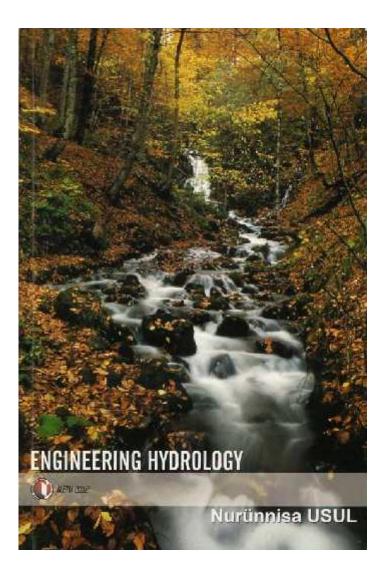
CE374 ENGINEERING HYDROLOGY

Chapter 1 – Introduction

- Introduction (3 hours)
 - Scope
 - Hydrologic Cycle
 - 👂 System Concept
- Hydrologic Processes (9 hours)
 - 🦻 Basin
 - Precipitation
 - Streamflow
 - 🔋 Infiltration
- e Hydrograph Analysis
 - (10hours) Components of
 - runoff Hydrograph characteristics
 - Unit hydrograph theory
 - Synthetic unit hydrograph

Tentative Course Outline


TEXTBOOK:

Question Office States of Control of Cont

REFERENCES:

 Linsley, Kohler, and Paulhus, *Hydrology for Engineers* (SIEd.), Mc Graw Hill, New York, 1982.

OUR TEXT BOOKS

Supply versus Demand

- @ Existing Water = f (time, space, quality, quantity)
- Water Demand = f (time, space, quality, quantity)

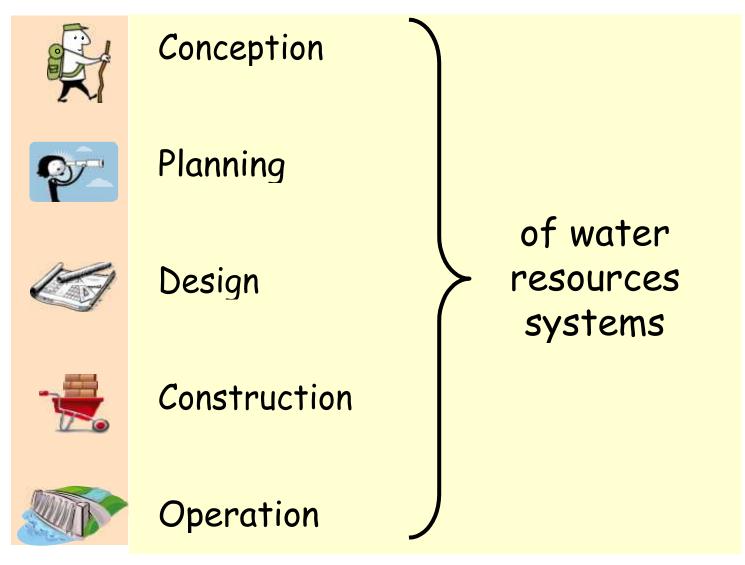
Supply and demand need to be matched at any time

Daily matching: operationFuture matching: design

Nature of Water Resources Problems

Relationship between SUPPLY and DEMAND?

- 🍍 design
- 🌻 analysis


When we water of good quality is AVAILABLE?

demand

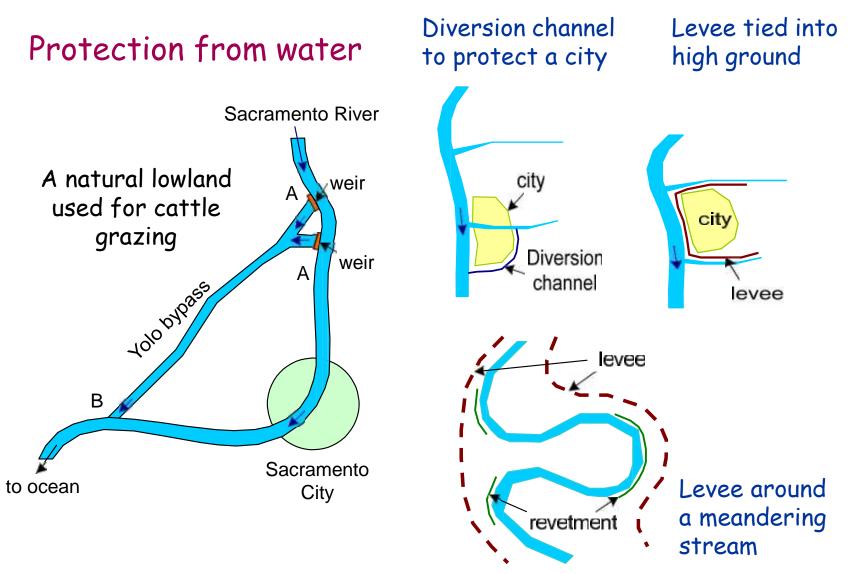
supply

When the second seco

Water resources engineering

Fields of Water Resources Engineering

- Water Control
 - Flood mitigation
 - Storm drainage
 - 🛚 Sewerage
 - Highway culvert design
- 🧕 Water use
 - Municipal water supply
 - Irrigation
 - Hydroelectric power development
 - Navigation
- Water Quality Management
 - For municipal and irrigation uses



