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Brain Tumour classification stands as a pivotal challenge within the realm of 

Computer-Aided Diagnosis. This thesis delves into the binary classification of brain 

images derived from varied angles in Magnetic Resonance Imaging scans of the human 

brain. The proposed classification model hinges on the paradigm of deep transfer 

learning, leveraging a pre-trained Modified DenseNet1.0 model and “Image Net” 

weights to autonomously extract features from the inputs of MRI brain images based 

on Densely Connected Convolutional Neural Networks. Our model was trained on a 

large dataset of two classes “Yes” and “No” taking into consideration the importance 

of hyper parameters tuning role and the usage of regularization techniques effectively.  

Therefore, our results suggest that our proposed model Modified DenseNet1.0 

performs exceptionally well in accurately identifying instances of both classes, making 

it a robust solution for real-world tests and live usage through deploying the model in 

an accessible platform or IoT healthcare systems. Emphasizing the need for 

eXplainability, we build the decision-making processes of our AI system principle to 

display trust and transparency. To accomplish this objective, our extension Modified 

DenseNet2.0 will be associated with a comprehensive eXplainability of the anticipated 

outcomes through SHapely Additive explanations providing a visualized breakdown 

of the results. 
 
 

Key Words: brain tumours, cnn, transfer learning, classification, explainability
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CHAPTER I 

Introduction 

The meaning of the world and human existence was always a constant aim 

to look for, to feed our curiosity and broaden our horizons. This curiosity was and 

will always be the fuel of every mind looking for answers. Human curiosity led to 

finding out about fire passing by the invention of engines to make rockets reach 

what was unreachable one day.    

Computers played a big role in the process of every human history record, 

especially in the last decades. Since the invention of computers, they have been 

employed to achieve fast results and more accurate calculations in an exponential 

period compared to what humans could offer in the same given time. Throughout 

life, humans and scientists in particular were always in a race with time to uncover 

the mysteries of the universe and improve the quality of life for humanity's sake 

using knowledge, power, and computers. 

The sky is not the limit. We have always believed that we can overcome all 

types of challenges if we employ science to our advantage. That is what computers 

and the Artificial Intelligence (AI) sector are found for. 

One of the emerging areas of computer science is AI, which relies on 

processing a huge number of complex datasets using intelligent models. The pianist 

mathematician Marvin Minsky, one of the pioneers of AI, defines AI as the science 

of making machines do things that would require intelligence if done by men. On 

the other hand, Alan Turing proposed (Cooper & Leeuwen, 2012) that a computer 

can be considered intelligent if it can simulate human responses under specific 

conditions. 

AI's main objective is to let machines handle tasks known as intelligence, in 

a more effective and faster way than humans through a learning process. The 

learning process reduces over time as more data is provided, and more systems are 

developed by adjusting old ones to get more accurate results. Based on biology, and 

how the brain learns through its environment “Surroundings”, scientists and 

especially neurologists thought that machines could be trained the same way to 

solve some kind of mathematical and statistical problems traditional methods could 

not solve yet. That marked the beginning of the new era of machine learning (ML). 

ML is a sub-field of AI that automatically detect patterns among data sets using 

detection and classification algorithms to extract recurring patterns to feed those 
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algorithms through any type of data that could be stored digitally such as numbers, 

words, images, videos, statistics ... Etc. 

Figure 1  

Normal programming vs. machine learning. 

 

In traditional programming, the output is determined by the input and 

predefined rules set by humans. In contrast, ML establishes rules autonomously 

based on input and desired output (See Figure 1). Supervised learning, unsupervised 

learning, and reinforcement learning are the three main machine learning 

paradigms, each is designed for a certain type of learning task. Supervised learning 

aims to discover relationships between input data, represented as dependent or 

independent parameters, by constructing a predictive model. The model is built 

from labelled training data, consisting of examples or instances. The learning 

process involves iteratively improving predictions through exposure to more 

labelled data, and enhancing accuracy with novel, unseen data (Maimon & Rokach, 

2010). Noteworthy predictive supervised ML methods include Classification 

through Support Vector Machines, Decision Trees, Artificial Neural Networks, K-

Nearest Neighbours, Prediction, and Estimation. 

In unsupervised learning, classes are unlabelled, and the number of classes 

is unknown. This paradigm, often termed “Clustering”, involves identifying 

inherent structures within data (Han et al., 2006; Aggarwal, 2016). Real life 

applications of unsupervised learning are numerous and diverse. Companies 

specialized in transportation and logistics uses anomaly detection to identify 
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obstacles or expose defective mechanical parts and condition monitoring (Del 

Campo Barraza, 2017). Anomaly detection can also be utilized in a medical setting 

to find abnormalities, lesions, or anomalies like brain tumours without having to 

specifically train the model for that particular disease. (Chatterjee et al., 2023), 

unsupervised anomaly detection in medical images that enables models to learn 

visual representations from unlabelled data (Iqbal et al., 2023).  Unsupervised 

learning techniques are also applied in costumer and market segmentation to create 

costumer personas for better marketing and targeting campaigns (Paranavithana et 

al., 2021; Joppe, 2016), data preparations and visualization, recommender systems 

and engines such as Amazon's frequently bought together recommendations, 

Natural Language processing models for complex syntax learning, generating 

genuine grammatical sentences (Solan et al., 2005), and computer vision (Chen et 

al., 2022). 

Reinforcement Learning (RL), a subtype of machine learning (ML), 

combines elements of supervised and unsupervised learning. In RL, an intelligent 

agent acts in the environment to maximize cumulative rewards. This process is 

essentially sequential decision-making (François-Lavet, 2018; Sutton & Barto, 

2014). Various papers have proposed reinforcement learning-based trajectory 

optimization, motion planning, dynamic pathing, and scenario-based learning 

policies in highways for self-driving cars such as AWS DeepRacer. Google Data 

Centres also uses reinforcement learning agents to cool the system which helped 

reduce energy spending up to 40% (Gamble & Gao, 2018). NLP reinforcement 

learning is used for text summarization (Paulus et al., 2017), question answering 

(Choi et al., n.d.), and even machine translation (Grissom II et al., 2014). 

Reinforcement learning has a say in healthcare as well. RL can optimize treatment 

policies of chronicle disease and critical care based on previous experiences, it 

supports automated medical diagnosis, and other domains (Yu et al., 2020). 

Self-learning category goes along with a neural network algorithm known 

as Crossbar Adaptive Array (CAA). It is learning with no supervisor or incentive 

mechanism. The CAA algorithm computes both actions and emotional decisions 

based on consequence situations (Al Sallab & Rashwan, 2012). 

ML applications are various and diverse, they can be found almost 

everywhere and are a crucial part of our everyday life. Image recognition is the most 

common application of ML, it is applied in medical diagnosis, traffic predictions, 

and social media such as “Deep Face” by Facebook which is responsible for face 
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recognition. Speech recognition is also one of the popular ML applications, it offers 

Google users the option of searching by voice and is the core of personal assistants 

such as Google Assistant, Alexa, Siri, and Cortana using speech recognition 

technology. Not to forget traffic prediction-assisted systems such as Google Maps. 

Moreover, ML techniques are used in recommendation systems in Amazon for 

example, self-driving cars also use unsupervised learning methods to detect objects 

and people while driving, Email spam and malware detection, online fraud 

detection, and automated translation such as Google neural machine translation that 

helps provide translations into our familiar languages. As we can see here, ML is 

everywhere and differs from one sector to another which means that there is a 

diversity in techniques as well.  

Since our research is focused on supervised ML, we will only list supervised 

techniques in this section. Commonly, supervised ML algorithms are mainly 

classified into regression where algorithms provide predictions based on continuous 

data while classification predicts categorical values such as 1 or 0, cancer or no 

cancer. The outcome is always a class or category and not an actual value. 

Classification algorithms are also mainly classified into linear and non-linear 

models that are summarized in the following table (Table 1). 

Table 1  

Linear Models VS Non-Linear Models. 

ML models generally learn properly through processing structured data, 

small amounts of entries, and require low-end hardware and low cost whereas 

unstructured data and the huge amounts out there that need classification and more 

complex processing procedures require more advanced and high-performance 

algorithms than what we were introduced to so far. In other words, Deep Learning 

(DL) jumps to the scene with all its capabilities including the ability to learn from 

unstructured data, large datasets, and large-scale problem-solving. However, the 

most important characteristic of DL that makes it stand out compared to ML is that 

feature engineering is done implicitly and automatically without the need of a data 

Linear Models Non-Linear Models 

Support Vector Machines 

(SVMs) 

Decision Trees Classification  

Kernel SVM  

Logistic Regression  K-Nearest Neighbours 

 Naïve Bayes 
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scientist interference thanks to the core of DL algorithm that learns patterns on their 

own.  

Based on scientific research concerning neurology, an approach in the field 

of computer science was built to simulate the bio neurons in a mathematical-based 

model called the Artificial Neural Networks (ANNs). ANNs are also known as 

Neural Networks, connectionist models or parallel distributed processing. The first 

ever interest was raised in 1943 after the neuroscientist Warren S. McCulloch and 

the logician Walter Pitts published their paper entitled: “A logical calculus of the 

ideas immanent in nervous activity” in the Bulletin of Mathematical Biophysics. In 

that paper, the two scientists tried to simplify the human brain analogy through a 

highly simplified mathematical model of neurons called “MCP Neuron” or 

“Threshold Logic Units” which makes the unit of an artificial neural network 

connected. That is exactly how the brain is made (Kröse & Van, 1996, McCulloch-

Pitts Neurons, 2019). 

Figure 2  

Artificial Neural Network. 

 

We can define a neural network as a computer program operating in an 

inspired manner of the natural human brain’s neural network (Haykin, 1999). The 

term “Neural Network” is more than a computational model. It is a paradigm of the 

human brain and mind. 
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Figure 3  

Human Brain Analogy. 

 

The computation of the human brain differs from that of a traditional digital 

computer due to its tremendous complexity, non-linearity, and parallel architecture. 

It is a huge neural network with billions of neurons, each one connected to 

thousands of other neurons (Nwadiugwu, 2020).  

Figure 4  

Natural Human Neuron. 

 

The human brain can organize its neurons and build up its own rules from 

birth. It can perform certain computations, such as speech recognition and image 

processing, and much more, many times faster than any powerful computer in 

existence for the time being (Haykin, 1999). 

Scientists consider the human brain as the most powerful computer-like 

machine in existence. So theoretically, the McCulloch approach concludes that any 

operation that is made by the computer can also be made through a network of MCP 

(ANN). Simulating the brain functioning in artificial neural networks could encode 

many complicated computer programs and mathematical issues in many fields like 

biology and astrophysics. Even though the MCP model and ANN have not yet 
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reached the real human brain functioning level, they contributed hugely to the 

development of computers throughout history from classical digital computers to 

non-classical computers that are playing a big role in the scientific research 

industry. 

The objective of neural networks (Mehlig, 2021) is to perform cognitive 

functions such as problem-solving and ML. Research and development R&D data 

is growing exponentially, and in order to find hidden data or information that could 

be properties or entries for learning algorithms, advanced analytic techniques are 

needed.  One of the many different tools available to meet the demands of R&D 

needs is the ANN. In contrast to the conventional regression method, the ANN can 

be used in modelling complex non-linear relationships proving excellent fault 

tolerance, fast and high scalability with parallel processing. 

The architecture of the human brain serves as an inspiration for ANN 

learning algorithms. Just like the brain, neural networks are trained by learning 

patterns through trial and error. They are organized into layers which are made of 

several interconnected nodes containing an activation function. (Omondi & 

Rajapakse, 2006). 

Figure 5  

Simplified Neural Network Learning Algorithm Approach. 

