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Abstract
Let E be a real q-uniformly smooth Banach space whose duality map is weakly

sequentially continuous and C be a nonempty, closed and convex subset of E. Let
{Ti}∞i=1 : C → E be a family of k-strict pseudocontractions for k ∈ (0, 1) such that⋂∞

i=1 F (Ti) �= ∅, f be a contraction with coefficient β ∈ (0, 1) and {λi}∞i=1 be a real
sequence in (0, 1) such that

∑∞
i=1 λi = 1. Let G : C → E be an η-strongly accretive

and L-Lipschitzian operator with L > 0, η > 0. Let {αn} and {βn} be sequences in
(0, 1) satisfying some conditions. For some positive real numbers γ, μ appropriately
chosen, let {xn} be a sequence defined by⎧⎪⎪⎨

⎪⎪⎩

x0 ∈ C arbitrarily chosen,

T βn = βnI + (1 − βn)
∑∞

i=1 λiTi,

xn+1 = αnγf(xn) + (I − αnμG)T βnxn, n ≥ 0.

Then, we prove that {xn} converges strongly to a common fixed point x∗ of the
countable family {Ti}∞i=1, which solves the variational inequality:

〈(γf − μG)x∗, jq(x − x∗)〉 ≤ 0, ∀x ∈
∞⋂
i=1

F (Ti).
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1 Introduction

Let E be a real Banach space and E∗ be the dual of E. For some real number q (1 < q <
∞), the generalized duality mapping Jq : E → 2E∗

is defined by

Jq(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖q, ‖x∗‖ = ‖x‖q−1

}
, ∀ x ∈ E, (1)

where 〈., .〉 denotes the duality pairing between elements of E and those of E∗. In par-
ticular, J = J2 is called the normalized duality mapping and Jq(x) = ‖x‖q−2J2(x) for
x �= 0. If E is a real Hilbert space, then J = I, where I is the identity mapping. It is
well known that if E is smooth, then Jq is single-valued, which is denoted by jq (see [16]).
The duality mapping Jq from a smooth Banach space E into E∗ is said to be weakly se-
quentially continuous generalized duality mapping if for all {xn} ⊂ E with xn ⇀ x implies
Jq(xn) ⇀∗ Jq(x).

Let C be a nonempty closed convex subset of E, and G : E → E be a nonlinear map.
Then, a variational inequality problem with respect to C and G is to find a point x∗ ∈ C
such that

〈Gx∗, jq(x − x∗)〉 ≥ 0, ∀x ∈ C and jq(x − x∗) ∈ Jq(x − x∗). (2)

We denotes by V I(G, C) the set of solutions of this variational inequality problem.
If E = H, a real Hilbert space, the variational inequality problem reduces to the

following: Find a point x∗ ∈ C such that

〈Gx∗, x − x∗〉 ≥ 0, ∀x ∈ C. (3)

A mapping T : E → E is said to be L-Lipschitzian if there exists L > 0 such that

‖Tx − Ty‖ ≤ L‖x − y‖, ∀x, y ∈ E. (4)

If L = 1, then T is called Nonexpansive and if 0 ≤ L < 1, T is called Contraction.
A point x ∈ E is called a fixed point of the map T if Tx = x. We denote by F (T ) the set
of all fixed points of the mapping T , that is

F (T ) = {x ∈ C : Tx = x}.
We assume that F (T ) �= ∅ in the sequel. It is well known that F (T ) above, is closed and
convex (see e.g. Goebel and Kirk [7]).

An Operator F : E → E is said to be Accretive if ∀x, y ∈ E, there exists jq(x − y) ∈
Jq(x − y) such that

〈Fx − Fy, jq(x − y)〉 ≥ 0. (5)

For some positive real numbers η, λ, the mapping F is said to be η-strongly accretive if
for any x, y ∈ E, there exists jq(x − y) ∈ Jq(x − y) such that

〈Fx − Fy, jq(x − y)〉 ≥ η‖x − y‖q, (6)
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and it is called λ-strictly pseudocontractive if

〈Fx − Fy, jq(x − y)〉 ≤ ‖x − y‖q − λ‖x − y − (Fx − Fy)‖q. (7)

It is clear that (7) is equivalent to the following

〈(I − F )x − (I − F )y, jq(x − y)〉 ≥ λ‖x − y − (Fx − Fy)‖q, (8)

where I denotes the identity operator.
In Hilbert spaces, accretive operators are called monotone where inequality (5) holds

with jq replace by identity map of H .
The modulus of smoothness of E, with dim E ≥ 2, is a function ρE : [0,∞) → [0,∞)

defined by

ρE(τ) = sup

{‖x + y‖ + ‖x − y‖
2

− 1: ‖x‖ = 1, ‖y‖ ≤ τ

}
.

A Banach space E is said to be uniformly smooth if limt→0+
ρE(t)

t
= 0. For q > 1, a

Banach space E is said to be q-uniformly smooth, if there exists a fixed constant c > 0
such that ρE(t) ≤ ctq, t > 0.
It is well known (see [5]) that Hilbert spaces and Lp (p > 1) spaces are uniformly smooth.
More precisely,

Lp (or lp) spaces are

{
2 − uniformly smooth, if 2 ≤ p < ∞,
p − uniformly smooth, if 1 < p ≤ 2.

