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3. DISCRETE-TIME SYSTEM 
 

 A system   is a combination of elements that act together to perform function not 

possible with any of individual part. The system   can   be   viewed   as any   process   that   

results   in    the    transformation    of    signals. Thus, a system   has    an   input   signal   and   

output   signal, which   is   related to   the input   through   the   system   transformation. 

In the     discrete-time    system (DTS)  discrete–time   inputs  is transformed  into   

discrete–time   outputs (see   Figure 1).  These systems    will    be    represented   

symbolically   as  

 

x  [ nT ]                    y [ nT ] 

 

 

 

 

 

 

 

 

3.1 Examples of DTS: 

3.1.1 Accumulator 

 

 

 

Where y(-1) is called the initial condition. 

 

3.1.2 Upsampler 
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DTS 
y[nT] x[nT] 

Figure 1     

(3.1) 

(3.2) 
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L-up-sampling factor is a positive integer greater than 1.  

Upsampling is operates by inserting L-1 zero-valued equispaced samples between each 

consecutive pair of input sequenses.  

Matlab files torealise  upsampling for L=3 is given below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3 M-point Moving average 
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n=0:9; 
x = [1 2 3 4 5 7 3 2 3 1]; 
L=3; 
subplot(2,1,1) 
stem(n,x,'fill') 
y=zeros(1,L*length(x)); 
y([1:L:length(y)])=x; 
subplot(2,1,2) 
stem(n,y(1:length(x)),'fill') 
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Figure 2     

(3.3) 
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%Generation the  

original signal 
R=50; 
m=0:1:R-1; 
s=2*m.*(0.9.^m); 
subplot (2,1,1) 
stem(m,s); 
xlabel('n');ylabel('s'); 
title('Original signal') 
%Generation random noise 
d=rand(R,1)-0.5; 
subplot (2,1,2) 
stem(m,d); 
xlabel('n');ylabel('d'); 
title('Noise') 

The average filtering is used in stock market analysis for determining slowly varying trend 

from data that contents high frequency fluctuations. In this case, a possible approach is to 

average data over an interval in order to smooth out the fluctuations and keep only trend. 
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Application of Moving Average to reduse noise from original signal 
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%Generation noisly signal 

x=s+d'; 

plot (m,x) 

xlabel('n');ylabel('x'); 

hold on 

M=3; 
Filtering of noisly signal 
b=ones(M,1)/M;  

y=filter(b,1,x); 

plot (m,y,'r','linewidth',2) 

xlabel('n');ylabel('y') 

 

Random noise d(t) 

Origal signal 

s(t)=2m(0.9)
m

 
Filter 

+ 

Filtred signal  y(t) 

Estimation of  s(t) 

 

Figure 3     
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3.1.4 Linear Interpolation 

 

Factor 2-interpolation: 

 

y(n)=  

 

Factor 3-interpolation: 

 

 

In the following figure is shown factor-3 interpolation. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

  3.2 Properties   of   DTS   

 

           In this section, we   introduce   and   discuss   a   number   of   basic   properties   of   

discrete-time   systems.  

 

 3.2.1  Systems   with   and   without   memory 

 

          A   system   is   said   to   be   memory less   if   its   output   for   each   value   n0  of   

the   independent   variable n is   dependents  only   on   the   input   at   time  n0. The output 

of the memoryless system is  independent of the input applied before or after n0.  
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One   particularly   simple   memory less   system   is   the   identity   system, whose   output   

is   identical   to   its   input. That   is,  

y n = x n 

 

              An   example   of   a   system   with   memory   is unit time delay system 

 y n = x n-1 

 or accumulator described by 

      )(....)2()1()0(
0

nxxxxkxny
n

k




   

 

 3.2.2  Invertiblity   and   Inverse   System    

 

           A   system   is   invertible   if   by   observing   its output; we   can   determine   its   

input. For   the   discrete–time   case, we   can   construct   an   inverse   system   which   when   

cascaded   with   the   original   system   yields   an   output   z  n  equal   to   the   input    

x  n  to   the   first   system. Thus, the   series   interconnection   in   Figure 5 has   an   

overall   input – output   relationship   that is   the   same   as   that   for   the   identity   

system. 

