Chapter 2

 Hydrologic Processes
Basin Characteristics

@ Basin characteristics define system's response.
© For any section on a river, the area above that section which gives all its surface waters to this river passing through that section is called the basin (drainage basin, catchment, watershed)

Basin

Perimeter $=$ Boundary $=$ Basin Divide (Passes through highest points between adjacent basins)

Situation in Turkey

Shape \& Orientation

Response of the basin to ppt for circular and elongated basins

Early or late peak in hydrograph wrt the orientation of a pear-shaped basin

Gradient

@ Area-elevation
(hypsometric) curve
© Relief

- Max. relief (diff. between highest and lowest points)

- Max. basin relief (diff. between highest on the boundary and lowest points)
© Slope of the river bed is found from the longitudinal profile of the river.

Drainage Characteristics

Horton's Ordering System first, second, third, ...

* Highest order is the order of the basin
* Scale of map!

$$
\text { Bifurcation Ratio }=R_{b}^{R}=\frac{N_{u}}{N_{u+1}}
$$

N_{u} and N_{u+l} are the number of streams of orders u and $u+1$, resp.

It gives information about the shape of the basin \& also about the shape of the hydrograph.

Drainage characteristics of the Basin

U	N_{u}	$\operatorname{logN}{ }_{u}$
1	55	-
2	22	-
3	9	-
.	-	-
.	.	-
-	-	-
n	1	-

Figure 6.11 Bifurcation ratio

$$
\begin{gathered}
-\mathrm{b}=\frac{\log \mathrm{N}_{\mathrm{u}+1}-\log \mathrm{N}_{\mathrm{u}}}{(\mathrm{u}+1)-\mathrm{u}} \\
\mathrm{~b}=\log _{\mathrm{N}_{\mathrm{u}+1}} \mathrm{~N}_{\mathrm{u}}=\log \mathrm{R}_{\mathrm{b}} \\
\mathrm{R}_{\mathrm{b}}=\log ^{-1} \mathrm{~b}
\end{gathered}
$$

Figure 3.1 Distribution of seasonal rainfall in Turkey

PRECIPITATION

Figure 3.2 Distribution of monthly rainfall (mm) in Turkey

Distribution of mean annual rainfall

MEASUREMENT OF PRECIPITATION

© TOTAL DEPTH WITHIN A CERTAIN PERIOD OF TIME
© ITS VARIATION IN THIS PERIOD WITH THE FOLLOWING TYPES OF MEASURING INSTRUMENTS:

1. NON-RECORDING RAIN GAGES 2. RECORDING RAIN GAGES

Weighing Gauges (recording rain gauge)

© Generally a daily chart is used for the diagrams
© For remote locations weekly charts can also be used (revolving drum completes one revolution in seven days)
© Weekly charts donot have the same detail as daily charts.

Figure 3.5a Recording rain gauge (Weighing

Figure 3.5b Recorded diagram

Hyetograph from a Recorded Diagram

$\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$	Σ Depth (mm)	$\begin{gathered} \otimes_{\mathrm{t}} \\ (\mathrm{~min}) \end{gathered}$	$\begin{gathered} \otimes_{\mathrm{d}} \\ (\mathrm{~mm}) \end{gathered}$	Intensity (mm/hr)
to	d_{0}	$\otimes \mathrm{t}_{1}=\mathrm{t}_{1}-\mathrm{t}_{0}$	$\otimes^{\mathrm{d}_{1}}=\mathrm{d}_{1}-\mathrm{d}_{\mathrm{o}}$	$\mathrm{i}_{1}=\left(\otimes_{\mathrm{d}} / \otimes_{\mathrm{t}} \mathrm{t}_{1} / 60\right.$
t1	d1	$\otimes_{\mathrm{t} 2}=\mathrm{t}_{2}-\mathrm{t}_{1}$	$\otimes \mathrm{d}_{2}=\mathrm{d}_{2}-\mathrm{d}_{1}$	$\mathrm{i}_{2}=\left(\otimes_{\mathrm{d} 2} / \otimes_{\mathrm{t} 2}\right) / 60$
t2	d_{2}			
$\stackrel{\cdot}{t_{n-1}}$	$\mathrm{d}_{\mathrm{n}-1}$			
tn	d_{n}	$\otimes_{\mathrm{tn}}=\mathrm{tn}-\mathrm{tn}^{1} 1$	$\otimes_{\text {dn }}=\mathrm{dn}_{\mathrm{n}}-\mathrm{d}_{\mathrm{n}}-1$	$\mathrm{in}_{\mathrm{n}}=\left(\otimes_{\mathrm{dn}} / \otimes_{\mathrm{tn}}\right) / 60$