Also, Every lp space, (1 < p < ∞) has a weakly sequentially continuous duality map.
Let K be a nonempty closed convex and bounded subset of a Banach space E and let
the diameter of K be defined by d(K) := sup{‖x − y‖ : x, y ∈ K}. For each x ∈ K,
let r(x,K) := sup{‖x − y‖ : y ∈ K} and let r(K) := inf{r(x,K) : x ∈ K} denote the
Chebyshev radius of K relative to itself. The normal structure coefficient N(E) of E (see,

e.g., [3]) is defined by N(E) := inf
{

d(K)
r(K)

: d(K) > 0
}
. A space E such that N(E) > 1

is said to have uniform normal structure. It is known that all uniformly convex and
uniformly smooth Banach spaces have uniform normal structure (see, e.g., [6, 9]).

Let μ be a continuous linear functional on l∞ and (a0, a1, . . . ) ∈ l∞. We write μn(an)
instead of μ((a0, a1, . . . )). We call μ a Banach limit if μ satisfies ‖μ‖ = μn(1) = 1 and
μn(an+1) = μn(an) for all (a0, a1, . . . ) ∈ l∞. If μ is a Banach limit, then

lim infn→∞ an ≤ μn(an) ≤ lim supn→∞ an

for all (a0, a1, . . . ) ∈ l∞. (see, e.g., [5, 6]).
The Variational inequality problem was initially introduced and studied by Stampac-

chia [14] in 1964. In the recent years, variational inequality problems have been extended
to study a large variety of problems arising in structural analysis, economics and op-
timization. Thus, the problem of solving a variational inequality of the form (2) has
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been intensively studied by numerous authors (see for example, [10, 17, 18, 20] and the
references therein).

Let H be a real Hilbert space. In 2001, Yamada [20] proposed a hybrid steepest descent
method for solving variational inequality as follows; Let x0 ∈ H be chosen arbitrary and
define a sequence {xn} by

xn+1 = Txn − μαnF (Txn), n ≥ 0, (9)

where T is a nonexpansive mapping on H , F is L-Lipschitzian and η-strongly monotone
with L > 0, η > 0, 0 < μ < 2η/L2. If {αn} is a sequence in (0, 1) satisfying the following
conditions:
(C1) limn→∞ αn = 0;
(C2)

∑∞
n=0 αn = ∞;

(C3)
∑∞

n=1 |αn+1 − αn| < ∞,
then he prove that the sequence {xn} converges strongly to the unique solution of the
variational inequality:

〈F x̃, x − x̃〉 ≥ 0, ∀x ∈ F (T ). (10)

In 2006, Marino and Xu [10] considered the following general iterative method: starting
with an arbitrary initial point x0 ∈ H , define a sequence {xn} by

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0, (11)

where T is a nonexpansive mapping of H , f is a contraction, A is a linear bounded strongly
positive operator, and {αn} is a sequence in (0, 1) satisfying the conditions (C1) − (C3).
They proved that the sequence {xn} converges strongly to a fixed point x̃ of T which
solves the variational inequality:

〈(γf − A)x̃, x − x̃〉 ≤ 0, ∀x ∈ F (T ). (12)

In 2010, Tian [17] combined the iterative method (11) with that of Yamada’s (9) and
considered the following general iterative method

xn+1 = αnγf(xn) + (I − μαnF )Txn, n ≥ 0, (13)

where T is a nonexpansive mapping on H , f is a contraction, F is k-Lipschitzian and
η-strongly monotone with k > 0, η > 0, 0 < μ < 2η/k2. He proved that if the sequence
{αn} of parameters satisfies conditions (C1) − (C3), then the sequence {xn} generated
by (13) converges strongly to a fixed point x̃ of T which solves the variational inequality:

〈(γf − μF )x̃, x − x̃〉 ≤ 0, ∀x ∈ F (T ). (14)

Very recently, in 2011, Tian and Di [18] studied an algorithm, based on Tian [17] general
Iterative algorithm, and proved the following theorem:
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Theorem 1.1 (Synchronal Algorithm)
Let H be a real Hilbert space and Let Ti : H → H be a ki-strictly pseudocontractions
for some ki ∈ (0, 1) such that

⋂N
i=1 F (Ti) �= ∅, and f be a contraction with coefficient

β ∈ (0, 1) and λi be a positive constants such that
∑N

i=1λi = 1. Let G : H → H be
an η-strongly monotone and L-Lipschitzian operator with L > 0, η > 0. Assume that
0 < μ < 2η/L2, 0 < γ < μ(η − μL2

2
)/β = τ/β. Let x0 ∈ H be chosen arbitrarily and let

{αn}, {βn} be sequences in (0, 1), satisfying the following conditions:
(T1) limn→∞ αn = 0,

∑∞
n=0 αn = ∞;

(T2)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞;

(T3) 0 < max ki ≤ βn < a < 1, ∀n ≥ 0.

Let {xn} be a sequences defined by the composite process

{
T βn = βnI + (1 − βn)

∑N
i=1 λiTi,

xn+1 = αnγf(xn) + (I − αnμG)T βnxn, n ≥ 0.
(15)

Then {xn} converges strongly to a common fixed point x∗ of {Ti}N
i=1 which solves the

variational inequality:

〈(γf − μG)x∗, x − x∗〉 ≤ 0, ∀x ∈
N⋂

i=1

F (Ti). (16)

The following questions naturally arise in connection with above results:
Question 1. Can Theorem of Tian and Di [18] be extend from a real Hilbert space to a
general Banach space? such as q-uniformly smooth Banach space.
Question 2. Can we extend the iterative method of scheme (15) to a general iterative
scheme define over the set of fixed points of a countable infinite family of strict pseudo-
contractions.
The purpose of this paper is to give the affirmative answers to these questions mentioned
above.

