
 z-TRANSFORM 

                                       Prof. Dr. Fahreddin Sadıkoğlu   1

 Z-TRANSFORM 
 

           Historically, Laplace transforms were used to study signals defined by the solutions to 
linear ordinary differential equations. Beginning in the 1950’s, discrete time signals began to 
appear. Unfortunately, the Laplace transform is not well suited for the study of discrete time 
signals and systems. Instead, another   transform, called the Z-transform, is used. 
 

1.  Direct Z-transform  
 

            It is know that discrete-time signal can be obtained by multiplying continuous time 

signal x(t) by impulse-train ∑
∞

−∞=

−δ=
n

)nTt()t(p  
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Using the Laplace transform’s shifting property: 
                                                                               
                                   }{ nenTtL =− )(δ  
and a short hand notation  zesT = , we get 
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∞

−∞=n

nx(nT)zX(z) x(t)Z  

if T=1    we get                ∑
∞

−∞=

−=
n

nz)n(x)z(X                (2)                           

Equation (2) is called bilateral or two sided Z-transform. For causal signals the one sided Z-
transform uses  

       (3) 
                                                          

 
Example 1 
Find the Z-transform of the DTS shown in Figure 2 
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Example 2 
                 Find the Z-transform of a causal step function show in Figure 3 
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    This infinitely long series can also be represented in closed form using : 
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Example 3 
                  Find the Z-transform  of the causal exponential function 
 

te)t(x α−=  or  [ ] nenx α−=  
 

                                            [ ] nenx α−= na=  where         a= α−e  
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Example 4 

                Find the Z-transform  of an anticausal sequences shown in Figure 4 
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Computer Study: 

                                 M - file ztrans.m is used to find Z-transform of the time domain function. 
Consider the following two examples. 

 
Example 5         x(t)= t2e−  

                                    

                                                 2
t2

ez
ze −

−

−
=⇒  

 
 

Example 6           X(t)=t                                       
                             
 

 
                                                     
 

 
2.  Region of Convergence of Z-Transform 

           
           The domain of values of z guaranteeing that a Z-transform of [ ]nx  exists is called the 
region of convergence, or simply ROC. The ROC constrain of an annular ring in the Z-plane 
that is centered around the origin. The ROC is an important concept for a variety of reasons. 
There is no unique relationship between the sequences and their Z-transforms. 

         The Z-transform for both functions is 
1z

z)z(X
−

= , but ROC are different. Hence, the 

Z-transform must always be specified with its ROC. The regions of convergence for the 
Examples 2 and 4 are given in figures 5  (a) and (b) respectively. 
 
 
 
 
 
 
 
 
 

 
 
 
 

»  syms t 
» x=exp(-2*t); 
»  ztrans(x) 
  
ans = 
  
z/(z-exp(-2)) 

» syms t 
» x=t; ztrans(x) 
ans = 
z/(z-1)^2 

a) 

 Figure 5 

pole 
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 ROC: |z|>1
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  ROC: |z|<1 
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We can readily verify that when 1>z  causal step sequences X(z) convergence where as when 

1<z  X(z) diverges. For example, if we let z=2  we find that the series on the RHS of 
equation adds up to 2: 
  2)12/(2...)2/1()2/1(2/11)( 32 =−=++++=zX  
 
as it is clearly a geometric series with a common ration of  1/2  and a first term of 1, giving 
the sum to infinity of  2/(2-1)=2. On the order hand if z=1/2 (inside the unit circle)the series 
of equation becomes 
 

  X(z)=1+1/0,5+ ( )25,0/1 + ( )35,0/1 +3... =1+2+4+8+... 
 
which is seen to be diverging. The region of convergence (hatched) is seen to be 

bounded by the circle ,1=z  the radius of the pole of X(z). Values of z for which ∞=)(zX  
are referred to as poles of X(z). Values of z for which X(z)=0 are referred to as the zeros of 
X(z). 

 
Example 5 
Find thez-transform and the region for convergence for each of the discrete-time sequences 
given in figure 6 

(1) The sequence of figure 6 (a) is noncausal, since x(n)  is not zero for n<0, but it is of 
a finite duration. The sequence has values x(-6)=0, x(-5)=1, x(-4)=3, x(-3)=5, x(-2)=3, x(-
1)=1 and x(0)=0. from equation 6, the z-transform is given by  
 

 ( ) ( )∑
∞

−∞=

−=
n

nznxzX1  = zzzzz ++++ 2345 353  

 
It is readily verified that the value of X (z) becomes infinite when ∞=z . Trus the ROC  is 
everywhere in the z-plane except at z=∞ . 
 