Water Control

- Water Control is necessary in order to prevent
 - the loss of lives,
 - the damage to the property, and
 - the difficulties in communities encountered due to water related problems (floods).
- Measures taken for the solution of these problems: The design and construction of
 - flood control structures for excess water,
 - storm drainage and sewerage systems to get rid of the unwanted water, and
 - culverts for the roads and highways.

WATER CONTROL

Quantity of Water

How much water can be expected?

- Peakrates€Controlofwater€Design/operation
- Volume of flow € Water use € Design/operation
- Location problem € Water transmission
- Time problem € Water storage

Existing water = f (time, space) (application of hydrology)

- Who may use this water?
 - 🔋 Water law

Who will use the water?

- Q All the legal aspects (national and international laws) enter the picture.
- Water is a commodity to be sold or bought just like any other natural resource, such as oil or mineral.
- In dealing with water problems justice and fairness should be observed both nationally & internationally, since it is vital for mankind.
- Water related problems become more important with time because
 - while water resources stay the same on the Earth,
 - world population and water contamination are increasing continuously.

Water Quality

Problems related to

- Municipal water supply
- Irrigation
- Oisposal of waste water

http://www.durhamcountync.gov/departments/ceng/images/ Utility_Division/Wastewater_Treatment_Plant-001.jpg

http://www.play-with-water.ch/d4/experiments/images/img_26.jpg

Water Quality Management

- Amount and character of impurities Chemical, bacteriologic tests
- Effects of these impurities Standards of acceptable quality
- Necessary facilities to remove these impurities Physical, chemical, biologic methods

Characteristics of water resources problems

@ Uniqueness

Uncertainty

- Socio-economic aspect
- Forecasting
- @ Economy of scale
- Irreversibility

Design of Hydraulic Structures

- 1. Hydrologic Design
- 2. Hydraulic Design
- 3. Structural Design

Applications

- Reservoir capacity (water use)
- Spillway design (water control)
- e Highway drainage (water control)
- Irrigation and drainage (water use)
- e Hydropower (water use)
- Navigation (water use)
- Recreation (water use)

Hydrologic Analysis in Water Resources Engineering

HYDROLOGY is an EARTH SCIENCE which deals with WATERS of the EARTH

Hydrology deals with...

- Occurence
- Ø Distribution
- Movement
- Properties

... of WATER

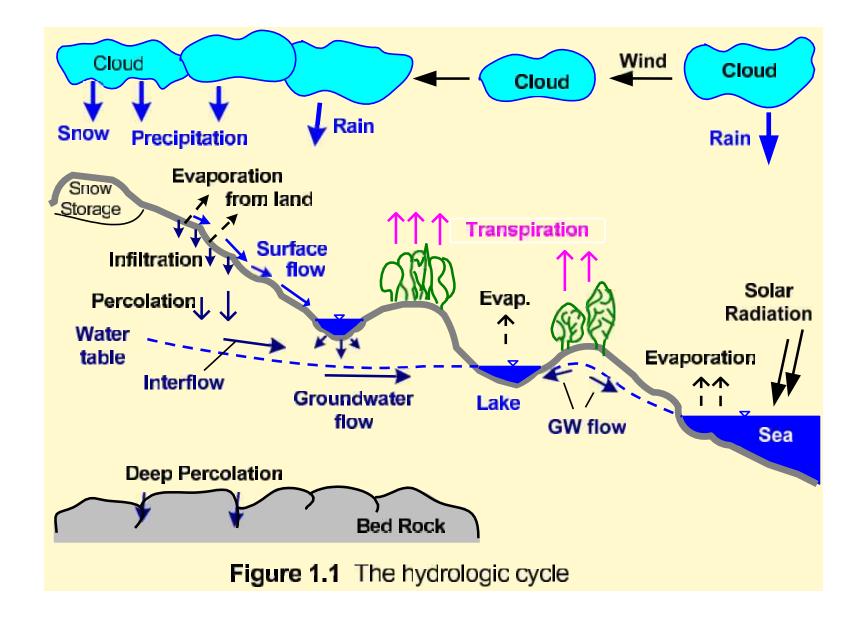
Hydrology is closely related with...