Throughout this paper, we will use the following notations:
1. ⇀ for weak convergence and → for strong convergence.
2. ωω(xn) = {x : ∃xnj

⇀ x} denotes the weak ω-limit set of {xn}.

2 Preliminaries

In the sequel, we shall make use of the following lemmas.

Lemma 2.1 (Boonchari and Saejung, [1, 2]) Let C be a nonempty, closed and convex
subset of a smooth Banach space E. Suppose that {Ti}∞i=1 : C → E is a family of λ-strictly
pseudocontractive mappings with

⋂∞
i=1 F (Ti) �= ∅ and {μi}∞i=1 is a real sequence in (0, 1)

such that
∑∞

i=1 μi = 1. Then the following conclusions hold:
(i) A mapping G : C → E defined by G :=

∑∞
i=1 μiTi is a λ-strictly pseudocontractive
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mapping.
(ii) F (G) =

⋂∞
i=1 F (Ti).

Lemma 2.2 (Lim and Xu, [9]) Suppose E is a Banach space with uniform normal
structure, K is a nonempty bounded subset of E, and T : K → K is uniformly k-
Lipschitzian mapping with k < N(E)

1
2 . Suppose also there exists nonempty bounded closed

convex subset C of K with the following property (P ) : (P ) x ∈ C implies ωω(x) ⊂ C,
where ωω(x) is the ω-limit set of T at x, i.e., the set

{y ∈ E : y = weak − limj T njx for some nj → ∞}.
Then T has a fixed point in C.

Lemma 2.3 (Sunthrayuth and Kumam, [15]) Let C be a nonempty, closed and convex
subset of a real q-uniformly smooth Banach space E which admits a weakly sequentially
continuous generalized duality mapping jq from E into E∗. Let T : C → C be a nonex-
pansive mapping with F (T ) �= ∅. Then, for all {xn} ⊂ C, if xn ⇀ x and xn − Txn → 0,
then x = Tx.

Lemma 2.4 (Petryshyn, [12]) Let E be a real q-uniformly smooth Banach space and
let Jq : E → 2E∗

be the generalized duality mapping. Then for any x, y ∈ E and
jq(x + y) ∈ Jq(x + y),

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x + y)〉.
Lemma 2.5 (Sunthrayuth and Kumam, [15]) Let C be a nonempty, closed and convex

subset of a real q-uniformly smooth Banach space E. Let F : C → E be a η-strongly

accretive and L-Lipschitzian operator with η > 0, L > 0. Assume that 0 < μ <

(
qη

dqLq

) 1
q−1

and τ = μ

(
η − dqμq−1Lq

q

)
. Then for t ∈ (

0, min
{
1, 1

τ

})
, the mapping T := (I − tμF ) :

C → E is a contraction with coefficient (1 − tτ).

Lemma 2.6 (Zhang and Guo, [21]) Let E be a real q-uniformly smooth Banach space
and C be a nonempty closed convex subset of E. Suppose T : C → E are λ-strict pseu-
docontractions such that F (T ) �= ∅. For any α ∈ (0, 1), we define Tα : C → E by

Tαx = αx+(1−α)Tx, for each x ∈ C. Then, as α ∈ [μ, 1), μ ∈ [
max

{
0, 1−(λq

dq
)

1
q−1

}
, 1

)
,

Tα is a nonexpansive mapping such that F (Tα) = F (T ).

Lemma 2.7 (Xu, [19]) Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1 − γn)an + δn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that:
(i) limn→∞ γn = 0 and

∑∞
n=0 γn = ∞;

(ii) lim supn→∞
δn

γn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ an = 0.
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Lemma 2.8 (Chang et al., [4]) Let E be a real q-uniformly smooth Banach space, then
the generalized duality mapping Jq : E → 2E∗

is single-valued and uniformly continuous
on each bounded subset of E from the norm topology of E to the norm topology of E∗.

Lemma 2.9 (Shioji and Takahashi, [13]) Let a be a real number and a sequence {an} ∈
l∞ such that μn(an) ≤ 0 for all Banach limit μ and lim supn→∞(an+1 − an) ≤ 0. Then,
lim supn→∞ an ≤ 0.

Lemma 2.10 (Mitrinović, [11]) Suppose that q > 1. Then, for any arbitrary positive
real numbers x, y, the following inequality holds:

xy ≤ 1

q
xq +

(
q − 1

q

)
y

q
q−1 .

Lemma 2.11 Let E be a real q-uniformly smooth Banach space. Let f : E → E be a
contraction mapping with coefficient α ∈ (0, 1). Let T : E → E be a nonexpansive mapping
such that F (T ) �= ∅ and G : E → E be an η-strongly accretive mapping which is also L-

Lipschitzian. Assume that 0 < μ < ( qη
dqLq )

1
q−1 and 0 < γ < τ

α
, where τ := μ

(
η − μq−1dqLq

q

)
.