     

Find the inverse system for   invertible   system   described by 

 

y (n) = 2 x(n)       

for   which   the   inverse   system   is 

z (n) = (1/2)  y(n) 

 

 

 

 

 

 

Original 

System 

y [n] 

Inverse 
System 
     

z [n] = x [n]   
x [n]                                                                                                  

Figure 5 

y(n)=2x(n) 

y(n) 
z(n)=(1/2)y(n) 
     

z (n) = x (n)   
x(n) 

Figure 6     
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The inverse system is widely used in communication system to avoid distortion introduced by 

channel. For this purpose inverse  of channel model filter is introduced to the receiver. 

3.2.3  Causality 

         A   system   is   causal   if   the   output   any   time   depends   only   on   values   of   the   

input   at   the   present   time   and   in   the   past.   

A system described by y(n)=ax(n+1) is non-causal or anticipative. Output depends of the 

future input. 

The forward difference system defined by the relationship 

y[n] = x[n + 1] − x[n]  

is not causal, since the current value of the output depends on a future value of the input. The 

backward difference system, defined as 

y[n] = x[n] − x[n − 1]  

has an output that depends only on the present and past values of the input. This  system is 

causal by definition. 

Example 

y(n)=a0x(n)+ a1x(n-1)+ a2x(n-2)+ a3x(n-3)+ a4x(n-4) 

 

Such   a   system   is   often   referred   to   as   being   non anticipative, as   the   system   

output does not anticipate future values of   the   input. Example: The   motion   of   an   

automobile   is   casual   since   it   does   not   anticipate   future   actions   of   the   driver.  

Causality is a necessary condition for a system to be built in the real word. Causality is 

importance for communications and control systems that operate in real time. In speech, 

geophysical or meteorological data processing systems primary data can be stored in tapes 

and then processing later. Causality is not importance for image processing systems, in which 

independent variable is not time. Therefore, non-causal system can be used non-real time 

systems. 

Example of noncausal system is average filtering described as 

 

 

   






M

Mk

knx
M

ny
12

1
 

 

(3.6) 
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Example for M=1, we have        11
3

1
 nxnxnxny  

 Not that all memoryless systems (upsampler, accumulator)are causal. 

 

3.2.4  Stability 

     

Every system designed to process signals must be stable. If an electrical system is not stable, 

it will likely burn out or saturate after the application of an input, no matter how small. If a 

mechanical system or a structure is not stable, it will generally blow up or disintegrate. If a 

computer program is unstable, it will  overflow. Thus, every system must be designed to be 

stable in order to function properly.    

 A system is said to be BIBO (bounded-input bounded-output) stable if every bounded 

input excites a bounded output.  

This implies that if, 

x(n)  Bu    

 

Then for stable system          y(n)   By   

 

 

A system is said to be marginally stable or stable in the sense of Lyapunov if the 

response excited every finite initial state is bounded.  It is said to be asymptotically 

stable if the response excited by every finite initial state is bounded and approaches zero at 

n . These definitions are applicable only to linear systems. 

 

 

Example 2.4. Output-input relationship of system is described by following equation 

   



n

0k

kxny  

 The system is stable? 

 Suppose x[n] = µ[n] is unit step sequence. Then y[0]=1, y[1]=2, y[2]=3, . . . or 

y[n]=[n+1] [n],  system output increases without bound, that is the system is unstable. 

Example 2.5. Considerer the averaging filter described by  

(3.7) 
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   






M

Mk

knx
1M

1
ny  

 

Suppose x[n] =µ [n], then  y[0]=1, y[1]=1, y[2]=1,…. The input is bounded by 1, output also 

is bounded by 1. System is stable. 

 

3. 2. 5  Time   Invariance 

          A   system   is   time  invariant   if   a time   shift   in   the   input   signal   causes   a   

time   in   the   output   signal. Specifically, if   y [n] is   the   output   of   a   discrete – time– 

invariant   system when   x [n] is the   input, then y [n - no] is   the   output   when x [n – no] is   

applied.  

 

x(n)=x1(n-n0) 

y(n)=y( n-n0) 

 

Exersice. The system defined by the relation 

y(n) = x(Mn) 

with M a positive integer, is called a compressor. Specifically, it discards (M − 1) samples out 

of M; i.e., it creates the output sequence by selecting every M th sample. This system is not 

time invariant.We can show that it is not by considering the response  y 1[n] to the input 

 x1[n] = x[n−n0]. For the system to be time invariant, the output of  the system when the input 

is x1[n] must be equal to y[n − n0]. The output  y 1[n] that results from the input x1[n] can be 

directly computed  

y 1[n] = x1[Mn] = x[Mn − n0] 

Delaying the output y[n] by n0 samples yields  y[n − n0] = x[M(n − n0)]. Comparing these 

two outputs, we see that y[n−n0] is not equal to  y 1[n] for all M and   n0, and therefore, the 

system is not time invariant. 

