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Abstract 

A CRITICAL ASSESSMENT OF MACHINE LEARNING APPLICATIONS 

IN CIVIL ENGINEERING 

Abdullahi Mohamud ADAM, Assist. Prof. Dr. Ikenna D.Uwanuakwa 

MSc, Department of Civil Engineering, Faculty of Civil and Environmental 

Engineering, Near East University, Nicosia. 

January, 2024, 70 Pages 

This research investigates on assessing values of dynamic modulus (E*) and LOG E* 

in asphalt mixtures conducted through Visual Studio Code using machine learning 

(ML). By implementing, running codes we use important ML algorithms – Gradient 

Boost, XGBoost, AdaBoost, LGBM Boost and Cat Boost - for doing predictions on 

these important parameters. In this study, the Shapley value, permutation importance 

and accumulated local effects are used for impact analyses of input variables to 

enhance model accuracy and interpretability. Our methodology gives evidence of the 

application of ML in civil engineering, provides more accurate efficiency to evaluate 

the mechanical property of asphalt mixtures. This study does not only represent the 

advancement that ML has brought in this regard but also is an instructive guide for 

future explorations in this filed. 

Keywords: asphalt mixtures, machine learning, gradient boost, parameter 

interpretability. 
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CHAPTER I 

Introduction 

1.1 Background 

Machine learning (ML) algorithms have been becoming more prevalent in recent 

decades. This is mostly due to their consistently great performance in modeling 

complex and non-linear correlations. ML algorithms are being used in a wide range of 

industries nowadays, including science (Au et al., 2022) and civil engineering in 

particular (Kim & Jung, 2024). Since the inception of modern pavement engineering, 

data analysis has been a part of the process.  To determine important variables and 

assess pavement performance, various machine learning models were used, and they 

turned out to be effective predictive tools (Lontra, n.d., 2022). 

Asphalt mixtures play a vital role in pavement construction and maintenance 

(Zaumanis et al., 2018), The complex modulus has a real and imaginary part that 

defines the elastic and viscous behaviour of the linear viscoelastic material. The 

absolute value of the complex modulus |E*|, is defined as the dynamic modulus 

(Kaloush & Witczak, 2003). Dynamic modulus (E*) is an essential parameter of 

asphalt mixtures.  It is the parameter that distinguishes the flexible pavement 

performance conditioning on multiple temperatures and loading circumstances in the 

Mechanistic-Empirical Pavement Design Guide (MEPDG) (Xu et al., 2022). 

Mathematically, the dynamic modulus is defined as the maximum (peak) dynamic 

stress (�o) divided by the recoverable axial strain (�o) (Kaloush & Witczak, 2003). 

Traditionally, empirical methods were employed for predicting E* values, but it 

involves complicated, and time consuming. As therefore, advanced methods are 

required to develop more precise E* predictive models. Currently, machine learning 

(ML) techniques are widely employed to handle many kinds of civil engineering 

challenges because of their capabilities in data processing and optimization (Xu et al., 

2022). This research employs a data-driven approach to create an approach for 

predicting the performance of asphalt mixtures. It is intents for the critical assessment 

of dynamic modulas (E*) and Log E* by applying to global and local interpretability 

methods such as Shapley value, Permutation importance, and Accumulated local 

effects(ALE) . furthermore, the study specifically evaluates and addresses the 
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performance of five prominent models-Gradient boost, XGBOOST, Adaboost, LGBM 

boost, and Catboost- in predicting E* and Log E*. 

1.2 Problem statement of the study 

The accurate evaluation of asphalt mixtures' dynamic modulus (E*) remains a critical 

step in pavement engineering for predicting pavement performance. Machine learning 

research on the modelling of E* and Log E* presented in the literature lacks complete 

components of model interpretability; local and global effect and importance of model 

features. This study seeks out the critical assessment of E* and Log E* by applying to 

some global and local interpretability methods which include Shapley value, 

Permutation importance, Accumulated local effects to identifying the most important 

features. Furthermore , the study specifically evaluate and address the performance of 

five models-Gradient boost, XGBOOST, Adaboost, LGBM boost, and Catboost- in 

predicting E* and Log E*. 

1.3 Objectives of the study 

The main objectives of this study are as follows: 

• To interpret the primary features of dynamic modules E* and Log E* in asphalt 

mixtures, by using global and local methods. 

• To address and evaluate critically the performance of five models-Gradient boost, 

XGBOOST, Adaboost, LGBM boost, and Catboost- in predicting E* and its 

logarithmic value Log E*. 

• To compare the efficiency, effectiveness, and accuracy of ML methods utilized by 

identifying the most precise one. 

1.4 Scope of study 

The study employs the use of the selected machine learning parameter interpretabilities 

such as Shapley value, Permutation importance, accumulated local effects (ALE). 

And addresses the performance of five model predictions, which are Gradient boost, 

XGBOOST, Adaboost, LGBM boost, and Catboost to forecast the dynamic modulus 

E* and Log E* in asphalt mixtures. It involves using adequate data sets that will be 

handy in training and testing of the machine learning models to ensure accuracy in 

output results and predictions. More than an overall discussion of these modern 
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techniques, the focus here lies in the application use of these advanced techniques 

within the sphere of transportation engineering with more special emphasis laid on 

their utility in assessing and improving pavement materials. Powerful machine 

learning methods will be used to upgrade the understanding and assessment of asphalt 

mixtures for more accurate and effective design and maintenance of pavements. 

1.5 Limitations 

The study acknowledges certain limitations. Firstly, complicated advanced models 

based on machine learning might need particular consideration to use and understand 

in order to determine whether or not they fully serve all predictions. Secondly, some 

parameter interpretability models require additional consideration in terms of 

comprehending the result, failure to understand them may lead to ineffective 

outcomes.  Finally, the performance of the models could be affected by external factors 

like environmental conditions and material variability whereby they do not get fully 

controlled in the study. 
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CHAPTER II 

Fundamental Concepts and Historical Overview 

2.1 Basic Concepts of Machine Learning 

Artificial intelligence (AI) serves as a highly effective modeling method extensively 

used in numerous scientific disciplines (Krzywanski, 2022). 

Machine learning (ML) concentrates on developing systems that enable an algorithm 

to collect and apply information. This learning process does not necessitate 

consciousness; rather, it involves detecting statistical patterns or other data-related 

elements. As a result, numerous machine learning algorithms diverge significantly 

from the way that people learn objects. ML algorithms can offer helpful insights into 

the diverse levels of complexity found in various learning configurations (Oladipupo, 

2010). 

A basic concept for learning is the model, which contains the learned information and 

is used to make predictions. As a rule, models are only designed for a single task. For 

example, in a healthcare setting, ML can take patient medical history and diagnostic 

test results as input data and predict the likelihood of a certain disease or condition as 

the output. Most important concept is model training, in which the model is taught 

through information as input. Machine learning models are normally trained once and 

then used for predictions. (Dhandapani & Sivaramakrishnan, 2019). Traditional 

machine learning can be categorized following an algorithm's capacity to enhance its 

prediction precision through training. The five integral methods for learning are 

supervised learning, unsupervised learning, semi-supervised learning, reinforcement 

learning (RL), and transfer learning (Xu et al., 2021). 

2.1.1 Supervised Learning 

These algorithms utilize a specific collection of input variables (training data) that 

have been pre-labeled, along with the target data. By employing input variables, it 

generates a mapping function to associate inputs with the required outputs. The 

parameters and adjustment methods in the algorithm remain in place until the system 

demonstrates a satisfactory level of accuracy in regard to the training data (Fawzy & 

Jasem, 2020). 
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Algorithms for supervised learning requires a substantial quantity of labelled training 

data to develop model that demonstrate superior prediction performance (Bianchini et 

al., 2013). 

Supervised learning can be divided into two main subcategories: regression 

algorithms, which produce continuous output, and classification algorithms, which 

produce discontinuous output. Regression algorithms seek to identify the optimal 

function that best fits the points in the training dataset. The regression methods can be 

classified into three main categories: linear regression, multiple linear regression, and 

polynomial regression. By designating each input to its corresponding class, 

classification algorithms may accurately select the most suitable class for the given 

data. The output of the predicting function used in this instance is categorical, and its 

value is assigned to one of the available classes (Directions, 2023). 

Regression is employed to address problems involving the prediction of continuous 

variables, whereas support vector machines (SVMs) are employed for algorithmic 

classification. The random forest algorithm is utilized to address classification and 

regression problems. Supervised learning is utilized when data is labelled and a 

classifier is applied for classifications or numerical prediction (Directions, 2023). 

In civil engineering and other engineering fields, supervised learning has been widely 

applied. In civil engineering, supervised learning finds diverse applications. For 

instance, in Structural Health Monitoring, it is utilized to analyze sensor data from 

various infrastructures such as bridges and buildings. Its primary purpose is to 

determine the health condition of the structure by detecting damages and predicting 

structural failures. Additionally, supervised learning can be used to predict the seismic 

collapse of frame structures. Supervised learning algorithms are trained to identify 

patterns in sensor data by using vibration data, lamb waves and electromechanical 

impedance, acoustic emission, etc, enabling early warnings of potential issues 

(Amezquita-Sanchez et al., 2020). 

Furthermore, supervised learning is involved in predicting the properties of 

construction materials, such as concrete strength(Mohtasham Moein et al., 2023).  

Supervised learning plays a crucial role in project management within the construction. 

It has been widely adopted in various areas of construction, including safety, bridge 

inspection, and on-site operation monitoring (Xu et al., 2021). 
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Moreover, supervised learning models are used in geotechnical engineering to analyze 

soil composition data and historical performance data, enabling predictions about soil 

settlement, slope stability, shallow and pile foundations and other geotechnical 

parameters.(Baghbani et al., 2022). 

2.1.2 Unsupervised Learning 

Unlike supervised learning, this approach involves training the learning algorithm with 

an input dataset that does not contain any labelled outputs. In contrast to supervised 

learning, there is no definitive or erroneous answer associated with each input item. 

Unsupervised learning exhibits a higher degree of randomness compared to supervised 

learning. The main objective of unsupervised learning is to acquire a more profound 

understanding of the data by identifying its fundamental structure or distribution 

pattern. As the algorithm self-learns, it strives to accurately represent a particular 

identified input pattern while incorporating it into the broader framework of input 

patterns. Therefore, extracted properties from each input item are categorized relating 

many inputs to them. In solving these issues associated with association and clustering, 

unsupervised learning can be utilized (Directions, 2023). 

For example, unsupervised learning could also be leveraged in civil engineering 

applications, such as topographic mapping or terrain analysis. For example, to deal 

with elevation data that is derived through the use of remote sensing instruments like 

light detection and ranging (LiDAR). This analysis helps in developing detailed 

topographic maps which are essential for diverse civil engineering applications such 

as site planning and great help in the detection of leveling applications (Gharineiat et 

al., 2022). 

In addition, Unsupervised learning applies to computer engineering and this varies 

from Anomaly Detection for Intrusion Detection to both recognizing the abnormal 

activities or security breaches in the computing networks and systems, and even Fault 

Detection for hardware elements or systems to detect an abnormality in that system  

for instance CPU memory failure (Usama et al., 2019). 