 
 
 
 
 
 
 
 
 
 
       a)                                                    b)                                                 c) 

    Figure 6 
 

(2) Again, the sequence in figure 6(b) is not causal. It is of a finite duration, and 
double           sided. The values of the sequence are x(3)=0, x(-2)=1, x(-1)=3, x(0)=5, x(1)=3,  
x(2)=1 and x(3)=0. from equation 6, the z-transform is given by 

1

3

5

3

1

-6   -5  -4   -3   -2   -1       0 

x(n)

n 

1

3
5

3

1

 -3  -2  -1    0     1    2    3 

x(n)

     n 
1

3

5

3

1

   0    1   2    3    4     5    6 

x(n)

     n 



 z-TRANSFORM 

                                       Prof. Dr. Fahreddin Sadıkoğlu   1

  ( ) ( )∑
∞

−∞=

−=
n

nznxzX 2 = 212 353 −− ++++ zzzz  

It is evident that the value of X(z) is infinite if z=0 or if z=∞ . Therefore the region of 
convergence is everywhere expect at z=0 and z=∞ . 
 

 (3)  figure 6(c) represents a causal, finite duration sequence with values x(0)=0, 
x(1)=1, x(2)=3, x(3)=5, x(4)=3, x(5)=1 and x(6)=0. the z-transform is given by  
 

  ( ) ( )∑
∞

−∞=

−=
n

nznxzX3 = 54321 353 −−−−− ++++ zzzzz  

In this case , X(z)=∞  for z=0. Trus the region of convergence is everywhere except at z=0. 
 
Example 7      

                                  [ ] [ ]nu)4/1()3/1()n(x s
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Now the procedure continues as: 
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 For convergence, the individual terms must converge. This means that: 
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The overlap of two ROC’s corresponds to the region of converges of X(z), that is  |z|>1/3. 
 

Example 8 
                 Consider the two-sided sequence defined by: 
                                                          [ ] nnu α=  
  where α  can be a real or complex number, does not have a Z-transform, regardless of the 
absolute value α. This followed by noting that the Z-transform expression can be rewritten as: 

                                                      [ ] n
1

n

nn

0n

n zzzU −
−

∞−

−
∞

=
∑∑ α+α=  

    The first term on the right-hand side of the equation converges for  z > α  ,whereas the 
second term converges for z < α  ,and hence, there is no overlap of two ROC’s. 

 

 ROC: |z|>1/3 

Figure 7 

X(z)=z/(z-1) 

1/3 1/4 
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Example 9 
           Determine the ROC of the Z-transform H(z) of the sequence [ ] [ ]nUs)6.0(nh n−=  . 

                                          ∑∑
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which simplifies to            
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z
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=
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 provided z>0.6. This implies that the ROC is just outside the  
circle going through the point z= -0.6 and extending all the  
way to z=∞, as show in figure. Notice that H(Z) has a zero at z=0 
 and a pole at z= -0.6. 

 
3.Method of Residue 

  
            This method of residue is used if original function is represented by s-

variable:
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Example 9 
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Using the residues: 
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For simple pole s1=-1: 
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For double pole s1=0: 
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Comparison between F(z) and F(s) 
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Example 10 

 
Find the Z-transform of [ ] t2sintx =  
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Computer Study 
 
            MATLAB  can be used to determine the ROC’s of a rational Z-transform. The M-file 
[z, p, k] = tf2zp(num, den) determines the zeros, poles and the gain constant of a rational Z-
transform expressed as a ratio of  polynomials in descending powers of z. The output files are 
the column vectors z and p containing the zeros and poles of the rational Z-transform, and the 
gain constant k. The statement [ num, den ] = tf2zp (z, p, k)  is used in implement the reverse 
process.          From the zero-pole description, the factored form of the transfer function can 
be obtained using the function sos = tf2sos(z, p, k). The statement computes the coefficients 
of each second order factor given as an 6L× matrix sos, where 
                  