 

 

Example. Let   us   consider   the   continuous – time   system   defined   by 

 

y (n) = sin [x (n)]    

(3.8) 
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Suppose x(n)=µ(n); (0)=1, then y(0) = sin1; if (2)=1, then y (2) = sin 1, in general, if 

x(t)=(t)=1, the output is always sin 1 no matter what n is. Thus, the system is time invariant. 

 

Example 2.7 Consider y (n) = (sinn)x (n). 

 

Suppose x(n)=µ(n); if x (n)=1 at n=0, then y(0) = (sin 0)x1=0; if x (n)=1 at t=1, then y(1) =  

(sin 1)x1=0.84x1=0.84. We find that the output is different if the same input is applied at 

different time. Thus, the system described by y (n) = (sin n)x (n) is time varying. 

 

3. 2. 6   Linearity 

  Let us y1(n)  is a response of a system to x1(n)  and y2(n) be a response to x2(n).  

x1(n)  y1(n)   

x2(n)  y2(n)   

 

          A   system is linear if: 

ax(n)  ay(n)    

        

x1(n) + x2(n)  y1(n) + y2(n)   

                 

   The condition (2.2) is referred to as homogeneity (or scaling) property; the condition (2.3) is 

referred to as additivity property. 

           The   two   properties   defining   a   linear   system   can   be   combined   into   a   

single   statement, which   is   written   below   for both the   continuous-time and discrete-

time   cases: 

x(n) = ax1(n) + bx2(n) 

 

                   y(n) = ay1[n] + by2 [n]                                       

 

where   a   and   b   are   any   complex   constants. This   very   important   fact   is   known   

as   the   superposition   property.  

 

Example. The  system defined by 
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   



n

0k

kxny  

is called the accumulator system, since the output at time n is the accumulation or sum of the 

present and all previous input samples. The accumulator system is a linear system. Since this 

may not be intuitively obvious, it is a useful exercise to go through 

the steps of more formally showing this. We begin by defining two arbitrary inputs 

x1[n] and x2[n] and their corresponding outputs 

 

 

 

When the input is x3[n] = ax1[n] + bx2[n], the superposition principle requires the output y3[n] 

= ay1[n] + by2[n] for all possible choices of a and b. 

            


n

k

2

n

k

1

n

k

2

n

k

1

n

k

33 kxbkxa)kbxkax(kxny  

  = y1[n] + by2[n]. 

Thus, the accumulator system of s atisfies the superposition principle for all inputs and is 

therefore linear. 

             Linear   systems   possess   another   important   property, which   is   that   zero   

input   yields   zero   output. For   example, if   x[n]    y[n]  , then   the   scaling   property   

tells   us   that   

     0 = 0.x [n]    0.y [n] = 0 

A linear time-invariant system satisfies both the linearity and time –invariance 

properties. Consider   then   the   system 

y [n] = 2x [n] + 3 

 

We   see   that   this   system   not   linear, since   y [n] = 3, if   x [n] = 0. On   the   other   

hand, this   system   falls   into   the   class   of     incrementally   linear   systems.      

 

              

 

 

 

      

x(n)                                                                                           
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Figure 7 
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
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An   incrementally   linear   system   in   continuous   or   discrete   time   is   one   that   

responds   linearly   to   changes   in   the   input. That   is, the   difference   in   the   responses   

to   any   two   inputs   to   an   incrementally   linear   system   is   a   linear   function   of   the   

difference   between   the   two   inputs.  

Any   incrementally   linear   system   can   be   shown   as   shown   in Figure 2.13.  

That   is , theresponse   of   such   a   system   equals   the   sum   of   a   linear   system   

and   of   another   signal   that   is   unaffected   by   the   input. 

 

Example. Determine if each of the following systems is linear?  