2.1.3 Reinforcement Learning 

This method utilizes a capable computer to map activities to certain decisions, which 

will lead to the generation of feedback or reward signals. The system automatically 
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trains itself to recognize important beneficial acts by using rewards and punishments 

grounded on previous experiences (Fawzy & Jasem, 2020). 

Learning agents are having predefined purposes and capable at perceiving the 

condition of their environment to certain measure. Consequently, individuals are able 

to take action to modify the status of the environment and move closer to the objectives 

they have been assigned. Reinforcement learning and supervised learning are distinct 

from each other based on their respective learning methods. The supervised learning 

approach utilizes case studies provided by an external supervisor for instructional 

purposes. Conversely, reinforcement learning acquires information by directly 

engaging with the problem environment (Directions, 2023). 

Reinforcement learning is widely employed in civil engineering. Reinforcement 

learning algorithms can control traffic signals and manage traffic flow based on real-

time data, utilizing traffic cameras, loop detectors, and vehicle counters for data 

collection(Tan et al., 2022). Also This approach is pivotal in autonomous vehicles. It 

enables them to recognize streets, make turns, and make informed decisions about their 

path(Directions, 2023). Additionally, in geotechnical engineering, reinforcement 

learning can assist in optimizing drilling and excavation processes based on data from 

geotechnical instruments such as soil samples and geophysical instruments (Coelho & 

Smyrniou, 2023). Moreover, in irrigation control, RL has been applied in many 

applications, such as network planning, cellular data analytics, sensor energy 

management, mobile app prediction, and building energy optimization that can lead to 

several benefits like improved crop yield and quality, reduced energy costs, and 

minimized environmental impact (Ding & Du, 2022). 

Reinforcement learning is generally used in other engineering fields, such as computer 

engineering, to train robots, providing them with the ability to learn, improve, adapt, 

and reproduce tasks using specific instruments like robotic arms, grippers, cameras, 

and torque sensors.(Kormushev et al., 2013). 

2.1.4 Semi-supervised Learning 

Semi-supervised learning is a subfield of machine learning that focuses on 

utilizing both labelled and unlabeled data to accomplish particular objectives of 

learning. Positioned between supervised and unsupervised learning in terms of 

conceptual framework (van Engelen & Hoos, 2020). 
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Machine learning, or ML, generally distinguishes between two primary tasks: 

supervised learning and unsupervised learning. Supervised learning involves being 

given a collection of data points that include an input x and its matching output value 

y. The objective is to develop a classifier or regressor that is capable of predicting the 

output value for inputs that have not been encountered previously In the context of 

unsupervised learning, there is no provision of a specific output value. Instead, 

individuals attempt to derive an underlying framework from the given inputs. In 

unsupervised aggregation, the objective is to derive a mapping from the provided 

inputs (e.g. real number vectors) to groups, ensuring that comparable inputs are 

assigned to the same category. Semi-supervised learning is an a subfield of machine 

learning that seeks to integrate these two missions. Semi-supervised learning 

algorithms aim to enhance performance in any of these two tasks by leveraging 

knowledge commonly associated with the other. When dealing with a classification 

challenge, one can utilize additional data points whose labels are unknown to assist in 

the process of categorization. Conversely, clustering algorithms can improve the 

learning process by utilizing the information that specific data points are part of the 

same class (van Engelen & Hoos, 2020). 

Several commonly employed methods for semi-supervised learning 

include expectation-maximization (EM) with generative mixture models, self-

training, co-training, transductive support vector machines, and graph-based methods 

(Zha et al., 2009). Semi-supervised learning deals with the Pavement Condition 

Assessment like Pavement roughness, paved layer strength, and visual surface stress. 

Building the prediction model involves merging of labeled data from manual surveys 

to unlabeled from for instance sensors lasers surface testers, accelerometers or road 

images. The model can be trained with the help of labeled data, and by means of this 

dataset, unlabeled data can as well be used so that it is augmented (Liu et al., 2021). 

For the detection and monitoring of water treatment and supply, but also for checking 

the potentials for pollution and identification of quality water, semi-supervised 

learning could be adapted (Yuan & Jia, 2016). 

2.1.5 Transfer Learning 

In this view, transfer learning can be considered as a reusing strategy of machine 

learning models that get previously trained on the developing new models. Generalized 
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knowledge can get transferred between the models only when the models are designed 

to carry out identical tasks. This machine-learning method minimalizes required 

resources and tagged data for training of new models (Weiss et al., 2016). 

Transfer learning is an a priori training focused approach for the improvement of 

learning in a subject in one domain by building on the learned experiences from a 

certain different but closely related domain. The scarcity of target training data begets 

the necessity for transfer learning. Such a scenario would emanate due to varied factors 

ranging from actual nonexistence of data, costs involved, or high inaccessibility 

expense. Transfer learning solution becomes an attractive option for the usage of 

existing datasets related but non-exactly to a domain of interest as big data repositories 

become more prevalent. For instance, transfer learning has been applied successfully 

in different machine learning cases like text sentiment classification, and in other cases 

like image classification, human activity categorization, software fault classification, 

and multi-language text classification among others (Weiss et al., 2016). 

Transfer learning is where instead of developing a scratch model, the already pre-

trained models are used. The pre-trained object detection or video analysis models can 

be further finetuned to improve construction site safety monitoring. This adaptation 

includes identifying potential hazards, ensuring compliance with safety regulations. 

Additionally, there are recognition models that determine whether workers are 

appropriately wearing safety helmets and vests, subsequently alerting workers to 

unsafe conditions (Lee & Lee, 2023) 

Transfer learning can be applied to traffic management and optimization, such as 

adapting pre-trained models for traffic flow prediction, congestion detection, or 

intelligent traffic signal control. (Krishnakumari et al., 2018). By reusing models or 

knowledge from previous BIM projects, transfer learning can help improve the speed 

at which digital representations are made for new construction or renovation 

projects.(Zabin et al., 2022). In computer engineering, Transfer learning will fasten the 

development and verification of integrated circuits as well as hardware components by 

reusing trained models before their design rule check or fault analysis. (Pan et al., 

2021). 
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2.2 Evolution of Machine Learning 

2.2.1 Early Days 

Artificial intelligence dates back to the fundamental work of Warren McCulloch and 

Walter Pitts in 1943. They developed the prototype of artificial neurons based on 

various theories regarding brain function, logical analysis, and computation. This is an 

emulator of neurons that are labeled with“ on” and “off”, responding to input from 

neighboring neurons.. McCulloch and Pitts demonstrated that any computable function 

could be computed by networks of these artificial neurons. They also showed how 

logical operations like AND, OR, and NOT could be implemented with these 

structures. Importantly, they suggested that such networks could learn. Donald Hebb, 

in 1949, introduced Hebbian learning, a rule for adjusting the connections between 

neurons, which remains influential in neural network research. The SNARC, the first 

neural network computer, was created by Marvin Minsky and Dean Edmonds at 

Harvard in 1950. This apparatus employed vacuum tubes and components obtained 

from a B-24 bomber to replicate a network comprising 40 neurons. Despite facing 

initial doubt from his Ph.D. committee, Minsky proceeded to study universal 

computation in neural networks. Alan Turing, commencing in 1947, exerted a crucial 

influence on molding AI. Turing's 1950 article "Computing Machinery and 

Intelligence" established essential notions such as the Turing Test, machine learning, 

genetic algorithms, and reinforcement learning. He put out the concept of the "Child 

Programme," advocating for a shift in AI research from replicating adult intellect to 

replicating the learning process of a child (Huang, 2010). 

2.2.2 Rise of Deep Learning 

Deep learning is based on artificial neurons that resemble the neurons found in the 

brain of human. In the 1950s, the foundation was laid with the invention of the Turing 

Test, the development of the first computer game of checkers, and the birth of Artificial 

Intelligence, setting the stage for future advancements. The 1960s introduced us to the 

first industrial robot, Perceptron, Decision Trees, and the Chain Rule Method, 

pioneering concepts essential for machine learning. The 1970s brought about crucial 

algorithms like backpropagation, Support Vector Machines, k-nearest neighbors, and 

the Neocognitron, advancing neural networks and pattern recognition. The 1980s 
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witnessed the birth of Artificial Neural Networks (ANNs), the restricted Boltzmann 

machine (RBM), Explanation-Based Learning, and the refinement of the 

Backpropagation Algorithm, paving the way for deeper network architectures. In the 

1990s, Long short-term memory (LSTM) networks and Behavior-based robotics 

(BBR) emerged, while Deep Blue demonstrated the potential of AI in defeating human 

champions in complex games. The 2000s marked a significant turning point with 

innovations like the Deep belief network, Deep Boltzmann machine, Deep Neural 

Networks (DNNs), and the creation of large-scale datasets like ImageNet, fuelling the 

deep learning revolution. The 2010s witnessed the rise of game-changing models such 

as AlexNet, Generative Adversarial Networks (GANs), U-Net for medical image 

segmentation, and the iconic AlphaGo's victory over human Go champions. In 2020, 

deep learning continued to evolve with the introduction of Denoising Auto Encoders 

(DAE), Nash_Qlearning, Reinforcement learning advancements, and Deep inverse 

techniques, shaping the future of AI (Directions, 2023). 

2.2.3 Recent Advances 

The academic, industrial, and service applications have faced considerable problems 

due to the rapid improvements in digital technology for cyber-physical systems in 

recent years. The widespread use of the Internet of Things (IoT) has resulted in the 

presence of complex data with several dimensions, noise interference, incomplete and 

inconsistent information, and large data quantities. Machine learning (ML)-based 

artificial intelligence models have emerged as powerful tools for data analytics and 

process optimization across various research areas. Since the last decade from 2012, 

ML technologies have evolved, proving their practical value in solving complex 

industrial problems. Applications encompass a wide range of uses, including but not 

limited to, predictive maintenance, process optimization, work planning, enhancement 

of quality, supply and demand forecasting, identifying defects, and vibration signal 

recognition. Machine learning is a leading-edge technology that is prominently utilized 

in production, service, medicine, and general science to detect and address 

inefficiencies in different operations (Wang, 2022). 
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2.3 Traditional Methods in Civil Engineering 

2.3.1 Empirical Methods  

Empirical methods in civil engineering rely on observations, experiments, and 

historical data to make decisions and design structures. These methods are often based 

on practical experience and are particularly useful when there is limited theoretical 

understanding or when dealing with complex, non-linear, or variable conditions. Some 

examples of empirical methods in civil engineering include: Load testing of materials 

and structures to determine their strength and stability, Field testing and monitoring to 

assess the performance of structures, Empirical equations and formulas for estimating 

factors like soil bearing capacity, concrete strength, and structural stability. (Jafari et 

al., 2015), (Mostoufi & Constantinides, 2022). 

2.3.2 Analytical Methods 

Analytical methods in civil engineering encompass the use of mathematical equations 

and theories to analyze and design structures. Basically, these methods are based on 

principles of physics, mechanics, and mathematics. Engineers use analytical methods 

to determine the behavior of structures under various loads and conditions. Some 

common analytical methods include: Structural analysis using principles of statics and 

dynamics to calculate forces, stresses, and deformations in structures. Hydraulics and 

fluid dynamics calculations for designing water and wastewater systems, including 

pipes, pumps, and channels, and Geotechnical analysis to study soil properties and 

predict settlement, bearing capacity, and slope stability. (Jafari et al., 2015), (Mostoufi 

& Constantinides, 2022). 

