ROC AUC for multi-class using the one-vs-rest approach

svm_roc_auc =roc_auc_score(y test, svm probabilities, multi class='ovr")

PRINT EVALUATION METRICS FOR THE SVM
Print evaluation metrics for the SVM model

print("SVM Model Evaluation:")
print("Accuracy:", svm accuracy)
print("Precision:", svm precision)

print("Recall:", svm recall)

76

print("F1-score:", svm fl score)

print("ROC AUC:", svm roc_auc)

Calculate the decision scores for the ROC curve (using decision function)

svm_decision_scores =svm modeldecision function(X test scaled)

PLOT THE CONFUSION MATRIX FOR THE SVM MODEL

Get unique class labels

labels = log2 data['Action_encoded'].unique()

Confusion matrix for SVM

cm_svm = confusion matrix(y test, svm predicted labels)
plt.figure(figsize=(8, 6))

sns.heatmap(cm_svm, annot=True, fmt='g, cmap='Blues',
yticklabels=labels)

plt.title('Confusion Matrix - SVM')
plt.xlabel('Predicted")

plt.ylabel(" Actual')

plt.show()

from sklearn.model selection import learning curve

SAVING THE SVM MODEL
svm model path ='/content/drive/MyDrive/log2.csV'

joblib.dump(svm_model, svm model path)

PRECISION RECALL CURVE FOR SVM

xticklabels=labels,

Assuming svm probabilities are the predicted probabilities for each class

precision svm, recall svm, = precision recall curve(y test one hotravel(),

svm_probabilities.ravel())
auc_svm = auc(recall svm, precision svm)

77

plt.figure(figsize=(8, 6))

plt.plot(recall_svm, precision svm, color='darkorange', w=2, labe=fSVM (AUC =
{auc_svm:2f})")

plt.xlabel('Recall)

plt.ylabel('Precision')
plt.title('Precision-Recall Curve - SVM')
plt.legend(loc='lower left')

plt.show()

n classes =4

Assuming y test is your true labels, and y score is the decision function output of

your SVM
If you have a multi-class problem, make sure to binarize the labels

y_test bin = label binarize(y test, classes=[0, 1, 2, 3]) # Adjust classes based on

your problem
Assuming svm predicted scores is the decision function output of your SVM
svm_predicted_scores = svm modeldecision function(X test)
Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
For each class (assuming a multi-class problem)
for iin range(n_classes):
fpr[i], tpr[i], _=roc curve(y test bin[: i], svm predicted scores[:, 1i])

roc_auc[i] = auc(fprfi], tprfi])
78

Compute micro-average ROC curve and ROC area

fpr["micro"], tpr["micro"], = roc_curve(y test binravel(),

svm_predicted scores.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
Plot the ROC curve
plt.figure(figsize=(10, 6))
Plot ndividual class curves
for 1in range(n_classes):
plt.plot(fpr[i], tpr[i], label=fClass {i} (AUC = {roc_auc[i]:.2f})")
Plot micro-average curve

plt.plot(fp1["micro"], tpr["micro"], labe=fMicro-average (AUC =
{roc_auc["micro"]:.21})', lnestyle='--', linewidth=2)

Plot random guessing line

plt.plot([0, 1], [0, 1], linestyle="--', color='gray', labeF='Random Guessing')
Customize the plot

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC-AUC Curve for SVM')

plt.legend(loc='lower right')

plt.grid(True)

plt.show()

79

BUILDING THE CNN MODEL
from keras import layers, models

Assuming you have reshaped your input data for the CNN model

X train reshaped = np.array(X train).reshape(X train.shape[0], X train.shape[l], 1)

X val reshaped = np.array(X val).reshape(X valshape[0], X valshape[l], 1)

X test reshaped = np.array(X test).reshape(X test.shape[0], X test.shape[l], 1)

Convert labels to one-hot encoding
from keras.utils import to categorical

y train one hot =to categorical(y train)
y val one hot =to categorical(y val)

y test one hot =to categorical(y test)

Build your CNN model
model = Sequential()

model.add(Conv1 D(filters=32, kernel size=3,
mnput_shape=(X_train.shape[1], 1)))

modeladd(MaxPoolingl D(pool size=2))
model.add(Flatten())

model.add(Dense(128, activation='ReL.U"))

activation='ReL U"',

model.add(Dense(y_train one hot.shape[1], activation='softmax"))