                                                                01b 11b 21b 01a 11a 21a  
                                                                02b 12b 22b 02a 12a 22a  
                                                 sos   =      .     .       .      .    .    .   
                                                                oLb L1b L2b L0a L1a L2a  
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     where the k-th row contains the coefficients of the numerator and the denominator of the 
k-th second order factor of the Z-transform G(z): 

                                                             ∏
=

−−

−−

++
++

=
L

1k
2

k2
1

k1k0

2
k2

1
k1k0

zazaa
zbzbb)z(G  

 
        The pole-zero plot of the rational Z-transform can also be plotted by using the M-files  
 

zplane (zeros,poles),        zplane (num,den) 
 

It should be noted that the argument zeros and poles must be entered as column vectors, 
whereas, the argument num and den needed to be entered as row vectors. 
         The following example illustrates the application of the above functions. 
 
Example 11   Express the following Z-transform in factored form, plot its poles and zeros, and 
the n determine its ROC’s. 

423

2

z5z8z
6z5z2)z(G −++

−+
=  

The factored form of the Z-transform is given by: 
 

( ) ( )
( ) ( )321

213

z5531.0z7678.00000.1z2322.70000.1
z9627.0z8023.03209.0z232.6)z(G −−−

−−−

−++
−++

=             

 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                               
 
 
 
 
 

 
 

»   syms z 
»  G=(2*z^2+5*z-6)/(z^3+8*z^2+5*z-4); 
»  num=[2 5 -6]; den=[1 8 5 -4];[z,p,k]=tf2zp(num,den) 
z = 
-3.3860 
0.8860 
p = 
-7.2322 
-1.2209 
0.4530 
k =2 
» sos=zp2sos(z,p,k) 
sos = 
6.2322         0         0    1.0000    7.2322         0 
0.3209    0.8023   -0.9627    1.0000    0.7678   -0.5531 
»  z=[ -3.3860;0.8860]; p=[  -7.2322; -1.2209; 0.4530]; 
»  [num,den]=zp2tf(z,p,k) 
num = 
0   2.00000000000000   5.00000000000000  -
5.99999200000000 
den = 
1.00000000000000   8.00010000000000     
5.00053868000000  -3.99989621994000 
» printsys(num,den) 
num/den = 
2 z^2 + 5 z - 6 

The pole-zero configuration  
developed by the program is  
shown in Figure 9. From the  
equation the ROC are: 
 
              1R : ∞ ≥z >7.2323 

  2R : -7.23≤z <1.2209 

3R :        1>z ≥0.453 
 

Figure 9 
-7 -6 -5 -4 -3 -2 -1 0 1

-2 

-1 

0 

1 

2 



 z-TRANSFORM 

                                       Prof. Dr. Fahreddin Sadıkoğlu   1

4. The properties of the Z-transform 
 

     The z-transforms can be represented by following shorthand notations: 
 
     X(z); ( )[ ]txz ; ( )[ ]sxz ; [ ][ ]nxz  
 
1. Linearity: 
                                                 ( ) ( )[ ] ( ) )z(bxzaxtbxtaxz 2121 +=+  
 
2. Time shifting: 
                                                 ( )[ ] ( )zXznTtxz n−=+  

( )[ ] ( ) ( ) ( )[ ]T1nzXTXz)T0(XzzXznTtxZ 1nnn −−−−−=+ −  
 

3. Frequency shifting: 
                                                         ( )[ ] ( )azeXasxZ ±=±  
 
4. Multiplication by t n : 
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1
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Example 12 
         Find the Z-transform of x(t) = t 

x(t) nt= = [ ] nnx =  
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Example 13   Find the Z-transform of [ ] [ ]nunnx 2= . 

( ) 21 )1z(
zzX
−
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Using the property 4: 
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 An extension to this result is given by [ ] kkakx = for a <1. Letting [ ] kkx1 =  and 
[ ] [ ]kxakx 1

k= , and given knowledge of ( )zX1 , it fallows that: 

( )21 az
az)a/z(X)z(X
−

==  

5. The initial value theorem: 
                                                          Lim 0n→ )nT(x =Lim ∞→z X(z) 
6. The fınal value theorem: 
                                                          Lim ∞→n )nT(x =Lim 1z→ (z-1)X(z) 
 
 
7. Differentiation: 
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8. Integration: 
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Example 14 
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9. Convolution: 
    [ ] [ ] ( ) ( )zxzxnxnx 2121 ⋅=∗ ;            ROC:  21 RR I  

where: [ ] ( )zxnx 11 ↔                ROC:   1R  
                                                    [ ] ( )zxnx 22 ↔                 ROC:   2R  

