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Abstract

In this paper, we prove Banach fixed point theorem in cone pentagonal metric spaces without assuming
the normality condition. Our results improve and extend recent known results.
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1. Introduction

In 2007, Long-Guang and Xian [6] introduced the concept of a cone metric space, they replaced set of real
numbers by an ordered Banach space and proved some fixed point theorems for contractive type conditions
in cone metric spaces. Later on many authors have (for e.g., [1, 5, 8]) proved some fixed point theorems for
different contractive types conditions in cone metric spaces.

Recently, Azam et al. [3] introduced the notion of cone rectangular metric space and proved Banach
contraction mapping principle in a cone rectangular metric space setting. In 2012, Rashwan and Saleh [7]
improve and extended the result of Azam et al. [3] by removing the normality condition.

Very recently, Garg and Agarwal [4] introduced the notion of cone pentagonal metric space and proved
Banach contraction mapping principle in a cone pentagonal metric space setting using the normality
condition.

Motivated by these results of [4, 7], it is our purpose in this paper to continue the study of fixed point
theorem in cone pentagonal metric space setting. Our results improve and extend the results of [4, 7].

2. Preliminaries

We present some definitions introduced in [2, 3, 4, 6, 7], which will be needed in the sequel.
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Definition 2.1. Let E be a real Banach space and P subset of E. P is called a cone if and only if:

(1) P is closed, nonempty, and P , {0}.
(2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P =⇒ ax + by ∈ P.
(3) x ∈ P and −x ∈ P =⇒ x = 0.

Definition 2.2. Given a cone P ⊆ E, we defined a partial ordering ≤ with respect to P by x ≤ y if and only
if y − x ∈ P. We shall write x < y to indicate that x ≤ y but x , y, while x � y will stand for y − x ∈ int(P),
where int(P) denotes the interior of P.

Definition 2.3. A cone P is called normal if there is a number k ≥ 1 such that for all x, y ∈ E, the inequality

0 ≤ x ≤ y =⇒ ‖x‖ ≤ k‖y‖. (1)

The least positive number k satisfying (1) is called the normal constant of P.

In this paper, we always suppose that E is a real Banach space and P is a cone in E with int(P) , ∅ and ≤ is
a partial ordering with respect to P.

Definition 2.4. Let X be a nonempty set. Suppose that the mapping ρ : X × X→ E satisfies:

(1) 0 < ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y.
(2) ρ(x, y) = ρ(y, x) for all x, y ∈ X.
(3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Then ρ is called a cone metric on X, and (X, ρ) is called a cone metric space.

Remark 2.5. The concept of a cone metric space is more general than that of a metric space, because each
metric space is a cone metric space where E = R and P = [0,∞) (e.g., see [6]).

Definition 2.6. Let X be a nonempty set. Suppose that the mapping ρ : X × X→ E satisfies:

(1) 0 < ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y.
(2) ρ(x, y) = ρ(y, x) for all x, y ∈ X.
(3) ρ(x, y) ≤ ρ(x,w)+ρ(w, z)+ρ(z, y) for all x, y, z ∈ X and for all distinct points w, z ∈ X−{x, y} [Rectangular

property].

Then ρ is called a cone rectangular metric on X, and (X, ρ) is called a cone rectangular metric space.

Remark 2.7. Every cone metric space is cone rectangular metric space. The converse is not necessarily true
(e.g., see [3]).

Definition 2.8. Let X be a non empty set. Suppose that the mapping d : X × X→ E satisfies:

(1) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x) for x, y ∈ X.
(3) d(x, y) = d(x, z)+d(z,w)+d(w,u)+d(u, y) for all x, y, z,w,u ∈ X and for all distinct points z,w,u,∈ X−{x, y}

[Pentagonal property].

Then d is called a cone Pentagonal metric on X, and (X, d) is called a cone Pentagonal metric space.

Remark 2.9. Every cone rectangular metric space and so cone metric space is cone pentagonal metric space.
The converse is not necessarily true (e.g., see [4]).

