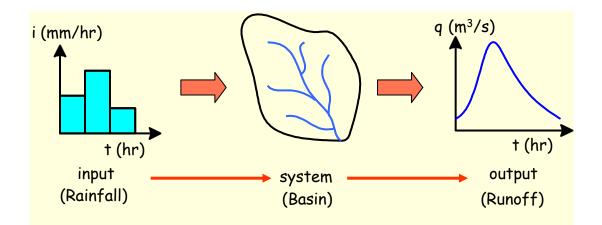
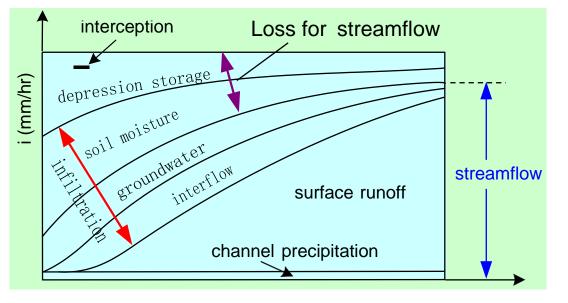

Chapter 3 Hydrograph Analysis

Hydrograph Analysis

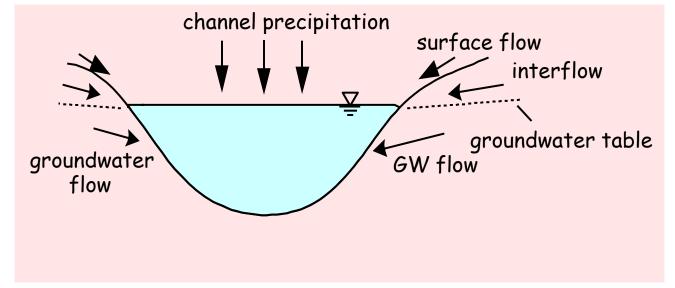

- Components of Runoff
- e Hydrograph Characteristics
- Onit Hydrograph Theory
- Synthetic Unit Hydrographs

- The major characteristics of streamflow are:
 - its volume for a certain duration (month or year)
 different uses & storage
 - its extreme values

Hydrograph Analysis

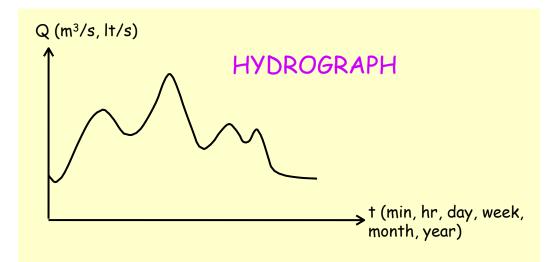

Components of Runoff

- Channel Precipitation
- Surface Runoff
- Interflow
- Groundwater Flow


- Interception, depression storage, soil moisture are LOSSES for streamflow.
- The other portions of precipitation reach streams sooner or later.