 
Example 15 

        Find the output signal of the system shown in the Figure 10 
 
 

            U(z)=z [ ]t2e− = 2

ez

z
−

−
 ;                H(z)=

1z
z
−

                                       

Y(z)=
)ez)(1z(

z
ez

z
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z
2

2

2 −−−
=

−
⋅

−
 

 
 

5.  Mapping the s-plane into z-plane 
 

The connection between s-plane and z-plane is interpreted in the figure 11. A mapping 
rule is based on z=cosωt + jsinωt. Some important mapping are listed below: 
1. The points s= ±j2πk (k=0, 1, 2. . .) is mapped to z=exp(j2πk) → cos2πk =1. 

H(z) U(t)=e-2t Y(z) 

Figure 10 
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2. The point s=±jπ(2k+1) is mapped to z=expj(π(2k+1) → cosπ(2k+1) =-1. 
3. The ±jω axis (locus p6) maps onto z6 - the unit circle with the radius z =1. For the values 

s=±jω, (0≤ω≤2π) , if  ω=0, z=exp(0)=1; if  ω=π/2→sin π/2=1. 
4. The left half of s-plane, for values s=-σ±jω, such that |ω|≤ π) maps to the interior of the 

unit circle.  
5. The right half of s-plane, for values s=σ±jω, such that |ω|≤ π) maps to the exterior of the 

unit circle.  
6. The locus p1, for values s=-σ+jπ/2, (0≤σ≤-∞) maps onto z1. If  σ=0, 

z1=exp(jπ/2)→sin(π/2)=1,  if  σ=-∞, z1=exp(-∞)=0.                 
7. The locus p2, for values s=-σ, (0≤σ≤-∞) maps onto z2. If  σ=0, z2=exp(jπ/4) 

→sin(π/4)=0.707,  if  σ=-∞, z2=exp(-∞)=0. 
8. The locus p3, for values s=-σ-jπ/4, (0≤σ≤∞) maps onto z3. If  σ=0, z3=exp(jπ/4) 

→jsin(π/4)=0.707, if  σ=-∞, z3=exp(-∞)=0.      
9. The locus of p4, for values s=-σ-jσ, (0≤σ≤-∞) maps onto z4. If  σ=0, z4=1, if  σ=-∞, 

z4=exp(-∞)=0.      
10.  The locus p5, for values as  s=-σ+jπ, such that 0≤σ≤-∞; maps onto z5. If  σ=0,  
                  z=-1;    If  σ=∞, z=0. 
10. The locus p7=σ1- jω), maps onto circle with radius  |z6|=eσ1. In Figure 11 σ1=-0.5. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Computer study 

 
 M-file zplane(pc,T) convert the points (xc- in column vectors) in the s-plane into their 
locations in the  z-plain with sampling period (T) the unit circle for reference.  Each point is 
represented with a 'o' in the z-plane. The results of  some computer mapping of the values of  
s= σ ± jω, for the interval [0:2*pi] are represented below. 

z-plane Im s-plane 

Figure 11 

 
π/2 

-π/4 

P1 

P2 

P3 

  P6 

P4 

Re 1;0

jπ 

P5 

-jπ 

z1 

z2 

  z3 

-1;0
  0 

z5 

   z6 

-0.5 

  P7 

z4 

z7 

Im 

Re 

 

|z7| =e-σ 

|z|=1

cosωt 

sinωt 

cosωt 

sinωt 
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» sigma=0:pi/2:2*pi; 
» p1=- sigma+sqrt(-1)*pi/2; 
» z1=(exp(p1))' 
 
z1 = 
 
   0.0000 - 1.0000i 
   0.0000 - 0.2079i 
   0.0000 - 0.0432i 
   0.0000 - 0.0090i 

0.0 - 0.0019i 
 
 
 

» zplane(z1,1) 
»   p2=-sigma; 
»   z2=(exp(p1))' 
z2 = 
    1.0000 
    0.2079 
    0.0432 
    0.0090 
    0.0019 
»    zplane(z2,1) 
 