Definition 2.10. Let (X, d) be a cone pentagonal metric space. Let {xn} be a sequence in (X, d) and x ∈ X.
If for every c ∈ E with 0 � c there exist n0 ∈ N and that for all n > n0, d(xn, x) � c, then {xn} is said to be
convergent and {xn} converges to x, and x is the limit of {xn}. We denote this by limn→∞ xn = x or xn → x as
n→∞.
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Definition 2.11. If for every c ∈ E, with 0 � c there exist n0 ∈ N such that for all n > n0, d(xn, x) � c, then
{xn} is called Cauchy sequence in (X, d).

Definition 2.12. If every Cauchy sequence is convergent in (X, d), then (X, d) is called a complete cone
pentagonal metric space.

Definition 2.13. Let P be a cone defined as above and let Φ be the set of non decreasing continuous functions
ϕ : P→ P satisfying:

(1) 0 < ϕ(t) < t for all t ∈ P \ {0}.
(2) the series

∑
n≥0 ϕ

n(t) converge for all t ∈ P \ {0}.

From (1), we have ϕ(0) = 0, and from (2), we have limn→0 ϕn(t) = 0 for all t ∈ P \ {0}.

Lemma 2.14. Let (X, d) be a cone metric space with cone P not necessary to be normal. Then for a, c,u, v,w ∈ E,
we have:

(1) If a ≤ ha and h ∈ [0, 1), then a = 0.
(2) If 0 ≤ u� c for each 0� c, then u = 0.
(3) If u ≤ v and v� w, then u� w.

Now, we give the main result of our work which is a generalization of [3, 4] by omitting the assumption of
normality condition in their results.

3. Main Results

Theorem 3.1. Let (X, d) be a complete cone pentagonal metric space. Suppose the mapping S : X → X
satisfy the following:

d(Sx,Sy) ≤ ϕd(x, y), (2)

for all x, y ∈ X, where ϕ ∈ Φ. Then S has a unique fixed point in X.

Proof. Let x0 be an arbitrary point in X. Define a sequence {xn} in X such that

xn+1 = Sxn, for all n = 0, 1, 2, . . . .

We assume that xn , xn+1, for all n ∈N. Then, from (2), it follows that

d(xn, xn+1) = d(Sxn−1,Sxn)

≤ ϕ
(
d(xn−1, xn)

)
= d(Sxn−2,Sxn−1)

≤ ϕ2
(
d(xn−2, xn−1)

)
...

≤ ϕn
(
d(x0, x1)

)
. (3)

It again follows that

d(xn, xn+2) = d(Sxn−1,Sxn+1)

≤ ϕ
(
d(xn−1, xn+1)

)
=

(
d(Sxn−2,Sxn)

)
≤ ϕ2

(
d(xn−2, xn)

)
...

≤ ϕn
(
d(x0, x2)

)
. (4)
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It further follows that

d(xn, xn+3) = d(Sxn−1,Sxn+2)

≤ ϕ
(
d(xn−1, xn+2)

)
=

(
d(Sxn−2,Sxn+1)

)
≤ ϕ2

(
d(xn−2, xn+1)

)
...

≤ ϕn
(
d(x0, x3)

)
. (5)

Similarly, for k = 1, 2, 3, . . . , we get

d(xn, xn+3k+1) = ϕn
(
d(x0, x3k+1)

)
, (6)

d(xn, xn+3k+2) = ϕn
(
d(x0, x3k+2)

)
, (7)

d(xn, xn+3k+3) = ϕn
(
d(x0, x3k+3)

)
. (8)

By using (3) and pentagonal property, we have

d(x0, x4) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4)

≤ d(x0, x1) + ϕ
(
d(x0, x1)

)
+ ϕ2

(
d(x0, x1)

)
+ ϕ3

(
d(x0, x1)

)
≤

3∑
i=0

ϕi
(
d(x0, x1)

)
.

Similarly,

d(x0, x7) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4)
+ d(x4, x5) + d(x5, x6) + d(x6, x7)

≤ d(x0, x1) + ϕ
(
d(x0, x1)

)
+ ϕ2

(
d(x0, x1)

)
+ ϕ3

(
d(x0, x1)

)
+ ϕ4

(
d(x0, x1)

)
+ ϕ5

(
d(x0, x1)

)
+ ϕ6

(
d(x0, x1)

)
≤

6∑
i=0

ϕi
(
d(x0, x1)

)
.

