Chapter 5

Stereochemistry

NEPHAR Organic Chemistry Assist.Prof. Banu Keşanlı

5.1 Isomerism: Constitutional Isomers and Stereoisomers

 Stereoisomers are isomers with the same molecular formula and same connectivity of atoms but different arrangement of atoms in space

SUBDIVISION OF ISOMERS

ISOMERS

(Different compounds with same molecular formula)

Constitutional isomers

(Isomers whose atoms have a different connectivity)

Stereoisomers

(Isomers that have the same connectivity but that differ in the arrangement of their atoms in space)

Enantiomers

(Stereoisomers that are nonsuperposable mirror images of each other)

Diastereomers

(Stereoisomers that are not mirror images of each other)

Example of Enantiomers : Lactic acid

Example Diastereomers : cis and trans double bond isomers

5.2 Enantiomers and Chiral Molecules

Chiral molecule

- Not superposable on its mirror image
- Can exist as a pair of enantiomers

Pair of enantiomers

• A chiral molecule and its mirror image

Achiral molecule

Superposable on its mirror image

Chiral Molecule

- A molecule with a single tetrahedral carbon bonded to four different groups will always be chiral
- A molecule with more than one tetrahedral carbon bonded to four different groups is not always chiral
- Switching two groups at the tetrahedral center leads to the enantiomeric molecule in a molecule with one tetrahedral carbon

Stereogenic Center

 An atom bearing groups of such nature that an interchange of any two groups will produce a stereoisomer

 Carbons at a tetrahedral stereogenic center are designated with an asterisk (*)
 Example: 2-butanol

Example: 2-butanol

- I and II are mirror images of each other (figures a and b)
- I and II are not superposable and so are enantiomers (figure c)
- 2-butanol is a chiral molecule

Example: (2-propanol) example of achiral? Need to have 4 different substituent. Not chiral

5.3 The Biological Importance of Chirality

The binding specificity of a chiral receptor site for a chiral molecule is usually only favorable in one way

5.5 Tests for Chirality: Planes of Symmetry

- An imaginary plane that bisects a molecule in such a way that the two halves of the molecule are mirror images of each other
- A molecule with a plane of symmetry cannot be chiral

→Example

2-chloropropane (a) has a plane of symmetry but 2-chlorobutane (b) does not

5.6 Nomenclature of Enantiomers: The *R*,*S* System

- Also called the Cahn-Ingold-Prelog system
- The four groups attached to the stereogenic carbon are assigned priorities from highest (a) to lowest (d)
- Priorities are assigned as follows
 - Atoms directly attached to the stereogenic center are compared
 - Atoms with higher atomic number are given higher priority
 - If priority cannot be assigned based on directly attached atoms, the next layer of atoms is examined

Example

The molecule is rotated to put the lowest priority group back

S

If the groups descend in priority (a,b then c) in clockwise direction the enantiomer is R

If the groups descend in priority in counterclockwise direction the enantiomer is

• Problem: Are A and B identical or enantiomers?

Manipulate B to see if it will become superposable with A

Exchange 2 groups to try to convert B into A

- One exchange of groups leads to the enantiomer of B
- > Two exchanges of groups leads back to B

5.7 Properties of Enantiomers: Optical Activity

- Enantiomers have almost all identical physical properties (melting point, boiling point, density)
- However enantiomers rotate the plane of plane-polarized light in equal but opposite directions

The specific rotation of the two pure enantiomers of 2-butanol are equal but opposite

 There is no straightforward correlation between the R,S designation of an enantiomer and the direction [(+) or (-)]in which it rotates plane polarized light

Racemic mixture

A 1:1 mixture of enantiomers
No net optical rotation
Often designated as (<u>+</u>)

(\pm) -2-butanol or as (\pm) -CH₃CH₂CHOHCH₃

Racemic Forms and Enantiomeric Excess

 Often a mixture of enantiomers will be enriched in one enantiomer

One can measure the enantiomeric excess (ee)

 Example : The optical rotation of a sample of 2butanol is +6.76°. What is the enantiomeric excess?

Enantiomeric excess = $\frac{+6.76^{\circ}}{+13.52^{\circ}} \times 100 = 50\%$

5.9 The Synthesis of Chiral Molecules Most chemical reactions which produce chiral molecules produce them in racemic form

Molecules with More than One Stereogenic Center

 The maximum number of stereoisomers available will not exceed 2ⁿ, where n is equal to the number of tetrahedral stereogenic centers

 There are two pairs of enantiomers (1, 2) and (3,4)

Enantiomers are not easily separable so 1 and 2 cannot be separated from each other

- Diastereomers: stereoisomers which are not mirror images of each other
 - For instance 1 and 3 or 1 and 4
 - Have different physical properties and can be separated

Meso Compound

achiral despite the presence of stereogenic centers

- Not optically active
- Superposable on its mirror image
- Has a plane of symmetry

Example for Meso Compounds

Fischer Projection Formulas

- A 2-dimensional representation of chiral molecules
 - Vertical lines represent bonds that project behind the plane of the paper
 - Horizontal lines represent bonds that project out of the plane of the paper

6.9 The Stereochemistry of S_N2 Reactions

- Stereochemistry can be controlled in S_N2 reactions
- Backside attack of nucleophile results in an inversion of configuration

Enantiomeric purity = 100%

Enantiomeric purity = 100%

6.13 The Stereochemistry of S_N1 Reactions
 When the leaving group leaves from a stereogenic center of an optically active compound in an S_N1 reaction, racemization will occur

 This is because an achiral carbocation intermediate is formed

Racemization: transformation of an optically active compound to a racemic mixture

- Relating Configurations through Reactions in which No Bonds to the Stereogenic Carbon are Broken
 - A reaction which takes place in a way that no bonds to the stereogenic carbon are broken is said to proceed with *retention of configuration*

Example of Importance of Enantiomers in Drugs

The two enantiomers of thalidomide: (S)-thalidomide (R)-thalidomide

Thalidomide is racemic – it contains both leftand right-handed isomers in amounts. The (*R*) enantiomer is effective against morning sickness. The (*S*) is teratogenic and causes birth defects