 

What features the neural network algorithms is that the knowledge (Output) 

is distributed throughout the network itself instead of explicit programming. The 

output then is modelled as connections between the artificial neurons and the 

adaptive weights of each of these connections. The network starts learning through 

various situations. The majority of Artificial Neural Networks (ANNs) techniques 

are supervised in nature. Nevertheless, depending on the desired result and the 
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outputs, both paradigms can be used on a neural network. There are three major 

learning algorithms categories for ANN Learning. Gradient descent-based neural 

networks are used to find the local minimum of a function such as Back Propagation 

Neural Network and Radial Basis Function Neural Network. (Dkhichi & Oukarfi, 

2014) 

Consider Back Propagation Neural Networks, which begin with computing 

the partial derivative of the loss function while accounting for the last layer's 

parameters, which are ineffective with respect to any other network parameter. Due 

to the chain rule, this is not a complicated computation. (Dimililer, 2013, Qi et al., 

2019)  

Genetic algorithm-based neural networks are the most common 

evolutionary algorithm. To mimic the processes of natural selection, neural 

networks based on genetic algorithms select the most efficient rules for problem-

solving (prediction) until a predictive model is obtained. Using genetic algorithms 

with ANN helps optimize the learning process and enhance the results of the 

process. It is applied to evolutionary neural networks, Bayesian neural networks, 

and others (Vié, 2020). Natural selection in biology serves as an inspiration for 

evolutionary neural networks. They are population-based and, like convolutional 

neural networks (CNNs), generate new candidates by recombining candidates from 

a population (Zhang et al., 2011). 

There are two distinct aspects to the CNN architecture: the first is made up 

of several convolutional layers that do automatic extraction. “Feature Learning” is 

the term for this phase, which turns unstructured data into a collection of useful 

functions. Then the “Dense Layer” phase starts which is responsible for 

classification. The classifier modules contain fully connected feed-forward 

(recursive) neural networks. (Baldominos et al., 2019)    

Teaching a machine to recognize images was a huge challenge for decades 

until research was able to finally simulate the human brain's visual recognition 

system. In 1963, Lawrence Roberts (Roberts, 1963) proposed the idea of using a 

2D perspective to extract 3D geometrical information. This marked the first 

breakthrough of the field of computer vision. Several algorithms and models were 

suggested along this journey such as the generalized cylinder model, pictorial 

structure model, and CNNs or ConvNets.   

ConvNets are not much different from classical neural networks. They are 

both structures on neurons based on weights learned from data. A CNN is composed 
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of three main layers: the convolution layer, the pooling layer, and the fully 

connected layer which is the output layer.  

Neurons in a CNN can be arranged in three dimensions: width, height, and 

depth. Using an activation function, each layer converts the three-dimensional input 

into a three-dimensional neuronal output. To summarize, CNNs are deep neural 

networks that share their parameters across space. Moreover, CNNs accept matrices 

as an input differently from multi-layer perceptron that only accept vectors which 

guarantee the preservation of the spatial structure of the image during the process. 

These characteristics and more are what allowed CNNs to be top candidates when 

addressing computer vision problems. In this chapter, we have discussed AI history 

along with applying ML techniques to AI models to achieve outstanding results. As 

you will see in the state of the art, we have mentioned several research papers where 

CNNs performance achieved considerable results in various fields and sectors 

mainly medical imaging where our research in particular has its full focus. 

Background of Study   

In a medical context, a tumour is caused by uncontrolled growth and 

abnormal spread of body cells that can result in death if not treated. Cells typically 

divide and die in an orderly manner so that new cells can take their place. A tumour, 

which is a mass or lump, might, nevertheless, continue to grow abnormally. The 

second most common cause of death in America, behind heart disease, is cancer, 

according to the Centres for Disease Control and Prevention. The American Cancer 

Society reported on 2022 an estimated number of 18.280 deaths versus 25.050 new 

cases of brain and other nervous system cancer.                                               

In both adults and children, one of the most dangerous and deadly types of 

cancers are brain tumours. Moreover, they have the lowest survival rate. 

Consequently, early diagnosis’ role in preventing more spread of the tumour and 

identification of the right treatment plan is highly important. Analysing Magnetic 

Resonance Imaging (MRI) scans of the brain with tumours is a useful method for 

differentiating between brain tumours, which can be challenging even for skilled 

neurosurgeons or oncologists. This means that even a small mistake in the diagnosis 

could have unfavourable effects. Notably, the number of brain tumour cases is 

increasing gradually which makes manual techniques tedious, time-consuming, and 

erroneous. 
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MRI is well-known for effectively finding some cancers like breast, brain, 

and spinal cord tumours. Using MRI, medical professionals can even tell sometimes 

if a tumour is or is not cancerous. Furthermore, it helps plan treatment such as 

surgeries or radiotherapy (American Cancer Society, 2021). 

Brain tumour diagnosis begins usually with MRI scans. When the MRI 

shows that the brain has a tumour then professionals head towards further 

investigations for example performing a biopsy procedure or surgery depending on 

the tumour type and severity of the patient's condition (Cancer.Net, 2019). And here 

comes computer-aided systems that are always a handful for medical professionals 

to avoid errors, and time-consuming procedures and reduce the need for manual-

based investigations. In other words, developing systems that can classify brain 

tumours is an important key for more accurate results, early diagnosis and even 

making treatment plans which is possible through CNNs that have proven 

interesting results in treating classification problems and the computer vision field 

globally. 

Research Problem and focus   

The rapid growth in the AI discipline and medical imaging processing has 

led to the need for accurate and reliable healthcare AI-based systems. In the field of 

ML, medical image classification tasks have proven a high level of importance in 

the healthcare sector where accuracy and precision of diagnosis is crucial but also 

the explainability and interpretability of the outcome. In many applications, 

consistency, credibility, and determining why ML model generates a particular 

prediction can be as crucial as the prediction's accuracy. Therefore, it should be one 

of the main keys along high accuracies when dealing with people's lives. Suppose 

the medical practitioner is unable to trust or reasonably explain the decision-making 

process, would it be possible for the patient to fully trust the physician and the AI 

model that is deciding their health state or determining their medical condition at 

the moment? The answer is an absolute NO. Therefore, improving the transparency 

of the model's effectiveness and reliability is highly recommended.  

To introduce explainability in a computational context, we have to refer to 

linguistics and psychology first. According to the Oxford English Dictionary, the 

word “Explain” means describe, clarify, define, disclose, analyse, demonstrate, and 

any other word that leads to providing more information about a specific topic. 

Based on Lombrozo (Lombrozo, 2006) explanations are the means we have to 
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exchange beliefs. Nevertheless, linguists claim that the explanation depends on the 

question (Bromberger et al., 1992) 

However, it is difficult to provide a precise definition for explainability as it 

is interchangeably used in the meaning of interpretability. On the other hand, we 

can define the properties that explainability should cover. Explainability can be 

evaluated mainly based on two concepts: Interpretability and completeness. 

Interpretability explains the midst of the trained model in a way that humans can 

comprehend. Whereas completeness aims to capture in detail the whole process 

accurately (Gilpin et al., 2018). In summary, a well-interpreted model is easy to 

understand by humans but if the model is too complex, it requires a complete 

explanation that might be too hard for humans to understand. So far, gathering 

interpretability and completeness at the same time is very difficult because 

interpretable explanations don't reach a good level of completeness and complete 

explanations are most of the time not very understandable (Kanerva, 2019). Human 

understanding of the results produced by ML models becomes increasingly 

challenging as it becomes more complex. The history of philosophy of science 

indicates that debates have arisen about what constitutes an explanation. Causation 

is linked to explanation. As Aristotle's theory of causation contends, determining 

the cause is necessary to explain an occurrence or a phenomenon. Nevertheless, the 

theory of explanation treated explanation in either an epistemic or a realist sense 

following the development of the philosophy of science in the 20th century. The 

entities or processes that an explanation postulates are actual, according to a realist 

interpretation of explanation. The explanation is an accurate portrayal of the outside 

world. According to an epistemic interpretation, these entities or processes are 

merely helpful for arranging the data from scientific tests and human experience, 

rather than necessarily existing in a literal sense. Explanation, here, is only to 

facilitate the construction of a consistent empirical model, not to furnish a literal 

description of reality (Randolph Mayes, 2023). That is, in general, the outcome of 

scientific philosophers trying to comprehend the nature of modern theoretical 

science. According to a philosophical approach, the reasoning process is classified 

based on two opposite approaches: Inductive and deductive reasoning.  

Deductive reasoning based on Aristotle's syllogism (Kulicki, 2020) is a 

method where you start with a series of premises that would lead to a certain 

conclusion. While the father of empiricism, Francis Bacon who established and 

popularized the scientific method of research into natural phenomenon, introduced 
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inductive reasoning approach by evaluating and improving theories through 

measurement, experimentation, and observation (Bacon, 1620). Scientific 

reasoning theory was generally defined as problem-solving process that involves a 

critical thinking process when conducting scientific research about procedural, 

content, and epistemic knowledge (Simon & Newell, 1971, Kind, 2013). It is 

studied through different sectors such as cognitive sciences, education, and to 

identify a suitable reasoning mechanism in a scientific context such as deductive 

reasoning, inductive reasoning, problem-solving, and causal reasoning (Dunbar and 

Fugelsang, 2005).   

Moreover, as mentioned in the article published by (Miller, 2019), the 

process of explanation is composed of two parts: Cognitive process where the 

explanation of a given event is determined and that is what we call the explanandum 

according (Hempel, C. G., & Oppenheim, P., 1948). Group interaction is 

represented by the second part, which is the social process of knowledge transfer 

between the explainer and the explainee (Kim et al., 2021). In other words, 

Causality is known as the highest degree of an interpretation process of a natural 

phenomenon where we try to understand logically and scientifically how and why 

it happened. In other words, cause and effect science. Back to Aristotle again, the 

easiest way to represent causality is that more than one cause may be a non-

coincidental cause of something.  Based on this approach, the eXplainability of 

Artificial Intelligence (XAI) models has seen the light and witnessed the present 

attempts to improve previous methodologies and a new set of algorithms that serve 

to explain and interpret a ML model's outcome in a way that is valid, faithful, 

trustworthy, and transparent. 

To propose an explainer algorithm, we need to consider three aspects: the 

presentation of the explanation, the type of the targeting model that the algorithm 

can be used for, and the relations between the explainer and the DL model. 

Research Aim and Objectives    

The task of imparting image recognition capabilities to machines has 

historically been a substantial challenge, persisting for several decades. Recent 

strides in research have, however, achieved a commendable simulation of the 

complex visual recognition system inspired by the human brain. Presently, within 

the realm of AI, and particularly in the context of Responsible AI, a strong focus is 

on clarifying the models' decision-making procedures. This highlights the 
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importance of explainability, making it a necessary component for the smooth 

integration of DL models in the medical field. Given that these models play 

essential roles in decision-aid systems, this integration is extremely important. This 

research aims to efficiently classify and detect brain Tumours by utilizing a 

supervised DenseNet-based modified DL model “Modified DenseNet1.0” with 

automatic features extraction to detect the brain Tumour provided with an 

explanation integrated in our future extension “Modified DenseNet2.0” based on 

the usage of SHapely Additive eXplanations (SHAP) and visualized graphs 

supporting the predictions of the model. The following research objectives would 

facilitate the accomplishment of this aim: 

• Proposed a binary classification deep transfer learning model using 

DenseNets named: “Modified DenseNet1.0”. 

• Maintaining high accuracy of the results to promote safety, reliability, 

ensure robustness and the success of decision-making processes. 

• Propose an extension “Modified DenseNet2.0” that will efficiently provide 

explained prediction accompanied by visualized graphs using SHAP values 

for explainability. 

Research Framework  

The core of this research is to efficiently classify two datasets of two 

different sizes carrying brain tumour MRI images, the datasets are open source and 

available on the Kaggle platform for research purposes. The research attempts to 

classify the MRI images into two classes through a binary classification model 

“Modified DenseNet1.0” to decide whether the MRI image bears a tumorous brain 

or a non-tumorous one. The research will be based on using transfer learning 

techniques, normalization and regularization techniques to classify and predict the 

state of a brain MRI image and then provide a visualized explanation for the 

prediction in a future extension “Modified DenseNet2.0” that complies with 

international standards. 

