Demyelinating Disorders of Central Nervous System

Amber Eker, MD Assistant Professor Near East University Department of Neurology

What is multiple sclerosis?

• Chronic, immune mediated demyelinating disease of central nervous system

Myelin

- The myelin sheath is a greatly extended and modified plasma membrane wrapped around the nerve axon in a spiral fashion
- The myelin membranes originate from and are a part of the Schwann cells in the peripheral nervous system (PNS) and the oligodendroglial cells in the central nervous system (CNS)

Peripheral nervous system myelination

Central nervous system myelination

Content of myelin:

- Water 40%
- Lipid (70 to 85% of dry mass)
- Protein (15 to 30% of dry mass)
- Cerebroside, also known as galactosylceramide, is the most typical lipid of myelin
- Myelin/Oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), myelin associated glycoprotein (MAG) and proteolipid proteins (PLP) are most important myelin proteins. Antigenic targets.

Myelin Function

Myelin;

- Increases the conduction of impulses
- Protects axons from injury
- Contains growth factors for axonal survive

Central nervous system (brain and spinal cord)

In multiple sclerosis the myelin sheath, which is a covering that wraps around the axon, is destroyed with inflammation and scarring

Multiple Sclerosis: Pathology

Inflammation and Eudema

Demyelination and Remyelination

Axonal Loss / Neurodegeneration

Multiple means its influence multiple areas in CNS and **sclerosis** means scarring

Immun Myelin Damage Mechanism in Multiple Sclerosis

➢ Proteins of the myelin sheath, oligodendrocytes and neurons are possible targets of the immune response in multiple sclerosis.

Genetic and environmental factors may facilitate autoreactive T cells

Also up-regulate the expression of endothelial adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1), vascular-cell adhesion molecule 1 (VCAM-1), and E-selectin

MMP's help penetration of T cells into the central nervous system.

Proinflammatory cytokines such as Interferon γ and tumor necrosis factor β (TNF β) released by activated T cells

This cytokines up-regulate the expression of cell-surface molecules on neighboring lymphocytes and antigenpresenting cells.

Antigen-presenting cells make complexes with antigens (myelin proteins, MOG, MBP, MAG) and T cell receptor

Enhanced cytokine response -> *Cytokine mediated injury*

Cytokines from T cells activate B cell response and antibody syntesis

Antibody mediated injury;

digestion of surface myelin antigens by macrophages, including binding of antibodies against myelin and oligodendrocytes (complementmediated injury)

Direct injury of oligodendrocytes by CD4+ and CD8+ T cells

Pattern I Demyelination

T-cells CD4-Th₁ CD4-Th₂ CD8

Macrophage mediated

Pattern II Demyelination

T-cells CD4-Th₁ CD4-Th₂ CD8

Antibody mediated

Pattern III Demyelination

T-cells CD4-Th₁ CD4-Th₂ CD8

> Distal oligodendrogliopathy & apoptosis

Pattern IV Demyelination

Multiple sclerosis: a two-stage disease

Multiple Sclerosis: Pathology

Inflammation and Eudema

Demyelination and Remyelination

Axonal Loss / Neurodegeneration

Multiple Sclerosis: Pathology

Inflammatory cells and myelin loss in plaques

A-B: Axonal damage C: Remyelination

Epidemiology

- ➢Common between 15-45 ages
- Symptom initiation age;
 - ≻70% between 20-40 yo
 - ➢ 10% <20y, 20% >40y
- ≻F:M = 2:1
- ➤The prevalence of multiple sclerosis varies considerably around the world

Common in Northern countries

Symptoms and Clinical Findings

Multiple Sclerosis: Clinical Manifestations

Sign and Symptoms

• Lhermitte's sign: Trunk and limb paresthesias evoked by neck flexion

• Uhthoff 's phenomenon : Worsening with increases in body temperature

Expanded Disability Status Scale (EDSS) The EDSS measures the physical, especially the ambulatory, disability of patients with MS, and is the most frequently used disability scale in MS

Disease course

Relapsing-Remitting MS

> 80- 85% of patients have RRMS type course initially

Complete/nearly complete recovery after acute attact

➢No progression between attacts

Progression to SPMS ; %25 in 10, %90 in 25 years

Primary Progressive MS

10-15% of patientsProgression from onset

Other Forms

Benign Form

20% of patients

Subtype of RRMS

Minor disability (EDSS≤3)after 10 years from onset

Malignant/Fulminant MS

Progression to severe disability or death within few months from onset.