- Meteorology
- Climatology
- @ Geology
- Glaciology
- Limnology (lakes)
- Cryology (snow, ice)
- Potamology (rivers)
- Oceanology

Water resources engineering is linked to

- Why hydrology, hydraulics
- structural engineering
- @ materials engineering
- @ geotechnics
- @ transportation
- construction management, engineering economy
- surveying and topographic detailing
- environmental engineering, geological engineering
- @ sociology, politics, law \Rightarrow HYDROPOLITICS

Hydrologic Cycle


- The main concept of Hydrology
- It is, the cyclic movement of water

from SEA to ATMOSPHERE by EVAPORATION, & then back to EARTH by PRECIPITATION then runs to SEA through STREAMS or GW

Climatic (Hydrometeorologic) factors

solar radiation, temp., humidity, wind, atm. pres.

affect the elements of hydrologic cycle

Hydrologic Cycle Elements

- Precipitation (humidity, temperature, wind)
- Interception
- Infiltration
- Surface Flow
- Subsurface Flow (interflow)
- Groundwater Flow (baseflow)
- Evaporation (temperature, wind, atm. pressure)
- Transpiration
- Percolation
- Ø Deep Percolation

Most Important Elements of Hydrologic Cycle

- Precipitation
- Streamflow
- Evaporation
- Infiltration

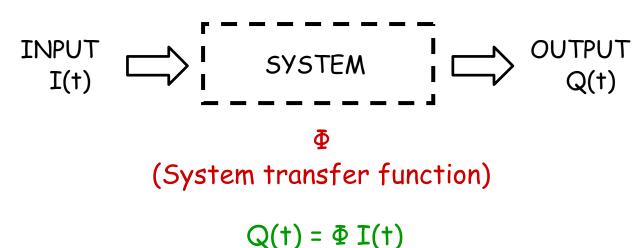
/http://www.resimlihaber.com/gundem/ giresunda-sel-araclari-denize-surukledi_2609.html#2

Problems for an engineer come from the extreme values of these elements

DROUGHTS (min. values) € WATER USE FLOODS (max. values) € WATER CONTROL Hydraulic Structures are built to solve the problems created by these extremes & to correct the maldistribution of water

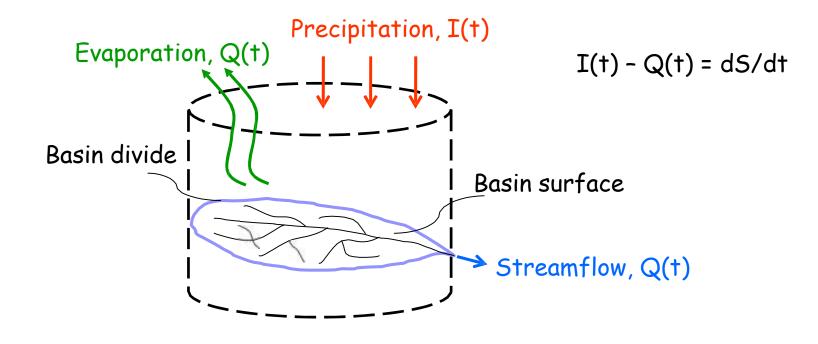
in area€ WATER TRANSMISSION
in time€ WATER STORAGE
to fit the demands of people.

- ENGINEERING HYDROLOGY includes those parts of hydrology related to design and operation of engineering projects (hydraulic structures) for the CONTROL and USE of water.
- HYDROLOGY studies water in its natural environment.
- HYDRAULICS studies water flow in all conduits.
- WATER RESOURCES DEVELOPMENT is the engineering works for the use and control of water.

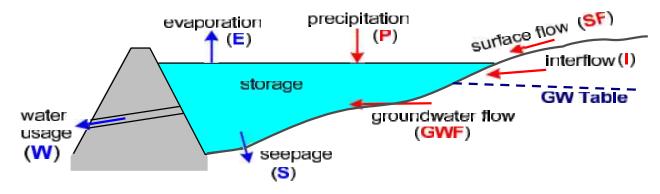

System Concept

In hydrology,

- the change of parameters in TIME and SPACE is difficult or impossible to determine.
- the knowledge of physical behaviour of system is inadequate.
- systems are heterogeneous.


We use system concept...