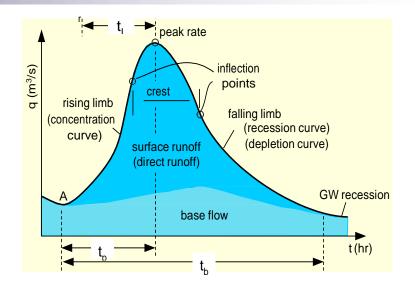
COMPONENTS OF RUNOFF

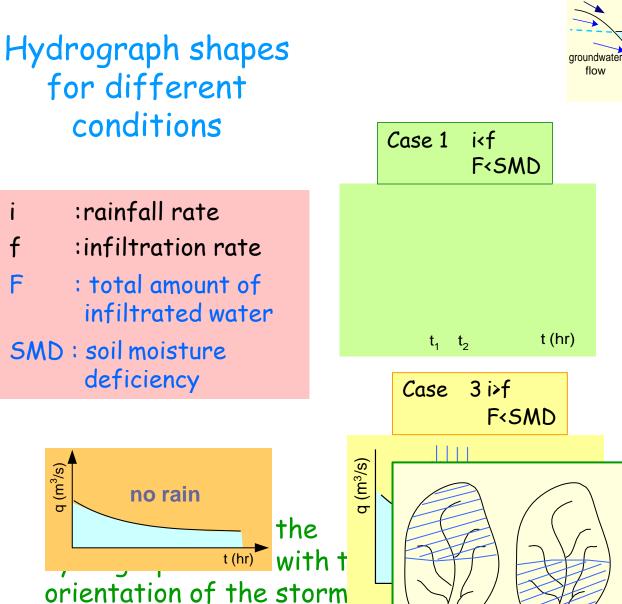
In a rainfall block



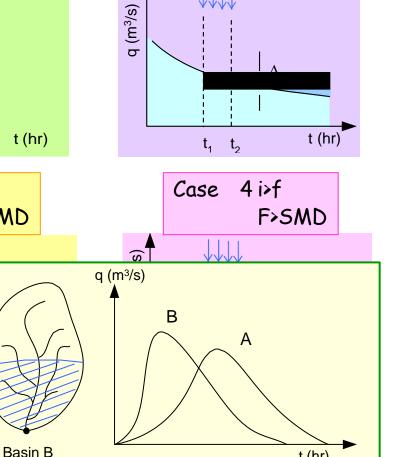
In the channel

Hydrograph


- e Hydrograph → discharge vs time
 (m³/s, lt/s) (min, hr, day, month, yr)
- Sometimes plotted as stage vs time.


The comparison of hydrographs with the corresponding rainfall hyetographs provides a lot of information about the rainfall-runoff relation of the basin.

Hydrograph


The crest of the hydrograph is governed by the duration of rainfall.

- Shape of the rising limb = f(rainfall intensity & basin characteristics s.a. infiltration capacity, shape, slope, etc.)
- Shape of falling limb = f(basin characteristics s.a. depression, surface & subsurface storages)
- Characteristics of the rainfall do not impact the falling limb since recession starts after the end of the rainfall.

Basin A

channel precipitation

Case 2

flow

surface flow

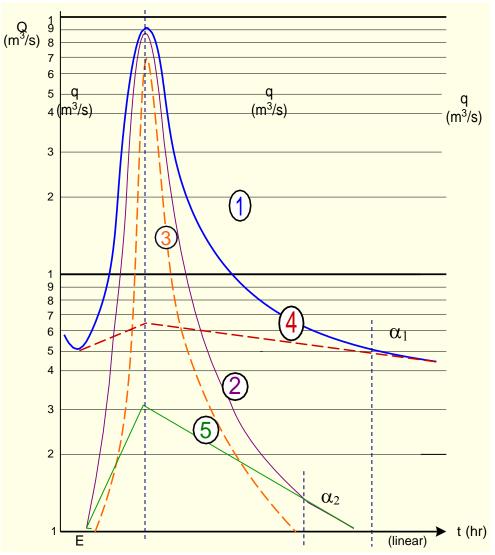
GW

flow

i<f

F>SMD

interflow


groundwater

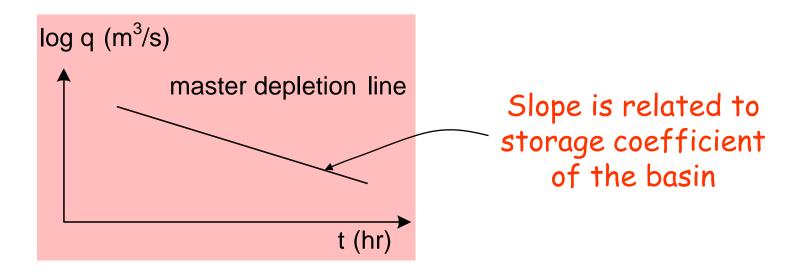
table

Hydrograph Separation Techniques

- Separation line between surface runoff & baseflow is not definite & varies widely depending on the existing conditions.
- Inaccuracies in separation are not very important for many storms, since the max. rate of discharge is only slightly affected by the base flow.
- @ Methods for seperation:
 - Simple Method
 - Approximate Method
 - Barnes (Semi-log) Method