TRAIN THE CNN MODEL
Train the CNN model

model.compile(loss='categorical crossentropy',

metrics=['accuracy'])

80

optimizer="adam’,

model fit(X train reshaped, y_train one hot, epochs=10, batch_size=64,
validation data=(X test reshaped, y test one hot))

Train the CNN model with validation data

history = model.fit(X train reshaped, y train one hot, epochs=500, batch size=64,
validation data=(X val reshaped, y val one hot))

Plot Training and Validation Accuracy
plt.figure(figsize=(12, 5))

plt.plot(history.history['accuracy'], labeF'"Training Accuracy')
plt.plot(history. history['val accuracy'], label="Validation Accuracy')
plt.title(CNN Model Learning Curve - Accuracy')
plt.xlabel('Epochs')

plt.ylabel(" Accuracy')

plt.legend()

plt.show()

Plot Traming and Validation Loss

plt.figure(figsize=(12, 5))

plt.plot(history.history['loss'], label="Training Loss')
plt.plot(history.history['val loss'], label='Validation Loss")
plt.title(CNN Model Learning Curve - Loss')
plt.xlabel('Epochs')

plt.ylabel(' Loss")

plt.legend()

plt.show()

from sklearn.model selection mmport GridSearchCV
81

Assuming X train scaled and y train are your training data
Set up the parameter grid for GridSearchCV
param grid = {'C":[0.001, 0.01, 0.1, 1, 10, 100],
'samma’: [0.001, 0.01, 0.1, 1, 10, 100],
'kernel': ['linear', 'rbf, 'poly', 'sigmoid']}
Create GridSearchCV

grid search = GridSearchCV(svm_model, param grid, cv=5, scoring='accuracy',

verbose=1, n_jobs=-1)
Fit the model

grid search.fit(X train scaled, y train)

Get the results

results = grid search.cv_results

best params = grid search.best params_

Plot the performance

plt.figure(figsize=(10, 6))

plt.plot(param_grid['C'], results['mean test score'], marker='0')
plt.xscale('log)

plt.xlabel('C (Regularization parameter)')
plt.ylabel('Mean cross-validated accuracy')
plt.title('SVM Performance with different C values')
plt.show()

print(X_test.shape, y test bin.shape)

82

Get predictions from the CNN model

y pred one hot = modelpredict(X test reshaped)

y pred labels cnn = np.argmax(y pred one hot, axis=1)

Check unique values in y train

print("Unique values in y train:", np.unique(y train))

Accuracy

cnn_accuracy = accuracy score(y test, y pred labels cnn)

print("\nCNN Accuracy:", cnn_accuracy)

Precision, Recall, F1 Score

cnn_precision = precision_score(y test, y pred labels cnn, average='weighted')
cnn_recall = recall score(y test, y pred labels cnn, average='weighted')
cnn_fl =1l score(y test, y pred labels cnn, average='weighted')
cnn_precision = precision_score(y test, y pred labels cnn, average='weighted')
print("CNN Precision:", cnn_precision)

Calculate CNN recall

cnn_recall = recall score(y test, y pred labels cnn, average='weighted')
print("CNN Recall:", cnn_recall)

Calculate CNN F1 score

cnn_fl =1l score(y test, y pred labels cnn, average='weighted')

print("CNN F1 Score:", cnn f1)

Assuming y test is your true labels, and y pred one hot is the predicted
probabilities from your CNN

If you have a multi-class problem, make sure to binarize the labels

83

y test bin = label binarize(y test, classes=[0, 1, 2, 3]) # Adjust classes based on

your problem
Assuming y pred one hot is the predicted probabilities from your CNN
y pred one hot =cnn modelpredict(X test reshaped)
Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
For each class (assuming a multi-class problem)
for i n range(n_classes):
fpr(i], tpr[i], =roc curve(y test bin[:, i], y pred one hot[:, i])
roc_auc[i] = auc(fpri], tprf[i])
Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _=roc curve(y test binravel(), y pred one hot.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
Plot the ROC curve
plt.figure(figsize=(10, 6))
Plot individual class curves
for iin range(n_classes):
plt.plot(fpr[i], tpr[i], labe=fClass {i} (AUC = {roc_auc[i]:.2f})")
Plot micro-average curve

plt.plot(fp1["micro"], tpr["micro"], labe=fMicro-average (AUC =
{roc_auc["micro"]:.21})', linestyle='--', linewidth=2)