2.3.3 Numerical Methods 

Numerical methods in civil engineering encompass the use of computers and 

numerical techniques to solve complex engineering problems. These methods are 

particularly valuable when dealing with intricate geometries or non-linear behaviors. 

Numerical methods include: Structural design software that uses numerical methods 

to determine the dimensions and specifications of structural components, Numerical 

modeling of traffic flow and transportation systems for optimizing road networks and 

traffic management, and Computational fluid dynamics (CFD) for modeling fluid flow 
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in hydraulic structures or environmental assessments. (Jafari et al., 2015), (Mostoufi 

& Constantinides, 2022). 

 2.4 Relevance in General Engineering 

Machine Learning is a branch of Artificial Intelligence that is becoming increasingly 

popular in the fields of computers and data analysis. It involves developing algorithms 

and models that enable applications to exhibit intelligent behavior. Machine learning, 

a sophisticated technology, is employed for exploratory data processing. Machine 

learning algorithms play a crucial role in creating intelligent real-time engineering 

apps that can effectively analyze data to solve actual-world issues (Jhaveri et al., 2022). 

2.4.1 Machine Learning in other engineering fields 

Machine learning (ML) is imperative in computer engineering since it facilitates self-

governing robots to see and analyze their atmosphere, therefore, making sound 

judgments. In addition, machine learning techniques have been used to develop robots 

able to perceive human motion and language and then respond to the same (Martinez-

Martin et al., 2020), (Mosavi & Varkonyi-Koczy, 2017). Machine learning is utilized 

in the support of predicting precise timings for machinery and equipment maintenance, 

within mechanical engineering, to minimize downtimes and ensure efficiency. 

Machine learning makes it possible to use machine learning algorithms to enhance the 

effectiveness of mechanical components and system design, considering numerous 

limiting conditions as well as performance criteria (Guo et al., 2021). Machine learning 

(ML) is applicable to electrical engineering, cutting across demand prediction, optimal 

distribution network development, and grid abnormalities detection. Machine learning 

algorithms identify abnormalities within electrical systems, which is very essential in 

ensuring that the detection of these faults and hence the associated hazards with these 

defects have been detected in a real-time basis (Prajwal et al., 2021).Chemical 

engineering applies machine learning (ML) methodologies for better performance as 

well as control of chemical processes to improve qualities of products as well as low 

energy consumption. Machine learning is used to predict the properties and 

relationships of chemical compounds to facilitate the processes of drug discovery (Gao 

et al., 2022). Data collected using various sensors, and used in monitoring and 

assessing air quality, water quality, and other environmental parameters are possible 
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subjects of analysis by machine learning models in environmental engineering. It is 

also employed to evaluate the condition of infrastructures for water and wastewater, 

enhance methods of treatment, identify and characterize sources of contamination, as 

well as undertake life cycle analysis. Machine learning models offer hope in the ability 

to predict natural disasters, including earthquakes and hurricanes, which would go a 

long way in advancing disaster preparedness and response (Zhong et al., 2021). This 

is because material engineering is updated in the new materials that would need 

specific characteristics that could be well predicted by the use of machine learning 

(ML). As the formation of graphs had elucidated on then the application of ML in the 

development of highly sophisticated material is to the advantage of this field. The 

quality control check of industrial operations to get the materials as per specification 

can also be useful work done by machine learning. In this area, machine learning helps 

in predicting material tasks, design of materials, characterization of materials, and 

mining activities (Stergiou et al., 2023). Furthermore, optimal flight control systems 

of Aerospace Engineering may have machine learning applied to them. Machine 

learning models can analyze data from fitted sensors on planes and make use of the 

results to detect maintenance needs as well as predictions (Le Clainche et al., 2023). 
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CHAPTER III 

Machine learning applications in civil engineering 

Algorithm development and implementation of machine learning represent multiple 

aspects of statistics, including structural health monitoring geotechnical and integrity 

structure seismic engineering among others (Barkhordari et al., 2023). 

In recent times, the field of civil and structural engineering has seen many applications 

for machine learning techniques developed by the scientific community. There are 

many types of ML applications developed based on seismic engineering, structural 

feature identification procedures, and the major elements in their scopes. Such 

applications attempt to develop mathematical tools that can be used for solving 

intricate input-output problems (Ruggieri et al., 2022). 

3.1 Structural Health Monitoring 

Structural health monitoring (SHM) refers to the scientific field that deals with 

determining and observing whether a specific structure is healthy. Structural health 

monitoring systems are based on sensing systems and structural models for assessment 

of the condition structures and machines (Gomez-Cabrera & Escamilla-Ambrosio, 

2022). 

Such as the large bridges, dams and high rise buildings are more prone to functional 

weakening due corrosion or stress. This unavoidable circle demands great 

preservation. While there are numerous obstacles, onsite investigations can bring the 

temporary closure of bridges or building in order to examine and based upon ethical 

considerations. Over this approach, several researchers have suggested SHM 

procedures. Structural Health Monitoring is one of the latest technologies which has 

grown rapidly in recent years. One of the main uses for sensor development is 

Structural Health Monitoring (SHM). Early detection of damage reduces the cost and 

time for fixing minor damages. The main objective of Structural Health Monitoring 

(SHM) is to predict or detect the emergence Such structural failures, as well as 

earthquakes, waves vehicles or environmental vibrations can cause significant 

physical damage to the infrastructures (Singh et al., 2020). 
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3.1.1 Detection of Structural Damage 

All engineering structures tend to decompose and decay internally over a period of 

time. The detection of damage is an essential part of the work principles, since it 

provides opportunity to assess damages as soon as possible. This, in turn, increases 

security and provides control over the modern with high performance and reliability. 

The goal of machine learning in Structural Health Monitoring (SHM) is to produce 

models or representations that create a relationship between patterns generated from 

sensor data and targets for damage assessment at diverse levels. While common 

machine learning models are effective, they cannot efficiently interpret huge volumes 

of unorganized sensor information. Therefore, the process often requires detailed 

engineering and expert knowledge to pull out elements from raw data that hint at 

damage. Retrieved features are finally fed into a fitting machine-learning model (Yuan 

et al., 2020). One approach is to teach a neural network how to distinguish between 

the frequency responses of an intact structure and those of structures with varied levels 

of damage. Afterward of training the neural network, it has been able to identify every 

precise damage and its position and intensity of it (Fang et al., 2005). Based on the 

deep learning approach in the Structural Health Monitoring (SHM) applications – an 

assessment of the algorithm implementation has pointed a great potential to develop 

the end-to-end systems reviewing the algorithms without a need for great prices in 

preliminary signal processing. These deep learning models can be tailored to various 

SHM tasks: damage detection, concentrated-damage, and range of the injury. As a 

result, many neural network architectures have been investigated for SHM such as 

MLPand RNN and CNN. The MLP is a neural network with input layers, one or more 

hidden layers and an output layer. As in the case of most other networks,the 

hyperparameters used by this network are usually determined through techniques that 

include grid search and random choice. The use of MLPs can be exemplified by one 

application, the identification of defective rotation machinery components in SHM. A 

One-Dimensional Conventional Neural Network (1DCNN) is a deep learning 

architecture specifically tailored for the processing of time series data. In its 

perspective, the convolution processes are applied on sequences of data points with a 

view of extracting informative characteristics. This makes it a perfect tool where one 

is required to analyze sequentially organized data in SHM. Recurrent Neural Networks 
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(RNN) are designed to find patterns in time and thus an effective tool of analysis when 

one is analyzing sensor measurements. However, standard RNNs had a problem of 

performing on long sequential data with challenges such as gradient explosion or 

vanishing. In solving these challenges, researchers came up with custom RNN 

structures like LSTM and GRU. The LSTM and GRU models have great capacities in 

handling long-range associations among variates within sequential sensor data, hence 

are very applicable for the case of Structural Health Monitoring (SHM) (Dang et al., 

2021). 

3.1.2 Prediction of Structural Failure 

Machine learning (ML) helps in structural failure prediction, data is used to make sense 

of it and understand the patterns used in the prediction of problems with structures, 

predict the best time for any maintenance work, additionally to detect its risk 

assessment (Zaparoli Cunha et al., 2023). However, data-driven ML provides 

alternative approaches for structural reaction prediction. ML approaches have direct 

input-output modeling using certain function approximators such as random forests 

and NN based on the given training data. For dynamic loading, the inputs for predicting 

the response of structures are conditions at which loads occur and parameters 

associated with structure composition include characteristics of loadings, geometry as 

boundary-conditioned factors materials’s properties. The results are the field variables 

that we want to identify, which include displacements, stresses, and strains. For 

instance, Keshtegar et al. used support vector regression in predicting the shear 

strength of steel fiber-reinforced concrete beams among others. In the research by 

Alwanas et al., the extreme learning machine was used for modeling the load-carrying 

capacity and failure mode of a beam-column joint connection. Li et al. applied NN and 

various conventional ML approaches to predict the consequences of gas blows (Li et 

al., 2023). 

3.1.3 Optimization of Monitoring Systems 

Machine learning can be integrated with sensor networks and SHM systems to provide 

real-time monitoring and early warning systems for structural health. 

The optimization process typically includes the following steps: definition of the 

optimization problem, specification of the objectives to be maximized or minimized, 
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selection of decision variables, consideration of constraints, and formulation of final 

models. The intended goal is specified as the objective function, which consists of 

variables and restrictions, which are functional relations of the inequality and equality 

of the variables. Optimization algorithms have been utilized in various areas of SHM 

systems, including sensor system design and structural damage detection. As a result, 

optimization algorithms can assist in determining the ideal number of sensors and the 

best sensor positions. Based on the variables of the problem, a set of objectives is 

defined. The error function is divided into single- and multi-objective functions. An 

important aspect to consider is the choice of a suitable optimization algorithm, which 

should be selected based on objective function types. In one-step or multi-stage 

damage detection methods, objective functions may be used to identify the location 

and level of damage. In the one-step approaches, application methods are used to 

determine how far and where the damage occurred whereas in multi-step methods it 

detects how much damage has been done and where did this happen (Hassani & 

Dackermann, 2023). 

3.2 Traffic and Transportation Systems 

The purposes of machine learning in transportation are numerous and include data 

analysis, identification of road problems, congestion forecasting, predictive 

maintenance illustrating introduction about a description or fact However, the 

significance of ML is further augments in this field since it supports efficient 

transportation rerouting during emergency (Silva et al., 2020). 

3.2.1 Prediction of Traffic Congestion 

For the growing need for traffic prediction technologies, there are different approaches 

proposed to predict congestion scenarios. Several machine learning algorithms 

including Neural Networks (NN), Support Vector Machines (SVM), and Regression 

Analysis have been applied for predicting traffic congestion because they can 

effectively deal with large datasets while learning patterns from data. For example, 

Yisheng et al developed a new deep-learning framework to forecast the flow of 

vehicles under different urban road networks using modern developments in 

dimensional However, this approach knows how traffic flows and shifts over time and 

space. They used a stacked autoencoder (SAE) model and analyzed its performance 
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relative to other common models, such as neural networks or support vector machines. 

They measured each model's performance using three criteria: MAE, RMSE, and 

MRE. On short-term predictions (15 minutes), they have reported a good performance 

within their new model with an RMSE value equal to 50, however, it doesn’t perform 

well in the long term where this error increases towards a score of 138 (Yasir et al., 

2022).  