» p3=- sigma-sqrt(-1)*pi/4; 
» z3=(exp(p3))' 
z3 = 
   0.7071 + 0.7071i 
   0.1470 + 0.1470i 
   0.0306 + 0.0306i 
   0.0064 + 0.0064i 
   0.0013 + 0.0013i 
»  zplane(z3,1) 

 
»  p4=- sigma-sqrt(-1)*sigma; 
»  z4=(exp(p4))' 
z4 = 
   1.0000           
   0.0000 + 0.2079i 
  -0.0432 + 0.0000i 
   0.0000 - 0.0090i 
   0.0019 - 0.0000i 
» zplane(z4,1) 
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6. INVERSE Z-TRANSFORM 
  
The inverse z-transform(IZT) allows us to recover the discrete-time sequence x(n), given its 
z-transform. The IZT is particularly useful in DSP work, for example in finding the impluse 
response of digital filters. Symbolically, the inverse z-transform may be defined as 
   
   [ ])()( 1 zXZnx −=       (3) 
 
whre X(z) is the z-transform of x(n) and 1−Z  is the symbol for the inverse z-transform.  
  
 

Assuming a causal sequence, the z-transform, X(z), in equation 3 can be expanded into 
a power series as 

 
 

...z)3(xz)2(xz)1(x)0(xz)n(x)z(X 321

0n

n ++++== −−−
∞

=

−∑    (4) 

 
It is seen that the values of x(n) are the cofficients of  ,...)1,0( =− nz n  and so can be obtained 
directly by inspection. In practice, X(z) is often expressed as a ratio of two polynomials in 1−z  
or equivalently in z: 
 

M
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=

∑

∑

0

0     (5) 

 
In this form, the inverse z-transform, x(n), may be obtained using one of several methods 
including the following three: 
 

(1) power series expansion method; 
(2) partial fraction expansion method; 
(3) residue methode. 

 
Each method has its own merits and demerits. In terms of mathematical rigor, the residue 
method is perhaps the most elegant. The power series method, however, lends it self most 
easily to computer implementation. 

  
Computer study 
 
          M-file iztrans.m is used to find inverse Z-transform. 

Example 16 

6z5z
z)z(X 2 ++

=  

 
[ ] ( ) [ ] ( ) [ ]nUnUkx s

n
s

n 32 −+−=  
 

»   syms z k 
» x=z/(z^2+5*z+6); 
» iztrans(x) 
  
ans = 
  
(-2)^k-(-3)^k 
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6.1 Inverse Z-transforms via long division 
 

    For causal sequences, the z-transform X(z) can be expended into a power serises in 1z− . 
For a rational X(z), a convenient way to determine the power serise is an expansion by long 
division. 

.......zczcc
aza.......zaz

bzb.......zbzb
)z(X 2

2
1

10
01

1n
1n

n
01

1n
1n

n
n +++=

++++
++++

= −−
−

−

−
−  

where .....c,c,c 210  are power serise coefficients. 

Example 17    
1z414.1z

z)z(X 12 +−
= −  

 
 
 

The inverse of a rational z-transform can also be readily calculated using MATLAB. The 
function impz can be utilized for this purpose. Three versions of this function are as follows: 

• [h,t]=impz(num,den) 
• [h,t]=impz(num,den, L) 
• [h,t]=impz(num,den, L, 

FT) 
 
Where the input data consists of the vector num and den 
containing the coefficients of the numerator and the 
denominator polynomials of the z-transform given in the 
descending powers of z, the output impulse response vector h, 
and the time index vector t. The first form, the length L of h is 
determined automatically by the computer with t=0:L-1, 
whereas in the remaining two forms it is supplied by the user 
through the input data L. In the last form, the sampling interval 

is 
FT
1 . The default value of FT is 1. The following two 

examples show application [ ] [ ]dennumimpzth ,, =  file to and 
plot power. 
 

Example 18  

 
1414.1

)( 2 +−
=

zz
zzX  

 

     z z2-1.414z+1 
z-1.414+z-1 z-1+1.414z-2+z-3-z-5. . .  
       1.414-z-1  
      1.414-2z-1+1.414z-2  
                  z-1-1.414z-2  
                  z-1-1.414z-2+z-3  
                                       -z-3  
                        -z-3+1.414z-4-z-5     X[k]=δ[k-1]+1.414δ[k-2]+ δ [k-3]+0-δ[k-5]. . . 