Plot random guessing line
84

plt.plot([0, 1], [0, 1], linestyle="--', color='gray', labeF='Random Guessing')
Customize the plot

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title((ROC-AUC Curve for CNN')

plt.legend(loc='lower right')

plt.grid(True)

plt.show()

ROC CURVE OF CNN
Assuming y pred probs is the predicted probabilities for each class

Assuming you have predictions from your model stored in y pred probs
y_pred probs = modelpredict(X test reshaped)

for cnn, tpr cnn, =roc _curve(y test one hotravel(), y pred probs.ravel())
roc_auc_cnn = auc(fpr_cnn, tpr cnn)

plt.figure(figsize=(8, 6))

pltplot(fpr cnn, tpr cnn, color='darkblue', =2, labefCNN (AUC =

{roc_auc_cnn:2f}))

plt.plot([0, 1], [0, 1], color="gray', lw=1, linestyle='--') # Random classifier
plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver Operating Characteristic (ROC) Curve - CNN')
plt.legend(loc='lower right')

plt.show()
85

PRECISION RECALL CURVE CNN
Assuming X train.shape[l] is the number of features (12 in your case)

mput_shape = (X tran.shape[l], 1)
Assuming y test one hot is the true labels in one-hot encoded format

precision cnn, recall cnn, = precision recall curve(y test one hot.ravel(),

y_pred_probs.ravel())
auc_cnn = auc(recall cnn, precision cnn)
plt.figure(figsize=(8, 6))

plt.plot(recall cnn, precision cnn, color="darkorange', w=2, labe=fCNN (AUC =
{auc_cnn:.2f})")

plt.xlabel('Recall')

plt.ylabel('Precision')
plt.title('Precision-Recall Curve - CNN')
plt.legend(loc="upper right')

plt.show()

Assuming y test is your true labels, and y pred one hot is the predicted
probabilities from your CNN

If you have a multi-class problem, make sure to binarize the labels

y test bin = label binarize(y test, classes=[0, 1, 2, 3]) # Adjust classes based on

your problem

Assuming y pred one hot is the predicted probabilities from your CNN
y pred one hot =cnn modelpredict(X test reshaped)

Compute ROC curve and ROC area for each class

fpr = dict()

tpr = dict()
86

roc_auc = dict()
For each class (assuming a multi-class problem)
for iin range(n_classes):
fpr[i], tpr[i], _=roc_curve(y test bin[:, 1], y pred one hot[:, 1i])
roc_auc[i] = auc(fpr[i], tprfi])
Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], =roc_curve(y test binravel(), y pred one hot.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
Plot the ROC curve

plt.figure(figsize=(10, 6))

Plot individual class curves
for 1 n range(n_classes):
plt.plot(fpr[i], tpr[i], label=fClass {i} (AUC = {roc_auc[i]:2f})")

Plot micro-average curve

plt.plot(fpr["micro"], tpr["micro"], labeE=fMicro-average (AUC
{roc_auc["micro"]:.2f})', lnestyle='--', lmewidth=2)

Plot random guessing line

plt.plot([0, 1], [0, 1], linestyle='--', color="gray', labe='"Random Guessing')
Customize the plot

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title("ROC-AUC Curve for CNN")

87

plt.legend(loc='lower right')

plt.grid(True)

plt.show()

Save the CNN model

model.save('/content/drive/MyDrive/cnn_model.hS")

Learning curve for SVM

train_sizes, train scores svm, test scores svm = learning curve(
svm model, X, y, cv=35, scoring="accuracy', n_jobs=-1)

from sklearn.model selection import learning curve

Learning curve for SVM

train_sizes, train scores_svm, test scores _svm = learning curve(

svm _model, X, y, cv=5, scoring='accuracy', n_jobs=-1)

Calculate mean and standard deviation of traming and test scores

train mean svm = np.mean(train_scores svm, axis=1)

train std svm = np.std(train_scores_svm, axis=1)

test mean svm = np.mean(test scores svm, axis=1)

test std svm = np.std(test scores svm, axis=1)

Plot learning curve for SVM

plt.figure(figsize=(10, 6))

plt.plot(train_sizes, train mean svm, labe='"Training Score', color='blue")

plt.fill between(train sizes, train mean svm - train std svm, train mean svm -+

train_std svm, color='blue', alpha=0.2)

plt.plot(train_sizes, test mean svm, label='Cross-Validation Score', color="green’)