Thesis Organization  

The thesis report is divided into five chapters, and the research objectives 

are thoroughly elaborated in the following chapters which can be read 

independently from each other. The chapters are organized as follows: 

Chapter 1: In this chapter, we are presenting the background of the study 

including Artificial Intelligence (AI), Machine Learning (ML) paradigms, neural 
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networks, classification techniques, explainability philosophically and 

scientifically, eXplainable Artificial Intelligence (XAI), and Responsible AI. The 

chapter also discusses the research problem and focus, aims and objectives, and 

scope of the study. 

Chapter 2: In this chapter, we provide a review of Deep Learning (DL), 

Convolutional Neural Networks (CNNs), transfer learning, medical imaging, brain 

tumours, and MRI imaging. It also provides a thorough and concise literature 

review related to convolutional networks, other classifiers, and explainability. 

Chapter 3: Here we describe the methodology and approaches employed to 

build our proposed model, portray the datasets utilized, introduce the explainability 

techniques, and discuss the evaluation metrics and study tools. 

Chapter 4: This chapter demonstrates the results and findings derived from 

our research, encompassing quantitative analysis and visualization of the outcome, 

presenting the explainability of the model's predictions, and related discussion. 

Additionally, it includes a comparative study with previous works and similar 

approaches. 

Chapter 5: The thesis conclusion and suggestions for further research are 

provided in this chapter.  

In the coming section, we have selected some interesting works that have 

processed related topics focused on supervised learning using CNNs supported by 

other techniques to classify different datasets of various sizes and nature including 

brain tumours. And explain predictions using different approaches such as LIME, 

Grad-CAM, and SHAP Values. 
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CHAPTER II 

Literature Review 

Several machine-learning techniques are used to classify brain tumour 

datasets using Support Vector Machines (SVMs) (Ozsoz et al., 2021), K-Nearest 

Neighbour Algorithms (KNNs) (Altman, 1992), and Convolutional Neural 

Networks (CNNs) (Akella et al., 2023). Our research focuses on using CNNs as the 

state of art proving the high efficacy of using CNNs in computer vision generally 

(Mubarak et al., 2022) and medical imaging specifically (Salehi et al., 2023). 

Theoretical Framework   

The winners of ImageNet Challenge 2014 (Simonyan & Zisserman, 2014) 

submitted a CNN model known as VGGNet16 and VGGNet19 that secured them 

first place in the localization track and second place in the classification one. 

Moreover, the model generalizes well on other datasets and even a wide range of 

tasks. Such achievement marked a significant milestone in computer vision with the 

proposed VGGNet16 and VGGNet19 CNN models. The VGGNet architecture 

showcased its effectiveness in handling diverse challenges within the competition. 

This versatility highlighted the robust nature of the VGGNet models, making them 

valuable tools not only for image classification and localization but also for various 

applications beyond the initial challenge. 

A year later, (He et al., 2015) introduced an innovative approach to DL with 

their CNN architecture known as Deep Residual Learning. The proposed model, 

particularly the ResNet50 and ResNet101 variants, achieved remarkable success by 

securing first place in both the image classification and localization tracks. Notably, 

the introduction of residual learning, which involves the use of residual blocks, 

allowed for the creation of significantly deeper networks without suffering from 

vanishing gradient problems. This breakthrough design facilitated the training of 

extremely deep neural networks, leading to improved performance and 

generalization across various datasets and tasks. 

In 2016, a ground-breaking contribution to Deep Learning (DL) was 

presented by (Huang et al., 2016) that addresses the challenges and limitations of 

conventional convolutional networks by introducing the Dense Convolutional 

Network (DenseNet). DenseNet's fundamental innovation is its dense connectivity 

pattern, which effectively addresses problems associated with the vanishing-

gradient problem, improves feature flow through the network, promotes feature 
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reuse, and drastically lowers the number of parameters when compared with 

conventional architectures. This resulted in DenseNet demonstrating superior 

performance across a range of tasks and establishing its significance in advancing 

the state-of-the-art in DL.   

The focus of this thesis goes to the depth of the CNN architecture that leads 

to better accuracy compared to previously published research in the same field. 

Brain Tumours Detection Using AI   

A CNN classifier for brain MRI images was proposed by (Pathak et al., 

2019) to indicate any presence of tumour in addition to Tumour area calculation 

using the watershed algorithm for segmentation operation. The proposed 

classifier achieved a very good accuracy with low complexity. Another paper 

using DL to segment Tumour areas from brain MRI images was proposed by 

(Sajjad et al., 2019) after applying data augmentation to treat the lack of data issue 

while training the model based on a novel CNN system for multi-grad brain 

Tumour classification task. The proposed system was evaluated on both raw data 

and augmented data achieving convincing performance compared to existing 

methods. (Ayadi et al., 2021) suggested a multi-layer CNN to perform brain 

tumour MRI image classification. The suggested model evaluated on three 

datasets attained satisfying performance. The proposed method in (Pashaei et al., 

2018) consists of extracting hidden features from brain Tumour MRI images 

using CNNs then a Kernel ELM algorithm performs a feature-based classification 

task which has shown promising results compared to other classifiers such as 

support vector machines and radial base function. (Abiwinanda et al., 2018) 

implementation of a simple CNN architecture that recognizes the three most 

common brain tumour types trained on a publicly available dataset. The 

architecture has no prior region-based segmentation, yet it achieved higher 

accuracies compared to the one that applied segmentation algorithms. (Naseer et 

al., 2021) focuses on early diagnosis possibility through a convolutional network 

trained on a benchmark dataset containing brain tumours MRI images. The 

proposed system outperforms other suggested systems by achieving a very 

satisfying average accuracy and almost perfect specificity while hitting 100% 

correct diagnosis for two datasets that were evaluated. (Alanazi et al., 2022) built 

a novel transfer deep-learning model to classify various types of brain tumours 
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by re-using a 22-layer binary classifier to adapt the neuron weights to their model 

through a transfer learning technique.  

To approach the computational time issue lying within CNNs approaches, 

(Bacanin et al., 2021) suggested a metaheuristic method based on an improved 

firefly algorithm (Jati et al., 2013) developing an automatic system for brain 

tumour multi-class classification that has outperformed similar approaches with 

considerable classification accuracy.   

For a more structured study, we have classified the works mentioned 

below according to the techniques used, the learning paradigm which is 

exclusively supervised in this study since we are treating classification problems 

using CNNs. Table 2 represents the classification of the related works. 

Table 2  

Related works classification. 
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Employing XAI in ML for predictions   

We believe that the explainability step, where the trustworthiness of the 

final prediction must be considered seriously, is absent from the state of the art 

when it comes to employing CNNs to classify MRI brain pictures. Rather than 

that, most research focuses on achieving high training and testing accuracy while 

neglecting the opinion and judgment of the concerned individuals on this 

accuracy itself and if it is trustworthy to decide a patient's diagnosis or even to be 

part of medical-aided systems and decision-making process. Therefore, we 

expanded our research and studied several practical XAI methods that achieved 

significant progress in the medical field. In particular, classification tasks run 

through DL algorithms such as CNNs as mentioned in the research paper of (Tang 

et al., 2019) where a DL pipeline concept is proven to be a good identification of 

specific neuro-pathologies using automated segmentation and CNNs for training 

and evaluation of the classification task conducted in the research achieving good 

correlation scores based on prediction confidence maps that provide high-

resolution morphology distributions. Another study of brain aging-related 
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impairment was done by (McKenzie et al., 2022) using a DL-trained model that 

predicts cognitive impairment existence with modest accuracy. Furthermore, 

attention-based interpretation studies of the features were conducted to find out 

how the model identified the myelin pallor which demonstrates a scalable 

platform that helps in locating unanticipated pathological elements in 

neurobiological disorders and cognitive impairment in general.  Research by 

(Zhang et al., 2018) proposes a modified conventional ConvNet into an 

interpretable CNN to explain knowledge representations in high convolutional 

layers without annotations. The latter is thus assigned during the training process. 

This method applies to various CNNs regardless of their structures. (Tomita et 

al., 2019) designed a novel approach to train a dataset of images taken from the 

endoscopic oesophagus and gastro-oesophageal junction mucosal biopsies. The 

model was trained based on a CNN approach and grid-based attention network 

and then evaluated on a different testing set of four classes achieving a better 

performance compared to the existing state-of-the-art taking into consideration 

that the detection part was based only on tissue-level annotations.  

An alternative framework proposed by (Apicella et al., 2020) where 

researchers applied sparse dictionary methods to classify inputs using middle-

level properties to build blocks for the image classification explanation without 

relying on the input’s low-level features to explain the ML model. Another low-

level feature and annotation's role in prediction tasks, (Hu et al., 2021) still believe 

that the latter can be improved to enhance CNN performance by proposing a 

simplistic and wide attention convolutional approach to discover each label's 

local characteristics and low-level properties. A clinical open-access dataset of 

intensive care unit (ICU) medical records was used to evaluate the approach, and 

it performed noticeably better than the state-of-the-art. (Sattarzadeh et al., 2021) 

propose an algorithm to visualize various layers. In order to achieve total 

explainability, the CNN uses an attribution-based input sampling approach and 

aggregation along with an empirical analysis of low-level features efficacy to 

enhance the mentioned attributions. 

In order to simultaneously achieve high accuracy values and 

explainability criteria, (Duffy et al., 2022) propose an interpretable approach that 

respects the standard clinical flow in a DL prediction based on a cardiac junction 

assessment and improved segmentation method using the frame-by-frame 3D 
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depth-map technique. According to the researchers, this method is easily 

interpreted and the diagnosis can even be corrected by clinicians at any point. 

Another design interpretable CNN by (Ismail Fawaz et al., 2019) to 

classify surgical skills using pattern extraction technique to classify surgical skills 

resulting from trainees' motion while performing robotic surgery. Using the Class 

Activation Map (CAM) technique, the model minimized the black box effect and 

was evaluated on the JIGSAWS dataset. This allows surgeons to receive very 

accurate and objective skill assessments and helps them identify the surgical 

procedures that had an impact on the skill assessment. Moreover, a novel 

personalized feedback technique.  

Another ML approach is proposed by (Oviedo et al., 2019) to conduct a 

prediction task on crystallographic space group and dimensionality from a given 

set of thin-film X-ray diffraction data patterns. This research study uses simulated 

data from the Inorganic Crystal Structure Database (ICSD) and experimental data 

to combine a model-agnostic and physics-informed data augmentation strategy 

with a supervised machine learning approach. The testing phase included 115 

samples with 3 dimensionalities and 7 classes. The algorithm achieved excellent 

accuracy. Furthermore, a high level of model interpretability is ensured by the 

CAM approach on an average pooling layer, which addresses the 

misclassification problem logically. To address the understanding part of model 

performance, (Ancona et al., 2018) propose a novel evaluation metric and 

perturbation-based attribution method to test the gradient attribution methods on 

different datasets of texts and images through classification methods. 

Back to medical fields and computational pathologies, this paper (Tosun 

et al., 2020) presents enabled applications in anatomic pathology workflow based 

on XAI mechanisms by recognizing the regions of interest providing an efficient 

and accurate diagnostic that promotes safety and reliability.  

(Spinner et al., 2020) researchers are presenting a new test and evaluation 

methodology of XAI methods using a time series that demonstrates the efficacy 

of SHAP techniques and robustness for all models where DeepLIFT, LRP, and 

saliency Maps are selective. In the field of cyber-physical systems, XAI is used 

to explain the performance of the system and the decision-making process. 

However, those methods lack applicability according to (Jha, 2022). As a result, 

the author proposes semantic technologies using contextual information, user 
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feedback, and visualization techniques based on knowledge graphs, for further 

understandability.  

In the energy utility field, ML technologies are used highly to improve the 

sales support systems' performance. Yet, customer relationship and cross-selling 

are key points that were not augmented enough compared to recommender 

systems and targeting for example.  