Lee et. al. used weather information like rain, humidity, and temperature to help 

predict traffic jams. They started with a complex model that looked at 54 different 

factors. Then they simplified their model by removing less important factors, ending 

up with 10 key variables. Six of these variables were specific days of the week, and 

four were related to the weather. This approach was fairly accurate, hitting a 75.5% 

accuracy rate. But they missed including one important detail: the time of day, which 

can greatly influence traffic conditions (Yasir et al., 2022).. 

Akbar et al. used a mix of two techniques, Complex Event Processing and Machine 

Learning, to try to predict when and where traffic jams might happen. They created a 

special formula called Adaptive Moving Window Regression (Yasir et al., 2022). 

3.2.2 Optimization of Traffic Flow 

Due to the swift expansion of urbanization and economic progress, the issue of traffic 

congestion has escalated significantly. Therefore, accurate measurements of traffic 

congestion are necessary for monitoring the status of road transportation and 

improving transport operations. To address urban traffic congestion, an intelligent 

transportation system (ITS) must have real-time data and a self-driving mechanism for 

evaluating traffic conditions. The ITS has the main challenge of conducting traffic 

control and orders. For effective management and control, short-term real-time flow 

traffic estimates are always required (Bharti et al., 2023).  

Predicting models can generally be classified into two main groups: Traditional 

forecasting models and neural network-based ones. Generally, the conventional traffic 

flow prediction models provide moderate accuracy and poor resistance to external 

perturbations essentially because of the non-linear/non-stationary nature of traffic 

flow. On the other hand, neural network models have gained much popularity over 

recent years and are highly efficient in processing massive amounts of data especially 

due to their remarkable learning and adaptive abilities (Bharti et al., 2023). 
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One of the prominent deep learning technologies is The Recurrent Neural Network 

(RNN) which provides a variety of benefits including server storage, parameter 

sharing, fine-tuning accuracy, and nonlinear extraction features in predicting traffic 

flow. There are several types of models presented as RNN, with long-term short-term 

memory Neural Networks (LSTM) and Bi-directional Long Short Term Memory 

Neural Networks (Bi-LSTM) being particularly high in performance efficiency. 

Through this neural network, the LSTM method was proposed to predict short-term 

traffic flow because of long-term dependency on the series data for the movement. A 

Bi-LSTM model was then created and it seemed that the Bi-LSTM approach 

performed better in terms of prediction accuracy (Bharti et al., 2023). 

4.2.3 Improvement of Traffic Safety 

To improve the safety of traffic, it is essential to identify the possible risks of roads by 

conducting a profound analysis, Machine learning (ML) techniques have been widely 

used in various domains with the aims of safety prevention and risk detection. This 

includes activities such as the prevention of fraudulent traffic, preventing data 

channelizing of Internet of Things networks ensuring information safety, and even 

improving transport safety. More importantly, ML is much more flexible than classical 

statistical methods and does not require strict prior assumptions on the bivariate 

relationship between independent and dependent variables. ML approaches have 

shown good accuracy in road safety modeling, especially with the appearance of high-

dimensional big datasets that serve as a basis for a description of this research area in 

the field of traffic safety. Through the algorithms, risk prediction models were 

implemented such as neural networks, support vector machines (SVMs), and random 

forests (RFs). However, the challenge of interpretability is unveiled due to the absence 

of an explanation of the inner causal relationship in the black box, which is revealed 

in complex machine learning models. Consequently, this hampers their usefulness in 

evaluations. Explaining tree models such as LightGBM, AdaBoost, and eXtreme 

Gradient Boosting (XGBoost) have been explored in certain studies using Shapley 

Additive exPlanation (SHAP) technology. All can be used to look into multiple factors 

and identifications of contributors concerning traffic safety (Qi et al., 2022). 
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3.3 Water Resources and Environmental Engineering 

Machine learning has been commonly used as a potent tool for addressing issues in 

different domains of water treatment and management systems. These domains cover 

real-time monitoring, anticipation, tracking the source of contaminants, estimating 

pollutant concentrations, allocating water resources, and optimizing water treatment 

technologies (Zhu et al., 2022). 

Machine learning is increasingly becoming recognized as a very effective and versatile 

technology across various scientific disciplines. In addition to the information 

technology sector, machine learning is increasingly being applied in the fields of 

medical research, agriculture, and the legal industry. In contrast, it has been over thirty 

years since the introduction of artificial intelligence (AI) applications, such as genetic 

algorithms, fuzzy logic, and neural networks, in the field of hydrology. In 1992, French 

et al. attempted to predict short-term rainfall using a neural network consisting of three 

layers (Rozos, 2019).  

3.3.1 Flood Prediction 

Floods are some of the most devastating tragedies, resulting in extensive harm on the 

lives of people, infrastructure, farming, and social and economic structures (Mosavi et 

al., 2018). Based to the Organization for Economic Cooperation and Development, 

floods result in damages of over $40 billion annually on a global scale. The majority 

of nations lack effective flood warning systems. India accounts for 20% of flood-

related deaths, as reported by the Central Water Commission. Bihar is the most 

noticeably horrible impacted state, with nearly 73% of its full surface territory getting 

swamped every year. In 2018, the reported cost of damage to infrastructure, crops, and 

public utilities across India amounted to almost 3% of India's gross domestic product 

(Kunverji et al., 2021). Hence, governments face the imperative to create dependable 

and precise maps of flood-prone regions and subsequently devise strategies for 

sustainable flood risk management, with a particular emphasis on prevention, 

protection, and preparedness. Over the past twenty years, machine learning (ML) 

techniques have significantly contributed to the improvement of prediction systems, 

offering highly accurate as well as affordable solutions (Mosavi et al., 2018). 
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In the past, natural disasters such as storms, rainfall/runoff, shallow water conditions, 

and flow hydraulics were predicted using numerical and physical models. These 

models, however, could not correctly predict flooding. Hence the use of advanced 

data-driven models like machine learning (ML) was recommended instead. Factually 

indeed, flood modeling has a long heritage of using data-driven models that have 

gained recent popularity as well. The data-driven approaches to prediction are then 

used, which use observed climate indices and hydro-meteorological data to enhance 

accuracy and understanding. For the flood frequency analysis (FFA), the common 

approaches for modeling flood prediction are statistical models such as autoregressive 

moving averages (ARMA), multiple linear regression (MLR), and autoregressive 

integrated moving averages (ARIMA). FFA is one of the first statistical techniques 

ever used for flood prediction. The modern development of machine learning (ML) 

techniques in the last twenty years has seen their inundate effectiveness in flood 

prediction well above traditional approaches. ML models were employed for 

prediction with higher precision compared to conventional statistical models. Many 

ML techniques like artificial neural networks (ANNs), neuro-fuzzy, support vector 

machine (SVM), and support vector regression (SVR) have been reported successful 

both in short-term and long-term flood prediction (Mosavi et al., 2018). 

3.3.2 Water Resources Management 

Water resources management (WRM) has received high attention in several recent 

developments in machine learning (ML) applications. The challenge of big data 

development provides significant improvement in the ability of hydrologists to tackle 

contemporary challenges and novel applications of machine learning have been 

encouraged (Ghobadi & Kang, 2023). 

Raman and Chandramouli at the time used a feedforward neural network (FFN) in 

water resources management, in developing an operational guideline for a single 

reservoir used for irrigation purposes. Since then, FFN applications have advanced 

with increased complexity and frequency. Chandramouli et al. trained a Feedforward 

Neural Network (FFN) for predicting the best releases from a system of three 

reservoirs.  They utilized data that was acquired from the dynamic programming 

method where they simulated a system run for 36 years with two week time step in the 

simulation. Cancelliere et al. used the model of soil-water balance, a model of dynamic 
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programming as well as a neural network to make operational rules of the reservoirs 

for irrigation purposes. Other researchers on the other hand applied much more 

artificial means such as Chang et al., who adopted an adaptive network-based fuzzy 

inference system for computing the most suitable water discharge from a solitary 

reservoir in Taiwan. The operating rules of the best reservoir operating histogram 

produced up on the implementation of the genetic algorithm were combined with the 

knowledge of the currently applicable operating rules to train the FFN. According to 

their investigation, this strategy gave much better results as compared to the 

conventional (Rozos, 2019). 

3.3.3 Water Quality Improvement 

The growing and often more challenging problem is the contamination of rivers by as 

many point sources as by diffuse causes. It further affects aquatic systems and 

freshwater supply for drinking or irrigation (Bui et al., 2020). To evaluate the water 

quality and anticipate trends, it is crucial to conduct a specific study by using 

sophisticated technology (Khan & See, 2016). 

Previously, numerous techniques have been devised worldwide to observe and 

evaluate the quality of water. These encompass multidimensional statistical 

techniques, fuzzy inference, and the water quality index (WQI) (Zhu et al., 2022). The 

geo-statistical methods that have been utilized include kriging, transitional probability, 

multivariate interpolation, and regression analyses, etc. (Khan & See, 2016). 

For instance, Statistical models are designed to extract general rules from experimental 

data by utilizing information obtained from field data. The process of statistical 

modeling and assessment entails the careful selection of analysis techniques and the 

validation of assumptions and data. Many of these models are complex and require a 

significant amount of field data for comprehensive analysis. However, a challenge 

with numerous statistical water quality models is their assumption of a normal 

distribution and a linear relationship between prediction and response variables. Given 

that water quality is influenced by multiple factors, conventional data processing 

techniques are often insufficient to handle the complex non-linear relationships 

between these parameters and water quality predictions. Consequently, the use of 

statistical techniques can result in less accurate outcomes (Najah Ahmed et al., 2019). 
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Artificial intelligence (AI) has developed techniques that optimize operations, select 

equipment, and solve problems involving large data sets that can hardly be more 

processable by a computer than by a human for making decisions. AI methods are 

preferable to such data simply because they excel at reproducing and compensating 

for this lack. Through efficient parallel computing technology development and 

increased computational power, researchers are now able to employ AI approaches 

such as Artificial Neural Networks (ANNs) and the Adaptive NeuroFuzzy Inference 

System (ANFIS) in deriving solutions for modeling field data. The application of the 

neurofuzzy technique seems to increasingly be in demand for various other related 

fields of water resource engineering, such as the application to rainfall-runoff models 

and basin operations. Researchers appreciate ANFIS because it can improve 

evaporation estimation from day to day, reservoir water level prediction, and river flow 

forecast (Najah Ahmed et al., 2019). 

3.4 Construction Management and Planning 

Construction management (CM) is crucial on all construction sites, and machine 

learning provides an innovative way to deal with this issue. In recent years, however, 

machine learning has been shaping the construction industry by being used in a lot of 

construction applications. The technology is revolutionizing some of the aspects of 

construction project management, including risk evaluation and mitigation, working 

as a supervisor for worksite safety protocols, estimation, and prediction of costs, a 

schedule manager for the project, as well as predictions on building energy use. 

(Nguyen Van & Nguyen Quoc, 2021). 

3.4.1 Construction Schedules Optimization 

Construction scheduling in infrastructure and building projects consists of the 

establishment of project policies and processes, which are later further broken down 

into particular construction tasks. A total construction plan again considering 

constraints like sequence and resources minimizes budget overruns, delays, and safety 

and quality issues. Typically, there are some steps in any scheduling process. They 

include the definition of the project scope, identification of individual activities, and 

establishment of their dependencies (e.g., finish to start, start to start, finish to finish). 