1. y (n) = sin [x (n)] 

2. y (n) = x(n)sin(n)  

3. y (n) = x
2
 (n)   

4. y (n) = (sin n
2
)x (n)         

Solution:  

1. y (n) = sin [x1 (n) + x2(n)]  sin [x1 (n)] + sin [x2 (n)]  sysnem is non linear 

2. y (n) = sin n(ax1(n)+bx2(n)) = ax1(n)sin n + bx2(n)sin n  system is linear 

3. y (n) = [ax1(n) + bx2(n)]
2
  [ax1(n) + bx2(n)]  system is non linear 

4. y (n) = (sin n
2
) [ax1(n) + bx2(n)] = ax1(n)sin n

2 
+ bx2(n)sin n

2
 system is linear 

 

3. 3  Impulse and Step Response 

 

The response of  digital fitler to a unit sample sequence {δ[n]} is called the unit sample 

response, or simply, the impulse response, and is denoted as {h[n]}.  Correspondingly, the 

response of a discrete-time system to a unit step sequence {μ[n]}, denoted as {s[n]}, is its unit 

step response or simply, the step response.  As we show next, a linear time-invariant digital 

filter is completely characterized in the time-domain by its impulse response or  its step 

response. 

Example.  The impulse response {h[n]} of the discrete-time accumulator is obtained by 

setting  x[n]= δ [n] resulting in  

 

which  is precisely the unit step sequence μ [n]. 
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Example. The impulse response {h[n]} of the factor-of-2 interpolator is obtained by setting  

x[n]= δ [n] and is given by 

 

The impulse response is seen to be a finite length sequence of length 3 and can be written 

alternately as example 

h[n]={0.5, 1, 0.5} 

 

3.4 Input-Output Relationship 

 

A consequence of the linear, time-invariance property is that an LTI discrete-time system a 

completely specified by its impulse response, i.e., knowing the impulse response, we can 

compute the output of the system to any arbitrary input. We develop this relationship now. 

 Let h[n] denote the impulse response of the LTI discrete-time system of interest, i.e., 

the response to an input  .n  we first compute the response of this filter to the input x[n]of 

eq. since the discrete-time system is time invariant, its response to  1n  will be h[n-1]. 

Likewise, the responses to      64,2  nandnn   will be, respectively, h[n+2],  

h[n-4], and h[n-6]. Because of linearity, the response of the LTI discrete-time system to the 

input 

            675.04215.125.0  nnnnnnx      

Will be simply 

            .675.04215.125.0  nhnhnhnhnhny  

 

We now generalize the above result for an arbitrary input sequence x[n] that can be expressed 

as 

      .knkxnx
k

 




  

 

In the above expression, x[k] denotes specifically the k-th sample value. The response of the 

LTI discrete-time system to the sequence    knkx   will be x[k]h[n-k]. As a result, the 

response y[n] of the discrete-time system to x[n] will be given by  

 

(3.9) 
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     ,knhkxny

k

 




 

which can be alternately written as  

      khknxny

k






  

by a simple change of variables. The above sum in  Eqs. Is called the convolution sum of the 

sequences x[n] and h[n], and represented compactly as: 

 

      nhnxny    

where the notation   denotes the convolution sum.  

The convolution sum operation satisfies several useful properties. First, the operation 

is commutative, i.e.,  

       .1221 nxnxnxnx    

 

Second, the convolution sum operation, for stable and single-sided sequences, is associative, 

i.e.,  

             .321321 nxnxnxnxnxnx   

 

And last, the operation is distributive, i.e.,  

 

               .3121321 nxnxnxnxnxnxnx   

 It clear from the above discussion that the impulse response {h[n]} completely 

characterizes an LTI discrete-time system in the time-domain because, knows the impulse 

response, we can compute, in principle, the output sequence y[n] for any given input sequence 

x[n] using the convolution. The computation of  an output sample is simply a sum of products 

involving fairly simple arithmetic operations such as additions, multiplications, and delays. 

However, in practice, the convolution sum can be employed to compute the output sample at 

any instant only if either the impulse response sequence and/or the input sequence is of finite 

length, resulting in a finite sum of products. Note that if both the input and the impulse 

response sequences are of finite length, the output sequence is also of finite length. In the case 

of a discrete-time system with an infinite-length impulse response, it is obviously not possible 

to compute the output using the convolution sum if the input is also of infinite length. We 

(3.10) 
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shall therefore consider alternative time-domain descriptions of such system that involve only 

finite sums of products.  