» num=[1 0]; 
» den=[1 -1.414  +1]; 
» L=8; 
 » [x,k]=impz(num,den,L) 
x = 
1.0000 
1.4140 
0.9994 
-0.0009 
-1.0006 
-1.4140 
-0.9988 
0.0017 
k = 
0 
1 
2 
3 
4 
5 
6 
7 
»  stem(k,x,’fill’,’k’) 
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6.2 The Inverse Z-Transform Using Partial Fractions 
 

In this  method the z-transform is first expanded into a sum of simle partial fractions. The 
inverse z-transform of each partial fraction is then obtained from the table of z-transform,  
And then summed to give the overall inverse z-transform. In many practical cass, the z-
transform is given as a ratio of polynomials in z or 1−z and has the now familiar form 
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case1:  
 

Simple poles: 
If the poles of X(z) are of first order and N=M, then X(z) can be expanded as  
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             (6) 

 
where kp are the poles of X(z) (assumed distinct), KC  are the partial fraction coefficients and 

0 1 2 3 4 5 6 7
-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 
 

k 

Power series coefficiens  for    
1414.1

)( 2 +−
=

zz
zzX  
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  NN abB /0 =                                  (6.a) 
The kC are also know as the residues of X(z);  
 If  the order of the numerator is less than that of the denominator in equation (5a), 
that is N<M, then 0B  will be zero. If N>M then X(z) must be reduced first, to make MN ≤ , 
by long division with the numerator and denominator polynomials written in descending 
powers of 1−z . The remainder can then be expressed as in equation 6. 
 The coefficient, KC , associate the pole may be obtained by multiplying both sides of 
equation 6 by zpz k /)( −  and then letting kpz = :  
 

  
( ) ( )

kpzkk pz
z
zXC =−=                        (7) 

 
Case 2: 
 
 Multiple poles: 
If  X(z) contains one or more multiple-order poles then extra terms are required in equation 6 
to take this into account. For example, if X(z) contains an mth-order pole at kpz =  the partial 
fraction expansion must include terms of the form 
   

 ∑
= −

m

i
i
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i

pz
D

1 )(
        (8) 

 
The coefficients, iD , may be obtained from the relationship 
 

 
kpz

m
kim

im

İ z
zXpz

dz
d

im
D

=
−

−



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 −

−
=

)()(
)!(

1      (9) 

 
Evaluation of inverse z-transforms by the partial fraction expansion method is best illustrated 
by examples. 
 
Example 19 
 
  X(z) contains simple, first- order poles. 
Find the inverse z-transform of the following: 
   

  21

1

375,025,01
)( −−

−

−−
=

zz
zzX  

   
Solution: 
 
For simplicity, we first express the z-tansform in positive power s of z by multiplying the 
numerator and denominator by 2z : 
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)5,0)(75,0(375,025,0

)( 2 +−
=

−−
=

zz
z

zz
zzX  

 
X(z) contains first-order poles at z=0,75 and at z=-0,5.Since the order of the numerator is less 
than the order of the denominator (N<M), the partial fraction expansion has the form 
 
 

5,075,0)5,0)(75,0(
)( 21

+
+

−
=

+−
=

z
zC

z
zC

zz
zzX      (10) 

  
 
 
To make it easier to find the values of the ka  we divide both sides by z: 
  

 
5,075,0)5,0)(75,0(

)( 21
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To obtain 1C ,we simply multiply both sides of equation 10 by (z-0,75) and let z=0,75: 
 

 

5
4

5,075,0
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Similarly, 2C  is obtained as  
 

5
4

75,05,0
1
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Using the values of 1C  and 2C  in equation 10 we have  
 

5,0
)5/4(

75,0
)5/4()(
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−
=

z
z

z
zzX         

 
The desired inverse z-transform, X(n), is the sum of the two inverse z-transforms: 
  

 [ ]nnnX )5,0()75,0(
5
4)( −−=  , n>0  

 
Complex conjugate poles 
 
 
Example 20 
 
  X(z) contains first-order , complex conjugate poles. Find the discrete-time signal, x(n), 
represented by the following z-transform using the partial fraction expansion method: 
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Solution: 
 
 First, X(z)is expressed in positive powers of z: 
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The poles of  X(z) are found by solving the quadratic 03561,0)( 2 =+−= zzzD  using the 
formulae 
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where a and b are the coefficients of  2z  and z, respectively, and c is the constant term. 
With a=1, b=-1, and c=0,3561 the poles are  
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1