(Wu et al., 2023). 
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In the past, construction planning was done with tools such as pencils and paper which 

were manual, time-consuming, and with probability of errors therein. To improve on 

the same, graphical representations such as Gantt charts, AOA network diagrams, and 

AON network diagrams have been developed in the quest to enhance planning and 

identification of delays. While start and end times for activities are defined as AOA 

diagrams, AON diagrams are characterized by an arrow of activities and nodes of 

dependency. (Wu et al., 2023). 

One of the other significant functional uses of machine learning is in optimizing 

construction schedules. Machine learning helps to predict, model, and optimize the 

sequence and planning of tasks, especially in construction projects using data-driven 

techniques. It uses the application of historical and real-time data using machine 

learning to provide intelligence usable in making predictions on the time duration for 

tasks, resource allocations required, and also possible delays. For several years now, 

there has been increased research in trying to study machine learning methods used for 

optimizing construction. Artificial Neural Networks (ANN) have been in the limelight, 

especially. Kog et al. have developed an ANN model for determining the percentage 

effect taking into account variables like project manager experience and monetary 

incentives extended to designers on the varied schedules. Similarly, Attal trained a 

series of ANNs on highway project duration and cost data to check out key project 

features impacting duration predictions. Hola et al. Adopt a much more specific 

approach which was predicting earthworks durations with ANN, Bhokha et al. 

explored building construction durations with similar neural network models 

(Fitzsimmonsa et al., 2020). 

3.4.2 Construction Safety Improvement 

The construction industry is one of the most dangerous sectors in many countries. 

About the risk management process, top managerial officials should offer more than 

adequate safety information, since they take care of portfolios dealing with 

construction projects. This understanding would facilitate intervention in a more 

proactive form. Techniques, predictive analytics, and machine learning have been 

leveraged by data scientists to enhance decision-making at all levels in construction 

safety substantially. Machine learning deploys algorithms to unlock insights and 
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predictive analytics previously out of reach with large amounts of data from sources 

(Poh et al., 2018). 

Machine learning (ML) is a revolutionary way to improve safety at the construction 

site. In use with drones, ML can survey sites from the air, and algorithms processed 

using the imagery captured will flag out potential safety risks like weak scaffolding or 

open pits. These provide them with an understanding of site conditions so that they 

can then define their corrective actions. In addition, these ML algorithms can recognize 

through camera and lens capabilities if the workers are wearing their safety equipment 

like helmets, vests, and harnesses properly or not. The site supervisors are immediately 

informed in case of any violations. The huge construction sites are notorious for almost 

always having a chaotic movement pattern of people and vehicles. In such scenarios, 

ML algorithms can help by predicting traffic patterns and suggesting the best route for 

a given vehicle at any point in time. This ensures that the operations are smoothed out 

as well as risks are reduced over accidents or collisions over time. The supervised 

unsupervised combination of machine learning techniques is used for undertaking 

these tasks. Techniques such as linear regression, logistic regression, decision trees, as 

well as support vector machines (SVM) are put to use for such purposes. With the help 

of these techniques, it is possible to predict numerical values, for example - to predict 

the probability of safety incidents in certain conditions, and to classify types of safety 

incidents, reporting the conditions under which those of this type occur. Convolutional 

neural networks (CNNs) find use in elaborate pattern recognition because they possess 

the ability to study complex patterns, especially so in image analysis research, where 

they can be used for identifying fine differences like the usage of safety gear by 

workers. For sequential data, however, that involves monitoring via a pendulum event 

that may lead to occurrences of incidents the corresponding trains of recurrent neural 

networks (RNN) and long short-term memory (LSTM) is vital (Choi et al., 2023), 

(Alkaissy et al., 2023). 

3.4.3 Cost Reduction 

Managers need accurate cost estimating while deciding on minimizing the time-related 

risks in the evaluation process (Tayefeh Hashemi et al., 2020). Objective cost 

prediction is highly desired. Machine learning techniques have won great success, so 

the task of building cost estimation is much simpler to automatize and the biases, 
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which were caused by the human factor, are suppressed. Hegazy and Ayed have 

developed a model with an artificial neural network (ANN) for the estimation of 

expenses concerning highway development (Hegazy, T., & Ayed, A. 1998). Generally, 

using various machine learning algorithms, such as Linear Regression, Decision Trees, 

Neural Networks, and Support Vector Machines, ML can analyze past projects to 

forecast the cost of upcoming ones. This aids in budgetary planning and avoids 

possible overrun costs. Moreover, ML can improve the prediction of the ordering 

schedules of materials and quantities based on predictive models that could result in 

volume discounts as well as reduced storage costs. Through the evaluation of historical 

data, ML can also predict the optimum number of resources, both human and material 

among other strategic predictions essentials for a project. This prerogative prediction 

averts both over-allocation and inadequacy utilization of resources which are human 

beings or materials hence no unnecessary expenses. Furthermore, ML can be used to 

fine-tune decision-making processes such as ascertain the optimal allocation of 

resources in construction projects (Kovacevic et al., 2021). 

Materials Engineering 

Materials engineering can be greatly accelerated through the use of machine learning. 

This process not only enhances and simplifies discovery, development, and 

deployment procedures but also critically analyzes highly complex data to predict 

properties and performance levels However, this technological revolution brings 

around optimal production processes that promote quality control and enhance 

innovation thereby evidencing significant improvement. Innovative applications of 

structural materials do not only advance improvements in load-bearing capacities such 

as strength, hardness, and toughness but also set up to address new restrictions and 

needs essential for contemporary technology (Sparks et al., 2020). 

3.5.1 Material Properties Prediction 

Recently, machine learning techniques have become popular as cost-effective and 

efficient tools for predicting the influence of material characteristics on actual quality, 

costs and schedules related to proposed mixtures (Shanmugasundaram et al., 2022). 

ML models have become a commonly used tool that can be considered as an effective 

mechanism to predict the mechanical properties of concrete. Common ML techniques 
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employed for evaluating concrete strength can be categorized into four primary types: 

artificial neural networks (ANN), support vector machines (SVM), decision trees, and 

evolutionary algorithms (EA). These models are typically used together with a large 

dataset that is often divided into training (TR), validation (VAL), and testing (TS), 

where the subsets TS and VAL consist of elements that were unseen during TR. For 

example, ANN was used which is a machine learning approach to determine the 28-

day compressive strength for engineered cementitious concepts (ECC) when pozzolan 

including fly ash and ground granulated blast slag (GGBS) added as industrial waste 

materials in their structure by Shanmugasundaram et al. The experiment was 

conducted using the pile amounts and physical properties of Polyvinyl Alcohol fibers 

(Shanmugasundaram et al., 2022).  

3.5.2 Material Life Cycle Assessment 

Life cycle assessment (LCA) is a method through which a systematic process involves 

the collection and evaluation of the physical resources as well as waste due to a system 

or product, and the environmental effects associated with it during the whole lifespan. 

Traditional Life Cycle Assessment (LCA) can be time-consuming and prone to 

falsehoods. The LCA provides a framework for the scope and purpose of assessment 

as well as analysis of inventory. ML algorithms are capable of handling complex 

datasets while incorporating issues such as geographical location; and climate 

conditions to set examples that can also local production methods and more precise 

environmental impact assessments. With its ability to analyze historical and real-time 

LCA data, ML can aid architects, engineers, or project managers in choosing building 

materials that fulfill certain environmental criteria such as building research 

establishment environmental assessment method (BREEAM) or leadership in energy 

and environmental design (LEED) while optimizing the sustainability performance 

tradeoff. (Ghoroghi et al., 2022), (Schwartz & Raslan, 2013). 

3.5.3 Material Cost Analysis 

Historical information analysis using ML algorithms allows for estimating future 

prices for building materials. They evaluate historical patterns and trends of material 

costs based on inflation, market demand, supply chain disruptions, or even possibly 

geopolitical events impacting prices. This innovative technique is not something 
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theoretical and has real applications in the field of civil engineering. For example, Yeh 

(1998) applied a hybrid model which was the combination of a back-propagation 

neural network and statistical regression to reveal preliminary amounts needed for 

primary materials in civil buildings especially the amount of steel used on beams and 

columns as well as concrete quantity along with formwork. As in a practical case of 

the same application, Bakhoun et al. (1998) used an artificial neural network to 

calculate how much concrete was needed for a bridge project implemented within 

Egypt’s territory Such cases demonstrate the pragmatic applicability and validity of 

machine learning to complex predictive cost calculations as well for material supplies 

estimates in construction engineering (Pham & Nguyen, 2023). ML also serves an 

instrumental role in the prediction of construction waste, helping substantially reduce 

such wastes at source by forecasting generation during each project phase. This 

process is centered on the creation of predictive models based on ML techniques, 

which largely rely upon Decision Trees and K-Nearest neighbor (KNN) Algorithms. 

All these models are based on data mining and statistical analysis to detect trends in 

collected information, crucial for the right waste estimation at different construction 

stages. Specifically, Decision Trees are used mainly for multi-variable analysis and 

present data in branch form to facilitate a detailed understanding. (Gulghane et al., 

2023). 

Geotechnical Engineering 

As a part of geotechnical design, the determination requires an appropriate calculation 

between cost and engineering safety regarding the physical and mechanical qualities 

of soil. This entails the assessment of bearing capacity and long-term deformation in 

soil. The field of geotechnical engineering is embracing more and more the integration 

of machine learning (ML) to solve areas that are particularly complicated or difficult, 

some aspects about which better performance can be achieved. It holds a strong 

potential for predicting geotechnical design, stability, and settlement as well other soil 

properties-related decisions such as site selection and foundation solution 

optimization. The machine learning process provides an advanced method for 

predicting risk assessment that applies not only to current but also future site 

conditions. In particular, ML can be applied in zones that are susceptible to water 

running and volcanic activity from which valid knowledge regarding possible 
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impaction of landslides is obtained (Machine Learning�Based Modelling of Soil 

Properties for Geotechnical.Pdf, n.d.). 

3.6.1 Soil Mechanics Analysis 

Previously, the classical approaches to soil classification were highly based on 

experiments done in the lab. For example, experimentation involving the Standard 

Penetration Test (SPT), Cone Penetration Test (CPT), and other standard modern soil 

mechanic tests. However, in recent years, research has been showing that tools like 

Support Vector Machines (SVM), Artificial Neural Networks (ANN), K-Nearest 

Neighbors (KNN), Decision Trees (DT), and Naïve Bayes algorithms prove to be 

useful to understand soil types. Soil classification based solely on soil type can be 

difficult since many factors affect soil characteristics and do not always correspond to 

obvious types of soil. But with machine learning, including the probabilistic 

predictions of the Naïve Bayes algorithm, we can better understand and classify soil. 

Describing the behavior of soil in various scenarios, the modern techniques are much 

better than the ancient methods (Samadi & Samadi, 2022). In another research work, 

methods like the use of Support Vector Classification (SVC), Multilayer 

Perceptron(MLP), and Random Forest (RF) were adopted for classifying soil. Among 

these, the best performing was reported to be Support Vector Classification (SVC). 