In that context, (Haag et al., 2022) consider the SHAP values the most 

relevant feature attribution method to generate more meaningful explanations for 

a cross-selling task. (Iliadou et al., 2022) propose a framework based on RNN 

and attention-based LSTM that provides comprehensive profiles for patients with 

hearing issues using various factors such as personal behaviour, environmental, 

and other factors that significantly improve patients' satisfaction and their quality 

of life as well as decrease the number of counselling sessions with the audiologist.  

In this master's dissertation on clinical decision support systems 

predictions, the author (Lourenço das Neves, 2020) proposes an explicative 

pipeline based on two architectures: interpretable KNN and black box classifier 

CNN explained by PSI, LIME, and SHAP techniques on a sample-based 

approach. Then the obtained model using performance decrease and Jaccard 

index resulted in promising findings.  

Another CAM-based approach was presented by (Zhang et al., 2022) by 

training a model on multi-input and multi-task to retrieve explanation faithfulness 

which has improved the user task performance and reached helpfulness as well, 

which can support a robust platform for applications with data biases. 

In (Spinner et al., 2020), The interactive framework incorporates steering 

and monitoring features together with an interactive XAI pipeline under a 

visualizer that uses explainable ML instantiated within the TensorBoard 

(TensorBoard | TensorFlow, 2019) toolkit environment. The proposed framework 

provides a well-informed machine-learning process that could open room for 

future integrated systems and extensions. 

DL models are not the only available options that can be used to train data 

and provide explainability, but tree-based ML techniques also provide 

interpretability (Pedretti et al., 2021), the proposed analog CAM aims to 

accelerate the model's inference. 

To improve the medical decision-making process which is already 

difficult to explain or interpret, (Eder et al., 2022) designed an algorithm that uses 
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MRI scans to predict the survival rate of individuals with brain tumours and 

implemented it on CNN architectures and SHAP technique to improve the 

explainability regardless of the accuracy.  

(Wäldchen et al., 2022) proposed an XAI method based on ANN 

architecture and SHAP technique as attribution methods help evaluate 

characteristic functions and measure each component’s importance according to 

the function’s output. The ECG waveforms have been successfully diagnosed and 

interpreted by the designed CNN-based XAI model, which uses gradient 

weighted class activation mapping (Grad-CAM) approach and electrocardiogram 

monitoring data (Taniguchi et al., 2021). Another interactive web application for 

facial analysis, based on the Grad-CAM approach and XAI, is designed to 

facilitate interaction with application users and provide clarification on the ML 

process and findings. 

(Lu et al., 2021) presented an innovative crowdsourcing technique for 

human-based evaluation inspired by the “peek-a-boom” game which provides 

quantitative performance measures for automated evaluation schemes. (Klein et 

al., 2022) proposed a formalization of interpretable ML along a sophisticated 

statistical process that renders an explained correlation as a medium towards 

interpreted models or post-training explanatory methods which reduce the gap 

between the correlation and the causation. XAI was used to mark, along with a 

visual interpretation, the association between each class of biomarkers and the 

likelihood of developing breast cancer. The findings helped in the development 

of precise treatment plans based on the Body Mass Index (BMI) and biomarker 

levels of the patient. (Idrees & Sohail, 2022) 

XAI was used to mark, along with a visual interpretation, the association 

between each class of biomarkers and the likelihood of developing breast cancer. 

The findings aid in the development of precise treatment plans based on the Body 

Mass Index (BMI) and biomarker levels of the patient. 

The extent to which the suggested qualities are, in fact, the most important 

factors that have contributed to a particular decision and how this may be 

measured with reliability are the two main areas of research that need more 

attention. 

To address the matter effectively, we've concluded that the explainability 

and interpretability of DL models are still in their early steps and need to have the 

light spot on to satisfy the need for answering the questions: “Why and How” 
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through a CNN-based explainable model using shapely values focused on 

features importance aspect which will be our target in our extension “Modified 

DenseNet2.0”.
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CHAPTER III 
 

Methodology 

 

This section explains the practical aspects of the research including dataset sources, 

image pre-processing techniques, and the Convolutional Neural Network (CNN) architecture 

used to train the most stable and reliable generated model “Modified DenseNet1.0” based on 

pre-trained DenseNet and evaluated by comparison to other baselines models such as 

VGGNet16, VGGNet19, and ResNet50. Also, it includes insights about our research approach 

and an evaluation of the model's performance for more credibility of the research. Finally, a 

sneak-peek introduction of the explainability extension of the output prediction generated by 

our upcoming “Modified DenseNet2.0”. 

Data Selection   

Both datasets used in the experiments below are downloaded from the Kaggle website. 

We have a small size dataset that is imbalanced as shown in the table below (Table 3), which 

will be named Dataset I (Figure 6), and a large size dataset that is balanced with an equal 

number of samples for both classes and will be named as Dataset II (Figure 7). Both datasets 

are composed of two classes “Yes” and “No” where class “Yes” represents the class with 

Tumorous brain MRI images and class “No” represents non-tumorous brain MRI images. 

Table 3  

Datasets content count. 

Class No Yes 

Dataset I  98 155 

Dataset II  1500 1500 

In the first part of our methodology, we will use both datasets to compare our model's 

performance across the two datasets during the training, validation, and testing phases. Then 

the most suitable dataset will be selected for the model evaluation compared to other baselines 

architectures.  
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Figure 6  

A sample of an MRI image from class no and class yes respectively, from the 

imbalanced dataset I. 

  

Figure 7  

A sample of an MRI image from class no and class yes respectively, from the 

balanced dataset II. 

  
  

Research Design  

The meticulous planning and preparation of the data and model architecture is critical 

to the performance of Deep Learning (DL) models. In this research, our research design passes 

by critical steps to optimize the model's performance, address data limitations, and ensure 

robustness. The key components of our research design include image pre-processing, data 

augmentation, choice of activation functions, regularization techniques, loss function selection, 

optimizer usage, and the adoption of transfer learning with DenseNets. 

Image Pre-processing 

We conducted feature scaling on both dataset I and dataset II, where we used image 

normalization and standardization, in order to enhance the performance of the training phase 

thereafter and satisfy our model's design requirements for input data. 
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For image standardization, we rescaled the brain images to have the same heights and 

widths as required by our model’s architecture which is 224x224.  

For image normalization, most image pixel values range between 0 and 255. However, 

inputs with huge values could disrupt or slow down the learning process which prompts us to 

divide all image values by the largest pixel value which is 255. 

 Data Augmentation  

 We used the data augmentation technique only with dataset I because of a lack of data. 

Data augmentation is a transformation method used to create several copies of the same image 

by applying changes to different parameters such as random shifting, flipping, rotating, and 

brightness changes. 

 Activation Functions  

 An activation function in a neural network defines the sum of the input weights and 

converts it into an output from one or more nodes in an output layer, also known as a hidden 

layer. ReLu is the same activation function that is typically used by hidden layers. Additionally, 

the output layer has a distinct activation function, in our case, it's the Softmax function. 

ReLu (Rectified Linear Unit) (1) is a linear function that, in the event that the input is 

positive, produces the value directly. Otherwise, it outputs 0. It falls in the range of 0 to +∞. 

σ (x) = {
0                 , 𝑥 < 0
max (0, 𝑥), 𝑥 ≥ 0  

                                             (1) 

Softmax (Softargmax) (2) is a multidimensional generalization of the logistic function 

that takes the form of a normalized exponential function. It has a range of 0 to 1. 

σ (𝑧) i = 
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑖𝑘
𝑗=1

                                                        (2) 

  Regularization  

  In neural networks, regularization techniques are used to prevent overfitting. As a 

result, it contributes to raising the trained model's accuracy so that it can make more consistent, 

trustworthy, and objective predictions when processing unseen data. 

During all our experiments on both datasets I and II, we used the regularization 

technique: Dropout, which is a technique that drops out or deactivates a precise probability of 

random neurons during the training phase which helps simplify the network and reduce its 

complexity which works on reducing the overfitting. We stress the importance of regularization 

as one of the strength points of our proposed model. 
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  Loss Function 

  In neural networks, the loss function is a measurement that evaluates how good the 

model at predicting an expected output is. The loss function chosen for all our experiments is 

the binary cross entropy (3) as we are treating a binary classification matter. Binary Cross 

Entropy finds a difference of either 0 or 1 between each anticipated probability and the actual 

class output. Next, depending on the difference between the actual and expected values, it 

computes the score that penalizes the probability. 

𝐿𝑜𝑠𝑠(𝑦, 𝑧) = {
𝑧 − 𝑧𝑦 + log (1 + 𝑒−𝑧), 𝑧 ≥ 0

−𝑧𝑦 + log(𝑒𝑧 + 1)        , 𝑧 < 0
                                    (3) 

During the model training phase, we employ optimizers to minimize the loss function 

and update the weights of the neurons for each iteration. The neural network's weights and 

learning rate are two examples of the parameters that these algorithms or functions change in 

order to lower loss and increase accuracy. In our case, Adam Optimizer is utilized. It is a hybrid 

of the Root Mean Square Propagation (RMSProp) and Adaptive Gradient Algorithm 

(AdaGrad) gradient descent techniques. To specifically enhance the performance of computer 

vision issues, both approaches retain a per-parameter learning rate. Adam optimizers are largely 

famous as the best handlers of medical images (Hassan et al., 2022). 

 Transfer Learning  

 In order to avoid having to train the model from start, we will now employ the transfer 

learning technique. Within the ML field, transfer learning constitutes a whole research problem. 

First, a source model that is comparable to the target domain must be chosen, and it must then 

be modified to fit the target model. To put it another way, it's leveraging a previously trained 

model as a springboard to help our model complete a new task. We can achieve faster results 

and better performance with this method than if we trained our model from start. In order to 

attain good performance, raw modelling is computationally expensive and needs a large amount 

of data. As a result, it is preferable to use pre-trained models such as ImageNet, AlexNet, 

VGGNet, ResNet, DenseNet, and Inception that have the basis of transfer learning and know 

how to perform classification tasks. Moreover, they're computationally efficient and provide 

better results even when using small datasets which will be proven in the following 

experiments. In our research, we adopted Densely Connected Convolutional Networks 

(DenseNets) for their connectivity feature as mentioned in the state of the art (See Figure 8). 

 

 

 



 42 

Figure 8  

DenseNets architecture (Huang et al., 2016). 

 

DenseNets are regarded as one of the best vision model architectures available today. 

It is frequently used to carry out tasks involving detection and classification using transfer 

learning techniques. But when it comes to applying these kinds of models to determine the state 

of human health, accuracy and credibility is crucial especially when processing large datasets 

that can’t be checked manually. Moreover, we recommend an additional extension to be 

integrated in our model “Modified DenseNet1.0” through shapely values to provide the 

outcome prediction a plausible explanation “Modified DenseNet2.0”. 

During our experiments, we have used as mentioned previously two different datasets 

I and II to train our proposed model using transfer learning technique based on the DenseNet 

pre-trained model. 

The following flowchart (Figure 9) represents the diagram block of our DenseNet-based 

model trained on dataset I which is a small dataset of 2 classes (yes and no). The data 

augmentation strategy is essential since it improves our model's performance despite the 

scarcity of data. 
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Figure 9  

Diagram Block for Modified DenseNet1.0 trained on Dataset I. 

 

Our second flowchart (Figure 10) represents the diagram block of a DenseNet-based 

model trained on dataset II which is a larger dataset of 2 classes (yes and no) as well. 

Figure 10  

Diagram Block for Modified DenseNet trained on Dataset II. 

 

Proposed Modified DenseNet1.0 Classifier Architecture 

To build our proposed model, we utilized the DenseNet architecture without training 

the network from the beginning. We also excluded the output layers which allow us to add our 

layers. Then we added two hidden layers and one output layer. The first added hidden layer 

contains an average pooling function of 4 x 4 size, a flattening function, a dense layer with 64 

neurons, and a dropout function to avoid overfitting. The second hidden layer contains another 
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dense layer with 32 neurons and a dropout again but with a smaller parameter. An activation 

function of a rectified linear unit is used by both hidden layers. The last layer is dense layer 

with a layer of 2 neurons since we have a binary prediction of yes or no output using a softmax 

activation function.   

