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SAMPLING AND RECONSTRUCTION OF SIGNALS

The sampling theorem states that to reconstruct any analog signal from its samples, the sampling frequency ω0
must be at least twice the signal’s maximum frequency ωm:

ω0 ≥ 2ωm

Sampling is a presentation of the continuous-time signal xc(t) by a series of samples x[nT0].
Consider a signal xs(t) defined as the product of two signals: xc(t)-is an original signal and p(t) -is a periodic
impulse train or Dirac distribution.
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The  spectrum of the Dirac distribution  p(t) is itself a periodic train. 

The spectrum X s(ω ) of the output signal x s(t)

The spectrum of the signals are shown in Figure 5.2; where X c ω) is arbitrary.
The distance between two adjacent replicated spectra is called a guard band

B g = ω 0 - 2ω m .
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Example 5.1 A band limited signal has a bandwidth equal to 200 Hz.  What sampling rate should be used to guarantee a guard band 
of 100 Hz.
Solution: Fm=200 Hz; Bg=100 Hz. Bg= F0-2Fm; 100=F0-2x100; F0=300 Hz.

The following three cases present practical interest:

Under sampling: ω0  < 2ωm

Nyquist rate: ω0  = 2ωm

Over sampling: ω0  > 2ωm

From Figure 5.2 it is evident that when   ω0-ωm>ωm  or ω0>2ωm  the spectrum of  Xs(ω) don’t overlap (see Figure 5.2 (c)).  and 
consequently it can be recovered from its samples with ideal low-pass filter having a frequency response H(jω) (see Figure 5.2 (e)). 
If ω0>2ωm , output of the filter corresponds to Xc(ω) (see Figure 5.2 (f)). If ω0>2ωm  does not hold , i.e ω0<2ωm  the spectrum 
Xs(ω) overlap(see Figure 5.2 (d)) and xc(t) is not recoverable by low pass filtering because of side-band distortion. This high 
frequency distortion is called an aliasing. 
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Reconstruction of a Bandlimited Signal From Its Samples 
 
According to the sampling theorem, samples of a continuous-time band limited signal taken 
frequently enough are sufficient to represent the signal exactly in the sense that the signal can
be recovered from the samples. Impulse train modulation provides a convenient means for
understanding the process of reconstructing the continuous-time bandlimited signal from its
samples. 
 If the conditions of the sampling theorem are met and if the modulated impulse train is
filtered by an appropriate low-pass filter, then the Fourier transform of the filter output will be
identical to the Fourier transform of the original continuous-time signal xc(t), and thus the 
output of the filter will be x*c (t). If  x c(nT0) is the input to an ideal low-pass continuous time 
filter with frequency response Hr(jω) and impulse response hr(t), them the output of the filter 
will be  

[ ] [ ]0r
n

0cc nTthnTx)t(x −=∗ ∑
∞

−∞=

                  (5.1) 

A block diagram representation of this signal reconstruction process is shown in Figure 5.3. 

 xc[nT0] x*c(t) xc(t)
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period T0
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Figure 5.3  
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» sxms t k
»x1=sin(2*(t -(4*k*pi/2)))/(2*(t -(4*k*pi/2)));           z1=sxmsum(x1,k, -2,2);
» x2=sin(2*(t -(4*k+1)*pi/2))/(2*(t -(4*k+1)*pi/2)); z2=sxmsum(x2,k, -2,2);
» x3=sin(2*(t -(4*k+2)*pi/2))/(2*(t -(4*k+2)*pi/2)); z3=sxmsum(x3,k, -2,2);
» x3=sin(2*(t -(4*k+3)*pi/2))/(2 *(t-(4*k+3)*pi/2)); z4=sxmsum(x3,k, -2,2);
» x3=sin(2*(t -(4*k+4)*pi/2))/(2*(t -(4*k+4)*pi/2)); z5=sxmsum(x3,k, -2,2);
» x*c=2.2975*z1 -0.5975*z2+0.2975*z3 -0.5975*z4; ezplot(x*c,[0 2*pi])

» t=0:2*pi/40:2*pi;
» s=0.35+sin(t+pi/2)+
1.34*sin(2*t+pi/4);
» plot(t,s)
»hold on
» t=0:2*pi/4:2*pi;
» s=0.35+sin(t+pi/2)+
1.34*sin(2*t+pi/4);
» stem(t,s,'fill','k')
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x*c(t)
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A major application of discrete-time systems is the processing of continuous-time signals. 
This is accomplished by a system of the general form depicted in Figure 5.8 
 
 
 
 
 
 
 

ADC- Analog-to-digital converter; DAC- Digital –to-analog converter 

xc(t) X[n] Y[n] y(t) 

T0 T0 

 
ADC 

Discrete-
time 

system

 
DAC 

Sampling Interval and Lagrange Approximation

Interpolation means to estimate a missing function value by taking weighted average values at 
neighboring points.
The general form of Lagrange approximation passing true N+1 points )x,t),..(x,t( nn00 is 
defined as

∑
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=
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0K
K,NKK,N )t(Lx)x(P

Where )x(L K,N are called Lagrange coefficient polynomials.
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The Lagrange polynomial passing true the 2 points (t1,x1) and (t2,x2) is linear interpolation 

∑
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Error of approximation 
)t(P)t(x)t( K,Nc −=ε

Sampling intervals T 0 for  N=0; 1; 2 are defined as following.

N=0 – staircase approximation see (Figure 5.13)

1
0 M

T
ε

= ; (5.7)

N=1 – Linear interpolation (see Figure 5.14) 

2
1 M

8T
ε

= ; )(''2 txM = (5.8)

N=2 – Parabolic interpolation

3
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Figure 5.14

Figure 5.13

where M 1, M 2 and M 3 are the 1 st, 2nd and 3 rd

order derivatives absolute valu es.

Figure 5.15
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Example 5.4. Using the Matlab files perform staircase and linear approximation of y=sin(t) 
for t = 0: 2π. 

In Figure 5.16 are shown staircase (a) and linear (b) interpolations of the sinusoidal 
signal using the Matlab files. 
 
                     
 
 
 
 
 
 
                                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

» t=0:pi/100:2*pi; y=sin(t); plot(t,y,'k'); hold on 
» t=0:pi/4:2*pi; y=sin(t); stem(t,y,'k','fill'); hold on 
» stairs(t,y) set(gca,'xtick',[0.pi/4 pi/2 3pi/4 pi 5pi/4 6pi/4 7pi/4 2pi]) 
»t=0:2*pi/100:2*pi; y=sin(t);ti=0:pi/4:2*pi; yi=interp1(t,y,ti);plot(t,y,ti,yi) 

a) 
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