Furthermore, other investigations targeting soil permeabilities in their assessment have 

used machine learning algorithms, specifically Gradient Boosting (GB). Even more 

enhanced performance metrics were tools such as SHapley Additive exPlanations 

(SHAP) as well as Partial Dependence Plot 1D (PDP 1D), this being integrated into 

the analysis (Aydın et al., 2023). 

3.6.2 Foundation Design Optimization 

In this regard, the prediction of soil behavior, estimation of load-bearing capacity, 

simulation of structural responses, and optimization of design-leading parameters 

concerning cost, safety, and sustainability can be executed by machine learning (ML) 

algorithms in foundation design optimization. For example, Pile foundations are very 

common where the construction is under heavy superstructures, and their design deals 

with the handling of complexities as well as large uncertainties. Machine learning 

technology has gotten tremendous development and application in various fields 
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including Civil Engineering. Of all the machine learning approaches, the Bayesian 

network is an oddity in that it can draw up data and reason out solutions from different 

problems that involve complex and uncertain matters. In many pursuits, researchers 

have tried to adopt the Bayesian network in civil engineering. However, Zhang et al. 

propose a new approach that includes a machine learning method based on the 

Bayesian network specifically aiming to learn the cross-site variability as well as the 

site-specific statistics of model bias factor. This is an innovative approach not only the 

purpose of the accomplishment of cost-effective pile foundation designs but also 

provides a valuable tool for implementing reliability-based design of pile foundations 

specifically which is a remarkable advancement in this area (Zhang et al., 2020).  

3.6.3 Landslide Prediction 

Landslides are one of the most uncontrollable and damaging kinds of natural hazards, 

whereby only sophisticated prediction systems could enhance their mitigation. 

Coincidentally, though a few early warning models exist using the Internet of Things 

to monitor the environment in general, there is a recent tendency towards the utilization 

of machine learning techniques (MLT) (Kuradusenge et al., 2020). According to 

Kuradusenge et al., most of these MLTs particularly consider rainfall data in 

combination with internal parameters offering an optimum chance for improved 

landslide hazard prediction. In the landslide prediction, two Machine Learning 

Techniques (MLTs) of paramount significance include Random Forest (RF) and 

Logistic Regression (LR). The choice behind these two MLTs over others includes 

primarily their extensive application in the respective field. Specifically, RF succeeds 

in highlighting the importance of some parameters and its quick training makes it 

effective for application. On the other hand, LR has impressive skills in estimating 

regression coefficients and proves quite instrumental in clarifying how some factors 

influence each specific landslide occurrence (Kuradusenge et al., 2020). according to 

Korup & Stolle, Data mining and machine learning are emerging as common tools for 

modeling landslide susceptibility with a surge in related studies observed. Most of 

these studies are centered on Europe and Asia especially countries like Italy, China, 

and India. For that, the most popular methods are Logistic Regression and Artificial 

Neural Networks (ANN). The key parameters for predictions include hillslope 

gradient, hillslope aspect, and lithology. Other elements that influence predictions of 
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landslide susceptibility are topography, the position of the site with concern to 

drainage networks as well and distance from tectonic faults (Korup & Stolle, 2014).  

3.7 Structural Engineering 

Essentially, Machine Learning (ML) is a set of techniques, which allow for the 

automatic discovery of underlying patterns in data. Once such patterns have been 

detected, they can also be used to induce models of the future that may help make 

decisions under uncertainty conditions.  Methods based on machine learning (ML) 

have been applied to problems of building structural design and performance 

assessment (SDPA) since the late 1980-s. Adeli and Yeh (1989) were among pioneers 

in developing and using ML-based approach to a beam design problem in this field. 

After the pioneering, several series of studies of construction of SDPA problems using 

artificial neural networks (ANN) were subsequently done in the 1990s. These smart 

systems have proved useful during prediction and evaluation of structural 

performance, identification of structural conditions and providing useful information 

towards proactive and remedial decision making using data from a variety of sources 

and media collected. (Sun et al., 2021). 

3.7.1 Structural Design Optimization 

machine learning (ML) and structural design optimization collaborate to enhance the 

efficiency and effectiveness of engineering design as they act to assist in identification 

of very best structures. This could enable affordable safer cost-effective as well as 

innovative building solutions when used with advanced ML algorithms for quick 

analysis of big data, identifying ideal design parameters and predict structural 

performance. For instance, on this three benchmark models for the best structural 

designs regarding the achieving least volume and weight as well as cost reduction with 

two optimization strategies selected along with an Artificial Neural Network (ANN) 

method has been adopted by BEKDA� et al. for a stronger study and analysis. Explore 

different Harmony Search (HS) parameters such as Fret Width (FW) and Harmony 

Memory Consideration Rate (HMCR), modifications within iterations, and population 

size to find the best configuration for accuracy. The use of ANN proved to be pivotal 

to tailoring models that are robust and drawn from optimal variables and top objectives 
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of the presented structures towards enhancing efficiency and efficacy in structural 

optimization (Bekda� et al., 2021). 

3.7.2 Structural Load Analysis 

Machine learning (ML) methods are engaged in the predictions and analyses of the 

number of loads for engineered structures. Nowadays, much more frequently 

researchers and practical designers cover this topic popularizing ML solutions (Truong 

et al., 2022). Yang et al. (2016) from Peking University employed a BP neural network 

to detect the shifting load of a bridge. Sensitivity from input and output variables were 

analyzed, whereby the effect from various combinations of activation functions and 

methods on load accuracy are also discussed (Yang et al., 2016). In addition, the 

investigation of the durability of concrete-filled steel tubular (CFST) columns was also 

carried out in terms of the machine learning algorithms according to the forms of 

gradient tree boosting (GTB), deep learning (DL), categorical gradient boosting 

(Catboost), and support vector machine (SVM). For instance, better expressions of 

response have been realized through the application of the extreme gradient boosting 

(XGBoost) algorithm in analyzing stiffened plate girders landing to partial load 

resistance than was previously put in the standard design codes, specifically EN-1993-

1-5 and BS 5400. Some other applications of machine learning in structural design 

include intelligent recognition of fire-vulnerable bridges, steel truss safety assessment, 

classification of ultimate load-carrying capacity of steel frames, shear strength 

prediction in steel fiber reinforced concrete beams, load capacity in cold-formed 

stainless steel tubular columns, and damage characterization of composite laminates 

under compression (Truong et al., 2022).  

3.7.3 Structural Sustainability Assessment 

Both the construction industry and its different sources such as pavement engineering, 

geotechnical engineering, concrete mix design, and structural engineering have 

officially recognized sustainable development as its important mission. Machine 

learning and neural networks (NN) have been recently applied in structural 

engineering primarily for predicting and modeling elastic properties of materials, 

compressive and bond strength of concrete, buckling load, development of 

cementitious composites, and improving finite element models. In this context 
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Machine learning (ML) stands as a transformative approach in enhancing structural 

sustainability assessment, fostering a more environmentally responsible and resource-

efficient approach in the construction sector. ML algorithms efficiently process 

complex, multi-dimensional data, providing robust predictive models and insightful 

data analysis crucial for assessing and improving a structure's lifecycle sustainability 

and using sustainable structural materials like green concrete. These innovative 

techniques facilitate comprehensive evaluations of material durability, energy 

efficiency, and overall environmental impact, significantly influencing decision-

making processes in structural design and construction. Furthermore, ML's predictive 

analytics play a pivotal role in forecasting potential structural vulnerabilities, 

optimizing maintenance schedules, and extending the lifespan of infrastructure, 

thereby promoting sustainability. The integration of ML in these assessments is 

instrumental in not only meeting but exceeding the increasingly stringent global 

sustainability standards and regulations (Naseri et al., 2020),(D’Amico et al., 2019). 
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CHAPTER IV 

Methodology 

4.1 overview 

This chapter describes the methodologies employed in this thesis, including machine 

learning models, parameter interpretability, feature selection, and their significance. 

4.2 Interpretability of Parameters and Feature Selection 

4.2.1 Importance of Parameters Interpretability in Machine Learning 

Interpretability of parameters forms an essential aspect while conducting data analysis 

and developing machine learning approaches. Through interpretability, it would be 

possible for a person to judge the effect as well as the importance that is attached to 

various parameters in any given system(S. Li et al., 2023).  It can be defined which 

parameters of the model determine the outputs by methods of interpretability. Such 

awareness accompanies decision making and contributes to the choice of the analysis 

approach (C. Li et al., 2022). Besides the above, interpretability also assists in 

uncertainty reduction, reducing training time, and overfitting mainly associated with 

diagnostic models. Furthermore, the interpretation of models enables to identify 

parameters which have sense of some physical or physiological meaning, making them 

more describable for conditions modeling and therefore applicable for real-life 

applications. Although as a general guideline, the interpretability of the parameters is 

important in enhancing the comprehensibility, trustworthiness, and efficacy of models 

of data analysis and machine learning (Lema, 2018).

4.2.2 Different types of interpretability Parameters 

Within interpretability in machine learning, explanations of model behavior can be 

divided onto local and global methods. Local one are those that concern an individual 

prediction, global ones have to be associated with the whole model. Additionally, a 

distinction can be made between feature effect and feature importance methods (as 

illustrated in Fig. 1). A feature effect method indicates the direction and magnitude of 

a change in the predicted outcome due to changes in feature values. In contrast, feature 
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importance methods quantify the contribution of a feature to the model's performance 

(e.g., via a loss function) or the variance of the prediction function.
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Although there are many various types of global methods as illustrated in (fig.1), two 

of them was used in the thesis and are accumulated local effects (ALE) and 

permutation importance (PI). 

�
�
�
���������������	�����������������

Accumulated Local Effects (ALE) is a technique used for interpreting the predictions 

of machine learning models, especially in the context of feature effect analysis. ALE 

focuses on understanding how changes in a feature affect the prediction of a model, 

locally, over small regions of the feature's distribution. Unlike some other methods, 

ALE accounts for the interactions between features and is less influenced by correlated 

features. In ALE, the feature space is divided into small intervals, and for each interval, 

the average change in the model's prediction is calculated as the feature values vary 

within that interval. These local effects are then accumulated over the range of the 

feature to provide a global picture of how the feature influences the model’s prediction. 

This approach helps in understanding the relationship between a feature and the target 

variable in a more nuanced way, especially in cases where this relationship is complex 

or nonlinear. 
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4.2.3.2 Permutation importance (PI) 

Permutation Importance is a technique used to estimate the importance of individual 

features to the predictions of a machine learning model. It assesses how much the 

accuracy of a model degrades when taking out the information brought by a feature. It 

does so by randomly shuffling the values of each feature in turn in the data set and 

observing the change in model performance. The rational behind this technique is that, 

permuting the values of an important feature should highly degrade the model's 

performance since the model depends on that feature to make accurate predictions. 

Conversely, permuting a less important feature should have a minimal impact on 

model performance. For this reason, the permutation importance method is considered 

global since it approximates the importance of features to the whole dataset, giving an 

overall view of how useful each feature was in predicting the target. 