Then for each t ∈ (
0, min{1, 1

τ
}), the sequence {xt} define by

xt = tγf(xt) + (I − tμG)Txt

converges strongly as t → 0 to a fixed point x∗ of T which solves the variational inequality:

〈(μG − γf)x∗, jq(x
∗ − x)〉 ≤ 0, ∀x ∈ F (T ). (17)

Proof. The definition of {xt} is well definition.
Now, for each t ∈ (

0, min{1, 1
τ
}), define a mapping Tt on C by

Ttx = tγf(x) + (I − tμG)Tx, ∀x ∈ C.

Then, by Lemma 2.5, we have

‖Ttx − Tty‖ = ‖[tγf(x) + (I − tμG)Tx] − [tγf(y) + (I − tμG)Ty]‖
≤ ‖tγ[f(x) − f(y)]‖ + ‖(I − tμF )Tx − (I − tμF )Ty‖
≤ tγ‖f(x) − f(y)‖+ (1 − tτ)‖Tx − Ty‖
≤ tγα‖x − y‖ + (1 − tτ)‖x − y‖
= [1 − t(τ − γα)]‖x − y‖,

which implies that Tt is a contraction. Hence, Tt has a unique fixed point, denoted by xt,
which uniquely solve the fixed point equation:

xt = tγf(xt) + (I − tμG)Txt. (18)
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We observe that {xt} is bounded. Indeed, from (18) and Lemma 2.5, we have

‖xt − x̃‖ = ‖tγf(xt) + (I − tμG)Txt − x̃‖
= ‖t[γf(xt) − μGx̃] + (I − tμG)Txt − (I − tμG)x̃‖
≤ ‖(I − tμG)Txt − (I − tμG)x̃‖ + t‖γf(xt) − μGx̃‖
≤ (1 − tτ)‖xt − x̃‖ + tγ‖f(xt) − f(x̃)‖ + t‖γf(x̃) − μGx̃‖
≤ (1 − tτ)‖xt − x̃‖ + tγα‖xt − x̃‖ + t‖γf(x̃) − μGx̃‖
= [1 − t(τ − γα)]‖xt − x̃‖ + t‖γf(x̃) − μGx̃‖.

It follows that

‖xt − x̃‖ ≤ ‖γf(x̃) − μGx̃‖
τ − γα

.

Hence, {xt} is bounded. Furthermore {f(xt)} and {G(Txt)} are also bounded.

Also, from (18), we have

‖xt − Txt‖ = t‖γf(xt) − μG(Txt)‖ → 0 as t → 0. (19)

Take t, t0 ∈ (0, 1
τ
). From (18) and Lemma 2.5, we have

‖xt − xt0‖ = ‖[tγf(xt) + (I − tμG)Txt] − [t0γf(xt0) + (I − t0μG)Txt0 ]‖
= ‖(t − t0)γf(xt) + t0γ[f(xt) − f(xt0)] + (t0 − t)μG(Txt)

+(I − t0μG)Txt − (I − t0μG)Txt0‖
≤ (γ‖f(xt)‖ + μ‖G(Txt)‖)|t − t0| + t0γ‖f(xt) − f(xt0)‖

+‖(I − t0μG)Txt − (I − t0μG)Txt0‖
≤ (γ‖f(xt)‖ + μ‖G(Txt)‖)|t − t0| + t0γα‖xt − xt0‖ + (1 − t0τ)‖Txt − Txt0‖
≤ (γ‖f(xt)‖ + μ‖G(Txt)‖)|t − t0| + [1 − t0(τ − γα)]‖xt − xt0‖.

It follows that

‖xt − xt0‖ ≤ γ‖f(xt)‖ + μ‖G(Txt)‖
t0(τ − γα)

|t − t0|.

This shows that {xt} is locally Lipschitzian and hence continuous.
We next show the uniqueness of a solution of the variational inequality (17). Suppose

both x̃ ∈ F (T ) and ỹ ∈ F (T ) are solutions to (17). From (17), we know that

〈(μG − γf)x̃, jq(x̃ − ỹ)〉 ≤ 0. (20)

and

〈(μG − γf)ỹ, jq(ỹ − x̃)〉 ≤ 0. (21)
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Adding up (20) and (21), we have

〈(μG − γf)x̃ − (μG − γf)ỹ, jq(x̃ − ỹ)〉 ≤ 0.

Observe that

dqμ
q−1Lq

q
> 0 ⇔ η − dqμ

q−1Lq

q
< η

⇔ μ

(
η − dqμ

q−1Lq

q

)
< μη

⇔ τ < μη.

It follows that

0 < γα < τ < μη.

We notice that

〈(μG − γf)x̃ − (μG − γf)ỹ, jq(x̃ − ỹ)〉 = 〈(μ(Gx̃ − Gỹ) − γ(f(x̃) − f(ỹ)), jq(x̃ − ỹ)〉
= μ〈Gx̃ − Gỹ, jq(x̃ − ỹ)〉 − γ〈f(x̃) − f(ỹ), jq(x̃ − ỹ)〉
≥ μη‖x̃ − ỹ‖q − γ‖f(x̃) − f(ỹ)‖‖x̃ − ỹ‖q−1

≥ μη‖x̃ − ỹ‖q − γα‖x̃ − ỹ‖q

= (μη − γα)‖x̃ − ỹ‖q.

Therefore, x̃ = ỹ and the uniqueness is proved. Below, we use x∗ ∈ F (T ) to denote the
unique solution of the variational inequality (17).