88

plt.fill between(train sizes, test mean svm - test std svm, test mean svm +

test std svm, color='green', alpha=0.2)

plt.title('SVM Model Learning Curve')

plt.xlabel(' Training Size')

plt.ylabel(" Accuracy Score')

plt.legend()

plt.show()

Number of classes

num_classes =4

Calculate mean and standard deviation of traming and test scores
train mean svm = np.mean(train scores svm, axis=1)

train_std svm = np.std(train_scores svm, axis=1)

test mean svm = np.mean(test scores svm, axis=1)

test std svm = np.std(test scores svm, axis=1)

Plot learning curve for SVM

plt.figure(figsize=(10, 6))

plt.plot(train_sizes, train mean svm, labeE"Training Score', color="blue")

plt.fill between(train sizes, train mean svm - train std svm, train mean svm +

train_std svm, color="blue', alpha=0.2)
plt.plot(train_sizes, test mean svm, label='Cross-Validation Score', color='green')

plt.fill between(train sizes, test mean svm - test std svm, test mean svm +

test std svm, color='green', alpha=0.2)
plt.title('SVM Model Learning Curve')

plt.xlabel(' Training Size')

89

plt.ylabel(" Accuracy Score')

plt.legend()

plt.show()

Number of classes

num classes =4

Convert your y train and y test to one-hot encoding

y train one hot =to categorical(y train, num classes=num classes)
y test one hot =to categorical(y test, num classes=num classes)
epochs = 200

from keras.utils import to categorical

Convert your y train and y test to one-hot encoding

y train one hot =to categorical(y train, num classes=num classes)
y test one hot =to categorical(y test, num classes=num classes)
Learning history for CNN

history = model fit(X_train, y_train, epochs=10, batch size=64,
validation data=(X test, y test))

Plot learning history for CNN

plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)

plt.plot(history.history['accuracy'], labe="Training Accuracy')
plt.plot(history.history['val accuracy'], label='Validation Accuracy')
plt.title(CNN Model Training Accuracy')

plt.xlabel('Epoch')

90

plt.ylabel(" Accuracy')
plt.legend()

plt.tight layout()
plt.show()

plt.tight layout()

plt.show()

Appendix 2
COMPARATION OF THE MODELS
from scipy.stats import ttest rel

Statistical analysis (t-tests for example)
from scipy import stats

Print evaluation metrics for the SVM model
print("SVM Model Evaluation:")
print("Accuracy:", svm accuracy)
print("Precision:", svm precision)
print("Recall:", svm recall)

print("F1-score:", svm fl score)

91

print("ROC AUC:", svm roc_auc)

Actual accuracy, precision, recall, Fl-score, and ROC AUC values for CNN and
SVM

cnn_accuracy = 0.9906000122077764

cnn_precision = 0.9899951702164878

cnn_recall =0.9906000122077764

cnn_fl =0.9901868458560885

cnn roc_auc = 0.8774261119352021

svm accuracy = 0.739486052615516

svm precision =0.6199914926592527

svm recall =0.739486052615516

svm fl =0.6600092450578181

svm roc_auc = (0.9243266246663926

Perform a t-test for accuracy

accuracy stat, accuracy p_value = stats.ttest rel(cnn_accuracy, svm accuracy)
Print the results

print('"T-test for Accuracy:")

print("t-statistic:", accuracy stat)

print("p-value:", accuracy p value)

Check the p-value to determine if the difference is statistically significant
alpha = 0.05 # Set your significance level

if accuracy p value < alpha:

print("The difference i accuracy is statistically significant.")

92

else:
print("There is no significant difference in accuracy between the models.")
Print the results
print("CNN Accuracy:", cnn_accuracy)
print("SVM Accuracy:", svm accuracy)
print("Accuracy p-value:", accuracy p value)
Print the evaluation metrics
print("CNN Accuracy:", cnn_accuracy)
print("CNN Precision:", cnn_precision)
print("CNN Recall:", cnn recall)

print("CNN F1-score:", cnn f1)

Print the ROC AUC score

print("CNN ROC AUC Score:", cnn roc_auc)
Print the evaluation metrics

print("CNN Accuracy:", cnn_accuracy)
print("CNN Precision:", cnn_precision)
print("CNN Recall:", cnn recall)

print("CNN F1-score:", cnn f1)

Print evaluation metrics for the SVM model
print("SVM Model Evaluation:")
print("Accuracy:", svm accuracy)
print("Precision:", svm precision)