 To understand the process involved in generating the new sequence y[n], let us first 

compute the sample y[0] that is given by  

     .knhkxny
k

 




 

For n=0        .khkx0y
k

 




   

Thus, to compute the output sample y[0] we first time-reverse the sequence h[k] to arrive at 

h[-k]. For n=1  

     ,k1hkx1y
k






  

which indicates that first the time-reserved sequence h[-k] is shifted to the right by one 

sampling period to arrive at the sequence h[1-k]. Then the k-th sample of this sequence is 

multiplied with the k-th input sample x[k] and summed over all values of k to arrive at y[1]. 

This process is continued for increasing values of n.   

 

Example. 

 

x(k) = (-2 0 1 -1 3)   

h(k) =  (1 2 0 -1 ) 

Find y(k). Sketch sequences. 

We systematically develop the sequence y[n] generated by the convolution of the two 

finite-length sequence x[n] and h[n] show in figure. As can be seen from the plot of the 

shifted time-reversed version {h[n-k]} for n<0 sketched in figure for n=-3, for  any value of 

the sample index k, the kth sample of either {x[k]} or  {h[n-k]} is zero. As a result the 

product of the k-th samples is always zero for any k, and consequently, the convolution sum 

of eq. leads to  

y[n]=0  for n<0. 

 Consider now the calculation of y[0]. We form {h[-k]} as shown in figure. The 

product sequence {x[k]h[-k]} is potted in figure, which has a single nonzero sample for k=0, 

x[0]h[0]. Thus,   y[0]=x[0]h[0]=-2. 

x(k) y(k) 
 

h(k) 
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  For the computation of y[1], we shift {h[-k]} to the right by one sample period 

to form {h[1-k]} as sketched in figure. The product sequence {x[k]h[1-k]} shown in figure 

has one nonzero sample or k=0, x[0]h[1]. As a result, 

Y[1]=x[0]h[1]+x[1]h[1] =-4 

 Y[2]=x[0]h[2]+x[1]h[1]+x[2]h[0]=0+0+1=1 

 y[3]=x[0]h[3]+x[1]h[2]+x[2]h[1]+x[3]h[0]=2+0+0+1=3, 

 y[4]=x[1]h[3]+x[2]h[2]+x[3]h[1]+x[4]h[0]=0+0-2+3=1, 

 y[5]=x[2]h[3]+x[3]h[2]+x[4]h[1]=-1+0+6=5, 

 y[6]=x[3]h[3]+x[4]h[2]=1+0=1, 

 y[7]=x[4]h[3]=-3. 

From the plot of {h[n-k]} for n >7 as shown in figure and the plot of {x[k]} in figure, it can 

be seen that there is no overlap between these two sequence. As a result y[n]=0 for n>7.  

Output sequences generated by the convolution is given below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. 1   Convolution Using Table 

 

In addition to direct substitution, discrete convolution can also be carried out using the table. 

The table lists h[k] and x[k] on the top row and left-most column.  The products  of these 
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y(n) 

Figure 8     
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elements yield the entries of the table .  The sums of those along the dotted lines yield the 

convolution .  Note that the positions of h[k] & x[k] can be interchanged and the result will 

still be the same .   

This is a convenient method of computing discrete convolution by hand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matlab-files for calculation of convolution is given below. 

 

 

 

 

 

 

 

 

 

3. 5 Interconnection of Systems 

 
a) Series or cascade interconnection 

 

A  series   or cascade   interconnection of two systems   is   illustrated   in  Figure 2.1 

(a). We   will refer   to   diagrams   such   as   this   as   block   diagrams. Here   the output   of   

DTS1  is   the   input   of DTS2, and   the   overall   impulse response.    

 

x[k 

 

h[k] 

1 2 0 -1 0 

-2 

 
-2 4 0 2 -4 

 0  

 
0 0 0 0 4 

 1  

 
1 2 0 -1 2 

 -1 

 
-1 -2 0 1 0 

 3 

3 6 0 -3 

 

0 

 

 

           -2        -4        1       3          1      5      1       -3      0                                          

Figure  9 

y[0]  y[1]   y[2]   y[3]    y[4]   y[5]  y[6]   y[7]   y[8] 

% Convolution 
x=[-2  0  1  -1  3]; 
h=[1  2  0  -1]; 
y=conv(x,h); 
M=length(y)-1; 
n=0:1:M; 
disp(y); 
stem(n,y,'fill','linewidth',3) 
xlabel('n');ylabel('y') 
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     .21 nhnhnh   

 

Note that, in general, the ordering of the filters in the cascade has no effect on the overall 

impulse response because of the commutative property of convolution. 