Next, we prove that xt → x∗ as t → 0.
Define a map φ : E → R by

φ(x) = μn‖xn − x‖q, ∀x ∈ E,

where μn is a Banach limit for each n. Then φ is continuous, convex, and φ(x) → ∞ as
‖x‖ → ∞. Since E is reflexive, there exists y∗ ∈ E such that φ(y∗) = min

u∈E
φ(u). Hence

the set
Kmin := {x ∈ E : φ(x) = min

u∈E
φ(u)} �= ∅.

Therefore, applying Lemma 2.2, we have Kmin ∩ F (T ) �= ∅. Without loss of generality,
assume x∗ = y∗ ∈ Kmin∩F (T ). Let t ∈ (0, 1). Then, it follows that φ(x∗) ≤ φ(x∗+ t(γf −
μG)x∗) and using Lemma 2.4, we obtain that

‖xn − x∗ − t(γf − μG)x∗‖q ≤ ‖xn − x∗‖q − qt〈(γf − μG)x∗, jq(xn − x∗ − t(γf − μG)x∗)〉.

Thus, taking Banach limit over n ≥ 1 gives

μn‖xn − x∗ − t(γf − μG)x∗‖q ≤ μn‖xn − x∗‖q − qtμn〈(γf − μG)x∗, jq(xn − x∗ − t(γf − μG)x∗)〉.
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This implies,

qtμn〈(γf − μG)x∗, jq(xn − x∗ − t(γf − μG)x∗)〉 ≤ φ(x∗) − φ(x∗ + t(γf − μG)x∗) ≤ 0.

Therefore
μn〈(γf − μG)x∗, jq(xn − x∗ − t(γf − μG)x∗)〉 ≤ 0, ∀n ≥ 1.

Moreover,

μn〈(γf − μG)x∗, jq(xn − x∗)〉 = μn〈(γf − μG)x∗, jq(xn − x∗) − jq(xn − x∗ − t(γf − μG)x∗)〉
+ μn〈(γf − μG)x∗, jq(xn − x∗ − t(γf − μG)x∗)〉

≤ μn〈(γf − μG)x∗, jq(xn − x∗) − jq(xn − x∗ − t(γf − μG)x∗)〉.

By Lemma 2.8, the duality mapping Jq is norm-to-norm uniformly continuous on bounded
subset of E, we have that

μn〈(γf − μG)x∗, jq(xn − x∗)〉 ≤ 0. (22)

Now, using (18) and Lemma 2.5, we have

‖xn − x∗‖q = tn〈γf(xn) − μGx∗, jq(xn − x∗)〉 + 〈(I − tnμG)(Txn − x∗), jq(xn − x∗)〉
= tn〈γf(xn) − μGx∗, jq(xn − x∗)〉 + 〈(I − tnμG)Txn − (I − tnμG)x∗, jq(xn − x∗)〉
≤ [1 − tn(τ − γα)]‖xn − x∗‖q + tn〈(γf − μG)x∗, jq(xn − x∗)〉.

So,

‖xn − x∗‖q ≤ 1

τ − γα
〈(γf − μG)x∗, jq(xn − x∗)〉.

Again, taking Banach limit, we obtain

μn‖xn − x∗‖q ≤ 1

τ − γα
μn〈(γf − μG)x∗, jq(xn − x∗)〉 ≤ 0,

which implies that μn‖xn −x∗‖q = 0. Hence, there exists a subsequence of {xn} which will
still be denoted by {xn} such that lim

n→∞
xn = x∗.

We next prove that x∗ solves the variational inequality (17). Since

xt = tγf(xt) + (I − tμG)Txt,

we can derive that

(μG − γf)xt = −1

t
(I − T )xt + μ(Gxt − GTxt)
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Notice that

〈(I − T )xt − (I − T )z, jq(xt − z)〉 ≥ ‖xt − z‖q − ‖Txt − Tz‖‖xt − z‖q−1

≥ ‖xt − z‖q − ‖xt − z‖q

= 0.

It follows that, for all z ∈ F (T ),

〈(μG − γf)xt, jq(xt − z)〉 = −1

t
〈(I − T )xt − (I − T )z, jq(xt − z)〉

+μ〈Gxt − G(Txt), jq(xt − z)〉
≤ μ〈Gxt − G(Txt), jq(xt − z)〉
≤ μL‖xt − Txt‖‖xt − z‖q−1

≤ ‖xt − Txt‖M, (23)

where M is an apppropriate constant such that M = sup{μL‖xt − z‖q}, where t ∈(
0, min

{
1, 1

τ

})
. Now replacing t in (23) with tn and letting n → ∞, noticing that

(I − T )xtn → (I − T )x∗ = 0 for x∗ ∈ F (T ), we obtain 〈(μG − γf)x∗, x∗ − z〉 ≤ 0.
That is, x∗ ∈ F (T ) is the solution of (17). Hence, x∗ = x̃ by uniqueness. We have shown
that each cluster point of {xt} (at t → 0) equals x̃. Therefore, xt → x̃ as t → 0. This
completes the proof.