Hyetograph

AREAL MEAN PRECIPITATION

PPT GAUGES \longrightarrow POINT VALUES \longrightarrow AREAL VALUES METHODS: ARITHMETIC MEAN, THIESSEN POLYGONS, ISOHYETAL MAP
a) ARITHMETIC MEAN METHOD

TAKE ONLY INSIDE STATIONS GET SIMPLE AVERAGE

$$
P_{\text {ave }}=\begin{array}{cl}
\Sigma p_{i} & p_{i}=\text { rainfall observed at the } i \text { th station } \\
n & n=\text { number of stations inside the basin }
\end{array}
$$

ARITHMETIC MEAN METHOD

Take ONLY inside stations

$$
P_{\text {ave }}=\frac{P_{B}+P_{F}+P_{G}+P_{+}}{4}
$$

AREAL MEAN PRECIPITATION

b) THIESSEN POLYGONS METHOD

- INCLUDE ADJACENT OUTSIDE STATIONS AS WELL
- CONNECT STATIONS BY STRAIGHT LINES TO MAKE EQUILATERAL TRIANGLES
- DRAW BISECTORS \& OBTAIN POLYGONS
- GET WEIGHTED AVERAGE BY AREAS

$$
P_{a v e}=\frac{\sum p_{i} a_{i}}{\sum a_{i}}
$$

$a_{i}=$ in-region portion of the area of the polygon surrounding this station

THIESSEN POLYGONS METHOD

Stations are joined to obtain triangles

Bisectors are drawn to form polygons

$$
P_{\text {ave }}=\frac{\sum p_{i} a_{i}}{\sum a_{i}}
$$

AREAL MEAN PRECIPITATION

c) ISOHYETAL MAP METHOD

- PLOT ISOHYETS (EQUAL PRECIPITATIONLINES) (ASSUME LINEAR CHANGE BETWEEN STATIONS) DETERMINE MEAN PRECIPITATION BETWEEN ISOHYETS GET WEIGHTED MEAN

$$
P_{\text {ave }}=\frac{\bar{p}_{i} a_{i}}{\sum a_{i}} \quad \bar{p}_{i}=\text { average precipitation between isohyets } \quad a_{i}=\text { area between isohyets }
$$

DEPTH-AREA-DURATION (DAD)CURVES

@ STORM PRECIPITATION IS ANALYSED WITH RESPECT TO TIME AND AREA
© DAD ANALYSIS GIVES THE MAXIMUM AMOUNTS OF PRECIPITATION WITHIN VARIOUS DURATIONS OVER AREAS OF VARIOUS SIZES

DEPTH-AREA-DURATION CURVE FOR A PARTICULAR STORM DURATION

ISOHYETS OF A STORM (with single major center) OVER A BASIN

Areal mean pptwithin each isoheyet is ploted wrt area

DEPTH-AREA-DURATION CURVE for a single major center storm for a particular storm duration

DEPTH-AREA-DURATION (DAD) CURVES

$$
A_{1}=a_{1}
$$

$$
A_{2}=a_{1}+a_{2}
$$

$$
d_{2}=\frac{p_{1} a_{1}+p_{2} a_{2}}{a_{1}+a_{2}}
$$

$$
d_{3}=\frac{p_{1} a_{1}+p_{2} a_{2}+p_{3} a_{3}}{a_{1}+a_{2}+a_{3}}
$$

$A_{n}=$ total area of the basin
$d_{n}=$ areal mean value for the whole basin

To obtain the max. amounts of ppt. for a certain duration, it is necessary to take as many storms as possible with that duration and plot an enveloping curve to all the points obtained.