Seperation Methods

1. Barnes (Semi-log) Method


Total flow (SF+SSF+BF) (1 $q = q_0 e^{-\alpha_1 t}$ Base flow (BF) (4) (SF+SSF) (1) – (4) (2) $q = q_0 - \alpha_2 t$ (5) Subsurface flow(SSF) Surface flow (SF) (2) - (5) $(\mathbf{3})$

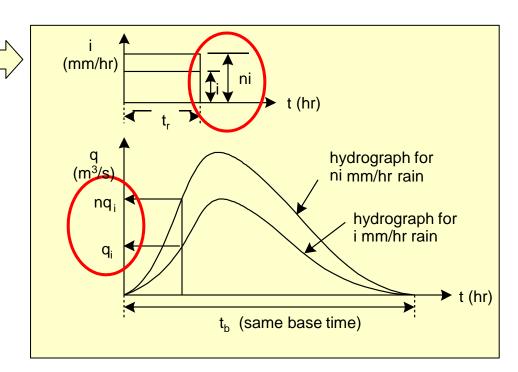
Master depletion curve (representative depletion curve)

$$q = q_0 e^{-\alpha t}$$

$$\log q = \log q_0 - t \alpha \log e$$

$$y = a + bx \text{ (straight line on semi-log paper)}$$

Unit Hydrograph (UH) Theory

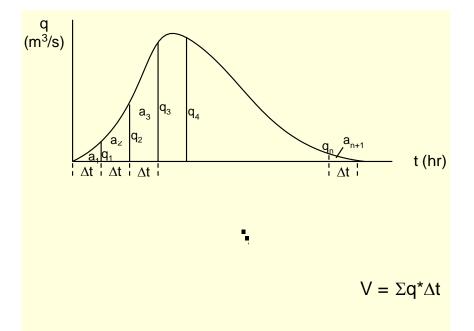

- Hydrograph of surface runoff (direct runoff) resulting from 1 cm of excess rainfall which is uniformly distributed over basin area at a uniform rate during a specified period of time.
- Q Depth = 1 mm for arid or semi-arid regions or if basin is small.
- @ Given by Sherman in 1932.
- It is assumed that the UH is representative for the runoff process of a basin.
- @ Baseflow should be separated from total flow to find direct runoff, and all the losses should be subtracted from total precipitation before any analysis.

Unit Hydrograph (UH) Theory

- OH assumptions:
 - 1. Excess rainfall is uniformly distributed within a specified period of time.
 - 2. Excess rainfall is uniformly distributed over the basin area.
 - 3. Base time of direct runoff is constant for a specified duration of rainfall.
 - 4. Ordinates of direct runoff hydrograph are directly proportional to the total amount(depth) of direct runoff (= depth of excess rainfall) for the same duration rainfalls.
 - 5. Unit hdrograph is unique for a basin.

1. Linearity assumption

(Principle of superposition, Principle of proportionality)



2. Principle of time-invariance

When basin characteristics change \rightarrow UH changes

Unit Hydrograph

@ The unit hydrograph is denoted as dUH_t (d in cm, t in hr)
 @ The depth of flow for a hydrograph → the area under the hydrograph.

$$d = \frac{V}{A} = \frac{\int q \, dt}{A} = \frac{\sum q * \Delta t}{A}$$

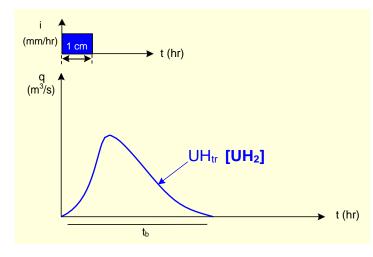
 $\sum q =$ sum of ordinates of the hydrograph (m³/s)