Now by induction, we obtain for each k = 1, 2, 3, . . .

d(x0, x3k+1) ≤
3k∑
i=0

ϕi
(
d(x0, x1)

)
. (9)

Also, by using (3), (4), and pentagonal property, we have

d(x0, x5) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x5)

≤ d(x0, x1) + ϕ
(
d(x0, x1)

)
+ ϕ2

(
d(x0, x1)

)
+ ϕ3

(
d(x0, x2)

)
≤

2∑
i=0

ϕi
(
d(x0, x1)

)
+ ϕ3

(
d(x0, x2)

)
.
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Similarly,

d(x0, x8) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4)
+ d(x4, x5) + d(x5, x6) + d(x6, x8)

≤ d(x0, x1) + ϕ
(
d(x0, x1)

)
+ ϕ2

(
d(x0, x1)

)
+ ϕ3

(
d(x0, x1)

)
+ ϕ4

(
d(x0, x1)

)
+ ϕ5

(
d(x0, x1)

)
+ ϕ6

(
d(x0, x2)

)
≤

5∑
i=0

ϕi
(
d(x0, x1)

)
+ ϕ6

(
d(x0, x2)

)
.

By induction, we obtain for each k = 1, 2, 3, . . .

d(x0, x3k+2) ≤
3k−1∑
i=0

ϕi
(
d(x0, x1)

)
+ ϕ3k

(
d(x0, x2)

)
. (10)

Again, by using (3), (5), and pentagonal property, we have

d(x0, x6) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x6)

≤ d(x0, x1) + ϕ
(
d(x0, x1)

)
+ ϕ2

(
d(x0, x1)

)
+ ϕ3

(
d(x0, x3)

)
≤

2∑
i=0

ϕi
(
d(x0, x1)

)
+ ϕ3

(
d(x0, x3)

)
.

Similarly,

d(x0, x9) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4)
+ d(x4, x5) + d(x5, x6) + d(x6, x9)

≤ d(x0, x1) + ϕ
(
d(x0, x1)

)
+ ϕ2

(
d(x0, x1)

)
+ ϕ3

(
d(x0, x1)

)
+ ϕ4

(
d(x0, x1)

)
+ ϕ5

(
d(x0, x1)

)
+ ϕ6

(
d(x0, x3)

)
≤

5∑
i=0

ϕi
(
d(x0, x1)

)
+ ϕ6

(
d(x0, x3)

)
.

By induction, we obtain for each k = 1, 2, 3, . . .

d(x0, x3k+3) ≤
3k−1∑
i=0

ϕi
(
d(x0, x1)

)
+ ϕ3k

(
d(x0, x3)

)
. (11)

Using inequality (6) and (9) for k = 1, 2, 3, . . . , we have

d(xn, xn+3k+1) ≤ ϕn
(
d(x0, x3k+1)

)
≤ ϕn

3k∑
i=0

ϕi
(
d(x0, x1)

)
≤ ϕn

[ 3k∑
i=0

ϕi
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)]
≤ ϕn

[ ∞∑
i=0

ϕi
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)]
. (12)
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Similarly for k = 1, 2, 3, . . . , inequalities (7) and (10) implies that

d(xn, xn+3k+2) ≤ ϕn
(
d(x0, x3k+2)

)
≤ ϕn

[ 3k−1∑
i=0

ϕi
(
d(x0, x1)

)
+ ϕ3k

(
d(x0, x2)

)]
≤ ϕn

[ 3k−1∑
i=0

ϕi
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)
+ ϕ3k

(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)]
≤ ϕn

[ 3k∑
i=0

ϕi
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)]
≤ ϕn

[ ∞∑
i=0

ϕi
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)]
. (13)

Again for k = 1, 2, 3, . . . , inequalities (8) and (11) implies that

d(xn, xn+3k+3) ≤ ϕn
(
d(x0, x3k+3)

)
≤ ϕn

[ 3k−1∑
i=0

ϕi
(
d(x0, x1)

)
+ ϕ3k

(
d(x0, x3)

)]
≤ ϕn

[ 3k−1∑
i=0

ϕi
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)
+ ϕ3k

(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)]
≤ ϕn

[ 3k−1∑
i=0

ϕi
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)]
≤ ϕn

[ ∞∑
i=0

ϕi
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)]
. (14)

Thus, by inequality (12), (13), and (14) we have, for each m,

d(xn, xn+m) ≤ ϕn
[ ∞∑

i=0

ϕi
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)]
. (15)

Since
∑
∞

i=0 ϕ
i
(
d(x0, x1)+d(x0, x2)+d(x0, x3)

)
converges (by definition 2.13), where d(x0, x1)+d(x0, x2)+d(x0, x3) ∈

P \ {0}, and P is closed, then
∑
∞

i=0 ϕ
i
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)
∈ P \ {0}. Hence

lim
n→∞

ϕn
[ ∞∑

i=0

ϕi
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)]
= 0.