Figure 3.20 Depth - Area curve for a certain duration

Depth-Area-Duration Curves

DEPTH-AREA-DURATION CURVES

For the same area: as duration \uparrow depth \uparrow

For the same duration: as area \uparrow depth \downarrow

Intensity-Duration-Frequency Curves

© In general, the higher the intensity of the rainfall the shorter the duration of it will be.
© Intensity - duration - frequency (I-D-F) relationship is important for engineers in designing hydraulic structures.
@ It is shown by a family of curves.
© Each curve is drawn for a certain frequency, and indicates the change of intensity wrt the time interval called the reference time interval, (duration of the storm).

Intensity - Duration - Frequency Curves

For the same frequency: as duration \uparrow intensity \downarrow

Statistical analysis of maximum storms (observed in the study area) are used to generate these curves!

Figure 3.24 Intensity-Duration-Frequency Curves for Ankara (on Semi-log scale)

These curves should be generated for every station.

RATIONAL FORMULA [A<100 $\left.\mathrm{km}^{2}\right]$

© A method to relate rainfall on a basin to the corresponding runoff.
© Extensively used in urban hydrology to estimate peak flow.
© Very important parameter for storm water system design.

$$
\begin{array}{l|l}
Q_{p} \propto A^{n} & n=\text { power, } A=\text { area, } Q_{p}=\text { peak flow } \\
Q_{p} \propto i . A & i=\text { intensity }(n=1) \\
Q_{p}=\text { C.i.A } & C=\text { runoff coefficient }
\end{array}
$$

RATIONAL FORMULA

$\mathrm{Q}_{\mathrm{D}}=0.278 \mathrm{CiA}$
$Q_{p}=$ peak flow (m^{3} / s)
C = runoff coefficient
i = average rainfall intensity ($\mathrm{mm} / \mathrm{hr}$) Rain continues at least for t_{c} hours
$\dagger_{c}=$ time of concentration
$A=\operatorname{area}\left(\mathrm{km}^{2}\right)$
C is a function of surface characteristics
If surface conditions change $€$ Divide into subareas

$$
Q_{p}=0.278 i \sum_{j=1}^{n} C_{j} A_{j}
$$

$A_{j}=$ areas of subbasins
$C j=$ runoff coeff.s for subbasins
$n=$ number of subbasins

Rational Formula

© Time of concentration, \dagger_{c} : time necessary for raindrops falling at the farthest point of the basin to flow to the outlet point.
© Intensity of rainfall i, is assumed to be constant during concentration time t_{c}, and the peak flow Q_{p}, occurs after the period \dagger_{c}.
© Runoff coefficient, C is the least precise variable.
Its use in the formula implies a fixed ratio of peak runoff rate to rainfall rate for the drainage basin, which in reality is not the case.

$$
Q_{p}=0.278 C i A
$$

Typical C coefficients for 5 to $10-y r$ frequency design

Description of area	Runoff coefficient	Description of area	Runoff coefficient
Business		Streets	
Downtown areas	$0.70-0.95$	Asphalt	$0.70-0.95$
Neighborhood areas	$0.50-0.70$	Concrete	$0.80-0.95$
		Brick	$0.70-0.85$
Residential		Drives and walks	$0.75-0.85$
\quad Single-family areas	$0.30-0.50$		
\quad Multiunits, detached	$0.40-0.60$	Roofs	$0.75-0.95$
\quad Multiunits, attached	$0.60-0.75$		
Residential (suburban)	$0.25-0.40$	Lawns; soil:	
Apartment dwelling areas	$0.50-0.70$	Flat, 2\%	$0.05-0.10$
		Average, 2-7\%	$0.10-0.15$
Industrial	Steep, 7\%	$0.15-0.20$	
Light areas	$0.50-0.80$		
Heavy areas	$0.60-0.90$	Lawns; Heavy soil:	
Railroad yard areas	$0.20-0.40$	Flat, 2\%	$0.13-0.17$
Parks and cemeteries	$0.10-0.25$	Average, 2-7\%	$0.18-0.22$
Playgrounds	$0.20-0.35$	Steep, 7\%	$0.25-0.35$
Unimproved areas	$0.10-0.30$		