 It can be shown that the cascade connection of two stable systems is stable. Likewise, 

the cascade connection of the passive (lossless) systems is passive (lossless).  

 The cascade connection schema is employed in the development of an inverse system. 

If the two LTI system in the cascade connection of figure are such that 

 

      ,21 nnhnh   

 

Then the LTI system  nh2  is said to be the inverse of the LTI system  nh1 , and vice-versa. 

As a result of the above relation, if the input to the cascaded system is x[n], its output is also 

x[n]. An application of this concept is in the recovery of a signal from its distorted version 

appearing at the output of a transmission channel is known. 

 The following example illustrates the development of an inverse system. 

 

Example.  

From example the impulse of the discrete time accumulator is the unit step response  n . 

Therefore, from eq. the inverse system must satisfy the condition  

 

      .2 nnhn    

 

It follows from eq. that   02 nh  for n<0 and 

 

     DTS1 - h1(n)       DTS2 - h2(n) 

 

Input  Output 

Figure 10     
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   ,102 h              ,0

0

2 


lh
n

l

   .1n  

As a results,  

   112 h  and     ,02 nh   for .2n   

Thus the impulse response of the overall filter is given here by 

 

      .21 nhnhnh   

It is a simple exercise to show that the parallel connection of two stable systems is stable. 

However, the parallel connection of two passive (lossless) systems may or may not be passive 

(lossless). 

 

b) Parallel interconnection 

 

A   parallel   interconnection   of two systems   is    illustrated in   figure 11. 

Here   the   same   input     signal   is   applied    to   DTS1   and  DTS2. The   symbol  “        “ 

in  the   figure  denotes   addition, so   that the  output   of  the   parallel   interconnection   is  

the  sum   of   the   outputs  of   DTS1   and  DTS2. We   can also   define   parallel   

interconnections of  more    than   two   system , and   we   can   combine   both   cascade   and   

parallel   interconnections   to   obtain   more   complicated   interconnections . 

Interconnections   such   as   systems   can   be   used   to   construct   new   system   out   of   

existing   ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     .21 nhnhnh   

 

 

Example. Design   system   to   compute arithmetic   expression   

  

c) 

b) 

Output Input 

+ 

h1(n) 

h2(n) 

 

Figure 11     
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     y [ n ] = ( 2 x [ n ] – x [ n ]²)²            

 

 

In   the   Figure 12 is shown     block-diagram of desired system. 

          In   addition   to   providing   a   mechanism   that   allows   us   to   build   new   

systems, interconnections   also   allow   us   to   view   an   existing   system   as   an   

interconnection   of   its   component   parts. For   example, electrical   circuits   involve   

interconnections   of   basic   

 

 

 

 

circuit   elements   (resistor, capacitor, inductors). Similarly, the   operation   of   an   

automobile   can   be   broken   down   into   the   interconnected   operation   of   the 

carburetor, pistons, crankshaft, and   so   on. Viewing   a   complex   system   in   this   manner   

is   often   useful   in   facilitating   the   analysis   of   the   system. 

 

 c) Feedback Interconnection 

 

An   example   of   which   is   illustrated   in   Figure 13. Here   the   output   of   the   System 

1   is   the   input   to   System 2, while   the   output   of   System 2   is   fed   back   and   

added   to   the   external   input   to   produce   the   actual   input   to   System 1. Feedback   

system   arises   in   a   wide   variety   of   applications. For   example, a   speed   governor   

on   an   automobile   senses   vehicle   velocity   and   adjusts   the   input   from   the   driver   

in   order   to   keep   the   speed   at   a   safe   level. Also, electrical   circuits   are   often   

useful   viewed   as   containing   feedback   interconnections.  
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Multiplier by 2 

x[n] 

Square 
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Figure 12 
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3.6 Stability Condition of LTI Systems 
 

 

We know that DTS is defined to be BIBO stable if , if the output  y(n) remain bounded for all 

bounded input x(n). LTI system is BIBO stable if  and only if its impulse response h(n) is 

absolutely sumable 

 

 

 

 

 

 

 

Example. h(n) =  

 

 
 