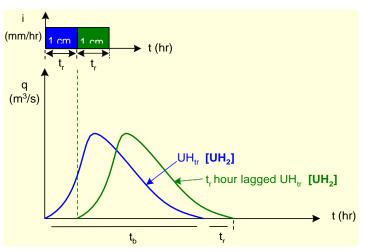
$$d_t = time interval (s)$$

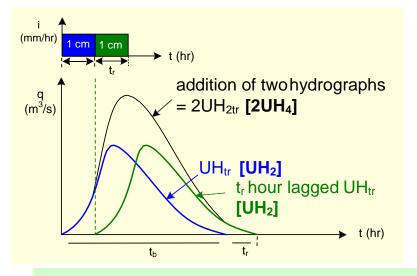
A = basin area
$$(m^2)$$

$$d = depth(m)$$

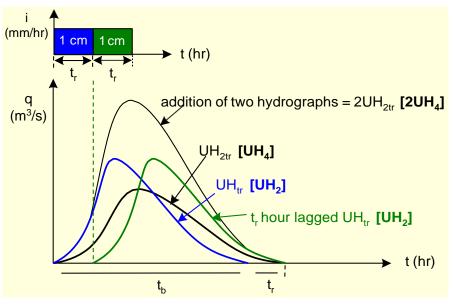
Figure 7.18 Determination of volume of runoff

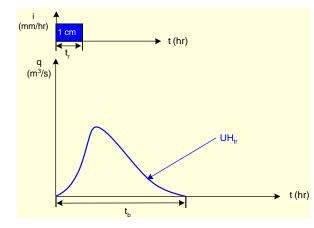

Unit Hydrographs of Different Durations

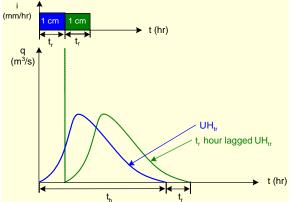

- There are 2 methods to obtain UHs of different durations for a basin when a UH of certain duration is known
 - The lagging method
 - S-curve method

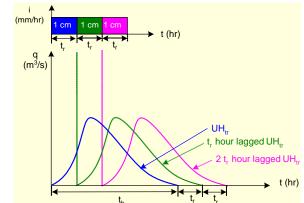

The Lagging Method

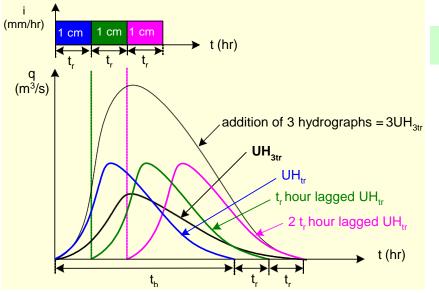
- Q A UH of certain duration can easily be obtained by using the lagging method if a UH of different duration is known for the basin.
- The only condition is that the durations be multiples of each other.