The model architecture was preserved while training Dataset II as both classes bear the 

same number of samples. However, Dataset I, as it bears imbalanced data, we needed to use an 

extra step which is data augmentation with one parameter from Keras image data generator 

which is rotation degree by 30 and filling mode to replace the void created after applying the 

rotation process. Our third flowchart (Figure 11) represents the final diagram block of the 

Modified DenseNet1.0 DenseNet-based model trained on dataset II and the upcoming 

explainable Modified DenseNet2.0. 

As our research consists of explaining the prediction that our previous model is 

outputting and by taking into consideration that the focus lays on feature importance to help 

estimate the data contribution value to the model's prediction, we suggest applying the shapely 

values technique to the model with the best evaluation result and overall best-obtained accuracy 

to hit two achievements at the same time, high testing accuracy and well-justified prediction. 

Explainable Modified DenseNet2.0 extension 

It is the model’s explanations for the predictions or decisions. These explanations may 

take various forms, including textual description, visualization, or highlighting important 

features in the input data that impacted the outcome. In our study, we have selected the SHAP 

(SHapely Additive eXplanations) technique. Cooperative game theory inspiring the idea of the 

shapely values (Von Neumann, J., & Morgenstern, O.,1944) have been applied in XAI to 

highlight each feature's contribution to the final prediction providing a fair way of distributing 

the credit for a prediction among the overall input features. 

 Shapely values  

 The optimal Shapley values in a coalitional game are the source of SHAP. Predictions 

are explained by seeing each aspect of an instance as a distinct “player” in a game, in which 

the prediction represents the overall prize. A technique to fairly divide this “payout” across the 

different attributes is provided by Shapley values (Molnar, 2023). Every feature in machine 

learning is given a significance value that indicates how much it contributes to the model's 

output. SHAP values illustrate the relative importance of each feature in relation to other 

features, the impact of each feature on each final prediction, and the dependence of the model 

on feature interaction (Datacamp, 2011). 
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A value function Val of players in S (12) defines the Shapley value. The payment 

contribution of a feature value, weighted and totalled over all potential feature value 

combinations, is its Shapley value: 

ϕj (val) = ∑
∣𝑆∣!⋅(𝑝−∣𝑆∣−1)!

p!S⊆{1,…,p}\{j}   (val (S∪ {j}) − val (S))               (12) 

Figure 11  

Diagram Block for Modified DenseNet1.0 implementation. 

 

Evaluation Metrics 

Evaluation metrics and criteria are tied parameters and crucial parts of any learning 

process regardless of the method or the algorithm used during the process. It is a required phase 

to evaluate our models and give credibility to the outcome. There are different metrics 

according to the task or the classification we want to perform. We list the most important ones 

to our research as follows:  
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Accuracy 

 The accuracy (4) measures the probability of correct predictions among the overall 

number of predictions. It is calculated as follows:  

𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑭𝑷+𝑻𝑵+𝑭𝑵
                                                 (4) 

 

Confusion Matrix 

A more thorough explanation of the correct incorrect classifications for each class can 

be found in a confusion matrix or confusion table. The ground truth labels are represented by 

the rows of the matrix, while the prediction is represented by the columns. 

Precision 

The precision metric (5) indicates the quality of truly positive predictions among the 

positive predictions. This is how it's calculated: 

𝑻𝑷

𝑻𝑷+𝑭𝑷
                                                             (5) 

 

Recall 

Commonly referred to as the true positive rate (6). It is widely used as a classification 

model performance metric that outcome the correctly classified positives. It is computed as 

follows:  

𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝑷+𝑭𝑷
                             (6) 

 

F1-Score 

Known also as the harmonic mean (7), it consists of recall and precision together. It is 

calculated as follows:  

𝟐

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏−𝟏+𝑹𝒆𝒄𝒂𝒍𝒍−𝟏
                                               (7) 

 

Sensitivity 

It is the model evaluation ability to predict truly positive cases of each class in the 

dataset (8). The following formula is used to compute it:   

𝑻𝑷

𝑻𝑷+𝑭𝑵
                                                                  (8) 

Specificity 

It is the evaluation ability of the model to predict truly negative cases of each class in 

the dataset (9). It is calculated as follows:   

𝑻𝑵

𝑭𝑷+𝑻𝑵
                                                                (9) 
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ROC AUC 

The ROC curve and AUC (10) are well-known concepts. An AUC (Area Under the 

Curve) or ROC (Receiver Operating Characteristic) curve is frequently used to illustrate this 

concept. A binary classification model's trade-off between true positive rate (sensitivity) and 

false positive rate (1 - specificity) at different thresholds is represented graphically by the ROC 

curve (Bishop, 2006). Regarding the threshold t, the inverse function of the false positive rate 

is denoted by FPR−1(t). 

 AUC = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑡))
1

0
𝑑𝑡 (10) 

The AUC for the ROC is usually calculated using trapezoidal rule (11) which sums up 

the areas of trapezoids formed by adjacent points on the ROC curve. It is calculated as follows:  

 AUC = ∑
1

2

𝑁−1
𝑖=1  (𝑥𝑖+1 − 𝑥𝑖). (𝑦𝑖+1 + 𝑦𝑖) (11) 

Where (xi, yi) are the coordinates of the ROC curve at point i and N is the total number 

of points on the curve. 

Comparative Study 

Using a CNN-based classification model and the transfer learning technique, we 

demonstrate that our suggested model has the optimum architecture, we have selected 3 

classification approaches: VGGNets, ResNets, and DenseNets with different number of layers, 

epochs and kept the same batch size that has proven efficacy for our selected Dataset during 

the dataset selection process. 

VGGNets 

VGG stands for Visual Geometry Group. It is a multi-layered, conventional deep CNN 

architecture. The VGGNet, a deep neural network, outperforms baselines on a wide range of 

tasks and datasets, going beyond ImageNet. Furthermore, it remains one of the most often used 

architectures for image recognition. In our study, we have included VGGNet16 and 

VGGNet19. VGGNet uses a very small 3 x 3 receptive filter layer through the entire network 

which supports the receptive area when it is large, along a stride of 1 pixel. In addition to these 

3 filter layers, there are also 3 non-linear activation layers which make the decision function 

more discriminative and increase the network ability to converge faster. The ReLu activation 

function is used to add non-linearity, which lessens overfitting during the training phase. 

VGGNets are considered one of the excellent vision model architectures in the present time. It 

is widely used to perform classification and detection tasks through transfer learning 

techniques. 
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ResNets 

ResNet stands for Residual Networks. They are a type of deep CNN architecture known 

for handling deeper architectures while addressing the vanishing gradient problem associated 

with training very deep networks (He, et al., 2015). Unlike traditional architectures, ResNets 

introduce the concept of residual learning, allowing for the training of extremely deep networks 

without facing issues such as vanishing gradients. This approach is beneficial in the context of 

deep networks. ResNets use residual blocks, which add, rather than transform, the input from 

the preceding layer to the output. This residual connection enables the network to learn the 

residual mapping and capture complex features. These residual connections enable the training 

of deep networks. ResNets architecture also includes the use of 3 x 3 convolutional filters 

throughout the network. Similar to VGGNets, this helps maintain a small receptive field and 

supports the learning of complex features. Additionally, ResNets introduces the concept of 

bottleneck layers, which involve the use of 1 x 1 convolutions to reduce the dimensionality 

before applying 3 x 3 filters. To introduce non-linearity, the activation function ReLU is used 

by ResNets to help solve the vanishing gradient issue and hasten the network's convergence 

during training. The combination of residual connections and ReLU activation contributes to 

ResNet's ability to build highly accurate and easily trainable deep networks. ResNet's 

effectiveness extends to tasks beyond image recognition, and it's frequently utilized as a base 

model for transfer learning methods along VGGNets, showcasing its versatility and robustness 

in different applications. 

DenseNets 

Densely Connected Convolutional Networks is most commonly referred to as 

DenseNet. Feature reuse problems, vanishing gradients, and parameter efficiency are the three 

main goals of this deep network design (Huang, et al., 2016). In contrast to conventional 

convolutional network designs, DenseNets architecture presents a novel connectivity pattern 

with the aim of resolving issues with feature reuse, vanishing gradients, and network depth. 

DenseNets are characterized by their dense connectivity topology, in which all layers are feed-

forward connected to all other layers. This connectivity results in L(L+1)/2 direct links in a 

network with L layers. DenseNet allows each layer to transfer its feature maps to all following 

layers and receive input from all previous layers, in contrast to typical architectures where 

information flows through layers sequentially.  

DenseNet achieves several benefits because of this dense connectivity architecture. 

Since information can go directly across layers, it reduces the issue of vanishing gradients. The 

model's representational efficiency is improved by this extensive connection, which also 
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promotes feature reuse. In addition, DenseNets uses fewer parameters than conventional 

architectures. 

DenseNet, like VGGNets and ResNets, uses 3 x 3 convolutional filters across the 

network. DenseNets also uses Batch Normalization (Ioffe & Szegedy, 2015) and ReLU 

activation functions to handle non-linearities. The combination of these aspects enhances the 

model's capacity to learn complicated patterns and features efficiently. 

DenseNets has outperformed other object recognition benchmark datasets, including 

CIFAR-10, CIFAR-100, SVHN, and ImageNet. The architecture's ability to handle diverse 

tasks extends its applicability beyond image classification to tasks like object detection and 

segmentation.  

The success of DenseNet has established it as a powerful and versatile architecture in 

the realm of DL. Its impact is not limited to image recognition, as DenseNets serve as a strong 

foundation for transfer learning techniques, showcasing its adaptability and effectiveness in 

different applications, we have adopted DenseNets to build our proposed model Modified 

DenseNet1.0. 
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CHAPTER IV 
 

Findings and Discussion 

 

The experiments and analysis along with model generation conducted during this 

study were run with Python programming language 3.11.7 using Visual Studio code 

editor 1.85.2 on a lab desktop at the R&D classroom provided by the Innovation Centre 

at Near East University with specifications of Core i9-9900K CPU, RAM capacity of 32 

GB and a 64-bit Windows operating system. 

 
Datasets Splitting Process 

 
Both datasets utilized in the experiments were randomly split with a ratio of 90% 

and10% for training and testing respectively, along with an independent random split of 

90% for validation to ensure the model's effectiveness.  

Training Process 
 

In this study, our Deep Learning (DL) model was trained over different metrics 

and evaluated on two distinct datasets to assess its performance. The evaluation process 

involved the utilization of three different architectures, namely VGGNet16, VGGNet19, 

and ResNet50. To comprehensively assess the model's learning capabilities, evaluation 

sessions were conducted for 50 epochs and subsequently extended to 100 epochs. This 

approach seeks to provide an understanding of the model's performance across various 

datasets and training durations, allowing for an in-depth evaluation of its robustness and 

generalization capabilities. 

An epoch in ML refers to a single training phase sweep across the whole training 

dataset. Training and Validation Loss refers to the evaluation of the model's performance 

throughout several epochs on the training and validation sets. 

The loss is the metric used to indicate how well the model is doing its job. This 

value is usually minimized. The validation loss shows how well the model generalizes to 

new, unseen data, whereas the training loss shows how well the model fits the training 

data. 

Dataset Evaluation 
 

Dataset I was trained over 50 then 100 epochs (See Figure 12 and Figure 13) with 

batch size equals to 8 as the size of the total number of samples was critical and the data 

augmentation technique is one of the solutions we suggest to maximize the model’s 

performance by adding a rotation parameter by 30 degrees which helped suppress the 

overfitting issue under the 100 epochs case. 
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Consideration should be given to the balance between improved performance on 

training and validation sets and the overfitting issue when deciding on the value of 

training epochs. Therefore, we have decided to train our proposed model on 50 and 100 

epochs on a larger dataset using regularization technique to prevent overfitting in such a 

longer training process expecting a better performance and that will be proven through 

the following experimentations. 

Dataset II was trained over 50 and 100 epochs and batch size equals to 27 as the 

size of the total number of samples was big enough to expect a considerably high possible 

accuracy without any signs of overfitting following 100 training steps as the following 

curves indicate so clearly in Figure 14 and Figure 15. 