93

print("Recall:", svm recall)

print("F1-score:", svm fl score)

print("ROC AUC:", svm roc_auc)

Metrics and models

metrics = ['Accuracy', 'Precision’, 'Recall, 'F1-Score','ROC AUC']

models = ['CNN'",'SVM']

Values for CNN and SVM

cnn_metrics = [cnn_accuracy, cnn_precision, cnn recall, cnn fl, cnn roc auc]
svm_metrics = [svm_accuracy, svm precision, svm recall, svm fl, svm roc auc]
Create an index for each metric

x = np.arange(len(metrics))

Define the width of the bars
width = 0.35

BAR PLOT
Print the evaluation metrics

print("CNN Accuracy:", cnn_accuracy)
print("CNN Precision:", cnn precision)
print("CNN Recall:", cnn recall)

print("CNN F1-score:", cnn_fl)

Print the ROC AUC score

print("CNN ROC AUC Score:", cnn roc_auc)
Calculate the differences

accuracy diff =cnn accuracy - svm accuracy
94

precision_diff = cnn precision - svm precision
recall diff =cnn recall - svm recall

fl diff =con fl -svm fl

roc_auc_diff = cnn_roc_auc - svm roc_auc

Actual accuracy, precision, recall, Fl-score, and ROC AUC values for CNN and
SVM

svm accuracy = (.739486052615516
svm_precision =0.6199914926592527
svm_recall =0.739486052615516
svm _fl =0.6600092450578181

svm roc_auc = 0.9243266246663926
cnn_accuracy = 0.9906000122077764
cnn_precision =0.9899951702164878
cnn_recall =0.9906000122077764
cnn_fl =0.9901868458560885
cnn_roc_auc = 0.8774261119352021
#Assuming you have computed performance metrics for two models

metrics svm = {'Accuracy’: 0.739486052615516, 'Precision’: 0.6199914926592527,
'Recall: 0.739486052615516, 'F1 Score': 0.6600092450578181}

metrics_cnn = {'Accuracy: 0.9906000122077764, 'Precision’: 0.9899951702164878,
'Recall: 0.9906000122077764, 'F1 Score': 0.9901868458560885}

Extract metric names and values
metric names = list(metrics svm.keys())

values svm = list(metrics_svm.values())

95

values cnn = list(metrics_cnn.values())
metrics =['Metricl', 'Metric2', 'Metric3', 'Metric4'] # Replace with your actual metrics

assert len(metrics) == len(values svm) == len(values cnn), "Length mismatch in

metrics arrays"

Set up bar positions

bar width = 0.35

ind = np.arange(len(metric_names))
Set the width of the bars

width = 0.35

Set the x locations for the groups

ind = np.arange(len(metric_names))

Plot the bars

fig, ax = plt.subplots(figsize=(10, 6))

barl = ax.bar(ind - width/2, values svm, width, labeE='SVM'")
bar2 = ax.bar(ind + width/2, values cnn, width, labeEE'CNN")
Add some text for labels, title and custom x-axis tick labels, etc.
ax.set xlabel('Metrics')

ax.set_ylabel(' Values')

ax.set_title('Model Comparison (SVM vs CNN)")
ax.set_xticks(ind)

ax.set xticklabels(metric names)

ax.legend()

96

Display the values on top of the bars
for bar in barl:
yval = bar.get height()

plt.text(bar.get x() + barget width()/2, yval, round(yval, 6), ha='center',

va='bottom’)
for bar in bar2:
yval = bar.get height()

plt.text(bar.get x() + barget width()/2, yval, round(yval, 6), ha='center',

va='bottom’)

Set the y-axis scale
plt.yticks(np.arange(0, 1.0, 0.05))
Show the plot

plt.show()

RADAR PLOT
Number of metrics

num_metrics = len(metric_names)

Set up angles for the radar chart

angles = np.linspace(0, 2 * np.pi, num metrics, endpomnt=False)
Make the plot circular

values svm += values svm[:1]

values cnn += values cnn[:1]

angles = np.concatenate((angles, [angles[0]]))

Plot the SVM values

plt.polar(angles, values svm, marker='0', labe='SVM')

97

Plot the CNN values

plt.polar(angles, values cnn, marker="o', labe='CNN")

Fill the area between the lines

plt.filllangles, values svm, alpha=0.25)

plt.fill(angles, values cnn, alpha=0.25)