Magnetic Resonans Imaging

• Perivenulear inflammation

Dawson's Fingers

Spinal plaque

Optic neuritis

Cerebellar plaque

 Initial lesions arise around small veins. This is reflected by the perivenous orientation of demyelinated lesions in *multiple sclerosis*.

 Common lesion areas : Lateral ve 4. ventricle neighborhood, corpus callosum, optic nerve,, corticomedullary junction, brain stem subpial part, spinal cord dorsal column

Plaque

Evaluation

Multiple Sclerosis: Diagnostic Tests-Spinal Fluid

2010 Revised McDonald Diagnostic Criteria for MS

Diagnosis of MS requires elimination of more likely diagnoses and demonstration of *dissemination of lesions in space and time*

CLINICAL	LESIONS	ADDITIONAL CRITERIA TO MAKE DX
(ATTACKS)		
2 or more	Objective clinical evidence of 2 or more lesions or objective clinical evidence of 1 lesion with reasonable historical evidence of a prior attack	None. Clinical evidence alone will suffice; additional evidence desirable but must be consistent with MS
2 or more	Objective clinical evidence of 1 lesion	 Dissemination in space, demonstrated by ≥ 1T2 lesion in at least two MS typical CNS regions (periventricular, juxtacortical, infratorial, spinal cord); OR Await further clinical attack implicating a different CNS site

2010 Revised McDonald Diagnostic Criteria for MS

Diagnosis of MS requires elimination of more likely diagnoses and demonstration of *dissemination of lesions in space and time*

1	Objective clinical evidence of 2 or more lesions	 Dissemination in time, demonstrated by Simultaneous asymptomatic contrast-enhancing and non-enhancing lesions at any time ; OR A new T2 and/or contrast-enhancing lesions(s) on follow-up MRI, irrespective of its timing; OR Await a second clinical attack
1	Objective clinical evidence of 1 lesion	 Dissemination in space, demonstrated by ≥ 1T2 lesion in at least two MS typical CNS regions (periventricular, juxtacortical, infratentorial, spinal cord); OR Await further clinical attack implicating a different CNS site AND Dissemination in time, demonstrated by Simultaneous asymptomatic contrast-enhancing and non-enhancing lesions at any time; OR A new T2 and/or contrast-enhancing lesions(s) on follow-up MIR, irrespective of its timing; OR Await a second clinical attack

2010 Revised McDonald Diagnostic Criteria for MS

Diagnosis of MS requires elimination of more likely diagnoses and demonstration of *dissemination of lesions in space and time*

T2
1
on ≥2

Further Information on Diagnosing MS

What Is An Attack?

- Neurological disturbance of kind seen in MS
- Subjective report or objective observation
- At least 24 hours duration in absence of fever or infection
- Excludes pseudoattacks, single paroxysmal symptoms (multiple episodes of paroxysmal symptoms occurring over 24 hours or more are acceptable as evidence)
- Some historical events with symptoms and pattern typical for MS can provide reasonable evidence of
 previous demyelinating event(s), even in the absence of objective findings

Determining Time Between Attacks

• 30 days between onset of event 1 and onset of event 2

Further Information on Diagnosing MS

What Provides Evidence for Dissemination in Space?²

 \geq <u>1 T2 lesion</u> in at least <u>two out of four areas of the CNS</u>: periventricular, juxtacortical, infratentorial, or spinal cord

- Gadolinium enhancement of lesions is not required for DIS
- If a subject has a brainstem or spinal cord syndrome, the symptomatic lesions are excluded and do
 not contribute to lesion count

What Provides MRI Evidence of Dissemination in Time?³

- A new T2 and/or gadolinium-enhancing lesion(s) on follow-up MRI, with reference to a baseline scan, irrespective of the timing of the baseline MRI OR
- Simultaneous presence of asymptomatic gadolinium-enhancing and non-enhancing lesions at any time

What is Positive CSF?