3 Main Results

Theorem 3.1 (Synchronal Algorithm)
Let E be a real q-uniformly smooth Banach space whose duality map is weakly sequentially
continuous and C be a nonempty, closed and convex subset of E. Let {Ti}∞i=1 : C → E
be a family of k-strict pseudocontractions for k ∈ (0, 1) such that

⋂∞
i=1 F (Ti) �= ∅, f be

a contraction with coefficient β ∈ (0, 1) and {λi}∞i=1 be a real sequence in (0, 1) such that∑∞
i=1 λi = 1. Let G : C → E be an η-strongly accretive and L-Lipschitzian operator with

L > 0, η > 0. Assume that 0 < μ < (qη/dqL
q)1/q−1, 0 < γ < μ(η−dqμ

q−1Lq/q)/β = τ/β.
Let {αn} and {βn} be sequences in (0, 1) satisfying the following conditions:
(K1) limn→∞ αn = 0,

∑∞
n=0 αn = ∞;

(K2)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞;

(K3) 0 < βn < a < 1, ∀n ≥ 0.

Let {xn} be a sequence defined by the iterative algorithm

⎧⎪⎨
⎪⎩

x0 ∈ C arbitrarily chosen,

T βn = βnI + (1 − βn)
∑∞

i=1 λiTi,

xn+1 = αnγf(xn) + (I − αnμG)T βnxn, n ≥ 0,

(24)
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then {xn} converges strongly to a common fixed point x∗ of {Ti}∞i=1 which solves the
variational inequality:

〈(γf − μG)x∗, jq(x − x∗)〉 ≤ 0, ∀x ∈
∞⋂
i=1

F (Ti). (25)

Proof. Put T :=
∑∞

i=1 λiTi, then by Lemma 2.1, we conclude that T is a k-strict pseu-
docontraction and F (T ) =

⋂∞
i=1F (Ti). We can then rewrite the algorithm (24) as

⎧⎪⎨
⎪⎩

x0 ∈ E arbitrarily chosen,

T βn = βnI + (1 − βn)T,

xn+1 = αnγf(xn) + (I − αnμG)T βnxn, n ≥ 0.

Furthermore, by using Lemma 2.6, we conclude that T βn is a nonexpansive mapping and
F (T βn) = F (T ). From the condition (K1), we may assume, without loss of generality,
that αn ∈ (

0, min
{
1, 1

τ

})
. We shall carry out the proof in six steps as follows:

Step 1.

We show that {xn} is bounded.

Take p ∈ ⋂∞
i=1F (Ti), then the sequence {xn} satisfies

‖xn − p‖ ≤ max

{
‖x0 − p‖, ‖γf(p) − μGp‖

τ − γβ

}
, ∀n ≥ 0.

We prove this by Mathematical induction as follows;
Obviously, it is true for n = 0. Assume it is true for n = k for some k ∈ N.
From (24) and Lemma 2.5, we have

‖xk+1 − p‖ = ‖αkγf(xk) + (I − αkμG)T βkxk − p‖
= ‖αk[γf(xk) − μGp] + (I − αkμG)(T βkxk − p)‖
≤ (1 − αkτ)‖xk − p‖ + αk‖γ[f(xk) − f(p)] + γf(p) − μGp‖
≤ (1 − αkτ)‖xk − p‖ + αkγβ‖xk − p‖ + αn‖γf(p) − μGp‖
= [1 − αk(τ − γβ)]‖xk − p‖ + αk(τ − γβ)

‖γf(p) − μGp‖
τ − γβ

≤ max

{
‖xk − p‖, ‖γf(p) − μGp‖

τ − γβ

}
.

Hence the proved. Thus, the sequence {xn} is bounded and so are {Txn}, {GT βnxn} and
{f(xn)}.
Step 2.

We show that lim
n→∞

‖xn+1 − xn‖ = 0.
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Observe that

xn+2 − xn+1 = [αn+1γf(xn+1) + (I − αn+1μG)T βn+1xn+1]

−[αnγf(xn) + (I − αnμG)T βnxn]

= [αn+1γf(xn+1) − αn+1γf(xn)] + [αn+1γf(xn) − αnγf(xn)]

+[(I − αn+1μG)T βn+1xn+1 − (I − αn+1μG)T βnxn+1]

+[αn+1μGT βnxn − αn+1μGT βnxn]

= αn+1γ[f(xn+1) − f(xn)] + [(I − αn+1μG)T βn+1xn+1

−(I − αn+1μG)T βnxn] + (αn+1 − αn)γf(xn)

+(αn − αn+1)μGT βnxn,

so that

‖xn+2 − xn+1‖ ≤ αn+1γβ‖xn+1 − xn‖ + (1 − αn+1τ)‖T βn+1xn+1 − T βnxn‖
+|αn+1 − αn|(γ‖f(xn)‖ + μ‖GT βnxn‖)

≤ αn+1γβ‖xn+1 − xn‖ + (1 − αn+1τ)‖T βn+1xn+1 − T βnxn‖
+|αn+1 − αn|M1, (26)

where M1 is an appropriate constant such that M1 ≥ supn≥1{γ‖f(xn)‖ + μ‖GT βnxn‖}.
On the other hand, we note that

‖T βn+1xn+1 − T βnxn‖ ≤ ‖T βn+1xn+1 − T βn+1xn+1‖ + ‖T βn+1xn+1 − T βnxn‖
≤ ‖xn+1 − xn‖ + ‖[βn+1xn+1 + (1 − βn+1)Txn+1]

−[βn+1xn+1 + (1 − βn+1)Txn+1]‖
= ‖xn − xn‖ + ‖βn+1(xn − Txn) − βn(xn − Txn)‖
≤ ‖xn+1 − xn‖ + |βn+1 − βn|M2, (27)

where M2 is an appropriate constant such that M2 ≥ supn≥1{‖xn − Txn‖}.
Now, substituting (27) into (26) yields