Figure 12  

Dataset I evaluation on 50 epochs and batch size = 8. 
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Figure 13  

Dataset I evaluation on 100 epochs and batch size = 8. 

 

 

  

From an accuracy perspective, we read that our Modified DenseNet1.0, trained 

for 100 epochs, achieved a higher training accuracy (99.93%). This indicates that 

extending the training phase improved the model's performance on the training data. Our 

proposed model also achieves a higher validation accuracy (99.12% and 99.78) when 

evaluated on dataset I and dataset II respectively reinforcing the idea that additional 

training epochs have contributed to better generalization. While our model has achieved 

a high testing accuracy when evaluated on both datasets, it reached a perfect accuracy of 

100% when evaluated on dataset I using 50 epochs indicating crystal clear overfitting. 

The loss metric evaluation shows that model has the lowest training value when evaluated 

on dataset II over 100 epochs and the lowest validation loss evaluated on dataset I over 

100 epochs, indicating improved convergence during training. In fact, our model reaches 

the lowest testing loss when evaluated on dataset I over 100 epochs, and the highest 

training accuracy when evaluated on dataset II over 100 epochs. 
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In conclusion, the model trained over 100 epochs on a larger dataset (Dataset II) 

generally shows improved performance in terms of training accuracy and validation 

accuracy. 

Figure 14  

Dataset II evaluation on 50 epochs and batch size = 27. 
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Figure 15  

Dataset II evaluation on 100 epochs and batch size = 27. 

 
 

  

While paying attention to any signs of overfitting, especially as the model 

complexity increases with more epochs, we could state that our proposed model 

performed well on both datasets. Table 4 summarizes the results from the two 

experiments.  

Table 4  

Model Learning Evaluation I. 
Learning phase Training Validation Testing 

Epochs 50 

Evaluation Metrics % Accuracy Loss Accuracy Loss Accuracy Loss 

Modified 

DenseNet1.0 

Dataset I 97.80 04.70 97.81 04.70 100 01.35 

Dataset II 99.70 01.04 99.63 01.61 98.33 06.98 

Table 5  

Model Learning Evaluation II. 
Learning phase Training Validation Testing 

Epochs 100 

Evaluation Metrics % Accuracy Loss Accuracy Loss Accuracy Loss 

Modified 

DenseNet1.0 

Dataset I 99.56 0.98 99.12 01.42 96.15 04.16 

Dataset II 99.93 0.39 99.78 02.08 98.33 16.28 
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As a consequence, balanced data is an important key to more reliable and stable 

models in ML experiments which is proven by the different evaluation metrics (see Table 

5 to 6). 

Table 6  

Evaluation metrics on 50 epochs. 

Table 7  

Evaluation metrics on 100 epochs. 

  

Another key to improving the model's learning performance is the number of 

epochs or iterations and batch size that have proven effective with both datasets in 

reducing the loss ratio and suppressing the overfitting. The chosen epochs effectively 

address overfitting, guaranteeing that the model generalizes significantly well beyond the 

training data. Figure 15 implies that visual representations accompany these assertions, 

providing a graphical understanding of how the training and validation accuracy evolve 

over epochs. This insight not only enhances the interpretability of the model's learning 

trajectory but also aids in informed decision-making regarding computational resources 

and training time. 

After conducting experiments with different epoch values, it has been observed 

that using 50 to100 epochs is effective in achieving balance. We conducted extensive 

experiments to strengthen the foundation of our research and evaluate the performance of 

our Dense Network-based model. The model may become under-fitted if there are too 

few epochs, failing to capture the complexity of the data, or over-fitted if there are too 

many epochs, performing poorly on new data. The effectiveness of our model is evaluated 

against a variety of well-known classification architectures, such as ResNet50, 

 

Evaluation 

Metrics % 
Precision Recall F1-score Sensitivity Specificity AUC 

Dataset I II I II I II I II I II I II 

Class 

No 100 99 100 98 100 98 

100 99 100 98 100 100 

Yes 100 98 100 99 100 98 

 

Evaluation 

Metrics % 
Precision Recall F1-score Sensitivity Specificity AUC 

Dataset I II I II I II I II I II I II 

Class 

No 91 99 100 97 95 98 

94 98 100 97 100 99 

Yes 100 97 94 99 97 98 
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VGGNet16, and VGGNet19, taking into account the number of epochs, using Dataset II, 

and a batch size of 27.  

Experimentation Phase I 
 

Our primary objective is to compare and analyse the model's performance across 

these architectures, focusing on key metrics such as accuracy, loss, and other relevant 

evaluation metrics. The models underwent an initial training for a total of 50 epochs to 

capture complex patterns within the dataset.  

ResNet50 

During the learning phase, the effectiveness of the ResNet50 architecture was 

evaluated on dataset II, with an emphasis on training, validation, and testing sets. The 

results that were collected are included in the table that follows (Table 8) 

Table 8  

ResNet50 Performance Evaluation Summary I. 

Learning Phase Evaluation Metrics Value (%) 

Training Accuracy 81.74 

 Loss 37.53 

Validation Accuracy 82.07 

 Loss 37.15 

Testing Accuracy 82.33 

 Loss 39.06 

 

The results indicate a fine accuracy across all phases, showcasing a consistent 

trend between the training, validation, and testing sets. The training accuracy of 81.74% 

suggests that the model learned from the dataset. During the validation phase, the 

accuracy slightly improved to 82.07%, indicating good generalization to previously 

unseen data after 50 epochs. 
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Figure 16  

ResNet50 Performance Evaluation I. 

  

 

 

However, it is essential to note a marginal increase in loss during validation and 

testing, reaching 37.15% and 39.06%, respectively. This increase in loss suggests a 

certain level of overfitting, where the model performs well on the training set but finds it 

difficult to generalize to new data. A confusion matrix was used to undertake an in-depth 

evaluation of the ResNet50 model's performance, in addition to evaluating accuracy and 

loss metrics. 

For both classes (yes and no), the model achieves a balanced performance with 

similar precision, recall, and F1-score. The confusion matrix shows how the distribution 

of True Positives (126), True Negatives (121), False Positives (29), and False Negatives 

(24) reflects the trade-off between recall and precision values in accurately predicting 

images with and without tumours. The model's 90% AUC score indicates that it can 
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effectively discriminate between positive and negative classes and has a comparatively 

excellent discriminatory capacity. 

Even though the model's overall accuracy is 82%, its ability to accurately 

recognize “yes” positive image samples stands out in particular, as seen by its greater 

recall of 84%. However, there is still an opportunity for improvement in terms of 

lowering False Positives (29), which would help to increase the accuracy of the model. 

In conclusion, the ResNet50 architecture demonstrated promising accuracy after 

50 epochs, but the observed increase in loss prompts a careful consideration of potential 

overfitting issues. 

VGGNet16  

During the learning phase, the VGGNet16 architecture's performance on the 

dataset was evaluated, paying particular attention to the training, validation, and testing 

sets. Table 9 provides a summary of the outcomes that were obtained. 

Table 9  

VGGNet16 Performance Evaluation Summary I 

Learning Phase Evaluation Metrics Value (%) 

Training Accuracy 99.04 

 Loss 04.24 

Validation Accuracy 98.63 

 Loss 05.31 

Testing Accuracy 95.00 

 Loss 14.15 

 

The VGGNet16 model shows competitive performance as expected across 

various evaluation metrics, highlighting its capability to learn and generalize from the 

provided dataset. The model reaches a high accuracy of 99.04% in the training phase, 

indicating that it is adept at identifying intricate patterns in the training data. The low 

training loss of 04.24% further emphasizes the model's effectiveness in minimizing errors 

during the learning process.  
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Figure 17  

VGGNet16 Performance Evaluation I. 

  

 
 

With an accuracy of 98.63%, the model retains its resilience during the validation 

stage. Even though it was somewhat more than the training loss, the matching loss of 

05.31% nonetheless points to a successful generalization to never-before-seen validation 

data. 

Testing further demonstrated the model's strong generalization, as it obtained a 

95% accuracy rate with a 14.15% loss. A confusion matrix was used to undertake a 

thorough performance evaluation of the VGGNet16 model, in addition to assessing 

accuracy and loss metrics.  

The VGGNet16 model showcase a great performance with high precision, recall, 

and F1-score values for the two classes “no” and “yes”. The distribution of Truly 

Positives (143), Truly Negatives (142), False Positives (8), and False Negatives (7) is 

demonstrated in the confusion matrix. The model's ability to correctly identify MRI 
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images with and without tumours is demonstrated by its balanced precision and recall 

values, which are anticipated of a first- and second-place award winner. The overall 

accuracy of 95% underscores the model's proficiency in making correct predictions. 

These metrics analyses affirm the robustness of the VGGNet16 architecture in binary 

classification tasks. The high precision and recall values, along with a balanced F1-score, 

indicate how well the model can distinguish between positive and negative images. The 

AUC value of 99% indicates excellent discriminatory power, underlining the model's 

capacity to distinguish between classes. The evaluation metrics for VGGNet16 after 50 

epochs reveal a well-performing model with high accuracy and discriminatory ability. 

These results contribute to the model's reliability and suitability for binary classification 

tasks. Moreover, it makes it the top competitor of our Modified DenseNet1.0.  

VGGNet19 

During the learning phase, a detailed evaluation of the VGGNet19 architecture's 

performance on the dataset was conducted, with an emphasis on training, validation, and 

testing sets. Table 10 provides a summary of the outcomes that were acquired.  

Table 10  

VGGNet19 Performance Evaluation Summary I.   

Learning Phase Evaluation Metrics Value (%) 

Training Accuracy 97.37 

 Loss 07.29 

Validation Accuracy 97.15 

 Loss 07.95 

Testing Accuracy 94.00 

 Loss 16.35 

 

The VGGNet19 model also shows a great performance across various evaluation 

metrics, indicating its proficiency in capturing complex patterns within the dataset. The 

model achieves, during the training phase, a high accuracy level of 97.37%, suggesting 

successful learning from the training data. The corresponding low training loss of 07.29 

reflects the model's capability to minimize errors during the learning process. 
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Figure 18  

VGGNet19 Performance Evaluation I. 

  

 

 

The model maintains its robustness during the validation phase, with an accuracy 

of 97.15%. Despite a slight increase in loss to 07.95, the validation findings show how 

effectively the model generalizes to new, unknown data. However, during the testing 

phase, the accuracy slightly drops to 94%, and the loss increases to 16.35. This divergence 

between training and testing metrics indicates a potential issue, such as overfitting.  

In addition to evaluating accuracy and loss metrics, we conducted a scan for the 

VGGNet19 model's performance confusion matrix. The VGGNet19 model has good 

performance considering then achieved precision, recall, and F1-score values for both 

classes “yes” and “no”.  The balanced precision and recall scores show how the model 

can accurately identify MRI scans with and without tumours. An overall accuracy of 94% 

shows that the model is capable of producing accurate predictions. The observed 

confusion matrix highlights the model's ability to strike a balance between sensitivity and 

specificity, contributing to its effectiveness in binary classification. The AUC value of 
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99% also indicates excellent distinction ability, highlighting the model's ability to 

differentiate between the two classes.  

Modified DenseNet1.0 

During the learning phase, the Modified DenseNet1.0 architecture's performance 

on the dataset was carefully evaluated, with an emphasis on training, validation, and 

testing sets. Table 11 provides a summary of the outcomes that were collected.  

Table 11 Modified DenseNet1.0 Performance Evaluation Summary I. 

Learning Phase Evaluation Metrics Value (%) 

Training Accuracy 99.70 

 Loss 01.04 

Validation Accuracy 99.63 

 Loss 01.61 

Testing Accuracy 98.33 

 Loss 06.98 

 

Our Modified DenseNet1.0 model exhibits remarkable performance across all 

evaluation metrics, underscoring its proficiency in learning complex patterns within the 

dataset. The achieved accuracy during training is an impressive 99.70%, suggesting that 

the model has successfully captured intricate features and nuances present in the training 

data without any overfitting signs and reducing testing loss compared to other baseline 

models’ performance. 