 

if    ,  S < ∞  system is BIBO stable. If, on the other hand, |a| ≥ 1, then the sum is 

infinite and the system is unstable 

 

3.7 Finite Dimensional LTI Discrete-Time Systems 

An important subclass of LTI discrete-time systems is characterized by a linear constant 

coefficient difference equation of the form 

 

     ,
00

knxaknyb
M

k

k

N

k

k  


 

 

Fiigure 13 

     System 2 

     System 1 

 
Output 

Input 

 
+ 

- 

e(n) 
y(n) 

u(n) 

f(n) 

e(n) – error or actuating signal 

f(n) – feedback signal 

Feedback element 

Forward element 

element 

(3.11) 

(3.12) 
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If we assume the system to be causal, then we can rewrite equation to express y[n] explicitly 

as a function of x[n]: 

 

      ,
0 01 0

knx
b

b
kny

b

b
ny

M

k

k
N

k

k  


 

 

Where x[n] and y[n] are, respectively, the input and output of the system, and {bk} and {ak}  

are constants. The order of the discrete-time system is said to be N (assuming N ≥M), which is 

the order of the difference equation characterizing the system. It is possible to implement an 

LTI system characterized by eq. since the computation here involves two infinite sum of 

products. In general, such a system may not be causal, as illustrated by the following example.  

 

Example.  

The filter described by  

      nxnayny  1  

has an impulse response h[n] (obtained by setting    nnx  ); 

 

     ,nn cananh    

where c is any arbitrary constant. Consider two solutions: 

 

        .1, 21  nanhnanh nn   

 

The first solution  ,1 nh  obtained for c=0, represents a causal system and is stable for ,1a  

where as the second solution  ,2 nh  obtained for c=-1, represents a non causal system that is 

stable for .1a  

Example. 

There exist infinite-impulse response LTI discrete-time systems that cannot be characterized 

by the difference equation form of equation. The system defined by the impulse response  

 

    1
1

2
 n

n
nh   

is such an example. Note that the above system is causal and also BIBO stable. 
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 If we assume the system to be causal, then we can rewrite equation to express y[n] 

explicitly as a function of x[n]: 

The following example illustrates the computation of the impulse responses of an LTI system  

 

Example.  

Program given below can be employed to compute the impulse response of a causal finite-

dimensional LTI discrete-system of the form of equation. The program calls for the following 

input data: desired length of the impulse response and the filter coefficient vectors p and d 

that must be entered inside square brackets. The program then plots the impulse response 

sequence. To illustrate its application we determine the first samples of the impulse response 

of the causal LTI system defined  

  

 
       

       .302.0236.0144.08.0

36.0245.017.0





nxnxnxnx

nynynyny
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The impulse response sequence generated by the program is then plotted as indicated in 

figure. Note that the impulse response a discrete-time finite-dimensional system can also be 

computed in MATLAB using the function impz. 

%İmpulse Response calculation 

N=41; 

p=[0.8 -0.44 0.36 0.02]; 

d=[1 0.7 -0.45 -0.6]; 

x=[1 zeros(1,N-1)]; 

y=filter(p,d,x); 

k=0:1:N-1; 

stem(k,y,'fill') 

10 20 30 40 
-1 

-0.5 

0 

0.5 

1 

1.5 

Figure 14     
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 To determine the step response we replace in the above program the statement x = [1 

zeros ( 1, N-1 )] with the statement x= [ones (1, N)]. The computed first 41 samples of 

the step response are indicated in figure. 

  From the plots of figures we can conclude that most likely the LTI system of equation 

is BIBO stable. However, it is impossible to check the stability of a system just by examining 

only a finite segment of its impulse response as in these figures. 

 

3. 8 Classification of LTI Discrete-Time Systems 

Linear time-invariant (LTI) discrete-time systems are usually classified either according to the 

length of their impulse response sequences or according to the method of calculation 

employed to determine the output samples. 

 

3.8.1 Classification Based on Impulse Response Length.   

 

 If h[n] is of finite length,  

 

 h[n]=0  for 1Nn   and 2Nn     with 21 NN  ,  

 

then it is known as a finite impulse response (FIR) discrete-time system, for which the 

convolution sum reduces to  

      .knxkhny
2

1

N

Nk

 


  

Note that the above convolution sum, being a finite sum, can be used to calculate y[n] 

directly. The basic operations involved are simply multiplication and addition. Note that when 

,01 N  the calculate of the present value of the output sequence involves the present value 

and 12 NN   previous values of the input sequence and involves the 112  NN  impulse 

response samples describing the FIR discrete-time system. 

