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Abstract

Almost four decades ago, Konhauser introduced and studied a pair of biorthogonal polynomials

Yα
n (x;k) and Zα

n (x;k)
(
α > −1; k ∈ N := {1,2,3, . . .}),

which are suggested by the classical Laguerre polynomials. The so-called Konhauser biorthogonal polyno-
mials Zα

n (x;k) of the second kind were indeed considered earlier by Toscano without their biorthogonality
property which was emphasized upon in Konhauser’s investigation. Many properties and results for each
of these biorthogonal polynomials (such as generating functions, Rodrigues formulas, recurrence relations,
and so on) have since been obtained in several works by others. The main object of this paper is to present a
systematic investigation of the general family of q-biorthogonal polynomials. Several interesting properties
and results for the q-Konhauser polynomials are also derived.
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1. Introduction and definitions

Motivated essentially by an earlier study on biorthogonal polynomials by Preiser [9],
Joseph D.E. Konhauser (1924–1992) [5] investigated two sets of polynomials {Rn(x)}∞n=0 and
{Sn(x)}∞n=0, which satisfy the following extension of the usual orthogonality condition:

b∫
a

ρ(x)Rm(x)Sn(x) dx =
{

0 (m �= n)

�= 0 (m = n)

(
m,n ∈ N0 := N ∪ {0}), (1.1)

where ρ(x) is an admissible weight function over an interval (a, b), and Rm(x) and Sn(x) are
polynomials of degrees m and n, respectively, in the basic polynomials r(x) and s(x), both of
which are polynomials in x. The polynomials Rm(x) and Sn(x) are called biorthogonal with
respect to the weight function ρ(x) over the interval (a, b). In fact, Konhauser [5] showed that
the condition (1.1) is equivalent to the following conditions:

b∫
a

ρ(x)
[
r(x)

]i
Sn(x) dx =

{
0 (i = 0,1, . . . , n − 1),

�= 0 (i = n)
(1.2)

and

b∫
a

ρ(x)
[
s(x)

]i
Rm(x)dx =

{
0 (i = 0,1, . . . ,m − 1),

�= 0 (i = m).
(1.3)

Konhauser [5] also obtained many properties and results for these biorthogonal polynomials.
In the year 1967, using his basic results of the general theory of biorthogonal polynomials

presented in [5], Konhauser [6] introduced the following pair of biorthogonal polynomials:

Yα
n (x; k) and Zα

n (x; k)
(
α > −1; k ∈ N := {1,2,3, . . .}),

which are suggested by the classical Laguerre polynomials L
(α)
n (x) given by

L(α)
n (x) = Yα

n (x;1) = Zα
n (x;1). (1.4)

These polynomial sets are biorthogonal with respect to the weight function xαe−x (α > −1) over
the interval (0,∞) and were subsequently studied rather extensively by (for example) Carlitz [3],
Prabhakar [8], Srivastava [11,12], and Rassias and Srivastava [10]. We remark in passing that the
so-called Konhauser biorthogonal polynomials Zα

n (x; k) of the second kind were indeed con-
sidered earlier by Letterio Toscano (1905–1977) [15], but without their biorthogonality property
which was emphasized upon in Konhauser’s investigation [5,6].

In 1983, Al-Salam and Verma [1] constructed some q-extensions of the polynomials Yα
n (x; k)

and Zα
n (x; k), which they called the q-Konhauser polynomials (see also [2]). More recently, Jain

and Srivastava [4] derived linear and bilinear generating functions for one of these q-Konhauser
polynomials and also suggested an alternative pair of q-Konhauser biorthogonal polynomials
(see, for details, [4, pp. 342–343]). Further information concerning some of these q-biorthogonal
polynomials will be presented in Sections 2 and 3.
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With a view to presenting our proposed investigation of the general family of q-biorthogonal
polynomials, we first recall the following notations and definitions.

For a real or complex number q (|q| < 1), (a;q)n is given by (see, for example, [13, pp. 346
et seq.])

(a;q)n :=
{1 (n = 0),∏n−1

j=0(1 − aqj ) (n ∈ N)
(1.5)

and

(a;q)∞ =
∞∏

j=0

(
1 − aqj

)
. (1.6)

Let q ∈ R \ {1}. Then the q-analogue of a number a is given by

[a]q := 1 − qa

1 − q
(1.7)

and the q-Pochhammer symbol is defined by

[a]n,q :=
n−1∏
m=0

[a + m]q (1.8)

for a real parameter a (see, for instance, [14]). Furthermore, the q-derivative operator Dq is
defined by

Dq

(
f (x)

) = f (qx) − f (x)

(q − 1)x
, (1.9)

so that, clearly, we have

Dq

(
xa

) = [a]qxq−1 (a ∈ R).

Let f (x) and g(x) be two piecewise continuous functions. Then we have

Dq

(
f (x)g(x)

) = f (x)Dq

(
g(x)

) + g(x)Dq

(
f (x)

)
+ (q − 1)xDq

(
f (x)

)
Dq

(
g(x)

)
. (1.10)

For q → 1−, these definitions would reduce to the corresponding relatively more familiar
definitions.

The q-integral of a piecewise continuous function f (x) is defined as follows:

b∫
a

f (x) dqx =
∞∑

n=0

(
bqn − bqn+1)f (

bqn
) −

∞∑
n=0

(
aqn − aqn+1)f (

aqn
)

and
∞∫

0

f (x)dqx = (1 − q)

∞∑
k=−∞

qkf
(
qk

)
. (1.11)
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The q-partial integration is defined by
∞∫

0

f (x)Dq

(
g(x)

)
dqx

= lim
n→∞

{
f

(
q−n

)
g
(
q−n

) − f
(
qn+1)g(

qn+1)} −
∞∫

0

g(x)Dq

(
f (x)

)
dqx

− (q − 1)

∞∫
0

xDq

(
f (x)

)
Dq

(
g(x)

)
dqx (1.12)

for two piecewise continuous functions f (x) and g(x).
The q-exponential function eq(x) is defined by

eq(x) =
∞∑

k=0

((1 − q)x)k

(q;q)k
= 1

((1 − q)x;q)∞
, (1.13)

which, in conjunction with the definition (1.9), yields

Dq

(
eq(ax)

) = aeq(ax).

For |q| < 1, let w(x;q) be a positive weight function which is defined on the set {aqn, bqn;
n ∈ N0}. If the polynomials {Pn(x;q)}n∈N0 satisfy the following property:

b∫
a

Pm(x;q)Pn(x;q)w(x;q)dqx =
{

0 (m �= n)

�= 0 (m = n)
(m,n ∈ N0), (1.14)

then the polynomials Pn(x;q) are called q-orthogonal polynomials with respect to the weight
function w(x;q) over the interval (a, b). Using this definition, Moak [7] introduced the
q-Laguerre polynomials Lα

n(x;q) given explicitly by

Lα
n(x;q) = (qα+1;q)n

(q;q)n

n∑
k=0

(q−n;q)kq
(k

2)(1 − q)k(qn+α+1x)k

(qα+1;q)k(q;q)k
(α > −1). (1.15)

These polynomials are monic polynomials in the sense that the leading coefficient of the polyno-
mials is 1. The polynomials Lα

n(x;q) are q-orthogonal polynomials with respect to the weight
function xαeq(−x) over the interval (0,∞), and we have

Lα
n(x;q) → L(α)

n (x) as q → 1−,

where L
(α)
n (x) are the classical Laguerre polynomials occurring in (1.4).

For α > 0, we denote by R the raising operator for the q-Laguerre polynomials, which is
given by

R(· · ·) := Dq

(
xαeq(−x)(· · ·)), (1.16)

so that

R
(
Lα

n(x;q)
) = Dq

(
xαeq(−x)Lα

n(x;q)
)

= −[
1 + [α]q(q − 1) + [n]q(q − 1)

(
1 + (q − 1)[α]q

)]
· xα−1eq(−x)Lα−1(x;q) (1.17)
n+1
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and the Rodrigues formula for the q-Laguerre polynomials is given by

Dn
q

(
xα+neq(−x)

) = (−1)n
n∏

k=1

{
1 + [α + n + 1 − k]q(q − 1)

+ [k − 1]q(q − 1)
(
1 + (q − 1)[α + n + 1 − k]q

)}
· xαeq(−x)Lα

n(x;q). (1.18)

2. Definition of the q-biorthogonal polynomials

In this section, we first give some further definitions and notations, which would help us in
our construction of the definition of the q-biorthogonal polynomials.

Definition 1. For |q| < 1, let r(x;q) and s(x;q) be polynomials in x of degrees h and k,
respectively (h, k ∈ N). Also let Rm(x;q) and Sn(x;q) denote polynomials of degrees m and
n in r(x;q) and s(x;q), respectively. Then Rm(x;q) and Sn(x;q) are polynomials of degrees
mh and nk in x. The polynomials r(x;q) and s(x;q) are called the q-basic polynomials.

For |q| < 1, let {Rn(x;q)}∞n=0 denote the set of polynomials

R0(x;q),R1(x;q), . . . ,Rn(x;q), . . .

of degrees

0,1, . . . , n, . . . in r(x;q).

Similarly, let {Sn(x;q)}∞n=0 denote the set of polynomials

S0(x;q), S1(x;q), . . . , Sn(x;q), . . .

of degrees

0,1, . . . , n, . . . in s(x;q).

Definition 2. For |q| < 1, let w(x;q) be an admissible weight function which is defined on the
set {

aqn, bqn; n ∈ N0
}
.

If the polynomial sets{
Rn(x;q)

}∞
n=0 and

{
Sn(x;q)

}∞
n=0

satisfy the following condition:
b∫

a

Rm(x;q)Sn(x;q)w(x;q)dqx =
{

0 (m �= n)

�= 0 (m = n)
(m,n ∈ N0), (2.1)

then the polynomial sets{
Rn(x;q)

}∞
n=0 and

{
Sn(x;q)

}∞
n=0

are said to be q-biorthogonal over the interval (a, b) with respect to the weight function w(x;q)

and the q-basic polynomials r(x;q) and s(x;q).
The q-biorthogonality condition (2.1) is analogous to the q-orthogonality condition (1.14).

We also note that, when q → 1−, the q-biorthogonality condition (2.1) gives us the usual
biorthogonality condition (1.1).



B. Şekeroğlu et al. / J. Math. Anal. Appl. 326 (2007) 896–907 901
Remark 1. If we take the weight function

w(x;q) = xαeq(−x)

over the interval (0,∞), we obtain the following q-Konhauser polynomials:

Z(α)
n (x, k;q) = (q1+α;q)nk

(qk;qk)n

n∑
j=0

(q−nk;qk)j q
1
2 kj (kj−1)+kj (n+α+1)

(qk;qk)j (q1+α;q)jk

xkj (2.2)

and

Y (α)
n (x, k;q) = 1

(q;q)n

n∑
r=0

xrq
1
2 r(r−1)

(q;q)r

r∑
j=0

(q−r ;q)j (q
1+α+j ;qk)n

(q;q)j
qj , (2.3)

which were considered by Al-Salam and Verma [1], who proved that

∞∫
0

Z(α)
n (x, k;q)Y (α)

m (x, k;q)xαeq(−x)dqx =
{

0 (n �= m),

�= 0 (n = m).
(2.4)

Equation (2.4) does indeed exhibit the fact that the polynomials Z
(α)
n (x, k;q) and Y

(α)
n (x, k;q)

are q-biorthogonal polynomials with respect to the weight function xαeq(−x) over the inter-
val (0,∞).

Remark 2. For k = 1, the q-Konhauser polynomials in (2.2) and (2.3) reduce to the q-Laguerre
polynomials given by (1.15).

Remark 3. Just as we indicated in the preceding section, Jain and Srivastava [4] gave another
pair of q-Konhauser polynomials which are defined by

z(α)
n (x, k | q) = (αq;q)nk

(qk;qk)n

n∑
j=0

(q−nk;qk)j

(αq;q)kj

(xq)kj

(qk;qk)j
(2.5)

and

y(α)
n (x, k | q) = 1

(q;q)n

n∑
j=0

(xq)j

(q;q)j

j∑
l=0

(q−j ;q)l(αql+1;qk)n

(q;q)l
q(j−n)l . (2.6)

3. General properties of the q-biorthogonal polynomials

3.1. Equivalent conditions for q-biorthogonality

Theorem 1 provides equivalent conditions for q-biorthogonality.

Theorem 1. For |q| < 1, let w(x;q) be a weight function which is defined on the set
{aqn, bqn; n ∈ N0}. Suppose also that r(x;q) and s(x;q) are q-basic polynomials. If

b∫
w(x;q)

[
r(x;q)

]j
Sn(x;q)dqx =

{
0 (j = 0,1, . . . , n − 1),

�= 0 (j = n)
(3.1)
a
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and

b∫
a

w(x;q)
[
s(x;q)

]j
Rm(x;q)dqx =

{
0 (j = 0,1, . . . ,m − 1),

�= 0 (j = m),
(3.2)

then

b∫
a

w(x;q)Rm(x;q)Sn(x;q)dqx =
{

0 (m �= n),

�= 0 (m = n)
(3.3)

for n ∈ N0. Conversely, if the condition (3.3) holds true, then both (3.1) and (3.2) also hold true.

Proof. Suppose that the conditions (3.1) and (3.2) hold true. Then, clearly, constants

qcm,j (j = 0,1, . . . ,m) and qcm,m �= 0

exist such that

Rm(x;q) =
m∑

j=0

qcm,j

[
r(x;q)

]j
. (3.4)

For m � n, we find that

b∫
a

w(x;q)Rm(x;q)Sn(x;q)dqx

=
b∫

a

w(x;q)

(
m∑

j=0

qcm,j

[
r(x;q)

]j)
Sn(x;q)dqx

=
m∑

j=0

qcm,j

b∫
a

w(x;q)
[
r(x;q)

]j
Sn(x;q)dqx.

By virtue of (3.1), the following q-integral:

b∫
a

w(x;q)
[
r(x;q)

]j
Sn(x;q)dqx

vanishes except when j = n = m.
If m > n, then constants

qdn,j (j = 0,1, . . . ,m) and qdn,n �= 0

exist such that

Sn(x;q) =
n∑

j=0

qdn,j

[
s(x;q)

]j
, (3.5)

and the proof is completed as in the case when m � n.



B. Şekeroğlu et al. / J. Math. Anal. Appl. 326 (2007) 896–907 903
We now assume that (3.3) holds true. Then constants

qem,i and qfn,i

exist such that

[
r(x;q)

]j =
j∑

i=0

qem,iRi(x;q) (3.6)

and

[
s(x;q)

]j =
j∑

i=0

qfn,iSi(x;q). (3.7)

Thus, if 0 � j � n, we obtain

b∫
a

w(x;q)
[
r(x;q)

]j
Sn(x;q)dqx

=
b∫

a

w(x;q)

(
j∑

i=0

qem,iRi(x;q)

)
Sn(x;q)dqx

=
j∑

i=0

qem,i

b∫
a

w(x;q)Ri(x;q)Sn(x;q)dqx.

If j < n, then each integral on the extreme right-hand side vanishes, since (3.3) is assumed to
hold true. If j = n, then each of these integrals is different from zero. Therefore, we conclude
that (3.1) holds true.

In a similar manner, we can establish (3.2). This evidently completes our proof of
Theorem 1. �
Corollary 1. If the conditions (3.1) and (3.2) hold true, then

b∫
a

w(x;q)Sn(x;q)Fn−1(x;q)dqx = 0 (3.8)

and
b∫

a

w(x;q)Rm(x;q)Gm−1(x;q)dqx = 0, (3.9)

where Fn−1(x;q) and Gm−1(x;q) are arbitrary polynomials of degrees not exceeding n − 1 and
m − 1 in the polynomials r(x;q) and s(x;q), respectively.

In Section 2, we pointed out that the q-Konhauser polynomials Z
(α)
n (x, k;q) and Y

(α)
n (x, k;q)

are q-biorthogonal with respect to the weight function xαeq(−x) over the interval (0,∞).

From (2.2) and (2.3), we can easily see that Z
(α)
n (x, k;q) and Y

(α)
n (x, k;q) are polynomials in xk

and x of degree n, respectively. Consequently, it follows from Theorem 1 that the polynomials
Z

(α)
n (x, k;q) and Y

(α)
n (x, k;q) satisfy the assertion of Corollary 2 below.
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Corollary 2. (Al-Salam and Verma [1]) For the q-Konhauser polynomials Z
(α)
n (x, k;q) and

Y
(α)
n (x, k;q),

∞∫
0

xαeq(−x)xjZ(α)
n (x, k;q)dqx =

{
0 (j = 0,1, . . . , n − 1),

�= 0 (j = n)
(3.10)

and
∞∫

0

xαeq(−x)xkjY (α)
n (x, k;q)dqx =

{
0 (j = 0,1, . . . , n − 1),

�= 0 (j = n),
(3.11)

respectively.

3.2. Pure recurrence relation for q-biorthogonal polynomials

In the case of q-biorthogonal polynomials, if we choose one of the q-basic polynomials with
respect to the other one, we can derive several pure recurrence relations, each of which would
connect m + 2 successive polynomials.

Theorem 2. For |q| < 1, if the q-basic polynomials r(x;q) and s(x;q) are such that s(x;q) is
a polynomial p(x;q) of degree m in r(x;q), and if the q-biorthogonal polynomial sets{

Rn(x;q)
}

and
{
Sn(x;q)

}
are known to exist for an admissible weight function w(x;q) over the interval (a, b), then there
exist pure recurrence relations of the following forms:

p(x;q)Rn(x;q) =
n+m∑

i=n−1

qan,iRi(x;q) (3.12)

and

p(x;q)Sn(x;q) =
n+1∑

i=n−m

qbn,iSi(x;q), (3.13)

each connecting m + 2 successive polynomials. The coefficients qan,i and qbn,i depend on n,
but not on x.

Proof. The polynomial Rn(x;q) is of degree n in the q-basic polynomial r(x;q) and the
polynomial p(x;q) is of degree m in r(x;q). Therefore, the product p(x;q)Rn(x;q) is of degree
n + m in r(x;q) and constants qan,i exist such that

p(x;q)Rn(x;q) =
n+m∑
i=0

qan,iRi(x;q). (3.14)

Here we use Ri(x;q) for r(x;q), because the polynomial Ri(x;q) (i ∈ N0) is of degree i ∈ N0
in the q-basic polynomial r(x;q).

Now, multiplying both sides of (3.14) by w(x;q)Sj (x;q) and integrating over (a, b), we
obtain
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b∫
a

w(x;q)p(x;q)Rn(x;q)Sj (x;q)dqx

=
m+n∑
i=0

qan,i

b∫
a

w(x;q)Sj (x;q)Ri(x;q)dqx

= qan,j

b∫
a

w(x;q)Sj (x;q)Rj (x;q)dqx, (3.15)

where we have made use of the q-biorthogonality conditions.
The product p(x;q)Sj (x;q) is a linear combination of

Sj+1(x;q), Sj (x;q), . . . , S0(x;q)

and Rn(x;q) is q-biorthogonal to p(x;q)Sj (x;q) for j + 1 < n. It follows that

qan,j = 0 for j = 0,1, . . . , n − 2,

and the sum in (3.14) runs only from n − 1 to n + m. Therefore, a recurrence relation of the
form (3.12) exists, which would connect m + 2 successive polynomials Rn(x;q).

In order to establish (3.13), we consider the product p(x;q)Sn(x;q), which is a polynomial
of degree n + 1 in the q-basic polynomial s(x;q). Therefore, constants qbn,i exist such that

p(x;q)Sn(x;q) =
n+1∑
i=0

qbn,iSi(x;q). (3.16)

Thus, upon multiplying both sides of (3.16) by w(x;q)Rj (x;q) and integrating over (a, b), we
obtain

b∫
a

w(x;q)p(x;q)Rj (x;q)Sn(x;q)dqx

= qbn,j

b∫
a

w(x;q)Sj (x;q)Rj (x;q)dqx. (3.17)

The product p(x;q)Rj (x;q) is a linear combination of

Rj+m(x;q),Rj+m−1(x;q), . . . ,Rj (x;q).

By q-biorthogonality conditions, p(x;q)Rj (x;q) is q-biorthogonal to Sn(x;q) for j + m < n.
It follows that qbn,j = 0 for j = 0,1, . . . , n − m, and the sum in (3.16) runs only from n − m

to n + 1; that is, a recurrence relation of the form (3.13) exists, which would connect m + 2
successive polynomials Sn(x;q). Our proof of Theorem 2 is thus completed. �

For m = 1, the q-basic polynomials are the same and they are found to be simply
q-orthogonal. Therefore, the corresponding recurrence relations will connect three successive
polynomials. When q → 1−, we obtain the familiar three-term recurrence relations for classical
orthogonal polynomials.
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4. Further properties of the q-Konhauser polynomials

Jain and Srivastava [4] obtained linear and bilinear generating functions for the polynomials
Z

(α)
n (x, k;q), which were defined in Section 2 (see also [1, Section 4]). In this section, we obtain

some further properties of the q-Konhauser polynomials Z
(α)
n (x, k;q). We first obtain a raising

operator and then derive a Rodrigues formula for Z
(α)
n (x, k;q). Here we choose the polynomial

Z
(α)
n (x, k;q) to be monic.

Lemma. For k ∈ N and [cf. Eq. (1.16)]

R(· · ·) := Dq

(
xαeq(−x)(· · ·)) (α > 0), (4.1)

the raising operator for the q-Konhauser polynomials Z
(α)
n (x, k;q) is given by

R
(
Z(α)

n (x, k;q)
) = Dq

(
xαeq(−x)Z(α)

n (x, k;q)
)

= −[
1 + [α]q(q − 1) + [nk]q(q − 1)

(
1 + (q − 1)[α]q

)]
· xα−keq(−x)Z

(α−k)
n+1 (x, k;q). (4.2)

Proof. Let Qn+1(x, k;q) be a monic polynomial of degree n + 1. By using (1.10), we find that

Dq

(
xαeq(−x)Z(α)

n (x, k;q)
)

= −[
1 + [α]q(q − 1) + [nk]q(q − 1)

(
1 + (q − 1)[α]q

)]
· xα−keq(−x)Qn+1(x, k;q), (4.3)

which, by means of (1.12), yields

−[
1 + [α]q(q − 1) + [nk]q(q − 1)

(
1 + (q − 1)[α]q

)]
·

∞∫
0

xi+α−keq(−x)Qn+1(x, k;q)dqx

=
∞∫

0

xiDq

(
xαeq(−x)Z(α)

n (x, k;q)
)
dqx

= −[i]q
∞∫

0

xi−1xαeq(−x)Z(α)
n (x, k;q)dqx

− [i]q(q − 1)

∞∫
0

xiDq

(
xαeq(−x)Z(α)

n (x, k;q)
)
dqx. (4.4)

For i = 1, . . . , n, the first term on the right-hand side of the last equality in (4.4) vanishes
by virtue of the q-orthogonality relation (3.10) for the polynomials Z

(α)
n (x, k;q). Therefore, we

obtain
∞∫

xi+α−keq(−x)Qn+1(x, k;q)dqx = 0 (i = 0,1, . . . , n). (4.5)
0
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Equation (4.5) shows that the monic polynomials Qn+1(x, k;q) are q-orthogonal with respect
to the weight function xα−keq(−x) over the interval (0,∞). Because of the observation that a
monic polynomial, which is q-orthogonal with respect to a given weight function xα−keq(−x)

over a given interval (0,∞), is unique, we can replace

Qn+1(x, k;q) by Z
(α−k)
n+1 (x, k;q),

and the proof of the lemma is thus completed. �
For k = 1, (4.2) reduces to the raising operator for the q-Laguerre polynomials just as asserted

by (1.17).
Finally, we obtain a Rodrigues formula for the q-Konhauser polynomials Z

(α)
n (x, k;q) by

applying the raising operator R to the polynomial

Z
(α+nk)
0 (x, k;q) = 1

successively. We thus find that

Dn
q

(
xα+nkeq(−x)

)
= (−1)n

n∏
i=1

{
1 + [

α + nk + (1 − i)k
]
q
(q − 1)

+ [i − 1]q(q − 1)
(
1 + (q − 1)

[
α + nk + (1 − i)k

]
q

)}
· xαeq(−x)Z(α)

n (x, k;q). (4.6)

In its special case when k = 1, (4.6) reduces to the Rodrigues formula (1.18) for the
q-Laguerre polynomials.
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