Figure 19  

Modified DenseNet1.0 Performance Evaluation I. 
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Despite a comparatively lower testing loss of 06.98, it is essential to contextualize 

these values within the specific requirements of the application. In certain real-world 

scenarios, the achieved accuracy may be considered outstanding, and the observed loss 

might be acceptable depending on the consequences of misclassifications. 

Our proposed Modified DenseNet1.0 model demonstrates exceptional 

performance, as indicated by the high precision value, recall, and F1 score for the two 

classes “no” and “yes”. The confusion matrix also emphasizes the model's capacity to 

correctly classify MRI images with and without tumours. The precision values for both 

classes are remarkable. With a precision of 99% for “no” and 97% for “yes” the model 

exhibits a high accuracy in correctly identifying MRI images belonging to each class. The 

recall values are also impressive, reflecting the model's ability to capture a significant 

proportion of true positive images. With recall values of 97% for class “no” and 99% for 

class “yes” the model effectively minimizes false negatives.   

The balanced F1-scores of 98% for both classes emphasize the model's 

equilibrium between precision and recall, showcasing its robustness in making accurate 

predictions. The 98% overall accuracy shows how accurate the model is in classifying the 

entire dataset. The model's performance is comprehensively outlined in the confusion 

matrix. The program correctly classified 146 photos as “non-Tumorous” and 149 images 

as “Tumorous” demonstrating its remarkable prediction ability. The correctness of the 

model is further demonstrated by the low values of (1) and (4) False Negatives.  

In summary, the Modified DenseNet1.0 model excels in its ability to distinguish 

between MRI images with and without tumours. The high precision, recall, and F1-score, 
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coupled with the balanced confusion matrix, exhibit the model as a highly reliable and 

effective tool for sensitive binary classification tasks. These results suggest that the 

Modified DenseNet1.0 model is well-suited for practical applications in medical image 

analysis. 

Tables 12 and 13 provide a complete summary of our experiment findings and a 

detailed comparison of the CNN model's performance on various classification 

approaches.  

Table 12  

Selected Baseline Models Learning Evaluation. 
Learning Phase Training Validation Testing 

Epochs = 50  

Evaluation  

Metrics % 
Accuracy Loss Accuracy Loss Accuracy Loss 

 ResNet50 81.74 37.53 82.07 37.15 82.33 39.06 

Classification 

Architectures 

VGGNet19 97.37 07.29 97.15 07.95 94 16.35 

VGGNet16 99.04 04.24 98.63 05.31 95 14.15 

Modified 

DenseNet1.0 
99.70 01.04 99.63 01.61 98.33 06.98 

 

Table 13  

Selected Baseline Models Evaluation metrics on 50 epochs. 

Evaluation Metrics % 

Epochs = 50 

Class Precision Recall 
F1-

score 
Sensitivity Specificity AUC 

 

C
lassificatio

n
  

A
rch

itectu
res 

VGGNet16 
Yes 95 95 95 

95.33 94.67 99 
No 95 95 95 

VGGNet19 
Yes 92 96 94 

96 92 99 
No 96 92 94 

ResNet50 
Yes 81 84 83 

84 80.67 90 
No 83 81 82 

Modified 

DenseNet1.0 

Yes 98 99 98 

98.67 98 100 
No 99 98 98 

In the initial phase of experimentation, we conducted training sessions with 50 

epochs, followed by a subsequent set of experiments extending the training duration to 

100 epochs. This two-step approach allows for a comprehensive exploration of model 

performance across varying epoch intervals, providing insights into the impact of 

extended training on classification accuracy and loss and other evaluation metrics. 
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Experimentation Phase II 
 

To serve the same objective as mentioned in the experimentation Phase I, the 

models underwent training for a total of 100 epochs to capture complex patterns within 

the dataset and improve the performance of our proposed model compared to other 

models’ architectures in the state-of-art over a prolonged training session approach. 

ResNet50 

In the extended learning phase with 100 epochs, the ResNet50 architecture 

showcased consistent performance. Table 14 provides a summary of the outcomes that 

were collected.  

Table 14  

ResNet50 Performance Evaluation Summary II 

Learning Phase Evaluation Metrics Value (%) 

Training Accuracy 88.15 

 Loss 30.85 

Validation Accuracy 88.41 

 Loss 30.78 

Testing Accuracy 87.33 

 Loss 33.66 

 

The training accuracy reached 88.15%, with a corresponding loss of 30.85. During 

validation, the accuracy further improved to 88.41%, accompanied by a slightly reduced 

loss of 30.78.  

Figure 20  

ResNet50 Performance Evaluation II. 
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The model demonstrated a fine robustness on the testing set, achieving an 

accuracy of 87.33%, albeit with a slightly increased loss of 33.66. In addition to assessing 

accuracy and loss metrics, a confusion matrix was used to provide an in-depth evaluation 

of the ResNet50 model's performance (See Figure 20). 

VGGNet16  

In the extended learning phase of 100 epochs, the VGGNet16 architecture 

demonstrated a better training performance. The table that follows (Table 15) provides 

an overview of the outcomes that were achieved.  

Table 15  

VGGNet16 Performance Evaluation Summary II. 

Learning Phase Evaluation Metrics Value (%) 

Training Accuracy 99.18 

 Loss 02.10 

Validation Accuracy 98.56 

 Loss 04.25 

Testing Accuracy 94.33 

 Loss 20.60 

 

During the training phase, the VGGNet16 hits an accuracy of 99.18% and a low 

loss of 02.10. While maintaining a high validation accuracy of 98.56%, the model 

exhibited a slight increase in validation loss to 04.25, indicating robust generalization 

capabilities. However, during testing, the accuracy slightly decreased to 94.33%, 

accompanied by an elevated loss of 20.60. In addition to assessing accuracy and loss 

metrics, a confusion matrix was used to undertake an in-depth evaluation of the 

VGGNet16 model's performance (See Figure 21).   
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Figure 21  

VGGNet16 Performance Evaluation II.     

  

 
 

VGGNet19 

In the extended learning phase of 100 epochs, the VGGNet19 architecture shows 

a higher training performance. The table below (Table 16) provides an overview of the 

outcomes that were achieved.  

Table 16  

VGG19 Performance Evaluation Summary II. 

Learning Phase Evaluation Metrics Value (%) 

Training Accuracy 98.93 

 Loss 04.95 

Validation Accuracy 98.67 

 Loss 05.59 

Testing Accuracy 95.67 
 Loss 11.80 

The model learnt effectively from the training data, as evidenced by a high 

training accuracy of 98.93%. On the training set, the model's predictions appear to be 
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reasonably confident, based on the training loss of 04.95%. Although it is not as high as 

the training accuracy, the validation accuracy is still rather good at 98.67%. The model 

shows good generalization to previously encountered data, as seen by the validation loss 

value of 05.59%, which is consistent with the training loss. The testing accuracy is lower 

than the training and validation accuracies, at 95.67%. The testing loss of 11.80 is 

significantly lower than the testing loss of other baseline models, although it is larger than 

the training and validation losses.  In addition to assessing accuracy and loss metrics, a 

comprehensive evaluation of the VGGNet19 model's performance was conducted using 

a confusion matrix (See Figure 22).  

Figure 22  

VGGNet19 Performance Evaluation II. 
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Modified DenseNet1.0 

In the extended learning phase with 100 epochs, the Modified DenseNet1.0 

architecture showcased remarkable performance across training, validation, and testing 

sets (See Table 17). 

Table 17  

Modified DenseNet1.0 Performance Evaluation Summary II.   

Learning Phase Evaluation Metrics Value (%) 

Training Accuracy 99.93 

 Loss 0.39 

Validation Accuracy 99.78 

 Loss 02.08 

Testing Accuracy 98.33 

 Loss 16.28 

Modified DenseNet1.0, our proposed model, demonstrates exceptional 

performance across various evaluation metrics. Our model achieves an outstanding 

training accuracy of 99.93% and a low loss of 0.39, exhibiting how well it learns from 

the training batch of data. Modified DenseNet1.0 maintains a high accuracy of 99.78% 

during the validation phase, closely aligning with the training performance (See Figure 

23), and a low loss of 02.08%, suggesting robust generalization to unseen data. The 

testing phase further validates the model's capabilities with a remarkable accuracy of 

98.33%, although accompanied by a slightly high loss value of 16.28. 

Figure 23  

Modified DenseNet1.0 Performance Evaluation II. 
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This overall performance underscores the effectiveness of Modified DenseNet1.0 

in achieving accurate classifications and generalizing well to new, independent datasets, 

making it a promising model for the targeted task. Continued monitoring and future 

adjustments such as advanced image processing and ensemble learning will surely 

enhance its performance. 

The model performs outstandingly, according to the evaluation findings based on 

precision, recall, and F1-score. With a 98% overall accuracy rate, the model successfully 

distinguished between images that had been classified as tumorous and those that were 

not. Consistently outstanding precision and recall levels point to a well-balanced model. 

The model achieves 99% precision and recall for non-tumorous images and 97% 

precision and 99% recall for the tumorous ones. The F1-score value of 98% for both 

classes, which combines recall and precision, shows our exceptional model's efficacy. 

There are just 4 erroneous positives and 1 false negative in the confusion matrix, which 

shows how rarely the model misclassifies data. These findings collectively imply that the 

model does a very good job of correctly classifying images. Overall, these results suggest 

that the model performs exceptionally well in precisely recognizing images of both 

classes, making it a robust solution for the given task.  

Tables 18 and 19 provide a thorough summary of the second phase of experiment 

findings and a comparative analysis of the CNN model's performance on various 

classification approaches. 
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Table 18  

Selected Baseline Models Learning Evaluation II 
Learning phase Training Validation Testing 

Epochs=100  

Evaluation  

Metrics % 
Accuracy Loss Accuracy Loss Accuracy Loss 

 ResNet50 88.15 30.85 88.41 30.78 87.33 33.66 

Classification 

Architectures 

VGGNet19 98.93 04.95 98.67 05.59 95.67 11.80 

VGGNet16 99.18 02.10 98.56 04.25 94.33 20.60 

Modified 

DenseNet1.0 
99.93 0.39 99.78 02.08 98.33 16.28 

Table 19  

Selected Baseline Models Evaluation metrics on 100 epochs.      
Evaluation Metrics %  Class Precision Recall F1-score Sensitivity Specificity AUC 

Epochs=100        

C
lassificatio

n
 

A
rch

itectu
res 

VGGNET16 
Yes 95 94 94 

94 94.67 99 
No 94 95 94 

VGGNET19 
Yes 94 98 96 

98 93.33 99 
No 98 93 96 

ResNet50 
Yes 90 84 87 

84 90.67 94 
No 85 91 88 

Modified 

DenseNet1.0 

Yes 97 99 98 
99.33 97.33 99 

No 99 97 98 

 

Testing Process 

We tested the obtained Model versions on unseen data which is an MRI Image of 

the brain that has no Tumour with the indication of the probability percentage of a 

Tumour's existence or non-existence. We got the following results presented in Figure 

24. 
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Figure 24  

One-Simple prediction on unseen data using targeted images. 

  

We have also run a group test of 15 samples and we have obtained a very 

satisfying results compared to other baseline models tested on the same group test. 

Figure 25  

15-Simples predictions on unseen data using testing data [:15] 
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Figure 26  

15-Simples predictions on unseen data using testing data [Random] 

 
 

We have then run a group test of 20 samples and we have obtained a very 

satisfying results compared to other baseline models tested on the same group test. 
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Figure 27  

20-Simples predictions on unseen data using testing data [:20] 
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Figure 28  

20-Simples predictions on unseen data using testing data [Random] 
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Explainability Process  

Based on these results, we have decided to carry on our research utilizing mainly 

the results obtained from Modified DenseNet1.0 and adding explainability to it using the 

Shapely values technique paving the road towards our upcoming version Modified 

DenseNet2.0. ML models are powerful but hard to interpret. However, SHAP values are 

a promising tool to help understand how the model features impact predictions. 