System Concept



Transformation Equation

A hydrologic system €a structure or volume in space, surrounded by a boundary, that accepts water and other inputs, operates on them internally, and produces them as outputs [1] Question: Represent the storm rainfall-runoff process on a watershed as a hydrologic system [1]

- Continuity equation for a linear reservoir is a transfer equation linking its inflow and outflow
- @ dS/dt = I(t) Q(t)
 - I(t) : inflow Q(t) : outflow dS/dt : change in storage

PS = (P + SF + I + GWF) - (S + W + E)

Subject Matter of Hydrology

DATA COLLECTION

- Depth and intensity of precipitation
- River discharge
- Snow depth and density
- 🧧 Lake level
- Infiltration rate
- @ GW table level
- e Evaporation rate

AVERAGE VALUES EXTREME VALUES TIME HISTORIES

DMI, DSI, EIE, Rural Services

METHOD of ANALYSIS

- @ for the design
- @ for the operation
- Understanding the phenomena
- Oetermination of existing situation
- @ Estimation of future values

Problem : Inadequate Data

- Estimation of extremes which are rarely observed in a small data
- Hydrologic characteristics at locations where no data have been collected
- Estimation of the <u>effects of human actions</u> on the hydrologic characteristics of an area

EACH HYDROLOGIC PROBLEM IS UNIQUE specific basin + distinct set of physical conditions

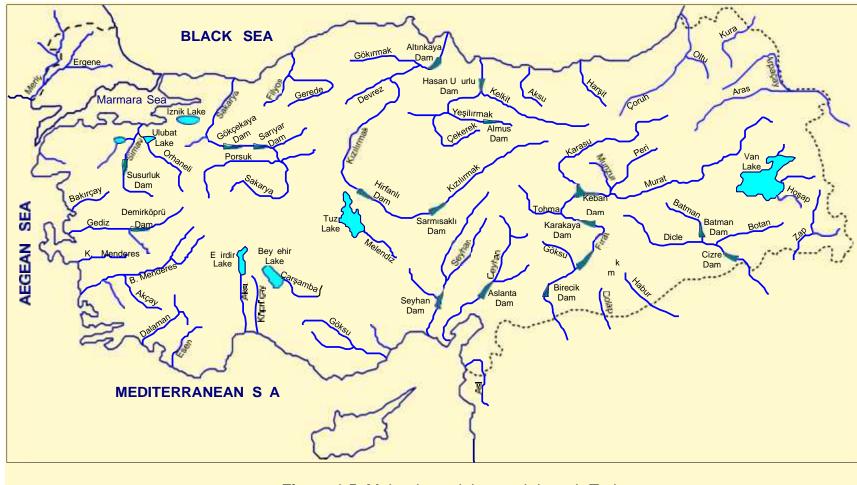
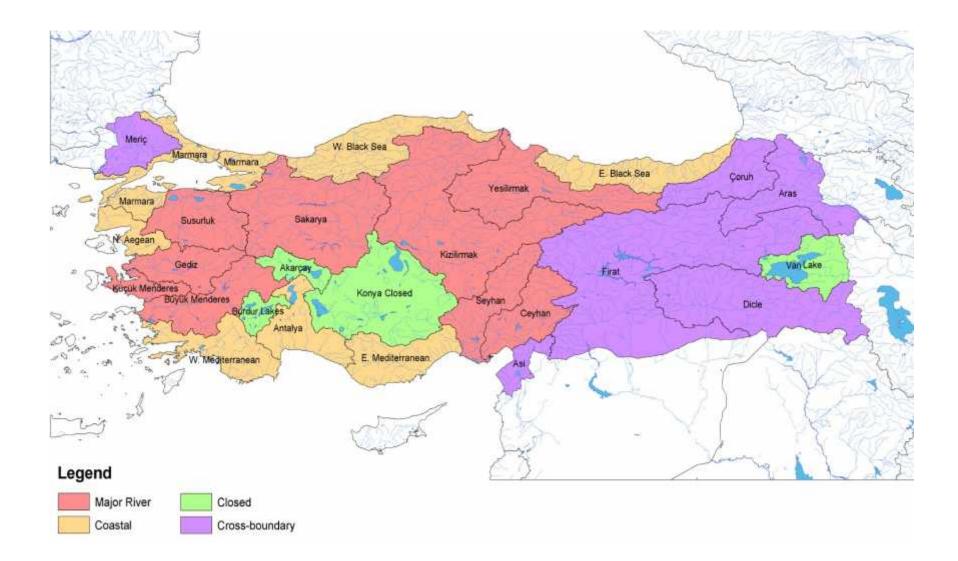



Figure 1.5 Major rivers, lakes and dams in Turkey

Land and water resources of Turkey

	Agricultural land Irrigable land	
0	Economically irrigable land	8.5*10° ha
	Mean annual precipitation depth Mean annual volume of precipitation	
	Annual surface runoff volume Average runoff coefficient	

@ Annual extractable groundwater resource...... 12.3 km³