Examples of FIR discrete-time systems are the moving average system and the linear 

interpolators. 

If h[n] is of infinite length, then it is known as an infinite impulse response (IIR) 

discrete-time system. In this case the convolution sum cannot be used to numerically calculate 

the output sequence samples due to the infinite nature of the sum unless the input sequence is 

of finite length. The class of IIR filter we are concerned with in this text is the causal system 

(3.13) 

(3.14) 
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characterized by the linear constant coefficient difference equation of equation. Note that here 

also the basic operations needed in the output calculations are multiplication and addition. An 

example of an IIR system is the accumulator of equations. 

 

3.8.2 Classification Based on the Output Calculation Process.  

If the output sample can be calculated sequentially, knowing only the present and past input 

samples, the filter is said to be a nonrecursive discrete-time system. If, on the order hand, the 

computation of the output involves past output in addition to the present and past input 

samples, it is known as a recursive discrete-time system. An example of a nonrecursive 

system is the FIR discrete-time system implemented using equation. The IIR discrete-time 

system implemented using the difference equation of eq. is an example of the recursive 

system. This equation permits the recursive computation of the output response beginning at 

some instant 0nn   and progressively for higher values of n provided the initial conditions 

 10 ny  through  Nny 0  are known. However, it is possible to implement an FIR system 

using a recursive computational scheme and an IIR system using a nonrecursive 

computational scheme. The former case is illustrated in the example below. 

 

Example. 

Consider the FIR discrete-time system given by the impulse response  

 {h[n]}={1,1,1,1,1,1}. 

      

Substituting the above in equation  

 

     .knxkhny
2

1

N

Nk

 


 

 

we get the input-output relation 

 

 y[n]=x[n]+x[n-1]+x[n-2]+x[n-3]+x[n-4]+x[n-5]. 

 

To develop the recursive version of this filter, we note from the above 

 

 y[n-1]=x[n-1]+x[n-2]+x[n-3]+x[n-4]+x[n-5]+x[n-6], 
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which can be rewritten as  

 

 y[n-1]-x[n-6]=x[n-1]+x[n-2]+x[n-3]+x[n-4]+x[n-5]. 

 

Substituting the above in equation we arrive at  

 y[n]=x[n]-x[n-6]+y[n-1], 

which is a difference equation of the form of equation. 

 

 

3.9 Realization o f DTS 

 

Basic elements:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x(n) 

y(n) 

w1(n) x(n) 

y(n) 

w2(n) 

Modulation: w1(n)= x(n).y(n) 

 

 

Addition: w2(n)= x(n) + y(n) 

 

 

 D w4(n) x(n) 

 

z
-1

 w4(n) x(n) 

Unit delay: w1(n)= x(n-1) 

 

 

 D
-1

 w4(n) x(n) 

 

z w4(n) x(n) 

Unit advance: w1(n)= x(n-+1) 

 

 

Multiplication: w1(n)= Ax(n) 

 

 

A 

w3(n) x(n) 
A x(n) w3(n) 
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3.9.1 Finite Impulse Response Systems  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  3.9.2 Infinite Impulse Response Systems 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k
N

k

N

k

zkh
zx

zy
zH

knxkhny















0

0

)(
)(

)(
)(

)()()(

Transfer function 

 

z
-1

 

y(n) 

x(n) 
x(n-1) x(n-2) x(n-i) x(N) 

h(0) h(1) h(2)    

h(i) 
h(N) 

 

z
-1

 
 

z
-1

 
 

z
-1

 

Figure 15 
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Example: Develope the relation between x(n) and y(n) 

 

 

 

 

 

 

 

 

 

 

 

 

y(n) =a0x(n) + a1x(n-1) + a2x(n-2) + b1y(n-1) + b2y(n-2) 

 

 

 

 

 

 

 

 

 

 
                                                              

                                                                

                                                                                               
                                                                 

                                                                    

 
                                           

 

Transfer Function of System 

                                       

                                   

 Output: y(n)= ay(n-1)+bx(n)+cx(n-1)  
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z
-1

 

a 

c 

y(n) 

x1(n) 

b 

x(n) 

Figure 18 