Then, for given c� 0, there is a natural number N1 such that

ϕn
[ ∞∑

i=0

ϕi
(
d(x0, x1) + d(x0, x2) + d(x0, x3)

)]
� c, ∀n ≥ N1. (16)
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Thus, from (15) and (16), we have

d(xn, xn+m)� c, for all n ≥ N1.

Therefore, {xn} is a Cauchy sequence in X. Since X is complete, there exists a point z ∈ X such that
limn→∞ xn = limn→∞ Sxn−1 = z as n→∞.

We show that Sz = z.Given c� 0,we choose a natural numbers N2,N3,N4 such that d(z, xn)� c
4 , ∀n ≥ N2,

d(xn+1, xn) � c
4 , ∀n ≥ N3, and d(xn−1, z) � c

4 , ∀n ≥ N4. Since xn , xm for n , m, therefore by pentagonal
property, we have

d(Sz, z) ≤ d(Sz,Sxn) + d(Sxn,Sxn−1) + d(Sxn−1,Sxn−2) + d(Sxn−2, z)

≤ ϕ
(
d(z, xn) + d(xn+1, xn) + d(xn, xn−1) + d(xn−1, z)

< d(z, xn) + d(xn+1, xn) + d(xn, xn−1) + d(xn−1, z). (17)

Hence, from (17),
d(Sz, z)�

c
4

+
c
4

+
c
4

+
c
4

= c, for all n ≥ N,

where N := max{N2,N3,N4}. Since c is arbitrary we have d(Sz, z) � c
m , ∀m ∈ N. Since c

m → 0 as m → ∞,
we conclude c

m − d(Sz, z)→ −d(Sz, z) as m→ ∞. Since P is closed, −d(Sz, z) ∈ P. Hence d(Sz, z) ∈ P ∩ −P. by
definition of cone we get that d(Sz, z) = 0, and so Sz = z. Therefore, S has a fixed point that is z in X.

Next we show that z is unique. For suppose z′ be another fixed point of S such that Sz′ = z′. Therefore,

d(z, z′) = d(Sz,Sz′) ≤ ϕ
(
d(z, z′)

)
< d(z, z′).

Hence z = z′. This completes the proof of the theorem.

Corollary 3.2. Let (X, d) be a complete cone pentagonal metric space. Suppose the mapping S : X → X
satisfy the following:

d(Smx,Smy) ≤ ϕd(x, y), (18)

for all x, y ∈ X, where ϕ ∈ Φ. Then S has a unique fixed point in X.

Proof. From Theorem 3.1, we conclude that Sm has a fixed point say z. Hence

Sz = S(Smz) = Sm+1z = Sm(Sz). (19)

Then Sz is also a fixed point to Sm. By uniqueness of z, we have Sz = z.

Corollary 3.3. (see [4])Let (X, d) be a complete cone pentagonal metric space. Suppose the mapping
S : X→ X satisfy the following:

d(Sx,Sy) ≤ λd(x, y), (20)

for all x, y ∈ X, where λ ∈ [0, 1). Then S has a unique fixed point in X.

Proof. Defineϕ : P→ P byϕ(t) = λt. Then it is clear thatϕ satisfies the conditions in definition 2.13. Hence
the results follows from Theorem 3.1.

Corollary 3.4. (see [7])Let (X, d) be a complete cone rectangular metric space. Suppose the mapping
S : X→ X satisfy the following:

d(Sx,Sy) ≤ ϕd(x, y), (21)

for all x, y ∈ X, where ϕ ∈ Φ. Then S has a unique fixed point in X.

Proof. This follows from the Remark 2.9 and Theorem 3.1.
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