Oligoclonal IgG bands in CSF (and not serum) or elevated IgG index

Good and Bad Prognostic Features

+	-
*Low lesion number in MRI	*Progressive course from the onset
* Long first remission period	*Short period between first two attact
	*Frequent relapses in the first two years
* Predominantly sensory	 Presenting with motor or cerebellar findings
symptoms and optic neuritis	*Spinal cord involvement *Male sex

TABLE 1. DIFFERENTIAL DIAGNOSIS OF MULTIPLE SCLEROSIS.

Metabolic disorders

Disorders of B₁₂ metabolism* Leukodystrophies

Autoimmune diseases

Sjögren's syndrome, systemic lupus erythematosus, Behçet's disease, sarcoidosis, chronic inflammatory demyelinating polyradiculopathy associated with central nervous system demyelination, antiphospholipid-antibody syndrome

Infections[†]

HIV-associated myelopathy* and HTLV-1-associated myelopathy,* Lyme disease, meningovascular syphilis, Eales' disease

Vascular disorders

Spinal dural arteriovenous fistula* Cavernous hemangiomata Central nervous system vasculitis, including retinocochlear cerebral vasculitis Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

Genetic syndromes

Hereditary ataxias and hereditary paraplegias* Leber's optic atrophy and other mitochondrial cytopathies

Lesions of the posterior fossa and spinal cord Arnold-Chiari malformation, nonhereditary ataxias

Spondylotic and other myelopathies*

Psychiatric disorders

Conversion reaction, malingering

Neoplastic diseases

Spinal cord tumors,* central nervous system lymphoma Paraneoplastic disorders

Variants of multiple sclerosis‡

Optic neuritis; isolated brain-stem syndromes; transverse myelitis; acute disseminated encephalomyelitis, Marburg disease; neuromyelitis optica

Treatment

- Acute attact treatment
 - Steroids
 - Administered intravenously on a daily basis for 3 to 5 days at a dose of 1 g
 - Plasmapheresis
- Disease-modifying treatments
 - Immunomodulatory treatments
 - Immunosuppressive treatments

Targets: Blood-brain barrier, myelin proteins, inflamatory cytokins, T and B cells

TABLE 2. CURRENT TREATMENTS FOR MULTIPLE SCLEROSIS.

TYPE OF MULTIPLI Sclerosis or Relapse	e Agent	Dose	Known or Possible Benefits of Treatment	UNKNOWN EFFECTS OR ASPECTS OF TREATMENT
Relapsing- remitting	Interferon beta-1b (Betaseron)	8 million IU subcuta- neously every other day	Reduces rate of clinical relapse Reduces the development of new lesions on MRI Delays the increase in the volume of lesions on MRI	Ability to delay progression of disability Duration and clinical significance of benefit Mechanism of action Most effective dose and route of administration Frequency and clinical significance of the forma-
	Interferon beta-1a (Avonex) High-dose interfer-	 30 μg intramuscularly once weekly 22 or 44 μg subcutane- 	Reduces rate of clinical relapse May delay progression of disability Reduces the development of new lesions on MRI Delays the increase in the volume of lesions on MRI Possible dose-related benefit in pa-	tion of neutralizing antibodies Whether the effect on disability is clinically mean ingful and sustained Duration and clinical significance of benefit Mechanisms of action Most effective dose and route of administration Frequency and clinical significance of the forma- tion of neutralizing antibodies
	on beta-1a (Rebif)*	ously every other day	tients with more severe disabilities	
	Glatiramer acetate (Copaxone)	20 µg subcutaneously daily	Reduces rate of clinical relapse Moderately reduces the develop- ment of new lesions on MRI	Effect on the progression of disability Duration and clinical significance of benefit Mechanism of action
	Immune globulin	0.15–0.2 g/kg of body weight intra- venously monthly for 2 yr	Reduces rate of clinical relapse May delay progression of disability	Most effective dose and route of administration Whether progression of disability is actually de- layed, as measured by a second evaluation in 3 mo Effect on the number and volume of lesions, as assessed by MRI Duration and clinical significance of benefit Mechanism of action Most effective dose and route of administration

TABLE 2. CURRENT TREATMENTS FOR MULTIPLE SCLEROSIS.