4.2.4 Local Methods 

4.2.4.1 SHapley value 

Shapley value is a technique in machine learning for the interpretation of individual 

feature contributions into a predictive model. In this case, each feature stands as 

'player' within a game where accurate predictions are made after all. Using the Shapley 

value method which considers all possible combinations of features, it determines how 

addition of a particular feature affects the prediction and the contribution by each 

feature. The calculation involves taking the average of the contribution of that feature 

across these combinations and therefore accounts for both its stand-alone effect and 

dependence to other features. This approach gives detailed insights into why certain 

predictions of a model were made by attributing each part of the output to a feature for 

understanding on what influences by the features. Although the Shapley value provides 

a complete and fair way to assign contributions, it can get computationally costly in 

models that consist of many features, hence significant practical implications of its 

application in complex settings. 
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4.5 Machine learning models 

 4.5.1 Artificial neural network (ANN) 

An artificial neural network ANN is the computational model that imitates the 

structures as well as functions of biological neural networks in involving our human 

brain. It therefore is an arrangement of connected processing units, which are known 

as neurons or nodes and put in layers. Indeed, artificial neural networks ANNs could 

be called the nonlinear models with their ability to spark complicated relations between 

both the output and input data long back. One type of machine learning is deep 

learning, and artificial neural networks ANNs are also sub-components. ANNs have 

found wide applications in different fields from image and speech recognitions, natural 

language processing to recommendation systems and even intelligent systems like 

self-driving cars. 

4.5.2 Support vector machine learning (SVM) 

Support vector machine learning is a powerful algorithm in ML. Its classification 

capability allows the use of SVM method to regression type issues. Support vectors 

refer to specific points of data or coordinates on a 2-dimensional plane where a 

hyperplane like a line or circle can be precisely identified. SVMs try to find the 

hyperplane that maximizes class margin or minimizes regression error. Margin is the 

difference between the hyperplane and closest support vectors of each class. SVMs 

allow linear and non-linear classification. Linear classification uses a linear hyperplane 

to classify. Kernel functions, for instance, polynomial or radial basis functions can 

convert data into spaces of higher dimensions such that SVMs can determine non-

linear classification decision boundaries. SVMs can deal with nonlinearity data by 

getting kernels, processing multi-dimensionalities of the data, and stopping overfitting 

while regularized. Both types of classification and regression are possible. SVMs are 

applied in many fields such as image, text, and face recognition (Prakash et al., 2023). 

4.5.3 The Extreme Learning Machine (ELM) 

The Extreme Learning Machine ELM is an extremely powerful training algorithm that 

is specifically developed for the single-hidden layer feed forward neural networks 

SLFNs. This algorithm aims to enhance the operation of SLFNs as it deals with some 
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restrictions present in typical neural network learning algorithms like BP. Unlike 

traditional learning algorithms, ELM does not require users to set parameters like the 

rate and epochs of learning. It operates automatically without cyclic tuning and thus 

minimizes the need for user presence. ELM is known as the fastest learning algorithm 

in comparison to traditional neural network methods. This gives a significant 

advantage in situations where quick model learning is essential. ELM’s ability to 

approximate complex functions has been identified, especially using additive or RBF 

activation functions. 

4.5.4 Boosting models 

4.5.4.1 Gradient boost 

Gradient boosting is a machine-learning approach used for regression and 

classification. It describes booster, which means to take poor learners and combine 

them to produce a strong one. Unlike Random Forest, Gradient Boosting builds trees 

incrementally. Every new tree makes up for the shortcomings of its ancestors. Gradient 

Boosting can be applied to many regression and classification tasks across various loss 

functions. The model’s hyperparameters including the number of trees, depth, and 

learning rate provide fine-tuning control. Improper calibration increases the risk of 

overfitting. Because of its sequential nature and adaptability, Gradient Boosting is 

often superior to other algorithms in terms of prediction accuracy especially when 

handling complicated relationships between features-target variables. XGBoost, 

LightGBM, and Catboost are popular frameworks that use Gradient Boosting leading 

to various optimizations as well as capabilities. 

4.5.4.2 XGBoost 

XGBoost is a machine learning technique that combines multiple models using the 

gradient-boosting decision tree approach. The software includes an integrated 

functionality that accelerates the training process while working with a substantial 

dataset. The classification and regression type modeling challenges are resolved using 

a concatenated gradient-boosting framework technique. In the XGBoost algorithm, a 

less powerful base learner (decision tree) is incorporated with additional learners and 

is sufficiently effective in rectifying the errors generated by previous models during 

prediction. XGBoost improves accuracy by utilizing a differentiable loss function 
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called mean squared error and an optimization process called gradient descent. The 

procedure follows the first and second-order terms of the Taylor's series expansions. 

To control the complexity of the enlarged term, a regularization term is included. The 

regularization term regulates the over-fitting phenomenon and contributes to the 

equalization of the final learning weight w. XGBoost utilizes fitting techniques to 

identify and forecast the regular term to mitigate over-fitting by employing sampling 

methods for rows and columns. The approach is capable of simultaneously utilizing 

parallel processing (dividing nodes) and distributed computing (multi-threading), 

hence demonstrating the feasibility of the quickest model (Prakash et al., 2023). 

4.5.4.3 LightGBM Boost 

LightGBM,  a machine learning model, has been used in different applications such as 

the algorithm to build construction steel bar size detection system which improves the 

accuracy of steel bar quality testing (Tian, M. 2022), and also used air quality 

predicting and personalized head-related transfer function (HRTF) predicting. 

LightGBM achieved excellent prediction performance, high stability as well as good 

generalization in these various domains across all the test fold groups. LightGBM 

showed better performance in testing accuracy, good general correlation between 

predicted ground-level particulate matter than other machine learning algorithms in air 

quality prediction. With regard to sailboat pricing used, it is notable that mathematical 

model establishment using the LightGBM regression model is applied to provide the 

accurate prediction of prices. For the use of LightGBM in HRTF prediction in this 

paper, it explicitly avoids the overfitting phenomenon and achieves a perfect predictive 

performance, as the fitting errors are seemingly considerably lower than those 

provided by all other methods. As far as the health estimation for lithium-ion batteries 

is concerned, the overall performance of the LightGBM model is excellent and it can 

strongly generalize (Qiu et al., 2023). 

4.5.4.4 CatBoost 

CatBoost is a gradient tree boosting method. CatBoost algorithm was developed by 

Yandex engineers and researchers, which is the largest Russian firm of search engines 

in 2017. Its source code has been published for public access in April. At present, this 

algorithm is regarded as the most advanced in the world by the indicators of efficiency 
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and speed of the XGBoost and LightGBM algorithms in global open source. The name 

"CatBoost" combines the words "Category" and "Boosting," and it belongs to the 

Boosting algorithms family. The CatBoost algorithm represents an enhancement 

within the context of the GBDT algorithm. It efficiently addresses the problem of 

gradient bias and prediction shift, avoids the chance of overfitting, and enhances the 

precision of calculations and the ability to generalize (Yang et al., 2023).  

4.5.4.5 Adaboost 

Adaboost is a machine learning algorithm that combines multiple weak classifiers to 

create a strong classifier. AdaBoost is an ensemble machine learning methodology that 

constructs a strong learning algorithm by combining weak learning methods. A 

decision tree with only one degree of split is commonly referred to as a stump. The 

inherent model assigns equal weights to each of the data points. Enhancing the 

fundamental principles of algorithms allows for the fine-tuning of training weights to 

align with the dataset. Meanwhile, the training will continue until the smallest 

inaccuracy is observed. During the training phase, AdaBoost constructs weak 

classifiers with low accuracy that gradually improve on their predecessors. To get 

higher accuracy, it is necessary to accurately tweak the hyperparameters of AdaBoost. 

AdaBoost is less prone to overfitting since it requires less pre-processing in the dataset 

estimation process (Prakash et al., 2023). 

4.4 Random forest 

Random Forest is a highly favored approach in the field of ensemble machine learning 

and data science. The RF algorithm effectively addresses classification and regression 

problems due to its fundamental structure and minimal computational demands. This 

combination of such weaker models as decision trees creates a robust, complete model. 

In Random Forest technique, there are decision trees that are being trained through a 

random subset of characteristics and data points. It is applicable to complicated 

datasets involving both categorical and continuous variables centred around specific 

tasks. As an ensembling tree model it uses the bagging principle in parallel and 

boosting principle in consecutive mode to train the basic learner. Random Forest 

reduces overfitting, problem of decision trees. Balancing of bias and volatility is 

through averaging of several tree projections to give results that are more reliable and 
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better. Random Forest is one of the most powerful machine learning tools because this 

algorithm behaves proper under different conditions and it randomly chooses data, 

along with attributes. Therefore, this makes the model apparent all across data specific 

disciplines(Prakash et al., 2023). 

4.5 Optimization of machine learning models 

Optimization of machine learning models is important, dynamic for the performance 

and the flexibility of the models in complicated environments. Optimization needs a 

deep knowledge of data and algorithms. Proper data preparation is crucial. 

Optimization requires missing data, feature normal ionization categorical variable 

encoding, and feature engineering. Feature quality and relevance help determine model 

performance. Choice of an approach based on the problem type – classification, 

regression, etc., and data attributes. Different models are strong or weak in different 

contexts. Random Forest and Gradient Boosting can outperform individual models by 

combining them. Optimizing the model is common for several repetitions. Testing, 

validation, and improvement cannot stop. 
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CHAPTER V 

Results and discussions 

5.1 Results 

5.1.1 Overview 

This part summarizes the findings to ascertain the efficacy and comprehensibility of 

five sophisticated machine learning models: Gradient Boost, XGBOOST, Adaboost, 

LGBM Boost, and Catboost in forecasting the characteristics of asphalt mixtures. It 

also depends on three fundamental interpretative parameters: the Shapley Value, 

Permutation Importance, and Accumulated Local Effects (ALE), among others to 

understand the impact of various aspects on model predictions. The model outcomes 

are situated on two characteristics of asphalt mixtures: Elastic Modulus (E*) and 

Dynamic Modulus (Log E*). The results are elaborated in detail through graphs and 

tables that lead to the perceptiveness of the predicted accuracy and the influence of the 

features of the model. This offers a full examination of how these models might be 

applied to predict the behaviour of asphalt mixtures. 

5.1.2 The performance comparison for five models 

Table 5.1 

 Estimation performance comparison for five models: test and train data on 

asphalt mixtures (E*) 

Models Train Test 

R2 RMSE MAE MSE R2 RMSE MAE MSE 

GB 0.925 4.30E+05 2.84E+05 1.85E+11 0.91 4.58E+05 2.99E+05 2.10E+11 

Adaboost 0.841 7.17E+05 5.91E+05 5.13E+11 0.83 7.25E+05 5.95E+05 5.26E+11 

xboost 0.998 6.55E+04 4.50E+04 4.29E+09 0.98 2.20E+05 1.37E+05 4.83E+10 

LGBM 

boost 0.987 1.82E+05 1.18E+05 3.30E+10 0.97 2.78E+05 1.68E+05 7.71E+10 

catboost 0.993 1.35E+05 9.07E+04 1.81E+10 0.98 2.12E+05 1.33E+05 4.50E+10 
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Table 5.2 

Estimation performance comparison of five models: test and train data on 

dynamic modulus of asphalt mixtures (LOG E*)

Models Train Test 

  R2 RMSE MAE MSE R2 RMSE MAE MSE 

GB 0.971 1.17E-01 9.14E-02 1.40E-02 0.968 1.23E-01 9.52E-02 1.50E-02 

Adaboost 0.926 1.91E-01 1.55E-01 3.66E-02 0.926 1.92E-01 1.54E-01 3.69E-02 

xboost 0.998 2.72E-02 1.98E-02 1.00E-03 0.989 7.28E-02 5.31E-02 5.00E-03 

LGBM 

boost 
0.993 5.78E-02 4.46E-02 3.34E-03 0.987 7.82E-02 5.92E-02 6.11E-03 

catboost 0.996 4.29E-02 3.23E-02 2.00E-03 0.992 6.12E-02 4.54E-02 4.00E-03 

Table 5.1, as well as Table 5.2, presents five models' performance comparisons on 

train and test data for the elastic modulus E* and dynamic modulus of asphalt mixtures 

Log E*. The models used here include Gradient Boosting (GB), Adaboost, XGBoost, 

Light Gradient Boosting Machine (LGBM boost), and CatBoost. 