HYDROGRAPH ANALYSIS - lagging method

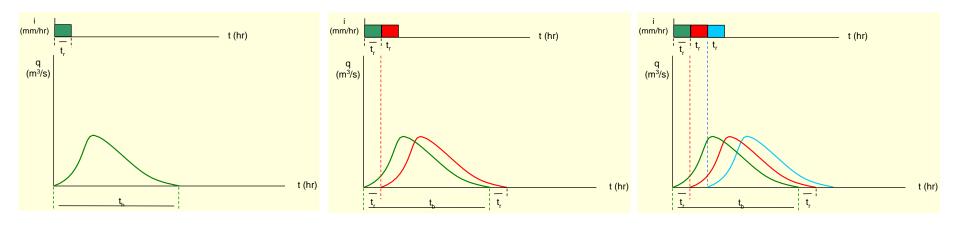


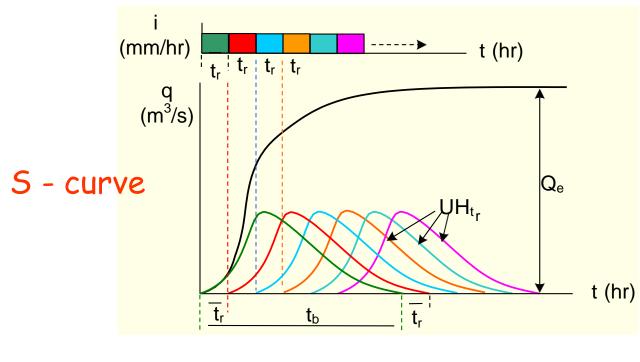



 UH_2 + (2 hr lagged) UH_2 = $2UH_4$



HYDROGRAPH ANALYSIS - lagging method


 UH_t + (t hr. lag) UH_t + (2t hr.lag) UH_t =3 UH_{3t}


As
$$t_r$$
 tes $q_p \downarrow es$
 t_p tes t_b tes

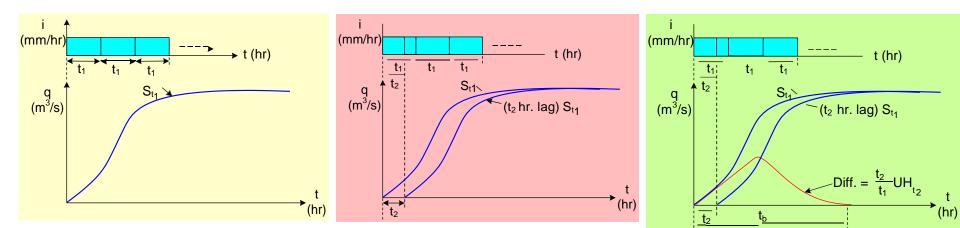
The S-Curve Method

- It is used to obtain UHs of different durations that are not multiples of each other.
- S-curve is the hydrograph that would result from an infinite series of UHs of t_r durations, each delayed t_r hours wrt the preceding one.
- In other words, it is the hydrograph of the runoff of continuous rainfall with an intensity of 1/t_r.
- S-curve has the form of a mass curve, the discharge of the basin becoming constant after the time of concentration.
- Thus each S-curve is unique for a specified UH duration, in a particular drainage basin.

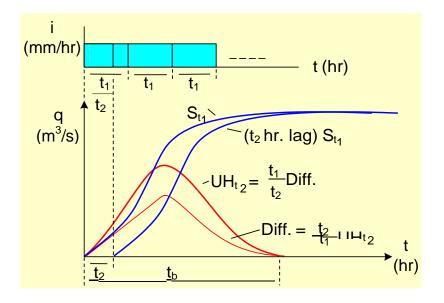
S - Curve

$$n = t_b/t_r$$

 $Q_e = i * A (mm/hr * km^2)$
 $Q_e = d/t_r * A = 1/t_r * A$
 $(d= 1 \text{ cm})$

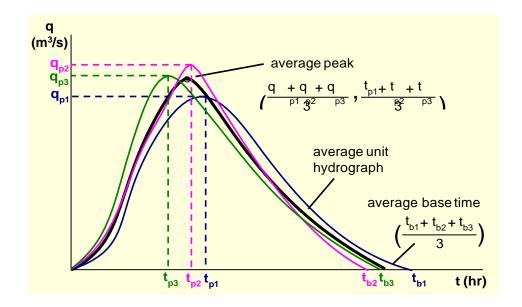

$$Q_{e} = 2.78 \frac{A}{t_{r}}$$

Q_e = constant outflow (m³/s) A = area of basin (km²) t_r = duratio of UH (hr)


S - Curve

- Q There may be fluctuations around the constant flow Q_e due to a number of reasons.
 - One of them may be the duration of effective precipitation, t_r.
 - It may be shorter or longer than the actual effective precipitation duration with uniform intensity.
 - Another one may be the uneven distribution of rainfall in the basin or nonlinearities in the system.