The graphs of SHAP values provide essential details about how comprehensible 

the predictions made by our model are. These visuals highlight how every pixel in the 

input MRI image contributes to the final prediction produced by our model, “Modified 

DenseNet1.0”. We have generated an initial demonstration of what to expect from 

shapely value-based explanation for our model's prediction testing on tumorous and non-

tumorous brain MRI images (See Figures 29 to 32) with two focused areas: Shapely 

values and brain-focused Image plots for more visual explainability. The graphs that 

follow show how each feature contributes to the overall prediction obtained by testing an 

unseen data input to our ongoing under development “Modified DenseNet2.0”. 

Figure 29  

Non-Tumorous Shapely Values-focused Image Plot. 

 

Brain-focused Image Plots provide an overlay of the Shapley values on the 

original MRI image. This combined result allows for a direct visual correlation between 

the image features and their respective Shapley values. Areas with more intense 

coloration signify regions with greater influence on the model's decision. This graph 

serves as a comprehensive representation, aiding in the identification of anatomical 

structures or abnormalities that contribute significantly to the predictive outcome. 
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Figure 30  

Non-Tumorous Brain-focused Image Plot. 

 

Figure 31  

Tumorous Shapely Values-focused Image Plot. 

 

 
Shapely Values-focused Image Plots illustrate the individual pixel contributions 

to the model's prediction. Each pixel's Shapley value is depicted, representing its impact 

on the prediction. Areas with higher absolute Shapley values suggest a greater influence 

on the model's decision. Interpretation of this graph involves scrutinizing regions where 

Shapley values peak or trough, offering an explainability of the image features most 

involved in the model's decision-making process. 
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Figure 32  

Tumorous Brain-focused Image Plot. 

 

Model deployment  

As part of our model’s performance demonstration, we have deployed Modified 

DenseNet1.0 to the health web application run by Near East University Health AI-IoT 

platform. 

Once we load the Health AI-IoT application and login successfully, we click on 

“Image Diagnosis” from the dashboard. Next, we will get various options to check. We 

select “Brain Cancer” button. Then, we get the first web page that will allow the user to 

input their MRI image through a file browser feature (See Figure 33). The next step is to 

click on “Detect Tumor” button (See Figure 34). 
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Figure 33  

Uploading Images through files browser. 

 

Figure 34  

“Detect Tumor” Button. 

 

 

Once the input image is uploaded to the system, we press on “Detect Tumor” 

button and wait for the results (See Figure 35 and Figure 36). 
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Figure 35  

Image uploaded through files browser. 
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Figure 36  

Waiting for Tumour Detection results. 

 

 

The results will be out in few seconds, as demonstrated in the following figures 

(See Figure 37 and Figure 38). 

Figure 37 demonstrates a prediction test conducted over unseen MRI image input 

by the user. The output shows detection of Tumour in the MRI image with a confidence 

probability of 100%. 
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Figure 37  

Tumour Detection results. 

 

 

Figure 38 demonstrates a prediction test conducted over another unseen MRI 

image input by the user. The output shows no detection of Tumour in the MRI image with 

a confidence probability of 100% as well. 
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Figure 38  

No-Tumor Detection results. 
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CHAPTER V 

Discussion 

Recently, several models, algorithms, and frameworks were presented to conduct 

different types of classification, binary, and multiple classes. The proposed architecture 

AlexNet achieved an accuracy of 80% whereas GoogleNet achieved a slightly higher 

accuracy of 86%, coming to VGGNet16 which has achieved 86.1 %. DenseNets utilized 

in our research reported an approximate training accuracy of 94.37% on the CIFAR-100 

dataset and 97.05% on the CIFAR-10. 

Using medical MRI images in our experiment and testing on two different datasets 

one that is balanced and small in size, and the other one is imbalanced and large we can 

confidently conclude that data augmentation is an effective solution when it comes to 

covering lack of data issue. It was sufficient to enhance the accuracy of our model 

reaching 99.56% with the first dataset trained on 100 epochs. (See Table 4 and Table 5).  

We used the second dataset excluding data augmentation due to data sufficiency 

and trained the proposed model Modified DenseNet1.0, achieving 99.93% accuracy 

which we believe provided reliable and stable results based on the predictions mentioned 

previously and the confusion matrix results that surpassed the other baseline models’ out 

noticeably on an overall observation regardless the high accuracy showcased by a first-

class winner.  

We stress on our model’s output that achieved the best training accuracy trained 

on 100 epochs and the best testing loss accuracy trained on 50 epochs. In fact, we examine 

the intricate interplay between training and testing epochs in our model development. The 

achievement of optimal training accuracy after 100 epochs underscores the model's 

adeptness at assimilating complex patterns within the training data, demonstrating its 

proficiency through iterative learning cycles. The strategic decision to conclude training 

at this juncture aligns with the goal of ensuring a comprehensive grasp of the training 

dataset's complexity. Simultaneously, the realization of optimal testing loss accuracy after 

50 epochs highlights the model's capabilities in generalizing to new, unseen data, 

reflecting its ability to recognize unseen data effectively. This dualistic strategy, 

combining extensive learning from the training dataset and judicious evaluation on a 

distinct dataset, enhances the model's overall efficacy and adaptability. The nuanced 

choice of different epoch counts for training and testing serves as a deliberate measure to 

supress the risk of overfitting, achieving in a well-balanced model capable of both 

precision and generalization. 
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Figure 39  

Training accuracy comparison of Modified DenseNet1.0 and other baseline models, 

Epochs=100. 

 

Figure 40  

Training loss comparison of Modified DenseNet1.0 and other baseline models, 

Epochs=100. 
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Figure 41  

Training accuracy comparison of Modified DenseNet1.0 and other baseline models, 

Epochs=50. 

 

Figure 42  

Training loss comparison of Modified DenseNet1.0 and other baseline models, 

Epochs=50. 

 

For more clarity and interpretability, we introduce our upcoming explained model 

“Modified DenseNet2.0” trained on 3000 samples of pre-processed MRI images of 

tumorous and non-tumorous brain states using DenseNets and shapely values for 

explainability and visual explanations. The second objective of this research is to 

demonstrate to healthcare professionals how the model we recommend could be 

explained while retaining high accuracy. Consequently, the implemented classifier 

yielded an exceptional accuracy of 99.93% in contrast to the most recent approaches, as 

indicated in the subsequent table (Table 20). 
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Table 20  

Comparison of our proposed model and other Deep Learning-based models in 

previous studies. 
Author Method Accuracy 

Ge et al., 2020. GAN 88.82 % 

Vimal Kurup et al., 2020 PNN-CNN 90% 

Dehkordi et al., 2022 CNN 97.4% 

Haq et al., 2022 CNN 97.96% 

Zeineldin et al., 2022 ResNet-50 98.62 % 

Our proposed model 

Modified DenseNet1.0 
DenseNets 99.93 % 

 

Anomalies or abnormalities in the brain that significantly influence the model's 

prediction are likely to manifest as pronounced peaks or troughs in the shapely values-

focused graph (See Figures 29 and 31). Whereas the brain-focused graph offers a more 

intuitive visualization, allowing healthcare professionals to directly relate model 

predictions to specific regions of interest within the brain (See Figures 30 and 32). 

It is essential to acknowledge that while SHAP values provide valuable 

explainability, they are not exhaustive in capturing the full complexity of neural network 

decision-making. Variability in interpretations may arise, and the model's predictions 

should always be cross-referenced with clinical expertise for comprehensive diagnosis. 

In summary, the SHAP values graphs aim to strengthen the transparency of 

classification model's decision-making process, offering a nuanced understanding of the 

features influencing predictions. These visualizations not only provide insights for model 

developers but also hold the potential to facilitate communication between AI 

practitioners and healthcare professionals in the context of brain Tumour classifications 

and predictions. 
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CHAPTER VI 
 

Conclusion and Recommendations 

 

Our work embraces a long term journey to explore the depths of eXplainable Artificial 

Intelligence (XAI) for brain tumour related classification studies, utilizing a deep transfer 

learning approach based on the DenseNets’ architecture. Our primary objective was to develop 

a model capable of conducting a binary classification task applied on brain tumour images 

obtained from MRI scans, emphasizing transparency and credibility in the decision-making 

process through in-depth analysis. Leveraging Shapley values for explainability, our objective 

is to establish a connection between the Deep Learning (DL) model's mysterious core and the 

requirement for trust, credibility and reliability in its predictions, especially in the context of 

medical diagnosis. 

Our proposed model demonstrated remarkable performance in binary classification, 

achieving an accuracy of 99.70% and 99.93% on two distinct epochs values (50 and 100) with 

varying characteristics. Notably, the model's stability and reliability were evaluated employing 

several performance measures, including f1-score, recall, specificity, sensitivity, and accuracy, 

and the Area Under the Receiver Operating Characteristic Curve. The superior performance on 

a balanced dataset (dataset II) underscored the importance of data balance in training robust 

and reliable models for medical image classification tasks. 

The integration of Shapley's values into our model allows for a complete awareness of 

the process of making decisions. By showcasing the involvement of each feature to the model's 

predictions, we aim to enhance transparency and build trust in the model's outcomes. The 

visualized explanations provided by Shapley values not only serve as means of interpretation 

but also contribute to the legitimacy of our model in the medical industry. 

Considering the observed advantages of our proposed model Modified DenseNet1.0 on 

dataset II, which boasts a balanced composition, we propose its deployment for real-world tests 

and live usage. Cloud platforms such as Microsoft Azure, Heroku, IBM Cloud, and EC2 

Amazon Web Services offer convenient avenues for deploying ML models. This would 

facilitate users worldwide in testing our model by simply uploading a brain image to a server, 

thereby expanding the accessibility and impact of our research. It is essential to outline 

potential avenues for future research. Expanding the dataset diversity, investigating the model's 

generalizability to different populations, and exploring explainability and interpretability 

techniques are avenues that require exploration (Modified DenseNet2.0). In fact, scenarios 

where individual users have to trust and comprehend the decisions made by AI systems, and 
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when the stakes are high, are where XAI really shines. This is especially relevant in fields like 

healthcare, finance, criminal justice, and any domain where AI systems impact human lives 

and well-being (Benyamina et al., 2022). Moreover, continuous collaboration with medical 

professionals and the integration of evolving technologies will contribute to the ongoing 

enhancement of AI-assisted medical diagnosis systems to address difficulties related to manual 

evaluation of multiple MRI images generated in a clinic, a hospital, a major medical centre, a 

teaching hospital, a tertiary care hospital, academic medical centres and oncology centres. 

Consequently, the need for more accurate computer-based tumour detection techniques, 

notably if we are dealing with IoT health care systems. In spite of that, it is critical to recognize 

the limitations and moral consideration related to deploying AI models in the medical domain. 

While our model demonstrates high accuracy and robustness, it is imperative to emphasize that 

it should never substitute professional medical advice or diagnosis. A collaborative approach, 

wherein AI serves as a decision-making aid for healthcare professionals, is the ideal scenario. 

The significance of continual oversight by medical specialists cannot be overstated, ensuring 

that the AI system augments human capabilities rather than replacing them. 

As we conclude this thesis, it is essential to outline potential avenues for future research. 

Expanding the dataset diversity, investigating the model's generalizability to different 

populations, and exploring additional explainability techniques are avenues that warrant 

exploration. Moreover, continuous collaboration with medical professionals and the integration 

of evolving technologies will contribute to the ongoing enhancement of AI-assisted medical 

diagnosis systems.  

Our study has successfully trained a densely connected DL model for binary brain 

tumour classification, showcasing the efficacy of the DenseNet-based transfer learning 

approach. The incorporation of explainability through Shapley values adds a layer of 

transparency, addressing a critical aspect in the deployment of AI models in medical settings 

and Internet of Things accessible globally by pubic and professional users. While our findings 

are promising, they mark a stepping stone in the broader landscape of AI-assisted medical 

diagnosis, emphasizing the need for responsible integration and ongoing research.
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