Secondary progressive	Interferon beta-1b (Betaferon)	8 million IU subcuta- neously every other day	Reduces rate of clinical relapse May reduce progression of dis- ability regardless of relapse status (recent or current) [†] Delays the increase in the volume of lesions on MRI	Whether progression of disability is actually de- layed, and if so, for how long and to what effect Mechanism of action Most effective dose and route of administration Frequency and clinical significance of the forma- tion of neutralizing antibodies
	Mitoxantrone hydrochloride	5 or 12 mg/m ² of body-surface area intravenously every 3 mo for 2 yr	Reduces rate of clinical relapse Delays progression of disability Reduces activity evident on MRI	Duration of benefit Most effective dose Dose-dependent risk of cardiac toxicity
	Natalizumab	Humanized that is sp integrin, an expressed lymphocytes cells.	monoclonal antibody becific for alpha-4 adhesion molecule on activated T and other immune	Progressive multifocal leukoencephaolpathy (PML) due to an CNS infection with JC virus

Cyclophosphamide

Rituximab

TABLE 2. CURRENT TREATMENTS FOR MULTIPLE SCLEROSIS.

Primary progressive	Azathioprine			
Acute relapses	Corticosteroids	Various doses (see text)	Hastens clinical recovery Transiently restores blood–brain barrier on MRI	Duration and clinical significance of benefit Effect on progression of disability Mechanism of action Most effective agent, dose, and route of adminis- tration Why responsiveness to corticosteroids declines over time
	Plasma exchange	Seven exchanges of one plasma volume on alternate days	Enhances recovery of relapse-relat- ed neurologic deficits in patients with no response to high-dose corticosteroids	Effect on recurrent disease Duration of effect Mechanism of action

New treatments & Investigations

- Humanized monoclonal antibodies
 - Alemtuzumab
 - Daclizumab
- Oral agents
 - Fingolimod
 - Cladribine
 - Laquinimod
 - Fumarate
 - Teriflunamid

Treatment of Complications

- Fatigue ; amantadine and energy-conservation strategies.
- **Spasticity**; Baclofen, Tizanidine
- **Paroxysmal events**; Carbamazepine and phenytoin, acetazolamide, gabapentin, and pergolide.
- Tremor; Medical , surgical treament
- Neurogenic bladder and bowel disturbances
- Depression , mood and sleep disorders
- Problems with **gait**, **speech** and **swallowing** disorders;multidisciplinary approach with specialists in physical medicine and rehabilitation.

Natural Progression of MS

Other Demyelinating Disorders

- Acute Disseminated Encephalomyelitis (ADEM)
- Neuromyelitis Optica (Devic's Disease)
- Marchiafava-Bignami Disease
- Central Pontine Myelinolysis
- Balo's Concentric Sclerosis
- Demyelinisation in Connective Tissue Diseases (SLE, Sjogren Disease, Neurobehcet Disease)
- Ischemic demyelination
- Progressive multifocal leukoencephalopathy (PML)
- Leukodystrophies

Acute Disseminated Encephalomyelitis (ADEM)

- Nonvasculitic inflammatory demyelinating condition
- Usually occurs following a viral infection but may appear following vaccination or other infections. Within 6 days-6 weeks.
- Typically a monophasic disease of prepubertal children. Also observed in adults.
- Multiple inflammatory lesions in the brain and spinal cord, particularly in the white matter.
- Because of cross reaction of infectious antigens and myelin antigens.

Acute Disseminated Encephalomyelitis (ADEM)

ADEM

Figure 3 Clinical and investigation differences between ADEM and MS (trends only). *MR lesions other than white matter.

Neuromyelitis Optica (Devic's Disease)

- Optic nerves and spinal cord inflammation
- AQP4 antibodies in %60

Demyelinisation in Connective Tissue Diseases

Marchiafava-Bignami Disease

- Cental focal demyelination of corpus callosum
- Usually observed in vitamin B complex deficiencies

Central Pontine Myelinolysis

 Common mecanism is fast correction of hyponatremia /hypernatremia

Balo's Concentric Sclerosis

Progressive multifocal leukoencephalopathy (PML)

- Obseved in immunosuppressive patients
- Human papilloma virus JC virus infects oligodendrocytes and causes demyelination

Leukodystrophies

Adrenoleukodystrophy

Canavan Disease

Pelizaeus-Merzbacher