Chapter 4

Alkanes

NEPHAR 109 Organic Chemistry
 Assist.Prof. Banu Keşanlı

Summary of Important Families of Organic Compounds

	Family						
	Alkane	Alkene	Alkyne	Aromatic	Haloalkane	Alcohol	Ether
Functional group	C-H and C-C bonds		$-\mathrm{C} \equiv \mathrm{C}-$	Aromatic ring			
General formula	RH	$\begin{aligned} & \mathrm{RCH}=\mathrm{CH}_{2} \\ & \mathrm{RCH}=\mathrm{CHR} \\ & \mathrm{R}_{2} \mathrm{C}=\mathrm{CHR} \\ & \mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{RC} \equiv \mathrm{CH} \\ & \mathrm{RC} \equiv \mathrm{CR} \end{aligned}$	ArH	RX	ROH	ROR
Specific example	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	$\mathrm{CH}_{2}=\mathrm{CH}_{2}$	$\mathrm{HC} \equiv \mathrm{CH}$		$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$
IUPAC name	Ethane	Ethene	Ethyne	Benzene	Chloroethane	Ethanol	Methoxymethane
Common name ${ }^{\text {a }}$	Ethane	Ethylene	Acetylene	Benzene	Ethyl chloride	Ethyl alcohol	Dimethyl ether

Summary (cont.) ..

Family									
Amine	Aldehyde	Ketone	Carboxylic Acid	Ester	Amide	Nitrile			
						$-\mathrm{C} \equiv \mathrm{N}$			
$\begin{aligned} & \mathrm{RNH}_{2} \\ & \mathrm{R}_{2} \mathrm{NH} \\ & \mathrm{R}_{3} \mathrm{~N} \end{aligned}$	$\begin{gathered} 0 \\ \\| \\ \mathrm{RCH} \end{gathered}$	$\begin{gathered} 0 \\ \\| \\ R^{\prime} R^{\prime} \end{gathered}$	$\begin{gathered} 0 \\ \\| \\ \mathrm{RCOH} \end{gathered}$	$\begin{gathered} 0 \\ \text { RCOR' }^{\prime} \end{gathered}$		RCN			
$\mathrm{CH}_{3} \mathrm{NH}_{2}$						$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{N}$			
Methanamine	Ethanal	Propanone	Ethanoic acid	Methyl ethanoate	Ethanamide	Ethanenitrile			
Methylamine	Acetaldehyde	Acetone	Acetic acid	Methyl acetate	Acetamide	Acetonitrile			

General Structure of Alkanes, Alkenes and Alkynes

4.2. Shapes of Alkanes

\rightarrow "Straight-chain" alkanes have a zig-zag orientation when they are in their most straight orientation - Often described as saturated hydrocarbons as contain only C and H and have C-C single

\rightarrow Branched alkanes have at least one carbon which is attached to more than two other carbons

Acidity Trends

\rightarrow Acetylenic hydrogens have a pKa of about 25 and are much more acidic than most other C-H bonds

- The relative acidity of acetylenic hydrogens in solution is:

$$
\begin{array}{lccccc}
\mathrm{H}-\stackrel{\mathrm{O}}{\mathrm{O}}>\mathrm{H}-\stackrel{\ddot{\mathrm{O}}}{\mathrm{O}}>\mathrm{H}-\mathrm{C} \equiv \mathrm{CR}>\mathrm{H}-\mathrm{NH}_{2}>\mathrm{H}-\mathrm{CH}=\mathrm{CH}_{2}>\mathrm{H}-\mathrm{CH}_{2} \mathrm{CH}_{3} \\
\mathrm{p} K_{\mathrm{a}} & \mathbf{1 5 . 7} & \mathbf{1 6 - 1 7} & \mathbf{2 5} & \mathbf{3 8} & \mathbf{4 4} \\
\hline
\end{array}
$$

4.3. I UPAC Nomenclature of Alkanes

\rightarrow Before the end of the 19th century compounds were named using nonsystematic nomenclature
\rightarrow These "common" or "trivial" names were often based on the source of the compound or a physical property
\rightarrow The International Union of Pure and Applied Chemistry (IUPAC) started devising a systematic approach to nomenclature in 1892
\rightarrow The fundamental principle in devising the system was that each different compound should have a unique unambiguous name
\rightarrow The basis for all IUPAC nomenclature is the set of rules used for naming alkanes