Add labels, title, and legend

plt.thetagrids(angles[:-1] * 180/np.pi, metric names)

plt.title('Model Comparison (SVM vs CNN)")

plt.legend()

Show the plot

plt.show()

Assuming you have reshaped your mput data for the CNN model

X train reshaped = X train.reshape(X train.shape[0], X tram.shape[l], 1)
X val reshaped = X valreshape(X val.shape[0], X valshape[l], 1)
X test reshaped = X test.reshape(X test.shape[0], X test.shape[l], 1)
Load the CNN model

loaded model =load model('/content/drive/MyDrive/cnn_model h5")

Load the SVM model

svm model path = '/content/drive/MyDrive/log2.csv'

svm_model = joblib.load(svm_model path)

Reshape the mput data to 2D

#X test reshaped 2d = X test reshaped.reshape(X test reshaped.shape[0], -1)
Get predicted labels and probabilities for SVM

98

#y pred svm = svm model.predict(X test reshaped 2d)
#y pred probs svm = svm modelpredict proba(X test reshaped 2d)

CONFUSION MATRIX
from sklearn.metrics import confusion matrix, classification report

#If y test is one-hot encoded, convert it back to labels
if len(y_test.shape) > 1:

y test labels = np.argmax(y test, axis=1)
else:

y test labels =y test

svm pred labels = svm modelpredict(X test)
cnn_pred one hot = model.predict(X test reshaped)
cnn_pred_labels = np.argmax(cnn pred one hot, axis=1)

Get the confusion matrixes

cm_svm = confusion matrix(y test labels, svm pred labels)
cm cnn = confusion matrix(y test labels, cnn pred labels)
Plot the confusion matrices side by side

fig, axes = plt.subplots(1, 2, figsize=(12, 5))

SVM Confusion Matrix

sns.heatmap(cm_svm, annot=True, fmt="d", cmap="Blues", cbar=False, ax=axes[0])
axes[0].set_title('SVM Confusion Matrix')
axes[0].set_xlabel('Predicted')

axes[0].set_ylabel(" Actual')

CNN Confusion Matrix
99

sns.heatmap(cm_cnn, annot=True, fmt="d", cmap="Blues", cbar=False, ax=axes[1])
axes[1].set_title((CNN Confusion Matrix')

axes[1].set xlabel('Predicted")

axes[1].set_ylabel(' Actual')

plt.show()

Assuming y test bin is your true labels (one-hot encoded) for CNN

y test bin =to categorical(log2 data['Action encoded'])

Assuming svm model and model are your tramed SVM and CNN models
svm_probabilities = svm model.predict proba(X test)

svm_predicted labels = svm modelpredict(X test)

from sklearn.model selection mmport learning curve

REAL TIME INTRUSION DETECTION CLASSIFICATION
Load the CNN model

cnn_model path = '/content/drive/MyDrive/cnn_model h5'

loaded model =load model(cnn_model path)

Load the SVM model

svm model path = '/content/drive/MyDrive/log2.csv'

svm_model = joblib.load(svm_model path)

Load the CNN model

cnn_model = load model('/content/drive/MyDrive/cnn_model.hS5")

TAKING THE INPUTS DIRECTLY FROM THE DATASET/USER INPUT
Features list (excluding 'Action’)

features = ['Source Port', 'Destination Port', NAT Source Port', 'NAT Destination Port',

100

'Bytes', 'Bytes Sent', 'Bytes Received', 'Packets', 'Elapsed Time (sec)',
'pkts_sent', 'pkts received']
User input dictionary
user_mput = {}
Input values for each feature
for feature in features:
value = float(input(f"{feature}: "))

user_nput[feature] = [value]

Convert user input to a DataFrame

user_input_df = pd.DataFrame(user_input)

Standardize user mput for SVM

user_input scaled = scaler.transform(user input df) # Use the same scaler as before
Classify action using the SVM model

svm_predicted action = svm modelpredict(user input scaled)

svm_predicted action = svm predicted action[0]

Assuming you have reshaped your mnput data for the CNN model

user_input reshaped = user mput df values.reshape(1l, user nput dfshape[l], 1)
Classify action using the CNN model

cnn_predicted action = cnn model.predict(user input reshaped)

cnn_predicted action =

label encoder.inverse transform([cnn predicted action.argmax()])[0]