1  

      
 

θjrejpp −=−== 3257,05,0*
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where r=0,5967 and .08,33 °=θ thus we can express X(z) in terms of its poles: 
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since the numerator and denominator of X(z) are of the same order, the partial fraction 
expension has the form 
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From equation 6(a) 0B =1/0,3561=2,8082. To find 1C , we multiply both sides of equation 12  
by 1pz −  and then let 1pz = : 
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Where r=0,5967, °= 08,33θ . After some manipulation and simplification we have  
 

 °−<=−−=
+−

+
= 58,9806066,6992847,59040999,0

3257,02122,0
97719,01439,2

1 j
j
jC  

 
since 1p  and 2p  are complex conjugate pairs then  
  
 °<=+−== 58,9806066,6992847,59040999,0*

12 jCC  
 
thus the z-transform can be expressed as (from equation 12) 
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where 
 jp 3257,05,01 +=    jp 3257,05,02 −=  
 jC 59928,59041,01 −−=   jC 59928,59041,02 +−=  
 
From the z-transform table,  the inverse z-transform of the terms on the right-hand sides of 
equation 14 is 
 
 
 )(8082,2)8082,2(1 nuZ =−  
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thus the dicrete-time signal becomes 
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 x(n)=2,8082u(n)+12,1213(0,5967) n )58,9808,33cos( °−n ,   n 0≥  
 
A useful check for partial fraction results is to compute the values of x(n) for n=0,1,2 (say) 
and then to compare these with values obtained by the power series method. 
For example, from the expression for x(n) we find that  
 
 x(0)=2,8082-1,80838=1;   x(1)=2,99959=3;   x(2)=3,6436 
 
Example 21 
  

 X(z) contains a second-order pole. Find the discrete-time sequence, x(n), with the 
following z-transform:  
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solution: 
 
 X(z) has a first-order pole at z=0,5 and a second-order pole at z=1. In this case, the 
partial fraction expansion has the form 
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To obtain C, we processed as before and multiply both sides of X(z) by (z,-0,5), set (z=0,5) 
and evaluate the expression 
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To obtained 1D  we used equation 9, with i=1 and m=2. thus  
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Similarly, 2D is obtained from equation 9 by letting i=2 and m=2;  
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Combining the results, X(z) become 
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The inverse z-transform of each term on the right-hand side is obtained and then summed to 
give X(n): 
 

[ ],)5,0()1(222)5,0(2)( nn nnnX +−+=+−=  0≥n    (16) 
 

Consider the following three cases:  
1) z>1 
g[n] [ ] [ ] [ ]nn2n2n)5.0(2 n µ+µ−µ=   

2) z<
2
1  

 [ ]1n)n( −−µ→µ  
g[n] [ ] [ ] [ ]1nn21n21n)5.0(2 n −−µ−−−µ+−−µ−=  

3)
2
1
<z<1 

g[n] [ ] [ ] [ ]1nn21n2n)5.0(2 n −−µ−−µ+µ=  
 
 

µ(n) – unit step function 
 
 
 
 

 
 

6.3. Residue  Method 
 
In this method  the Inverse z-transform is obtained by evaluating contour integral 
 

∫
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π
= dz)z(Xz

2
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For rational polynomials the contour integral is evaluated  using a fundamental 
results in complex variable theory known as Gaushy’ residue theorem  
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The residue of  )(1 nXz n− at the multiple pole  kp is given by  
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Where F(z)= )(1 zXz n− ,m is the order of the pole at kp  and Res [ ]kpzF ),(   is the residue of 
F(z) at kpz = .  
The residue of simple pole is defined as 
 

z>1 

z<
2
1  

2
1
<z<1 

0.5    1.0 

0.5    1.0 

0.5          1.0 
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 Res [ ]
kpz

n
kkk zXzpzzFpzpzF =

−−=−= )()()()(),( 1   (18) 
   
 
Simple poles. 
 
Example 22 
 
 Find, using the residue method, the discrete- time signal corresponding to the 
following z-transform: 
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Solution: 
 
 This problem is the same as example 19. In factored form, X(z) is given by 
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If we let )()( 1 zXzzF n−=  then  
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F(z) has poles at 75,01 =z and  5,02 −=z . From  equation 18, the inverse z-transform is by 
given 
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since the poles are first order, equation 18 will be used. Thus  
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The inverse z-transform is sum of the residues at z=0,75 and at z=-0,5: 
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5
4)n(X −−=  

 



 z-TRANSFORM 

                                       Prof. Dr. Fahreddin Sadıkoğlu   1

which is identical to the result obtained by the partial fraction expansion. 
 