Performance metrics to be used for comparing the models would consist of:  

R2 (R-squared): It shows how much of the variation is explained by the dependent 

variable when there is a prediction that is made from the independent variable. A value 

close to 1 or 100% is better for the output by the model. RMSE (Root Mean Square 

Error): It averages the squares of the errors. MAE (Mean Absolute Error): This will 

calculate an average of the absolute errors. MSE (Mean Squared Error): Measures the 

average of the squares of the errors. For all of the RMSE, MAE, AND MASE Lower 

values are better. 
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5.1.2.1 ADABOOST 

Figure 5.1  

Comparing measured and predicted E*(psi) using AdaBoost for (a) 

test and (b) train data. 

Figure 5.2 

Comparing measured and predicted Log E*(psi) using AdaBoost for 

(a) test and (b) train data. 
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5.1.2.2 Gradient Boost 

Figure 5.3 

Comparing measured and predicted E*(psi) using Gradient boost for 

(a) test and (b) train data. 

  

   

   

Figure 5.4 

Comparing measured and predicted Log E*(psi) using Gradient boost 

for (a) test and (b) train data. 
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5.1.2.3 LightGBM Boost 

Figure 5.5 

Comparing measured and predicted E*(psi) using LightGBM Boost 

for (a) test and (b) train data. 

Figure 5.6 

Comparing measured and predicted Log E*(psi) using LightGBM 

Boost for (a) test and (b) train data. 
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5.1.2.4 CatBoost 

Figure 5.7 

Comparing measured and predicted E*(psi) using CatBoost for (a) 

test and (b) train data. 

Figure 5.8 

Comparing measured and predicted Log E*(psi) using CatBoost for 

(a) test and (b) train data  
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5.1.2.5 XGBoost 

Figure 5.9 

Comparing measured and predicted E*(psi) using XGBoost for (a) 

test and (b) train data 

Figure 5.10 

Comparing measured and predicted Log E*(psi) using xgBoost for (a) 

test and (b) train data 

�������

��

�������

������


������



�����


������


�������

������� 	�����
 �������

�
�
!
�
�
�
�
�
��

�
��
�
�
��

(����� �����������

�"�

�������
�
�

�������

������


������



�����


������


�������

������� 	�����
 �������

�
�
!
�
�
�
�
�
��

�
��
�
�
��

(����� �����������

�!�

�������
��


�������

�������

�������


������

�������

������� ������� �������

�
�
!
�
�
�
�
�
�#
$
%
��

�
��
�
�
��

(����� ���#$%���������

�!�

�������

��

�������

�������

�������


������

�������

������� ������� �������

�
�
!
�
�
�
�
�
�#
$
%
��

�
��
�
�
��

(����� ���#$%���������

�"�



	��

�

�

�

� �

� �

5.1.3 Using parameter interpretability (shapley value, permutation importance, 

and accumulated local effects) finding E* and Log E*. 

Table 5.3 

Ranking of three different parameters on data E*  

Feature 
SHapley 

value  

Permutation 

importance 

Accumulated local 

effects(ALE) 

 |G*| 1 1 1 

T 2 3 4 

�b 3 2 2 

Va 4 4 3 

r34 5 5 10 

r38 6 7 7 

Vbeff 7 6 5 

fc 8 12 13 

Ac 9 8 6 

r200 10 11 9 

r4 11 9 11 

VTS 12 13 8 

A 13 10 12 
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Table 5.4 

Ranking of three different parameters on data Log E*  

Feature 
SHapley 

value  

Permutation 

importance 

Accumulated local 

effects(ALE) 

|G*| 1 1 1 

T 2 2 4 

Va 3 3 3 

�b 4 4 2 

r34 5 8 6 

Vbeff 6 5 5 

r38 7 6 7 

Ac 8 7 8 

r200 9 10 9 

VTS 10 13 10 

fc 11 11 12 

r4 12 12 13 

A 13 9 11 

The feature rankings for the prediction of asphalt mixture properties of E* and Log E* 

from the interpretability methods: Shapley value, permutation importance, and 

accumulated local effects (ALE) can be seen in Tables 5.3 and 5.4. Each feature (e.g., 

|G*|, T, db) is ranked across those methods; this comparison of significance amongst 

the features is imperative for model refinement, understanding of prediction drivers, 

and practical applications in asphalt mixture design. 
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5.2 Discussion 

5.2.1 Discussing the performance Comparison for five models 

Table 5.1 and Table 5.2 show the comparative results of five machine learning models 

which are Gradient Boosting (GB), Adaboost, XGBoost, Light Gradient Boosting 

Machine (LGBM boost) and CatBoost respectively on the estimation of asphalt 

mixtures properties (E*) and the pavement material dynamic modulus (Log E*). The 

models are evaluated on four key metrics, both for train dataset and test dataset: R2 (R 

squared), RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and MSE 

(Mean Squared Error). 

In Table 5.1, Performance on Asphalt Mixtures (E*), XGBoost performs better than 

other models with the highest R2 values (0.998 train, 0.98 test) indicating that this 

model has an exceptional accuracy and good prediction capability. It also boasts the 

least error metrics (RMSE, MAE, MSE) in both train and test data, pointing to its 

accuracy of estimating E*. The Adaboost contrasts this by recording the lowest R2 

values (0.841 train, 0.83 test). It indicates lesser accuracy in explaining the variance of 

E*. Its error metrics are also the highest among the models, indicating less precise 

predictions. 

Whereas on the contrary, XGBoost again comes out to be the best-performing model 

while predicting Log E*, shown as listing of Table 5.2. Performance on Dynamic 

Modulus of Asphalt Mixtures (Log E*), which comprises the highest R2 values (0.998 

Train, 0.989 Test) and thus the least metrics of error, thus establishing its robustness 

and accuracy in predicting Log E*. Adaboost has the lowest R2 values (0.926 both 

train and test) along with higher errors metrics as compared to XGBoost but does better 

in estimating Log E* than E* proportionately. 

The RMSE, MAE, and MSE values across all models are consistently smaller in Log 

E* than in E*, thereby suggesting that the models in general predict a more accurate 

result of logarithm dynamic modulus. This could be contributed to the fact that 

logarithmic transformation is known to stabilize variance, hence enhancing pattern 

recognition ability of machine learning algorithms.
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In a nutshell, XGBoost performs better in predicting E* and also for Log E* in asphalt 

mixes than other models because of its highest accuracy and reliability of predicting. 

Hence, it has proved always to provide high R2 value and low error metrics thereby 

showing its capability to grapple with the entire complexity found within the data. On 

the other hand, though useful, Adaboost shows comparatively lower performance 

especially in predicting E*. The insights from these evaluations are paramount in 

selecting the most appropriate models for accurate predictions useful in the analysis 

and design for asphalt mixture. 

5.2.2 Discussing the parameter interpretability (shapley value, permutation 

importance, and accumulated local effects) finding E* and log E*. 

The rank of the importance of different features in predicting dynamic modulus E* 

and its logarithm Log E* of asphalt mixtures using three interpretability methods: 

Shapley value, permutation importance, and accumulated local effects (ALE) is 

provided in Tables 5.3 and 5.4. In each method, every feature is ranked in which 1 

represents the most significant influence towards the predictions. 

From Table 5.3 Ranking for E*, across the three methods, the most influential feature 

is |G*| which all the methods gave it a rank of 1. That is, |G*| has the highest driver in 

predicting dynamic modulus (E*), with the highest effect on model output. Looking at 

the average ranks, it is observed that 'A' seems to be the least impactful, with ranks 13, 

10, and 12 across the three methods. 

In Table 5.4, As with E*, |G*|was again considered the first feature for predictive 

ability on Log E*, where it held a top rank across all interpretability methods. The Log 

E* Ranking Clearly, |G*| has strong and consistent predictive power for both the 

dynamic modulus and its logarithm. The feature 'r4' appeared to be of the least 

influence for Log E* with ranks 12, 12, and 13 respectively across methods indicating 

low information contents of this feature and inclusion in the model provides little 

additional information. 
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CHAPTER VI 

Conclusion and recommendation 

6.1 Conclusion 

Through the machine learning interpretability parameters Shapley value, Permutation 

importance, and Accumulated local effects (ALE), and machine learning predict 

models Gradient boost, XGBOOST, Adaboost, LGBM boost and Catboost approaches 

with advanced machine learning methods, the assessment of Elastic modulus (E*) and 

LOG E* dynamic modulus of asphalt mixtures has been considered excellent acumen 

to enhancing the accuracy and effectiveness of the pavement engineering assessments. 

These approaches have used different datasets and presented varied views regarding 

the influencing aspects of the behavior of asphalt mixture. 

Common findings established include that ensemble methods such as Adaboost e 

gradient boost, XGBOOST, LGBM boost, and Catboost were effective when handling 

complex non-linear relations within the parameters of a dataset. The use of Shapley 

value and Permutation importance brought more light on the contributions made by 

features as well as feature importance on the model predictions adding up to the 

interpretations. Accumulated local effects came in handy due to their ability to be able 

to capture the impacts borne out of potential interaction between features at different 

scales or ranges. 

However, computational intensity and the requirement of substantially pre-processed 

data were also the challenges witnessed. The reasons for variation in performance 

across different datasets and methods indicate that model selection and tuning are 

context-dependent. 

6.2 Recommendations 

Model Selection and Tuning: Sensibly choosing and tuning one or more machine 

learning models according to inherent characteristics of the dataset at hand as well as 

practical requirements of pavement engineering tasks, is highly needful. 
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Interpretability Focus: Owing to the involved nature of asphalt mixes, in engineering 

judgments, it can be hypothesized that some models that offer a proper interpretation 

as shown by Shapley value and Permutation importance, for instance, will be favored. 

Data Quality and Diversity: Ensuring diverse, high quality datasets to train and 

validate models covering the full variety of asphalt mixture types and environmental 

conditions for more generalized outcomes. 

Resource Allocation: Take note of computational demands the said techniques, in 

particular for ensemble methods and those pertaining to Shapley value calculations. 

Allocate necessary resources for such or if possible provide appropriate adjustments 

to go along with efficient model training and analysis. 

Integration with Traditional Methods: Integrating machine learning evaluations along 

with traditional evaluative approaches to get better insight into asphalt mixture. 

Continued Research and Development: Efforts should be towards triggering 

continuous research in further improving these machine learning models in terms of 

efficiency and accuracy, and also on how techniques newly matured in the area can be 

put to use. 
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