Obtaining UH using S-curve $(t_2 < t_1)$


Diff. =
$$S_{t1} - (t_2 \text{ h.l.}) S_{t1}$$

Diff. = $(t_2 \cdot 1/t_1) UH_{t2} = t_2/t_1 UH_{t2}$
 $UH_{t_2} = \frac{t_1}{t_2} [s_{t_1} - (t_2 \text{ hr. lag}) s_{t_1}]$

- Q 7. Determine the representative UH for the basin by averaging
 - the peak flows,
 - times to peak, and
 - time bases of the UHs.

The average UH is then sketched following the shapes of the individual hydrographs.

8. Adjust the area under the curve to unit depth.

Example UH_1 of a basin is given.

Determine UH_2 , UH_3 and area of this basin by lagging method

	Time (hr)	UH1 m³/	1 hr.lag UH1	2UH	UH	2 hr.lag UH1	3UH₃	UH		
	0	0	1	0	0	· · · · ·		3		
	1	12		12	6		0	0		
	2	36	0	48	24		12	4		
	3	24	12	60	30	0	48	16		
	4	18	36	42	21	12	72	24		
	5	12	24	30	15	3	78	26		
	6	6		18	9	<u> </u>			-	
	7	0	18	6	3		54	18		
	8		12	0	0	4 18	36	12		
	9		6			12	18	6		
			0			6	6	2		
						0	0	0		
	Σq	108			108			108	•	
				l	$\Sigma q^* \Delta t$. A	Σq^*			
$UH_1 + (1 \text{ hr. lag}) UH_1 = 2 UH_2 \qquad \qquad d = \frac{\sum q^* \Delta t}{A} \rightarrow A = \frac{\sum q^* \Delta t}{A}$										
U + (1 hr aa) U + (2 hr aa) U = 2 U										
	. (. lug, off	1 ' (~ '''. ''	$108*1*3600 = 38.88*10^6 \text{ m}^2$						

 $A = \frac{108*1*3600}{0.01} = 38.88*10^6 \text{ m}^2 = 38.88 \text{ km}^2$

Δt

Example UH_1 of a basin is given.

Determine UH₂ and UH₃ of this basin by S-curve method

t (hr)	UH1	1 h.l UH ₁	2 h.l UH ₁	3 h.l UH ₁	4 h.l UH ₁	5 h.l UH1	6 h.l UH1	S ₁	2 h.l S ₁	dif f	UH	3 h.l S ₁	dif f	UH ₃
0	0							0		0	0		0	0
1	12	0						12		12	6		12	4
2	36	12	0					48	0	48	24		48	16
3	24	3	12	0				72	12	60	30	0	72	24
4	18	2	36	12	0			90	48	42	21	12	78	26
5	12	18	24	36	12	0		102	72	30	15	48	54	18
6	6	12	18	24	36	12	0	108	90	18	9	72	36	12
7	0	6	12	18	24	36	12	108	102	6	3	90	18	6
8		0	6	12	18	24	36	108	108	0	0	10 2	6	2
9			0	6	12	18	24	108	108			10	0	0

$$\begin{array}{ll} \mathsf{VH} = \frac{1}{2} \begin{bmatrix} \mathsf{S} - (2 \, \mathrm{hr.lag}) \, \mathsf{S} \end{bmatrix} & \mathsf{UH} = \frac{1}{3} \begin{bmatrix} \mathsf{S} - (3 \, \mathrm{hr.lag}) \, \mathsf{S} \end{bmatrix} \\ \mathsf{H} = \mathsf{T} & \mathsf{H} = \mathsf$$

UH_{t₂} = $\frac{t_1}{t_2} [s_{t_1} - (t_2 \text{ hr. lag}) s_{t_1}]$

Synthetic Unit Hydrograph

- Snyder Method
- e SCS Method

(developed by Soil Conservation Services, 1957)

- e Espey Method
- Mockus Method
- OSİ Synthetic Unit Hydrograph Method
- Time Area Method