‖xn+2 − xn+1‖ ≤ αn+1γβ‖xn+1 − xn‖ + (1 − αn+1τ)‖xn+1 − xn‖ + |αn+1 − αn|M1

+|βn+1 − βn|M2

≤ [1 − αn+1(τ − γβ)]‖xn+1 − xn‖ + (|αn+1 − αn| + |βn+1 − βn|)M3,

where M3 is an appropriate constant such that M3 ≥ max{M1, M2}.
By Lemma 2.7 and the conditions (K1), (K2), we have

lim
n→∞

‖xn+1 − xn‖ = 0. (28)

Step 3.
We show that lim

n→∞
‖xn − Txn‖ = 0.
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From (24) and condition (K1), we have

‖xn+1 − T βnxn‖ = ‖αnγf(xn) + (I − αnμG)T βnxn − T βnxn‖
≤ αn‖γf(xn) + μGT βnxn‖ → 0 as n → ∞. (29)

On the other hand,

‖xn+1 − T βnxn‖ = ‖xn+1 − [βnxn + (1 − βn)Txn]‖
= ‖xn+1 − xn + (1 − βn)(xn − Txn)‖
≤ ‖xn+1 − xn‖ + (1 − βn)‖xn − Txn‖,

which implies, by condition (K3), that

‖xn − Txn‖ ≤ 1

1 − βn
(‖xn+1 − xn‖ + ‖xn+1 − T βnxn‖)

≤ 1

1 − a
(‖xn+1 − xn‖ + ‖xn+1 − T βnxn‖).

Hence, from (28) and (29), we have

lim
n→∞

‖xn − Txn‖ = 0. (30)

Step 4.
We show that ωω(xn) ⊂ F (T ).

From the boundedness of {xn}, without loss of generality, we may assume that xn ⇀ y.
Hence, by Lemma 2.3 and (30), we obtain Ty = y. So, we have

ωω(xn) ⊂ F (T ). (31)

Step 5.
We show that lim sup

n→∞
〈(γf − μG)x∗, jq(xn − x∗)〉 ≤ 0,

where x∗ is obtained in Lemma 2.11. Put an := 〈(γf −μG)x∗, jq(xn−x∗)〉. Then, by (22),
we have μn(an) ≤ 0 for any Banach limit μ. Furthermore, by (28), ‖xn+1 − xn‖ → 0 as
n → ∞, we therefore conclude that

lim sup
n→∞

(an+1 − an) = lim sup
n→∞

(〈(γf − μG)x∗, jq(xn+1 − x∗)〉 − 〈(γf − μG)x∗, jq(xn − x∗)〉)
= lim sup

n→∞
〈(γf − μG)x∗, jq(xn+1 − x∗) − jq(xn − x∗)〉 = 0.

Hence, by Lemma 2.9, we have lim supn→∞ an ≤ 0, that is,

lim sup
n→∞

〈(γf − μG)x∗, jq(xn − x∗)〉 ≤ 0. (32)
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Step 6.

We show that lim
n→∞

‖xn − x∗‖ = 0.

Using (24), Lemmas 2.5 and 2.10, we have

‖xn+1 − x∗‖q = 〈xn+1 − x∗, jq(xn+1 − x∗)〉
= 〈αn[γf(xn) − μGx∗] + (I − αnμG)(T βnxn − x∗), jq(xn+1 − x∗)〉
= αn〈γf(xn) − γf(x∗), jq(xn+1 − x∗)〉 + αn〈γf(x∗) − μGx∗, jq(xn+1 − x∗)〉

+〈(I − αnμG)(T βnxn − x∗), jq(xn+1 − x∗)〉
≤ αnγ‖f(xn) − f(x∗)‖‖xn+1 − x∗‖q−1 + αn〈(γf − μG)x∗, jq(xn+1 − x∗)〉

+‖(I − αnμG)(T βnxn − x∗)‖‖xn+1 − x∗‖q−1

≤ (1 − αnτ)‖xn − x∗‖‖xn+1 − x∗‖q−1 + αnγβ‖xn − x∗‖‖xn+1 − x∗‖q−1

+αn〈(γf − μG)x∗, jq(xn+1 − x∗)〉
≤ [1 − αn(τ − γβ)]

[1

q
‖xn − x∗‖q +

(q − 1

q

)‖xn+1 − x∗‖q
]

+αn〈(γf − μG)x∗, jq(xn+1 − x∗)〉.

This implies that

‖xn+1 − x∗‖q ≤ 1 − αn(τ − γβ)

1 + αn(q − 1)(τ − γβ)
‖xn − x∗‖q

+
qαn

1 + αn(q − 1)(τ − γβ)
〈(γf − μG)x∗, jq(xn+1 − x∗)〉

≤ [1 − αn(τ − γβ)]‖xn − x∗‖q

+
qαn

1 + αn(q − 1)(τ − γβ)
〈(γf − μG)x∗, jq(xn+1 − x∗)〉

≤ (1 − γn)‖xn − x∗‖q + δn,

where γn := αn(τ−γβ) and δn := qαn

1+αn(q−1)(τ−γβ)
〈(γf−μG)x∗, jq(xn+1−x∗)〉. From (K1),

lim
n→∞

γn = 0,
∞∑

n=0

γn = ∞. Now δn

γn
= q

[1+αn(q−1)(τ−γβ)](τ−γβ)
〈(γf −μG)x∗, jq(xn+1 −x∗)〉. So,

lim sup
n→∞

δn

γn
≤ 0. Hence, by Lemma 2.7, we conclude that

lim
n→∞

‖xn − x∗‖ = 0.