Hypothetical ground truth labels

101

y true ='Allow' # Replace with the actual label for this example

Mapping dictionary to convert predictions to class labels

class mapping = {0: 'Allow', 1: 'Deny', 2: 'Drop', 3: 'Reset-Both'}

Convert the predicted actions to class labels using the mapping dictionary

svm predicted action = class mapping[svm predicted action]

Convert both predicted actions to lowercase

svm predicted action lower = str(svm predicted action).lower()

cnn_predicted action lower = str(cnn_predicted action).lower()

Calculate accuracy in percentage

svm_accuracy = 100 if svm predicted action lower ==y true.lower() else 0

cnn_accuracy = 100 if cnn_predicted action lower ==y true.lower() else 0

Print the results

print("SVM Predicted Action:", svm predicted action)

print("CNN Predicted Action:", cnn predicted action)

Calculate accuracy in percentage

svm_accuracy = 100 if svm predicted action lower ==y true.lower() else 0

cnn_accuracy = 100 if cnn_predicted action lower ==y true.lower() else 0

print("SVM Accuracy: {:.2f}%". format(svm accuracy))

print("CNN Accuracy: {:.2f}%".format(cnn_accuracy))

Features list (excluding 'Action')

features = ['Source Port', 'Destination Port', 'NAT Source Port', 'NAT Destination Port',
'Bytes', 'Bytes Sent', 'Bytes Received', 'Packets', 'Elapsed Time (sec)!,
'pkts_sent', 'pkts_received']

102

User mput dictionary
user_input = {}
Input values for each feature
for feature in features:
value = float(input(f"{feature}: "))

user input[feature] = [value]

Convert user input to a DataFrame

user_input df = pd.DataFrame(user input)

Standardize user input for SVM

user_input scaled = scaler.transform(user input df) # Use the same scaler as before
Classify action using the SVM model

svm predicted action = svm modelpredict(user input scaled)

svm_predicted action = svm predicted action[0]

Assuming you have reshaped your input data for the CNN model

user_input reshaped = user input df values.reshape(l, user nput dfshape[l], 1)
Classify action using the CNN model

cnn_predicted action = cnn_model.predict(user input reshaped)

cnn_predicted action =

label encoder.inverse transform([cnn predicted action.argmax()])[0]
Hypothetical ground truth labels
y true ='drop' # Replace with the actual label for this example

Mapping dictionary to convert predictions to class labels

103

class mapping = {0: 'Allow', 1: 'Deny', 2: 'Drop', 3: 'Reset-Both'}

Convert the predicted actions to class labels using the mapping dictionary
svm_predicted action = class mapping[svm_predicted action]

Convert both predicted actions to lowercase

svm_predicted action lower = str(svm predicted action).lower()
cnn_predicted action lower = str(cnn predicted action).lower()

Calculate accuracy in percentage

svm_accuracy = 100 if svm predicted action lower ==y true.lower() else 0
cnn_accuracy = 100 if cnn_predicted action lower ==y true.lower() else 0
Print the results

print("SVM Predicted Action:", svm predicted action)

print("CNN Predicted Action:", cnn predicted action)

Calculate accuracy in percentage

svm_accuracy = 100 if svm predicted action lower ==y true.lower() else 0
cnn_accuracy = 100 if cnn_predicted action lower ==y true.lower() else 0
print("SVM Accuracy: {:.2f}%". format(svm accuracy))

print("CNN Accuracy: {:2f}%". format(cnn_accuracy)).

104

105

Appendix X

Similarity Report
=y O 0@ :

< C m 25 app.thenticate.com/en_us/folder
By GoogleTranslate (3 Google [WEBadresses () ogrsisneusdutr [Imparted From IE Department of Com... (g University Of Kyreni.. () UZEBIM G Google ¥ Bookmark Manager ~ » | [All Bookmarks
Folders Settings Account Info Weicome Rahib Abiyev | Logout

. . :
+ iThenticate
My Folders page 1 of 1 =)
= ! My Fold My Documents Iﬂii iiiia Sharing Settings ’—_E—T Submit a document
= y Folders
Report Author Processed Actions 336 D . -
'ocuments remaining

O Title
OKAH Mard 2024 o=
lar 4, =

A Comparative Study of Support Vector Machine and Convolutional s
Trash Neural Network Models for Intrusion Detection f"‘\‘f:xfm SlEaEm
B . - Upload a File
Zip File Upload
page 1of1
Cut & Paste

Doc-to-Doc Comparison NEW!

View: Recent Uploads

| New folder

Supervisor: Prof.Dr.Rahib Abiyev

106