Nomenclature of Unbranched Alkanes

Name	Number of Carbon Atoms	Structure	Name	Number of Carbon Atoms	Structure
Methane	1	CH_{4}	Heptadecane	17	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{15} \mathrm{CH}_{3}$
Ethane	2	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	Octadecane	18	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CH}_{3}$
Propane	3	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Nonadecane	19	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{77} \mathrm{CH}_{3}$
Butane	4	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$	Eicosane	20	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{18} \mathrm{CH}_{3}$
Pentane	5	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	Heneicosane	21	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{19} \mathrm{CH}_{3}$
Hexane	6	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	Docosane	22	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{20} \mathrm{CH}_{3}$
Heptane	7	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	Tricosane	23	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{21} \mathrm{CH}_{3}$
Octane	8	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$	Triacontane	30	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{28} \mathrm{CH}_{3}$
Nonane	9	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	Hentriacontane	31	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{29} \mathrm{CH}_{3}$
Decane	10	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}$	Tetracontane	40	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{38} \mathrm{CH}_{3}$
Undecane	11	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}_{3}$	Pentacontane	50	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{48} \mathrm{CH}_{3}$
Dodecane	12	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}$	Hexacontane	60	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{58} \mathrm{CH}_{3}$
Tridecane	13	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}$	Heptacontane	70	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{88} \mathrm{CH}_{3}$
Tetradecane	14	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}$	Octacontane	80	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{78} \mathrm{CH}_{3}$
Pentadecane	15	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{13} \mathrm{CH}_{3}$	Nonacontane	90	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{88} \mathrm{CH}_{3}$
Hexadecane	16	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	Hectane	100	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{98} \mathrm{CH}_{3}$

4.3A Nomenclature of Unbranched

 Alkyl Groups\rightarrow The unbranched alkyl groups are obtained by removing one hydrogen from the alkane and named by replacing the -ane of the corresponding alkane with -yl

ALKANE		ALKYL GROUP	ABBREVIATION
$\mathrm{CH}_{3}-\mathrm{H}$	becomes	$\mathrm{CH}_{3}-$	Me-
Methane		Methyl	
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}$	becomes	$\mathrm{CH}_{3} \mathrm{CH}_{2}-$	$\mathrm{Et}-$
Ethane		Ethyl	
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{H}$	becomes	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-$	$\mathrm{Pr}-$
Propane		Propyl	
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{H}$ Butane	becomes	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$	$\mathrm{Bu}-$
Butyl			

I UPAC Nomenclature

Prefix-Parent-Suffix

Where are the substituents?

What family?
(functional group)

How many carbons?
> If two or more identical substituents are present, use one of the multiplier prefixes di-, tri-, tetra-,.

Nomenclature of Branched-Chain Alkanes (I UPAC)
\rightarrow Locate the longest continuous chain of carbons; this is the parent chain and determines the parent name
\rightarrow Number the longest chain beginning with the end of the chain nearer the substituent
\rightarrow Designate the location of the substituent

3-Methylheptane

Substituents

4.3C Nomenclature of Branched Alkyl Chains

\rightarrow Two alkyl groups can be derived from propane

Three-Carbon Groups

1-Methylethyl or isopropyl group

$\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Secondary butyl group (sec-Bu)

Tertiary butyl group (tert-Bu)
\rightarrow The neopentyl group is a common branched alkyl group

$$
\mathrm{CH}_{3}-\left.\right|_{\mathrm{C}} ^{\mathrm{C}} \mathrm{CH}_{3}^{\mathrm{CH}}-\mathrm{CH}_{2}-
$$

2,2-Dimethylpropyl or neopentyl group

Cycloalkanes

Cycloalkanes are saturated compounds consisting of rings of $-\mathrm{CH}_{2}-$ units with a general formula of $\left(\mathrm{CH}_{2}\right)_{n}$