RATIONAL FORMULA

STEPS IN COMPUTATION:

1. ESTIMATE \dagger_{c}
2. ESTIMATE C
3. SELECT A RETURN PERIOD T_{r} AND DETERMINE i FROM I-D-F CURVES FOR THAT REGION
4. DETERMINE Q_{p} USING THE FORMULA

RATIONAL FORMULA

© Rational formula requires estimation of C and i
© C is the least precise variable \& it depends on

* Imperviousness
* Slope
- Vegetation
- Ponding characteristics of the surface

STREAMFLOW

@ The most important element of hydrologic cycle
© Basin converts precipitation into streamflow

* Basin = Drainage Basin = Catchment = Watershed = Subbasin
- Area = Drainage Area
* Perimeter = Boundary = Basin Divide

Streamflow

Most important element of hydrologic cycle for the hydrologist because streams are the best renewable sources of water for all kinds of demands.

Streamflow = f(meteorological factors, basin characteristics, human activities)

Basin as a system

Geology and Soil Characteristics

STREAMFLOW

 Paved Surfaces 1 Infiltration Fine Textured Soil Infiltration

Figure 4.1 Streamflow measuring regions in Turkey

Types of Regions

Major River \square Closed
Coastal
Cross-boundary

Estimation of rates or volumes of flow is necessary

Measurement of stage :
© Non-recording (Manual)
@Recording

Stage is elevation above a zero datum (arbitrary)

Recording Gage

Ex: float-type water-stage recorder

Discharge Computation

Stage Record $\xrightarrow[\text { calibration }]{\text { by }}$ Discharge Record
© Calibration is accomplished by relating

* Field measurements of discharge with
 river stage values

$$
Q=a \times v \quad \begin{aligned}
& Q=\text { discharge } \\
& a=\text { area } \\
& v=\text { velocity }
\end{aligned}
$$

© Velocity measurement is necessary \& it is done by current meter

$$
\begin{array}{ll}
v=a+b N & \begin{array}{l}
a, b=\text { constants of the instrument } \\
N=\text { number of revolutions per second }
\end{array}
\end{array}
$$

In practice stream is divided into a number of vertical

 sections (strips) \square No section should have more than 10\% of total flow!

$$
\begin{gathered}
v_{\text {mean }}=v_{0.6 d}=\frac{v_{0.2 d}+v_{0.8 d}}{2} \\
\text { Total discharge, } Q=\sum q_{i}=\sum\left(a_{i} \times v_{i}\right)
\end{gathered}
$$

Obtaining Rating Curve

@ Take different stages
© Determine discharge for each stage ©Plot them against each other

Extension of Rating Curve - to obtain flood discharges

In extension, a small change in slope will cause a very large change in discharge.

Parabolic Assumption
$q=k \times(s-a)^{b}$
$q=$ discharge ($\mathrm{m}^{3} / \mathrm{s}$)
$s=s t a g e(m)$
$k=$ constant
$a, b=$ constants
a = difference between datum \& zero flow elevation Interpretation of Streamflow Data

Φ - index $€$ indicates theaverage infiltration rateabove

 which the depth (or volume) of rainfall is equal to depth (or volume) of surface runoff.

$$
V_{p}=V_{q} \quad\left(d_{p}=d_{q}\right)
$$

$$
\begin{aligned}
V_{p}\left(d_{p}\right)= & \begin{array}{l}
\text { Volume }(\text { depth }) \\
\text { of effective } \\
\text { precipitation }
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\left.V_{q}\left(d_{q}\right)=\underset{ }{\text { Volume }(\text { depth })} \begin{array}{c}
\text { runoff }
\end{array}\right)
\end{gathered}
$$

© An example for the Φ-index:

