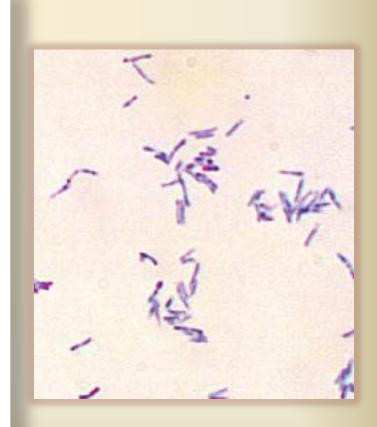
Corynebacterium, Listeria, and Erysipelothrix

Assist. Prof. Emrah Ruh

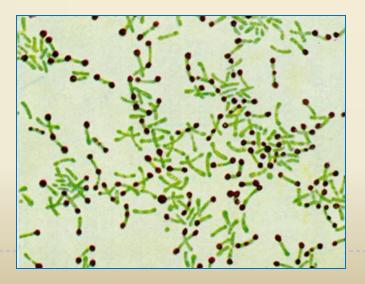

NEU Faculty of Medicine Department of Medical Microbiology

Corynebacteria

- Members of coryneform bacteria
- Coryneform bacteria;
 - Gram-positive rods
 - Non-spore forming, nonmotile, non-acid-fast
 - Corynebacterium
 - Arcanobacterium

Corynebacteria

- Aerobic or facultatively anaerobic, nonmotile, and catalase positive
- Cell wall contains short-chain mycolic acids
- Gram stain: clumps and short chains (V or Y configurations) of irregularly shaped (club-shaped) rods
- Metachromatic granules (+)



Corynebacteria

- Normally colonize the skin, upper respiratory tract, gastrointestinal tract, and urogenital tract in humans
- Can be opportunistic pathogens; a few are more commonly associated with human disease
- Corynebacterium diphtheriae: etiologic agent of diphteria

Corynebacterium diphtheriae

- Specific stains: Metachromatic granules
- Smears: X or Y shaped bacilli
- Four biotypes of C. diphtheriae;
 - mitis, belfanti, gravis, intermedius,
 - Biotype mitis: most common

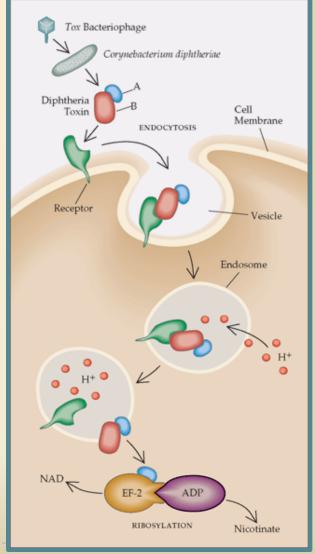
Corynebacterium diphtheriae Pathogenesis

- Asymptomatic carriage in the oropharynx or on the skin
- Spread by respiratory droplets or skin contact
- The bacilli then grow on mucous membranes or in skin abrasions, and toxigenic strains start producing toxin

Corynebacterium diphtheriae Pathogenesis – Exotoxin

- Diphtheria toxin: Major virulence factor
- A-B exotoxin
- tox gene: Introduced by a lysogenic phage (β-phage)
- Three functional regions on the toxin molecule:
 - A subunit: Catalytic region
 - B subunit: Receptor-binding region and translocation region
- The receptors for the toxin:

CD-9

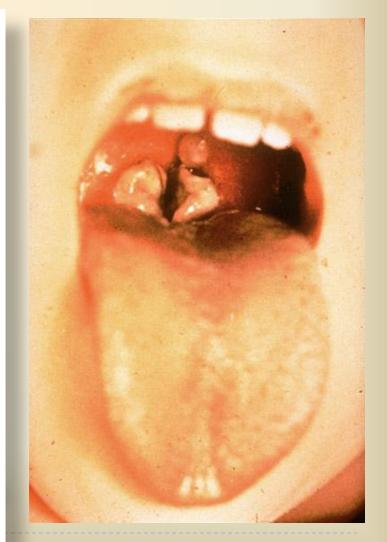

Heparin-binding epidermal growth factor (HB-EGF)

Corynebacterium diphtheriae Pathogenesis – Exotoxin

Function of the toxin:

A subunit terminates host cell protein synthesis by inactivating elongation factor 2 (EF-2)

► EF-2 → translocation of polypeptidyl-transfer RNA from the acceptor to the donor site on the eukaryotic ribosome



Corynebacterium diphtheriae Clinical diseases

- Respiratory diphteria
- Cutaneous diphteria

Corynebacterium diphtheriae Clinical diseases – Respiratory diphtheria

- Bacteria ——> epithelial cells in the pharynx or adjacent surfaces
- Exotoxin \longrightarrow localized damage
- Sudden onset with malaise, sore throat, exudative pharyngitis, and a low-grade fever
- The exudate evolves into a thick grayish pseudomembrane (tonsils, pharynx, or larynx)
 - Composed of bacteria, lymphocytes, plasma cells, fibrin and dead cells

Corynebacterium diphtheriae Clinical diseases – Respiratory diphtheria

- The pseudomembrane firmly adheres to the respiratory tissue
 - It is difficult to dislodge without making the underlying tissue bleed (unique to diphtheria)
- Enlarged regional lymph nodes in the neck and marked edema (bull neck)

Corynebacterium diphtheriae Clinical diseases – Respiratory diphtheria

- Toxic damage in the heart muscle (myocarditis), liver, kidneys (tubular necrosis), and adrenal glands
- Nerve damage (demyelination) paralysis of the soft palate, eye muscles, or extremities
- Complications in severe disease;
 - Breathing obstruction, cardiac arrhythmia, coma and death

Corynebacterium diphtheriae Clinical diseases – Cutaneous diphtheria

- Skin contact with infected persons
- Skin colonization and entry into the subcutaneous tissue through breaks in the skin
- Papule evolves into chronic, nonhealing ulcer
- Systemic signs can occur as a result of the exotoxin effects

Corynebacterium diphtheriae Clinical diseases

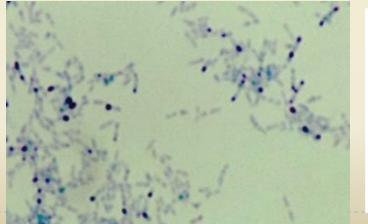
- Nontoxigenic strains of C. diphtheriae:
 - Do not produce classic diphtheria
 - Associated with other diseases
 - Pharyngitis, septicemia, endocarditis, septic arthritis, osteomyelitis, and abscess formation

Corynebacterium diphtheriae Laboratory diagnosis

- Swabs and microscopy
- Culture
- Toxigenicity testing
 - Elek test
 - Molecular tests

Corynebacterium diphtheriae Laboratory diagnosis – Swabs and microscopy

- From the nose, throat, or other suspected lesions
- Should be placed in semi-solid transport media
- Microscopic examination is unreliable:
 - Metachromatic granules are not specific to C. diphtheriae


Corynebacterium diphtheriae Laboratory diagnosis – Microscopy

C. diphtheriae metachromatic granules (Neisser stain)

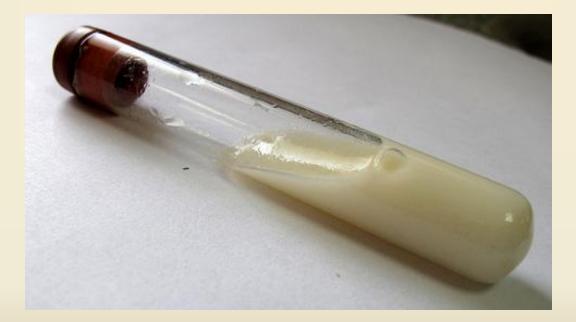
C. diphtheriae (Gram stain)

C. diphtheriae metachromatic granules (Methylene blue stain)

Corynebacterium diphtheriae Laboratory diagnosis – Culture

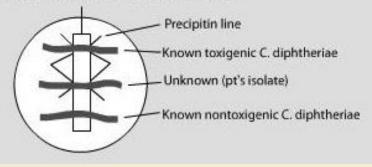
- Blood agar (to rule out hemolytic streptococci)
- Small colonies

Corynebacterium diphtheriae Laboratory diagnosis – Culture

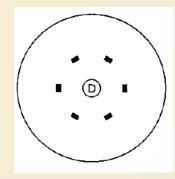

- Selective medium (cysteine-tellurite blood agar – CTBA):
 - Fellurite;
 - Inhibits the growth of many other bacteria
 - Reduced by C. diphtheriae (produces gray-black colonies)
 - Degradation of cysteine by C. diphtheriae produces a brown halo around the colonies

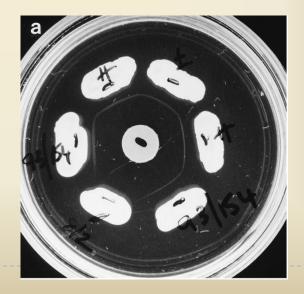
Corynebacterium diphtheriae Laboratory diagnosis – Culture

Löffler's medium:


Enhances production of metachromatic granules

Corynebacterium diphtheriae Laboratory diagnosis – Toxigenicity


Conventional Elek test:


Filter paper strip with C. diphtheriae antitoxin

Modified Elek test:

Corynebacterium diphtheriae Treatment, Prevention and Control

- Early administration of diphteria antitoxin
- Penicillin or erythromycin
 - Eliminate C. diphtheriae and terminate toxin production
- Toxoid vaccine (nontoxic, immunogenic toxoid)
 - Combined with tetanus toxoid (Td)
 - Combined with tetanus + pertussis vaccine (DPT)
 - Five injections of DPT (2, 4, 6, 15-18 months and 4-6 years), and booster vaccination of Td every 10 year

Other Corynebacterium species

Part of the indigenous human flora

- Mucous membranes of the skin, respiratory tract, urinary tract, and conjunctiva
- Capable of causing disease
 - C. jeikeium

Lipophilic corynebacteria

- C. urealyticum
- C. amycolatum
- C. ulcerans
- C. pseudotuberculosis

Nonlipophilic corynebacteria

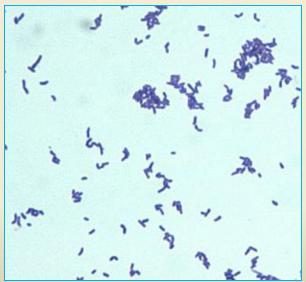
Corynebacterium jeikeium

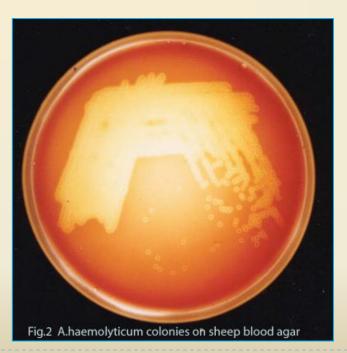
- Opportunistic pathogen
- Septicemia, endocarditis, wound infections, foreign body (catheter, shunt, prosthesis) infections
- Very resistant to antibiotics
 - C. jeikeium, C. urealyticum, and C. amycolatum:
 - Resistant to most antibiotics
 - Vancomycin must be given

Corynebacterium urealyticum

- Strong urease producer
- C. urealyticum is the most common ureaseproducing Corynebacterium species
- Makes the urine alkaline, leading to the formation of renal stones
- Urinary tract infections, septicemia, endocarditis, wound infections
- Resistant to many antibiotics

Corynebacterium amycolatum


- The most commonly isolated Corynebacterium species in clinical specimens
- Opportunistic pathogen
- Wound infections, foreign body infections, septicemia, urinary tract infections, respiratory tract infections
- Resistant to many antibiotics

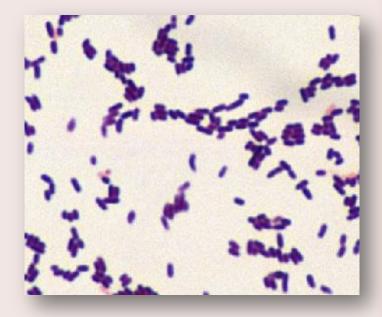

Corynebacterium ulcerans and Corynebacterium pseudotuberculosis

- Closely related to C. diphtheriae
- Can carry the diphteria toxin gene
- C. ulcerans and C. pseudotuberculosis (rare) can cause respiratory diphtheria
 - Same treatment with disease caused by C. diphtheriae

Other coryneform bacteria Arcanobacterium

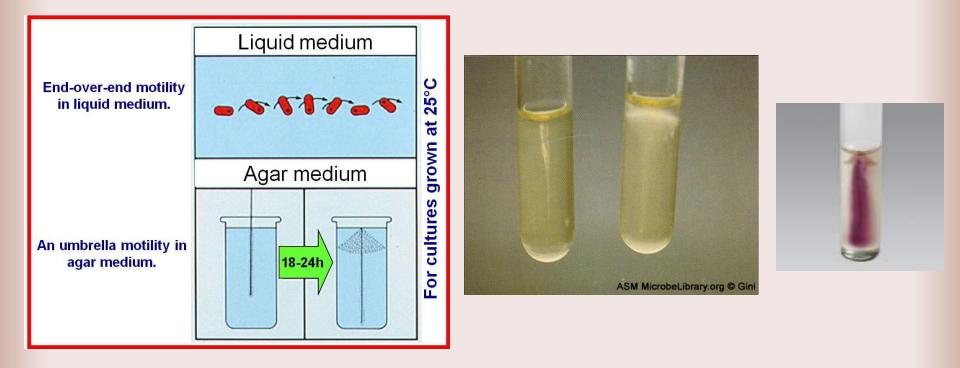
- Irregularly shaped, Gram-positive rods
- Arcanobacterium haemolyticum produces β-hemolysis on blood agar
- Catalase negative

Other coryneform bacteria Arcanobacterium


- Clinical diseases:
 - Pharyngitis with a scarlet fever-like rash, polymicrobic wound infections, septicemia and endocarditis
- Difference from Group A streptococci:
 - Gram stain morphology and biochemical characteristics

Treatment:

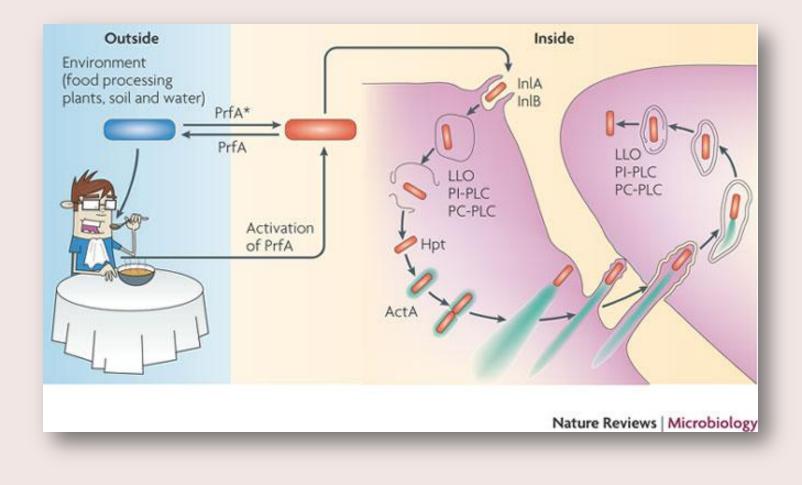
Penicillin or erythromycin


Listeria monocytogenes

- Short, nonbranching,
 Gram-positive,
 facultatively anaerobic rod
- Ability to grow;
 - At broad temperature range (I°C to 45°C)
 - In a wide **pH** range
 - In a high concentration of salt

Listeria monocytogenes

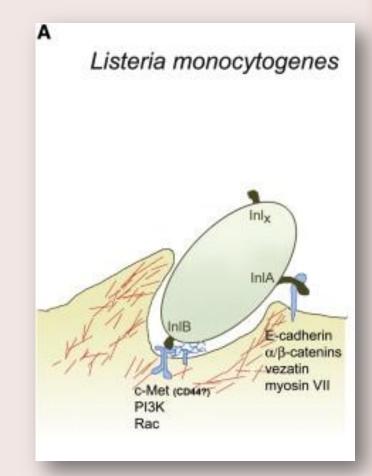
Motile at 22°C-28°C (end-over-end tumbling motion); but not at 37°C


Listeria monocytogenes Virulence

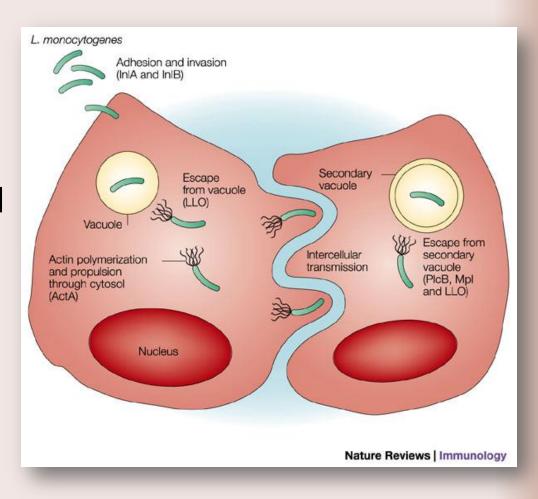
Surface proteins

Adhesins, Internalin A and B, Act A

Hemolysins


- Listeriolysin O, phospholipase C
- Siderophore production
 - Obtain iron from transferrin
- Facultative intracellular pathogen
 - Avoid antibody-mediated clearance

- Enters the body through the gastrointestinal tract
- Cell wall surface proteins: Internalin A (InIA) and Internalin B (InIB)
- Internalins interact with E-cadherin (receptor on epithelial cells), promoting phagocytosis
- In phagolysosome, low pH activates the bacterium to produce listeriolysin O and two different
 phospholipase C enzymes


- Listeriolysin O and phospholipase C: lyse the membrane of phagolysosome and allow the listeriae to escape into the cytoplasm of the epithelial cell
- The organisms proliferate, and then move to the cell membrane
- ActA (another listerial surface protein) induces host cell actin polymerization, which propels listeriae to the cell membrane

- Pushing against the host cell membrane, listeriae cause formation of elongated protrusions (filopods)
- These filopods are ingested by adjacent epithelial cells, macrophages, and hepatocytes
- The listeriae are released, and the cycle begins again

Listeria monocytogenes Pathogenesis

 L. monocytogenes can move from cell to cell without being exposed to antibodies,
 complement or polymorphonuclear cells

Listeria monocytogenes Epidemiology

- Source of infection:
 - Consumption of contaminated food
 - Undercooked processed meat, unpasteurized or contaminated milk or cheese, unwashed raw vegetables (cabbage)
 - Foods with small numbers of organisms can become heavily contaminated during prolonged refrigeration
 - From mother to child in utero or at birth

Listeria monocytogenes Clinical diseases

- Neonatal disease
 - Early-onset disease
 - Late-onset disease
- Disease in adults
 - Disease in healthy adults
 - Disease in pregnant women or patients with cell-mediated immune defects

Listeria monocytogenes Clinical diseases – Neonatal disease

- Early-onset disease
 - Granulomatosis infantiseptica
 - Acquired transplacentally in utero
 - Disseminated abscesses and granulomas in multiple organs
 - High mortality rate unless treated promptly
- Late-onset disease
 - Acquired at or shortly after birth
 - Meningitis and meningoencephalitis with septicemia

Listeria monocytogenes Clinical diseases – Neonatal disease

Early-onset disease (Granulomatosis infantiseptica)

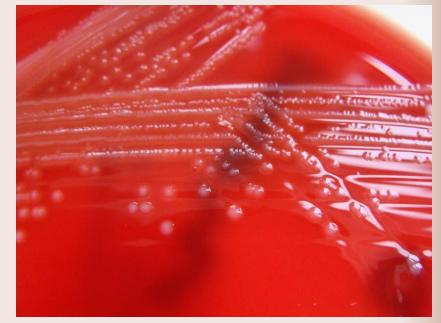
Listeria monocytogenes Clinical diseases – Disease in adults

Disease in healthy adults

- Asymptomatic or a mild influenza-like illness with or without gastroenteritis
- Disease in pregnant women or patients with cell-mediated immune defects
 - Primary febrile bacteremia or disseminated disease with hypotension and meningitis

Listeria monocytogenes Laboratory diagnosis

Microscopy


Not sensitive; no organisms in the smears of CSF

Culture

Identification

Listeria monocytogenes Laboratory diagnosis – Culture

- Grows on most
 conventional media
- Small, round colonies after incubation for 1-2 days
- Weak β-hemolysis on sheep
 blood agar

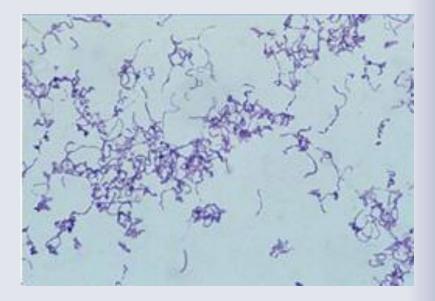
Listeria monocytogenes Laboratory diagnosis – Culture

- Detection of listeriae in specimens contaminated with rapidly growing bacteria;
 - Selective media
 - Cold enrichment (storage of the specimen in the refrigerator for a prolonged period)
- CAMP test positive
- The characteristic motility of the organism in a liquid medium or semisolid agar

Listeria monocytogenes Laboratory diagnosis – Culture

L. monocytogenes: CAMP test positive

Listeria monocytogenes Laboratory diagnosis – Identification


- Biochemical, molecular and serologic tests
- I3 serotypes have been described
 - I/2a, I/2b and 4b: >95% human isolates
 - 4b: most of the foodborne outbreaks

Listeria monocytogenes Treatment, prevention and control

- Gentamicin + penicillin or ampicillin
- Trimethoprim-sulfamethoxazole
 - CNS infections in patients who are allergic to penicillin
- Listeriae are ubiquitous and most infections are sporadic; prevention and control are difficult
- Consumption of raw or partially cooked meats, unpasteurized or contaminated milk or cheese, and unwashed raw vegetables should be avoided

Erysipelothrix rhusiopathiae

- Slender, pleomorphic, Grampositive rods that form long filaments
- Distributed in land and sea animals worldwide
- Colonization is particularly high in swine and turkeys
- Causes erysipelas in swine
- Disease in humans is less common

Erysipelothrix rhusiopathiae

- Disease in humans is zoonotic and primarily occupational
 - Butchers, farmers, fishermen, veterinarians, and etc...
- People are infected by direct inoculation from animals or animal products
- Three primary forms of human infection:
 - Localized skin infection (erysipeloid)
 - Generalized cutaneous disease
 - Septicemia: Uncommon; when present endocarditis (+)

Erysipelothrix rhusiopathiae Clinical diseases – Erysipeloid

- The painful and pruritic skin lesion most commonly presents on the fingers or hands and appears violaceous with a raised edge
- No suppuration (different from streptococcal erysipelas)
- The resolution can be spontaneous but can be hastened with antibiotic therapy

Erysipelothrix rhusiopathiae Laboratory diagnosis

- Gram stain of the specimen is typically negative
- Thin, Gram-positive rods associated with characteristic skin lesion and clinical history can be diagnostic
- Grows on most conventional media
- Incubated at 5%-10% CO₂ for 3 days or longer
- Blood cultures (-)

Erysipelothrix rhusiopathiae Treatment, prevention and control

- Penicillin both localized and systemic diseases
- Patients allergic to penicillin;
 - Ciprofloxacin or clindamycin for localized cutaneous infections
 - Ceftriaxone or imipenem for disseminated infections
- People at a higher occupational risk should use gloves and other appropriate coverings on exposed skin
- Vaccination is used to control disease in swine