 
Complex conjugate poles: 
 
Examle 23 
 
 The poles of X(z) are complex conjugate poles. Find the inverse z-transform, sing the 
residue method, given the following z-transform: 
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solution:  
 
 In factored form X(z) is given as: 
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when jp 3557,05,01 +=  and jp 3557,05,02 −= , that is *

12 pp = . To find the inverse z-
transform we evaluate the residues of F(z), where in this case 
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F(z) has the same poles as X(z), that is at 1pz = and 2pz = , plus apole at z=0 when n=0. All 
the poles lie inside the contour. The pole at z=0 does not exist for n>0 and so we need to 
consider the two cases separately. 
 When n=0, F(z) reduces to 
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where r=0,5967 and .08,33 °=θ  Noting that this expression is identical to that of equation 13, 
we can write  
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 [ ] jpzFs 9928,59041,0),(Re 1 −−=   
 
since 1p  and 2p  are complex conjugate pairs then 
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thus 
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  when n>0, the pole at z=0 vanishes and we have  
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where r=0,5967 and .08,33 °=θ Noting that this expression is similar to equation 4.24 , we 
can write 
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Since 2p and 1p are complex conjugate pole pairs we can write  
 
 [ ] [ ])58,9808,33sin()58,98088,33cos()5967,0(06066,6),(Re 2 −−−= njnpzFs n  
 
Thus 
 

[ ] [ ] ),58,9808,33cos()5967,0(1213,12),(Re),(Re)( 21 °−=+= npzFspzFsnX n  n>0 
 
which checks with the results for the partion fraction expansion. 
 
X(z) contains a second-order pole. 
 
Example 24 
 

 Find the discrete-time sequence, x(n), with the following z-transform: 
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solution: 
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 This example is teh same as example under partial fraction expansion. According to 
the residue method the discrete-time sequence is given by 
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F(z) has a imple pole at z=0,5 and a second order pole at z=1; thus x(n) is given by  
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Combining the results, we have  
  
 [ ]nnnX )5,0()1(2)( +−=  
 
which is the same result as for the partial fraction expansion method. 
 

Example.  Solve using Matlab:       
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7. Comparison of the inverse Z-Transform methods 
 

We have discussed in some detail three methods of obtaining the inverse z-transform: 

 »  num=[18]; den=[18 3 -4 -1]; 
» [r,p,k]=residuez(num,den) 
r = 
    0.2400 
    0.4000 
    0.3600 
p =        
  
   -0.3333 
   -0.3333 
    0.5000 
k =[]   
» [num,den]=residuez(r,p,k) 
num = 
    1.0000    0.0000    0.0000 
den = 
    1.0000    0.1667   -0.2222   -0.0556 

Using the numerator and the denominator 
coefficients we have: 

 

0556.0z2222.0z1667.0z
z)z(X 23

3

−−+
=  

 
It can be seen that the coefficients will be 
same as in the equation of the question if we 
multiply each coefficient by 18. 
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The power series, partial fraction expansion and the residue methods. A limitation of the 

power series method is that is does not lead to a closed form solution, but it is simple and 

lends itself to computer implementation. However, because of its recursive nature care should 

be taken to minimize possible build-up of numerical errors when the number of data points in 

the inverse z-transform is large, for example by using double precision. 

 Both the partial fraction expansion and the residue methods lead to closed form 

solution. The main disadvantage with both methods is the need to factorize  the denominator 

polynomial, that is finding the poles of X(z) . If  the order of  X(z) is high finding the poles of  

X(z), if X(z) is not in factored form, is quite a difficult task .Both methods may also involve 

high-order differentiation if X(z) contains multiple-order poles.  

Clearly, if closed form solution is required then the partial fraction or residue 

methods is the most appropriate. The partial fraction method is particularly useful in 

generating the coefficients of parallel structures for digital filters. The residue methods widely 

used in the analysis of quantization errors in discrete-time system. 

  

Z-Transform Table 

Functions  Z-Transform Functions  Z-Transform 
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