4.4. Nomenclature of Cycloalkanes

- The prefix cyclo- is added to the name of the alkane with the same number of carbons
\rightarrow When one substituent is present it is assumed to be at position one and is not numbered
\rightarrow When two alkyl substituents are present the one with alphabetical priority is given position 1
\rightarrow Numbering continues to give the other substituent the lowest number
\rightarrow Hydroxyl has higher priority than alkyl and is given position 1
\rightarrow If a long chain is attached to a ring with fewer carbons, the cycloalkane is considered the substituent

Isopropylcyclohexane

1-Ethyl-3-methylcyclohexane (not 1-ethyl-5-methylcyclohexane)

4-Chloro-2-ethyl-1-methylcyclohexane (not 1-chloro-3-ethyl-4-methylcyclohexane)

Chlorocyclopentane

2-Methylcyclohexanol

1-Cyclobutylpentane

1,3-Dicyclohexylpropane

4.3D Classification of Hydrogen Atoms

\rightarrow Hydrogens take their classification from the carbon they are attached to

4.3E Nomenclature of Alkyl Halides

- In IUPAC nomenclature halides are named as substituents on the parent chain
- Halo and alkyl substituents are considered to be of equal ranking

- Common nomenclature of simple alkyl halides is accepted by IUPAC and still used

4.4B Bicyclic compounds

\rightarrow Bicyloalkanes contain 2 fused or bridged rings
\rightarrow The alkane with the same number of total carbons is used as the parent and the prefix bicyclo- is used

A bicycloheptane

\rightarrow The number of carbons in each bridge is included

 in the middle of the name in square brackets

8-Methylbicyclo[3.2.1]octane

8-Methylbicyclo[4.3.0]nonane

4.8. Sigma Bonds and Bond Rotation

\rightarrow Ethane has relatively free rotation around the carbon-carbon bond
\rightarrow The staggered conformation has C-H bonds on adjacent carbons as far apart from each other as possible

- The drawing to the right is called a Newman projection

\rightarrow The eclipsed conformation has all C-H bonds on adjacent carbons directly on top of each other

4.12 Conformations of Cyclohexane

\rightarrow The chair conformation has no ring strain

- All bond angles are 109.5° and all C-H bonds are perfectly staggered

4.13 Substituted Cyclohexanes: Axial and

 Equatorial Hydrogen Atoms\rightarrow Axial hydrogens are perpendicular to the average plane of the ring
\Rightarrow Equatorial hydrogens lie around the perimeter of the ring

> The C-C bonds and equatorial C-H bonds are all drawn in sets of parallel lines
-The axial hydrogens are drawn straight up and down

\rightarrow Methyl cyclohexane is more stable with the methyl equatorial as the axial methyl has an unfavorable 1,3-diaxial interaction with axial C-H bonds 2 carbons away

(less stable)

(a)
(b)

(2)
(more stable by $7.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$)

4.14 Disubstitued Cycloalkanes

->Can exist as pairs of cis-trans stereoisomers Cis: groups on same side of ring Trans: groups on opposite side of ring

trans-1,4-Dimethylcyclohexane

4.18 Synthesis of Alkanes

- Hydrogenation of Alkenes and Alkynes

General Reaction

Alkane

Alkene

Alkyne

Alkane

2-Methylpropene
Isobutane

4.18A Reduction of Alkyl Halides

or*

$$
\begin{gathered}
\mathrm{R}-\mathbf{X}+\mathrm{Zn}+\mathbf{H X} \longrightarrow \mathrm{R}-\mathrm{H}+\mathrm{ZnX}_{2} \\
\mathrm{R}-\mathbf{X} \xrightarrow[\left(-\mathrm{ZnX} \mathrm{X}_{2}\right)]{\mathrm{Zn}, \mathrm{XX}} \mathrm{R}-\mathrm{H}
\end{gathered}
$$

sec-Butyl bromide

Butane (2-bromobutane)

4.18C Alkylation of Terminal Alkynes

\rightarrow Alkynes can be subsequently hydrogenated to alkanes

Reactivity of Alkanes

> Alkanes have strong C-C, C-H bonds > Show slight affinity for chemical reactions

Combustion Reaction

$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+890 \mathrm{~kJ} / \mathrm{mol}$

Halogenation under UV light

$$
\mathrm{CH}_{4}+\mathrm{Cl}_{2} \xrightarrow{h v} \mathrm{CCl}_{4}+\mathrm{HCl}
$$