This completes the proof.

4 Conclusion

The following Corollaries are consequences of Theorem 3.1.
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Corollary 4.1 Let E be a real q-uniformly smooth Banach space whose duality map
is weakly sequentially continuous and C be a nonempty, closed and convex subset of E.
Let {Ti}N

i=1 : C → E be a family of ki-strict pseudocontractions for ki ∈ (0, 1), (i =
1, 2, . . . , N), such that

⋂N
i=1 F (Ti) �= ∅ and k = min{ki : 1 ≤ i ≤ N}, f be a contraction

with coefficient β ∈ (0, 1) and {λi}N
i=1 be a real sequence in (0, 1) such that

∑N
i=1 λi = 1.

Let G : C → E be an η-strongly accretive and L-Lipschitzian operator with L > 0, η > 0.
Assume that 0 < μ < (qη/dqL

q)1/q−1, 0 < γ < μ(η− dqμ
q−1Lq/q)/β = τ/β. Let {αn} and

{βn} be sequences in (0, 1) satisfying the following conditions (K1)–(K3).
Let {xn} be a sequence defined by the iterative algorithm

⎧⎪⎪⎨
⎪⎪⎩

x0 ∈ C arbitrarily chosen,

T βn = βnI + (1 − βn)
∑N

i=1 λiTi,

xn+1 = αnγf(xn) + (I − αnμG)T βnxn, n ≥ 0,

(33)

then {xn} converges strongly to a common fixed point x∗ of {Ti}N
i=1 which solves the

variational inequality:

〈(γf − μG)x∗, jq(x − x∗)〉 ≤ 0, ∀x ∈
N⋂

i=1

F (Ti). (34)

Corollary 4.2 Let E be a real 2-uniformly smooth Banach space whose duality map
is weakly sequentially continuous and C be a nonempty, closed and convex subset of E.
Let {Ti}∞i=1 : C → E be a family of k-strict pseudocontractions for k ∈ (0, 1), such
that

⋂∞
i=1 F (Ti) �= ∅, f be a contraction map with coefficient β ∈ (0, 1) and {λi}∞i=1

be a real sequence such that
∑∞

i=1λi = 1. Let G : C → E be an η-strongly accretive
and L-Lipschitzian operator with L > 0, η > 0. Assume that 0 < μ < 2η/d2L

2, 0 <
γ < μ(η − d2μL2/2)/β = τ/β. Let {αn} and {βn} be sequences in (0, 1) satisfying the
conditions (K1)–(K3).
Let {xn} be a sequence defined by the algorithm (24), then {xn} converges strongly to a
common fixed point x∗ of {Ti}∞i=1 which solves the variational inequality:

〈(γf − μG)x∗, j(x − x∗)〉 ≤ 0, ∀x ∈
∞⋂
i=1

F (Ti). (35)

Corollary 4.3 Let E = Lp(or lp) space, (1 < p < ∞). Let {Ti}∞i=1 : E → E be
ki-strict pseudocontractions for ki ∈ (0, 1) such that

⋂∞
i=1 F (Ti) �= ∅, f be a contraction

map with coefficient β ∈ (0, 1) and λi be positive constants such that
∑∞

i=1λi = 1. Let
G : E → E be an η-strongly accretive and L-Lipschitzian operator with L > 0, η > 0.
Assume that 0 < μ < 2η/d2L

2, 0 < γ < μ(η − d2μL2/2)/β = τ/β. Let {αn} and {βn} be
sequences in (0, 1) satisfying the conditions (K1)–(K3).
Let {xn} be a sequence defined by the composite process (24), then {xn} converges strongly
to a common fixed point x∗ of {Ti}∞i=1 which solves the variational inequality (35).
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Corollary 4.4 (Tian and Di, [18]) Let E = H be a real Hilbert space. Let {xn} be a
sequence generated by (15). Assume that {αn} are {βn} are sequences in (0, 1) satisfying
the conditions (K1)–(K3), then {xn} converges strongly to a common fixed point x∗ of
{Ti}N

i=1 which solves the variational inequality (16).

Corollary 4.5 (Tian, [17]) Let E = H be a real Hilbert space. Let {xn} be a sequence
generated by (33). Assume that {αn} is a sequence in (0, 1) satisfying (K1) and (K2),
then {xn} converges strongly to a common fixed point of T which solves the variational
inequality (14).

Corollary 4.6 (Marino and Xu, [10]) Let E = H be a real Hilbert space. Let {xn} be
a sequence generated by (11). Assume that {αn} is a sequence in (0, 1) satisfying (K1)
and (K2), then {xn} converges strongly to a common fixed point of T which solves the
variational inequality (12).

Corollary 4.7 (Yamada, [20]) Let E = H be a real Hilbert space. Let {xn} be a
sequence generated by (9). Assume that {αn} is a sequence in (0, 1) satisfying (K1)
and (K2), then {xn} converges strongly to a common fixed point of T which solves the
variational inequality (10).
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